COMPUTATIONAL METHODS FOR KNOWLEDGE
DISCOVERY FROM HETEROGENEOUS DATA SOURCES:
METHODOLOGY AND IMPLEMENTATION ON
BIOLOGICAL AND MOLECULAR SOURCES

by

Lefteris Koumakis

A dissertation submitted in partial fulfilment of the
requirements for the degree

Doctor of Philosophy

Technical University of Crete,
School of Production Engineering and Management

September 2014



Dissertation is approved

1. Professor Vassilis S. Moustakis

2. Dr. George Potamias

3. Professor Michael Zervakis

4. Professor Nikolaos Bilalis

5. Professor Manolis Tsiknakis

6. Professor Dimitrios Fotiadis

7. Dr. Dimitris Kafetzopoulos



This research has been co-financed by the European Union (European Social

Fund - ESF) and Greek national funds through the Operational Program "Educa-

tion and Lifelong Learning" of the National Strategic Reference Framework

(NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge soci-

ety through the European Social Fund.

European Union
European Social Fund

Co- financed by Greece and the European Union

OPERATIONAL PROGRAMME
EDUCATION AND LIFELONG LEARNING 0 i
yesting ""J,'.'CM U/-

MANAGING AUTHORITY

H mapovoa épeuva €xel ouyxpnuatodotndel amd v Evpwmaikn ‘Evwon (Evpw-

maiko Kowwvikd Tapeio - EKT) kat and eBvikog topoug péow tov Emiyelpnoia-

kov [poypappartog «Exmaidevon kat Ata Biov MaBnon» touv EBvikol Ztpatnyt-

kovU [MAawsiov Avagopag (EXIA) - Epguvntikd Xpnuatodotolpevo Epyo: Hpd-

kAettog I . Emévéuon otnv kowvwvia ¢ yvwong péow tov Evpwmaikov Koww-

vikov Tapeiov.

MMM

ENIXEIPHEIAKO NPOrPAMMA

EKTIALAEYEH KAI AIA BIOY MAGHEH yE;"A
cndvdyon con woorwria re Jvione s-ztO 7-2013

YNOYPTEX) NAIAEIAL, AIA BIOY MABHEHE KAI 8PHIKEYMATON
EIAIKH YNHPEZLIA AIAXEIPIEHE

Me m ouyypnparoémnon me ENMGSac xai ¢ Evpunaixig Eveong

ii



ANUooLEVCELG

ANUOGLEVOELG KOL AVAKOLVWOELS OE CVVESPLX IOV TtpoEKLV IV
KOTA TNV EKTIOVNOT) TNG Startpnc

1. Koumakis L., Potamias G., Tsiknakis M., Zervakis M. and Moustakis V. “In-
tegrating Microarray Data and GRNs.” Methods in Molecular Biology (un-
der review).

2. Koumakis L., Potamias G., Sfakianakis S., Moustakis V., Zervakis M., Graf N.
and Tsiknakis M. “miRNA based pathway analysis tool in nephroblastoma
as a proof of principle for other cancer domains.” Under review for the
14th IEEE International Conference on Biolnformatics and BioEngineer-
ing (BIBE-2014).

3. Kalantzaki, K., Lefteris Koumakis, Ekaterini S. Bei, M. Zervakis, George Po-
tamias, and Dimitris Kafetzopoulos. “Experimental model construction
and validation of the ErbB signaling pathway.” In Bioinformatics and Bio-
engineering (BIBE), 2013 IEEE 13th International Conference on, pp. 1-4.
IEEE, 2013.

4. Koumakis, L., Moustakis, V., Zervakis, M.E., Kafetzopoulos, D., & Potamias,
G.A. “Coupling Regulatory Networks and Microarays: evealing Molecular
Regulations of Breast Cancer Treatment Responses.” Artificial Intelli-
gence: Theories and Applications. Lecture Notes in Computer Science,
7297,239-246 (2012).

5. Koumakis, L., Potamias, G.A., Zervakis, M.E., & Moustakis, V.A. (2011). “In-
tegrating microarray data and gene regulatory networks: Survey and crit-
ical considerations.” 10th International Workshop on Biomedical Engi-
neering. Kos, Greece 5-7 October 2011.

iii



Abstract

More than a decade after the completion of the Human Genome Project, advances
in genome research and biotechnology have influenced drastically the concept of
disease diagnosis and treatment. In this context, the improvement of high
throughput technologies, such as microarrays, caused a fundamental transfor-
mation in the research of various diseases (e.g. cancer). Microarrays present a
powerful tool to study the molecular basis of the genesis and progression of dis-
eases, and has advanced life scientists’ ability not only to detect but also to quan-
tify simultaneously the expression of thousands of genes for various diseases and
phenotypes.

Initial expectation was that microarrays would reveal specific gene co-
expression patterns (gene signatures or, gene-biomarkers) for various pheno-
types, but the utility of gene-expression profiles seems to be bounded by a num-
ber of limitations, mainly related to: (a) the variation and heterogeneity of the
examined tissues - when comparing two different tissue samples, the potential
differences in gene-expression levels is a manifestation of all the cell types pre-
sent in that sample, making the induced gene-signatures amenable to the specific
tissues examined; (b) the different microarray platforms utilised as well as the
different experimental protocols followed are facts that make really difficult to
combine gene-expression datasets form heterogeneous platforms and different
studies; and (c) the great imbalance between the huge number of transcripts and
genes (tens of thousands) and the relatively small number of available sample
cases (hundreds). In addition, the utilization of ‘knowledge-ignorant’ feature-
selection approaches does not guarantee the ‘biological validity’ of the result (se-
lected gene-biomarkers). In other words, focusing just on highly differential
genes might not be the optimal process to follow. The aforementioned observa-
tions have being reported and justified by various studies in the literature.

Currently bioinformatics community focuses on more ‘knowledge-aware’ and
enhanced methods for selecting genes from microarray data. These methods, aim
to guide the gene-selection process by taking advantage and ‘amalgamating’
knowledge from other established biological sources, such as molecular path-
ways, and especially gene regulatory networks (GRNs). In cells thousands of
genes are expressed and work in concert to ensure the cell's function, fitness,
and survival. The gene relationships have been mapped onto GRNs that can be
interrogated to gain insight into the mechanisms of differential gene expression
at a systems level. These networks can also be used to understand the flow of
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information in a biological system, to identify circuits that may be used for a spe-
cific purpose, and to model changes in gene expression under different condi-
tions. The study of the function, structure and evolution of GRNs in combination
with microarray gene-expression profiles has become essential for contempo-
rary biology research.

The most prominent research line in the respective fields, called pathway analy-
sis, focus on the identification of the most discriminant GRNs (pathways), or
parts of GRNs (sub-paths) that differentiate between specific phenotypes by in-
tegrating and coupling the underlying gene regulatory machinery of GRNs and
gene-expression profiles from microarray data. The relevant approaches and
methodologies increased significantly over the past years, a fact that indicates
the importance of such an integration endeavour. In addition, all reported meth-
odologies and developed tools have significantly contributed to the identification
of informative associations between GRNs and target phenotypes. One critical
drawback of these tools comes from the way the methodologies handle the
knowledge encoded in GRNs. In most cases each GRN is represented and ma-
nipulated just as the set of the genes engaged in the network. With this approach,
and following the gene enrichment analysis (GEA) algorithmic processes, one can
determine which biological pathways are significantly over-represented (i.e.,
more than expected by chance) for a specific phenotype. So, the GEA-like meth-
odologies, are unable to access and do not provide information for parts (i.e.,
sub-paths) of the pathway. Recently, some enhanced GEA-like tools, take ad-
vantage and utilize in their analysis the topology of the GRNs (based on graph-
theoretic approaches and network visualization techniques) but only a limited
number of the reported so-far methodologies take advantage of the signalling
information present in a GRN i.e., the topology and the type of involved interac-
tions such as the activation or inhibition relations holding between genes.

The work reported in this thesis introduces and presents a novel pathway-
analysis methodology. The whole methodology is implanted in a system called
MinePath (www.minepath.org), a web-based platform aiming to facilitate and

ease the identification and visualization of differentially active paths or sub-
paths within a GRN, using gene-expression data. The methodology takes ad-
vantage of the topology and the underlying regulatory mechanisms of GRNs, in-
cluding the direction and the type of the engaged interactions (e.g. activa-
tion/expression, inhibition). Each GRN sub-path is interpreted according to
Kauffman’s principles and semantics: (i) the network is a directed graph with
genes (inputs and outputs) being the graph nodes and the edges between them
representing the causal links between them, i.e. the regulatory reactions; (ii)
each node can be in one of the two states, ‘ON’, the gene is expressed or up-
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http://www.minepath.org/

regulated (i.e., the respective substance being present) or, ‘OFF’, the gene is not-

expressed or targeted from a specific gene; and (iii) time is viewed as proceeding

in discrete steps - at each step the new state of a node is a Boolean function of the

prior states of the nodes with arrows pointing towards it.

The method of MinePath unfolds into five modular steps:

L.

IL.

[1L

IV.

Gene expression values are discretized into two states with values 1
and 0 for up-regulated and down-regulated genes, respectively, and
the respective samples’ binary gene-expression sample matrix is
formed;

each target GRN is decomposed into its constituent sub-paths, e.g., the
path A - B—] C is decomposed into three sub-paths, A > B, B—| C
and A - B —] C (note that the overlapping sub-paths are also identi-
fied and formed);

Each sub-path is interpreted on the basis of its functional active-state,
and it is represented by a binary ordered-vector with active states,
e.g., sub-path A - B —| C is considered functional when AT and BT
are up-regulated and C{ is down-regulated, resulting into its active-
state ordered vector <1,1,0> for the corresponding genes;

The binary ordered-vector of each sub-path is aligned and matched
against all (discretized) binary gene-expression sample profiles. A
sub-path is considered to match a sample if and only if all the corre-
sponding genes in the sub-path exhibit the same active-state in the
sample, i.e. genes A, B are up-regulated and gene C is down-regulated,
resulting into the corresponding sample ordered-vector <1,1,0>,
which matches the sub-path vector. In addition, a binary sub-path ex-
pression matrix is formed with rows the sub-paths, columns the input
samples, and cell-values 1, 0 for the respective sub-path being func-
tional and active (or hold) for the corresponding sample or not. In
other words, the sub-paths are taking the place of sample descriptor
features and are utilized for the construction of sub-path based pheno-
type prediction models.

Finally, the differential power of each sub-path is computed and ap-
propriate parameterized (users may adjust them to his/her explorato-
ry needs). The highly ranked (best matching) sub-paths are kept ac-
cording to user-defined thresholds. Subsequently each sub-path is
characterized about its phenotype inclination; sub-paths with positive
differential power values are characterized as inclined to phenotype 1,
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and those with negative power as phenotype 2. These sub-paths pre-
sent putative evidential molecular mechanisms that govern the dis-
ease itself, its type, its state or other targeted disease phenotypes (e.g.,
histopathological characterization, positive or negative response to
specific drug treatment). The system also identifies the sub-paths that
are functional and always active in both phenotypes. The result is a
binary sub-path expression matrix analogue to the gene-expression
matrix where the sub-paths are taking the place of genes playing the
role of sample descriptors. Then the prediction performance of the se-
lected sub-paths is assessed and reported - the reported prediction
performance follows a 10-fold cross-validation mode on machine-
learning algorithms, such as C4.5 decision-tree, Naive Bays, or support
vector machines (SVMs); as all relevant sub-path expression matrices
are saved and stored, the user may utilize them to build other predic-
tion models based on his/her preferences and needs.

MinePath uses binary data structures and Boolean algebra for the calculations, a
framework that makes it capable to operate in real time even on big datasets
with hundreds of pathways and tens of thousands of sub-paths.

Apart from the MinePath methodology, only four other tools/methodologies take
advantage of the underlying GRN gene regulation mechanisms, namely GGEA,
SPIA, TEAK and PATHOME. The main difference that contrasts MinePath with
these approaches resides in the handling of the gene regulatory mechanisms. To
our knowledge, all aforementioned methodologies score with +1 the activations
and -1 the inhibitions relations between genes, and each sub-path gets a final
rank. Contrary MinePath methodology strictly checks and assess the differential
power of the sub-paths that are functional and hold in one of the phenotypes (as
exemplified in step IV, above).

Another limitation of the aforementioned tools is that they lack of a productive
environment with efficient, interactive and user-friendly visualization operations
that offers rich exploratory capabilities to the research biomedical scientists to-
wards their quest to reveal and get insight to key phenotype regulatory mecha-
nisms. A key innovation of MinePath, contrary to similar approaches that visual-
ize just the state of genes in a GRN, rest in its exploratory capabilities and espe-
cially in the visualization of active gene-to-gene regulatory relations that differ-
entiate between the target phenotypes. In addition, MinePath supports active
interaction and re-adjustment of the visualized network and is equipped with
special operational features enabling live interaction, immediate visualization of
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regulatory relations and the reduction of GRN’s complexity using special topolog-
ical and network-adjustment functionalities.

Furthermore, MinePath is the only tool that takes also into account and visual-
izes sub-paths that are fully functional and hold for both phenotypes. These sub-
paths possess no differential power but they may be utilised to link the gap
(functional interaction) between two sub-paths and reveal long and more com-
plex functional routes in molecular pathways, the interpretation and validation
of which is biologically more profound e.g. link the gap between extracellular
gene interactions and final biological reaction such as apoptosis. This feature
serves the biomedical researchers’ exploratory needs to reveal and interpret the
regulatory mechanisms that underlie and putatively govern the expression of
target phenotypes.

MinePath methodology and the web-platform aim to effectively address all the
aforementioned issues. MinePath has been thoroughly tested for its stability and
the methodology was applied on gene-expression and miRNA expression data
with the target of identifying mechanisms that underlie the expression of specific
phenotypes (e.g. breast cancer patients according to their ER-status profiles, or
Wilms’ tumour prediction). The results are quite indicative and strongly sup-
ported by the relevant biomedical literature. In addition, the prediction perfor-
mance of MinePath, using the selected differential sub-paths as sample de-
scriptors, was tested and contrasted with the corresponding performance when
the original gene-expression data are used - the results are quite satisfactory.
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[TepiAnym

YmoAoylotikég llpooeyyiosig yia v Avakaivym kot Mapaywyn F'voong
ano Etepoyeveig MMyec: MeBodoroyia kat E@appoyt) e Bacelg Blodoyt-
KOV Kot Moplakwv Aedopévmv

Ol oVyyxpoves KaTteLBVVOELS OTOV TOUEA TNG VYEIAG KL TNG LATPIKNG BETouY N
TPOANYM, Kol TNV EEATOUKEVUEVT] LATPLKN WG KUPLEG TIPOTEPALOTNTES. L0TOOO
QTOTEAEL KOWVT] SLATIOTWOTN TO YEYOVOG OTL YLa v KV BOUE TTPOG QUTH TN Ka-
TELOUVOT TIPETIEL VAL EVOWHIATWOOVE TN YEVETLKN AN po@Oopla 0T Kabnuepvn
TPAKTIKN TWV EMOTNHWVY VYelag. KabBws eloepyOpaote 6Tn HETAYOVISWUATIKNY
ETOXT OTIOU 1] akoAovBia TOV AVOPWTILVOU YOVISIWUATOG EXEL ATTOKWSIKOTIOWm Ol
efodokAnpov, N Boroyia StabBétel mMAEov peBOSOUG OXL LOVO Yl TNV AETTOE-
PELAKT ATEIKOVIOT TWV OAANAETISPACEWY TWV YOVISIwV AAAG Kol TNV SuvatoTn-
Ta va emepfalvel wote va peTafdAel kal va kabopilel, oe TeXVIKO emimedo, T
@uaoLoAoyia Tov aVOPWTLVOU 0pYAVIGUOU HECW TWV KUTTAPWVY KAL CUVETIWG TWV
OoTWV. ['a va PTopEGOVE VU EKUETAAAEVUTOVE OTO PEYLOTO QUTEG TIG ETTOVA-
OTATIKEG TEXVOAOYIKEG €EEALEELG TIPETEL TPWTA VX KATAVOT)COVE KAL VX QTTOTL-
TIWOOVE TOUG XAOTIKOUG SPOOUG IOV atKOAOVBEL 1] YoviSLakn €k@paoct), KabBwg
HLoe aTtAY] YOVISLaKT) LETAAAAEN, 1] VUG PALVOUEVIKA AOT)ULAVTOG TIEPLBAAAOVTIKOG
TAPAYOVTAG UTOPEL v 0ONYNOEL 0 ONUAVTIKEG TTABOAOYIKEG KaTaoTaoels. H
EVEALKTN, AOLTIOV, KAl ATOTEAEGUATIKY Sloyxelplon kot emegepyacia TG YoviSiw-
HOTIKNG TIANPO@OPLAG LE OKOTIO TNV EEATOULIKEVHEVT LATPLKT EIVAL 1] VEX TIPOKAN-
O1] TTOU KOAOVUHAOTE VO AVTILETWTIIGOVLLE.

Ta mapamavw padi pe v IPoodo 6TOV YEVIKOTEPO GUOTNULKO KAL UTIOAOYLOTIKO
TPOTIO TOL Slayelpi{ovTal oL EPEVVNTEG OAX T OTOLYELX TNG LOPLAKNG BLoAoyiag
(6Twg yovidia, TpwTEIveS, Eviupa, HETAYPAPIKOVS TIAPAYOVTESG, LETABOALKA Kol
KaVoOVIoTIKA SikTua) €xouv Snpovpynoel pia véa meploxn Epeuvvag, TV BLOTIAN-
po@opikt). H BlomAnpoopikr) eivat o ToOpERS TG BETIKNG ETLGTIUNG O OTIOLOG E-
AETAEL TN CUUTIEPLPOPA BACIKWOV HOVASWV TNG BLoAoyIkNG AstTovpylag pEow v-
TIOAOYLOTIKWV HEBOSWV. TKOTIOG TNG ElvAL 1] EVPECT TPWTOTUTIWV KAL 1] EQAPLO-
Y1 181 VTTHPYXOVTWY ATTOSOTIKWY KAl EVEAIKTWYV aAyopiBuwy emeepyaaoiag yevo-
KWV Sedopévwv wote va eEayBel 1 yvwon Tov ‘eAdoxevel’ o€ aUTA.

H mtpdodog ¢ BromAnpo@opiknig Stevplvinke e TNV AT P XAPTOYPAPNOT TOV
avOpWTIVOU YOVISIWHATOG KAl TNV €PEVPECT] TWV HIKpoouoTolyiwv (microar-
rays). Ol HLKpOOUOTOLYIEG EIVOL GUOKEVEG OL OTIOLEG EMITPETOVV TNV TAVTOXPOVN
HETPNON NG EKPPacNG SekddwV XALASwV yovidiwv. Méow aUTWV UTTOPOVE Vo
UETPN|OOVE TN TOCOTLKN] GUUUETOXN €VOG HEYGAOL HEPOUG TOU YOVISIWUATOG
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EVOG 0PYAVIOHOU O€ KATIOLO OCUYKEKPLUEVO oTO. O 1oTOG auTOG umopel va eivatl
VYLE(G, KAPKLVIKOG, VTTO Bepamela, VO TV EMISPAOT KATOLOU QAPUAKOL 1) TA
KUTTApPA Tov va vTofdAAovtal o€ Kamola BloAoyikn Siepyacia 6w Swaipeon 1
ATOTITWON. L€ TEIPAUATA TIOU HETEXOVV SLAPOPETIKOL TUTOL LOTWV UTTOPOVUE VA
EVTOTIIOOVE KL VX LETPNOOVHE T SLaPOopPLKN EKPPACT TwV Yovidiwv. Ao TnVv
avVaKAALYM Twv pikpoouoTolylwyv (1996) péxpl onuepa €xel yivel pia tepaotia
EPELVNTIKN TipooTdbela Yl TV BeAtiwon TG akpifelag Toug, TNV @APUOYN
TOUG O€ TEPLOGOTEPOVG LOTOUG KATW ATO TOLKIAEG CLUVONKEG AL KoL YLoL TNV
0AOKAN|PWOT] TNG YVWONG IOV TTAPAYETAL LE AAAA BLOAOYIKG EVPNUATH. APYLKA 1)
Tpocdokia NTav OTL 0L PIKpoouoTolyies Ba amokdAvmtay povadikd potifa yovi-
Stwv (YOVISLAKEG VTIOYPAPES) YL SLAPOPOUS (PALVOTUTIOUS, OLWE 1) ETaAT|Bgvon
TWV YOVISLOK®WV UTIOYPAQ®V ELVAL TIEPLOPLOUEVT], KUPLWG AGYw TNG TTOAVTIAOKO-
TNTAG KAl TWV ETEPOYEVELWV TIOU EUPAVIOVTUL O AQUTES. AOYw TwV SLA@OPETL-
KWV TAATQOPUWYV TIOU XPNCLUOTIOLOVVTAL OTA SLAPOPA TEPAUATIKA TIPWTOKOA-
A0 Kal KUplwG 08 TMEPANATH UE UIKPA PEYEDON Setypdtwy, 11 VPMAT Sta@opikn
Ek@pact evog yovidiov Sev amnyel Kat avaykn o€ pa HeyaAUuTepn TOavOTNTA
TO YOViSLl0 va GYETICETAL PE TN VOOO KL, WG €K TOUTOV, E0TLALOVTAG HOVO OTA V-
oY@ yovidia pe VPmAEg SLa@opLKEG EKPPATELS UTTOPEL va PV eival 1) BEATL-
ot Sadkacia yla Tov Slaywplopo 1 v TpoPAEYN ETEPOYEVOV QALVOTUTIWV.

ITIG HEPEG HaG 1) BLOTANPOPOPLKI| ETIIKEVIPWVETAL OE TILO AVETITUYUEVEG HEDO-
Soug Yl TNV €MA0YN YOVISIWV aTd HIKPOOUOTOLYIEG KUPIWG PE TNV TIPOGONKN
Kal TNV emegepyaoia yvwong amd dAAeg TNyES, OTwE TA YOVISLAKA pLUOULOTIKA
Siktua (I'PA) (Gene Regulatory Networks), Ta omola LOVTEAOTIOLOUV TIG XAATAE-
TUSPACELS TWV YOVISIWV KATA TN Slapkela BLOAOYIK®WVY SlEPYATL®V. ZTO KOTTAPO
EKATOVTASEG 1 XIALASEG YoviSia ek@palovTal Kot ouvepyalovTal amd Kowou yla
va e€aoc@allotel 1 Asttovpyla kal 1 emBiwon tov. Ot oxEoels Twv yoviSiwy é-
xouv xaptoypaenOet oe 'PA Ta omola HTTOPOUV VA TPOGYEPOVV YVWOT OXETIKA
LLE TOUG UNXOVLOLOUG TNG YOVISLAKTNG EKQPAONG O€ ETTESO CLUGTUATOG. AUTA T
Siktva pmopovv emiong va XpnopoTomOovy yla TNV KATavonorn g pong Twv
TANPOPOPLWV OE v BLOAOYIKO GUOTNUA, YIX TOV EVIOTIOHUO HOVOTIATLOV TIOU
UTTOPOVV VO XPNOLUOTION B0V Yl CUYKEKPLUEVO GKOTIO, KL VA [LOVTEAOTIO)0OUV
AAAaYEG 0TIV £K@PAOT YOVISIwV KATw amd Sla@opeTikég ouvOnkes. H peAétn
™G Aettovpyiag, TnG Souns kat s e€€ALENG Twv 'PA o€ cuvdvacud e To TTpo@iA
YOVISLAKNG €K@PAONG aTd UIKPOOVOTOLYIEG €xEL Yivel amapaitntn Yl T oVy-
xpovn BloAoyikn épevva.

OL TepLoCcOTEPES TIPOOTIABELEG YLIA TNV 0OAOKAN|PWOT] TNG YVWOTG TIOU EUTIEPLEXOVV
oL Tapamavw myes (Hikpoovatolyieg kat 'PA) avtipetwmilovv ta Siktua cav
LOVOSLACTATEG TTNYEG TTANPOPOPLAG OTIOV OL CUCXETIOELS TWV YOVISIWV, OTIWG Q-
T& povtedomolovvtal, Sev epmepPIKAElovTal Kal cLVETIWS Sev afloTolovvtal. [1po-
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o@ATA, OA0 KAl TEPLOCOTEPES PEBOSOL EMWPEAOVVTAL ATIO TNV TOTOAOYIA TWV
SIKTOWV yxpnopomolwvtag pefodovg g Bewplag ypa@wv, aAA& POVO €vag Te-
PLOPLOUEVOG apPLlOUOG TwV €Tl TOV TAPOVTOS Stabéoiuwy pebodoroylwy, pmopel
va a€loTIoMoEL TIG TTANPO@OPLeS pUBULIONG evTOg TwV I'PA 6Twe 1 aAAnAemi§paon
petady yovidiwv. H aAAnAemiSpaon aut Umopel va xwpLoTel o€ TTOAAEG KATNnYO-
pleg, pe V0 amd autég va Bewpovvtal oL o onuavtikes. H pw elval i evep-
yomoinon/ék@paon (activation), dmov éva yoviSio evepyotolel kdmolo dAAo, kat
N 6e0TePN 1 avaotoAr) (inhibition), 6Tov éva yovidio otapatdael Tnv evepyoToin-
o1 KAamolov aAAov. Elval yapakmnplotikdé 6TL VTTdpyouv Yovidla Twv oTolwv 1
TPWTEVT IOV KWSIKOTIOLOVV JeV £XEL KATIOLO BLOAOYLIKO pOAO0 TEPXA ATTO TNV EVEP-
yomoinon 1 amevepyomoinon dAAwv yoviSiwv. Ta yovidia autd ovopalovtal pe-
Taypa@kol Tapdyovteg (transcription factors).

H mapovoa epyacia 6t6X0 £xel 6TO va CUUPBAAEL GTOVG GYETIKA TTPOCPATOUS TO-
Uels NG VTIOAOYLOTIKNG BloAoyiag Kol TNG BLOTTANPO@OPIKNG UE TNV VAOTIOMOT)
HeBOSWV yla HOVTEAOTIOW 0N TNG CUUTIEPLPOPAS TwV ['PA Kal elcaywyr| TpOTIWV
e€opuing yvwong amd avtd. O kOplog Bepatikog topéag e StatpPfng eivae n
UTIOAOYLOTIKN] HOVTEAOTIOMOT TWV SUVAUIK®V KOl CUCTNUIK®OV SLOTHTWV TWV
['PA kaBw¢ Kot 1) SUVATOTNTA EKUETAAAEVONG TG TIANPOPOPIAG TIOV EUTIEPLEXOVV
0€ oLVOLAGUO LLE AAAEG CUYXPOVEG EVVOLEG TNG LOPLAKNG BloAoyiag OTIwG elval 1
YEVETIKY €k@paot). [Tolo cuyKekpLUEvA: TA LOVOTIATIA TIOV EKPPALOVTAL 1) VTIO-
eK@PAloVTaL 0€ €vay LOTO OTIWG AUTO ATIOTUTIWVETAL ATIO TEPAUATA UE ULKPO-
ovotolyies Ba evtomioToVv péow HeBOSWV aviyvevong Sla@opikng EK@PPACTSG.
XpNOUOTIOLWVTAG CUYXPOVES TEXVIKEG BeATIoTOTIOMONG SIKTVWV Yl aviyvevon
Staoplkwv povomatiwv amd 'PA avapévoupe va amavT)COVUE O€ VO CUVOAO
atod BLoA0YIKA EpWTHUATA OTIWG:

R/

% Towx Siktua 1 HOVOTIATLA «AELTOUPYOVV» KaL TIOLXL OXL LETAEY SLPOPETL-
KWV TUTIWV LOTWV/@AVOTITIWV.

% Tloleg Sladpopés eival autéc oL akoAovBovvtal, KoL TOLOL TTAPAYO-
vTeG/yovidia evBuvovTal yia Stadpopég Tov Sev @aivetal va akoAovBov-
vtal o€ Taboyevelg LoToVG 1] akoAovBovvTal PE SLPOPETIKO TPOTIO.

¥ Tlwg umopovpe TeEXVIKA va EMEUPOVE UE OKOTIO TNV ETILTAXVVOT piag Sla-
Spoung Tov mapayel kamota emBvuNTY Evwon (LY. (vooLAIVIG) 1] TNV a-

TOTPOT piag un embuun g Stadpouns (.. amoTTwon).

H mapovoa Swtpif]  Snuovpynoe kat  mapovoidlet  to  MinePath
(www.minepath.org), pla Stadiktuaxn TAAT@OpUa, OV VAOTOLEL i vEa pebo-

doAoyila ylax Tov TTposSloplopd Kal TNV OTTIKOTOMoN TV SLPOopPLIKA EVEPYWV
SIKTOWV M povoTtatiwy peca o€ eva I'PA, xpnolpomolwvtag dedopéva yoviSiakng

Ek@paong. H miat@dpua ekpeTaAAeVETAL TV TOTIOAOY (X KL TOUG pUOULOTIKOUG
Xi


http://www.minepath.org/

unxaviopovs twv I'PA, cvpumeplapfavouévng g katevbuvong kat Tov TUTOU
TWV YOVISLaK®WV aAAnAemidpdoewv (m.X. evepyotoinon / €k@paon, avactoAn). H
uebodoAoyia evtoTilel OAQ TA AELTOVPYIKA LOVOTIATIX TIOV EU@avi{ovTal o€ (EmL-
Aeypéva kat otoyxevpeva) I'PA kat e€dyel Ta ouPBATA LE TIG TIHEG EKPPACTG TWV
YOVISIwV TwV SELYRATWY TIOU AVI|KOUV 0€ SLA@OPETIKO KAWVIKO @awvdtumo (TY.,
vooouvta evavtiov vylovg). H Sta@opikry Suvapikn Twv eMAEYHEVWVY PovVoTIO-
TlwV voAoyiletal kat n floAoykr onpacia Toug agloAoyeital.

To MinePath Aeitovpyel pe T'PA am6 1 Baon dedouévwv KEGG (Kyoto
Encyclopedia of Genes and Genomes). A6 tThv TpwTN TOVS EUPavion to 1995 ta
Siktva ™ ¢ KEGG €xouv xpnopomom el evpews wg BAOT YVWOEWV ava@opAag yia
TNV KATAVONOoT TWV BLOAOYIK®OV HOVOTIATIOV KAL TNV AELTOUpYlX TwV KUTTHPL-
KoV Sadikaciwv. KaBe TPA meprypagetal wg ypagnua, 6mouv ot koot avti-
TPOCWTEVOLVV YOVISLA, OHASES YOVISIWY, EVIOEWY 1} AAAWV SIKTUWV KAl 0L AKUES
QVTLTTPOOWTEVOVV YVWOTES BLOAOYIKEG AAANAETIIOPACELS YOVISIWV OTIWG EVEPYO-
ToMoN, avacToAY, EKQPACT), PWOEPOPVAIWOT, Evwon, Siaomaon kAT. H emegep-
yvaoia Twv I'PA o6to MinePath Aapfdavel vtoYn OAeg TIG TIOAVEG AEITOVPYIKES OA-
ANAETISPpAoelg TOV SIKTUOV. ALX@OPETIKEG AAANAETISPACELS AVTIOTOLXOVV OE
SLLPOPETIKA AELTOVPYIKA LOVOTIATLX IOV UTToPEl va akoAovBovvTal yia Tnv pvo-
lLom €vog yovidiov.

Kabe povomatt amd ta 'PA epunvevetal cOUPE®VA HE TIS APXES KAL TI O|LACLO-
Aoyia Tov Kauffman o6mov: (i) to Siktvo eival évag kKateuBLVOUEVOS YPAQOG LE
KOpuBovug (Yovidia) Kol ol akpéG HETAd) aUTWV EKTIPOCWTOVV TIG XAANAETISPA-
oelg petady Toug, SnAadn TS pLBULEoTIKES avTidpaoels (ii) kabe kouPog pmopel
va avamapiotatal pe pio amo Tig Vo kataotdoels, «ON», To yovidio ek paletal
(dnAadn To yovidio eivar evepyo), 1 «OFF», To yoviSio dev ex@paletal, 1 ava-
oTEMeETAL amd éva GAAo YoviSio kat (iii) o xpovog Bewpeltal w¢ Swadikaoia ot
Staxkpltd Brpata - o k&Be Pripa n vEa KataoTaot evog KOpPBov eivat pa Suvadt-
K1 AELTOVPYLA TWV TIPOTEPWV KATACTACEWV TWV YOVISIWV [LE aKUEG IOV SelYVouv
TPOG TNV KatevBuvon auty.

H peBodoroyia tov MinePath povtedomoleital oe mévte Slakpitd Prpato:

I. Ol Twég EkPaon§ TwV YovISiwV aTtd TIG LIKPOOUOTOLYIEG SLAKPLTOTIOLOV-
vtal o€ TIEG 1 kat 0 yla Ta EKQPACHEVA KAL VTIO-EK@PATUEVA Yovidia a-
vTioTolya, Kat oxnUatifetol pla Suadikn UNTPa yovisimwv Kot (patvoTOTwy

[I. KaBe'PA avadvetal oe 6Aa T SUVATA LOVOTIATLA; YL TTAPASELY LK TO HO-
vomatt A - B—] C avaAvetal o€ tpia povomartia, ta A —> B, B—| C kat A
—->B—|C
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Kabe povomatt yapakinpilletal amd TNV AELTOUPYLKY EVEPYT KATAGTAON
Tou pE ™ Xpnon Svadikov Staviopatog. I'a mapddetypa to povomdatt A
— B —] C Bewpeitat evepyd 6tav AT war BT (ekppacpéva yovidia) kat
Cl (vmo-ekppacpévo yoviSio), mov pag Sivelt To Svadkd Stdvuopa
<1,1,0> ywx to povomattA - B—| C

Ta Svadikd Stavoopata Yo OAa Ta HOVOTIATLO avTiTapaBAAAovTal e TNV
Suadikn €k@PacT TV YovISiwV atod TI§ LIKPOOUGTOLYIES Yia KaBe Selypa.
‘Eva povomdtt Bewpeital 0tL eival evepyd o éva Selypa, av kal HOvo ov
OAa Ta avtioToa yoviSia 0To HOVOTIATL £X0UV TNV (8la evepyd KATAOTA-
omn oto Selypa, dnAady, Ta yovidia A, B elvat ekppaopéva kat to yovidio C
UTO-EKQPACUEVO, IOV avTloTolel oto Stavvopa <1,1,0> yu ta yovidia
<AB,C> oto Seiypa. EmmAéov, pa Svadikn pntpa oxnuatiletal pe Tig
OELPEG VA AVATIAPLOTOVV HOVOTIATLA, TIG OTNAEG TA SelypaTa, KAl ot TUHES
TV KEALWV va elvat Svadikés (1, 0) 6mov 1 6Tav To AvTioTOoLX0 HOVOTIATL
elval evepyo yla to avtiotolyo detypan 0 av Sev eival. Me dAda AdyLa, Ta
LOVOTIATIX TTX(PVOUV T1) B€0T) XAPAKTNPLOTIKWY TOU SELYHATOG KAl XPTNOL-
LOTIOLOUVTAL YLK TV KATAOGKELT] LOVTEAWV TIPOBAEYNS @aLVOTUTIWV.

Y10 TeEAKO Brpa, 1 Staopikn Suvaplkn KaBe povomatiov umoAoyileTal
XPNOLUOTIOLWVTAS ELSIKA SLAUOPPWHUEVES @OPUOVAEG. T LOVOTIATIA LE TN
HEYLOTN SLa@OopLKn SUVAHIKY KoL TAVW aTo £va 0plo Bewpovvtal Ta po-
VOTIATLOL IOV UTIOPOUV va Staywploovv toug dUo @awvotumous. Emimpo-
o0eta, Ta povomaTia pe BeTIKN Slaopikn Suvaulkn xapaktnpilouvv tov
Eva @aVOTLTO (TI.X. A0OEVIG) EVW TA LOVOTIATLA [LE APV TIKI] SLAQOPLKN
Suvaukn xapaktnpifovv Tov devtepo @awvotumo (mx vywmgs). To amoté-
Agopa glval £vag TIVaKAG LOVOTIATIWV e SVASIKES TILES Yix KaBe Selypa.
Yt ovvéxela vtoAoyifoupe TV IKAVOTNTA TPOBAEYNG TWV ETIAEYUEVWY
LOVOTIATLOV XPNOLUOTIOLWVTAS TNV TeXVIKN afloAdynong 10 fold cross val-
idation og aiyoplBpovg pnxavikng pabnong, omwg C4.5 dévtpo amo@d-
oewv, naive Bays, 1 support vector machine. To cUotnpa miong avayvw-
pillel KoL €EAyel KAl T LOVOTIATLA TIOV ELval TIAVTA EVEPYAR (KL Yl TOUG
U0 EavoTUTOUG) YWPIS Vo Ta AapBdavel VTTOYLY TOV OTA HOVTEAX TIPO-

BAeymg.

To MinePath xpnowomotlel Svadikég Sopeg Sedopévwv kal dAyeBpa MTovA yx

TOUG UTIOAOYLOHOVUG, KABLOTWVTAG TO LKAVO VX aVOXAVCEL O€ TIPAYHATIKO XPOVO

Sedopéva amd PeyAAEG KAWVIKEG SOKIUES (UE HIKpOooLOTOLXieg) o€ oUVSVACUO PE

ekatovtadeg 'PA kot Sexddeg xiliadeg povomatia. H pebodoroyia avtn avadel-

KVUEL T EVEPYQA Kl un evepyd povomatia o€ FPA ava @awdtumo. Autd Ta povo-

TIATIX AVASEIKVOOUV HOPLAKOUG UNXAVIGUOUG IOV SLETTOVV TNV (Sla TNV aobévelaq,
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TOV TUTIO, TNV KATAOTAON 1] AAAOVG EGTIAGHUEVOUG (PALVOTUTIOVS OTIWE ATIOKPLON
1N un o€ e8kég Beparmeleg.

EkTto6 amo v mpotewvopevn pebodoroyia, poévo técoepa dAda epyareia / uébo-
dol ekpeTaArevovTal Toug unxaviopoLs yoviSiakng pvbuiong ota I'PA, ta GGEA,
SPIA, TEAK kat PATHOME. H kUpLa Sta@opd tng mpotewvopevng pebodoroyiag
aTO QUTA TA TECCEPA CUCTNHATA EVAL O XELPLOUOG TWV YOVISLAK®V pUOULOTIKWV
unxaviopwyv. ‘OAeg ot dAAeg peBodoroyieg petpdve pe +1 TIG EVEPYOTIOU|OELS KAL -
1 T1§ avaoTtoAeg. KabBe povomdtt aipvel Eva TEAIKO ATTOTEAEGUA TO OTIOLO XP1OL-
HOTIOLELTAL ETIONG WG Pl POPHOVAN KaTaTtaing. AvtiBeta, 1 TTpocEyylon pag &-
Agyxel xat Aapfavel voOYn HOVO HOVOTATIXH TOU €lval MANPWSG AELTOUPYIKA
(oVp@wWVaA pE TIG OXECELS TWV YOVISIWV KAl TIG EKQPATELS TOUG).

'Evag GAA0G BaoIKOG TEPLOPLOUOG HE TN XPTON AUTWV TWV HEBOSwV elvat 1 €A-
Aewm €vOG TAPAYWYLIKOU TEPPAAAOVTOG UE ATIOTEAECUATIKO, SLA-OpACTIKO Kol
@UIKO TIPOG TO XP1OTN TPOTIO ATIEIKOVLOTG TIOV VA TIPOCPEPEL SLIEPEVVI TIKES LKA~
VOTNTEG YlX TNV KATAVOTNOT) TWV PUOULOTIKOV UNXAVIOU®DV TWV @AWVOTUTIWV. L€
avtiBeon Ue TAPOUOLEG TIPOOTIADELES, OL OTIOLEG ATIELKOVI(OUV TNV KATAGTAOT) TWV
yoviSiwv o€ éva I'PA, pa Baokn) kawvotopla g mAat@oppuag MinePath €ykettan
0TI SUVATOTNTES ATELKOVIOTG KL ELBIKA, GTNV OTITIKOTIONOT) TWV EVEPYWV YOVL-
SLKWV PLOULOTIKWY OXECEWV TIOU SLOLPOPOTIOLOVV TOUG UTIO HEAETT PALVOTU-
moug. To MinePath vmootnpiel evepyn cAANAeTiSpaoT HE TA OTTIKOTIOMHEVA
SikTva OTIWG N €K VEOL PUBULOT NG TOTIOAOYING TOUG Kal Elval EEOTALGUEVO UE
ELSIKA AELTOUPYIKA XOPAKTNPLOTIKA TIOU EMITPETOVV AUEOT) XAANAETISpaoT, &-
LEOT ATIELKOVLIOT) TWV PUOULOTIKWY OXECEWV KAL T LEIWOT TNG TOAVTIAOKOTNTAG
Twv 'PA xpNoLHOTIOLWVTAG ELSIKEG AELTOVPYIES TOTIOAOYIAG.

EmumpooBeta, n mpotewvopevn peBodoroyia eival n povn mov Aapfdavel vtoym
KOl OTITIKOTIOLEL LOVOTIATIX TIAPWG AEITOVPYIKA KOL YL TOUG SV0 (PALVOTUTIOUG.
Avutd ta povomdatia Sev €xouv Kapia Stakpltikny ala aAAd peoa oe éva I'PA ta
LOVOTIATL TIOV Elval TTAVTA EVEPYOTIOMUEVO UTIOPEL VO CLUVEECOUV TO KEVO (A€l
TOUPYIKNY oAANAeTiSpaot) HeETAE) V0 HOVOTIATIWV KL VA ATOKAAU oLV éva
TIAT)PEG AELTOVPYIKO HOVOTIATL IOV €lval BLOAOYIKA TTOAUTIHO OTIWG Yl TP adeLy-
Ho 1 oUVEEDT TOU XAGUATOG HETAED AELTOUPYIKWY EEW-KUTTAPLKWV YOVISIwV Kol
EVOG TEALKOU UNYAVIOUOU KUTTAPIKNG AELToupYlag (ATOTTWOo, VEKPWOT), TTOAAX-
TAQGLAOUOG, KTA).

H peBodoroyia Tov MinePath kat 1 Stadiktvakn ™G vAoToinom €xeL WG 6TOXO
TNV ATMOTEAECUATIKY] AVTILETWTILON AUTWV TwV {Ntnuatwv. H peBodoroyia e-
@appéotnKe o€ pKpoovotolyies yovidiwv kat miRNAs pe otdxo v avdadeldn
TOAVWV UNYXAVICU®V IOV SLETTOVV Kol puBuifouv TNV avtamokplon o€ Bepameia
OUYKEKPLUEVWV QALVOTUTIWV (TL.X. AOOEVEIS e KAPKIVO TOU HAGTOVU, CUUPWVA [UE

Xiv



TO TPOWIA TOUG 0€ LVTOSOYXEIS OLOTPOYOVWY, 1| TNV TPOPRAeYN TNG acBevelag
Wilms' tumor). Ta amotedéopata elval apkKeTd evOappuLVTIKA Kal Voo TnPLo-
vtal amod tn oxetikn Bolatpkn BiBAoypagio. OTAIGUEVO HE TA TTHPATIAV®D XA-
paktnplotikd, to MinePath efummpetel SlepevvNnTIKEG AVAYKEG EPELVNTWV YL
™MV avaKaALYm pLOULCTIK®V UNYXAVICU®Y TTIOV ATOoTEAOVV TN don Kot opilouv
NV EKQPACT CUYKEKPLUEVWV QULVOTUTIWV.

XV
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1.Introduction

More than a decade after the completion of the Human Genome Project?, advanc-
es in genome research and biotechnology (omics-comprehensive analysis plat-
forms) have influenced drastically the concept of disease diagnosis and treat-
ment. Genome sequencing identified approximately 22.000 genes in human De-
oxyribonucleic acid (DNA) and determined the sequence of the about 3,2 billion
chemical base pairs that make up human DNA. To overcome complexity, scien-
tists developed tools and techniques to map and handle the massive volumes of
data.

The two of the most important and significant genomic data sources come from
microarray gene-expression experiments and respective databanks and from
molecular pathways and gene regulatory networks (GRNs) stored and curated in
public as well as in commercial repositories. The association of these two
sources aims to give new insight in disease understanding and reveal new mo-
lecular targets in the treatment of specific phenotypes.

1.1. Microarrays

A DNA microarray (also commonly known as DNA chip or biochip) is a collection
of microscopic DNA spots attached to a solid surface. Scientists use DNA micro-
arrays to measure expression levels of large numbers of genes simultaneously or
to genotype multiple regions of a genome. DNA microarray is a widely used tool
to analyse genome-wide messenger ribonucleic acid (mRNA) expression levels
within a particular sample.

Most common type of microarrays is the two colour, which measures tens of
thousands of expressions on a single chip and use two colours to differentiate
[1]. Applications of microarrays include measuring gene expression in different
developmental stages, identifying biomarkers for particular phenotypes or dis-
eases and monitoring treatment response. The process of expression data analy-
sis encompasses three major categories:

I.  The first one is “class comparison”, in which expression levels from two or
more different types of samples are compared in order to identify differ-
entially expressed genes between these classes. Most such experiments
are of the case/control type and try to identify the genes that contribute
to a particular phenotype, for example breast cancer tissue versus normal

! http://www.genome.gov/10001772 (last day visited 11/08/2014)
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tissue [2]. Other experiments may focus on the differences in downstream
gene expression following a gene deactivation due to a mutation, or artifi-
cial gene silencing methods, in order to gain insight into the function of
that particular gene [3].

II.  The second one is “class discovery”, which can be applied to a collection of
samples that share a common phenotype. Clustering techniques such as
hierarchical clustering or k-means are used to generate molecular sub-
groups that share common features and can be used as diagnostic classifi-
ers [4]. A well-known example is the classification of breast cancer into
distinct phenotypes [5].

[II.  The last category is “class prediction”. Two or more predefined classes of
samples are needed in order to construct the classifier using their expres-
sion profiles. Unknown samples can then be matched to one of the classes,
by comparing their expression profile to the profiles of the known ones.
Common class assignment techniques are nearest neighbour algorithms,
support vector machines and decision trees. Such an example is the pre-
diction of the existence of BRCA1 and BRCA2 mutations in breast cancer
samples [6].

A limitation of microarrays is that most of the datasets contain noisy data or var-
ious types of systematic errors [7]. Another limitation relates to the learning de-
ficiencies of inference algorithms where we have (i) the ‘curse of dimensionality’-
the number of features characterizing these data is in the thousands or tens of
thousands and (ii) the‘ curse of sparse dataset’- the number of samples is limited

[8]. Nevertheless, a lot of experiments and algorithms have been published try-

ing to identify the most promising group of genes for specific phenotypes.

1.2. Gene Regulatory Networks

System biology is an area that studies the interactions between the components
of biological systems and the behaviour of the systems into specific functions. It
provides a global view of the dynamic interactions in a biological system. On the
molecular level the purpose of systems biology is to ascertain the interactions
and dynamic behaviour of molecules within a cell. The molecular mechanisms
determine how cells interact and how they develop and maintain higher levels of
organization and function. Systems biology tries to formulate these mechanisms
in mathematical models.

Biological pathways represent complex reactions at the molecular level in living
cells. Based on the overall effect they have on the functioning of an organism,
pathways may be divided into several different categories. Three main categories
are:



e metabolic pathways

e gene regulatory networks/pathways

e signal transduction pathways
Current study focuses on the gene regulatory networks but can be extended to
other pathway categories too.

A GRN is a collection of DNA segments in a cell that interact with each other (in-
directly through their RNA and protein expression products) and with other sub-
stances in the cell, thereby governing the rates that genes in the network are
transcribed into mRNA.

Typically GRNs are represented as graphs, consisting of nodes and edges. The
network by itself acts as a mechanism that determines cellular behaviour where
the nodes are genes and edges are functions that represent the molecular reac-
tions between the nodes. Each gene is represented by a node in a directed graph.
Each node (gene) can have two states: on or off where on corresponds to a gene
been expressed and off corresponds to a gene not expressed. An edge in a path-
way usually represents a relationship or some form of interaction between the
nodes. The interaction could be of many types such as activation, inhibition, ca-
talysis, binds to, co-cited. An indicative example of the “pathways in cancer” GRN
from the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database is shown
in Figure 1. More details regarding the KEGG pathways notations can be found in
the



Appendix I (KEGG pathways).
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Figure 1: Pathways in Cancer GRN from KEGG

1.3. Integrating microarrays and gene regulatory
networks

In recent years, high throughput data capture technologies such as microarray
experiments have vastly improved life scientists’ ability to detect and quantify
gene, protein and metabolite expression. Furthermore, systems biology studies
the behaviour of biological components such as molecules, cells, organisms or
entire species. The primary aim of systems biology is to use and discover a com-
putational model with genes, proteins and cells interacting with each other and
reproducing the organism’s function. GRNs are part of systems biology dealing
with the modelling of genes interactions in a cell. These models have been devel-
oped to capture the GRNs in a mathematical way. Most of the gene regulatory
networks are based on laboratory experimental observations, which make the
generation and validation of such networks a very difficult and time-consuming
task.

An important requirement for the biologists is the need to associate microarray
data with gene regulatory networks diagrams to get the most biologically rele-
vant insights from the data. Using GRNs information in microarray data analysis,
scientists aim to extract more accurate and meaningful results. In a general set-
ting, given a certain network or part of it (a sub-network), a particular gene-
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selection processes could focus just on the genes participating in the network, or
the network participating genes could be as-signed prioritized.

On the other side, systems biology community took advantage of the human ge-
nome and the microarray technology to reconstruct and validate gene regulatory
networks in an automatic way. Strong associations of genes in microarray data
could be candidates for gene to gene interactions in a regulatory network.

Another area that combines GRNs and microarray data, tries to identify the most
discriminant GRNs for specific phenotypes. The phenotype information is ex-
tracted from microarrays and the evaluation of the most discriminant GRNs is
based on the value of each gene in the GRNs as it is expressed in microarray data.
Figure 2 captures the main areas that combine microarray data and GRN
knowledge, i.e., their topology and the gene to gene underlying interactions.

Microarray data analysis GRN modeling

Gene Set Analysis

Microarray
data analysis

GRNS md>

Given a certain GRN (or part of
it) only the genes included in it
are used, or, genes included in
the pathway are given higher

GRN Selection weight.
Focus on the identification of the
most discriminant GRNs for
specific phenotypes using
microarray data analysis.

Microarray data analysis

GRN Reconstruction

M\croarray. > GRN
data analysis

Microarray data analysis
supports the construction,
update or validation of a gene
regulatory network.

GRN modeling

Figure 2: Scientific areas that combine GRNs and microarrays.

1.4. Problem definition

Microarray technology has advanced life scientists’ ability not only to detect but
also to quantify gene-expressions for targeted phenotypes. Initial expectation
was that microarrays would reveal specific gene co-expression patterns (gene
signatures) for various phenotypes, but the utility of gene-expression profiles
seems to be bounded to a number of limitations, mainly because of the complexi-
ty and the individual variations and heterogeneities associated with the induced
gene-signatures [9], [10].



Figure 3 provides an artificial but indicative example, of the limitations in analys-
ing solely gene-expressions data. Sample cases 1, 2 and 3 are assigned to the
'POS' class and samples case4, 5 to the 'NEG' class. At first sight we may observe
that no sole gene or no group of genes can discriminate between the two classes
(‘POS’ and ‘NEG"). Inducing an un-pruned decision-tree could prove this; all the
tree-branches conclude to multi-class assignments.

cases

POS NEG

case1 case2 cased cased case5

IL-IR

TRADO

FLIP

MyD88

NIK

Figure 3: Gene expression data example. Rows represent genes, columns cases in two categories
(POS and NEG), ON represents up-regulated gene for the specific case and OFF down-regulated gene.
Since the initial expectations have been limited, bioinformatics and systems biol-
ogy research communities focus on more enhanced methods that utilize
knowledge from known and established molecular pathways, especially in the
form of gene regulatory networks and try to combine and couple such
knowledge with gene-expression data.

A performance evaluation of such methods concluded that GRNs encompass ad-
ditional biological features, such as the network’s topology and the underlying
gene to gene interactions and may efficiently address statistical barriers in gene
selection [11]. In particular, gene interaction knowledge solves the major prob-
lem of conflicting constrains when two significantly up-regulated genes increase
the enrichment of the gene-set in expression data, even if the first gene inhibits
the other in a GRN.

Figure 4 highlights the paradigm shift from the mining of differential genes to the
mining of GRN functional sub-paths. Using the previous example we match our
samples against known sub-paths of GRNs. The same gene expression example is
shown in the upper part and the calculation based on sub-paths is shown on the
bottom of the figure. The first sub-path (IL-1R = TRADD) satisfies cases 1,2,3,5.
Second sub-path (IL-1R = TRADD --| FLIP) satisfies the cases casel, case2, case3
only. Third sub-path satisfies all samples and the forth sub-path does not satisfy
any case. The \ symbol indicates that the second sub-path (Sub-path2) yields the
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maximum differential power and it contains a potential function differentiation
since it is consisted only with samples that belong to the ‘POS’ class. In the figure,
‘>’ represents an activation (if source gene is “ON” then the target gene is “ON”
too) and —|’an inhibition (target gene has the opposite expression of the source
gene e.g. “ON"—| “OFF” or “OFF"—| “ON”). Furthermore, the regulatory finger-
print reflected by this sub-path could be considered to cause and in a way to
‘govern’ the specific expression status of the genes.

cases
POS : NEG
i
Genes casel case2 case3 | cased cased
1
IL-IR
TRADO
FLIP
MyD88
NIK

POS :
Sub-Paths | ' ' i

case1 case2 case3

IL-IR>TRADO

¢ IL-IR>TRADO--|FLIP

IL-IR>MyD88

IL-1R>MyD88->NIK

Figure 4: Matching functional sub-paths and gene-expression profiles. Upper part the example from
figure 3 and on the bottom the shift from genes to sub-paths and the expressions in the specific cases
Barabasi et al in their review [12] stated that “Given the functional interdepend-
encies between the molecular components in a human cell, a disease is rarely a
consequence of an abnormality in a single gene, but reflects the perturbations of
the complex intracellular and intercellular network that links tissue and organ sys-
tems”. The authors concluded that there is progress towards a reliable network-
based approach to disease but is currently limited by the incompleteness of the
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available interactome map (the whole set of molecular interactions in a particu-
lar cell) identifying also the limitations of the existing methodologies and tools to
explore the role of networks in the molecular understanding of the disease.

GRNs knowledge, as it relates to specific phenotype, necessarily implies that a
key molecular target should be considered within the framework of its network.
A network focus enables us to more effectively infer key transcriptional changes
related to the specific phenotype by examining multiple downstream (or cross-
talk) effectors of the target [13]. The current gene set analysis (GSA) tools utilize
mainly over-representation analysis (ORA), which reports the enrichment of
functional groups (for example, gene sets) for the genes of interest. Such tools
compromise the connectivity in favour of computational simplicity that is based
on cellular components and not their connectivity (topology and the type of in-
teractions) [14]. Most pathway analysis tools use the expression changes meas-
ured in high-throughput experiments only to identify pathways with unexpect-
edly high number of differentially expressed genes using ORA approaches or
pathways whose genes are clustered in the ranked list of differentially expressed
genes, but not to directly estimate the impact of such changes on specific path-
ways [15]. So, ORA techniques cannot distinguish cases that a subset of genes is
differentially expressed just above the detection threshold from cases that the
same genes are changing by many orders of magnitude.

Furthermore, probably the most important current limitation is that the
knowledge embedded in GRNs concerning the genes interactions is largely unex-
ploited. The very purpose of the pathway diagrams is to capture our current
knowledge of how genes interact and regulate each other on various pathways.
However, the existing analysis approaches consider only the sets of genes in-
volved on these pathways, without taking into consideration their topology [15].
And last but not least, some genes have multiple functions and are involved in
several pathways but with different roles.

1.5. MinePath approach

Our methodology, called MinePath, relies on a novel GRN processing approach
that takes into account all possible functional interactions present in the net-
work. We are inspired and guide our approach by a statement made by
Geistlinger et al [16], namely: “As the sign of gene expression changes and the di-
rection of regulatory interactions are so far not taken into account, substantial fea-
tures of the data are still ignored and the dynamics of the transcriptomic system
are not realistically reflected. Activation and inhibition are essential regulatory
mechanisms in the transcriptional machinery of the cell and are causes for up- and
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down-regulation of particular genes.” In this setting, gene-expression profiles
and their phenotype assignments are extracted form microarray data and all
sub-paths of the GRNs are assessed and evaluated for their differential ability to
discriminate between the target phenotypes, and the selection of the most in-
formative ones.

Having in our disposal the sub-paths resulted from the functional decomposition
of the GRN and the gene expression data we can precede to the identification of
the sub-paths that are functionally differential. By functionally differential we
define the sub-paths that are functional in one phenotype and non-functional in
the other. Our purpose is to locate those paths that exhibit a high differential
ability and power to discriminate between the phenotypes assigned to the sam-
ple cases of a microarray experiment.

MinePath takes advantage of interactions between genes (e.g. activation, inhibi-
tion, association etc.). A sketch outline of our approach goes as follows (as shown
in Figure 5): initially we locate all functional sub-paths encoded in GRNs and we
try to assess which of them are compatible with the expression status of the
genes for the input samples that belong to different phenotypes (clini-
cal/histopathological categories, diseases, prognostic states etc.); then the differ-
ential power of the selected sub-paths is computed and their biological relevance
is assessed. The whole approach is applied on a set of microarray studies with
the target of revealing putative regulatory mechanisms that govern the treat-
ment responses of specific phenotypes.
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Figure 5: MinePath abstract flow of operations. From top to bottom, we start with pathways decom-
position into sub-paths, we enrich with microarray expression data and we identify the most discri-

minant sub-paths.

In other words, the quest is for the sub-paths that exhibit high matching scores
for one of the phenotypic class and low matching scores for the other. This is a
paradigm shift from the mining of differential genes to the mining of GRN func-
tional sub-paths. We applied our coupled GRN and gene-expression data analysis
methodology on a set of microarray studies with the target of revealing putative
regulatory mechanisms that govern the targeted phenotypes.

1.5.1. Contribution beyond the state of the art

MinePath (www.minepath.org) is a web-based platform that implements a novel
methodology for the identification and visualization of differentially active paths
or sub-paths within a GRN, by coupling and analysing gene-expression data in
the light of the regulatory machinery reflected in the network. The platform
takes advantage of the topology and the regulatory mechanisms of GRNs, includ-
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ing the direction and the type of the involved interactions. The methodology ini-
tially locates all functional sub-paths encoded in selected and targeted GRNs and
tries to identify which of them are compatible with the expression status of
genes in the given sample cases assessing at the same time the differential ability
of these sub-paths to discriminate between the cases’ phenotypes.

Apart from the proposed methodology, only a limited number of tools take ad-
vantage of the underlying GRN gene regulation mechanisms. The main difference
of MinePath from these methodologies is the handling of the gene regulatory
mechanisms. In general, all relevant existing systems and tools follows a scoring
methodology in which each gene to gene network relation is scored according to
its status in the gene-expression data, with activations to receive a ‘+1’ and inhi-
bitions a ‘-1’ score depending if they hold in the gene-expression data. A final
score is calculated and the sub-paths are accordingly ranked. In the contrary, the
MinePath approach strictly checks and takes into account only sub-paths that are
functional according to the gene relations and the expression values status in the
given sample cases. Each sub-path is considered as functional according to its
structure and type of the interactions it involves. For example, the simple activa-
tion relation A — B between two hypothetical genes A and B is considered as
functional only and only if gene A is up-regulated (‘ON’) and gene B is down-
regulated (‘OFF’). More complex patterns of gene expression statuses could be
formed for more complex paths, i.e., the sub-path A - B —| C is considered as
functional only and only if genes A and B are in the ‘ON’ status and gene C in the
‘OFF’ status. That is, as gene B is up-regulated and the relation states that it in-
hibits gene C, then for the inhibition relation to holds, gene C should be ‘OFF’.
Then, the samples are scanned to check and count the number of samples in
which the gene A is ‘ON’ and gene B is ‘OFF’. Finally, a class-inclination formula is
applied to assess if the relation, or the whole sub-path, holds mostly (even exclu-
sively) for one class (phenotype) or the other.

MinePath uses binary data structures and Boolean algebra for the calculations,
so that it is capable of operating in real time even on large datasets with hun-
dreds of pathways and tens of thousands of sub-paths. This approach is quite
innovative, and according to our knowledge no other similar system applies it.
We consider functional sub-paths to present evidential molecular mechanisms
that govern the phenotype itself, and in a way uncover putative regulatory fin-
gerprints for it.

Furthermore existing differentially expressed pathway analysis systems suffer
from insufficient visualization features, a fact that does not facilitate inspection
of results and limit the users’ exploratory potentials. Some systems utilize path-
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way visualization approaches to overcome this problem but since these are
based on a gene-oriented approach, are unable to handle differentially expressed
pathways or even differentially expressed sub-paths. Such methodologies visual-
ize just the pathway genes using some colour scale or colour-coding schema and
neglect the gene interactions. This problem is apparent even for small pathways.
For example, the inhibition relation A—| B (A inhibits B; A, B represent genes)
could be considered as active in two cases: when AT and BV (up-regulation of A
inhibits B and makes it down-regulated), and when Al and BT (down-regulation
of A leaves B unaffected and/ or turns it up-regulated). For such different cases,
different colors should be assigned to the genes. The situation becomes even
more complicated when one has to visualize the phenotype inclination of an in-
teraction, e.g., an inhibition being active for one phenotype and not for another.
MinePath overcomes the aforementioned problems offering an effective Web-
based platform for the identification and visualization of differentially active
GRN sub-paths in real time. MinePath supports live interaction, immediate visu-
alization of regulatory relations and it is equipped with special topological and
network-adjustment functionalities. To the best of our knowledge, MinePath is
the only tool that visualizes differentially expressed relations instead of just dif-
ferential genes.

Furthermore the MinePath methodology is the only one that takes also into ac-
count and visualizes sub-paths that are functional in both phenotypes. Even if
such sub-paths possess no discriminant power their presence can link the gap
(functional interaction) between two different sub-paths and reveal a complete
functional route that is biologically valuable (e.g. link the gap between extracellu-
lar gene interactions and the final result of the pathway such as apoptosis). This
feature serves the users’ exploratory needs to reveal the regulatory mechanisms
that underlie and putatively govern the expression of specific phenotypes.

More details and examples can be found in the Methodology chapter.

1.6. Dissertation structure
The dissertation is organized as follows:

e Chapter 2: A literature review of existing methods and tools supporting
the integration of gene expressions and gene regulatory networks is pro-
vided. We start with gene regulatory network reconstruction methods fo-
cusing on the reconstruction using microarray experiments. Then we re-
port methods and tools for gene expression data analysis based on gene
regulatory network knowledge (Gene Set Analysis section) and we review
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algorithms and tools for gene regulatory networks selection using micro-
array data (Discriminant pathways and sub-pathways section).

Chapter 3: A detailed description of the proposed methodology and the
overview of the MinePath approach are provided. All the learning tech-
niques and the tools utilised and appropriately customised for this work
are introduced. The goal of MinePath is to identify a set of sub-paths that
differentiate two experimental groups (for example, healthy vs diseased)
by considering both prior knowledge about gene regulations and experi-
mental gene expression data.

Chapter 4: A discussion of the experiments, including testing and evalua-
tion, is presented along with results that clearly highlight the effective-
ness of the MinePath approach towards molecular mechanisms identifica-
tion. The evaluation scenarios and their implementation on experimental
data are described and a discussion of the results is reported.

Chapter 5: Summarizes the conclusions of this work. Future work is dis-
cussed as well as the contributions made by this work and the scientific
publications that have resulted out of it.
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2.Literature

In this chapter we survey existing methods that support the different types of
gene-expression and GRN integration with a focus on methodologies that aim to
identify phenotype-discriminant GRNs or sub-networks. We present all the re-
lated tools and algorithms in a unified way, using standardized notations in or-
der to reveal their technical details and to highlight their common characteristics
as well as their particularities. Extensive literature search and analysis led us to
the conclusion that relevant methodologies increased significantly over the past
years, a fact that indicates the importance of such an integration endeavour. In
addition, all reported methodologies have significantly contributed to the identi-
fication of informative associations between GRNs and target phenotypes.

Currently bioinformatics community focuses on more enhanced methods for
gene selection on microarrays mainly by adding and amalgamating knowledge
from other sources, such as GRNs. Integrating GRN information into the class
comparison, discovery and prediction process is an important issue in bioinfor-
matics, mainly because the provided information possesses a true biological con-
tent. By changing the focus from individual genes to a set of genes or pathways,
the gene set analysis (GSA) approach enables the understanding of cellular pro-
cesses as an intricate network of functionally related components. A perfor-
mance evaluation of GSA methodologies [11] concluded that the inclusion of ad-
ditional biological features such as topology or covariates would be more useful
than simple gene selection approaches. In addition, utilizing more domain
knowledge is likely to reveal more insights in the analysis.

Similarly to bioinformatics, systems biology community took advantage of the
human genome and the microarray technology to reconstruct and validate gene
regulatory networks in an automatic way. GRN reconstruction or reverse engi-
neering aims toward the inference GRN models from data (in most of the cases
from gene expression data). In the literature a large number of computational
methods are reported with the target of inferring gene regulatory networks from
expression data [17].

A special focus of the review reported here concerns a relatively new line of re-
search in the field: the identification of the most discriminant GRNs, or parts of
GRNs (i.e., sub-networks) that differentiate between specific phenotypes by cou-
pling GRNs and microarray data. Assessment of the discriminant power of (sub)-
networks is based on the identification of those genes whose expression values
are consistent, i.e., could be justified, by their corresponding interaction pattern
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in the target GRN. Figure 6 captures and illustrates the main research areas that
combine microarray data and GRN knowledge.
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Figure 6: Integration of microarray data with GRNs. Columns represent the two scientific areas,
while rows map the data from these areas and the respective methodologies based on combinations
of the data.

The initial search revealed that a lot of publications come from specific journals.
We identified these journals and screened in depth the respective published arti-
cles. The journals that we focused are: (a) the annual Web Server issue of Nucleic
Acids Research? and (b) the BMC Systems Biology (Software articles)3. We also
identified that quite a few methodologies take advantage of the Cytoscape#* plat-
form to visualize and analyse gene regulatory networks. Thus we searched all the
Cytoscape plugins in order to identify more tools/applications related to the
identification and assessment of discriminant pathways.

After removing duplicates from the combined searches, the screening of the two
journals and the screening of the related Cytoscape plugins, we came up with
more than 100 unique citations. Most of the citations fall into the advanced Gene
Set Analysis (GSA) or, into the GRN reconstruction categories (Figure 6). Out of
these citations, 48 are related to GSEA with the utilization of GRN knowledge, 54
are related to GRN reconstruction using microarray data and 25 are related to
discriminant pathways or, sub-pathways. Since this review focuses on methodol-

2 http://nar.oxfordjournals.org/content/41/W1.toc#WebServices (last day visited 11/08/2014)
3 http://www.biomedcentral.com/bmcsystbiol (last day visited 11/08/2014)
4 http://www.cytoscape.org (last day visited 11/08/2014)
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ogies that target the identification of the most phenotype-discriminant GRNs, the
citations from the two first categories were rejected and our final pool of meth-
odologies is limited to 25 citations. Here we have to note that such a distribution
is expected since GSA and GRN reconstruction is the earliest research line in
which coupling of gene-expression data and gene regulatory networks is utilised.
As GSA and GRN-reconstruction methods are out of the scope we refer the inter-
ested reader to the related literature reviews [11], [17].

2.1. Gene regulatory networks reconstruction

Biologists use pathways to integrate results from literature, formulate hypothe-
ses, capture empirical results, share current understanding and even run simula-
tions. A common goal of research in the life sciences is to develop pathway mod-
els for biological processes of many different organisms.

Many studies focus on the problem of GRN reconstruction or reverse engineering
of GRNs, which is how to construct, update or validate a network from other data
sources.

2.1.1. Reconstruction using literature

Natural language processing (NLP) is a set of techniques that can help facilitate
analysis, retrieval and integration of textual and electronic information. Recently
the field of molecular biology has enjoyed an explosive development. As a result
more and more publications on this field are available to the researchers. Taking
advantage of the gowning size of documents related to gene interactions many
researchers have propose automatic pathway identification using scientific pub-
lications.

Leroy et al [18] proposed a shallow parser, based on natural language pro-
cessing, which captures the relations between noun phrases automatically from
free text. The corpus of the parser consists of biomedical abstracts stored in a
document warehouse. Evaluation of the parser has been done from 3 experts of
the area. Park at el [19] and Daraselia et al [20] proposed two different systems
to support parsing from MEDLINE. Park at el [19] extracts information about
protein-to-protein interactions. The methodology of the parser is based on com-
binatory categorical grammar using appositions and compound nouns and ana-
phoric expressions. Daraselia et al [20] introduced a commercial software called
MedScan, which uses natural language processing to extract interactions be-
tween proteins from related paper abstracts. The system validated using 3.5 mil-
lion MEDLINE abstracts dated after 1988 and extracted 3601 interactions corre-
sponding to 2976 distinct protein-protein interactions.
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Other methodologies for gene regulatory network reconstruction have been
proposed using text mining on complete text articles (publications) such as
Friedman et al [21] who proposed the GENIES system. An NLP parser called
MedLEE, which was applied to the domain of molecular biology for the extrac-
tion of molecular pathways from journal articles. MedLEE has been adapted to
the molecular biology domain using a special molecular tag generator called
term tagger. Another methodology in that direction proposed by Gaizauskas et al
[22] called Protein Active Site Template Acquisition (PASTA), aims to extract in-
formation about the role of residues in protein molecules using text mining tech-
niques.

2.1.2. Reconstruction using microarrays

The study of the function, structure and evolution of GRNs in combination with
microarray gene-expression profiles and data is essential for contemporary biol-
ogy research. Having in mind that differential expression analysis is a well-
established strategy to screen genes or sets of genes associated with specific
phenotypes, a lot of efforts focused on the reconstruction of GRNs by exploring
gene-expression data have been done. Strong associations between genes found
in microarray analysis can be candidates for gene interactions in a GRN.

According to microarray analysis new genes and gene associations are proposed
to be added or deleted in the GRN. Figure 7 gives an example of GRN reconstruc-
tion where microarray data analysis identified a new path from RTK to P13K via
PAK gene, an association between P13K and PIP3 and an activation of AkPKB
from PIP3. At the top of Figure 7 we can see the original GRN and at the bottom
the revised GRN according to a specific microarray dataset.
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Figure 7: GRN reconstruction using microarray data. From top to bottom: Using known pathways
and microarray expression data GRN reconstruction methodologies propose new gene to gene rela-
tions (e.g. PAK and AKPKB in the revised pathway).

An example of GRNs reconstruction using microarrays is RankGRN [23].
RankGRN evaluates a number of alternative hypothesises about the structure of
a regulatory network against microarray data. RankGRN is a useful tool for eval-
uating the merits of different hypothesises on the structure of gene regulatory
network using existing microarray data. It ranks the hypothetical gene network
models based on their capability of explaining the microarray data.

Huang et al [24] proposed two scalable gene regulatory network learning algo-
rithms: a modified information- theory-based Bayesian network algorithm and a
modified association rule mining algorithm. Two types of evaluation were used
to assess the practical value of these two techniques in helping researchers ana-
lyse large amounts of gene expression data. The simulation-based evaluation re-
sults indicated that the two techniques could infer about 20% of the relations in

pre-defined network models.
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Another methodology related to differentially expressed genes through microar-
ray data and using interactome-transcriptome analysis was proposed by [25].
The paper concludes that the up-regulated genes in cancer samples tend to be
“central hubs” in a network and the genes that are differentially expressed in
contrast to the surrounding normal tissue, are essential for survival and prolifer-
ation.

A slightly different approach into that area proposed by Dutta et al [26] called
PathNet. PathNet is a method for identifying enrichment and association be-
tween canonical pathways in the context of gene expression data. It takes into
account topological information present in pathways to reveal biological infor-
mation and is available as an R workspace image. PathNet utilizes the connectivi-
ty information in canonical pathway descriptions to help identify study-relevant
pathways and characterize non-obvious dependencies and connections among
pathways using gene expression data. It considers both the differential expres-
sion of genes and their pathway neighbours to strengthen the evidence that a
pathway is implicated in the biological conditions characterizing the experiment.
As an adjunct to this analysis, the system uses the connectivity of the differential-
ly expressed genes among all pathways to score pathway contextual associations
and statistically identify biological relations among pathways.

Very few methods of gene regulatory inference are considered superior, mainly
because of the intrinsically noisy property of the data, ‘the curse of dimensionali-
ty’ and the lack of knowledge about the ‘true’ underlying structure of the net-
works.

2.2.  Gene Set Analysis

Gene set analysis (GSA), also called pathway inference, is a widely used strategy
for gene expression data analysis based on pathway knowledge. GSA focuses on
sets of related genes and has established major advantages over individual gene
analyses, including greater robustness, sensitivity and biological relevance. GSA
methods are better able to detect biologically relevant signals and give more co-
herent results across different studies. GSA incorporates prior knowledge of bio-
logical pathways and other experimental results in the form of gene sets.

Recently a lot of effort has been done in order to enrich the microarray analysis
results with other biological data sources. One common approach is the combi-
nation of GRNs with microarray analysis for gene selection. Many methods use
GRN information as groups (plain list) of associated genes in order to identify the
most discriminant genes within microarray data (Figure 8 upper left part). Bio-
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logical pathways are effectively reduced to sets of gene sets using a GSA ap-
proach with GRNs as a list of genes.

Although pathways maps carry important information about the structure of
correlation among genes that should not be neglected, the currently available
methods for gene set analysis do not fully exploit it. Recently, more and more
methods take advantage of the topology of the gene regulatory network based on
the graph theory and network visualization toolkits. Most of these tools take ad-
vantage of network visualization toolkits and display the discriminant genes
from GSA methods on predefined gene regulatory networks (Figure 8 middle).

To our knowledge only a limited number of the published methodologies take
advantage of the signalling information within the gene regulatory networks (e.g.
the topology and the type of association between genes activation/inhibition)
and can provide more biologically accurate interpretation of the data (Figure 8:
downright part).

GSA & GRNs
As list of genes

GSA & GRNs
With Topology info

GSA & GRNs
With topology &
regulatory mechanisms

Figure 8: Evolution of Gene Set Analysis using GRNs. Initially the GRNs were treated as list of genes
(left part) then the knowledge of the GRNs topology is taken into account (centre) and currently
more and more methodologies take advantage of the regulatory mechanisms (right part).

The following sub-sections report methods, tools or algorithms that use microar-
ray studies and GRN information as lists, topology or regulatory mechanisms in
order to perform better accuracy at phenotype classification. A table which
summarizes the gene set analysis methodologies according to main features such
as input/data usage, output/purpose of use and type of application and visuali-
zation functionalities can be found in the end of the sub-section 2.2.
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2.2.1. GSA & gene list from GRNs

Most of the methods proposed for gene set analysis use GRNs as group of genes
to find differentially expressed group of genes on phenotype. Even though the
knowledge from GRNs improves the efficiency of the selection algorithms, these
methods do not take advantage of the topology of the network and the reac-
tions/relations between genes. Gene regulatory networks are considered to be
only group/list of genes (Figure 9) and such tools limit down the full list of genes
in microarrays into the known list of genes from GRNs.

S1 S2 S3 S4 S5 S6
Microarray
Data
Gene - w
Regulatory o o
Networks = 3
o
>
\ 4
Normal Disease
S5
Most
Discriminant
Genes

Figure 9: Gene set analysis. From top to bottom: Having microarray expression data, we use GRNs to
identify the genes that participate into known GRNs and we filter (narrow down) the microarray
matrix.

Siu et al [27] proved that correlations among genes in a pathway are valuable
and cannot be ignored in a gene expression analysis. The methodology is based
on three statistical algorithms able to combine dependent P-Values of genes

within a pathway.

Wang et al [28] proved that differential expression between two groups of sam-
ples is significantly different for genes in the pathway compared with the rest of
the genes. Wang et al used linear mixed models for the analysis of microarray
data at the pathway-level. The information used from the pathways is if a gene
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belongs to a pathway or not (basically if a pair of genes belong to the same path-
way without taking into account the reactions of the pathway).

One common approach to combine microarray data with pathways is to incorpo-
rate known pathway information to reduce the dimensionality of gene interac-
tions, such as [29] or [30]. Braun et al [29] proposed method identifies pairs of
gene-pathway that are considered to be highly discriminant on microarray da-
tasets. This method defines the expression of a known pathway via a summary
value based on principal component analysis and uses KEGG pathways and han-
dles the pathways as group of genes. Tai et al [30] proposed several versions of a
modified linear discriminant analysis, group regularized discriminant analysis
that aims to take advantage of existing gene functional groups. The algorithms
make the assumption that the genes within the same pathway are correlated to
each other. Methods were tested with simulated and real data and perform well
compared to other known linear discriminant analysis algorithms for microarray
analysis.

Sfakianakis et al [31] proposed a model for integration of gene annotations and
pathways in order to guide the cluster analysis of gene expression data. The
model gets information from the Gene Ontology (GO) and KEGG. The methodolo-
gy takes advantage of the knowledge of pathways and creates a covariance ma-
trix according to their existence or absence in pathways. Then an Expectation-
Maximization algorithm is used for the identification of maximum likelihood so-
lutions hidden variables in the model.

Another model that compares microarray experiments at the pathway level have
been proposed by Beltrame et al [32] where the authors use pathways as a list of
genes and computes the probability of a set of pathways to be related to some
clinical/biological outcome. The proposed methodology for pathway signatures
is based on the Eu.Gene application.

2.2.2. GSA with topology information from GRNs

The web based KEGG tool, Colour and mappers is the simplest form of topology
information on GRNs. The user can set colour to any gene within the gene regula-
tory network (Figure 10). Graph colour coding is a well-known approach that's
used to simplify larger problems. The topology of a gene regulatory network is
essential since the value of specific genes (drug targets) mainly because these
genes can easily be used / manipulated using existing or new drugs. For example,
a deviation from normal regulatory network topology may reveal the mechanism

Shttp://www.genome.jp/kegg/tool/map pathway2.html (last day visited 11/08/2014)
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of pathogenesis [33] and the genes that undergo the most network topological

changes may serve as biomarkers or drug targets.
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Another indicative example from KEGG is the insulin pathway¢ as shown in Fig-

ure 11. If the insulin receptor (INSR) is not present, the entire pathway is shut

off. Conversely, if several genes are involved in a pathway but they only appear

somewhere downstream, changes in their expression levels may not affect the

given pathway as much.

¢ http://www.genome.jp/kegg-bin/show pathway?hsa04910 (last day visited 11/08/2014)
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Figure 11: The KEGG insulin pathway (source http://www.genome.jp /kegg-

bin/show pathway?hsa04910)

Towards that direction a wealth of web based or standalone toolkits that take
advantage of software platforms for visualizing complex networks exist. Most of
the solutions rely on the cytoscape’ Network Data Integration, Analysis and Vis-
ualization toolbox.

Genoscape [34] is an open-source Cytoscape plug-in that visually integrates gene
expression data sets from GenoScript?, a transcriptomic database and KEGG
pathways into Cytoscape networks. Genoscape automatically maps most gene or
gene product identifiers to KEGG identifiers, enabling the import of expression
data from various sources. When importing KEGG pathways, elements are fil-
tered in order to keep only those nodes corresponding to genes or enzymes. Us-
ing Genoscape, KEGG pathways are displayed as Cytoscape networks. Each
pathway element is represented as a node. Genoscape generates a visualisation
style that highlights gene expression changes and their statistical significance
(Figure 12). The nodes represent genes and are coloured with a classical
red/green gradient according to the expression ratio level. The size of the nodes
is enlarged if the corresponding expression ratio is labelled as statistically signif-
icant.

7 http://www.cytoscape.org/ (last day visited 11/08/2014)
8 http://genoscript.pasteur.fr/cgi-bin/WebObjects/GenoScript (last day visited 11/08/2014)
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Figure 12: Visualisation of GRN at GenoScape (source [34])

A similar approach incorporated Cytoscape is PINGO [35]. PINGO implements a
simple network-based method to find genes associated with processes or path-
ways of interest. Input networks may be gene co-expression networks, protein or
genetic interaction networks, or integrated networks. Edge weights are not taken
into account. The candidate genes for each target category are listed along with
P-values and associated raw counts that give a good indication of the prominence
of the target category in the candidate gene's neighbourhood. Finally, the output
network reveals the genes contributed to the discovery of particular candidate
genes.

It appears that many publications at GSA and topology information use the Cyto-
scape open source visualization toolkit. Cline et al [36] proposed a protocol that
explains how to use Cytoscape to analyse the results of mRNA expression profil-
ing and other functional genomics and proteomics experiments, in the context of
an interaction network obtained for genes of interest. Five major steps de-
scribed: (i) obtaining a gene or protein network, (ii) displaying the network us-
ing layout algorithms, (iii) integrating with gene expression and other functional
attributes, (iv) identifying putative complexes and functional modules and (v)
identifying enriched Gene Ontology annotations in the network. Authors also
made a comparative study of network analysis platforms that can be used for
expression profiles and cellular networks.

The caBIG® project introduced the Differential Dependency Network (DDN) [37].
DDN is an analytical tool for detecting and visualizing statistically significant

9 https://cabig.nci.nih.gov (last day visited 11/08/2014)
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topological changes in transcriptional networks representing two biological con-
ditions. DDN enables differential network analysis and provides an alternative
way for defining network biomarkers predictive of phenotypes. DDN has been
implemented as a standalone Java application to integrate network analysis and
visualization seamlessly but a Cytoscape plug-in, CytoDDN, also exists.

Ibrahim et al [38] described a gene selection method, which identifies groups of
strongly correlated genes that discriminate disease traits. In addition to using
static predefined pathways knowledge, the method is adaptive in the sense that
it involves a pathways ranking process to identify the most relevant pathways
perturbed in a given pathological state and pathway topology.

A different topological approach, such as the centrality of nodes in the network
or their tendency to form clusters has been implemented at the TopoGSA [39]
(Topology-based Gene Set Analysis) web-application®. TopoGSA computes topo-
logical properties for the entire network, the uploaded gene/protein set and
random sets of matched sizes. The available network topological properties are:
(i) The degree of a node (gene or protein) is the average number of edges (inter-
actions) incident to this node, (ii) The local clustering coefficient quantifies the
probability that the neighbours of a node are connected, (iii) the shortest path
length(SPL) for two nodes, (iv) the “betweenness” of a node that can be calculated
from the number of shortest paths and (v) the centrality scores are given by the
entries of the dominant eigenvector of the network adjacency matrix.

While the previous approaches are useful, the valuable information from GRNs
such as the inherent regulatory relationships found in biological pathways
among the different genes has never been incorporated in a gene set analysis
methodology.

Table 1 summarizes the gene set analysis methodologies according to main fea-
tures such as input/data usage, output/purpose of use and type of application
and visualization functionalities. As we can see from the table none of these
methodologies can identify discriminant sub-paths and all neglect the regulatory
mechanisms reported in the GRNs. Furthermore, a few methodologies support
visualization features and only one supports web based interface.

Table 1: List of Gene Set Analysis methodologies using pathways according to main features such as
data usage, purpose of use, visualization functionalities and platform information

10 http://bree.cs.nott.ac.uk/R-php-1/PPI (last day visited 11/08/2014)
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2.3. Discriminant pathways and sub-pathways

An area that combines GRNs and microarray data, tries to identify the most dis-
criminant GRNs for specific phenotypes. The phenotype information is extracted
from microarrays and the evaluation of the most discriminant GRNs is based on
the value of every gene in GRNs as it is expressed in microarray data.

The study of the function, structure and evolution of GRNs in combination with
microarray gene-expression profiles and data is essential for contemporary biol-
ogy research. The usual computational task involving microarray experiments is
the gene selection procedure with GRNs used mainly for data annotation or
GRNs reconstruction. Due to limitations in DNA microarray technology higher
differential expressions of a gene do not necessarily reflect a greater likelihood of
the gene being related to a disease and therefore, focusing only on the candidate
genes with the highest differential expressions might not be the optimal proce-
dure. A table which summarizes the pathway selection methodologies according
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to main features such as input/data usage, output/purpose of use and type of
application and visualization functionalities can be found in the end of the sub-
section 2.3.

2.3.1. Pathway selection using microarray data

The straightforward approach for the identification of the most discriminant
GRNs is to extract phenotype information microarrays and evaluate all the
known GRNs (from literature or databases such as KEGG) for the identification of
the most informative GRNs at the specific phenotype. The evaluation is based on
the value of every gene in GRNs as it is expressed in microarray data.

Draghici et al [40] proposed a tool called Onto-Express, which automatically
translate lists of differentially regulated genes into functional profiles. Onto-
Express proposed a methodology for use of gene regulatory networks to find the
pathways that contain the most discriminate genes (extracted from microar-
rays). The work is based on a combination of microarrays and gene regulatory
networks (pathways) but the pathways are only used for informative purposes.

Oncomine [41] is a bioinformatics application for cancer signature identification.
At version 3 of the application pathway information was added to the system for
enrichment analysis of gene expressions. The extracted signature from multiple
microarrays related to cancer reveal pathways that are co-ordinately over ex-
pressed in the respective cancer types.

Eu.Gene [42] is an application that tries to identify biological pathways transcrip-
tionally affected under experimental conditions. The application can use multiple
pathway databases and convert them to a common format (Ensembl Gene and
Transcript IDs). Eu.Gene Analyzer implements two different statistical methods
to evaluate the pathways that are most affected by differences in gene expression
observed in a functional genomic experiment: the one-tailed Fisher Exact Test
and Gene Set Enrichment Analysis (GSEA).

Adewale et al [43] proposed a statistical analysis of pathways using microarray
data. Specifically the authors’ handle the microarray data to identify pathways
associated with the phenotype (e.g. time to death for breast cancer).Genes that
participate (active at the microarray data) in a pathway make the pathway can-
didate. Then candidate pathways are tested if are significantly associated with
various phenotype data and finally only the statistically significant pathways
(group of genes) are selected.

Ma et al [44] proposed a methodology for the identification of gene pathways
with predictive power for breast cancer prognosis. The work is based on statisti-
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cal significance methods (p-value) using two quality controls: (i) to compute the
predictive power of each gene within each pathway (ii) to compute the predic-
tive power of each pathway in multiple datasets. The method works with multi-
ple datasets, the pathway information is extracted from KEGG and it ignores the
relationships between genes in a pathway (use the pathway as a group of genes).

PathBLAST [45] identifies and visually promotes pathway alignments of two dif-
ferent networks At PathBLAST the user specifies a short protein interaction path
for query against a target protein-protein interaction network selected from a
network database. PathBLAST returns a ranked list of matching paths from the
target network along with a graphical view of these paths and the overlap among
them. PathBLAST performs alignment of protein networks just as BLAST is used
to perform rapid alignment of protein. The approach does not take into account
microarray data.

GeneMANIA prediction server [46] constructs and displays an interactive func-
tional association network constructed from a user-defined list of genes and
functionally similar or shared propertied genes. Data sources used for gene simi-
larity search include co-expression data from Gene Expression Omnibus; physi-
cal and genetic interaction data from BioGRID; predicted protein interaction da-
tabase 12D; and pathway and molecular interaction data from Pathway Com-
mons, which contains data from BioGRID, Memorial Sloan-Kettering Cancer Cen-
ter, Human Protein Reference Database, HumanCyc, Systems Biology Center
New York, IntAct , MINT, NCI-Nature Pathway Interaction Database and Reac-
tome. The main drawback is GeneMANIA is that it can support only a limited set
of initial genes due to the high complexity of the data sources used in the similar-
ity search. Authors reported also an implementation of GeneMANIA as a Cyto-
scape plugin [47].

An approach for the identification of differentially expressed pathways has been
proposed by Nacu et al [48]. The proposed methodology compute a score that
measures to what extent a group of genes is differentially expressed. With a scor-
ing function the system reveals groups of interacting genes. Two scoring meth-
ods developed and evaluated: (i) go through a limited list of predefined groups
and select the ones with high scores (ii) search for high-scoring sets among all
possible sets subject to some structural constraints.

All the above methods handle the gene regulatory networks only as a group/list
of genes. Information about the topology of the network and the reac-
tions/relationships between genes in a pathway is ignored.
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2.3.2. Discriminant sub-pathways from MA and GRN topology

Several approaches for integrating microarray measurements with network
knowledge were described in the literature and some of them proposed compu-
tational methods for detection of sub-networks that show correlated expression.

Chen et al [49] proposed a sub-pathway-based enrichment approach for identify-
ing a drug response principal network, which takes into consideration the quan-
titative structures of the pathways. Authors are based on the biological pathways
hint that a sub-pathway may respond more effectively or sensitively than the
whole pathway. The methodology consists of the generation of a large number of
relative sub-pathways (from the KEGG public database), mapping of the unfil-
tered expression data onto them and statistically scoring for identification of the
principal component of sub-pathways that is most perturbed by two stage de-
signs. Principal component of sub-pathways are then combined into a larger
drug response network, on which topological and biological analyses are per-
formed. The algorithm uses the NetworkAnalyzer [50] for the analysis of the
topological properties of the sub-pathways. NetworkAnalyzer computes and dis-
plays a comprehensive set of topological parameters, from the network diameter
to average clustering coefficients and shortest path lengths but ignores the regu-
latory mechanisms of the signalling pathways (activations/inhibitions).

DEGAS [51] (De Novo Discovery of Dysregulated Pathways in Human Diseases)
methodology identifies connected gene sub-networks significantly enriched for
genes that are dysregulated (disrupted of normal function) in specimens of a dis-
ease using correlation expressions. Given a set of expression profiles labelled as
cases and another set of controls, DEGAS aims to detect sub-networks dysregu-
lated in multiple genes in the cases, while allowing for distinct affected gene sets
in each case profile.
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Figure 13: Identification of dysregulated pathways using DEGAS (source [51])

As shown in Figure 13 DEGAS methodology takes as input expression data of
case and control cohorts (A) and a protein interaction network. The expression
data are converted into a binary matrix. The output is the interaction network
(C): The vector next to each protein is the dys-regulation status (0 or 1) of that
gene in each case. A dysregulated pathway is a minimal sub-network in which at
least k genes are dysregulated in all but1 cases.

The gene regulatory relations we consider are restricted to what might be ob-
served in a microarray experiment: a change in the expression of a regulator
gene modulates the expression of a target gene mainly via protein-DNA interac-
tions. In other words, there are genes that causally regulate other genes. A
change in the expression of these genes might change dramatically the behaviour
of the whole network. The identification and prediction of such changes is a chal-
lenging task in bioinformatics.

Another similar effort that actually uses the same algorithm for the identification
of the dysregulated genes/cases is the KeyPathwayMiner [52]. Given a biological
network and a set of case-control studies, KeyPathwayMiner efficiently extracts
all maximal connected sub-networks (Figure 14). These sub-networks contain
the genes that are mainly dysregulated, e.g., differentially expressed. The exact
quantities for “mainly” and “most” are modelled with two easy-to-interpret pa-
rameters (K, L) that allow the user to control the number of outliers (not dysreg-
ulated genes/cases) in the solutions. KeyPathwayMiner use the Cytoscape visual-
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ization library to map the dysregulated sub-networks. Version 2.0 of Key-
PathwaMiner [53] provide two more algorithms (one greedy and one optimal) to
solve the formal graph problem and an improved user interface.

Controls Cases

GeneA
GeneB
GeneC
GeneD .

Exceptions

Figure 14: KeyPathwayMiner methodology (source http://keypathwayminer.mpi-inf.mpg.de)

Once again the main limitation of the KeyPathwayMiner is that interactions be-
tween two nodes (genes) are computed according to the expression values of the
corresponding genes.

Ideker et al. [54] used sub-graph extraction as a technique to predict pathways
from biological networks and a set of genes. The authors extended the method-
ology to the extraction of more complex, non-linear sub-networks in protein-
protein and protein-DNA networks given yeast gene expression data. A recently
work of the same team apply a protein network-based approach that identifies
markers not as individual genes but as sub-networks extracted from protein in-
teraction databases [55]. The resulting sub-networks of the methodology pro-
vide models of the molecular mechanisms underlying metastasis. Authors
proved that the identified sub-networks are significantly more reproducible be-
tween different breast cancer cohorts than individual marker genes selected
without network information and network-based classification achieves higher
accuracy in prediction, as ascertained by selecting markers from one data set and
applying them to a second independent validation data set. To integrate the ex-
pression and network data sets, authors overlaid the expression values of each
gene on its corresponding protein in the network and searched for sub-networks
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whose activities across the patients were highly discriminative of metastasis. An
overview of the sub-network identification is mapped visually at the Figure 15.

Protain-protain imeraction network Geane expression D(O“OS T
= ’ I Phanctypa 1
- . D mnm -

Samples

sl a2 a) 4 a5

K‘( -

\ /- Gene expression matrix
Qere-wise 1

... normazed L
1% expression :
G=Qo=1  GON0S | 1)

O
Lk EE R

- B RN
-

Subnetwork Kk
Phenotype ¢ 1 1 1 2 2 2
\Dsuinmanvn potential S(M,) = tha Mutual Informasion or t-score measuring the assocation batween a, and o /,-

. &
) o | ;
oo ‘;L;l‘*a,_ "

Subnetwarks maximizing S(M,)

pl:
The null distnbution of S is astimased
by & random subnetworks

p2

The null distnbution of S(M, ) is estmated
by random subnetworks seedad at node |

P
The null distribution of S(My) is estimated

for each siarting node in PP 1 by parmuting phanctypes
Samples
51 52 & 34 53 o

Mt

ﬁ :

Sutretworks |

[re

Differentialy-exprassed
\ subnetwarks Activity matrix

Figure 15: Sub-network identification process (source [54])

Sub-networks do not take into account initial relation of genes (from gene regu-
latory networks), but are considered active whenever they involve highly ex-
pressed genes. Sampling the space of possible sub-networks with simulated an-
nealing can identify such sub-networks.

Wu and Stein [56] described a semi-supervised algorithm that first discovers
modules of interacting genes (sub-pathways) involved in the disease process in-
dependently of clinical status and then identifies clinically significant modules
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using supervised principal component analysis. The implementation is based on
top of a human protein functional interaction network constructed by combining
curated and un-curated data sources. This functional interaction network covers
roughly half of annotated human proteins and is highly reliable based on a varie-
ty of metrics, including confirmation of its predictions by domain experts. The
network as a whole is un-weighted without regulation mechanisms and is not
specific for any particular tissue or phenotype.

CLiPPER algorithm [57] implements a two-step empirical approach based on the
exploitation of graph decomposition into a junction tree to reconstruct the most
relevant signal path. In the first step clipper selects significant pathways accord-
ing to statistical tests on the means and the concentration matrices of the graphs
derived from pathway topologies. Then, it "clips" the whole pathway identifying
the signal paths having the greatest association with a specific phenotype. For
example, a proportional increase of the expression of the genes A and B in one of
two conditions will result in significantly different mean expression between the
two conditions. The correlation strength between A and B, however, does not
change. In this case, we would have pathways with significant altered mean ex-
pression levels but unaltered biological interactions. CliPPER searches for path-
ways strongly involved in a biological process by requesting that the mean or the
variance of the expression levels result significantly altered between two condi-
tions. Clipper empirically identifies the portions of the network mostly associat-
ed to the phenotype using the structure of the junction tree as a backbone.
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Figure 16: Clipper toy example of sub-path selection (source [57])

Figure 16 shows a toy example of clipper approach to sub-pathway selection.
The construction of the junction tree with significant cliques is shown in red
(part A). Identification of the paths in the tree is shown in part B, the identifica-
tion of all the sub-paths within each path in part C, the selection of the best sub-
path for each path and cluster analysis for sub-path collapse in part D and the
final sub-path selected in partE.

Even though CliPPER uses parts of the pathway (sub-pathways) as junction tree,
the sub-pathway selection method ignore the relations/regulations between
genes participating in the signalling pathways.

Figure 17 shows results of CliPPER for the chronic myeloid leukaemia KEGG
pathway with complexes belonging to the sub-path identified colour according to
their expression.

35



CHRONIC MYELOID LEUKEMIA

H3C 2 N
hgkar L Mo Haenatopoes: sem cel it [ - sevte Appres |

/ T L T
- g A e
e, [ g = =l B
e DNA )

g p R PR -
2 LY “a T o oo PERIRENNRIRS TP TR e .
. - | ~ v \ \ \ -, . u "
gkl o \\ - I T T I T $O———b perguin
e \ % e~ - DA
| \ — ]
) -
oM \ \
eyl \
e |1 2\ 1 -~
Progennm DA
= L) - *O—{ Gy * Savael
3 TiiA
| .
B coll
; P8
, - -
! <
i :
T 5““ | cacms ]
| [ - v
| 31
| ! Oscogwess BCR-ABL EVH, =
| AMLEVIL ~
| | prm—————— al))
! | Hemppopoiste Tumee sappawsscns  INKAUARS, 553, B s A CDKAY .
- ] =]
H I |_EF O =PI pogrsics
H DHA
| Blat | ——————y
| oms | 5 e Earyots aashity
| ! 153 syraling DA — >0 — — > hopund U1 oy ammst
\l ! [ py. dasuage oA Pedxed it
! i
| (i ]
! 1 [T —
\ | ——— T i e
H | ( mrﬂﬁmm = DG
1 I —y S
| . " S o, RS 3
h I — [roppey ® — e Py Arnomatayin
i v R g B o * cowth whbce
DhiA
1.1
i
o,

Figure 17: CliPPER results over KEGG pathway (source [57])

Kazmi et al [58] developed a meta-analysis tool for functional gene regulatory
paths and sub-paths using information from microarray data. The up-regulated
genes (found in microarray data) that participate in pathways are highlighted on
the gene regulatory networks. The system takes advantage of the activations be-
tween genes within the pathway and tries to identify the functional paths or pro-
pose new paths. Expression values for genes that are not available from the mi-
croarray experiment are also added using a predictive algorithm.

Another software package (R based software) for identification of pathways is
the SubpathwayMiner [59]. It is a pathway analysis tool relative to pathway an-
notation and identification, which applies pathway structure information to
pathway identification. According to pathway structure information provided by
KEGG, the system can detect distance similarity among enzymes in each pathway
and mine each sub-pathway in which distance among all enzymes is no greater
than the parameter k (a user-defined distance). SubpathwayMiner converts each
metabolic pathway to an undirected graph with enzymes as nodes. Two nodes in
an undirected graph are connected by an edge if there is a common compound in
the enzymes corresponding reactions. As a result, the metabolic pathway is sim-
plified when chemical compounds are omitted from the graph. Visualization of
the resulting pathways is possible through linking to the KEGG website as shown
in Figure 18 where (b) shows enzymes coloured red if the according enzyme is
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identified in the submitted sets of genes and (c) visualize a pathway through
linking to the KEGG website. On the pathway map, enzymes are coloured red if
the according enzyme is identified in the submitted set of genes
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Figure 18: SubpathwayMiner environment (source [59])

The main limitation of the above proposed approaches is that all the interactions
between genes within a GRN are considered to be connections in a graph (e.g.
they do not take into account if an interaction is activation or inhibition) where
the nodes are the genes and edges are interactions between genes.

2.3.3. Discriminant sub-paths from microarray, GRN topology
and regulatory mechanisms

The most informative and promising methodology of microarrays and GRNs
combination is the identification of discriminant sub-paths taking advantage of
topology and regulatory mechanisms.

Geistlinger et al [16] introduced the Gene Graph Enrichment Analysis (GGEA),
which exploit fundamental regulation types in a novel enrichment framework for
signed and directed gene regulatory networks, to judge whether the topology of
the network is well fitted by the expression data. GGEA performs three essential
steps (Figure 19): first, the gene set is mapped onto the underlying regulatory
network, yielding an induced sub-network. That is the affected part of the net-
work, which consists of edges that involve members of the gene set. Second, each
edge of the induced network is scored for consistency with the expression data,
i.e. the signs of the expression changes of two interaction partners are evaluated
for agreement with the regulation type (activation/inhibition) of the link that
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connects both genes. Third, the edge consistencies are summed up over the in-
duced network, normalized and estimated for significance using a permutation
procedure.
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Figure 19: GGEA steps (source [16])

The GRNs are modelled as Petri Nets having features of fuzzy logic. The regula-
tions of the GRN are required to be specified with direction and effect. In that
model (Figure 20), regulator (R) and regulated target (RT) are represented via
Petri Net places holding tokens of fuzzy values for both fold change (fc) and sig-
nificance of fc (sig). The variety of regulatory effects occurring in the GRN are
defined by specific fuzzy rules rege{f+f-,f+-f?,..} meaning activation f+, inhibi-
tion f- and dual effects f+-.
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Figure 20: GGEA regulatory interactions mapping to Petri Net (source [16])

GGEA uses the regulation type of GRNs (activation/inhibition) to measure the
consistency between expected (i.e. modelled) behaviour and the measured val-
ues. This approach solves the major problem of the set enrichment strategies,
which is the contrary constrains between GRNs and expression data (e.g. two
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significantly up-regulated genes increase the enrichment of the set, even if one
gene inhibits the other), but the GRN regulation information is only be used as a
significance/ranking parameter in the whole pathway.

Similar to GGEA, another advanced discriminant sub-pathway identification sys-
tem is the signalling pathway impact analysis (SPIA) [60]. SPIA combines the ev-
idence obtained from the classical enrichment analysis with a novel type of evi-
dence, which measures the actual perturbation on a given pathway under a given
condition. To our knowledge this is the most advanced effort is in terms of gene
interactions. The authors introduce a global probability value, Pc, which is calcu-
lated for each pathway, incorporating parameters, such as the log fold-change of
the differentially expressed genes, the statistical significance of the set of path-
way genes and the topology of the signalling pathway. P¢ is a combined probabil-
ity value of Pnpe and Pperr that can be used to rank the pathways. Pnpe is the
probability of observing the given number of differentially expressed genes or
higher, just by chance and Prerr is calculated in a bootstrapping process in which
both the pathway and the number of differentially expressed genes per pathway
are fixed. Pperr, is calculated based on the amount of perturbation measured in
each pathway and defined as:
n
PF(g:)
PF(g;) = AE(g:) + Z Bij Noe(90)
j=1

Where the sign of B reflects the type of interaction: +1 for induction (activation),
-1 for repression and inhibition, as described by each pathway. Note that g will
have non-zero value only for the genes that directly interact with the gene g; ac-
cording to the pathway description. Each pathway is finally marked as activated
(positive perturbation score = positively perturbed) or the inhibited (or nega-
tively perturbed)

39



Gene  AE PF Acc § Gene AE  PF Acc
(A o] o] o . A 16] 15[ o]
B 2| 2| o b | B 2| 26| 08
K= o 1] 1§ e = 0[125]| 126
D o 1] 1|& \ D o125 125
E 0 0 0 g E 0| 05| 05
|F 4| 4 o ° ¥ |F 0| 05| 05
8
Total 20 s " o 3 % Total 40
pPERT=°'57 Total accumulation pPERT=°'24

Figure 21: SPIA perturbation analysis example (source [60])

Figure 21 shows a six-gene pathway with two differentially expressed genes
(shown in grey) in two different situations. One of the two differentially ex-
pressed genes is in common (gene B) while the second gene is either a leaf node
(a), or the entry point in the pathway (b). In (a), gene (F) cannot perturb the ac-
tivity of other genes; in (b) gene (A) has the ability to influence the activity of all
the remaining genes in the pathway, as the topology of the pathway indicates. An
over-representation analysis would find the two situations equally (in) signifi-
cant (Pnpe=0.48 for a set of 20 monitored genes, out of which five are found to be
DE). The perturbation evidence extracted by SPIA will give more significance to
the situation in (b) (Prerr=0.24), even though fold-changes in (b) are almost
twice as small as those in (a) (Prert=0.57). SPIA provides information of the
pathway as a whole only and does not tackle functional and non-functional parts
of the pathway (sub-pathways).

Graphite Web' [61] is a web tool for gene set analysis exploiting pathway topol-
ogy. Graphite web implements five different gene set analyses on three model
organisms and two pathway databases and is freely available. Graphite web
deals with microarray or RNA-seq data. It implements different multivariate
gene set analyses, gene set enrichment analysis (GSEA), signalling pathway im-
pact analysis (SPIA), CliPPER on three model organisms (human, mouse and dro-
sophila) and two pathway databases (KEGG and Reactome). We added Graphite
web in this category since it uses the SPIA methodology for signalling pathway
analysis.

11 http://graphiteweb.bio.unipd.it (last day visited 11/08/2014)
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Figure 22: Graphite Web flow of operations (source [61])

Graphite web implements a system of pathway visualization and provides an
easy access to multivariate and topological pathway analyses. The combination
of a pathway-specific visualization with powerful gene set analyses gives to the
user the possibility to explore in great detail signalling pathways and the posi-
tion of the influential genes within them.

Another method that identifies intergenic relationships within enriched biologi-
cally relevant sub-pathways is the Topology Enrichment Analysis frameworK
TEAK [15]. TEAK employs a novel in-house algorithm and a tailor-made Clique
Percolation Method to extract linear and nonlinear KEGG subpathways, respec-
tively and scores subpathways using the Bayesian Information Criterion for con-
text specific data and the Kullback-Leibler divergence for case-control data. Sub-
pathway extraction is an important component of TEAK that extracts root to leaf
linear paths or subpathways from the directed edges of the KEGG non-metabolic
pathways. A root r has zero incoming links and a positive number of outgoing
links, whereas a leaf | has a positive number of incoming links and zero outgoing
links.
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Figure 23: TEAK methodology to identify the subpathways of a network (source [15])

The subpathway algorithms and the Bayesian networks used by TEAK are only
applicable to directed networks. The type of regulation between the nodes
(genes) is considered to be always activation (e.g. over expression of gene A
leads always to over expression of gene B if we have an A->B link). It’s not clear
if inhibition of genes is also treated in the same way or it is ignored. To rank the
linear and nonlinear subpathways, TEAK first uses the Bayes Net Toolbox to fit a
context specific Gaussian Bayesian network for each sub-pathway. Briefly, a
Gaussian Bayesian network is a Bayesian network in which all of its nodes are
linear Gaussians.

PATHOME [13] (pathway and transcriptome information) is another recent
methodology for detecting differentially expressed biological pathways. The goal
of this algorithm is to identify a set of sub-pathways that differentiate two exper-
imental groups (for example, cancer vs non-cancer) by considering both prior
knowledge about mutual regulations and experimental gene expression data.

If two adjacent entries are connected by an edge that denotes activation (arrow-
headed edge), the expression correlation between the two entries is assumed to
be positive; if the two entries are connected by an edge that denotes inhibition
(blunt-ended edge), the expression correlation between the two entries is as-
sumed to be negative (Figure 24). This rule is applied separately to each experi-
mental group. In each group, PATHOME identifies the consecutive segment start-
ing from the leaf node of each sub-pathway so that all the edges of the segment
should satisfy the association rule. That leads to the determination of the seg-
ment (in the sub-pathway) that is to be statistically evaluated in the test step.
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Figure 24: PATHOME pathway decomposition and genes regulation mapping (source [13])

PATHOME analyses the interconnectivity between two adjacent nodes. The in-
terconnectivity measure, the Pearson product-moment correlation coefficient, is
obtained even in three samples in a group. PATHOME can be applied to a small
number of samples, such as three samples in a group. Summarizing the first step,
a candidate sub-pathway for the next step should satisfy the following two condi-
tions: (i) the two experimental groups agree with the association rule between
the expression correlation and the edge information for the adjacent entries
along the path; and (ii) both consecutive segments for the two groups have at
least four elements (three consecutive edges) in order to filter a sub-pathway
with short segments.

Table 2 summarizes the discriminant pathways methodologies according to
main features such as input/data usage, output/purpose of use and type of appli-
cation and visualization functionalities. As we can see from the table only five
methodologies (Graphite Web uses SPIA) can handle effectively the regulatory
mechanisms and only three out of them can identify discriminant sub-paths in
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GRNs. Furthermore, most of the methodologies lack of visualization features and
support for web based platform.

Table 2: List of discriminant pathways and sub-pathways methodologies according to main features
such as data usage, purpose of use, visualization functionalities and platform information

isualization support

Use regulatory mechanisms
Identify discriminant genes
Identify discriminant pathways
Identify discriminant sub-paths

Use pathway genes

Draghici et al [40]
Oncomine [41]
Eu.Gene [42]
Adewale et al [43]
Ma et al [44]
PathBLAST [45]
GeneMANIA [46]
Nacu et al [48]
Chen et al [49]

DEGAS [51]
KeyPathwayMiner
[52]

Ideker et al. [54]
Wu and Stein [56]
CLiPPER [57]

Kazmi et al [58]
SubpathwayMiner
[59]

Geistlinger et al [16]
SPIA [60]

Graphite Web [61]
TEAK [15]
PATHOME [13]

Discriminant pathways and sub-pathways
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2.4. Outcome from the literature

The study of the function, structure and evolution of GRNs in combination with
microarray gene-expression profiles is essential for contemporary biology re-
search. Due to limitations in DNA microarray technology - due to the different
platforms utilised, to the different experimental protocols and mainly to small
sample sizes, higher differential expressions of a gene do not necessarily reflect a
greater likelihood of the gene being related to a disease and therefore, focusing
only on the candidate genes with the highest differential expressions might not
be the optimal procedure [9], [10].

Based on our literature research we identified and propose taxonomy of the
methodologies that combine gene-expression data and GRNs in order to identify
and assess discriminant pathway and sub-pathways (Figure 25).

Discriminant

\ 2 W

Pathway selection Sub—pathway selection SUb-pathway selection

Using Topol Using Regulatory mechanisms
sub n.nn?a <o) ::ow

-l
sub-path lbo . 0

Figure 25: Taxonomy of discriminant pathways and sub-pathways. Three main categories: Pathway
selection, sub-pathway selection using topology and sub-pathway selection using regulatory mecha-
nisms

A general observation concerns the different levels of knowledge extraction from
the GRNs employed by the different methods.

e The first category naming “pathway selection” focuses on the identifica-
tion of differentially expressed pathways using microarray data. Within
this approach information about the topology, the existing sub-paths, as
well as the reactions/relationships between genes in a pathway is ig-
nored.

e The second category “sub-pathway selection using topology” goes one step
further and tries to identify discriminant pathways or sub-pathways.
Within this approach identification and selection of the most discriminant
paths ignore the present gene relations/regulations.
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e The last and most informative category is the “sub-pathway selection using
regulatory mechanisms”. This approach takes advantage of the GRN topol-
ogy as well as the type of GRN gene relations (e.g. activation or inhibition).

The last category - being in its infancy, exhibits the fewer methodologies so far,
but it takes the most out of GRNs and gene-expression data compared to the oth-
er two and is a promising alternative for the identification of the regulatory
mechanisms that underlie and putatively govern various phenotypes.

The sub-paths selection using the underlying GRN gene regulatory interactions
approach solves the major problem of the set enrichment strategies that refers to
the conflicting constrains between GRNs and gene-expression data. A typical ex-
ample of the conflicting constrains is reflected in the situation when two signifi-
cantly up-regulated genes increase the enrichment of the set in microarray ex-
pression data, even if the first gene inhibits the other in a GRN.

There exists a limited number of systems that utilize knowledge from known
GRNs, namely GGEA [16], SPIA [60], TEAK [15] and DEAP [62]. However, these
systems cannot visualize efficiently the results, a fact that does not facilitate in-
spection of results and limits the exploratory potential by the users. Some gene
set enrichment analysis methodologies and tools utilize pathway visualization
approaches to overcome this problem. Since these are based on a gene-oriented
approach are still unable to handle differentially expressed pathways or even
differentially expressed sub-paths.

In chapter 3 we introduce our proposed methodology for the identification of
differentially expressed functional paths or sub-paths within a gene regulatory
network (GRN) using microarray data analysis. The analysis takes advantage of
interactions among genes (e.g. activation, inhibition) as nodes of a graph net-
work, which are derived from expression data.
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3.Methodology

Deciphering and manifestation of functioning and regulation of genes represents
a necessary condition toward the effective incorporation of genomic data in eve-
ryday clinical practice. Two of the most significant forms of molecular data come
from microarray gene expression sources and gene interactions sources - as en-
coded in Gene Regulatory Networks.

Existing GRN databases provide us with widely utilized networks of proved mo-
lecular validity. The most known are networks that describe important cellular
processes such as cell-cycle, apoptosis, signalling and regulation of important
growth factors. Online public repositories contain a variety of information that
includes not only the network per se but links and rich annotations for the re-
spective nodes (genes) and edges (reactions). MinePath utilizes the KEGG path-
ways [63] repository. KEGG provides a format representation standardized by its
own mark-up description language (KGML?).

Figure 26 outlines the flow of operations in the MinePath methodology.
MinePath presents a novel perception of GRNs and gene expression data. Initially
we locate all functional paths encoded in GRNs and we try to assess which of
them are compatible with the gene-expression values of samples that belong to
different clinical categories (diseases and phenotypes). The differential power of
the selected paths is computed and their biological relevance is assessed. The
approach is applied on a set of microarray studies with the target of revealing
putative regulatory mechanisms that govern the treatment responses of specific
phenotypes.

12 http://www.genome.jp/kegg/xml/ (last day visited 11/08/2014)

47


http://www.genome.jp/kegg/xml/

Data Pre-processing Annotation Data Analysis Visualization
Data Collection Pre-process| Annotation |Combine sources Analyze Data Visualize
4 N ( N ™
MicroArray Discretize
gl=hsal
g3=hsa3 SubPathArray Explore
'“7_h | Enrich network
g/=hsa with MA data [t
e T o To oo
— <‘< ‘:3 1l1fofafa]1
z S pal1]1/1]ofo]o
= pNj1]0]1 /011
Pathway(s) Decompose
. § Clone
: multi-probes
. AN VAN J

Figure 26: MinePath flow of operations. Four main processes starting from data pre-processing to
annotation, then data analysis and finally to the visualization of the results

GRN and gene-expression data matching aims to differentiate GRN paths and
identify the most prominent functional sub-paths for the given samples. In other
words, the quest is for the sub-paths that exhibit high matching scores for one
phenotypic class and low matching scores for the other. This is a paradigm shift
from the mining of differential genes to the mining of GRN functional sub-paths.
The whole algorithmic process for the identification of phenotype differential
sub-paths is inherently simple.

The method unfolds into four modular steps:

L.

IL.

Data pre-processing: On the one hand, gene expression values are dis-
cretized into two states with values 1 and 0 for up-regulated and down-
regulated genes, respectively, so that a binary gene-expression sample
matrix is formed. On the other hand, each target GRN is decomposed into
its constituent sub-paths, e.g., the path A - B —| C is decomposed into
three sub-paths, A - B, B—| C and A - B —| C (note that all sub-paths,
as well as the overlapping ones, are identified, formed and stored). The
pre-processing step for gene expression data discretization will be dis-
cussed in section 3.1.1 and the gene regulatory networks decomposition
will be described in section 3.1.2.
Identification of functional sub-paths: Each sub-path is interpreted on
the basis of its functional active-state and is represented by a binary or-
dered-vector with active states. For example, sub-path A - B—] C is con-
sidered active when AT and BT (up-regulated) and C{ (down-regulated),
resulting into its active-state ordered vector <1,1,0> for the correspond-
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ing genes. Section 3.2 describes in depth the identification and formation
of active sub-paths and the respective data annotation procedure.

[Il. Data Analysis (data mining): The binary ordered-vector of each sub-
path is aligned and matched against all (discretized) binary gene-
expression sample profiles. A sub-path is considered to match a sample if
and only if all the corresponding genes in the sub-path exhibit the same
active-state in the sample, i.e., genes A, B are up-regulated and gene C is
down-regulated, resulting into the corresponding sample ordered-vector
<1,1,0>, which matches the sub-path vector. In addition, a binary sub-path
expression matrix is formed with rows the sub-paths, columns the input
samples and cell-values 1, 0 for the respective sub-path being active for
the corresponding sample or not. In other words, the sub-paths are taking
the place of sample descriptor features, and are utilized for the construc-
tion of sub-path based phenotype prediction models. More details about
the data mining procedures, the filtering and the selection of the best sub-
paths can be found in section 3.3.

IV.  Visualization: Finally the differential power of each sub-path is computed
and appropriate parameterized metrics are implemented (users may ad-
just them to his/her exploratory needs). The highly ranked (best match-
ing) sub-paths are kept according to user-defined thresholds. Subsequent-
ly each sub-path is characterized about its phenotype inclination; sub-
paths with positive differential power values are characterized as inclined
to phenotype 1 and those with negative power as phenotype 2. The sys-
tem also identifies the sub-paths that are always active in both pheno-
types. More details about the innovative visualization of active gene-to-
gene regulatory relations that differentiate between the target pheno-
types are presented in section 3.4.

The following sections (3.1, 3.2, 3.3 and 3.4) describe the core steps of the
MinePath methodology and the web based user interface. Section 3.5 provides
the implementation details for the realization of the MinePath platform and in
section 3.6 we introduce implemented extensions of the platform.

3.1. Data pre-processing

Data pre-processing is an important step in the data mining process. Real-world
data is often incomplete, inconsistent and/or lacking in certain behaviours or
trends and is likely to contain many errors. Data pre-processing is a proven
method of resolving such issues especially in the genomics domain where we
also face the “curse of dimensionality” phenomenon (as discussed in the introduc-
tion), where the convergence of any estimator to the true value of a smooth func-
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tion defined on a space of high dimension is very slow. Furthermore, microarrays
are challenging for machine learning methods, since the respective datasets typi-
cally have a very large number of features and small number of instances. Learn-
ing algorithms are thus confronted with the phenomenon and need to address it
in order to be effective.

3.1.1. Microarrays and gene expression data

Microarray technology aims to identify the genes that are expressed in particular
cells of an organism at particular time or, at particular conditions (e.g., disease-
states or, disease-types). A microarray is typically a glass (or some other materi-
al) slide, on to which DNA molecules are attached at fixed locations (spots).
There may be tens of thousands of spots on an array, each containing a huge
number of identical DNA molecules (or fragments of identical molecules), of
lengths from twenty to hundreds of nucleotides. The spots are either printed on
the microarrays by a robot, or synthesized by photo-lithography (similarly as in
computer chip productions) or by ink-jet printing.

Figure 27 shows the general schema of a microarray experimental set-up. After
hybridization and scanning the total mRNA from the samples in two different
conditions is extracted and labelled. The final product is a microarray image (the
“tiff format is followed). Each spot on the array image is identified, its intensity
measured and compared to the background (the image quantization process,
conducted by dedicated image analysis software). To obtain the final gene-
expression matrix from spot quantization, all the quantities related to some gene
are combined and the entire matrix is scaled to make different arrays compara-
ble. In the resulted gene-expression matrix, rows represent genes, columns rep-
resent samples and each cell contains a number characterizing the expression
level of the particular gene in the particular sample.
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Figure 27: Experimental set-up of Gene Expression Data. The process starts from the hybridization
(up left) to image analysis (down left) and the result is the gene expression matrix (right part of the
figure)

3.1.1.1. Discretization of gene expression data

In many gene-expression profiling studies the researchers decide to visualize the
potential clustering of the genes (or, the samples), as well as the final selected set
of genes in a discretized manner. It is known that the predictive accuracy of clas-
sifiers improves when gene expression data is discretized [64]. This procedure
transforms the expression values of each gene into two or more discrete values
making easier the characterization of each gene as “expressed” (or else over ex-
pressed, up regulated) or “not expressed” (or else under-expressed, down regu-
lated) for a given sample. Apart from the easier data interpretation, discretiza-
tion offers some additional benefits as the elimination of the strong influence
that causes the outliers coming from incomplete experimental setup. This can
lead to more qualitative data analysis [65]. Many extensive studies exist for the
discretization of gene expression data such as [66] and [67].

MinePath utilizes discretization of the gene-expression continuous values into
the core of the gene-selection process. Discretization of a given gene’s expression
values means that each value is assigned to an interval of numbers that repre-
sents the expression-level of the gene in the given samples. A variable set of such
intervals may be utilized and assigned to naturally interpretable values e.g., low,
high. Given the situation that, in most of the cases, we are confronted with the

problem of selecting genes that discriminates between two classes (i.e., disease-
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states) we believe that it is convenient to follow a two-interval discretization of
gene-expression patterns. Below we give a general statement of the discretiza-
tion problem when two classes are present, followed by an algorithmic process
that heuristically solves it. Therefore, expression value represented with 0 indi-
cates a non-expressed or under-expressed gene, whereas value of 1 indicate
overexpressed gene. These values are being derived using the following process
(shown in Figure 28) in the heart of which resides an information theoretic rank-
ing formula:

i. The expression levels of gene A over the total number of samples are
sorted in descending order.

ii. The midpoints between each two consecutive values are calculated

iii. For each midpoint, the samples are clustered into two subgroups, H and L.

iv. For each midpoint, an information gain formula is applied, which com-
putes the entropy [68] of the system in respect to its division into sub-
groups. IG(ux) is the Information Gain of the system for midpoint ux. E(L)
is the total entropy of the system taking into account their prior assign-
ment into classes (ex. case - control), whereas E(L/ux) = E(HxLx) is the
entropy of the system taking into account its division into subgroups
around midpoint px.

v. Finally, the midpoint that results in the highest information gain is select-
ed as the best one able to discriminate against the two subgroups and all
the samples in the H group are considered to be overexpressed getting a
value of 1, whereas the ones in the L group are the non-expressed/under-
expressed, getting a value of 0.
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Figure 28: The Gene Discretization process. The algorithm sorts the expression values of a gene,
then identifies the mid-points, splits into sub-groups, calculates the information gain and selects the
best split point.

This discretization process is applied to each gene separately and the final da-
taset is a matrix of discretized gene expression values. A similar approach has
been used before in other expression profiling studies [69] [70]. Figure 29 shows
an indicative example of a “dummy” microarray with 5 genes (rows) and 6 sam-
ples (columns) categorized into two classes, normal and diseased. To the left of
the figure we can see the absolute or normalized values of our “dummy” micro-
array and to the right we have the discretized matrix when we applied the pro-
posed methodology.

Normal Disease Normal Disease
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Figure 29: Microarray discretization, an indicative example. To the left the gene expression matrix
and to the right the discretised gene expression matrix

3.1.2. Gene regulatory networks

The origin of concurrent knowledge about GRNs does not come from any con-
crete theoretic framework. GRNs are inferred from the biological literature on a
given system and represent a distillation of the collective knowledge about a set
of related biochemical reactions.

However, although incomplete, this knowledge covers almost every biology func-
tion such as metabolism, genetic/environmental information processing, cellular
processes, human diseases and drug development, while it is constantly under
refinement and enrichment. Online sources of GRN data include KEGG?®,
STRING™ [71], BioCarta® [72], ReActome?¢ [73], BioPax'’ [74], Pathway Com-
mons’® [75], just to name few.

We chose to incorporate KEGG data for our analysis. Since its first introduction in
1995, KEGG DB for pathways has been widely used as a reference knowledge
base for understanding biological pathways and functions of cellular processes.

13 http: //www.genome.jp/kegg/ (last day visited 11/08/2014)

14 http://string-db.org/ (last day visited 11/08/2014)

15 http: //www.biocarta.com/ (last day visited 11/08/2014)

16 http://www.reactome.org/ (last day visited 11/08/2014)

17 http://www.biopax.org/ (last day visited 11/08/2014)

18 http://www.pathwaycommons.org/ (last day visited 11/08/2014)
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The knowledge from KEGG has proven of great value by numerous works in a
wide range of fields [76].

Although it has been shown that KEGG has some errors [77], these are not so
prominent and can be counterbalanced by the simplicity, the variety and the
standard ontology that KEGG provides. Through KEGG public database, pathways
can be downloaded in KGML format. KGML (stands for KEGG Markup Language)
is an exchange format of KEGG graph objects including GRNs. The GRN is de-
scribed through standard graph annotation. Nodes can be either genes, groups of
genes, compounds or other networks. Edges can be one of the gene relations
known from the biology theory (activation, inhibition, expression, indirect,
phosphorylation, diphosphorylation, ubiquination, association and dissociation).
Each gene relation has a different semantic that depicts the precise biology phe-
nomenon that happens during the regulation of the specific network (Table 3).

Table 3: The types of gene interactions and the corresponding gene truth tables; Column relation
represents the biological relations in GRNs; Symbol: the KEGG symbol for the relation; Graph repre-
sentation: an example from KEGG; Truth table: mathematical table used in logic; Semantic: the rep-
resentation of the relation in pseudocode.

Graph representa-
Relation Symbol | tion in KEGG (ex- Truth table Semantic
amples)
B
ON | OFF Bis ONiff A
Activation A—B | [cams ls, ONi
A| ON v x is ON
OFF x x
B B is OFF iff
o ON | OFF Ais ON OR
- ICREBF3 IGF
Inhibition A--|B AT ON ~ — B is ON iff A
OFF | v x is OFF
_ E _ S~ .
Expression A—p | Sgﬂgﬁ Same as activation
I
Indirect A —p | [EaE}————+FK] Same as activation
. +p -
Phosphorylation A—B L In KGML file is stated either as activa-
Diphosphorylation A—_p) o -p tion or as inhibition
Ubiquination A j) B T | Same as inhibition
Association A---B anl ' B Physical
Rv_ | [ p107 | ON | OFF bonding
| HDAC F
Dissociation A-|-B EzF Al ON | Vv v (nonfunc-
= | OFF | v v tional)

More details about the mapping of the relations within MinePath are described
in section 3.2.2 and in
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Appendix I (KEGG pathways).
3.1.2.1. Pathway decomposition

MinePath relies on a novel approach for GRN processing that takes into account
all possible functional interactions of the network. The different interactions cor-
respond to the different sub-paths that can be followed during the regulation of a
target gene.

A—>B—>D—{C
A=>B=>D
A—>B

A=>D—]{C
A=—>D

A=>B—]E
A—E
B=>D=—]C
B=>D
10 B— E
11D=—{C

W o N o T p W N

Figure 30: Functional-path decomposition: Left: A target part of an artificial GRN; Right: The eleven
decomposed functional sub-paths.

GRNs are downloaded from the KEGG repository. With an XML parser (based on
the specifications of KEGG's KGML representation of GRNs) we obtain all the in-
ternal network semantics. Even though we use a powerful and open source
graph theory library for the processing and the decomposition of the gene regu-
latory networks, called Cytoscape® [78] we had to implement our own parser for
the transformation of KGML files to XGMML (format supported by Cytoscape).
Solutions like the kgmlreader?, a Cytoscape plugin for importing KGML files to
Cytoscape, could not be used because during the transformation valuable infor-
mation could be lost (e.g. some edges at metabolic pathways do not have direc-
tionality and errors at transforming specific pathways). A description of KGML
with the KGML entries and all the possible values can be found at the KEGG
Markup Language?!.

19 http://www.cytoscape.org/ (last day visited 11/08/2014)
20 https://code.google.com/p/kgmlreader/ (last day visited 11/08/2014)
2 http://www.kegg.jp/kegg/xml/docs/ (last day visited 11/08/2014)
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In a subsequent step, all possible GRN sub-paths are extracted as exemplified in
Figure 30. Each sub-path is uniquely annotated as functional according to Kauff-
man’s principles [79] that follow a binary setting: each gene in a functional sub-
path can be either ‘ON’ or ‘OFF’. Following the principles reported in [80] the fol-
lowing functional gene regulatory semantics apply.

1. The network is a directed graph with genes (inputs and outputs) is the
graph nodes and their directed connecting edges to represent the causal
(regulatory) links between them.

2. Each node can be in one of the two states ‘ON’ or ‘OFF’. These states cor-
respond to the gene being expressed (i.e., the respective substance being
present) or not expressed, respectively.

3. Time is viewed as proceeding in discrete steps; at each step the new state
of a node is a Boolean function of the prior states of the nodes with ar-
rows pointing towards it. Since the directed edge connecting two genes
defines explicitly their regulation we can set all possible state-values that
a gene may take in a functional sub-path. Thus, each extracted sub-path
contains not only the relevant sub-graph but the state-values of the in-
volved genes as well. A sub-path is functional if it is ‘active’ during the
GRN regulation process; in other words we assume that all genes in a sub-
path are functionally active.

Furthermore, we extended the MinePath algorithm and can optionally (using a
parameter as input) export and take into account the starting and ending points
of each sub-path as a new sub-path. This extension proposed by the molecular
biology group (Dr. Dimitris Kafetzopoulos) from the Foundation of Research and
Technology Hellas (FORTH) Institute of Molecular Biology and Biotechnology
(IMBB) and it is based on the limited knowledge (incompleteness) encoded in
GRNs. GRNs provide us information about specific sub-pathways between two
genes but it is unknown if other pathways/roots connect these two genes. Such
an approach could reveal new roots in the GRNs and bypass the limited
knowledge of the connection between two genes. Following our example in Fig-
ure 30 this parameter of the algorithm will add the following sub-paths: A--|C
and B--|C (these extra sub-paths do not appear in Figure 30).

3.1.2.2. Binary representation of regulatory edges

We encode the GRNs as Cytoscape networks using binary representation for the
regulatory edges connecting the gene nodes. Cytoscape is freely distributed un-
der the open-source GNU Lesser General Public License, which allows any use of
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the software, including feature extension by programming?z In Cytoscape nodes
representing biological entities, such as proteins or genes, are connected with
edges representing pairwise interactions, such as experimentally determined
protein-protein interactions. Nodes and edges can have associated data attrib-
utes describing properties of the protein or interaction.

The main reactions in a gene regulatory network are inhibition, activation, asso-
ciation and disassociation. Table 3 and Figure 31 describe the mapping of GRN
network to Cytoscape network with edges encoded in binary format according to
the GRN reactions. Expression and indirect reactions are expressed as activa-
tions; ubiquination is expressed as inhibition; and phosphorylation/ diphos-
phorylation reactions are either activation or inhibition (stated in KGML the file).

N

Binary
—  Activation Representation Activation
— | whibitlon Inhibition
«+—— Association Association (physical interaction)
—ﬂ— Disassociation Disassociation (physical interaction)

Figure 31: Encoding of GRN reactions to binary edge representation. Activation is represented as an
edge with label 1, inhibition as an edge with label 0 and associations/disassociations remain in the
graph representation as non-directed interactions which represent a physical interaction between
two genes.

Using the pathway decomposition we can retrieve functional paths from a varie-
ty of different GRNs (cell-cycle, apoptosis, etc.) and may combine different mo-
lecular pathways and networks. Furthermore the binary representation of the
network in conjunction with the binary representation of the gene expression
data gives us a robust and scalable data structure that can be queried and ana-

lysed using machine learning techniques in real time.

3.2.  Functional sub-paths and data annotation

MinePath exploits microarray experiments and respective gene-expression data
for which the research scientist expects (suspects) that the targeted GRNs play
an important role. For example the cell-cycle and apoptosis GRNs play an im-

22 http://www.gnu.org/licenses/lgpl.html (last day visited 11/08/2014)
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portant role in tumour genesis and cancer progression. With an operation that
matches gene-expression profiles with sub-paths, the valid and most prominent
GRN functional sub-paths are identified. These paths uncover and present poten-
tial underlying gene regulatory mechanisms that govern the gene-expression
profile of the samples under investigation. Such a discovery may guide the fine
classification of samples as well as the re-classification of diseases, based on the
most prominent molecular evidence.

The samples of a binary transformed (discretized) gene-expression matrix are
matched against targeted molecular pathways and respective GRN functional
paths (retrieved form the pathway decomposition).

3.2.1. Probe Sets to Genes

For MinePath the appropriate mapping between the genes identifiers used in the
gene expression data to the corresponding KEGG identifiers is needed. Both the
GRNs and the gene expression data have to use the same ids. GRNs use gene ids
while gene expression platforms use probes. A probe is a specific segment of sin-
gle-strand DNA that is complementary to a desired gene. For example, if the gene
of interest contains the sequence AATGGCACA, then the probe will contain the
complementary sequence TTACCGTGT. When added to the appropriate solution,
the probe will match and then bind to the gene of interest.

Due to the large number of databases and associated IDs, the conversion of gene
identifiers is one of the initial and central steps in many workflows related to
genomic data analysis. In the literature and the web we can find several freely
available ID conversion tools. Although each tool has distinct features and
strengths, as reviewed by Khatri et al [81], they all adopt a common core strategy
to systematically map a large number of interesting genes in a list to the associ-
ated biological annotation. One of the first online annotation tools in the ge-
nomics is the Database for Annotation, Visualization and Integrated Discovery
(DAVID?) tool [82]. Other online tools that annotate probes to gene IDs are Ba-
blomics?t, DRAGONZ, GeneCruise? and AILUN? just to name a few. A generic fig-
ure highlighting the relations among identifiers is shown in the Figure 32. As we
can see the KEGG ids can be annotated through the Entrez Gene IDs.

23 http://david.abce.nciferf.gov/ (last day visited 11/08/2014)

24 http://babelomics.bioinfo.cipf.es/ (last day visited 11/08/2014)

25 http://pevsnerlab.kennedykrieger.org/annotate.htm (last day visited 11/08/2014)
26 http://genecruiser.broadinstitute.org/genecruiser3/ (last day visited 11/08/2014)
27 http://ailun.stanford.edu/ (last day visited 11/08/2014)
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Figure 32: Annotation, relations among Gene identifiers (source
http://idconverter.bioinfo.cnio.es/IDConverter.pdf)

For MinePath we use the Bablomics web platform as an offline pre-processing
step when the gene-expression data come from platforms that do not support
annotation to KEGG IDs or to Entrez IDs. For instance Affymetrix GeneChips?
provide annotation files for the probes as Entez IDs.

The mapping from a gene nomenclature and thesaurus to another rises the many
to one issue where many probes are assigned to the same KEGG gene ID. An in-
dicative example is shown in the upper part of Figure 33 where the gene
hsa:1000 is mapped to three Affymetrix probes from the U133A platform and the
same holds for the hsa:4824 and hsa:208.

28http://www.affymetrix.com/catalog/131455/AFFY/Human-Genome-U133-Plus-2.0-Array#1 3 (last day visited
11/08/2014)
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Probe-U133A KEGG id

212607_at hsa:10000
212609_s_at hsa:10000
219393 s_at hsa:10000
209706_at hsa:4824
211497 x_at hsa:4824
211498 s_at hsa:4824
207163_s_at hsa:207
203808_at hsa:208
203809_s_at hsa:208
211453 s_at hsa:208
202723_s_at hsa:2308
202724 _s_at hsa:2308

hsa:4824<-->hsa:10000 hsa:207 hsa:208-|hsa:2308

209706_at 212607 at  207163_s_at 203808_at  202723_s_at
211497_x_at 212609 s_at 203809_s_at 202724_s_at
211498_s_at 219393 _s_at 211453_s_at

Figure 33: Probes to Gene IDs (many to one); on top the mapping of KEGG ids to U133A probe-sets,
each colour is one gene assigned to many probes; at the bottom one sub-path and under each gene
the corresponding probes

In general, the multiple probes targeting the same gene does not (should not)
show different expression levels’. So, taking into account the expression status of
just one of the probes is enough. Since we cannot assure the consistency between
the different microarray platforms, MinePath provides two options to cope the
one to many (probe to gene) issue:

1. Max Probe: This is the default option that checks the multiple probes for
the gene and places a logic OR for the assessment of the gene’s value. This
is actually the selection of the value of the probe with the highest intensi-
ty out of all the probes that map to the same gene.

2. Probes clones: The user may optionally set at MinePath to produce all the
possible combinations of sub-paths based on probes and not on gene ids.
We call this option “probes clones”.

Robinson et al [83] proposed that for genes with multiple probe-sets, isoform
specific expression changes may be a more appropriate means of interpreting
standard microarray expression data than the current one gene = one probe-set
paradigm. Going back to the example of Figure 33 we see, at the lower part, a
sub-path with two gene interactions and five genes. Under each gene we have the
genes mapped to probes for the U133A platform. While in the default option of
MinePath this is a single sub-path if we initiate the “probe clones” option
MinePath will generate 3*3*1*3*2 = 54 sub-paths with all the possible probe
combinations. Table 4 shows the number of sub-paths for 14 KEGG pathways in
the default and the “probes clones” options. The “probes clones” have been com-
puted for the U133A Affymetrix probes.
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Sub-

Genes in Sub- Paths
U133A
lat paths after

Pathway Description plat. clones

hsa04010 MAPK signalling 481 1291 21109
hsa04012 ErbB signalling 164 486 4277
hsa04020 Calcium 335 157 189
hsa04110 Cell cycle 231 161 437
hsa04115 p53signalling 123 277 1939
hsa04150 mTOR signalling 91 65 365
hsa04210 Apoptosis 157 145 1505
hsa04310 Wntsignalling 256 277 371

TGF-beta signal-
hsa04350 ling 140 57 79
hsa04370 VEGF signalling 129 61 187
hsa04510 Focal adhesion 404 420 1275
hsa04520 Adherens junction 179 442 10873
hsa04912 GnRH signalling 205 145 1488
Pathways in can-
hsa05200 cer 634 988 16014

Table 4: Number of genes and sub-paths for 14 KEGG pathways with and without “probes cloning”

Even though the complexity of the system grows exponentially when we take
into account the “probes clones” the system is capable to compute the differen-
tial sub-paths without significant delays.

3.2.2. Matching Gene Expression Data and GRNs

We aim to identify the sub-paths that exhibit high matching scores for one of
phenotypic class and low matching scores for the others. This is a paradigm shift
from the mining of differential genes to the mining of GRN functional sub-paths.
The algorithm for differential sub-path identification is inherently simple. We
enrich the binary representation of the GRN network with the (binary) data from
the discretized microarray data (Figure 34).
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4: Combining microarray binary data with GRN network; to the left the binary graph repre-

sentation of the GRN and the discretized microarray data; to the right the discretised gene expres-
sion data mapped on the binary graph of the GRN

With s
rected
(nodes

uch a setup the entire data are in binary format and are stored in a di-
graph with binary representation of the relations between the genes
). The candidate sub-paths can be easily extracted from the graph using

basic Boolean operations [84] for optimization.

The activation between two genes A and B can be mapped as a logical
AND into their respective microarray data.

An inhibition between two genes (e.g. A--|B) can be mapped using the log-
ical operation XOR at the microarray data of the target gene (in our case
gene B). Figure 35 shows the mapping of the activation and inhibition
gene interactions. Table 3 shows the complete mapping of all the sup-
ported (by KEGG) gene interactions to the two basic (activa-
tion/inhibition) states. A common misunderstanding is that inhibition is
functional only when the source gene is up-regulated, e.g. A--| B, A is up-
regulated then B is down-regulated. Inhibition is also function when A is
down-regulated and B is up-regulated. In the literature we can find such
examples [85].

Association and disassociation are special cases of a gene regulatory net-
work since they does not represent a specific regulatory mechanism be-
tween two genes or two group of genes, but a condition in which specific
genotypes are associated with other factors, such as specific diseases [86].
In most of the cases, genetic association studies aim to detect association
between one or more genetic polymorphisms and a trait, which might be
some quantitative characteristic or a discrete attribute or disease. For
that reason, MinePath identifies and visualizes the associations and disas-
sociations independently of the gene expression values.
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e Computing sub-paths with more than one reaction: When the candidate
sub-path has more than one reaction we have to take into account: (i) the
last reaction (between the final and pre-final gene or group of genes) and
(ii) the resulting binary representation of the previous sub-path (sub-path
without the last reaction). The last reaction is combined with logic AND
with the previous sub-path to compute the final sub-path vector as shown
in Figure 35.

4 Activation I
(Covers also expression, indirect, Phosphorylation activation, Diphosphorylation activation)
B
A ON OFF
B :D_ A—> B A |on| v x
. OFF x x
\ Logic AND /
4 Inhibition N\

(Covers also Ubiquination, Phosphorylation Inhibition, Diphosphorylation Inhibition)
B

A ON OFF

OFF v x
\ Logic XOR /
/ Sub-path with more than one reactions \
Activation Inhibition
A A
B B7—
Sub eath Sub path
\ 4
Where:

A: source Gene(s)
B: target Gene(s)

Figure 35: Mapping gene interactions using logic gates. Activation mapped as logic AND, inhibition as
logic XOR while sub-paths with more than one reaction require the combination of previous sub-
path and the last relation using a logic AND

All the possible sub-paths are known using the methodology of the Pathway de-
composition (section 3.1.2.1) and the binary tree data structure gives us the
needed information (binary representation per gene). With the help of the logical
operations the creation of the matrix with the candidate sub-paths per sample
can be produced in a fast and optimized way.

Of course the sub-paths do not contain only one gene to gene relation. In most of
the cases sub-paths are a chain of reactions (activations or inhibitions) linking
many genes or gene groups. The binary operations as described previously are
used to map sub-paths that contain more than one relation too. In the case of
sub-paths that include multiple activations e.g. A>B-—>C, MinePath initially com-
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putes the A>B (using a logic AND) and the B->C (using a logic AND), then the
resulting binary representations are merged using a logic AND, which will give
the final binary representation of A->B->C. The same holds for sub-paths that
include more than one inhibition in a row, but in that case we use the logic XOR.

A simple example of the Boolean algebra for the identification of the candidate
sub-paths is given in Figure 36. As we can see the activation A->B is calculated
using the logic gate AND. The same holds for A>B->D where we compute the
result of A>B in conjunction (using again a logic AND) with the binary represen-
tation of B>D. Then the resulting vector of A>B->D and the vector (binary rep-
resentation) of D—| C are combined using logic gate AND to create the vector for
our sub-path A>B—->D—|C. To compute the D—| C we use logic XOR at the binary
representation of D and C genes, as described in Figure 35.
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1
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A 1 0 1 0 1
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Figure 36: Boolean algebra for the differentially expressed sub-paths, calculation of the A>B->D—|C.
On top the discretized gene expressions and the sub-path; in the middle step by step the calculations
for the sub-path; bottom the results of the sub-path for the specific samples
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After the decomposition of each pathway into its functional components, each
sub-path is matched against the respective samples’ gene-expression profiles of
the respective microarray studies. The result is an array of sub-paths with binary
values for every sample in the form of a discretized microarray.

3.3.  Analysis (data mining)

As already exemplified, GRN and gene-expression data matching aims to differ-
entiate GRN sub-paths and identify the most prominent functional sub-paths for
the given samples.

The data annotation step of MinePath (section 3.2) produces a binary matrix
containing information about the sub-paths (active or not) for the specific sam-
ples. This transformation does not aim to reduce the dimensionality issue of mi-
croarrays (tens of thousands of genes for tens of samples). In fact the produced
matrix (sub-paths & samples) contains more features than the initial gene ex-
pression dataset (genes & samples). Let’s take an indicative example of a well
know microarray platform the Affymetrix U133A%. This is a relatively small, in
terms of probes, chip supporting 22.283 probes. Using the annotation files pro-
vided by Affymetrix we identify 20967 genes in the form of Entrez IDs. The sub-
paths that we identify when we decompose all (224 in total) the human (hsa)
GRNs from KEGG are more than 50.000. So initially we had a matrix (the gene
expression data) with ~22.000 genes per sample and after the transformation
we get a matrix with more than 50.000 sub-paths per sample.

Following sections describe the methodologies for the filtering/ranking of the
sub-paths and the validation procedure that is based on well-known algorithms
from the machine learning area.

3.3.1. Sub-paths selection

Having a dataset with tens of thousands of features (sub-paths per sample) is
apparent that a researcher would try to identify the “best” or in our case the
most discriminant features (sub-paths). MinePath uses feature selection meth-
odologies for the specific step.

In the literature, we can find a plenitude of feature selection methods, most of
them rising as a need to analyse data of very high dimension [87]. This step tries
to select the features that best discriminate between the different phenotypes
(disease states). The problem is well-known in the machine learning community

29 http://www.affymetrix.com/estore/browse/products.jsp?productld=131536#1 1 (last day
visited 11/08/2014)
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as the problem of feature-selection (with its dual ‘feature-elimination’) [88] and
various ‘wrapper-based’ [89], or, ‘filtering’ [90], approaches have been proposed.

Traditionally, in machine learning research the number of features, m, is quite
smaller than the number, k, of cases (samples in the case of gene-expression
studies) that is, m << k. In contrast, gene-expression studies refer to a huge
number of features and quite few samples. In most domains the number of sub-
paths is in the range of 2.000 - 200.000 (depending on the gene expression plat-
form) and the number of samples in the range of 50 - 200, that is k << m. In a
situation like that it is questionable if a ‘wrapper’ based feature-selection ap-
proach could help, because of its high-computational cost. That is why we follow
a ‘filtering’ approach.

The feature selection algorithms for gene expression data, target to identify the
most discriminant genes for specific phenotypes. One could see many similarities
in the gene selection and sub-paths selection objective. The main difference
comes from the handling of the non-expressed sub-paths, which in our case are
informative and can be interpreted as non-functional roots in the GRN for a spe-
cific phenotype. That type of knowledge is informative and valuable for sub-
paths contrary to gene selection approaches where an under-expressed gene
means that it is not activated and most of the algorithms ignore it.

For the purposes of MinePath we have implement two different filtering/ranking
methodologies, (i) the discriminant ranking and (ii) the polarity ranking. The
discriminant is a methodology introduced initially for gene expression data [69]
while the polarity has been implemented for MinePath. The user has the option
to select these filtering methods and by default the system uses the polarity. The
following sections introduce these two methodologies.

3.3.2. Discriminant power

The discriminant power feature selection implementation is based on a ranked-
ordering approach. For each sub-path we count the number of samples that it
holds or not. Assume the two phenotypic classes P (positive), N (negative). The
following quantities are computed:

e Hp=number of P samples that the sub-path holds.
e Lp=number of P samples that the sub-path does not hold.
e Hy=number of N samples that the sub-path holds.
e Ly=number of N samples that the sub-path does not hold.

Formula (1) computes the discriminant rank for each sub-path (ry,) that
measures the power of the sub-path to distinguish between the two classes:
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(1) rsp = (Hp X Ly) — (Hy X Lp)

A complete positive sub-path holds for all P cases and does not hold for any N
case i.e., Hp =P, Ln = N, Lp = Hn = 0 and rsp takes its maximum positive value PxN.
In this case the sub-path is considered as descriptive for, or is associated with or,
is inclined to class P. The sub-path remains completely distinguishing in the in-
verse case where, Lp = P, Hv = N, Hp = Ly = 0, only that now rsp takes its maximum
negative value. In this case the sub-path is associated with class N. In other
words the sub-path ranking formula encompasses and expresses a differentiation
characteristic that represents the descriptive power of the sub-path with respect
to the present phenotypic classes. So, ordering the positive ranks in descending
order and the negative ranks in ascending order we may identify the most dis-
criminant sub-path with respect to phenotypic classes P and N.

3.3.3. Polarity

Since MinePath handles sub-paths instead of genes, a special ranking system able
to take into account the absence of a sub-path to the opposite class is needed. As
we have already mention the information that a sub-path is non-active (or non-
functional) in a specific phenotype is crucial and most of the ranking algorithms
devoted to gene selection does not take into account such functionality.

The polarity ranking has been implemented specifically for MinePath and is a
two-step filtering procedure. Let’s take again the same mapping for the comput-
ed quantities:

e Hp=number of P samples that the sub-path holds.
e Lp=number of P samples that the sub-path does not hold.
e Hy=number of N samples that the sub-path holds.
e Ly=number of N samples that the sub-path does not hold.

Formula (2) computes the polarity rank for each gene (rsp) that measures the
power of the sub-path to distinguish between the two classes:

_ (Hp-Hy)
@) Tsb = (Hp+Hp)

The formula provides positive values for sub-paths, which are more informative
for class P and negative values for class N. In addition we apply two extra filters
for the polarity ranked sub-paths, even if they get high polarity rank.

o First filter for the polarity ranking: For the positive ranked sub-paths
(derived from formula 2) we keep only the sub-paths that have polarity
ranking over the average polarity of the positive sub-paths.
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If rsp > 0 Average(rsppositive)

Elseif rg < 0 Average(rspnegative)

e Second filter for the polarity ranking:

(Hp + Hy)
+ Hy+Lp+Ly)

>
abs(rsp) = TR

With the second filter the system discards highly ranked sub-paths that
have quite a few functional cases in the opposite phenotype (e.g. pheno-
type 2) even if the sub-path is fully functional for the represented pheno-
type (e.g. phenotype 1).

An indicative example of the polarity filtering is shown in the following figure.
Figure 37: Polarity filtering example. Red represent functional sub-paths and blue non-functional
sub-paths, the vertical white line distinguishes the two phenotypes (columns are samples) while the
horizontal the best sub-paths for the two phenotypes (rows are sub-paths)

Furthermore, MinePath supported two more variations of the polarity ranking

and gives the option to the user to select the best (according to the dataset) rank-
ing method. The two options are:

e Relative polarity: A variation of the polarity ranking formula where in-
stead of absolute counts for the over expressed sub-paths for the pheno-
typic classes P, N (Hp, Hv) we use the percentages of the over expressed
per class. For the relative polarity ranking the algorithm scores each sub-
path with the following formula:

Hp __ Hy
Hp + L, Hy +Ly

3 Tep =

( ) sb HP _ HN
Ho+ L, Hy+Ly

Formula 3 is valuable for datasets with unbalanced number of samples
per class. Instead of the number of over expressed sub-paths (formula 2)
we use the percentage of the over expressed sub-paths per class. This
formula assures that the unbalanced datasets are not biases to the class
containing more samples.
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¢ Boost true positive: Another variation of the ranking algorithm, which is
applicable only to the polarity filter, is the boost true positive option. The
polarity or the relative polarity ranking formula are multiplied by the
percentage of the over expressed sub-paths in the respective class. If the
ranking formula (polarity or relative polarity) has positive value (the sub-
path is associated with class P) then we multiply the score with the per-
centage of over expressed sub-paths in class P. The same holds for class N.
The formula for the boost true positive option is computed as follows:

(Hp)
4 I Tsp > 0 Tsp = Tsp X ——————
f sb sb sb (HP +Lp)
(Hy)
else Tep = Top X

Where 1y, can be the score from formula 2 or formula 3.

The boost true positive variation gives a low ranking “penalty” to sub-
paths, which are activated in a small number of samples for the one class
and in none or almost none samples in the other. This variation of the po-
larity will assure that the almost always non-functional sub-paths will be
rejected.

3.3.4. Selection of best common sub-paths

Best common sub-paths are the sub-paths that appear to be functional for both
phenotypes. Such sub-paths has no informative value in other domains, e.g. when
we are handling gene expressions, since a gene that is always up-regulated can-
not positively contribute in any research question. In the case of pathways, the
sub-paths, which are always activated may fill-in the gap (functional interaction)
between two sub-paths and reveal a complete functional and biologically valua-
ble route. Figure 38 highlights the need for the best common sub-paths. The ver-
tical dashed lines distinguish the outer from the inner cell and the grey dashed
arrows (down right of the figure) show biological procedures that the paths ini-
tiate. Part A (upper part) of figure visualizes the ErBb signalling pathway, where
the red lines are sub-paths functional for phenotype-1 and blue lines are func-
tional for phenotype-2. Part B (lower part) of figure, visualizes the same path-
way along with the common functional sub-paths (orange relations). As we can
see in part B of the figure there are pathways from the extra-cellular (AREG,
NRG1 and NRG2), which lead to protein synthesis and metabolism for pheno-
type-1 and for phenotype-2 from BTC and HBEGF to cell survival and cell cycle
progression. These pathways share one or more sub-paths (e.g. the
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PIK3R5->AKT3), which are functional for almost all the samples and link the gap
between the outer genes to biological procedures.
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Figure 38: The need for the always functional sub-paths. On top (part A) the pathway with the differ-
entially expressed sub-paths (red for phenotypel, blue for phenotype2), at the bottom (part B) the
same pathway with the common sub-paths (orange), The root from the extra-cellular to the biologi-
cal functions is clear with the common sub-paths

3.3.5. Validation

The main innovations introduced by MinePath come from the matching of the

different biological data sources (gene regulatory networks and gene expression

data) and system’s visualization capabilities. MinePath provides also mecha-

nisms that validate the best sub-paths against the different phenotypes using
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well-known algorithms and validation procedures from the area of machine
learning. For that reason the open source java library of Weka [91] has been in-
tegrated into the system.

Given a set of training samples, each assigned to one of two phenotypic catego-
ries, a training algorithm builds a predictive model able to classify new samples
into one phenotype or the other. Validation is performed building a non-
probabilistic binary linear classifier using randomized 10 fold cross validation
procedure. 10 fold means that we divide the data into 10 subsets of (approxi-
mately) equal size. We train the classifier 10 times, and measure the respective
‘out-of-sample’ accuracy performance. Then we measure the accuracy, which is
the proportion of true results both true positives and true negatives in the popu-
lation. The overall accuracy is the measured as the mean of the accuracies
achieved in the 10 runs.

MinePath supports three well known machine learning algorithms:

e Decision tree learning (C4.5 [92] software Weka J48). The C4.5 algorithm
builds a decision tree from the top, identifying each time the most dis-
criminative variable.

e Naive Bays [93] software Weka). A simple probabilistic classifiers based
on applying Bayes' theorem with strong (naive) independence assump-
tions between the features.

e Support Vector Machines (Linear kernel support vector machines [94]
software Weka SMO) are supervised learning models with associated
learning algorithms that analyse data and recognize patterns, used for
classification and regression analysis.

By default MinePath computes, stores and shows 10-fold cross-validation results,
but additional modelling experiments could be conducted and evaluated (e.g,,
following a train vs. independent test experimentation mode).

Furthermore a special implementation of the MinePath methodology towards
the devise of models that predict disrupted pathways from miRNA’s was also
implemented. More details about the miRNA case study can be found at the ex-
tensions section and the experiments section.

MinePath uses binary data structures and Boolean algebra for the calculations,
so that it is capable of operating in real time even on large datasets with hun-
dreds of pathways. As a stress test, all KEGG human (‘hsa’) pathways (224 in to-
tal) were used over an artificial dataset (called ‘4 ER datasets’) that contains
gene-expression profiles of 914 samples from 4 different microarray datasets
(samples are assigned ER positive or ER negative and all come from the Affymet-
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rix U133A platform). MinePath computed and identified the most discriminant
sub-paths in about 2.5’.

3.4. Visualization

In the literature there exist a limited number of systems that utilize knowledge
from known GRNs, namely GGEA, SPIA, TEAK and DEAP. However, these systems
suffer from insufficient visualization features, a fact that does not facilitate in-
spection of results and limits the exploratory potential by the users. Some gene
set enrichment analysis methodologies and tools utilize pathway visualization
approaches to overcome this problem. Since they are based on a gene-oriented
approach, they are still unable to handle differentially expressed pathways or
even differentially expressed sub-paths.

Solutions such as the KEGG Atlas/Mapper [95], WebGestalt [96], NetworkTrial
[97] or even Graphite Web [98] visualize just the pathway genes using some col-
our scale or colour-coding schema. This problem is apparent even for small
pathways such as the inhibition relation A —| B (A inhibits B; A, B represent
genes) which could be considered as active in two cases: when A is up-regulated
and B down-regulated or when A is down-regulated and B up-regulated. For such
different cases, different colours should be assigned to the genes. The situation
becomes even more complicated when one has to visualize the phenotype incli-
nation of an interaction, e.g., an inhibition being active for one phenotype and not
for another.

Contrary to similar efforts, which visualize the state of genes in a GRN, MinePath
identifies and visualizes the differentially expressed GRN sub-paths. In addition,
MinePath supports active interaction and re-adjustment of the visualized net-
work and is equipped with special operational features enabling the reduction of
GRN'’s complexity.

One of the key innovations of MinePath rest in its visualization capabilities and
especially, in the visualization of active gene to gene regulatory relations that
differentiate between the target phenotypes. To the best of our knowledge,
MinePath is the only tool that visualizes differentially expressed relations instead
of just differential genes. The colour coding of the relations in MinePath is as fol-
lows:

e ‘Red’ is used to encode sub-path relations that are active for phenotype 1
(Class 1)
e ‘Blue’ for relations that are active for phenotype 2 (Class 2)
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e ‘Magenta’ for relations holding for both phenotypes

«

o for relations that are “always-active”
“

. ” for the association/disassociation relations
e ‘Grey’ for inactive relations.

MinePath also supports active interaction and immediate visualization of path-
ways when the user sets new thresholds for the best or always active sub-paths.
It further supports the option to hide/show the overlapping relations and the
association-dissociation relations (in yellow) in the pathway. In all cases, the
KEGG layout topology is preserved. In addition, MinePath is equipped with spe-
cial functionality enabling the reduction of network’s complexity (deletion of
genes, relations and/or parts of the network) and re-orientation of its topology.
A detailed description of the user interface can be found in section 3.5.2.

3.5. Implementation

3.5.1. Standalone tool

MinePath is a Java based program taking advantage of various libraries.

The structure of the source code can be found in the Figure 39. As we can see the
main java packages of MinePath are:

e Annotation: Contains classes related to annotation of genes e.g. from a
specific platform to KEGG ids or Entrez Ids.

e Decomposition: Contain classes for the handling and representation of
the pathways to our binary graph based data structure.

e Discretization: Contains classes for the discretization of the gene expres-
sion data and various filtering classes for the ranking of the extracted sub-
paths.

e Gui: The main classes for the invocation of MinePath as standalone tool
along with special invocation classes for specific scenarios like the miR-
NA.

e Misc: This package contains many general purpose classes, which help in
various steps the core functionality of MinePath. Same holds for misc.io,
which contains classes dedicated to read from and write to intermediate
or output files.

e Predictor: The predictor package contains files for the generation of the
miRNA prediction models for the one sample prediction scenario.
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As we have already mention, MinePath uses open source java libraries for the
handling of the graphs and the validation of the best sub-paths based on well-
known machine learning algorithms. The libraries used are:

e Cytoscape: an open source software platform for visualizing molecular
interaction networks and biological pathways and integrating these net-
works with annotations, gene expression profiles and other state data.
Although Cytoscape was originally designed for biological research, now
it is a general platform for complex network analysis and visualization.
Cytoscape core distribution provides a basic set of features for data inte-
gration, analysis and visualization.

e Weka: a collection of machine learning algorithms for data mining tasks.
The algorithms can either be applied directly to a dataset or called from
your own Java code. Weka contains tools for data pre-processing, classifi-
cation, regression, clustering, association rules and visualization. It is also
well-suited for developing new machine learning schemes.

: Package Explorer v
> MinePath 30 [https://bart.ics.forth.gr:8443/sv
1> src
+ & annotation
AnnotateToKEGG java
BabelomicEntrez java
« m decomposition
DecomposeNetwork.java 2¢
FilterMAfromGRNgenelistjava
Kegg2Xgmml java
mergeKeggs2Xgmml java
ReadXGMML java
runjava
« i discretization
DiscrEntropyBased.java
FeatureRankingjava
FSjava

FSadditive java Metric Y",'“,’_‘
4 FSmultiply.java [ Lines of Code 5512
GroupGenes.java e 161
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gui $
GUImiRNApredict.java £ :::;:m :;;
infologs.java H Number of Characters il
mMiRNA java - Number of Comments 499
PathArray java et er . e
runjava
" misc
% misc.io
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Figure 39: Structure & statistics of the source Code. To the left the java packages and the classes, to
the right the lines of code per java package
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Until now the lines of code of MinePath are more than 5.500. The lines of code
per java package are shown in the right part of Figure 39.

The usage of command line MinePath is as follows:

MinePath <MicroArray FileName full path> <Pathways Folder Path>

Optional (parameters must appear after microarray & pathways paths):

-upBoth N (% selected up regulated sub-paths for both classes) De-
fault 80

-addSD N (Add SD at the Threshold. Positive wvalue (e.g. 0.5 or 1 or 2)
makes threshold stricter. Negative value makes threshold more elastic) De-—
fault O

-addStartEnd (add as subpath the first - last genes of every big (over
2 reactions) sub-path) Default false

-1 (ignore Paths with only 1 reaction) Default false

-ignoreInverselInhibition (ignore inverse inhibition Down --| Up) De-
fault false (use 1it)

-filterSimpleRelative (R1-R2)/(R1+R2) De-
fault = Polarity filter with relative values

-filterAbsolute (use absolute values for filtering) Default = Polar-
ity filter with relative wvalues

-discr (use discriminant filter) De-
fault = Polarity filter with relative values

#N (best select for discriminant filter) De-
fault = 100

#-classifier (10 fold cross validation of best subpaths) 1 =

C4.5 decision tree (Default)
2 NaiveBayes
3 Support Vector Machines
0 none

Usage for Kegg conversion to XGMML:
MinePath -kegg2xgmml <Pathways Folder Path>

MinePath, either as standalone tool or as the web based platform, provides a
wealth of output files. We do not provide only the results and accuracies of the
MinePath methodology but we also provide the generated sub-paths to samples
matrix, which could be used by statisticians or bioinformaticians to mine the da-
taset in terms of sub-paths.

Following we describe the output files of the MinePath.

The validation.txt file is generated only if the user has select to validate the data
using one of the 3 available options (10 fold cross validation using decision tree,
support vector machines or Bayesian networks). The file provides detailed accu-
racy and confusion matrix. An example of the validation output file follows.

Validation of Best sub-pathways.

Algorithm: Support Vector Machine (10-fold cross validation).

Correctly Classified Instances 11 100 %
Incorrectly Classified Instances 0 0%
Kappa statistic 1
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Mean absolute error 0

Root mean squared error 0
Relative absolute error 0%
Root relative squared error 0%
Total Number of Instances 11

=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure ROC Area Class
1 0 1 1 1 1  JKAT1_MUT
1 0 1 1 1 1  JKAT1_CTRL

Weighted Avg. 1 0 1 1 1 1

=== Confusion Matrix ===

A b <--classified as

3 0|A=]JKAT1_MUT

0 8|B=]JKAT1_CTRL

The pathwayStats.xml file contains information related to statistics for the da-
taset such as the min, max, mean and standard deviation for the best sub-paths
at each class. This information can be found in the Experiment_information tag of
the xml. The file also contains statistics for each pathway participated in the ex-
periment and provides information related to the number of genes, the number
of sub-paths, and number of sub-paths for each class and for the common sub-
paths, percentages and scores. We provide three different score formulas, which
can be used to rank the selected pathways (option of the web application of
MinePath). The three scores are:

[.  Pathway power (pwA): is the sum of the significant sub-paths in the
pathway (including the common sub-paths) divided by the number of
the total sub-paths of the pathway.

II. Pathway discriminant power (pwDS): is the number of the significant
sub-paths for the two classes divided by the number of the total sub-
paths of the pathway.

[II. ~ The pathway score (Score) is calculated using the formula Score = pwA
*pwDS

Information for each pathway exists in the xml tags Pathway. An example of the
pathwayStats.xml follows.

<MinePath>
<Experiment information>
<DataSet>GSE18239.txt</DataSet>
<classl>JKAT1 MUT</classl>
<classlMean>0.3703267027541743</classlMean>

<classlStd>0.23195214689559882</classlStd>
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<classlThreshold>0.3703267027541743</classlThreshold>
<classlmax>1.0</classlmax>

<class2>JKAT1 CTRL</class2>
<classZMean>-0.2775619311429376</classZMean>
<class2Std>0.19363961897309606</class2Std>
<class2Threshold>-0.2775619311429376</class2Threshold>
<class2min>-0.10000000000000002</classZ2min>
<classZmax>-1.0</classZmax>

<commonThreshold>0.8</commonThreshold>

</Experiment information>

<Pathway>

<name>hsa04010.xgmml</name>

<title>MAPK signalling pathway - Homo sapiens (human)</title>
<numOfGenes>249</numOfGenes>
<numOfSubPaths>761</numOfSubPaths>

<score>0.369</score>

<pwA>0.515</pwA>

<pwDS>0.717</pwDS>
<numOfSubPathsClassl>143</numOfSubPathsClassl>
<numOfSubPathsOverThrClass1>41</numOfSubPathsOverThrClassl>
<persOfSubPathsOverThrClassl>5</persOfSubPathsOverThrClassl>
<numOfSubPathsClass2>588</numOfSubPathsClass2>
<numOfSubPathsOverThrClass2>240</numOfSubPathsOverThrClass2>
<persOfSubPathsOverThrClass2>31</persOfSubPathsOverThrClass2>

<numOfSubPathsCommon>9</numOfSubPathsCommon>

</Pathway>

<Pathway>

<name>hsa04012.xgmml</name>

<title>ErbB signalling pathway - Homo sapiens (human)</title>
<numOfGenes>87</numOfGenes>
<numOfSubPaths>267</numOfSubPaths>

<score>0.416</score>

<pwA>0.674</pwA>

<pwDS>0.617</pwDS>
<numOfSubPathsClass1>124</numOfSubPathsClassl>
<numOfSubPathsOverThrClass1>56</numOfSubPathsOverThrClassl>
<persOfSubPathsOverThrClass1>20</persOfSubPathsOverThrClassl>
<numOfSubPathsClass2>125</numOfSubPathsClass2>
<numOfSubPathsOverThrClass2>55</numOfSubPathsOverThrClass2>
<persOfSubPathsOverThrClass2>20</persOfSubPathsOverThrClass2>

<numOfSubPathsCommon>1</numOfSubPathsCommon>

</Pathway>

</ MinePath>
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The file with the extension -colours.txt contains all the participating genes in the
selected sub-path with a specific colour coding and the gene ids as Entrez Id for
use with the KEGG colour mapper®. One can provide this list to the KEGG colour
mapper and by selecting Search against: hsa can view the participating genes
(genes from the best sub-paths) in a specific colour coding. That was the initial
attempt for visualization in MinePath. Soon enough it was apparent that such
tools, which visualize the status of a gene in GRN are not suitable for MinePath
since we have to produce a very big and confusing colour mapping for the two
phenotypes and the different types of relations in the GRN. The problem comes
from the limitation that such tools are based on a gene-oriented approach and
are unable to handle differentially expressed pathways or even differentially ex-
pressed sub-paths. The situation becomes even more complicated when one has
to visualize the phenotype inclination of an interaction, e.g., an inhibition being
active for one phenotype and not for another.

The most informative and valuable for further exploratory analysis are the ma-
trices that MinePath produces in tab delimited or arff format. The file with exten-
sion:

e -all-pathways.txt provide the full matrix (sub-paths vs samples) of the da-
taset.

e -all-pathways.txt.arff is the same matrix in arff format for auto load in the
Weka standalone application

e Ranked-all-pathways.txt provides again the full matrix with the ranking
system of the MinePath (discriminant or polarity metric)

e Ranked-all-pathways.txt-Best.txt provides only the best (according to the
ranking) sub-paths.

e Ranked-all-pathways.PlusBest.txt provides only the best (according to the
ranking) sub-paths that characterize the first class of our dataset.

e Ranked-all-pathways.MinusBest.txt provides only the best (according to
the ranking) sub-paths that characterize the second class of our dataset.

e Ranked-all-pathways.OrangeBest.txt provides only the best sub-paths that
are always function (in both class) of our dataset.

In the perPathway folder the user can find the sub-paths to samples matrix for
each pathway individually in tab delimited format with .txt extension or arff for-
mat (.arrf file). The system also provides a .json file per pathway, which provides
information (and is the input) for the visualization feature of the MinePath web
application.

30 http://www.genome.jp/kegg/tool/map pathway2.html (last day visited 11/08/2014)
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3.5.2. Web based MinePath

The final product of MinePath (www.minepath.org) is a web-based platform that

implements the methodology for the identification and visualization of differen-
tially active paths or sub-paths within a gene regulatory network (GRN), using
gene-expression data. The platform takes advantage of the regulatory mecha-
nisms and the topology of GRNs, including the direction and the type of the in-
volved interactions (activation/expression, inhibition).

Its core algorithm determines differentially expressed pathway sub-paths and
relations instead of just differential genes. These sub-paths present evidential
molecular mechanisms that govern the disease itself, its sub-type, state or other
targeted disease phenotypes. In this form, MinePath introduces a new and effi-
cient representation of the differentially expressed sub-paths over a Web-based
human-computer interface. Furthermore, MinePath supports live interaction,
immediate visualization of regulatory relations and it is equipped with special
topological and network-adjustment functionalities.

The MinePath web-server is implemented as a Web 2.0 application. It relies on
the frontend-backend software design using AJAX calls for the communication.
The layout, appearance and interface of the front-end are based on the open
source version of Ext-]S3! library and pure JavaScript. For visualization and inter-
action of the differential GRN sub-paths the Cytoscape Web32 library has been
deployed and expanded. The backend of MinePath is a java-based application
and takes advantage of the Weka3? API for the implementation and evaluation of
phenotype prediction models.

Use of MinePath is relatively simple and straightforward. The user selects or up-
loads a microarray dataset, then selects the gene regulatory networks to explore
and run MinePath. The system will compute in real time the differentially ex-
pressed functional paths or sub-paths of the selected pathways. Then the user
selects the pathway to explore and the system visualizes the differentially ex-
pressed regulatory mechanisms (relations) and sub-pathways. The complete list
of operations (in steps) follows.

31 www.sencha.com/products/extjs/
32 http://cytoscapeweb.cytoscape.org (last day visited 11/08/2014)
33 www.cs.waikato.ac.nz/ml/weka (last day visited 11/08/2014)
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1.

Select input data and parameters

1.1. Select gene expression dataset

1.2. Select the gene regulatory networks to be analyzed (by default 14 cancer re-
lated pathways are pre-selected)

1.3. Select thresholds for difterentially expressed functional sub-paths, the sub-
path ranking method and the validation algorithm (default values are pre-

set)
2. Run MinePath
2.1. View and download results (best sub-paths arft' & tab delimited files)
2.2. View ranked pathways and select which to visualize.
3. Visualize/explore the selected pathway using the web-based interface
3.1. From the controls panel (left panel of the visualization)
3.1.1. Set/change dynamically threshold for class1 (phenotype 1)
3.1.2. Set/change dynamically threshold for class2 (phenotype 2)
3.1.8. Set/change dynamically threshold for always active sub-pathways
3.1.4. Show/Hide associations and dissociations
3.2. In the viewer using right click
3.2.1. Remove inactive genes
3.2.2. Remove inactive relations
3.2.3. Remove selected genes/relations.
3.2.4. Change the layout (random) topology of the network
3.5.2.1.Select input data and parameters
3.5.2.1.1. Select or upload gene expression dataset
Inputs MinePath uses microarray experiments and respective
HicroArray Select/Upload Form %' gape_expression data for which we expect (suspect)
'jBrT‘ Cancer the targeted GRNs play an important role. MinePath
+ | ] Leukemia

+ | Craniosynostosis

+ (] Lung Cancer tasets from the Gene Expression Omnibus (GEO) data-

4 i Colon Cancer

(currently) provides 12 public gene expression da-

base. The user can select one of the 12 annotated da-

= G5E4107
Upload: sonse..  tasets or upload his/her own dataset. The uploaded
Selected Microarray: GSE4107.0¢t dataset is private, viewable just by the uploaded (the

uploaded data are deleted as soon as the processing of MinePath ends). The up-

loaded dataset should be in the form of a tab delimited txt file where the rows

are the annotated gene names and the columns are the sample values. The anno-

tated gene names must have the format <probe>#<KeggID> (kegglID is identical

to the corresponding Entez ID with prefix for each species, e.g. for human “hsa:”).

For example if you have the probe “1007_s_at” for human, which maps to the

“780” Entez ID, then the annotated gene name for MinePath must be

80



“1007_s_at#hsa:780". The first row contains the phenotype of each sample. At
the web site of MinePath annotation lists for the most common microarray can
be found, downloaded and used from the following links (U133A, U133B,
U133plus). The phenotype must be one word without white spaces and the sys-
tem expects 2 phenotypes (2 different classes). MinePath supports nominal (dot
as decimal separator) or binary (0,1) values. A sample of an input data-file is

shown at the figure below.

Phenotype 1 Phenotype 2

1007_s_at#hsa:780 3848.1 6520 9 5.7 043 7 4 63.6 2949 8 08 0 6

§1053_at#hsa:5982 228.9 112.5 178.4 398.7 417.7 221.2 422.1
117_at#hsa:3310 213.1 189.8 269.7 312.4 327.1 225 252.6
121 _at#hsa:7849 1009.4 2083.3 1203.4 11044 10433 1117.6 1250

Annotated
probes

3.5.2.1.2. Select pathways

Current version of MinePath supports all the human (hsa) related gene regulato-
ry networks from the KEGG database.

=S A By default the system has preselected 14 hsa can-
cer-related pathways. The preselected pathways
[ 13 Signal transduction ] .

are: ECM-receptor interaction (hsa04512), Cyto-

.gjfr:lune system cin-cytocin receptor interaction (hsa04060), Ad-
- [£] (] Endocrine system herens junction (hsa04520), Wnt signalling
- [[] [ Circulatory system ¢ (hsa04310), Focal adhesion (hsa04510), Jak-
OQNenvossystem STAT signalling (hsa04630), ErbB signalling
gjZZ:Z.::;:::::ff::;:ses (hsa04012), MAPK signalling (hsa04010), mTOR
4753 Cancers: Overview signalling  (hsa04150), @ VEGF  signalling

=] Pathways in cancer (hsa04370), Apoptosis (hsa04210), p53 signalling

[ E] prancerintinslicreniiztionint . (hsa04115), Cell cycle (hsa04110) and TGF-B sig-

 [FI I Can Pathways in cancer (hsa05200) .
nalling (hsa04350). All these pathways are en-
[7] [ Merged (14 cancer related)

4 Tl b

[C] All Hsa (224 pathways) pathway of KEGG (hsa05200).
Selected Pathways: 14

gaged with the ‘Pathways in Cancer’ integrated

The user can add or remove any pathways by se-
lecting/unselecting from the “Pathways to use” tree view menu, or use all the hsa
pathways by selecting the “All hsa (224 pathways)” option.

We have also created an artificial pathway, which is the merged pathway of the
14 cancer related pathways and can be found in the pathways tree as “Merged
(14 cancer related)”. For more information please refer to the Extensions sec-
tion.
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3.5.2.2.Run MinePath

MinePath parameters

The user can also optionally set some parameters re-

Hin % for Both Up: {80 garding the minimum thresholds of the two sub-paths

Add StD at Thr: 0 L.
phenotypes, the minimum threshold for the always ac-

Use percentage for Ranking

Boost true positives
| Walidation Algorithm

tive sub-paths, variations for the ranking algorithm and
select validation algorithm as shown at the figure to the
left.

) 4.5 decision tree

) MaiveBayes

@ Support Vector Machines
@) None

3.5.2.3.Selected sub-paths validation

MinePath validates the best (over a threshold) sub-paths using 10 fold cross val-
idation methodology over the selected validation algorithm that can be:

e Decision Tree
e Naive Bayes or
e Support Vector Machines (default option).

The phenotype information is extracted from microarrays and all the selected
GRNs are evaluated for the identification of the most informative GRNs at the
specific phenotype. The efficient ranking of sub-paths provides the most differ-

You can download the result files here:
Results for GSE7390.b¢

General Info

MinePath Results

Microarray file name:GSE7390.txt
(Classes in Microarray

Class 1:ERpos

Class 2:ERneg

44 pathways examined.

~ Validation (best sub-pathwa)

Validation of Best sub-pathways. Validation
Algorithm : Support Vector Machine (10-fold cross
validation).

Correctly Classified Instances 182 91.9192 %
Incorrectly Classified Instances 16 8.0808 %
Kappa statistic 0.8107

Mean absolute error 0.0808

Root mean squared error 0.2843

Relative absolute error 18.4362 %

Root relative squared error 60.7611 %

Total Number of Instances 198

« Detalled Accuracy By Class
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.963 0.172 0.921 0.963 0.942 0.895 ERpos

0.828 0.037 0.914 0.828 0.869 0.895 ERneg
Weighted Avg. 0.919 0.128 0.919 0.919 0.918 0.895

~  Confusion Matrix
=== Confusion Matrix ===
a b <-- classified as

1295 | a = ERpos
1153 | b = ERneg

entiating and prominent GRN functional sub-paths for
the respective target phenotypes. These sub-paths
present evidential molecular mechanisms that govern
the disease itself, its type, its state or other targeted
disease phenotypes (e.g., positive or negative response
to specific drug treatment). The results are shown to
the user, as soon as the algorithm finishes, along with
the option to download the result files (as shown at
the figure to the left).

At the downloadable results the user can find overall
statistics, Weka (.arff) files for all the sub-paths along
with binary values per sample, the best overall path-
ways sub-paths and best sub-paths per pathway -
formed to enable the application of a variety of mining
tasks; induction of different predictors (e.g., decision-
trees, SVMs etc.); and application of different predic-
tion performance experiments (e.g., on independent
datasets). By default the web based MinePath validates
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the results using 10-fold cross validation.

Validation of independent datasets is as simple as follows. Run Minepath for test
and train datasets (must be from the same microarray platform and with the
same phenotypes). Download the results and use the best sub-paths .arff file of
train dataset as train in weka. Then select the all sub-paths .arff file of the
downloaded test dataset as test at weka.

3.5.2.4.GRNs statistics

At the next step, MinePath shows the list of the involved pathways ranked along
with statistics that helps to select which pathway to visualize. The statistics per
pathway are:

e number of genes

e number of sub-pathways

e the MinePath score

e coverage score

o differential power

e statistics for sub-paths in class 1 (phenotype 1)
e statistics for sub-paths in class 2 (phenotype 2)
e number of always active sub-paths

An example is shown at the figure below.

Select pathway to visualize
Kegg ID Title Num of Genes SubPaths Score ~ Pw Activity | Pw Diff Class 1 total | # Class 1 % Class 1 Class 2 total
hsa04110.xgmml  Cell cycle - Homo sapiens (human) 230 47 0.638 0.766 0.833 15 10 21 25
hsa04150. xgmml  mTOR signaling pathway - Homo sapi 106 133 0.571 0.509 0.938 56 55 41 28
hsa04370.xgmml  VEGF signaling pathway - Homo sapi 102 42 0.531 0.755 0.703 1 o 0 38
hsa4115.xgmml  pS3 signaling pathway - Homo sapien... 122 234 0.509 0.615 0.826 53 28 11 122
hsa05200.xgmml  Pathways in cancer - Homo sapiens (.. 636 194 0.464 0.83 0.559 87 52 31 44
hsa04010.xgmml  MAPK signaling pathway - Homo sapi... 470 736 0.461 0.501 0.767 176 114 15 338
hsa04510. xgmml  Focal adhesion - Homo sapiens {hum 412 273 0.451 0.559 0.683 EE 73 26 50
merged-cancer. rull 1971 13338 0.435 0.548 0.672 4524 2621 19 4388
hsa4520.xgmml  Adherens junction - Homo sapiens (h 175 a3 0.43 0.753 0.571 40 26 27 22
hsa04012.xgmml  ErbE signaling pathway - Home sapie... 163 186 0.404 0.741 0.545 &0 33 19 56
hsa04912.xgmml  GRRH signaling pathway - Homo sapi... 192 EE] 0.354 0.778 0,455 25 18 19 27
hsa04210.xgmml  Apoptosis - Home sapiens (human) 154 2 0.347 0.594 0.5 11 4+ 8 25
hsa04310.xgmml  Wnt signaling pathway - Homo sapie 230 278 0.283 0.578 0.417 74 18 5 108
hsa04350. xgmml  TGF-beta signaling pathway - Homo 138 53 0.119 0.814 0.146 38 4 5 3
hsa4020.xgmml  Calcium signaling pathway - Homo sa 332 27 0.111 0.839 0.125 3 0 o 7

<

Visualize Pathway

Figure 40: Selection of pathway to visualize, the GUI provides statistics for each pathway such as
number of genes, number of sub-pathways and various scores. The user can also short the results
based on any of these categories

3.5.2.5.Visualize/explore

The user can select any of the pathways to explore/visualize. An example of the
ErbB pathway for the ‘4ERdatasets’ dataset (a set of four independent discre-
tized and then merged gene-expression studies targeting the ER phenotypic sta-
tus of the respective patients, from the four studies are naming GSE2034,
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GSE2990, GSE3494 and GSE7390) using the 14 preselected pathways is shown at
the figure below. We also deleted the inactive gene interactions (in the viewer -

| <« C' [ minepath.org o = |
»| | MinePath
4 Controks Viewer
| Pathway
tmp/ 1406739879543
Micrarray file P .
4ERdatasets. txt < TITLEErsE signaling pathway >
T
Class 1 'fgncreallc cancep
Hame ERpos Calgium signaling p@va, — —
Coding Red T comds COTDT 6y [CANKEA Nensmall cell lung cghcer
Mean 6 PLCG1
S5 COO185 PRKCA
Min 5 Max 28
Viewing : 39 sub-paths TGFA cBLc
& 20 reactions.
AREG — TATSA|

Sub-paths to view
1

SRC
CRK

| Class 2

Coding Blue

Mean 8 M-”{K)slgna\mg p;ln\}hz'a'r

St 6 I

Min 5 Max 40
g:wz,;lr;ga:cggnzub-paths

Sub-paths to view
|

STATSA|

Overk: Red & Bl ESOKE
verlapping Red & Blue MTOR R
| GAB1 EIF4EBP] —
Coding Magenta mTOR signaling patfivay
| 9 Overlapping edges. BAD ~— o
\ Glioma )
‘ [Z) Hide Common Edges PIK3R5|—C0ED84 GSKaB S~ "
Anways Active PI3KCAK signaling paway C celleyele ) Endometrial cancar
Coding —— T i
Minimum 80%
Viewing : 48 sub-paths | .
879 ronctinnr

Summary 2|

Figure 41: Indicative example of MinePath visualization. To the left are the controls of the MinePath
visualization tool. To the right is the viewer where we see the pathway (with the KEGG topology) and
red edges represent functional sub-paths for phenotypel (in this case ER+), blue for phenotype 2
(ER-), orange always active sub-paths, magenta overlapping functional sub-paths and grey non func-
tional sub-paths

= ACTIVATIONEXPRESSION for dlass 1(ERpos) The graph preserves the KEGG layout topolo-
. ACTIVATIONEXPRESSION for class 2(ERneg)

ACTIVATIONEXPRESSION for boh{ERpes, Efteg) 5+ It is enriched with the expressed regulato-

§ INHIBITION fo s (ERpos ry mechanisms (relations) between genes that

=] INHIEITION for clas-2 (ERneg) differentiate between the two phenotypes:
— INHIBITION for both (ERpas, ERneg)

ACTIVATION/EXPRESSION active in both classes

¢ Red indicates relations active at class 1, which in our example is the
ERpos

e Blue indicates relations active at class 2 (ERneg)

e Magenta indicates overlapping relations in the two classes

o for sub-paths that are always active.

Contrary to other pathway visualization tools, MinePath calculates and visualizes
differentially expressed relations instead of just differential genes. Furthermore
MinePath supports active interaction and immediate visualization when the end
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user sets new thresholds for the two phenotypes or for the always active sub-
paths, as well as to hide/show the overlapping relations and hide/show the as-
sociation-dissociations of the pathway from the control panel (left part of
MinePath viewer).

In addition, MinePath is equipped with special func-

Remove Gene from Pathway

. tionality that enables the reduction of network’s
Select neighbors

complexity (deletion of genes, relations and/or parts
Set Random Topology . . .
Delete all inactive genes of the network), as well as re-orientation of its to-
Delete Selected pology. The functionality is available with a right

Delete all inactive gene interactions ] . .
click (in the viewer).

Using the aforementioned example and exploring the specific pathway we can
stress the thresholds to retain ‘strong’ sub-paths per phenotype (class): Using 13
as threshold for class 1 (ERpos) results to 18 sub-paths and again 13 for class 2
(ERneg) results to 33 sub-paths; We also use 95% for all always active sub-
paths, which results to 45. Then, by right clicking at the viewer we delete all in-
active genes, delete all inactive gene interactions and merge the 2 GRB2 gene-
rectangles (GRB2 appears 2 times in ErbB due to the topology of KEGG). The re-
sulting (reduced) pathway will become as the one in the following figure (mov-
ing around gene-rectangles and relation-edges we made its layout ‘prettier’).

| €= C [ minepath.org 7 @ = |

> MinePath
{

Controls Viewer

andur v

Pathway
tmp/1406739879543/;
Micrarray file

| ‘4ERdatasets. txt
Class 1

Name ERpos

Coding Red
e s

505

Min 5 Max 28

|

‘ Viewing : 18 sub-paths &
[ 16 reactions.
|

|

|

(

|

Sub-paths to view

Class 2

" | Name ERneg
Coding Blue
Mean 8
O

Min 5 Max 40

Viewing : 33 sub-paths &
19 reactions.

A MYC

Sub-paths to view

Overlapping Red & Blue

R gy
j

o5
3B

I
Coding Magenta 4
5 Overlapping edges. -
[CJ Hida Common Edges
DKM

y g
Always Active

Coding
Minimum 80%

Summary &

Figure 42: Using MinePath controls over a GRN. Thresholds 13 for class 1 (ERpos), 13 for class 2
(ERneg), 95% for always active sub-paths and deleted all inactive genes and gene interactions
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Inspecting the reduced network, it is clear that there is a pathway starting from
NRG (1 and 2) and ends at inhibiting the GSK3B and EIF4EBP1 for ERpos pheno-
type; and a pathway starting from TGFA or BTC or HBEFG that ends-up at inhib-
iting BAD and CDKN1B for ERneg phenotype. You can see that these sub-
pathways share common parts, which are active at both phenotypes (ERpos and
ERneg). More details for the established clinico-genomic information and
knowledge that supports the finding need for pan-erbb inhibitors can be found in
the experiments section.

Armed with the aforementioned features, MinePath serves the users’ exploratory
needs to reveal the regulatory mechanisms that underlie and putatively govern
the expression of target phenotypes.

3.6. Extensions

MinePath has been implemented to be modular and to be easily extended to
support more algorithms (e.g. discretization algorithms, filtering algorithms and
validation algorithms) and different clinical scenarios or research questions.

3.6.1. miRNAs to disrupted sub-paths

Such a need came from a European Union funded research project called P-
Medicine*. MinePath was demonstrated to the consortium, feedback was very
good and the project coordinator (prof. Norbert Graf) asked if we could use and
extend MinePath to identify disrupted sub-paths from GRNs using only miRNA
data.

To our knowledge such a tool, which will be able to identify disrupted sub-paths
from miRNA data, does not exist in the literature. Similar tools such as the Gen-
eTrial®s or the mirPath3¢ use ORA and measure the disruption of the pathway as
whole and not specific sub-paths in the pathway.

The research question for the miRNA extension was:

e To find disrupted pathways in nephroblastoma using miRNA expression da-
ta.

miRNA data from nephroblastoma serve as the source of disrupted metabolic
pathways. These data needs to be normalized and then correlated to pathway

34 http://p-medicine.eu/ (last day visited 11/08/2014)
35 http: Mgenetrall bioinf.uni- sb de (last day v151ted 11/08/2014)

ed 11/08/2014)
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data coming from the KEEG pathway database. MinePath will analyse the tumour
of disrupted metabolic pathways. By correlation to clinical data of patients, indi-
vidual pathway disruptions or main disruptions for a cohort of patients with
nephroblastoma will be produced as a result. The tool should be made in a gen-
eral way that by describing the databases and the interfaces the tool will get do-
main independent.

The need to use miRNAs instead of gene expression data in such a scenario is
essential in the clinical practice since miRNA exams can be produced fast, with
blood sample the first day of the patient in the hospital. With such a tool we
could possibly get personalized insights in the clinical routine since we could
categorize the new patient to responsive or non-responsive of a possible treat-
ment, prior the treatment.

For the miRNA scenario we assume that all the KEGG pathways are fully func-
tional. Disrupted pathways will be the pathways that are not “active” according
to the specific cohort (microRNAs for nephroblastoma or gene expressions for
ALL).

The idea is that miRNAs have known targeted genes, which means that an up-
regulated miRNA can target (down-regulate) one or more genes. As we men-
tioned earlier we assume that all the KEGG pathways are functional, which
means that all the sub-paths are functional. We identify the genes that have been
down-regulated due to the targeting of miRNAs and we consider the rest genes
as up-regulated. An example of the mapping of miRNAs to targeted genes is
shown in Figure 43.
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Figure 43: miRNA example. To the left are miRNAs with targeted gene (blue) and to the right the
effect of the targeted genes in a specific pathway. Green represents the active (up-regulated) genes
and blue the targeted (down-regulated) genes.
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The pathway analysis scenario has two steps. The first step is to create and train
a model able to predict outcomes for new samples. MinePath uses two classes
approach to identify differentially expressed pathways & sub-pathways and has
been extended to support miRNA expression data. The reference cohort for the
creation of the model is based on the hsa (human) KEGG pathways and the
GSE38419 public miRNA dataset.

MirTarBase?” database has been used to identify targeted genes from the miR-
NAs. The clinical variable of GSE38419 dataset is the characterization to a wilm’s
tumour patient or to a healthy person and the model has been trained to predict
one of these two classes. Steps for the first part of the scenario are shown in Fig-
ure 44. Then the prediction model is registered to the p-medicine workbench as
a new biomedical resource for possible use.

Data Annotation Analysis

<
QO
©
=+ T
= 2 =
All hsa pathways o c.g 5 Decision tree
o g‘ % of disrupted
GSE38419 i s pathways
miRNA data M
Clinical data “ Trained Model
Healthy o

Patient

Figure 44: Flow of operations for the training step of the miRNA pathway analysis model. From left
to right: Initially we collect the data, we identify the target genes from the miRNAs, we analyse using
MinePath and finally we train the model using the disrupted sub-paths (from MinePath).

The second part is to predict if a new patient is characterized (according to

his/her miRNA expression data) to wilm'’s tumour patient or to healthy person.

When a new patient, who is candidate for wilm’s tumour, arrives in the hospital
the clinician requests for a miRNA exam and searches in the p-medicine work-
bench for tools able to predict the disease based on disrupted pathways from
miRNA expression data. The pathway analysis tool is identified as a candidate
tool and the doctor downloads the tool (Figure 45).

37 http://mirtarbase.mbc.nctu.edu.tw/ (last day visited 11/08/2014)
88


http://mirtarbase.mbc.nctu.edu.tw/

New patient

. b
| ?ﬂ <
i|i.!': '-é Search for tools

Download/run pathway tool

Workbench

Decision tree
of disrupted

>

pathways

P-Meidicne Security |

Trained Model

Figure 45: Download (from p-medicine workbench) and use of pathway analysis model in the clini-
cal domain

The doctor gives as input to the tool the miRNA expression data of the patient
and the tool normalizes/discretizes the genomic data according to the reference
cohort (from step 1). Then the Mirtarbase database is used to identify targeted
genes from the miRNAs. MinePath extracts the disrupted sub-paths for the spe-
cific patient and feeds the prediction model (created at step 1) to identify if the
sample belongs to wilm’s tumour patient or to a healthy person according to
his/her miRNA expression data.

For the feasibility study of the miRNA extension we used the public dataset
(GSE38419) from GEO. The dataset contains:

¢ (linical data: Healthy and wilm’s tumour patients
e Genomic data: miRNAs (848) per sample/patient

Details about the validation of the results can be found in the Experiments sec-

tion.

3.6.2. Merging gene regulatory networks

A common operation on graphs is merging, that is, combining different graphs
together. It is inspired by the fact that many KEGG pathways embed other path-
ways, for example MAPK signalling pathway embeds 6 pathways including Wnt
signalling pathway. This extra functionality provides the possibility to merge
them into one graph for further analysis. This is an extra of-line functionality that
can be used only from the standalone tool of MinePath.

Using this extra functionality we created an artificial pathway, which is the
merged pathway of the 14 cancer related pathways and can be found in the
pathways tree of the web based platform as “Merged (14 cancer related)”. The
pathways that have been merged are shown in Table 5.
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Table 5: Pathways engaged within the ‘Pathways in Cancer’ KEGG (hsa05200)

KEGG Id Pathway description

has04310 | Wnt signalling

hsa04010 | MAPK signalling

hsa04012 | ErbB signalling

hsa04060 | Cytocin-cytocin receptor interaction

hsa04110 | Cell cycle

hsa04115 | p53 signalling

hsa04150 | mTOR signalling

hsa04210 | Apoptosis

O |0 (N[O |~ W|N |k

hsa04350 | TGF-f signalling

=
o

hsa04370 | VEGF signalling

hsa04510 | Focal adhesion

[y
[N

=
N

hsa04512 | ECM-receptor interaction

=
w

hsa04520 | Adherens junction

14 | hsa04630 | Jak-STAT signalling

The merged pathway contains more than 2.500 sub-paths. An indicative example
(screenshot from the MinePath web site) is shown in the following figure.

--------

......

.....

Figure 46: The merged pathway (14 cancer related pathways)
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4.Experiments

In this chapter we discuss indicative results from MinePath using some of the
available datasets from the web site of the tool.

The experiments prove the validity of MinePath methodology and highlight the
value of the web based user interface in the quest of biological interpretation of
the pathway analysis results.

4.1. MinePath comparison study

Though a comparative benchmark is hard to find, due to a missing gold standard
that classifies detected sub-paths as right or wrong in the context of the investi-
gated expression data, we tried to identify biological evidence in the literature
and focussed on the specificity of the findings and the sensitivity of the method
used. From the four known methodologies which cope with the regulatory
mechanisms, only the glioma experiment used by GGEA is publicly available.

4.1.1. Glioma, comparison with GGEA

Glioblastoma or Glioma is the most common and malignant primary intracranial
human neoplasm. GGEA [16], one of the four pathway analysis algorithms which
takes advantage of the regulatory mechanisms, observed large agreement in the
result lists of significant pathways with FiDePa [99] method. 17 pathways listed
in the FiDePa result also occur in the top 25 of the GGEA ranking over public da-
tasets for glioma. According to the authors, the positive control glioma is better
ranked (and has higher significance) by GGEA. Further, several unspecific and
disease unrelated pathways detected by FiDePa are discarded by GGEA and re-
placed by specific, cancer-related pathways (e.g. renal cell carcinoma, endome-
trial cancer). For the top rank, GGEA (Pathways in Cancer; not detected by
FiDePa) gives a clear disease-related hint, while FiDePa (MAPK signalling path-
way) reports a general signalling process.

We applied MinePath to the glioma dataset that has been investigated before
with the method GGEA [16]. The reference dataset is a merging of two different
studies using as classes the glioma cases from the GSE4271 [100] (100 samples)
versus the control cases from the GSE1133 [101] (158 samples). For consistency
evaluation, we used the regulatory interactions occurring in human non-
metabolic KEGG pathways (gene regulatory and signaling pathways) similarly to
the experiment from GGEA. Specifically we used all the human KEGG pathways
which fall under the signal transduction, cell, immune system, endocrine system,
nervous system and cancer related categories (in total 76).
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MinePath identified the most discriminant sub-paths (1915 in total) which were
evaluated based on the support vector machines algorithm from the Weka soft-
ware and performed in both 10-fold and leave-one-out cross validation 100%
accuracies. Detailed results for the leave-one-out cross validation can be found in
Table 6.

Table 6: LOOCV & 10-fold CV results of best sub-paths from the Glioma dataset (Weka SVM)

Accuracy 100%
Precision 1
Recall 1

Confusion Matrix

Glioma Control

Glioma

Control

FiDePa and GGEA report only the significant pathways while, MinePath identifies
discriminant sub-paths. Based on the outcome of these two methodologies and
the results of MinePath we can see from Table 7 that most of the best pathways
from GGEA have been identified as highly discriminant using MinePath (path-
ways with ranking over 0.8). We observe large agreement in the result lists of the
three methods. Furthermore we can see that MinePath ranked Glioma pathway
as highly discriminant (score 1) while using FiDePa is ranked in 20t position and
using GGEA in 12th position. MinePath identified cell cycle and Adipocytokine
signaling pathway as highly discriminant pathways which is in accordance with
FiDePa but not with GGEA. Cell cycle in most cancer cell types, including glioma,
is a critical mechanism of development, progression, and resistance to treatment
[102]. Pathways with the highest discriminant power in MinePath are Glioma,
Neurotrophin signaling, Pancreatic cancer, Renal cell carcinoma, Chronic mye-
loid leukaemia, Insulin signaling and Adherens junction. The results of MinePath
show high similarities with GGEA and FiDePa methodologies.

Table 7: Comparison of pathway analysis results from MinePath, GGEA and FiDePa methodologies in
Glioma dataset. In grey pathways under the threshold of MinePath

Pathway MinePath. ORA P Bank
score (pw diff) (GGEA) (FiDePa)
Neurotrophin signalling | 5.5E-15 -
Pancreatic cancer | 3.8E-14 12
Renal cell carcinoma I I.3E-13 -
Chronic myeloid leukaemia I 6.3E-13 8
Glioma I 5.1E-12 20
Insulin signalling | 3.2E-11 18
Adherens junction | 4.9E-11 6

92



MAPK signalling 0.977 0.0000044 |
Cell cycle 0.966 - 19
Adipocytokine signaling pathway 0.964 — 14
Toll-like receptor signalling 0.962 1.2E-09 10
Acute myeloid leukaemia 0.957 0.00000039 -
Apoptosis 0.955 0.04 3
Leucocyte transendothelial migration 0.952 3.9E-11 24
Nature killer cell mediated cytotoxicity 0.938 6.5E-11 2
Pathways in cancer 0.93 |.8E-24 -
T cell receptor signalling 0.926 1.2E-17 7
ErbB signalling 0.926 8.9E-13 -
mTOR signalling 0.92 0.0000012 I5
B cell receptor signalling 0917 4.2E-12 17
Colorectal cancer 0.875 I.1E-14 I
Focal adhesion 0.855 | 4E-18 5
Wht signalling 0.851 1.2E-10 -
GnRH signalling 0.829 6.5E-11 16
VEGF signalling 0.8 I.5E-13 22
Non-small cell lung cancer 0.8 0.00000034 -
Fc epsilon Rl signalling 0.44 4.1E-13 9
Endometrial Cancer --- 0.00000016 -

Going one step further, the most discriminant sub-path based on the MinePath
ranking (also functional for glioma - meaning that is active in most of the glioma
samples and inactive in most of the control cases) is the NF-kB->HIF-1a in the
HIF-1 signaling pathway. HIF-1 signaling pathway plays a critical part in tumor
proliferation due to its role in hypoxia [103] and it is known that the hypoxic en-
vironment is created because of the extreme energy demands of the rapidly di-
viding cells when a tumor develops and grows.

Mendez et al [104] proved, in glioma cells, that HIF-1a protein plays a role in the
survival and self-renewal potential of cancer stem cells. Authors identified genes
that might further elucidate the role of HIF-1a in tumor migration, invasion and
stem cell biology, making HIF-1a gene a very important gene for glioma.

Another interesting outcome comes from the Ras1 signaling pathway where we
can see in Figure 47 that is mainly functional for the glioma samples (glioma
functional sub-paths are shown in the figure with red). While it is known that
alterations in the rap1 signaling pathway are common in human gliomas [105], it
is not clear how the Rap1A hub gene is altered. A methodology like MinePath and
its visualization capabilities could assist in the quest of such research questions.

93



»  MinePath
2 controls Viewer
pathway
tmp/1409235146850/x(
Micrarray file glioma.bxt
Class 1
liame Gliomaé ~ TLERap1 signaling pathway
Coding Red o T
Mean 38
St 23 CONRY GNAIT
Min 5 Hax 98
o counas THEST
Viewing : 169 sub-paths &
29 reactions. o P
Sub-paths to view R@s signaling patniay EDU qtion of actin f{‘f%ﬁ‘m”
: T RALGDE—] =
R oo aameson>
Class 2 —
GRINT] COQL76 CONO75 [SALNLE) [TLNT [ iTcA28]
Name Control
0 Bl P
;u mgznls ue Tt AL oo m575e] APBB1IR e ACTB
ean (=P
st 13 DORAZ}
Min 5 Hax 85 oo e
GNAG PLCB1
Viewing : 5 sub-paths &5 |
reactions. Staors
) PARDBA
{ Sub-paths o view -
— [RACT] PARD3 PRKCI
.‘ I €aiium signaling pathway
| Overlapping Red & Buue =1 SEEE shn — [eon1]
l Coding Magenta BCART TNNE] .
CAdh ctiord
| 1 Overlpping edges. Fdherens junclion
( [C Hide Common Edges oAl
CDH1
| Awoys Ace Thie
Coding =8 AP |—e[MAPKT
Minimum 80% LCP2 SKaP1
Viewing : 6 sub-paths & faorsa] AT ] el o
reaciens. ’ 1076 LU 1AP2K3 APK14 "‘“@ff‘g”a”"g "?‘@3*
Sub-paths PLCG1}—c00t85— [PRKCA] PRKD3 —
ub-paths to view ——
‘ I [[AKT3 PI3€CAK signaling pathiway
T cell @ceptor signaling patway  COOD76 ~— m
Association/Dissociation — PLCE1
coap4s
[ Hide Edges
Change Pathway < e"\'y s St
v T
Summary 2

Figure 47: Ras1 signalling pathway for glioma dataset. Red edges represent glioma sub-paths, blue
control sub-paths and orange common sub-paths.

4.1.2. Gastric cancer, comparison with PATHOME

The comparison sample groups in the gene expression data set GSE138613¢ were
65 primary gastric adenocarcinoma frozen tissue samples and 19 normal ap-
pearing gastric tissue samples. Gastric cancer is the second leading cause of can-
cer-related death in the world, and prognosis is difficult to predict for individual
patients. Most of gastric cancer patients receive similar treatments, typically sur-
gery followed by chemotherapy because there are no reliable biomarkers to op-
timize therapy [106]. PATHOME was compared with two GSA tools, the GSEA
and DAVID using the gastric cancer dataset and having as reference standard for
cancer related pathways the pathways reported at the review of Vogelstein &
Kinzler [107].

PATHOME used a lower significance cut off compared with that of the GSEA and
DAVID methods and detected more differential cancer-related pathways. Actual-
ly PATHOME identified 8 out of the 19 cancer related pathways, DAVID and GSEA
identified 1 out of the 19 each and MinePath identified 11 out of the 19. For
MinePath we used the 19 pathways with the most gastric cancer functional sub-

acc.cgi?acc=GSE13861 (last day visited 11/08/2014)
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paths while in PATHOME the 27 most significant pathways were used. From the

cancer related pathways reported in the reference standard, MinePath identified
3 out of the 9 while the other PATHOME and GSEA identified only one and DAVID

none.

Table 8: Comparison table of PATHOME, DAVID, GSEA and MinePath for gastric
cancer gene expression data using a reference standard for cancer pathways.
Note: X (not detected), 0 (detected).

Reference
Standard** SEtE ) .

Pathway Title PATHOME* | DAVID | GSEA | MinePath

HIF1 hsa04150 | mTOR signaling X X X 0

hsa05200 | Pathways in cancer 0 X X 0

hsa05211 ﬁznal cell carcino- X X X X

P53 hsa04115 | P53 signaling X X X X

EE)(CE” ©Y" | hsa04110 | Cell cycle X X 0 X

Apoptosis hsa04210 | Apoptosis X X X X

GLI hsa04340 ::‘;dge“og signal- X X | X X

APC hsa04310 | Wnt signaling 0 X X 0

RTK hsa04012 | ERBB signaling X X X X

hsa05200 | Pathways in cancer 0 X X 0

SMAD hsa04350 | TGF-Bsignaling X X X 0

PI3K hsa04012 | ERBB signaling X X X X

hsa05200 | Pathways in cancer 0 X X 0

hsa04150 | mTOR signaling X X X 0

hsa04010 | MAPK signaling 0 X X 0

hsa04910 | Insulin signaling 0 X X 0

hsa04510 | Focal adhesion 0 0 X 0

hsa04062 ﬁgem"k'”e signal- 0 X | X 0

hsa04370 | VEGF signaling X X X X

19 Hits 8 1 1 11

Selected 27 15 17 19

PATHOME reported significant sub-paths relating to WNT signalling, MAPK sig-
nalling, insulin signalling, focal adhesion and chemokine signalling (Table 8).

Among these identified pathways, selected the WNT pathway as identified

uniquely by PATHOME for further cell line and animal studies for accuracy vali-

dation. We have to mention that MinePath also identified WNT pathway as sig-

nificant to gastric cancer.
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4.2. MinePath Biological Validation - Cranio-
synostosis

Craniosynostosis is a birth defect in which one or more of the joints between the
bones of the baby's skull close prematurely before the baby's brain is fully
formed. Seven bones make up the skull of a newborn which are separated by
spaces called sutures. The sutures meet at the fontanelles, the soft spots at the
front and the back of a baby's skull. In order for the brain to grow, the sutures
usually remain open and gradually grow together to form the adult skull. Cranio-
synostosis is the premature fusion (closing) of one or more of the sutures of a
baby's skull.

In most cases of craniosyntosis there are no other birth defects, known as non-
syndromic while the development with other birth defects, is known as syn-
dromic. Non-syndromic craniosynostosis is the most common form of the condi-
tion, accounting for more than 80% of all cases [108]. Non-syndromic cranio-
synostosis usually occurs in a non-inherited fashion (not passed on from either
parent), only involves fusion of one suture and are classified according to which
suture is fused including unicoronal synostosis, metopic synostosis, sagittal
synostosis and lambdoid synostosis. Frequencies of the various sutures involved
are (i) sagittal: 40% to 58% while the etiology is unknown; (ii) unicoronal: 20%
to 29%, estimated one third caused by single-gene mutations; (iii) metopic: 4%
to 10%, etiology unknown; and (iv) lambdoid: 2% to 4%, etiology unknown
[109].

Most cases of syndromic craniosynostosis are caused by genetic mutations [110]
contrary to non-syndromic craniosynostosis which has proven to be a difficult
task due to the complex nature of the disease [111].

4.2.1. The craniosynostosis dataset (GSE27976)

In this experiment, we use the GSE27976% [111] gene expression data from 199
patients with isolated sagittal (n = 100), unilateral coronal (n = 50), and metopic
(n =49) synostosis, compared against a control population (n = 50).

Stamper et al [111] concluded that FGF7, SFRP4, and VCAM1 emerged as poten-
tial genetic biomarkers for single-suture craniosynostosis due to their signifi-
cantly large changes in gene expression compared to the control population. Au-
thors also reported differentially regulated gene networks which were extracted
using two thousand genes with the highest gene information content scores (the
percent variance explained by the first eigengene obtained from a decomposition

acc.cgi?acc=GSE27976 (last day visited 11/08/2014)
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of the probe-level data for each gene). These genes were uploaded into DAVID
[112] web application in order to identify biological pathways associated with
genes in the dataset that had consistent changes in expression at the probe level.
Using this gene list, focal adhesion and ECM-receptor interaction were the two
most significantly implicated pathways. In addition, the TGF-beta signaling
pathway, regulation of actin cytoskeleton, cell adhesion molecules (CAMs), and
gap junction were also identified as significantly enriched pathways (p<0.01).
The following table reports the full list of the significantly enriched pathways.

Table 9: Significantly enriched pathways of GSE27976 using DAVID web application

hsa04510 Focal adhesion

hsa04512 ECM-receptor interaction

hsa05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC)
hsa05200 Pathways in cancer

hsa05410 Hypertrophic cardiomyopathy (HCM)
hsa05414 Dilated cardiomyopathy

hsa04350 TGF-beta signaling pathway
hsa00480 Glutathione metabolism

hsa05222 Small cell lung cancer

hsa04810 Regulation of actin cytoskeleton
hsa04115 p53 signaling pathway

hsa04514 Cell adhesion molecules (CAMs)
hsa04360 Axon guidance

hsa00980 Metabolism of xenobiotics by cytochrome P450
hsa05218 Melanoma

hsa04540 Gap junction

hsa04610 Complement and coagulation cascades
hsa05220 Chronic myeloid leukemia

hsa00010 Glycolysis / Gluconeogenesis
hsa04010 MAPK signaling pathway

hsa04020 Calcium signaling pathway

hsa05210 Colorectal cancer

hsa04110 Cell cycle

DAVID uses over-representation analysis (ORA), which statistically evaluates the
fraction of genes in a particular pathway found among the set of genes showing
changes in expression. The main limitation of the ORA algorithms is that assumes
that each gene is independent of the other genes neglecting that gene regulatory
networks are complex networks of interactions between genes. Furthermore
ORA uses only the most significant genes, discards the rest genes and assumes
that each pathway is independent of other pathways, which is erroneous.

We ran MinePath for the GSE27976 dataset using as classes all the synostosis
cases (199 samples) versus the control cases (50 samples). We selected all the
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human KEGG pathway (in total 221). The best (2471) sub-paths were evaluated
based on the support vector machines algorithm from the Weka software which
performed in both 10-fold and leave-one-out cross validation accuracies over
97.5%. Detailed results for the leave-one-out cross validation can be found in
Table 10.

Table 10: LOOCV results of best sub-paths from the GSE27976 (Weka SVM)

Accuracy 98.39%
Precision 0.984
Recall 0.984

Confusion Matrix
Synostosis

Control

Synostosis

Control

The fibroblast growth factor-7 (FGF7) is member of the fibroblast growth factor
FGF family. FGF members which are known for broad mitogenic and cell survival
activities, and are involved in a variety of biological processes, including embry-
onic development, cell growth, morphogenesis, tissue repair, tumor growth and
invasion. FGF7 protein is a potent epithelial cell-specific growth factor, whose
mitogenic activity is predominantly exhibited in keratinocytes but not in fibro-
blasts and endothelial cells [113]. FGF7 identified as the most discriminant and
potential genetic biomarker for single-suture craniosynostosis along with SFRP4,
and VCAM1 proteins by Stamper et al [111]. MinePath identified Rap1 signaling
pathway as one of the most discriminant pathways out of the 221 and the most
informative for Synostosis (contains the most functional sub-paths for this class).
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Figure 48: Rap1 signaling pathway for craniosynostosis. Red indicates relations active at synostosis,
blue indicates relations active at control, magenta indicates overlapping relations and orange for
sub-paths that are always active.

Figure 48 shows the discriminant sub-paths identified by MinePath for the Rap1
signaling pathway. Red indicates relations active at synostosis, blue indicates
relations active at control, magenta indicates overlapping relations and orange
for sub-paths that are always active. The vertical dashed lines distinguish the
outer from the inner cell and we can see that only a group of genes belongs to the
outer cell, the CSF1 which contains among others the FGF7 protein. MinePath
identified a functional sub-path only for the Synostosis cases starting from this
group of genes. Specifically the
CSF1->CSF1R->CRK->RAPGEF1->RAP1A>APBB1P->TLN1->ITGA2B which
leads to the focal adhesion pathway is considered to be discriminant for the two
phenotypes and functional only in Synostosis. We can see that MinePath not on-
ly validated the results of Stamper et al [111] but also identified the path from
FGF7 (the most discriminant gene according to Stamper et al) to the focal adhe-
sion pathway (the most discriminant pathway according to Stamper et al).

Another finding of MinePath is the discriminant sub-path which is functional on-
ly for the Synostosis cases and starts again from the extracellular protein
CSF1/FGF7 to the RAP1A hub gene which finally activates the PLCE1, leading to
the PI3K-Akt signaling pathway. Dufour et al [114] identified that PI3K/Akt at-
tenuation plays important role in the control of osteoblast survival by FGFR2

signaling (member of the fibroblast growth factor FGFR family).
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Furthermore MinePath identified pathways functional only or mainly in one of
the two phenotypes. P53 signaling pathway (in Figure 49 upper left) dominated
by Synostosis meaning that the discriminant sub-paths are functional only for
the Synostosis cases while discriminant sub-paths in Prolactin/Ras (in Figure 49
upper right), ErBb (in Figure 49 lower left) and Chemocine (in Figure 49 lower
right) signaling pathways are mainly functional for the control samples. In Figure
49 we can see these four pathways where the red links indicate sub-paths func-
tional in Synostosis, blue links indicate sub-paths functional in control samples
and magenta links indicate sub-paths functional in both phenotypes.
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Figure 49: Pathways functional only or mainly in one of the two phenotypes (synostosis and control).

According to Moenning et al [115], PDGFRa signaling stimulates osteogenesis of
neural crest cells derived osteoblasts by activating the PLC-y pathway, using
transgenic mice in vivo and in vitro experiments. Because the phenotype of
transgenic mice resembles human craniosynostosis, the authors aimed to detect
an involvement of PDGFRa in the etiology of human craniosynostosis. A sequenc-
ing analysis of the PDGFRa gene in 15 patients did not reveal PDGFRa mutations
in the known hot-spot regions involved in autoactivation of the receptor. Never-
theless, the possibility of identifying mutations by screening an expanded group
of craniosynostosis patients and sequencing the complete PDGFRa gene remains.
The PDGFRa is part of the extra-celullar gene group (CSF1R) of Prolactin/Ras
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signaling pathway which was identified by MinePath as a descriptive pathway
for control samples.

Feeding the best sub-paths, based on the MinePath ranking, in a C4.5 decision
tree algorithm we can see that one pattern covers most of the Synostosis samples
(154/199) while only one out of the fifty control samples follow this pattern. The
pattern contains 7 sub-paths from which the two most discriminant (first and
second selection of the decision tree algorithm) must be functional and the rest
non-functional for a sample to be classified as Synostosis case. The pattern is
shown in the following table.

Table 11: Pattern using sub-paths for the prediction of Synostosis.

hsa:4615-->hsa:3569 hsa:3569 = 1 (at Legionellosis)

| hsa:5584 #hsa:5590 --> hsa:56288--> hsa:150084 hsa:50848 hsa:58494 hsa:83700 = 1
(at Tight junction)

| | hsa:22800 hsa:22808 hsa:3265 hsa:3845 hsa:4893 hsa:6237 --> hsa:10928 = 0 (at
RAS signaling)

| | | hsa:84152--| hsa:5499 hsa:5500 hsa:5501--| hsa:775 hsa:775 hsa:776
@hsa04728 = 0 (at Dopaminergic synapse)

| | | | hsa:355--> hsa:8772--> hsa:843 = 0 (at Apoptosis)
| | | | | hsa:2323--> hsa:2322--> hsa:2885 = 0 (at Pathways in Cancer)

| | | | | | hsa:1794--> hsa:5879 hsa:5879 hsa:5879 hsa:5880--> hsa:5058
hsa:5058--> hsa:3984 hsa:3985 = 0 (at Fc gamma R-mediated phagocytosis)

4.3. MinePath vs. Original Gene-Expression Data
(MinePath as prognostic/Diagnostic predictor for
GSE3494)

Most of breast cancer (BRCA) cases are estrogen responsive, implying the activa-
tion of a series of growth-promoting pathways, for example the estrogen recep-
tor (ER) related ErbB signalling GRN. In an effort to reveal the underlying regula-
tory mechanisms that govern BRCA patients’ treatment responses we applied
our methodology on public gene-expression studies from the GEO repository.

This experiment is based on the public dataset from the GEO repository
GSE349440 [116]. The biological tumour samples (i.e. breast tumour specimens)
consisted of freshly frozen breast tumours from a population-based cohort of
women representing 65% of all breast cancers resected in Uppsala County, Swe-
den, from January 1, 1987 to December 31, 1989. Estrogen receptor status was
determined by biochemical assay as part of the routine clinical procedure. Tran-

acc.cgi?acc=GSE3494 (last day visited 11/08/2014)
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script profiles of 251 primary breast tumours were assessed by using Affymetrix
U133 oligonucleotide microarrays.

In the original paper of the study, Miller et al [116] evaluated several linear
learning methods including: diagonal linear discriminant analysis, k-nearest
neighbours and support vector machines. In each case, the optimal gene classifi-
er was obtained by leave-one-out cross validation, where the linear model-fit
procedure was iteratively applied to all samples minus the left-out sample. The
resulting prediction accuracies were highly similar, ranging from 84.9% to
85.7%.

We used the same dataset (gene expressions only from Affymetrix Human Ge-
nome U133A Array) targeting the ER phenotypic status of the respective pa-
tients, i.e.,, ER+ (ER positive) vs. ER- (ER negative). We targeted 14 pathways all
of which are engaged within the ‘Pathways in Cancer’ integrated pathway of
KEGG (hsa05200) as shown in Table 5.

We used the default values for the parameters of the web based MinePath, spe-

cifically:

e Min % for both up (80%): A sub-path to be considered as up regulated
for both classes must cover at least 80% of the cases for each class.

e Add StD at Thr (0): No StD added at the threshold (remained the median)
e Boost true positives (True): Polarity filtering
e Use percentage for Ranking (True): Relative polarity ranking formula

MinePath identified 4632 sub-paths from the 14 pathways and the probes list of
U133A platform. From the 4632 sub-paths 746 were selected using the ranking
algorithm.

The best (746) sub-paths evaluated based on the support vector machines algo-
rithm from the Weka software performed in leave-one-out cross validation.

Table 12: LOOCV results of best sub-paths from the GSE3494 (Weka SVM)

Accuracy 95.95%
Precision 0.959

Recall 0.96

Confusion Matrix
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The proposed methodology performed better than the three different algorithms
used in the gene signature of the Miller et al [116] (accuracies ranging from
84.9% to 85.7%).

4.4.
cal/Clinical Knowledge (4 breast cancer datasets)

MinePath as A discovery of New Biologi-

The ‘4ERdatasets’ dataset (can be found in the datasets of MinePath) is a set of
four independent discretized and then merged gene-expression studies targeting
the ER phenotypic status respective patients, i.e.,, ER+ (ER positive) vs. ER- (ER
negative), from the GSE20344! [117], GSE299042 [118], GSE349443 [116] and
GSE739044 [119] studies.

For the discretization, the same methodology as in MinePath was used in the lev-
el of probes. Each dataset was discretized individually and then the four datasets
were merged. The merging after the discretization was straight forward since
these four clinical trials used the same microarray platform. The platform used
was the GPL96 HG-U133A Affymetrix Human Genome U133A Array#. The U133
set (U133A & U133B) includes 2 arrays with a total of 44928 entries and was
indexed 29-Jan-2002. The set includes over 1.000.000 unique oligonucleotide
features covering more than 39.000 transcript variants, which in turn represent
greater than 33.000 of the best characterized human genes. The HG-U133A Array
includes representation of the RefSeq database sequences and probe sets (22282
probes) related to sequences previously represented on the Human Genome
U95A Array. More details regarding the datasets, the numbers of samples per
class, the number of probes and the annotated KEGG Id genes can be found in
Table 13.

Table 13: Details for the four ER datasets; Each column is one dataset while rows provide infor-
mation regarding the platform, the class, the number of samples per class, the number of probes for
the platform and the identified number of genes (as KEGG/Entez IDs)

Dataset

GSE2034

GSE2990

GSE3494

GSE7390

4datasets

Platform

Affy-
U133A

Affy-
U133A

Affy-
U133A

Affy-
U133A

Affy-
U133A

Class

ER

ER

ER

ER

ER

ER+ samples

149

213

134

705

ER- samples

34

34

64

209

www.ncbi.nlm.nih.gov/geo/quer
www.ncbi.nlm.nih.gov/geo/quer
www.ncbi.nlm.nih.gov/geo/quer
www.ncbi.nlm.nih.gov/geo/quer

45 http: //www affymetrix. com/estore/browse/Droducts ISD7Dr0ductId 131536&categoryld=35760#1 1
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Probes 22283 22283 22283 22283 22283
Annotated to KEGG 20967 20967 20967 20967 20967

For this experiment we did a validation on the independent datasets. Initially we
compared the original gene expression data on independent datasets and we did
the same using sub-paths. The results of the independent (train on one dataset
and test on another) for the four ER datasets for genes and sub-paths can be
found in Table 14. As we can see the sub-paths provide better accuracies in most
of the cases and show a high consistency compared to genes. We must say that
such an outcome is expected since sub-paths contain more information and pro-
vide more consistent and meaningful information.

Table 14: Validation on independent datasets for genes and sub-paths

Genes

GSE2034 | GSE2990 | GSE3494 | GSE7390
GSE2034 81.42% 86.23% 67.67%
GSE2990 26.92% 86.23% 39.89%
GSE3494 26.92% 91.25% 38.88%
GSE7390 73.07% 21.85% 13.76%

Sub-paths (Best syb-paths vs All sub-paths)

GSE2034 | GSE2990 | GSE3494 | GSE7390
GSE2034 53.55% 85.02% 70.20%
GSE2990 73.07% 86.23% 67.67%
GSE3494 77.27% 54.64% 79.29%
GSET7390 83.56% 73.77% 89.87%

On the next step, we ran Minepath for the five datasets (including the merged
“4datasets”). Downloaded the results and used for each dataset the best sub-
paths .arff file as train in weka. Then we evaluated the all sub-paths .arff file of
the rest datasets as test in the weka trained model. Table 15 summarizes the re-
sults of this independent validation. As we can see the merged dataset performed
the best accuracies overall and the average of accuracies is 99.595%. Even
though the merged dataset actually contains the test subset each time, its trained
model provided very high accuracies (over 99%) overall the datasets. This find-
ing is in compliance with the conclusions of the authors from [120] who proved
that “due to the small sample sizes relative to the complexity of the entire expres-
sion profile, existing methods suffer certain limitations, namely the prevalence of
study-specific signatures and difficulties in validating the prognostic tests con-
structed from these signatures on independent data. Integrating data from multi-
ple studies to obtain more samples appears to be a promising way to overcome
these limitations.”
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Table 15: Rows represent the train (best sub-paths) datasets versus the test (all sub-paths) in the
columns across the four independent datasets and the merged dataset using the SMV implementa-
tion of Weka. Accuracy (Acc.), Precision, Recall and area under the curve (ROC area) for each train
versus test experiment is reported.

Test (using all sub-paths)

Dataset GSE2034 GSE2990
S‘i’ Acc| Prec-| Re-| ROC acc| Preci-| Re-| ROC
E sion call Area sion call Area
~] 645 | GSE2034 86.71% Acc. (10-fold) 53.550 0.604 | 0.536 | 0.329
£
5l 126
E 4 GSE2990 | 73.07 0.534 | 0.731 | 0.500 87.43% Acc. (10-fold)
-
4;746 GSE3494 | 77.27 0.778 | 0.773 | 0.721 | 54.644 0.627 | 0.546 | 0.370
Q
£
= 794 | GSE7390 | 83.56 0.829 | 0.836 | 0.748 | 73.770 0.891 | 0.738 | 0.839
o
|
| 101 | 4ER 99.30 0.993 | 0.993 | 0.987 100 1.000 | 1.000 1.000
3 | datasets
Dataset GSE3494 GSE7390
S‘i’ e | Preci- | Re-| ROC nce| Preci- | Re-| ROC
E sion call Area sion call Area
~| 645 | GSE2034 | 85.02 0.867 | 0.850 | 0.740 | 70.202 0.786 | 0.702 0.747
=
Elzi GSE2990 | 86.23 0.744 | 0.862 | 0.500 | 67.670 0.458 | 0.677 | 0.500
-
4; 746 | GSE3494 95.54% Acc. (10-fold) 79.292 0.812 | 0.793 0.794
Q
0
= 794 | GSE7390 | 89.87 0.888 | 0.899 | 0.694 87.87% Acc. (10-fold)
'w
|
2| S |t 99.59 0.996 | 0.996 | 0.985 99.49 0.995 | 0.995 0.992
3 | datasets
Dataset 4ER datasets AVERAGE
SZE’ Acc| Prec-| Re-| ROC Acc| Preci-| Re-| ROC
E sion call Area sion call Area
~| 645 | GSE2034 [ 80.19 0.829 | 0.802 | 0.777 | 72.241 0.772 | 0.723 | 0.648
=
-
,§1246L GSE2990 | 80.96 0.847 | 0.810 | 0.584 | 76.984 0.646 | 0.770 | 0.521
-
*;746 GSE3494 | 79.64 0.812 | 0.796 | 0.747 | 72.714 0.757 | 0.727 | 0.658
(<]
0
= 794 | GSE7390 | 86.43 0.888 | 0.864 | 0.867 | 83.408 0.874 | 0.834 | 0.787
'w
Rt
e 101 | 4ER 87.41% Acc. (10-fold) 99.595 0.996 | 0.996 | 0.991
3 | datasets
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But MinePath is not only a pathway analysis methodology, is a complete web
based platform that aims to aid the quest of functional or disrupted sub-paths in
known pathways. Going one step further, after the validation of the algorithmic
process, we try to identify biological insights using the specific dataset for the
distinction of the ER positive and the ER negative patients.

The statistics of the selected (for our experiment) pathways are shown in the
following figure.

Select pathway to visualize %
Kegg ID Title Mum of Genes SubPaths Score - Pw Activity Pw Diff Class 1 total | #Class 1 % Class 1 Class 2 total
hsa04370.xgmml  VEGF signaling pathway - Homo sapi... 102 &0 0,433 0.783 0.553 1 i} 1] 36
hsa04520.xgmml  Adherens junction - Homo sapiens (h 178 111 0.279 0.865 0.323 31 25 22 8
hsa04010.xgmml  MAPK signaling pathway - Homo sapi.. 470 1158 0,289 0.731 0,369 175 112 g 307
hsa04115.xgmml  p53 signaling pathway - Homo sapien... 122 303 0,251 0.551 0,455 46 15 & 108
hsa04912.xgmml  GnRH signaling pathway - Homo sapi... 192 133 0.233 0.759 0.307 25 18 13 27
hsa04310.xgmml  Wnt signaling pathway - Homo sapie 230 311 0.225 0.588 0.383 53 13 4 125
hsaD4020.xgmml  Calcium signaling pathway - Homo sa... 332 40 0.2 0,975 0,205 1] 1} 1] 10
hsa04510.xgmml  Focal adhesion - Homo sapiens (hum... 412 428 0.187 0.741 0.252 &0 46 10 79
hsa05200.xgmml  Pathways in cancer - Homo sapiens { 636 643 0.128 0.9 0.142 85 55 8 45
hsa04210.xgmml  Apoptosis - Homo sapiens (human) 154 146 0,075 0.836 0,09 11 4 2 21
hsa04012.xgmml  ErbB signaling pathway - Homo sapie... 1563 436 0.074 0.864 0,086 33 18 3 41
hsa04350.xgmml  TGF-beta signaling pathway - Homo 138 103 0.068 0.748 0.091 22 4 3 7
hsa04110.xgmml  Cell cyde - Homa sapiens (human) 230 429 0,056 0.97 0,058 13 8 1 20
hsaD4150.xgmml  mTOR signaling pathway - Homo sapi... 106 348 0,052 0.92 0,056 16 13 3 11

1] visualize Pathway

Figure 50: Statistics (from the MinePath web application) of the selected pathways for the
4ERdatasets dataset

It is known that ErbB-1 is overexpressed in many cancers [121]. Hence ErbB sig-
nalling pathway is one of the most important pathways to explore. The visualiza-
tion of the MinePath results for the ErbB signalling (hsa04012) can be found in
Figure 51.

As described in chapter 2, the MinePath web based graph GUI preserves the
KEGG layout topology. It is enriched with the expressed regulatory mechanisms
(relations) between genes that differentiate between the two phenotypes and
the colour coding is as follows:

¢ Red indicates relations active at class 1, which in our example is the
ERpos

e Blue indicates relations active at class 2 (ERneg)
e Magenta indicates overlapping relations in the two classes
e Orange for sub-paths that are always active.

The figure highlights only the “interesting” sub-paths, which in our case are the
most discriminant sub-paths for the specific two phenotypes.
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Figure 51: Visualizing ErBb for the 4ERdatasets using MinePath

Once we have the visual representation of the specific pathway, we can start ex-
ploring biological meaningful paths and sub-paths. Armed with the visualization
functionalities of MinePath we can stress the thresholds to retain ‘strong’ sub-
paths per phenotype (class): Using 13 as threshold for class 1 (ERpos) results to
18 sub-paths and again 13 for class 2 (ERneg) results to 33 sub-paths; we also
use 100% for all always active sub-paths, which results to 0. Then, we can “clean
up” our pathway from the non-functional genes and reactions. By right click in
the pathway viewer we select “Delete all inactive genes” and then we select the
Delete all inactive gene interactions”.

Then we merge the 2 GRB2 gene-rectangles (GRB2 appears 2 times in ErbB due
to the topology of KEGG). The resulting (reduced) pathway will become as the
one in Figure 52.
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Figure 52: Exploring ErBb for the 4ERdatasets using MinePath. Thresholds 13 for class 1 (ERpos), 13
for class 2 (ERneg), 100% for always active sub-paths and deleted all inactive genes and gene inter-
actions

Both phenotypes (ER positive and ER negative) have extra-cellular origins:

e MinePath identified that the ER positive path originates from AREG (am-
phiregulin) that activates EGFR and consequently we have an activation of
a common path (ER positive and ER negative) from
EGFR>GRB2->GAB1->PI3K->PKB/Akt. It continues with two different
sub-paths. The first one guide to the activation of mTOR, which leads to
the inhibition of the EiF4EBP1 gene and blocks “protein synthesis” and
the second one act as inhibitor of GSK-3 and blocking of “Metabolism”.
Another clear path that leads to the same biological mechanisms for ER
positive start from the extra-cellular NRG1, NRG2 (neuregulinl,2) growth
factors that activate ErbB-3 and ErbB-4 viral oncogenes followed by the
PI3K — PKB/Akt activation reaction.

e The ER negative path originates from the extra-cellular BTC (betacellulin)
and HB-EGF (Heparin-binding EGF-like growth factor), shares the same
sub-path with ER positive (EGFR->GRB2->GAB1->PI3K->PKB/Akt) but
now this sub-path leads to the inhibition of BAD that is linked to “cell sur-
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vival” and the inhibition of the CDKN1B protein, which blocks the “cell cy-
cle progression”.

According to recent literature, the aforementioned results are quite relevant to
the estrogen-receptor status. Based on a search of the related biomedical litera-
ture we focus our exploration on the mechanisms underlying the resistance to
pure estrogen antagonists (e.g., fulvestrant - a drug treatment of hormone recep-
tor-positive metastatic breast cancer in postmenopausal). Recent studies show
the significant role of both ErbB3 and ErbB4 as alternative targets for the treat-
ment of BRCA patients. As Sutherland notes in [122]: “the initial growth inhibito-
ry effects of fulvestrant appear compromised by cellular plasticity that allows
rapid compensatory growth stimulation via ErbB-3/4. Further evaluation of pan-
ErbB receptor inhibitors in endocrine-resistant disease appears warranted”.

In addition, Hutcheson et al. in [123] investigated whether induction of ErbB3
and/or ErbB4 may provide an alternative resistance mechanism to antihormonal
action. Their conclusion is that fulvestrant treatment is sensitive to the actions of
the ErbB3/4 ligand HRGb1 (NRG1) with enhanced ErbB3/4-driven signalling
activity and significant increases in cell proliferation.

4.5. MinePath using miRNAs (a clinical predictive
model)

MicroRNAs (miRNAs) are endogenous molecules containing about 22 nucleo-
tides that can play an important regulatory role in animals and plants by target-
ing mRNAs for cleavage or translational repression [124]. miRNA research has
revealed multiple roles in negative regulation [125] (transcript degradation and
sequestering, translational suppression) and possible involvement in positive
regulation (transcriptional and translational activation). A miRNA controls gene
expression post-transcriptionally either via the degradation of target mRNAs or
the inhibition of protein translation. Using high-throughput profiling, dysregula-
tion of miRNAs has been widely observed in different stages of cancer [126],
[127]. The up-regulation (overexpression) of specific miRNAs could lead to the
repression of tumour suppressor gene expression and conversely the down-
regulation of specific miRNAs could result in an increase of oncogene expression;
both these situations induce subsequent malignant effects on cell proliferation,
differentiation and apoptosis that lead to tumour growth and progress [128],
[129].

As Chen et al stated [128], miRNAs play key roles in human cancer, identifying
the underlying pathways will provide a more complete understanding of their
functions and regulations during cancer progression and may have clinical appli-
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cations in the future. It is known that miRNAs affect (target or down-regulate)
genes and that interactions between genes exist (pathways or parts of it). There-
fore activations of miRNAs can result in the posttranscriptional down-regulation
or up-regulation of the expression of certain genes [130].

In this experiment, we merge miRNAs and MinePath in order to identify disrupt-
ed sub-paths from miRNA expressions in known pathways. The methodology
and the extension of MinePath to support miRNAs have been described in the
Methodology chapter (section miRNAs to disrupted sub-paths).

The reference cohort for the experiment is based on the hsa (human) KEGG
pathways (223 in total) and the GSE38419 public miRNA dataset [131]. The da-
taset contains 23 samples taken from Wilm’s tumour patients prior to chemo-
therapy and 19 samples with the consent of healthy controls. The mean age of
the treated patients was 3.3 years +/- 2.2 and the mean age of healthy controls
was 37.8 years +/- 14.2. The microfluidic biochip (Geniom Biochip Homo sapiens
v12, febit biomed GmbH, Heidelberg, Germany) contained 7 replicates of 848
miRNAs as annotated in the Sanger miRBase [132] version 12.0.

The clinical variable of GSE38419 dataset is the characterization to a Wilm’s tu-
mour patient or to a healthy person and the model has been trained to predict
one of these two classes.

The discretization process of MinePath applied to each miRNA separately and
the final dataset is a matrix of discretized values. Initially the expression levels of
each miRNA over the total number of samples are sorted in descending order.
Then the midpoints between each two consecutive values are calculated and for
each midpoint, the samples are clustered into two sub-groups, high and low. For
each midpoint, the information gain formula is applied, which computes the en-
tropy of the system with respect to its division into subgroups. Finally, the mid-
point that results in the highest information gain is selected as the one that best
discriminates against the two subgroups and all the samples in the high group
are considered to be overexpressed getting a value of 1, whereas the ones in the
low group are the non-expressed/under-expressed, getting a value of 0.

Many miRNA-related database systems have been developed in recent years to
provide further insight into miRNAs and their target genes. For the identification
of the targeted genes we used the miRTarBase#¢, a comprehensive collection of
miRNA-target interactions (MTI), which are validated experimentally. The bio-
logical features of miRNA - target duplex are observed based on the largest col-
lection of human MTIs currently available.

46 http://mirtarbase.mbc.nctu.edu.tw (last day visited 11/08/2014)
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miRTarBase has accumulated more than fifty thousand miRNA-target interac-
tions, which are collected by manually surveying pertinent literature after data
mining of the text systematically to filter research articles related to functional
studies of miRNAs. The collected MTIs are validated experimentally by reporter
assay, western blot, microarray and next-generation sequencing experiments.
While containing the largest amount of validated MTTIs, the miRTarBase provides
the most updated collection by comparing with other similar, previously devel-
oped databases. We used the current release (release 4.5), which contains:

e Number of articles: 2,636

¢ Number of species: 18

e Number of target genes: 17,520

e Number of miRNAs: 1,232

e Number of miRNA-target interactions: 51,460

For the specific dataset (GSE38419), that contains 848 miRNAs, we identified
7067 validated microRNA-target interactions from the miRTarBase.

After the decomposition of each of these pathways into its functional and dis-
rupted sub-paths, the ranking formula of MinePath identified the most discrimi-
nant sub-paths (980). Then using the WEKA [91] machine learning library we
created and trained two different predictive models able to predict new sample’s
category (healthy or Wilms tumour patient).

The second part of the scenario comes from the treatment domain (e.g. the hos-
pital) and aims to predict if a new patient is characterized (according to his/her
miRNA expression data) to Wilms tumour patient or to healthy person. When a
new patient, who is candidate for Wilms tumour, arrives in the hospital the clini-
cian requests for a miRNA exam and searches in the p-medicine workbench for
tools able to predict the disease based on disrupted pathways from miRNA ex-
pression data. The pathway analysis tool is identified as a candidate tool and the
clinician downloads the tool. Figure 53 shows the standalone prediction tool for
Wilms tumour or healthy individuals based on miRNA expression data.

|£| Pathway analysis tool Elﬂlﬂ—hj

Input

Open File | Selected File: \ew-Sample. it
Dedision Tree -

Classified as

Figure 53: The pathway analysis standalone prediction tool
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The clinician provides as input to the tool the miRNA expression data of the pa-
tient and the tool normalizes/discretizes the genomic data according to the ref-
erence cohort (from step 1). Then the MirTarBase database is used to identify
targeted genes from the miRNAs. In the last step, MinePath extracts the disrupt-
ed pathways for the specific patient and feeds the prediction model (created at
step 1) to identify if the sample belongs to Wilms tumour patient or to a healthy
person according to his/her miRNA expression data.

4.5.1. Support Vector Machines model

The support vector machines linear kernel classifier created a model using 780
sub-paths out of the 980 most discriminant and the remaining 200 sub-paths
characterized as zero biased from the linear kernel. Randomized V-fold cross
validation was performed using 10- fold and leave-one-out. 10 fold means that
we divide the data into 10 subsets of (approximately) equal size. We train the
classifier 10 times, each time leaving out one of the subsets from training for
measuring “out-of-sample” performances. Then we measure the accuracy, which
is the proportion of true results both true positives and true negatives in the
population. The overall accuracy is the measured as the mean of the accuracies
achieved in the 10 runs. Leave-one-out implies that all cases but one are used to
train the model and then the model is tested using the left-out case. The process
is repeated as many times as the number of records and the final results aggre-
gate successes and misses.

The performance of our support vector machines linear kernel model was meas-
ured using the 10-fold cross validation and the leave-one-out cross validation
methods, which both achieved 100% accuracy.

4.5.2. Decision Tree learning model

The decision tree learning (C4.5 [92] software Weka ]48) was applied using data
of the disrupted sub-paths as variables and Wilms tumour or healthy as different
classes. The C4.5 algorithm builds a decision tree from the top; first the most dis-
criminative variable (sub-path PLCB>PKC—>MEKK from GnRH signalling path-
way) for classifying between Wilms tumour or healthy is selected. Then, the al-
gorithm searches for the next best informative variable (sub-path
PDK1->AKT->CREB from the PI3K-AKT signalling pathway) of the tree to im-
prove the model. The third and final node of the decision tree is the P50>C0X2
sub-path from the NF-KAPPA B signalling pathway. Figure 54 provides a graph-
ical representation of the decision tree. Feature selection is a part of the decision
tree algorithm. Interactions between features are taken into account. To measure
the performance of the models, we calculated the accuracy for train versus train,
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which was 100%, for 10-fold cross validation 80% and for leave-one-out cross

validation 78%.

GnRH signalling pathway

DAG
diacylglycerol

Disrupted Non-Disrupted

I3K-AKT signalling pathway
Healthy

(0/16)

Disrupted Non-Disrupted

NF-KAPPA B
signalling pathway

DNA Inflammation

Disrupted Non-Disrupted

Healthy
(0/3)

Figure 54: Decision tree for Wilms tumour prediction model. Starting from the top the most discrim-
inative sub-path PLCB>PKC->MEKK from GnRH signalling pathway is selected then the
PDK1->AKT->CREB sub-path from the PI3K-AKT signalling pathway and the final node of the deci-

sion tree is the P50>COX2 sub-path from the NF-KAPPA B signalling pathway

Even though the decision tree model did not achieve the accuracy of the support

vector machines model in leave-one-out cross validation (78% and 100% re-

spectively), it is interesting that the decision tree uses only three sub-paths to

predict new samples. Investigating the three selected sub-paths for the decision

tree model we can see (Figure 55, Figure 56 and Figure 57 in red) that these sub-

paths have a central role, in terms of topology and number of connections, in

their respective pathways.
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Figure 55: The PLC->PKC->MEKK disrupted sub-path (red) in the GnRH signalling pathway
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Figure 56: The PDK1->AKT->CREB disrupted sub-path (red) in the PI3K-AKT signalling pathway
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Figure 57: The P50->COX2 disrupted sub-path (red) in the NF-KAPPA B signalling pathway

The results are in agreement and justifies an already known finding about the
regulatory role of miRNAs: miRNAs preferentially regulate hub nodes, i.e., top
5% of the highly connected nodes in the network, and the network cut points
which are the bottle-necks of metabolic flows, however, avoid regulating inter-
mediate nodes which are the nodes between the hub nodes, cut points, upstream
nodes and the output nodes [133].

Furthermore, the protein kinase C (PKC), which has been identified by the deci-
sion tree as the most discriminant (the first) disrupted sub-path, is implicated in
the regulation of neuroblastoma (pediatric kidney tumor) cell growth and prolif-
eration [134]. Zeidman et al [135] proved that PKCe through its regulatory do-
main can induce immature neurite-like processes via a mechanism that appears
to be of importance for neurite outgrowth during neuronal differentiation in
neuroblastoma cells.

The second sub-path of our model comes from the PI3K-AKT signaling pathway.
In many types of tumor PI3K-AKT pathway inhibition can lead to a wide spec-
trum of direct effects including cell-cycle arrest, induction of autophagy, inhibi-
tion of metastasis as well as cell differentiation and death [136]. Recently, Santo
et al [137] identified the forkhead transcription factor FOX03a as a key target of
the PI3K/AKT pathway in neuroblastoma and concluded that the inactivation of
FOX03a by AKT was essential for neuroblastoma cell survival.
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Similarly, Brown et al [138] using morphoproteomic analysis revealed the activa-
tion of the NF-kappaB pathway in high risk neuroblastoma cases. Preclinical
studies such as the Brignole et al [139] and Michealis et al [140] using the prote-
osome inhibitor bortezomib, proved that NF-kappaB pathway regulates the pro-
liferation of human neuroblastoma cells in vitro.

In conclusion, we identified, by supervised machine learning algorithms, a com-
plex of potential causative factors for Wilms tumour: the simultaneous suppres-
sion of specific signalling sub-paths as discriminators between healthy and non-
health. On the basis of these variables, patterns may be recognized to identify
individuals at risk for Wilms tumour.

Around 10% of Wilms tumour patients are diagnosed having a concurrent syn-
drome that enhances the risk of Wilms tumour. But not all of these patients will
develop such a tumour [141]. A screening method for early detection of Wilms
tumour in these patients would be beneficial as the size or stage of a tumour is
related with outcome [142]. In addition the detection of tumour specific disrupt-
ed pathways might help to find targeted therapies for individual patients. In one
child with relapse of a bilateral nephroblastomatosis and disrupted retinoic acid
pathway the treatment with retinoic acid did cure the child without tumour sur-
gery [143]. If it can be shown that this pathway analysis tool is beneficial for
Wilms tumour it can serve as a proof of principle for usage in other cancer. From
a technological point of view a translation in other domains is easy as it is only
necessary to link the tool with the corresponding database of patient specific
miRNAs in other clinical domains.
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5.Conclusions

Microarray experiments have advanced life scientists’ ability not only to detect
but also to quantify gene expression for target phenotypes. Initially the belief
was that microarrays would reveal genotype categories (gene signature) for spe-
cific phenotypes. Unfortunately, microarray data mining has a number of limita-
tions with most prominent (i) the noisy content (ii) the low reproducibility of the
experiments and (iii) the fact that different gene-selection methodologies and
techniques, even for gene-expression data acquired from the same experiment,
produce gene lists that are strikingly different [9].

On the other hand, gene regulatory relations are restricted to what might be ob-
served in an experiment. A change in the expression of a regulator gene modu-
lates the expression of a target gene mainly via protein-DNA interactions. In oth-
er words, there are genes that causally regulate other genes. A change in the ex-
pression of these genes might change dramatically the behaviour of a part or the
network as a whole. The identification and prediction of such changes is a chal-
lenging task, with the extraction and utilization of knowledge from GRNs to be of
paramount importance.

Recently, bioinformatics community focused on more enhanced gene-selection
methods, mainly by utilizing knowledge from other sources such as GRNs. Initial
efforts used GRN information as groups (plain list) of associated genes in order
to identify the most discriminant and phenotype-differentiating genes. Molecular
pathways effectively reduced the resulting sets of genes, extracted from a gene
set analysis approach and in some cases improved prediction performance but
GRNs encompass much more knowledge form just a plain list of genes.

More and more methods take advantage of the GRNs topology and the underly-
ing gene interaction patterns. In addition, most of the developed tools to take
advantage of advanced network visualization toolkits in order to map and dis-
play the differentiating genes on target gene regulatory networks e.g., Cyto-
scape?’” and KEGG Mapper#8.

Pathway selection methodologies show similarities with gene signatures in
terms of level of information used over the years. Although GRNs hold important
information about the structure and correlation among genes that should not be
neglected, most of the currently available methods in pathway selection do not
fully exploit it. Analysing the literature we identified three categories of method-
ologies that focus on the identification and selection of discriminant pathways

47 http: //www.cytoscape.org/ (last day visited 11/08/2014)
8 http://www.genome.jp/kegg/mapper.html (last day visited 11/08/2014)
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and sub-pathways, based on the different levels of knowledge extraction from
target GRNs. Initially the focus was on the identification of differentially ex-
pressed pathways (as a whole) using microarray data. Then the efforts concen-
trated on the knowledge of the GRN topology using decomposition mechanisms
to reveal discriminant sub-pathways based on the graph theory concepts and
network visualization toolkits. Recently more advanced methodologies are de-
veloped, which takes in consideration not only the topology of the GRNs but also,
the regulation type (activation/inhibition) of the interaction link that connects
two or more genes.

We classified the methodologies into three categories according to the level of
the utilised GRN information. The categories are: pathway selection using GRNs
as list of genes, sub-pathway selection using the topology of GRNs and sub-
pathway selection methodologies using the underlying GRN gene regulatory in-
teractions.

I.  The first category naming “pathway selection” focus on the identification
of differentially expressed pathways using microarray data. Nine (9)
methodologies fall into this category. The proposed methodologies ex-
tract knowledge from gene regulatory networks trying, with the use of
gene-expression data, to identify those pathways that contain the most
discriminant genes.

II. ~The second category “sub-pathway selection using topology” includes
eleven (11) methodologies. The respective methods go one step further
and focus on the extraction of the discriminant pathways or, parts of
pathways. Chuang et al [55] proved that the identified sub-networks are
significantly more reproducible between different breast cancer cohorts
than individual marker genes selected without network information. The
authors also stated that network-based classification achieves higher ac-
curacy than individual marker genes in prediction of independent valida-
tion data sets.

[II.  The third and most informative category is the “sub-pathway selection us-
ing regulatory mechanisms”. While the previous approaches are useful,
the valuable information from GRNSs - such as the inherent gene regulato-
ry relations found in biological pathways, is not taken in consideration.
This category takes advantage not only of the topology of the GRNs but of
the underlying gene relation types as well (i.e., activation or inhibition).
This approach solves the major problem of the set enrichment strategies
that refers to the conflicting constrains between GRNs and gene-
expression data. A typical example of the conflicting constrains is reflect-

118



ed in the situation when two significantly up-regulated genes increase the
enrichment of the set in microarray expression data, even if the first gene
inhibits the other in a GRN.

The last category - being in its infancy, exhibits the fewer methodologies so far,
but it takes the most out of GRNs and gene-expression data compared to the oth-
er two and is a promising alternative for the identification of the regulatory
mechanisms that underlie and putatively govern various phenotypes.
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Figure 58: Number of methodologies for each category over the years

An overview of the number of the developed methodologies over the last years in
the three reviewed categories is illustrated in Figure 58. It can be observed that
for the pathway selection category the methodologies range from 2003 to 2010.
The second category (sub-pathway selection using topology) has its first publica-
tion on 2007 and exhibits a relatively stable pattern until today. The most ad-
vanced and newer category is the third one (sub-pathway selection using regula-
tory mechanisms), which seems that it is at its first steps and could possibly gain
a momentum. Our assumption for that momentum amplifies with the similarities
we can find between the discriminant gene regulatory (sub)-networks and mi-
croarray gene selection methodologies.

Apart from the proposed procedure, only four (4) other tools take advantage of
the underlying GRN gene regulation mechanisms, naming GGEA [16], SPIA [60],
TEAK [15] and PATHOME [13]. The main difference of the proposed methodolo-
gy from these four systems is the handling of the gene regulatory mechanisms.
To our knowledge all the other methodologies count with a +1 the activations
and -1 the inhibitions. Each sub-path gets a final score, which is also used as a
ranking mechanism. Contrary, our approach strictly checks and takes into ac-
count only sub-paths that are functional (according to the gene relations and the
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expression values). Our approach is binary and leads to distinction between
functional and non-functional sub-paths per sample instead of a representation
of the sub-path per class (the sum).

MinePath relies on a novel approach for GRN processing that takes into account
all possible functional interactions of the network. The phenotype information is
extracted from microarrays and all the selected GRNs are evaluated for the iden-
tification of the most informative GRNs at the specific phenotype. The efficient
ranking of sub-paths provides the most differentiating and prominent GRN func-
tional sub-paths for the respective target phenotypes. The formulas possess a
polarity characteristic according the class phenotype, i.e., positive for class S1
and negative for class S2. These sub-paths present evidential molecular mecha-
nisms that govern the disease itself, its type, its state or other targeted disease
phenotypes (e.g., positive or negative response to specific drug treatment). The
methodology was applied on gene-expression studies including the target of
identifying putative mechanisms that underlie and govern the treatment re-
sponse of breast cancer patients according to their ER-status profiles. Results
were quite indicative and strongly supported by the relevant biomedical litera-
ture.

Another advantage of MinePath over the similar tools is the productive environ-
ment with efficient, interactive and user-friendly visualization that offers rich
exploratory capabilities towards the insight of key phenotype regulatory mecha-
nisms, a fact that all the other solutions does not facilitate and inspection of re-
sults limits the exploratory potential of the users. Some gene set enrichment
analysis methodologies and tools utilize pathway visualization approaches to
overcome this problem. However, since they are based on a gene-oriented ap-
proach, they are still unable to handle differentially expressed pathways or even
differentially expressed sub-paths. Solutions such as the KEGG Atlas/Mapper
[95], WebGestalt [96], NetworkTrial [97] or even Graphite Web [98] visualize
just the pathway genes using some colour scale or colour-coding schema. This
problem is apparent even for small pathways. For example, the inhibition rela-
tion A —| B when up-regulation of A inhibits B and when down-regulation of A
turns B up-regulated. For such different cases, different colours should be as-
signed to the genes. The situation becomes even more complicated when one has
to visualize the phenotype inclination of an interaction. MinePath overcomes the
aforementioned problems offering an effective identification and visualization of
differentially active GRN sub-paths in real time on a solely Web-based platform.

Furthermore, MinePath takes also into account and visualizes sub-paths fully
functional in both phenotypes. These sub-paths have no discriminant power but
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in the area of gene regulatory networks, the sub-paths that are always activated
can link the gap (functional interaction) between two sub-paths and reveal a
complete functional root, which is biologically valuable (e.g. link the gap between
extracellular gene interactions and final biological reaction such as apoptosis).

The MinePath platform and its Web-based implementation aim to effectively ad-
dress these issues. Its core algorithm determines differentially expressed path-
way sub-paths and relations instead of just differential genes. These sub-paths
present evidential molecular mechanisms that govern the disease itself, its sub-
type, state or other targeted disease phenotypes. In this form, MinePath intro-
duces a new and efficient representation of the differentially expressed sub-
paths over a Web-based human-computer interface. Furthermore, MinePath
supports live interaction, immediate visualization of regulatory relations and it is
equipped with special topological and network-adjustment functionalities.

Armed with the aforementioned features, MinePath serves the users’ exploratory
needs to reveal the regulatory mechanisms that underlie and putatively govern
the expression of target phenotypes.

The current version of MinePath has been thoroughly tested for its stability. Ex-
ploratory results are quite satisfactory and the modular implementation of the
core MinePath algorithm gives us the ability to “build on demand” new tools such
as the miRNA scenario.

Additional functionality is foreseen in planned future releases of the methodolo-
gy, the algorithm and the platform. The modular implementation gives us the
ability to “build on demand” new tools based on end user scenarios. Such an ex-
ample is the miRNA scenario/extension and we plan to create a validation tool of
candidate sub-paths (GRN reconstruction validation).

For the methodology we plan to:

e Introduce new ranking algorithms

e Introduce other pre-processing methodologies (apart discretization)
e Support multi-class datasets

e Support other quantified gene-expression data (e.g., RNA-seq)

For the platform we plan to:

e C(reate automated uploading system of microarray data from public
sources (e.g., GEO)

¢ Add merging of gene-expression datasets (to serve meta-analysis needs)

e Visualize two or more pathways in order to enrich exploratory quests.
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It is known that integrating heterogeneous data sources is more effective than
working within the boundaries of a single data domain, an observation that is
particularly valid for the biomedical domain [144]. Bioinformatics and systems
biology have demonstrated that knowledge across domains can better aid rele-
vant scientific communities in their research endeavours or even reveal and cre-
ate new research domains, such as translational bioinformatics [145]. Methodo-
logical approaches for pathway analysis have moved from employing algorithms
using simple gene lists to the utilization of the topology and the regulatory
mechanisms of biological networks.

Extracting out the most of the knowledge will always give us more natural and
meaningful, as well as more accurate results.
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Appendix I (KEGG pathways)

KEGG is part of the GenomeNet* project of the Kyoto University. KEGG initiated
in 1995 for sequence information from a number of organisms into metabolic or
regulatory pathways. KEGG consists of 4 main databases: PATHWAY, GENES,
LIGAND, and BRITE.

The KEGG PATHWAY database is a collection of manually drawn graphical dia-
grams, called KEGG pathway maps, representing molecular pathways for metab-
olism, genetic information processing, environmental information processing,
other cellular processes, human diseases, and drug development. Pathway maps
are based on extensive survey of published literature. If available, different or-
ganisms are compared. The pathway map is drawn and updated with the nota-
tion shown below.

Objects Arrows
gene product, mostly — molecular interaction or relation
L] protein but including RNA . .
> link to another map
o) other molecule, mostly
chemical compound > pointer used in legend
+> missing interaction (eg., by mutation
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Figure 59: KEGG pathway notations (source KEGG help documentation)

There are two types of KEGG pathways, (i) reference pathways which are manu-
ally drawn and (ii) organism-specific pathways which are computationally gen-
erated based on reference pathways.

49 http://www.genome.jp/
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In the organism-specific pathways, green boxes are hyperlinked to GENES en-
tries by converting K numbers (KO identifiers) to gene identifiers in the refer-
ence pathway, indicating the presence of genes in the genome and also the com-
pleteness of the pathway.

Maps are available both as GIF-files and as XML version. These KEGG Markup
Language (KGML) files contain computerized information about graphical ob-
jects and their relations in the KEGG pathways as well as information about
orthologous gene assignments in the KEGG GENES database. Each pathway is
identified by a five-digit number preceded by one of: map, ko, ec, rn, and three- or
four-letter organism code.

In KGML the pathway element specifies one graph object with the entry elements
as its nodes and the relation and reaction elements as its edges. The relation and
reaction elements indicate the connection patterns of rectangles (gene products)
and the connection patterns of circles (chemical compounds), respectively, in the
KEGG pathways. The two types of graph objects, those consisting of entry and
relation elements and those consisting of entry and reaction elements, are called
the protein network and the chemical network, respectively. Since the metabolic
pathway can be viewed both as a network of proteins (enzymes) and as a net-
work of chemical compounds, another distinction of KEGG pathways is:

e metabolic pathways viewed as both protein networks and chemical net-
works
e regulatory pathways viewed as protein networks only

The following figure shows an overview of KGML.
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Figure 60: Overview of KGML schema (source the KEGG Markup Language)

The pathway element is a root element, and one pathway element is specified for
one pathway map in KGML. The entry, relation, and reaction elements specify the
graph information, and additional elements are used to specify more detailed
information about nodes and edges of the graph.

More details can be found in the KEGG Markup Language®.
The pathway maps are classified into the following sections:

e Metabolism
e Genetic information processing (transcription, translation, replication and
repair, etc.)
e Environmental information processing (membrane transport, signal
transduction, etc.)
e Cellular processes (cell growth, cell death, cell membrane functions, etc.)
e Organismal systems (immune system, endocrine system, nervous system,
etc.)
e Human diseases
¢ Drug development
The metabolism section contains aesthetically drawn global maps showing an
overall picture of metabolism, in addition to regular metabolic pathway maps.
The low-resolution global maps can be used, for example, to compare metabolic
capacities of different organisms in genomics studies and different environmen-
tal samples in metagenomics studies. In contrast, KEGG modules in the KEGG
MODULE database are higher-resolution, localized wiring diagrams, represent-
ing tighter functional units within a pathway map, such as sub-pathways con-
served among specific organism groups and molecular complexes. KEGG mod-
ules are defined as characteristic gene sets that can be linked to specific metabol-
ic capacities and other phenotypic features, so that they can be used for automat-
ic interpretation of genome and metagenome data.

50 http: //www.kegg.jp /kegg/xml/docs/
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Appendix II (Datasets)

MinePath uses microarray experiments and respective gene-expression data to
identify discriminant sub-paths in known GRNs. Currently provides 15 public
gene expression datasets from the Gene Expression Omnibus database for 6 dif-
ferent disease categories naming (i) breast cancer, (ii) leukemia, (iii) cranio-
synostosis, (iv) lung cancer, (v) colon cancer and (vi) mental disorder. The user
can select one of the annotated datasets or upload his/her own dataset. Details
for the preparation of a private dataset and upload to the MinePath server can be
found in section 3.5.2.1.1 (Select or upload gene expression dataset).

In the following sections we describe in short the (currently) available datasets.

Breast cancer

Most of the datasets currently available in the web based MinePath application
fall into the breast cancer category. This series represents 180 lymph-node nega-
tive relapse free patients and 106 lymph-node negate patients that developed a
distant metastasis.

GSE2034

GSE2034 dataset [117] comes from a breast cancer relapse free survival study.
The Erasmus Medical Center (Rotterdam, Netherlands) tumour bank used for the
frozen tumour samples from patients with lymph-node-negative breast cancer
who were treated during 1980-1995, but who did not receive systemic neoadju-
vant or adjuvant therapy. Tumour samples were submitted to the laboratory
from 25 regional hospitals for measurements of steroid-hormone receptors.
Analysis conducted with Affymetrix Human U133a GeneChips, the expression of
22 000 transcripts from total RNA of the frozen tumor samples.

GSE2990

The patients coming from Uppsala Hospital have been also used in other studies
as in GSE3494. The dataset contains 64 microarray experiments from primary
breast tumours used in the original publication [118] as training set to identify
genes differentially expressed in grade 1 and 3 and 129 microarray experiments
from primary breast tumours of untreated patients used as validation set to vali-
date the list of genes and its correlation with survival. No replicate, no reference
sample in the dataset. Analysis conducted with Affymetrix Human U133a
GeneChips.
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GSE3494

The biological tumour samples (breast tumour specimens) consisted of freshly
frozen breast tumours from a population-based cohort of 315 women represent-
ing 65% of all breast cancers resected in Uppsala County, Sweden, from January
1, 1987 to December 31, 1989 [116]. Oestrogen receptor status was determined
by biochemical assay as part of the routine clinical procedure. All tumour speci-
mens were assessed on Affymetrix Human U133 A and B arrays.

GSE7390

Gene expression profiling of frozen samples from 198 lymph node-negative sys-
temically untreated breast cancer patients was done at the Bordet Institute,
blinded to clinical data and independent of Veridex. The Veridex organization is
dedicated to providing physicians with high-value in vitro diagnostic oncology
products, including CELLSEARCH®! Circulating Tumour Cell testing for more than
a decade. Genomic risk was defined by Veridex, blinded to clinical data. The orig-
inal paper [119] tried to predict distant metastases and the study conducted by
TRANSBIG project.

E-GEOD-13671

The E-GEOD-13671 dataset included duplicates from four normal controls and
from two BRCA1 mutation carriers and single arrays from another two BRCA1
mutation carriers using a three-dimensional culture technique to grow mamma-
ry epithelial cells ex vivo. Ten colonies were collected and RNA was isolated us-
ing the Absolutely RNA Nanoprep kit (Stratagene). Samples were hybridized to
the Human Genome U133 Plus 2.0 (Affymetrix) at the Partners Genomics Centre.

E-GEOD-20685

The primary goal of this study is to identify molecular subtypes of breast cancer
through gene expression profiles of 327 breast cancer samples and determine
molecular and clinical characteristics of different breast cancer subtypes. Ex-
pression signatures of different cellular functions (e.g., cell proliferation/cell cy-
cle, wound response, tumor stromal response, vascular endothelial normaliza-
tion, drug esponse genes, etc.) in different breast cancer molecular subtypes in-
vestigated and assessed how microarray-based breast cancer molecular sub-
types may be used to guide treatment. Gene expression profiles of 327 breast
cancer samples were determined using total RNA and Affymetrix U133 plus 2.0
arrays.

51 https://www.cellsearchctc.com
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GSE22035

43 ER-positive breast tumours including 14 tumours with PIK3CA mutations and
29 tumours without PIK3CA mutations were used as screening set for microar-
ray. PI3K/AKT pathway plays one of pivotal roles in breast cancer development
and maintenance. The ERa-positive breast tumours PIK3CA mutations have been
observed in 30% to 40%. However, genes expressed in connection to the path-
way activation in breast tumorigenesis remain largely unknown. Samples were
hybridized to the Affymetrix U133 plus 2.0 arrays

4ERdatasets

The ‘4ERdatasets’ dataset is a set of four independent discretized and then
merged gene-expression studies targeting the ER phenotypic status respective
patients, i.e, ER+ (ER positive) vs. ER- (ER negative), from the GSE2034,
GSE2990 GSE3494 and GSE7390studies.

The four datasets used the same hybridization platform, the GPL96 HG-U133A
Affymetrix Human Genome U133A Array, making the procedure of merging rela-
tively easy. For the discretization, the same methodology as in MinePath was
used in the level of probes. Each dataset was discretized individually and then
the four datasets were merged.

Leukaemia

Leukaemia in MinePath is currently represented by one dataset, the GSE18239,
an expression data from JAK1 wild-type and JAK1 mutation-positive T cell acute
lymphoblastic leukaemia blasts. The Janus kinase 1 (JAK1) gene encodes a cyto-
plasmic tyrosine kinase that noncovalently associates with a variety of cytokine
receptors and plays a nonredundant role in lymphoid cell precursor prolifera-
tion, survival, and differentiation. Somatic mutations in JAK1 occur in individuals
with acute lymphoblastic leukemia. The study used microarray to compare the
gene expression profile of JAK1 mutation positive or negative acute lympho-
blastic leukaemia blasts. The hybridization platform Human Genome U133 Plus
2.0 (Affymetrix) was used.

Glioma

A glioma is a type of tumor that starts in the brain or spine. Three types of nor-
mal glial cells can produce tumors—astrocytes, oligodendrocytes, and ependy-
mal cells. These tumors are usually highly malignant (cancerous) because the
cells reproduce quickly and they are supported by a large network of blood ves-
sels. In the adult population, glioblastoma multiforme (GBM), is a common and
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one of the most malignant primary brain tumors, representing up to 50% of all
primary brain gliomass2.

In MinePath you can find a dataset which is a merging of two different studies
using as classes the glioma cases from the GSE4271 (100 samples) versus the
control cases from the GSE1133 (158 samples).

Craniosynostosis

Craniosynostosis is a disease defined by premature fusion of one or more cranial
sutures. In MinePath currently we can find one annotated dataset for cranio-
synostosis, the GSE27976. In this study, gene expression data from 199 patients
with isolated sagittal (n= 100), unilateral coronal (n = 50), and metopic (n = 49)
synostosis are compared (all together) against a control population (n = 50). For
the study, the HuGene-1_0-st Affymetrix Human Gene 1.0 ST Array [transcript
(gene) version] was used.

Lung cancer

Lung cancer in MinePath is currently represented by one dataset containing sixty
pairs of tumour and adjacent normal lung tissue specimens from non-smoking
female lung cancer patients who were admitted to National Taiwan University
Hospital or Taichung Veterans General Hospital were analysed by using
GeneChip Human Genome U133 Plus 2.0 expression arrays (Affymetrix) by
Partek (Partek, Inc.) for mRNA expression levels. The mean * SD age of patients
used for microarray experiments was 61 * 10 years. Most of the tumours were
adenocarcinomas (93%), and 78% of the samples were in stage I or II. Because
the cancer and normal tissues were from the same individual, paired t tests and
Bonferroni post hoc P value adjustment were used.

Colon cancer

In MinePath currently we can find one annotated dataset for colon cancer. The
specific dataset (GSE4107) extracted RNA from colonic mucosa of healthy con-
trols (10samples) and patients (12samples) were analysed using Affymetrix
Human Genome U133 Plus 2.0 Array. Patients and controls were age- (50 or
less), ethnicity- (Chinese) and tissue-matched.

Tumour specimens and adjacent grossly normal-appearing tissue at least 8 cm
away were routinely collected and archived from patients undergoing colorectal
resection at the Singapore General Hospital. Young (<50 years old) Chinese pa-

52 CBTRUS. Statistical Report: Primary Brain Tumors in the United States. 1998-2002:2005. Cen-
tral Brain Tumor Registry of the United States.
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tients whose tumours were classified as microsatellite-stable were included in
this retrospective study. Five to seven pinch biopsies from several locations
throughout the colon were obtained from Chinese individuals (<50 years old)
undergoing colonoscopic examination and were found to have no polyps and no
known family history or previous CRC incidence: these were designated as
healthy controls.

Mental disorder

The GSE12649 mental disorder study has been annotated and uploaded in the
MinePath web platform. Since the dataset contains three phenotypical categories
and MinePath operates over datasets with two phenotypes, we split the study
data into three independent datasets, the bipolar disorder versus control, the
schizophrenia versus control and the bipolar disorder versus schizophrenia.

The study is screened a total of 102 postmortem brains obtained from the Stan-
ley Medical Research Institute were used for DNA microarray analysis. Fresh fro-
zen samples were used for RNA extraction. RNA samples extracted from the pre-
frontal cortices Broadmann's Area 46 (part of the frontal cortex in the human
brain). They contain total RNA samples from 35 individuals in each of the three
diagnostic groups, bipolar disorder, schizophrenia and controls. Diagnoses had
been made according to the Diagnostic and Statistical Manual of Mental Disor-
ders, Fourth Edition (DSM-1V; American Psychiatric Association).
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