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Abstract

Big Data analysis has been a key matter during the recent years for the study of

various phenomena in various science contexts as well as in business intelligence.

Furthermore it appears for good reason to remain in focus for the future. Online

Analytical processing methods and Data Cubes need to be further studied in order

to reduce time used for efficient data analysis. This study introduces BucDoop, a

novel algorithm that exploits the parallelism benefits of Hadoop Map Reduce, for

the efficient iceberg data cube creation in reasonable time. BucDoop includes the

use of the Bottom Up Computation (BUC) idea in the context of iceberg cube data

lattice traversal, managing to reduce the amount of data handled with early pruning

architecture and producing the portion of the cube needed for analysis purposes

(iceberg problem). Experiments conducted herein present an efficient scalability

factor for the creation of the iceberg cube for very big data, by-passing the data

explosion and memory constraints problem while using only commodity hardware.

Keywords: OLAP · Data mining · Online analytical processing · Data cube · Iceberg

cube · Data aggregation · Bottom Up aggregation · BUC · Bottom Up Computation

· Hadoop · Map Reduce
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Chapter 1 - Introduction

1.1. General

The gradual introduction of IT technological means in almost every single

human activity during the previous decades, led to an exponential increase of the

available information. These information come from data collections created over

trillions of interactions, from various human-machine or even human-led machine-

machine interfaces. Huge amounts of data are produced and exchanged during a

single day, and most of them are stored for further exploitation and analysis. The

efficiency that the IT systems conferred to human  transactions, and the included

ability to store and post-analyze this transactions through the systems, created

more outcome; many stories to be read. Stories that talk about humans and their

behavior. Stories talking about what they did and, if read carefully, probably telling

what they will do again.

So the massive demand procured the previous years globally, from either

Industrial, Governmental, Academic or Commercial and many other entities, was to

read those stories and use them to get answers. From the need for digitization of

aids we moved to the need for digitization of efficiency. Questions now are laying

there more than ever, giving birth to more questions at the same time they are

being answered. Telephone company logs, market place transactions, weather

datasets, geological surveys data and thousand more cases, leading to a need for

efficiently handling data and extracting useful information from them.

And until not long ago, most of the respective organizations and entities,

invoked endless human-hours in order to manage manually to get results

concerning their efficiency in their work cycle. In such a case the way ahead was

clear and led all the relevant Academic as well as Commercial institutions to define

a new strategy  in order to cover the actual community needs; Data Analysis.



C h a p t e r  1 - I n t r o d u c t i o n P a g e | 2

1.2. Data Analysis

The most commonly known systems where data is stored, which are in use

widely for many decades now, is the data bases systems. These systems are based

on the Online Transaction Processing architecture which focuses in the significance

of availability, speed, concurrency, and recoverability. These data storage tools, do

not offer themselves for data analysis. Data that are changed rapidly for the sake of

concurrency and speedy performance would be rather not feasible to handle.

On the other hand, analyzing data which represent an obsolete instance

would probably lead as to wrong conclusions. What was needed was the ability to

have all the information and the means to handle them during analysis.

This sector was covered by the Online Analytical Processing architecture as

the philosophy behind handling data for analysis, together with the Data

Warehouses which are assigned with the task to provide infrastructure for storing

and analyzing vast datasets.

Data Warehouses, focus on the significance of subject-oriented functioning

as they are used to analyze a particular subject area such as "sales" of a store,

integration ability for storing and analyzing data from multiple data sources, time-

variant ability in order to be able to keep historical data useful for analysis, and

nonvolatile nature since data stored should be kept as is and not subject to any

changes.

Storing data in data warehouses for analysis produces huge amount of

information to be analyzed. And by referring to analyzing, procedures much more

complex than simple searching queries invocation are involved, in order to

discover hidden patterns behind the data, while we do not know that they exist.

These procedures cover the area of data mining, and reside in the space of

huge data and big time to analyze them. The reduce of the time needed  for

analyzing data in an efficient way, are problems handled with the Online Analytical

Processing architectures.
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Among existing strategies for minimizing processing time, which could be

bigger than tens of hours for a query over a typical dataset, is the creation of all

possible query answers in advance. With this strategy, analysis personnel can get

an answer in real time and support effectively their decision support mechanism.

The cost tradeoff in this case is the occupation of exponential storage space. Data

Cube operator [1] is a basic tool that materializes this strategy and will be

discussed later in this thesis.

1.3. Big Data Processing

As already mentioned above, the explosion in information systems usage over

the years, has led to the existence and everyday enrichment of exabytes of data,

structured and unstructured, that need to be processed. Many solutions have been

presented till today for processing big data. Worldwide, all major Organizations,

Companies and many Governments spent time and money in order to improve their

intelligence knowledge and systems for gaining a leading place in the market of data

processing.

Cloud computing is a relative novelty, that moving towards big data

processing, allows the exploitation of a group of computers, in order to spread

problems to be solved, and make the best out of already available CPUs. Using

cloud computing allowed researchers address problems with unthinkable

computational needs that until recently were widowed as non processable.

Enterprises developed solutions for the efficient problem sharing for cloud

computing. Google introduced Map Reduce, a model used to simplify computation

parallelism and allow users to address more issues concerning big data. Apache,

moved one step further materializing Hadoop, an open source platform based on

Map Reduce model. The free usage of such tools, allowed users to review many

problems not addressed or addressed insufficiently till today, from a new
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perspective. More and more issues find their way by using the parallel processing

over a cluster.

1.4. Hadoop and Bottom Up Cube Computing

As Hadoop becomes more and more popular in the area of parallel computing,

many different types of problems are addressed by this method in order to obtain a

result of high computational efficiency. Hadoop developers are also directing their

efforts towards including features that will allow different philosophies to exploit

the platform.

At this context, efforts are being made in order to transform existing

algorithms for use with the Map Reduce model philosophy. The Cube computation

has already been addressed by researchers, and strategies like Top-Down Cube

computation have been presented.

So far the Bottom Up Cube computation strategy remains to be investigated

for the best of our knowledge. Thus, the missing area that this thesis tries to cover

is that of the exploitation of the Hadoop Map Reduce platform for the pruning-full

bottom up computation of iceberg data cubes.

1.5. Thesis Organization

The rest of this thesis report is organized as follows; In chapter (2) a

reference to issues concerning Data Analysis and Online Analytical processing

(OLAP) and Data Aggregation is made. The Data Cube operator for answering

analysis queries is discussed, as well as some algorithms proposed in order to

handle the space and time reduction in Data Cube creation. A thorough discussion

on Iceberg Cubes Computing is made together with its various computational

techniques with emphasis to the Bottom Up Computing Algorithm. In Chapter (3)

we discuss the Hadoop Map reduce model and its architecture, together with its

Apache Hadoop implementation, which is widely contributing for handling vast
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datasets during the recent years. In Chapter (4) we introduce BucDoop, a novel

simple algorithm designed during this thesis research, for exploiting Hadoop's

Architecture in the context of Bottom Up Computation philosophy for iceberg

cube creation. In chapter (5) we present the experimental results performed over

various datasets and parameter variations with BucDoop and finally in chapter (6)

we present the conclusions of this thesis and propose future work.
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Chapter 2 - Cubes, Iceberg Cubes & Bottom Up
Computation (BUC)

2.1. General

Online Analytical Processing (OLAP) is used by enterprise analysts for

performing data mining operations over collections, usually of multidimensional

data, seeking for various relations and patterns in the processed information. This

processing needs to work on a structured collection of data, categorized as to

contain all possible involved entities. A data warehouse serves as a database-like

collection for OLAP processing, providing the needed infrastructure, in order to

store the structured data for analysis. Most usually, an OLTP database fulfills the

role of the data origin, by providing to the data warehouses historical data through

periodical snapshot instances.

OLAP systems are designed to handle easily and fast the querying over

data. They contain two basic types of data: numeric data like quantities, averages

and amounts, which are called measures, and attribute-like categorizations which

are called dimensions.

2.2. Data Cube Operator

Trying to retrieve patterns from data, OLAP processing performs group-bys

and aggregation over them. Based on this need, and keeping in mind that in the

case of data mining over data warehouses we refer to multidimensional and

historical data with millions of entries and tens or hundreds of dimensions,

aggregating and grouping turns to be an expensive in time job. A proposal that

came to solve this time issue was based on the idea of keeping group-by and

aggregation results pre-computed: in [1] Grey et al. proposed the Data Cube
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operator.

The cube operator proposed a generalization of the 2-dimensional cross-tab

operator in the N-dimensional space. The cube treats each of the N aggregation

attributes as a dimension of this N-space. The aggregate of a particular set of

attribute values is a point in this space.

The creation of the group-by views of the dataset needs a scan of the data

each time. Because of the costly multiple scans over the dataset needed, the

various solutions proposed directional variations of simultaneously or successional

computations of different group-bys. Based on the roll-up and drill-down

techniques for examining the succession in group-bys, the lattice that is illustrated

in Figure 1 is molded.

Figure 1: Data Cube Lattice

The lattice derives from a dataset with four dimensions; A, B, C and D. The

various group-bys are represented by the respective attribute letters combination.

The different colors present the levels with different numbers of group-bys. The

lines between the group-bys represent the relation of the group-bys, which are the

possible paths that a group-by can derive from, in a parent-to-child relation.
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There are three major approaches developed concerning data cube

computation: the top down computation, represented by Multi Way array

aggregation [2], which utilizes shared computation and performs well on dense data

sets, bottom up computation, represented by BUC [3], which takes advantage of

Apriori Pruning and performs well on sparse data sets, and integrated top down

and bottom up computation, represented by Star Cubing [4], which takes

advantages of both and has high performance in most cases.

2.3. Iceberg Cube Problem

Iceberg cubes are similar to conventional data cubes, with the specialized

condition that the groups of tuples from the source data set to be materialized into

cells of the final cube, are limited to those satisfying a HAVING clause. Given a

data set S, an iceberg cube Q on S is defined by a SELECT-GROUP-BY

aggregation on S with an additional clause (iceberg condition) of the form HAVING

AggOp(GB) > minSup , where:

- AggOp is an aggregation operator,

- GB is a group-by of attributes from the fact table S, and

- minSup is a value which defines the minimum support that the group-by

has to surpass for being part of the cube.

2.4. Previous Work on Iceberg Cube Computation

To improve the efficiency of the aggregation methods that are the crucial

feature of iceberg cube algorithms, four major issues have been considered: lattice

search order, specialized data structures, segmentation, and measure computation.

2.4.1.Lattice Search Order

The way that the lattice will be traversed in order to create the cuboids is

of major significance to the efficiency of the computation. The three approaches
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that have been proposed concerning the search order of the lattice are bottom up,

top down, and integrated bottom up and top down. Depending on the search order,

various techniques have been proposed to improve efficiency; e.g., Bottom-up

aggregation starts by examining aggregations for a single attribute, then pairs of

attributes, etc. and thus it can exploit Apriori-like pruning technique to reduce the

number of combinations of attributes considered [2],[5]. Apriori-like pruning is

based on the anti-monotonic property of a pruning function. “Apriori-like” refers

to the Apriori algorithm [6], where this type of pruning was exploited to compute

combinations of items efficiently.

Given function ʄ, a value V, and two partitions A and AB such that AB ⊆

A, if ʄ(A) ≤ V, then ʄ(AB) ≤ V is always true, the function ʄ is anti-monotonic

[11]. Anti-monotonic functions can be directly used in Apriori-like pruning.

Aggregations like Count, Sum of positive values, Minimum, and Maximum are anti-

monotonic functions, so they can be used in Apriori-like pruning. For example, for

a sub-partition of the group-by A partition, ai ∈ A, if ʄ (ai) does not satisfy the

minimum support threshold, all less-detailed group-bys containing ai can be safely

pruned; e.g., ai bj where bj∈ B a sub partition of group-by B, because they also

will not satisfy the minimum support threshold.

Top-down computation examines aggregations for multiple attributes first

and then it examines aggregations for fewer attributes. It shares the computation

for group-bys related by a prefix relation [7]. Shared computation manipulates

calculation of measure values for two or more group-bys during the same pass over

the data. Because of the shared prefix between parent and child group-bys, when

the child group-by is aggregated, the parent group-by can also be aggregated at

the same time. Shared computation is the main idea behind top-down approaches,

such as the Top-Down Computation algorithm [8]. Integrated methods have also

been proposed. Star-Cubing [4] uses a top-down approach based on the global

computation order for all group-bys, while locally, for each group-by, a bottom-up
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approach is employed. Pipe’n Prune [9], uses an integrated method which

combines features of both bottom-up and top-down aggregation, and thus takes

advantage of both Apriori-like pruning and shared computation. The Multi-Tree

Cubing algorithm [10] also integrates top-down and bottom-up approaches, and

therefore it features both shared computation and Apriori-like pruning.

2.4.2. Specialized Data Structures

Specialized data structures like arrays and trees, are also proposed for

efficient calculation [5] [7] [11]. A multi-dimensional array allows an attribute to

be associated with an array dimension. The advantage of arrays is the simplicity of

performing aggregation and accessing cells. However, if the data cube is sparse,

much memory is wasted. To overcome this limitation, Zhao et al. (1997) [2]

decompose large arrays into small chunks and load only one chunk at a time into

the memory. Shao et al. (2004) [12] first decompose a data cube into subspaces

according to the frequency of the values, and then for each subspace, they apply

an array-based algorithm.

Various types of trees have been proposed for iceberg cube computation.

Xin et al. (2003) [4] proposed star trees and Han et al. (2001) [11] proposed H-

trees. The advantages of trees are that they are a compact representation of the

data table and the pruning methods can be applied in the trees. The disadvantage

of trees is that in the worst case, if the data cube is very dense, the algorithm will

exhaust available memory.

2.4.3. Segmentation

Dividing cubes into relatively small segments that can fit into main memory

has also been proposed as a solution to the iceberg cube computation. MM-cubing

separates frequent and rare attribute values to form subspaces for aggregation

[12]. Cross table cubing computes over separates tables in a star-schema, then

aggregates the cubes locally, and finally joins the local data cubes to form the
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global data cube [13].

2.4.4.Complex Measures

For complex measures that do not satisfy the monotonic or anti-monotonic

properties, methodologies for computation has been proposed also. Han et al.

(2001) Proposed top-k average as an approximation for the average measure [11].

Since the top-k average is monotonic, it can be used for Apriori-like pruning.

Wang et al. proposed combining the ideas, of “divide-and-conquer” and

“approximate” in order not be dependent on the specific form of the aggregate

function [14]. Thus an approximation that is either monotonic or anti-monotonic

can be used for Apriori-like pruning.

2.5. Bottom Up Computation of Iceberg Cube

BUC [3] uses a bottom-up computation where cuboids with fewer

dimensions are parents of those with more dimensions. BUC starts by reading the

first dimension and partitioning it based on its distinct values. For each partition, it

recursively computes the group-bys with the remaining dimensions. The

computation along a partition terminates if its count is less than the iceberg

condition. This way, bottom-up computation order allows the Apriori-like pruning

which is very efficient when the dataset is sparse because of reducing lots of

unnecessary computation. Figure 2 shows a BUC processing tree for four

attributes.
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The small numbers beside the group-bys indicate the processing order.

BUC first divides the data in partitions based on attribute A and checks the

minimum support condition for the first partition a1. If the condition is not satisfied,

BUC prunes any partitions starting with a1, which include a1 bi ( bi ∈ B), a1 ci ( ci

∈ C), and a1 di ( di ∈ D), by stopping recursion. If the condition for a1 is satisfied,

BUC outputs a1, then recursively moves on to the next group-by, which is AB. It

divides the data of partition a1, based on attribute B, to compute new partitions a1

bi, such that bi ∈ B. If a1 bi satisfies the minimum support condition, then the next

group-by, ABC, is examined, and so forth. Once the processing for a1 is complete,

BUC continues checking the remaining partitions of A. At this point, all group-bys

starting from attribute A have been computed. Next, BUC starts from the

remaining attributes B, C, and D and repeats the process for each.

BUC is a divide and conquer strategy, and partitioning is its major cost.

BUC can be used to compute either a full data cube or an iceberg cube. Due to its

pruning power, BUC works especially well at computing iceberg cubes for sparse

database tables as mentioned earlier. Figure 3 presents the original algorithm

Figure 2: The Bottom Up Computation Cube Lattice
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Procedure: BottomUpCube(input,dim)

Inputs

input:: The relation to aggregate

Dim:: The starting dimension for this iteration

Globals

constant numDims:: The total number of dimensions

constant cardinality [numDims]:: The cardinality of each dimension

minSup:: The minimum number of tuples in a partition for it to

be output

outputRec:: The current output record

dataCount[numDims]:: Stores the size of each partition dataCount[i] is a list

of integers of size cardinality[i]

Outputs

output:: One record that is the aggregation of input.

Recursively, outputs CUBE(dim,…, numDims) on

input (with minimum support).

Method

1: Aggregate(input);

2: if input.count()==1  then

WriteAncestors(input[0] ,dim); return;

3: write outputRec;

4: for d = dim;  d < numDims ; d++   do

5: let C = cardinality[d];

6: Partition(input,d,C,dataCount[d]);

7: let k=0

8: for i=0; i <C ; i++ do

9: let c= dataCount[d] [i]

10: if  c >= minSup then

11: outputRec.dim[d]=input[k].dim[d];

12: BottomUpCube(input[k…k+c],d+1);

13: end if

14: k+= c;

15: end for

16: outputRec.dim[d]= ALL;

17: end for

Figure 3: The original BUC Algorithm [3]

BUC's first step upon each recursive call is to aggregate the entire input

(Line 1) and write the result (Line 3). In Line 2 it uses an optimization for skipping

the further recursive computation of one Line partitions.

1: Aggregate(input); //  Places result in outputRec

2: if input.count()==1 then //Optimization
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WriteAncestors(input[0] ,dim); return;

3: write outputRec;

Next, it partitions the input for each dimension from the current dimension

to the total number of dimensions, according to the specific dimension cardinality

(Lines 4-6).

4: for d = dim;  d < numDims ; d++ do

5: let C = cardinality[d];

6: Partition(input,d,C,dataCount[d]);

On return from Partition(), dataCount contains the number of records for

each distinct value of the d-th dimension.

Accordingly in Line 8 BUC iterates through the partitions

7: let k=0

8: for i=0; i <C ; i++ do // For each partition

If the partition meets minimum support, the partition becomes the input

relation in the next recursive call to BUC, which thus computes the Iceberg cube

on the partition for dimensions d+1 to the total number of dimensions. Upon return

from the recursive call, BUC continues with the next partition of dimension d.

Once all the partitions are processed, the algorithm repeats the whole process for

the next dimension.

Figure 4: BUC Partitioning [3]



C h a p t e r  2 - C u b e s ,  I c e b e r g  C u b e s  &  B U C      P a g e | 15

Figure 4 illustrates how the input is partitioned during the first four calls of

BUC, in a hypothetical scenario where the A dimension has four distinct values

(cardinality=4), the B dimension has also four distinct values (cardinality=4), the C

dimension has two distinct values (cardinality=2) and the D dimension has also two

distinct values (cardinality=2).

First BUC produces the ALL group-by. Next, it partitions on dimension A,

producing partitions a1 to a4, and then it iterates on partition a1. The a1 partition is

aggregated and produces a single tuple for the A group-by. Next, it sorts and

partitions the a1 partition based on dimension B. It iterates on the <a1, b1>

partition and writes an <a1,b1 > tuple for the AB group-by. Similarly for <a1, b1, c1>

and then <a1, b1, c1, d1> but this time it does not enter the loop at Line 4. Instead

it simply returns only to iterate again on the <α1, b1, c1, d2> partition. BUC then

returns twice and then iterates on the <α1, b1, c2> partition.  When this is

complete, it partitions the <α1, b1> partition on D to produce the <α1, b1, D>

aggregates. Once the <α1,b1> partition is completely processed, BUC proceeds to

<α1,b2>.

When a small partition is found, instead of writing for all of the group-bys,

BUC simply skips the partition (Line 10) and does not consider any of the

partition's ancestors.

9: let c= dataCount[d][i]

10: if c >= minsup then // The BUC stops here

11: outputRec.dim[d]= input[k].dim[d];

12: BottomUpCube(input[k…k+c],d+1);

13: end if

14: k+= c;

We notice here that none of the ancestors can have minimum support so
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the pruning can be implemented.

2.6. Considerations on BUC

BUC uses continuous partitioning and sorting. As discussed in [3] if the

input does not fit in main memory, the data must be partitioned to disk. A

proposed solution was to use a BUC- external implementation initially, and switch

to BUC-internal as soon as the partition fits in main memory, since thereafter the

further sub-partitioning will provide input that will also fit in memory. Of course, at

each successional computation on the next distinct value partition for the same

dimension, BUC- external may be needed again, if the new partition does not fit in

memory.

Beyer et al, also discussed that the performance of BUC is sensitive to the

ordering of the dimensions since the goal of BUC is to prune as early as possible in

order to skip unnecessary computations. Thus, for best performance, the most

discriminating dimensions based on cardinality and uniformity should be used first

during computation. So dimensions with higher cardinality and uniformity should be

considered first in order to achieve the most out of the pruning-based functionality

of BUC.

Authors of BUC also considered the disadvantage of BUC when having to

deal with big and dense inputs which will encounter a very small pruning because of

the density and thus a late insertion into memory.

Those considerations will be dealt in the Hadoop-based algorithm where the

advantages of BUC can be also exploited, while probable disadvantages are

outdistanced by the native parallelization of big data of the Map Reduce model.
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Chapter 3 - Map Reduce

3.1. General

The increase in the need for processing vast amounts of data for many real

world tasks brought up a requirement for a relatively simple model that would

exploit existing ordinary resources for the job. MapReduce is such a programming

model introduced by Google [15].

The basic idea behind MapReduce model is to use the computational and

storage strength of a big number of workstations in parallel, while declutching users

from the various details of parallelization, fault tolerance, data distribution and load

balancing, that are needed for managing a workload in such a group.

Through this model, the user avoids being involved with parallelization

which is handled by the framework of the model, and solely has to define two

functions - Map and Reduce. Those two functions will be in fact the core of the

user defined job that needs to be performed over the dataset.

The MapReduce framework handles the distributed resources, runs the

various tasks in parallel, manages all communications and data transfers between

the various parts of the system, and provides redundancy and fault tolerance.

The MapReduce model idea is based on a simple series of actions that

synthesize the Map Reduce job. To begin with, Input is read from the file system

and is accordingly converted to appropriate Key-Value pairs in a way defined by

the user and that will allow their further processing. The Map function processes

each input pair and outputs the result (according with the functionality given to the

Map function by the user) as zero, one or more intermediate Key-Value pairs. For

each distinct intermediate Key, the Reduce function processes all Key-Value pairs

with the same Key, and returns a number of final Key-Value pairs (according with
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the functionality given to the Reduce function by the user). Finally, the output of

the Reduce function is written to the file system as the final Key-Value pairs.

The MapReduce model architecture using the steps described above, acts

as a means for guiding data through their path to accomplishing their processing,

and allows the user to specify the actual processing that needs to take place.

In every step, any separate Key-Value pair is processed independently of

any other data, allowing the processing to take place in any machine that is aware

of the user defined computation code that has to take place over it. This

computation is the same for any other key value pairs. That way, the different

Key-Value pairs, that consist the transformation of the initial dataset, can be

distributed amongst a group of machines for further processing. The key idea here

is that the user needs to define the way that the data will be transformed into Key-

Value pairs in each step of the way, in order to achieve the computation outcome,

after being processed by the user defined Map and Reduce functions.

3.2. Hadoop

Hadoop is an open-source framework based on Google’s MapReduce

model, written in Java and developed by the Apache Foundation.

The execution of a MapReduce program in Hadoop is based on the actions

described earlier for a typical Map Reduce job. As thoroughly described in [16],

the user uploads input data to the Hadoop Distributed File System (HDFS), which

in turn distributes and stores it on the computing nodes for further processing. The

input will be split into chunks and each chunk will be processed by a map task. The

results will be partitioned into distinct sets, which will be sorted and passed to a

reduce task.

The two core components of Apache Hadoop are the Hadoop Distributed

File System (HDFS) which covers the sector of data storage handling and the Map

Reduce which covers the sector of processing. Both HDFS and MapReduce are
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designed in order to be co-deployed and perform as a single cluster and thus

provides the ability to move computation to the data.

3.2.1.Hadoop MapReduce Model Infrastructure

Being based on a parallel architecture, the model needs a number of

machines to work on. These machines are called nodes. Single machine usage is

possible but the advantages of the data distribution and parallel process would

vanish, thus such an arrangement would serve only for educational purposes.

Nodes can be commodity computers with no special characteristics required, either

on the same network or in a wider distributed administrative architecture.

This interconnected group of nodes consist a cluster, which has two types

of nodes operating in a master-worker pattern in the abstract sector of HDFS: The

namenode (the master) and a number of datanodes (workers). The namenode

manages the file system namespace. It maintains the file system tree and the

metadata for all the files and directories in the tree. This information is stored on

the namenode’s local disk. Datanodes are the workers of the platform. They store

and retrieve blocks as needed by the framework and are the ones that will perform

the computational load as well, in order to benefit from the data locality and avoid

the cost of data transfer.

Concerning the abstract sector of Computational processing, there are two

types of nodes that allow the job execution process: a jobtracker and a number of

tasktrackers. The jobtracker coordinates all the jobs running on the system by

scheduling tasks to run on tasktrackers. Tasktrackers run tasks and send progress

reports to the jobtracker, which keeps a record of the overall progress of each job.

If a task fails, the jobtracker can reschedule it on a different tasktracker. The core

components of the HDFS architecture is shown in Figure 5.
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3.2.2.Hadoop MapReduce Data Flow

For every MapReduce job the dataset files are split in chunks from 16 to

128 MB and loaded to the distributed file system. The user initiates the job by

specifying the MapReduce program to be executed, and the input path of the

dataset in HDFS as well as the output path of the job. The master node sends a

copy of the program to every computing node and starts executing the job. The

mapping tasks are assigned on many or all of the nodes in the cluster. Each mapper

loads the set of files local to the specific machine and processes them, fetching

more data from other nodes if necessary and possible as dictated by the master

node.

When the mapping phase has completed, the intermediate Key-Value pairs

that were output of the map phase must be exchanged between machines in order

to group all values with the same key to a single machine which will act later as a

reducer. The reduce tasks are spread across the same nodes in the cluster as the

mappers, and process all the pairs assigned to them. When the Reduce phase is

finished its output is being written to HDFS. The Hadoop MapReduce Data Flow is

shown in Figure 6.

Figure 5: The Hadoop Core Components Architecture [18]
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3.2.3. Hadoop MapReduce Work Flow

As already mentioned earlier, one of the big benefits of using Hadoop Map

Reduce to process big data in a cluster is that the user will not have to be involved

in any way with cluster setup and parallelization issues as well as fault tolerance.

The user will have to define the computation that will take place in the Map and/or

in the Reduce phases, as well as the way that the input should be read for the sake

of the computation needed.

To this end the user will have to deal with the following entities:

Input Handling

Input: The input files reside in HDFS after user uploading. They will be

used as input to the Map Reduce job. The size of the files usually is very big and

thus initiating the need to invoke Hadoop.

Figure 6: Hadoop MapReduce Data Flow [19]
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InputFormat: Refers to the way that the input files will be split and read in

order to be useful to the job computation. The InputFormat will read all files in a

directory and divide them into one or more InputSplits. Hadoop provides various

inputFormat classes for handling different kinds of data such as TextInputFormat,

SequenceFileInputFormat etc. Some details about inputFormats provided are

presented in Table 1. The default InputFormat is the TextInputFormat. This

InputFormat treats each line of input file as a separate record.

InputFormat Description Key Value

TextInputFormat Default format;

reads lines of text

files

The byte offset

of the line

The line contents

KeyValueInputFormat Parses lines into

key, val pairs

Everything up to

the first tab

character

The remainder of

the line

SequenceFileInputFormat A Hadoop-specific

high-performance

binary format

user-defined user-defined

Table 1: InputFormats Provided by Hadoop

InputSplits: An InputSplit is a chunk containing a portion of the dataset that

will be handled by a single map task in the MapReduce program. As a result, a

MapReduce program includes several tasks. Map tasks may involve reading a whole

file or only a part of a file. By default, the FileInputFormat break a file up into 64

MB chunks which is the size of blocks in HDFS for the sake of minimizing seeking

cost. This way the InputFormat defines the list of tasks that consist the mapping

phase since each map task is assigned to a single input split. The tasks are
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assigned to the nodes in the file system where the input file chunks are physically

resident.

RecordReader: TheRecordReader is responsible for loading the data from

file system by converting them into key, value pairs suitable for reading by the

Mapper.

Processing Data

Mapper: The Mapper is the main user defined function, which is responsible

for transforming the Key/Value pairs that have been read with the above

mentioned steps with the use of the computational functionality programmed by the

user. Together with the functionality that the user will define in the reducer, the

map tasks will contribute their share in the data processing. Depending on the

computational needs of each MapReduce job over some data, the mapper could

involve no actual computational functionality. For each input Key/Value pair, a

map task will be called, and after the proper process it will produce an intermediate

Key/Value pair that will be the map output for passing to the reduce phase.

Combiner: Combiner is a processing step which can be optionally used for

minimizing data transfer between Map and Reduce phases. The Combiner runs

locally on any machine that performed a mapper phase task and receive as input all

data emitted by the Mapper instances on the given node. Given the problem that

allows for efficient usage of a suitable combiner, the output from the Combiner will

be significantly smaller than the output of numerous map outputs before being

combined. This output is sent to the Reducers, instead of the output from the

Mappers.

Reduce: The Reducer function is responsible for creating a reduce task for

each pair consisted of a Key and a list of values associated with that Key. The

input for the reduce task is a result of the grouping performed over all the Values

coming from many different mappers output pairs, which are associated with the
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specific Key assigned to the reduce task. It is the second main user-defined

function, which complements the processing over the data.

Data exchange during Processing

Partition & Shuffle: The Partition function is responsible to gather all

Values associated with a Key, that are coming from different mappers, and transfer

them to the node that is assigned for the reduce of the associated Key. The

process of moving map outputs to the reducers is called shuffling.

Sort: The set of intermediate keys on a node is automatically sorted by

Hadoop framework before they are presented to the Reducer.

Output handling

OutputFormat: The Key/Value that result by the reduce processing are

written to the output in a way that is defined by the OutputFormat. Each Reducer

writes a separate file in a common output directory.  Details about provided

OutputFormats are given in Table 2. The default OutputFormat is

TextOutputFormat, which writes output pairs on individual lines of a text file.

OutputFormat: Description

TextOutputFormat

Default;

writes lines in

"key /value" form

SequenceFileOutputFormat Writes binary files suitable for

reading into subsequent

MapReduce jobs

NullOutputFormat Disregards its inputs

Table 2: OutputFormats Provided by Hadoop
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RecordWriter: The record Writer is the means through which the output is

actually written to the output file system. The Components of a Map Reduce job

are illustrated in Figure 7.

Figure 7: Hadoop MapReduce Components flow [20]
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Chapter 4 - Bottom Up Computation of Iceberg Cubes
with Hadoop

4.1. General

In this chapter we will present BucDoop, an algorithmic approach for

creating the iceberg cube with Hadoop. For that purpose, we will analyze the

architecture of the iceberg cube Bottom Up Computation, and adjust it to the Map

Reduce philosophy.

4.2. Work Phases

We will start by recalling the basic phases that BUC uses, which are:

-partitioning the input relation starting with single attribute group-bys,

-pruning partitions that are not covering the iceberg condition and

-continue partitioning supported group-bys bottom-up-wise.

Considering that the input relation is very big, partitioning and sorting the

dataset according to the successional dimensions as performed in the original BUC

algorithm is not feasible. Therefore the new algorithm handles the input dataset

initially unsorted.

4.3. Adding Hadoop Philosophy

For managing the partitioning phase at each stage, the built in feature of

grouping by based on the Key of Key/Value pairs in Hadoop, was used to achieve

this kind of functionality. The specific internal feature of the Map Reduce model,

allows for the partitioning of huge datasets during the first pass, with no limitations

having to do with memory issues, since every single record read can be converted

in an appropriate Key/Value pair, and simply rely on the Hadoop framework to
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perform the proper partitioning by its internal hash based partitioning mechanism,

and forward the new partition to one of the reducers. The size of each new

partition, which can normally exceed memory size when dealing with big data, will

also be unproblematic since the Hadoop Distributed File System will manage its

storage and allow the reducer to handle it smoothly.

Concerning the iceberg threshold support count of the partitions' tuples,

this functionality was laid on the reducer side, which groups the assigned partition

and performs the counting. The reducer needs to scan the partition twice; once for

counting partition support and performing aggregation at the same time, and a

second time for passing succeeding tuples to the next processing phase.

For maintaining the partitions scans to one, we exploit the initial scan for

producing all possible next phase group bys and forward them to the appropriate

partition/reducer. As a result, each read will produce D-G+1 Key/Value pairs,

where D is the dimensionality of the dataset and G is the position of the last

grouped by attribute in the processed input record during the last executed job.

In a hypothetical example, we have D=3 with dimensions A, B, C and one measure

M.

Let <a1, b1, c1, m1> be the first input tuple, in the mapper of the first Map

Reduce job. The job is the first job executed, which means that the position of the

previous job processed group-by is G=0. So the mapper will create 3-0+1=4 new

records with the following group-bys:

Group By A: <a1, all, all, m1>

Group By B: <b1, all, m1>

Group By C: <c1, m1>

Group By All: <all, m1>
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As a following step, the mapper needs to pass the created group-bys to the

reducer for proceeding to the phase of assembling the various partitions with

records coming from other mappers. In order to provide the ability to the reducers,

after counting the support of the assembled partition, to reform the initial

information and create the next phase group-bys, the mapper will form the

Key/Value pairs in a pattern that will allow the minimal exchange of only useful

data between mappers and reducers.

We notice in the above presented group-bys, that the information which

need to be transferred to the reducers for further computation does not include all

dimensions; e.g. for passing the values for the group-by B, we do not need to pass

the values for A. therefore we skip the value for A but we transfer the values

following B, because they will be needed in the next group-by processing job for

dimension C. To that end the mapper needs to create a key representing the

group-by B and a value representing the next dimensions that need to be

transferred to the next jobs, in case that the group-by B is found to be frequent in

this jobs reduce phase, as well as the measure which will be used in the aggregation

phase. We also notice that in order to obtain the minimum possible data transfer,

we need to avoid transferring intermediate dimension information which are not

participating in the processed group-by; for example while processing group-by

AC, we should avoid sending information concerning intermediate dimension B.

In our case we choose to reduce the amount of data transfer, which will

result a great benefit for every non-useful byte skipped when dealing with millions

of records. We thus need to use an efficient solution in order to avoid confusing

keys’ grouping for different group-bys with the same values; e.g. we should

distinguish the key representing the group-by AB with participating integer values

of A=1 and B=1, from the key representing the group-by AC with participating

integer values of A=1 and C=1, and make sure that the AB group-by <key, value>

pair will end up in a different reduce task from the AC group-by <key, value> pair
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even if they both have the same participating integers <1,1> in their key.

This functionality was obtained using a customized type of complex keys,

which include an integer array for holding the participating dimension integers,

accompanied by a byte array used as a bitmap of flags denoting the participating

group-bys. The byte array capacity is only as big as it needs to be, in order to

hold the bitmap flags for the number of the data set dimensions; e.g. for 6

dimensions and a single dimension group-by representation only one byte will be

needed for the bitmap and only one integer for the participating dimension, instead

of a full sequence of 6 integers and their delimiters or a respective sequence of

ASCII characters that would be needed otherwise.

Finally the next dimensions that are not participating in the currently

processed group-by as well as the measure, which are information that cannot be

skipped, are transferred to the next phases contained in a customized type of

complex value, holding an integer array and a float point value respectively.

For the smooth handling of the composite keys and values transfer between

nodes, in order to avoid plural serialization/deserializations needed during the

jobs, the implementation that we used initially reads an ASCII - character dataset

during the first map reduce job, and accordingly all other data exchanges are

performed in binary format.

For our example case the mapper will generate the following after receiving

the first input tuple <a1, b1, c1, m1>:

Group By A:        Key1.1=<1, 0, 0><a1> Value1.1=<b1, c1><m1>

Group By B:        Key1.2=<0, 1, 0><b1> Value1.2=<c1><m1>

Group By C:        Key1.3<0, 0, 1><c1> Value1.3=<><m1>

Group By ALL:   Key1.4<0, 0, 0><> Value1.4=<><m1>
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Let us assume in our example that we utilize a Map Reduce cluster with two

mappers and two reducers. Let us also assume that the first input tuple that we

examined already was the input split that was stored in the node of the first

mapper, and thus was assigned for process to that mapper. Finally let us assume

that the iceberg condition for minimum support is minSup=2.

Now, let <a2, b1, c2, m2> be the first input tuple of the input split that is stored in

the node of the second mapper, and so it will be processed by the second mapper.

The second mapper will generate the following:

Group By A:        Key2.1=<1, 0, 0><a2> Value2.1=<b1, c2><m2>

Group By B:        Key2.2=<0, 1, 0><b1> Value2.2=<c2><m2>

Group By C:        Key2.3<0, 0, 1><c2> Value2.3=<><m2>

Group By ALL:   Key2.4<0, 0, 0><> Value2.4=<><m2>

After the completion of the mapping phase, the partitioning phase will

assign the intermediate Key/Value pairs to the two existing reducers. During this

phase, among the other exchange of data, pairs <Key1.2/Value1.2> and

<Key2.2/Value2.2> will end in the same reducer node (let that be reducer 1) and in

the same reduce task for processing. The reducer will count the partition size and

check if the minimum support condition is satisfied, while at the same time it will

aggregate the measures. In the paradigm case the support is 2 and satisfies the

condition.

Reducer 1 will then append the succeeding croup-by  (ALL,b1,ALL,m1+m2)

in the final iceberg cube which is stored in HDFS, and forward the partition with

the two Key/Value pairs to the job output in HDFS, which will act as input for the

next bottom-up wise group-bys; AB, AC and BC.
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This way, the Hadoop framework will have to initiate in maximum D

successive Map Reduce jobs, for computing all possible group-bys. Figure 8

illustrates the way that the cube lattice is traversed by the Map/Reduce jobs, in

order to create the iceberg cube.

4.4. BucDoop Algorithms

The algorithm that is used in the Jobtracker set up is presented in Figure

9. This algorithm controls the work flow of Map Reduce job iterations that need to

be scheduled for the iceberg cube to be created. With the proposed architecture,

each Mar Reduce job uses as input the sufficiently supported group-bys that were

output during the previous phase.

The proposed solution uses two different algorithms for the Mappers;

Mapper_A for converting raw input records into Key/Value pairs and Mapper_B

which converts Key/Value pairs of the previews job group-by into Key/Value pairs

for the exactly next less detailed group-by for processing (e.g. from group-by A

create group-by AB, AC, AD etc.).

Figure 8: BucDoop Job Flow For The Iceberg Cube Computation
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Procedure: BucDoopJob(input)

Inputs

input:: The relation to aggregate

Outputs

output:: The succeeding  GroupBys of the initial  raw Fact

Table with their respective aggregates (iceberg

cube)

Method

1:  Run MapReduce Job

2: Run Mapper_A

3: Run Reducer

4:  End MapReduce job

5:  input ← output;

6:  delete(output);

7:  While (!input.isEmpty)

8: Run MapReduce Job

9: Run Mapper_B

10: Run Reducer

11: end MapReduce job

12: input ← output;

13: delete(output);

14: end While

Figure 9: Algorithm Used in The Jobtracker Setup

The algorithm gets as input, the relation to be processed. In Lines 1-4 it

initiates a Map Reduce job, where the algorithm for mapper_A is used, for reading
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the raw data and converting them to Key/Value pairs. After the completion of the

Map phase, the grouped-by output partitions are sent to the Reduce phase, where

they will be counted and aggregated. The sufficient partitions will be outputted for

the next phase processing and their aggregate will be appended to the iceberg

cube.

In Lines 5 and 6, the algorithm is defining the previous stage output as

input for the next stage. This way, it exploits the HDFS namespace administration

efficiency of Hadoop which is being performed by the Namenode, and does not

need to move any data.

In lines 7-14, the algorithm iterates over successional Map Reduce jobs

execution, where the output of the previous job is used to produce the exactly

next less detailed group-by for processing. The algorithm that is used for the first

Mapper is presented in Figure 10.

Procedure: Mapper_A (input)

Inputs

input:: A chunk of the relation to aggregate

(raw fact table tuples ) residing in HDFS

Globals

constant

numDims:

The total number of dimensions

Outputs

output:: numDims+1 total output records with

format <Key,Value>   for each input

record
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Method

1: Prefix ← "";

2: Suffix ← input.getAllInputAttributes;

3: Mes ← input.getInputMeasure;

4: for i=0 to numDims with step 1

5: Prefix ← Suffix.pollFirstElement;

6: Key ← Prefix;

7: Value ← new Value(Suffix,Mes)

8: Output.Write(<Key,Value>)

9: end
for

Figure 10: Algorithm Used for the Mapper of the 1st Map Reduce Job

In Lines 1-3, the algorithm initializes variables. In Line 2 it assigns the

input record attributes to the variable Suffix and in Line 3 it assigns the input

record measure to the variable Mes. In Lines 4-9, it iterates over the dimension

space in order to produce all possible single group-bys; it polls first suffix element

and assign it to the variable Prefix which represents the group-by that will be

processed in the Reducer. In Lines 6-8, it builds the Key/Value pairs and writes

them to the HDFS output.

It is obvious that the algorithm is “multiplying” the size of the input by D

times. This is not a downside, since the examination of the all the possible group-

bys that are available, after the completion of processing of the previous dimension

group-bys and the “removal” of the  previous dimension from our calculations,

would  be necessary in any case. The original BUC algorithm, after finishing with

the current processed dimension group-bys, “removes” the current dimension and
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continues processing the group-bys of the subsequent dimensions. In our proposed

Map Reduce solution, the input is scanned once, and all possible group-bys of that

phase are generated. This way we minimize the Map Reduce jobs and their

respective input scans. The Mapper_B algorithm (Figure 11) is very similar in logic

to that of Mapper_A, with the difference that in includes functionality for

converting input Key/Value pairs into next step Key/Value pairs.

Procedure: Mapper_B (input)

inputs

input:: Chunk of Records with format

<Key,Value>

currentDim:: The dimension which has been

grouped-by in the previous job

Globals

constant numDims:: The total number of dimensions

Outputs

output:: numDims-currentDim+1 total output

records with format <Key,Value>   for

each  input <Key,Value> pair

Method

1: Prefix ← input.getKey;

2: Suffix ← input.getValue.getSuffix;
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3: Mes ← input.getValue.getMeasure;

4: for i= currentDim to (numDims-1) with step 1

5: Prefix ← Prefix.add(Suffix.pollFirstElement);

6: Key ← Prefix;

7: Value ← new Value(Suffix,Mes)

8: Outp
t.Write(Key,Value)

9: end for

Figure 11: Algorithm Used for the Mapper of the 2nd and Rest Jobs

The algorithm assigns values in variables in Lines 1-3, and creates new

group-bys in Lines 4-9. Instead of creating a new prefix as Mapper_A does, it

extracts from the input the old prefix, and creates the new group-by, adding a new

group-by dimension member, which will be one of the remaining dimensions of the

input which are iterated in Lines 4-9.

For reason of clarification here we need to recall that in practice, since

what is imported and exported during the phases, representing the dimensions, is a

group of integers (as commonly used in practice, mapping of the dimension

members to integers is necessary in order to improve storage efficiency), the use of

the bitmap mentioned earlier in this chapter is the tool which helps us  to

distinguish the group-by that a set of integers refers to; e.g., <1,1,0><5,7> and

<1,0,1><5,7> have the same participating integers (5 and 7) but their preamble

clarifies that the first refers to group-by AB and the second refers the group-by

AC.

Concerning the Reduce phase, a single reduce algorithm is used for all jobs.

The algorithm that is used for the Reducers is presented in Figure 12.

Procedure: Reducer

inputs
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input:: Key, Iterator over a list of Values

icebergFile:: The HDFS file that stores the created

cube

Globals

constant numDims:: The total number of dimensions

constant minSup:: The minimum number of tuples in a

partition for it to be output

Outputs

Output:: One output record with format

<Key,Value>   for each  record in input

list

outputGroupBy:: One output record with format

<GroupBy,Aggregate> if the  input

groupBy count exceeded minSup

condition during reduce job

Method

1: Aggregate ← 0

2: Count ← 0

3: While (input.hasNext)

4: Count++;

5: Aggregate += input.getValue.getMesure;

6: end While

7: If (Count>=minSup)
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8: outputGroupBy ← concat(Key,Aggregate);

9: IcebergFile.append(outputGroupBy);

10: While (input.hasNext)

11 Output.Write(input.next);

12: end While

13: end If

Figure 12: Algorithm Used for the Reducer of All Jobs

The algorithm initializes variable values in Lines 1-2. In Lines 3-6 it iterates

over the input values and counts them, while in the same time it aggregates the

measures. In Line 7, the iceberg condition satisfaction is checked; if the condition

is not satisfied, the reduce task will not provide further output neither for the

iceberg cube directly, nor for the next processing jobs.  In that point, the pruning

of the insufficiently supported partitions is performed. If the iceberg condition is

satisfied, the algorithm will produce a record for the final iceberg cube (Line 8) and

append it to the cube (Line 9). It will also forward the sufficiently supported tuples

of this partition to the job output (Lines 10-12), in order to be used by the next

job, and contribute to the calculation of the less detailed group-bys.
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Chapter 5 - Experimental Evaluation

5.1. General

For the experimental evaluation of the proposed algorithms, an

implementation in Java was performed. Java SE 6 was used and NetBeans IDE 7.1

platform for the actual coding. The version of Hadoop Map-Reduce library used

was 0.20.2. The initial evaluation of the code was performed in a Hadoop pseudo-

distributed mode cluster with one machine. The rest of the experimental evaluation

was conducted in the Technical University of Crete Softnet lab Hadoop cluster.

5.2. Cluster Configuration

The Hadoop configuration of the cluster is based on version 1.0.3. The

cluster consists of 17 nodes, one configured as master namenode and 16 slave

nodes. The node machines are of two different types. The first type, master node

and 12 slave nodes, runs Ubuntu Linux operation system release 9.0.4 with Intel

Xeon 4 core CPU, model X3323, at 2.50GHz and 4 GB of RAM. The second type,

4 slave nodes, runs Ubuntu Linux operation system release 10.04.4 with Intel Xeon

8 core CPU, model X3440, at 2.53GHz and 4 GB of RAM. All machines’ hard

drives have 500 GB capacity with read and write speed at 7200 rpm.

The Hadoop configuration allows each map or reduce task to occupy one

core of CPU from the machine and 1 GB of RAM. The aforementioned

configuration allows a machine to run 4 parallel tasks at any given time allowing a

Map-Reduce job to have up to 64 parallel tasks for all 16 nodes. The HDFS has

capacity of 7,43 TB.
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5.3. Evaluation Data

In order to evaluate the performance of the algorithms, testing in various

data sets was performed. To this end, data sets had to be created to fulfill the

needs for different parameters' evaluation. The data sets created were ASCII

character text files divided in lines, and each line represented a tuple. The tuples

included integer maps for the various dimension members, separated with tab

delimiters. For the evaluation, one float value measure was used. The data

distribution in the datasets for the main portion of the experiments was uniform. A

small number of experiments were conducted with data not following a uniform

distribution and very big cardinalities, in order to check the behavior of the

algorithm with sparse datasets.

5.4. Evaluation Parameters

Data cube computation is by default a space consuming operation.

Techniques for drastically minimizing space consumption have been proposed by

researchers, e.g. Dwarf presented with [17]. Still one of the main key factors

concerning data cube computation, which limits enterprise analysts' job, is the time

consumption. Time consumption was the key factor examined during this

experimental evaluation of the proposed algorithmic solution.

The performance of the algorithm over the cardinality variation as well as the

minimum support variation was performed initially. Next, the variation of the used

reducers’ number was checked, and finally, the scalability of the algorithm was

evaluated over increasing size data sets by increasing the number of dimensions or

the number of the tuples.

Since the proposed algorithm architecture includes successional Map Reduce

jobs in order to compute the iceberg cube, where at each stage/job the size of the

input differs greatly according to the output of the previous job, the number of
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mapper nodes used was not forced, and was left up to Hadoop to use appropriate

number of mappers each time. At each experimentation phase, the evaluated

parameter was varied while all other job parameters were kept fixed.

5.5. Experiments Discussion and Results

As a first step for analysis, a small data set size was used, in order to

determine the effect of the cardinality change over time consumption. Besides the

small data set of 100K tuples that was processed, all the other fixed parameters

used inserted a relative small time consuming factor; iceberg condition of minimum

support used was 10 and 20 tuples in two different series of experiments, the

configuration used almost all the reducers of the cluster for the job (r=15) and the

dimensionality used was of 5 dimensions. The cardinalities used varied in a range of

20 to 30, for the purpose of representing a typical cardinalities’ range close to real

life data. The illustrated in Figure 13 results formed greater time consumption for

smaller cardinalities. The result was expected since data population of each distinct

value increases for small cardinalities and the partitions that have no sufficient

support are less; thus less pruning is achieved for small cardinalities and the

calculations’ time increases. A pick point was recognized in cardinality of 30

distinct values. The variation of time consumed for minimum support of 20 tuples

was very small, procuring that support equal or bigger than 20 would provide no

interest for our further experimentation. The next group of experiments helped us

clarify the correctness of this second observation.
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Next, in order to check minimum support variation effects, we used the

same data set size of 100K tuples, and kept reduced the time consumption effect of

all other fixed parameters; used 5 dimensions, used a cardinality of 30 that

presented the lower time consumption in the previous experiments and again used

almost all the reducers of the cluster (r=15). As indicated in our first group of

experiments, this second group of experiments presented a stable calculation time

for minimum support over 20 tuples. The experimental results presented a drastic

alteration of computational behavior for minimum support up to 10 tuples. This

behavior was expected since for the full cube computation (minSup=1) no pruning

takes place and calculation time is the biggest possible, while for minimum support

increasing the pruning also increases and the calculation time decreases. The

behavior of the algorithm during these experiments is illustrated in Figure 14.

Figure 13: Time Consumption for Various Cardinalities
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Figure 14: Time Consumption for Various Minimum Supports

Accordingly, a number of experiments was performed in order to clarify the

-expected- behavior of reducer nodes' number; The same data set of 100K tuples

was used as input, with all other fixed parameters set to low consuming effect

numbers; dimensionality set to 5, minimum support to 10, and cardinality to 30. As

expected, the influence of the reducers number was big; with almost all the nodes

of the cluster (r=15), we achieved the best performance (Figure 15). Although the

effect was not linear, there couldn't be recognized a pick point, and it is assumed

that for the exponentially growing computation of the data cube, an even bigger

cluster size would perform better. The results of this experiment in a closer look

present the reduction of time in half when using triple reducers. As the Hadoop

architecture normally leads to the reduction of time in half when the reducers are

doubled, we observed here the influence of our choice not to use all the mappers

possible and increase the parallelization, but let the system decide the number of

mappers in each stage.
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Figure 15: Time Consumption for Variation of Reducers’ Number

Having experimented over the parameters that do not affect the size of the

input, and reached a conclusion of the parameter value areas that these futures

behave well, we proceeded on experimenting with the dimensionality and the

number of records of the input, which affect the input size. First we performed a

set of experiments over dimensionality, keeping the rest of the parameters fixed

(cardinality=30, minimum support=10, reducer nodes=15, 100K tuples). We

observed a very good response of the algorithm which handled scaling smoothly

concerning job execution time. The results of these experiments are illustrated in

Figure 16.
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Figure 16: Time Consumption for Variation of Dimensions

Next, we experimented using increasing number of tuples to produce a

scalability challenge for the algorithm; We kept all other parameters fixed in their

good behavior area (cardinality 30, reducer nodes 15, dimensions 5) and

experimented with data sets of 500 thousand to 3 million tuples in two groups of

experiments with minimum support of 5 and 10 tuples; As a result we observed a

high scaling ability. The results of these experiments are illustrated in Figure 17.

The increased consumption of time when dimensions number or dataset size

became big, presented a clear image of the curse of dimensionality, but our

algorithm managed to handle the effect smoothly.
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Figure 17: Time Consumption for Variation of the Number of Tuples

Finally, we experimented with data sets containing data not following a uniform

distribution, with high cardinalities, in order to observe the behavior of the

algorithm with sparse data. The results of these experiments presented a very good

behavior of BucDoop with sparse data as depicted in Figure 18. Throughout the

experimentation phase we observed that no matter the number of dimensions, the

calculation time was mostly consumed in the first 3 jobs where the single, double

and triple attribute group-bys took place. In the case of sparse data with big

cardinalities the calculation time was mainly consumed in the first job. In

comparison with the results presented earlier in Figure 13 with dense data, we

observed that the performance was dominated by the data set size and the

minimum support and not the sparse distribution of the data, since the data needed

a single pass over them and the sparseness of the data led to high pruning and

consuming time only in the first job during our experiments with 5 dimensions.
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As a general observation on the overall performance the algorithm obviously

exploited the advantages of both BUC efficiency and Map Reduce model scalability.

The algorithm handled the processing of the various datasets that were tested in

reasonable times and presented smooth scalability while the dataset sizes used

were increasing

Figure 18:  Time Consumption for Various Cardinalities
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Chapter 6 - Conclusions-Future Work

6.1. Conclusions

In this Thesis report we made an effort of providing a solid and efficient

proposal for the Bottom-Up-Computation of iceberg cubes with Hadoop Map

Reduce platform. The former proposed ideas for iceberg cube computation were

presented shortly and their main conclusions were taken into account. We also

discussed the philosophy behind the distributive model of Hadoop Map reduce. An

effort to efficiently implement the Bottom Up Computation high-performance

characteristics and to adjust them to Hadoop was made.

As depicted in the previous chapters, bottom up computation, which is an

efficient algorithm for computing sparse iceberg or even conventional cubes, can

be further improved by the implementation of distributed philosophy of the Map

Reduce model. The disadvantages that dense and big inputs present with BUC can

be handled by this model which includes native processing of the main

characteristics of BUC; Partitioning and Sorting.

6.2. Future Work

The possibility of further minimizing the data scans for cases of vast data

sets like the ones this proposal tried to cover will certainly be beneficial. Although

the data exchange through the proposed algorithms and tested implementation, are

as minimized as possible, and the inputs need maximum two scans to be processed,

the expected size of data does provide big cost even with a single scan.

An idea which could be investigated would be that of adding functionality to

the proposed algorithms, in order to provide pre-computed partition metrics to the

reducer. For example, the appropriate use of a combining function that would send
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count and aggregate metrics for the processing partition to the reducer, so that

they can be exploited before scanning the data, would further minimize the scans

to only one.
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