
 
 

COMPUTATIONAL METHODS FOR KNOWLEDGE 

DISCOVERY FROM HETEROGENEOUS DATA SOURCES: 

METHODOLOGY AND IMPLEMENTATION ON 

BIOLOGICAL AND MOLECULAR SOURCES 
 

 

by 

Lefteris Koumakis 

 

 

A dissertation submitted in partial fulfilment of the 

requirements for the degree 

 

Doctor of Philosophy 

 

 

 

Technical University of Crete,  

School of Production Engineering and Management 

September 2014  



i 

Dissertation is approved 

 

 

1. Professor Vassilis S. Moustakis  ……………………………………… 

2. Dr. George Potamias   ……………………………………… 

3. Professor Michael Zervakis  ……………………………………… 

4. Professor Nikolaos Bilalis  ……………………………………… 

5. Professor Manolis Tsiknakis  ……………………………………… 

6. Professor Dimitrios Fotiadis  ……………………………………… 

7. Dr. Dimitris Kafetzopoulos  ……………………………………… 

 

 

 

  



ii 

 

 

 

 

This research has been co-financed by the European Union (European Social 

Fund – ESF) and Greek national funds through the Operational Program "Educa-

tion and Lifelong Learning" of the National Strategic Reference Framework 

(NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge soci-

ety through the European Social Fund. 

 

 

 

 

H παρούσα έρευνα έχει συγχρηματοδοτηθεί από την Ευρωπαϊκή Ένωση (Ευρω-

παϊκό Κοινωνικό Ταμείο - ΕΚΤ) και από εθνικούς πόρους μέσω του Επιχειρησια-

κού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» του Εθνικού Στρατηγι-

κού Πλαισίου Αναφοράς (ΕΣΠΑ) – Ερευνητικό Χρηματοδοτούμενο Έργο: Ηρά-

κλειτος ΙΙ . Επένδυση στην κοινωνία της γνώσης μέσω του Ευρωπαϊκού Κοινω-

νικού Ταμείου. 

 

  



iii 

Δημοσιευ σεις  
 

 

Δημοσιεύσεις και ανακοινώσεις σε συνέδρια που προέκυψαν 

κατά την εκπόνηση της διατριβής 

 

1. Koumakis L., Potamias G., Tsiknakis M., Zervakis M. and Moustakis V. “In-

tegrating Microarray Data and GRNs.” Methods in Molecular Biology (un-

der review). 

2. Koumakis L., Potamias G., Sfakianakis S., Moustakis V., Zervakis M., Graf N. 

and Tsiknakis M. “miRNA based pathway analysis tool in nephroblastoma 

as a proof of principle for other cancer domains.” Under review for the 

14th IEEE International Conference on BioInformatics and BioEngineer-

ing (BIBE-2014). 

3. Kalantzaki, K., Lefteris Koumakis, Ekaterini S. Bei, M. Zervakis, George Po-

tamias, and Dimitris Kafetzopoulos. “Experimental model construction 

and validation of the ErbB signaling pathway.” In Bioinformatics and Bio-

engineering (BIBE), 2013 IEEE 13th International Conference on, pp. 1-4. 

IEEE, 2013. 

4. Koumakis, L., Moustakis, V., Zervakis, M.E., Kafetzopoulos, D., & Potamias, 

G.A. “Coupling Regulatory Networks and Microarays: evealing Molecular 

Regulations of Breast Cancer Treatment Responses.” Artificial Intelli-

gence: Theories and Applications. Lecture Notes in Computer Science, 

7297, 239-246 (2012).  

5. Koumakis, L., Potamias, G.A., Zervakis, M.E., & Moustakis, V.A. (2011). “In-

tegrating microarray data and gene regulatory networks: Survey and crit-

ical considerations.” 10th International Workshop on Biomedical Engi-

neering. Kos, Greece 5-7 October 2011.  

  



iv 

Abstract 
 

More than a decade after the completion of the Human Genome Project, advances 

in genome research and biotechnology have influenced drastically the concept of 

disease diagnosis and treatment. In this context, the improvement of high 

throughput technologies, such as microarrays, caused a fundamental transfor-

mation in the research of various diseases (e.g. cancer). Microarrays present a 

powerful tool to study the molecular basis of the genesis and progression of dis-

eases, and has advanced life scientists’ ability not only to detect but also to quan-

tify simultaneously the expression of thousands of genes for various diseases and 

phenotypes. 

Initial expectation was that microarrays would reveal specific gene co-

expression patterns (gene signatures or, gene-biomarkers) for various pheno-

types, but the utility of gene-expression profiles seems to be bounded by a num-

ber of limitations, mainly related to: (a) the variation and heterogeneity of the 

examined tissues - when comparing two different tissue samples, the potential 

differences in gene-expression levels is a manifestation of all the cell types pre-

sent in that sample, making the induced gene-signatures amenable to the specific 

tissues examined; (b) the different microarray platforms utilised as well as the 

different experimental protocols followed are facts that make really difficult to 

combine gene-expression datasets form heterogeneous platforms and different 

studies; and (c) the great imbalance between the huge number of transcripts and 

genes (tens of thousands) and the relatively small number of available sample 

cases (hundreds). In addition, the utilization of ‘knowledge-ignorant’ feature-

selection approaches does not guarantee the ‘biological validity’ of the result (se-

lected gene-biomarkers). In other words, focusing just on highly differential 

genes might not be the optimal process to follow. The aforementioned observa-

tions have being reported and justified by various studies in the literature. 

Currently bioinformatics community focuses on more ‘knowledge-aware’ and 

enhanced methods for selecting genes from microarray data. These methods, aim 

to guide the gene-selection process by taking advantage and ‘amalgamating’ 

knowledge from other established biological sources, such as molecular path-

ways, and especially gene regulatory networks (GRNs). In cells thousands of 

genes are expressed and work in concert to ensure the cell's function, fitness, 

and survival. The gene relationships have been mapped onto GRNs that can be 

interrogated to gain insight into the mechanisms of differential gene expression 

at a systems level. These networks can also be used to understand the flow of 
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information in a biological system, to identify circuits that may be used for a spe-

cific purpose, and to model changes in gene expression under different condi-

tions. The study of the function, structure and evolution of GRNs in combination 

with microarray gene-expression profiles has become essential for contempo-

rary biology research.  

The most prominent research line in the respective fields, called pathway analy-

sis, focus on the identification of the most discriminant GRNs (pathways), or 

parts of GRNs (sub-paths) that differentiate between specific phenotypes by in-

tegrating and coupling the underlying gene regulatory machinery of GRNs and 

gene-expression profiles from microarray data. The relevant approaches and 

methodologies increased significantly over the past years, a fact that indicates 

the importance of such an integration endeavour. In addition, all reported meth-

odologies and developed tools have significantly contributed to the identification 

of informative associations between GRNs and target phenotypes. One critical 

drawback of these tools comes from the way the methodologies handle the 

knowledge encoded in GRNs. In most cases each GRN is represented and ma-

nipulated just as the set of the genes engaged in the network. With this approach, 

and following the gene enrichment analysis (GEA) algorithmic processes, one can 

determine which biological pathways are significantly over-represented (i.e., 

more than expected by chance) for a specific phenotype. So, the GEA-like meth-

odologies, are unable to access and do not provide information for parts (i.e., 

sub-paths) of the pathway. Recently, some enhanced GEA-like tools, take ad-

vantage and utilize in their analysis the topology of the GRNs (based on graph-

theoretic approaches and network visualization techniques) but only a limited 

number of the reported so-far methodologies take advantage of the signalling 

information present in a GRN i.e., the topology and the type of involved interac-

tions such as the activation or inhibition relations holding between genes. 

The work reported in this thesis introduces and presents a novel pathway-

analysis methodology. The whole methodology is implanted in a system called 

MinePath (www.minepath.org), a web-based platform aiming to facilitate and 

ease the identification and visualization of differentially active paths or sub-

paths within a GRN, using gene-expression data. The methodology takes ad-

vantage of the topology and the underlying regulatory mechanisms of GRNs, in-

cluding the direction and the type of the engaged interactions (e.g. activa-

tion/expression, inhibition). Each GRN sub-path is interpreted according to 

Kauffman’s principles and semantics: (i) the network is a directed graph with 

genes (inputs and outputs) being the graph nodes and the edges between them 

representing the causal links between them, i.e., the regulatory reactions; (ii) 

each node can be in one of the two states, ‘ON’, the gene is expressed or up-

http://www.minepath.org/
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regulated (i.e., the respective substance being present) or, ‘OFF’, the gene is not-

expressed or targeted from a specific gene; and (iii) time is viewed as proceeding 

in discrete steps - at each step the new state of a node is a Boolean function of the 

prior states of the nodes with arrows pointing towards it. 

The method of MinePath unfolds into five modular steps:  

I. Gene expression values are discretized into two states with values 1 

and 0 for up-regulated and down-regulated genes, respectively, and 

the respective samples’ binary gene-expression sample matrix is 

formed;  

II. each target GRN is decomposed into its constituent sub-paths, e.g., the 

path A  B | C is decomposed into three sub-paths, A  B, B | C 

and A  B | C (note that the overlapping sub-paths are also identi-

fied and formed);  

III. Each sub-path is interpreted on the basis of its functional active-state, 

and it is represented by a binary ordered-vector with active states, 

e.g., sub-path A  B | C is considered functional when A and B 

are up-regulated and C is down-regulated, resulting into its active-

state ordered vector <1,1,0> for the corresponding genes;  

IV. The binary ordered-vector of each sub-path is aligned and matched 

against all (discretized) binary gene-expression sample profiles. A 

sub-path is considered to match a sample if and only if all the corre-

sponding genes in the sub-path exhibit the same active-state in the 

sample, i.e. genes A, B are up-regulated and gene C is down-regulated, 

resulting into the corresponding sample ordered-vector <1,1,0>, 

which matches the sub-path vector. In addition, a binary sub-path ex-

pression matrix is formed with rows the sub-paths, columns the input 

samples, and cell-values 1, 0 for the respective sub-path being func-

tional and active (or hold) for the corresponding sample or not. In 

other words, the sub-paths are taking the place of sample descriptor 

features and are utilized for the construction of sub-path based pheno-

type prediction models.  

V. Finally, the differential power of each sub-path is computed and ap-

propriate parameterized (users may adjust them to his/her explorato-

ry needs). The highly ranked (best matching) sub-paths are kept ac-

cording to user-defined thresholds. Subsequently each sub-path is 

characterized about its phenotype inclination; sub-paths with positive 

differential power values are characterized as inclined to phenotype 1, 
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and those with negative power as phenotype 2. These sub-paths pre-

sent putative evidential molecular mechanisms that govern the dis-

ease itself, its type, its state or other targeted disease phenotypes (e.g., 

histopathological characterization, positive or negative response to 

specific drug treatment).  The system also identifies the sub-paths that 

are functional and always active in both phenotypes. The result is a 

binary sub-path expression matrix analogue to the gene-expression 

matrix where the sub-paths are taking the place of genes playing the 

role of sample descriptors. Then the prediction performance of the se-

lected sub-paths is assessed and reported – the reported prediction 

performance follows a 10-fold cross-validation mode on machine-

learning algorithms, such as C4.5 decision-tree, Naïve Bays, or support 

vector machines (SVMs); as all relevant sub-path expression matrices 

are saved and stored, the user may utilize them to build other predic-

tion models based on his/her preferences and needs. 

MinePath uses binary data structures and Boolean algebra for the calculations, a 

framework that makes it capable to operate in real time even on big datasets 

with hundreds of pathways and tens of thousands of sub-paths.  

Apart from the MinePath methodology, only four other tools/methodologies take 

advantage of the underlying GRN gene regulation mechanisms, namely GGEA, 

SPIA, TEAK and PATHOME. The main difference that contrasts MinePath with 

these approaches resides in the handling of the gene regulatory mechanisms. To 

our knowledge, all aforementioned methodologies score with +1 the activations 

and -1 the inhibitions relations between genes, and each sub-path gets a final 

rank. Contrary MinePath methodology strictly checks and assess the differential 

power of the sub-paths that are functional and hold in one of the phenotypes (as 

exemplified in step IV, above).  

Another limitation of the aforementioned tools is that they lack of a productive 

environment with efficient, interactive and user-friendly visualization operations 

that offers rich exploratory capabilities to the research biomedical scientists to-

wards their quest to reveal and get insight to key phenotype regulatory mecha-

nisms. A key innovation of MinePath, contrary to similar approaches that visual-

ize just the state of genes in a GRN, rest in its exploratory capabilities and espe-

cially in the visualization of active gene–to–gene regulatory relations that differ-

entiate between the target phenotypes. In addition, MinePath supports active 

interaction and re-adjustment of the visualized network and is equipped with 

special operational features enabling live interaction, immediate visualization of 
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regulatory relations and the reduction of GRN’s complexity using special topolog-

ical and network-adjustment functionalities. 

Furthermore, MinePath is the only tool that takes also into account and visual-

izes sub-paths that are fully functional and hold for both phenotypes. These sub-

paths possess no differential power but they may be utilised to link the gap 

(functional interaction) between two sub-paths and reveal long and more com-

plex functional routes in molecular pathways, the interpretation and validation 

of which is biologically more profound e.g. link the gap between extracellular 

gene interactions and final biological reaction such as apoptosis. This feature 

serves the biomedical researchers’ exploratory needs to reveal and interpret the 

regulatory mechanisms that underlie and putatively govern the expression of 

target phenotypes. 

MinePath methodology and the web-platform aim to effectively address all the 

aforementioned issues. MinePath has been thoroughly tested for its stability and 

the methodology was applied on gene-expression and miRNA expression data 

with the target of identifying mechanisms that underlie the expression of specific 

phenotypes (e.g. breast cancer patients according to their ER-status profiles, or 

Wilms’ tumour prediction). The results are quite indicative and strongly sup-

ported by the relevant biomedical literature. In addition, the prediction perfor-

mance of MinePath, using the selected differential sub-paths as sample de-

scriptors, was tested and contrasted with the corresponding performance when 

the original gene-expression data are used – the results are quite satisfactory. 
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Περι ληψη 
 

Υπολογιστικές Προσεγγίσεις για την Ανακάλυψη και Παραγωγή Γνώσης 

από Ετερογενείς Πήγες: Μεθοδολογία και Εφαρμογή σε βάσεις Βιολογι-

κών και Μοριακών Δεδομένων 

Οι σύγχρονες κατευθύνσεις στον τομέα της υγείας και της ιατρικής θέτουν τη 

πρόληψη, και την εξατομικευμένη ιατρική ως κύριες προτεραιότητες. Ωστόσο 

αποτελεί κοινή διαπίστωση το γεγονός ότι για να κινηθούμε προς αυτή τη κα-

τεύθυνση πρέπει να ενσωματώσουμε τη γενετική πληροφορία στη καθημερινή 

πρακτική των επιστημών υγείας. Καθώς εισερχόμαστε στη μεταγονιδωματική 

εποχή όπου η ακολουθία του ανθρώπινου γονιδιώματος έχει αποκωδικοποιηθεί 

εξολοκλήρου, η βιολογία διαθέτει πλέον μεθόδους όχι μόνο για την λεπτομε-

ρειακή απεικόνιση των αλληλεπιδράσεων των γονιδίων αλλά και την δυνατότη-

τα να επεμβαίνει ώστε να μεταβάλει και να καθορίζει, σε τεχνικό επίπεδο, τη 

φυσιολογία του ανθρώπινου οργανισμού μέσω των κυττάρων και συνεπώς των 

ιστών. Για να μπορέσουμε να εκμεταλλευτούμε στο μέγιστο αυτές τις επανα-

στατικές τεχνολογικές εξελίξεις πρέπει πρώτα να κατανοήσουμε και να αποτυ-

πώσουμε τους χαοτικούς δρόμους που ακολουθεί η γονιδιακή έκφραση, καθώς 

μια απλή γονιδιακή μετάλλαξη, ή ένας φαινομενικά ασήμαντος περιβαλλοντικός 

παράγοντας μπορεί να οδηγήσει σε σημαντικές παθολογικές καταστάσεις. Η 

ευέλικτη, λοιπόν, και αποτελεσματική διαχείριση και επεξεργασία της γονιδιω-

ματικής πληροφορίας με σκοπό την εξατομικευμένη ιατρική είναι η νέα πρόκλη-

ση που καλούμαστε να αντιμετωπίσουμε.  

Τα παραπάνω μαζί με την πρόοδο στον γενικότερο συστημικό και υπολογιστικό 

τρόπο που διαχειρίζονται οι ερευνητές όλα τα στοιχεία της μοριακής βιολογίας 

(όπως γονίδια, πρωτεΐνες, ένζυμα, μεταγραφικούς παράγοντες, μεταβολικά και 

κανονιστικά δίκτυα) έχουν δημιουργήσει μία νέα περιοχή έρευνας, την βιοπλη-

ροφορική. Η βιοπληροφορική είναι ο τομέας της θετικής επιστήμης ο οποίος με-

λετάει τη συμπεριφορά βασικών μονάδων της βιολογικής λειτουργίας μέσω υ-

πολογιστικών μεθόδων. Σκοπός της είναι η εύρεση πρωτότυπων και η εφαρμο-

γή ήδη υπαρχόντων αποδοτικών και ευέλικτων αλγορίθμων επεξεργασίας γενο-

μικών δεδομένων ώστε να εξαχθεί η γνώση που ‘ελλοχεύει’ σε αυτά.  

Η πρόοδος της βιοπληροφορικής διευρύνθηκε με την πλήρη χαρτογράφηση του 

ανθρώπινου γονιδιώματος και την εφεύρεση των μικροσυστοιχίων (microar-

rays). Οι μικροσυστοιχίες είναι συσκευές οι οποίες επιτρέπουν την ταυτόχρονη 

μέτρηση της έκφρασης δεκάδων χιλιάδων γονιδίων. Μέσω αυτών μπορούμε να 

μετρήσουμε τη ποσοτική συμμέτοχη ενός μεγάλου μέρους του γονιδιώματος 
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ενός οργανισμού σε κάποιο συγκεκριμένο ιστό. Ο ιστός αυτός μπορεί να είναι 

υγιείς, καρκινικός, υπό θεραπεία, υπό την επίδραση κάποιου φαρμάκου ή τα 

κύτταρά του να υποβάλλονται σε κάποια βιολογική διεργασία όπως διαίρεση ή 

απόπτωση. Σε πειράματα που μετέχουν διαφορετικοί τύποι ιστών μπορούμε να 

εντοπίσουμε και να μετρήσουμε τη διαφορική έκφραση των γονιδίων. Από την 

ανακάλυψη των μικροσυστοιχιών (1996) μέχρι σήμερα έχει γίνει μία τεράστια 

ερευνητική προσπάθεια για την βελτίωση της ακρίβειας τους, την εφαρμογή 

τους σε περισσότερους ιστούς κάτω από ποικίλες συνθήκες αλλά και για την 

ολοκλήρωση της γνώσης που παράγεται με άλλα βιολογικά ευρήματα. Αρχικά η 

προσδοκία ήταν ότι οι μικροσυστοιχίες θα αποκάλυπταν μοναδικά μοτίβα γονί-

διων (γονιδιακές υπογραφές) για διάφορους φαινοτύπους, όμως η επαλήθευση 

των γονιδιακών υπογραφών είναι περιορισμένη, κυρίως λόγω της πολυπλοκό-

τητας και των ετερογένειών που εμφανίζονται σε αυτές. Λόγω των διαφορετι-

κών πλατφορμών που χρησιμοποιούνται στα διάφορα πειραματικά πρωτόκολ-

λα και κυρίως σε πειράματα με μικρά μεγέθη δειγμάτων, η υψηλή διαφορική 

έκφραση ενός γονιδίου δεν απηχεί κατ’ ανάγκη σε μια μεγαλύτερη πιθανότητα 

το γονίδιο να σχετίζεται με τη νόσο και, ως εκ τούτου, εστιάζοντας μόνο στα υ-

ποψήφια γονίδια με υψηλές διαφορικές εκφράσεις μπορεί να μην είναι η βέλτι-

στη διαδικασία για τον διαχωρισμό ή την πρόβλεψη ετερογενών φαινοτύπων. 

Στις μέρες μας η βιοπληροφορική επικεντρώνεται σε πιο ανεπτυγμένες μεθό-

δους για την επιλογή γονιδίων από μικροσυστοιχίες κυρίως με την προσθήκη 

και την επεξεργασία γνώσης από άλλες πηγές, όπως τα γονιδιακά ρυθμιστικά 

δίκτυα (ΓΡΔ) (Gene Regulatory Networks), τα οποία μοντελοποιούν τις αλληλε-

πιδράσεις των γονιδίων κατά τη διάρκεια βιολογικών διεργασιών. Στο κύτταρο 

εκατοντάδες ή χιλιάδες γονίδια εκφράζονται και συνεργάζονται από κοινού για 

να εξασφαλιστεί η λειτουργία και η επιβίωση του. Οι σχέσεις των γονιδίων έ-

χουν χαρτογραφηθεί σε ΓΡΔ τα οποία μπορούν να προσφέρουν γνώση σχετικά 

με τους μηχανισμούς της γονιδιακής έκφρασης σε επίπεδο συστήματος. Αυτά τα 

δίκτυα μπορούν επίσης να χρησιμοποιηθούν για την κατανόηση της ροής των 

πληροφοριών σε ένα βιολογικό σύστημα, για τον εντοπισμό μονοπατιών που 

μπορούν να χρησιμοποιηθούν για συγκεκριμένο σκοπό, και να μοντελοποιήσουν 

αλλαγές στην έκφραση γονιδίων κάτω από διαφορετικές συνθήκες. Η μελέτη 

της λειτουργίας, της δομής και της εξέλιξης των ΓΡΔ σε συνδυασμό με το προφίλ 

γονιδιακής έκφρασης από μικροσυστοιχίες έχει γίνει απαραίτητη για τη σύγ-

χρονη βιολογική έρευνα. 

Οι περισσότερες προσπάθειες για την ολοκλήρωση της γνώσης που εμπεριέχουν 

οι παραπάνω πηγές (μικροσυστοιχίες και ΓΡΔ) αντιμετωπίζουν τα δίκτυα σαν 

μονοδιάστατες πηγές πληροφορίας όπου οι συσχετίσεις των γονιδίων, όπως αυ-

τά μοντελοποιούνται, δεν εμπερικλείονται και συνεπώς δεν αξιοποιούνται. Πρό-
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σφατα, όλο και περισσότερες μέθοδοι επωφελούνται από την τοπολογία των 

δικτύων χρησιμοποιώντας μεθόδους της θεωρίας γράφων, αλλά μόνο ένας πε-

ριορισμένος αριθμός των επί του παρόντος διαθέσιμων μεθοδολογιών, μπορεί 

να αξιοποιήσει τις πληροφορίες ρύθμισης εντός των ΓΡΔ όπως η αλληλεπίδραση 

μεταξύ γονιδίων. Η αλληλεπίδραση αυτή μπορεί να χωριστεί σε πολλές κατηγο-

ρίες, με δύο από αυτές να θεωρούνται οι πιο σημαντικές. Η πρώτη είναι η ενερ-

γοποίηση/έκφραση (activation), όπου ένα γονίδιο ενεργοποιεί κάποιο άλλο, και 

η δεύτερη η αναστολή (inhibition), όπου ένα γονίδιο σταματάει την ενεργοποίη-

ση κάποιου άλλου. Είναι χαρακτηριστικό ότι υπάρχουν γονίδια των οποίων η 

πρωτεΐνη που κωδικοποιούν δεν έχει κάποιο βιολογικό ρόλο πέρα από την ενερ-

γοποίηση ή απενεργοποίηση άλλων γονιδίων. Τα γονίδια αυτά ονομάζονται με-

ταγραφικοί παράγοντες (transcription factors). 

Η παρούσα εργασία στόχο έχει στο να συμβάλει στους σχετικά πρόσφατους το-

μείς της υπολογιστικής βιολογίας και της βιοπληροφορικής με την υλοποίηση 

μεθόδων για μοντελοποιήση της συμπεριφοράς των ΓΡΔ και εισαγωγή τρόπων 

εξόρυξης γνώσης από αυτά. Ο κύριος θεματικός τομέας της διατριβής είναι η 

υπολογιστική μοντελοποίηση των δυναμικών και συστημικών ιδιοτήτων των 

ΓΡΔ καθώς και η δυνατότητα εκμετάλλευσης της πληροφορίας που εμπεριέχουν 

σε συνδυασμό με άλλες σύγχρονες έννοιες της μοριακής βιολογίας όπως είναι η 

γενετική έκφραση. Ποιο συγκεκριμένα: τα μονοπάτια που εκφράζονται ή υπο-

εκφράζονται σε έναν ιστό όπως αυτό αποτυπώνεται από πειράματα με μικρο-

συστοιχίες θα εντοπιστούν μέσω μεθόδων ανίχνευσης διαφορικής έκφρασης. 

Χρησιμοποιώντας σύγχρονες τεχνικές βελτιστοποίησης δικτύων για ανίχνευση 

διαφορικών μονοπατιών από ΓΡΔ  αναμένουμε να απαντήσουμε σε ένα σύνολο 

από βιολογικά ερωτήματα όπως: 

 Ποια δίκτυα ή μονοπάτια «λειτουργούν» και ποια όχι μεταξύ διαφορετι-

κών τύπων ιστών/φαινοτύπων. 

 Ποιες διαδρομές είναι αυτές που ακολουθούνται, και ποιοι παράγο-

ντες/γονίδια ευθύνονται για διαδρομές που δεν φαίνεται να ακολουθού-

νται σε παθογενείς ιστούς ή ακολουθούνται με διαφορετικό τρόπο. 

 Πως μπορούμε τεχνικά να επέμβουμε με σκοπό την επιτάχυνση μίας δια-

δρομής που παράγει κάποια επιθυμητή ένωση (π.χ. ινσουλίνης) ή την α-

ποτροπή μίας μη επιθυμητής διαδρομής (π.χ. απόπτωση). 

Η παρούσα διατριβή δημιούργησε και παρουσιάζει το MinePath 

(www.minepath.org), μια διαδικτυακή πλατφόρμα, που υλοποιεί μια νέα μεθο-

δολογία για τον προσδιορισμό και την οπτικοποίηση των διαφορικά ενεργών 

δικτύων ή μονοπατιών μέσα σε ένα ΓΡΔ, χρησιμοποιώντας δεδομένα γονιδιακής 

έκφρασης. Η πλατφόρμα εκμεταλλεύεται την τοπολογία και τους ρυθμιστικούς 

http://www.minepath.org/
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μηχανισμούς των ΓΡΔ, συμπεριλαμβανομένης της κατεύθυνσης και του τύπου 

των γονιδιακών αλληλεπιδράσεων (π.χ. ενεργοποίηση / έκφραση, αναστολή). Η 

μεθοδολογία εντοπίζει όλα τα λειτουργικά μονοπάτια που εμφανίζονται σε (επι-

λεγμένα και στοχευμένα) ΓΡΔ και εξάγει τα συμβατά με τις τιμές έκφρασης των 

γονιδίων των δειγμάτων που ανήκουν σε διαφορετικό κλινικό φαινότυπο (π.χ., 

νοσούντα εναντίον υγιούς). Η διαφορική δυναμική των επιλεγμένων μονοπα-

τιών υπολογίζεται και η βιολογική σημασία τους αξιολογείται. 

Το MinePath λειτουργεί με ΓΡΔ από τη βάση δεδομένων KEGG (Kyoto 

Encyclopedia of Genes and Genomes). Από την πρώτη τους εμφάνιση το 1995 τα 

δίκτυα της KEGG έχουν χρησιμοποιηθεί ευρέως ως βάση γνώσεων αναφοράς για 

την κατανόηση των βιολογικών μονοπατιών και την λειτουργία των κυτταρι-

κών διαδικασιών. Κάθε ΓΡΔ περιγράφεται ως γράφημα, όπου οι κόμβοι αντι-

προσωπεύουν γονίδια, ομάδες γονιδίων, ενώσεων ή άλλων δικτύων και οι ακμές 

αντιπροσωπεύουν γνωστές βιολογικές αλληλεπιδράσεις γονιδίων όπως ενεργο-

ποίηση, αναστολή, έκφραση, φωσφορυλίωση, ένωση, διάσπαση κλπ. Η επεξερ-

γασία των ΓΡΔ στο MinePath λαμβάνει υπόψη όλες τις πιθανές λειτουργικές αλ-

ληλεπιδράσεις του δικτύου. Διαφορετικές αλληλεπιδράσεις αντιστοιχούν σε 

διαφορετικά λειτουργικά μονοπάτια που μπορεί να ακολουθούνται για την ρύθ-

μιση ενός γονιδίου. 

Κάθε μονοπάτι από τα ΓΡΔ ερμηνεύεται σύμφωνα με τις αρχές και τη σημασιο-

λογία του Kauffman όπου: (i) το δίκτυο είναι ένας κατευθυνόμενος γράφος με 

κόμβους (γονίδια) και οι ακμές μεταξύ αυτών εκπροσωπούν τις αλληλεπιδρά-

σεις μεταξύ τους, δηλαδή τις ρυθμιστικές αντιδράσεις (ii) κάθε κόμβος μπορεί 

να αναπαρίσταται με μία από τις δύο καταστάσεις, «ON», το γονίδιο εκφράζεται 

(δηλαδή το γονίδιο είναι ενεργό), ή «OFF», το γονίδιο δεν εκφράζεται, ή ανα-

στέλλεται από ένα άλλο γονίδιο και (iii) ο χρόνος θεωρείται ως διαδικασία σε 

διακριτά βήματα - σε κάθε βήμα η νέα κατάσταση ενός κόμβου είναι μια δυαδι-

κή λειτουργία των πρότερων καταστάσεων των γονιδίων με ακμές που δείχνουν 

προς την κατεύθυνση αυτή.  

Η μεθοδολογία του MinePath μοντελοποιείται σε πέντε διακριτά βήματα: 

I. Οι τιμές έκφρασης των γονιδίων από τις μικροσυστοιχίες διακριτοποιού-

νται σε τιμές 1 και 0 για τα εκφρασμένα και υπο-εκφρασμένα γονίδια α-

ντίστοιχα, και σχηματίζεται μια δυαδική μήτρα γονιδίων και φαινοτύπων 

II. Κάθε ΓΡΔ αναλύεται σε όλα τα δυνατά μονοπάτια; για παράδειγμα το μο-

νοπάτι A  B | C αναλύεται σε τρία μονοπάτια, τα A  B, B | C και A 

 B | C  



xiii 

III. Κάθε μονοπάτι χαρακτηρίζεται από την λειτουργική ενεργή κατάσταση 

του με τη χρήση δυαδικού διανύσματος. Για παράδειγμα το μονοπάτι A 

 B | C θεωρείται ενεργό όταν A και  B (εκφρασμένα γονίδια) και 

C (υπο-εκφρασμένο γονίδιο), που μας δίνει το δυαδικό διάνυσμα 

<1,1,0> για το μονοπάτι A  B | C 

IV. Τα δυαδικά διανύσματα για όλα τα μονοπάτια αντιπαραβάλλονται με την 

δυαδική έκφραση των γονιδίων από τις μικροσυστοιχίες για κάθε δείγμα. 

Ένα μονοπάτι θεωρείται ότι είναι ενεργό σε ένα δείγμα, αν και μόνο αν 

όλα τα αντίστοιχα γονίδια στο μονοπάτι έχουν την ίδια ενεργό κατάστα-

ση στο δείγμα, δηλαδή, τα γονίδια Α, Β είναι εκφρασμένα και το γονίδιο C 

υπο-εκφρασμένο, που αντιστοιχεί στο διάνυσμα <1,1,0> για τα γονίδια 

<A,B,C> στο δείγμα. Επιπλέον, μια δυαδική μήτρα σχηματίζεται με τις 

σειρές να αναπαριστούν μονοπάτια, τις στήλες τα δείγματα, και οι τιμές 

των κελιών να είναι δυαδικές (1, 0) όπου 1 όταν το αντίστοιχο μονοπάτι 

είναι ενεργό για το αντίστοιχο δείγμα ή 0 αν δεν είναι. Με άλλα λόγια, τα 

μονοπάτια παίρνουν τη θέση χαρακτηριστικών του δείγματος και χρησι-

μοποιούνται για την κατασκευή μοντέλων πρόβλεψης φαινοτύπων. 

V. Στο τελικό βήμα, η διαφορική δυναμική κάθε μονοπατιού υπολογίζεται 

χρησιμοποιώντας ειδικά διαμορφωμένες φόρμουλες. Τα μονοπάτια με τη 

μέγιστη διαφορική δυναμική και πάνω από ένα όριο θεωρούνται τα μο-

νοπάτια που μπορούν να διαχωρίσουν τους δύο φαινοτύπους. Επιπρό-

σθετα, τα μονοπάτια με θετική διαφορική δυναμική χαρακτηρίζουν τον 

ένα φαινότυπο (π.χ. ασθενής) ενώ τα μονοπάτια με αρνητική διαφορική 

δυναμική χαρακτηρίζουν τον δεύτερο φαινότυπο (π.χ υγιής). Το αποτέ-

λεσμα είναι ένας πίνακας μονοπατιών με δυαδικές τιμές για κάθε δείγμα. 

Στη συνέχεια υπολογίζουμε την ικανότητα πρόβλεψης των επιλεγμένων 

μονοπατιών χρησιμοποιώντας την τεχνική αξιολόγησης 10 fold cross val-

idation σε αλγόριθμους μηχανικής μάθησης, όπως C4.5 δέντρο αποφά-

σεων, naïve Bays, ή support vector machine. Το σύστημα επίσης αναγνω-

ρίζει και εξάγει και τα μονοπάτια που είναι πάντα ενεργά (και για τους 

δύο φαινοτύπους) χωρίς να τα λαμβάνει υπόψιν του στα μοντέλα πρό-

βλεψης. 

Το MinePath χρησιμοποιεί δυαδικές δομές δεδομένων και άλγεβρα Μπουλ για 

τους υπολογισμούς, καθιστώντας το ικανό να αναλύσει σε πραγματικό χρόνο 

δεδομένα από μεγάλες κλινικές δοκιμές (με μικροσυστοιχίες) σε συνδυασμό με 

εκατοντάδες ΓΡΔ και δεκάδες χιλιάδες μονοπάτια. Η μεθοδολογία αυτή αναδει-

κνύει τα ενεργά και μη ενεργά μονοπάτια σε ΓΡΔ ανα φαινότυπο. Αυτά τα μονο-

πάτια αναδεικνύουν μοριακούς μηχανισμούς που διέπουν την ίδια την ασθένεια, 
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τον τύπο, την κατάσταση ή άλλους εστιασμένους φαινοτύπους όπως απόκριση 

ή μη σε ειδικές θεραπείες. 

Εκτός από την προτεινόμενη μεθοδολογία, μόνο τέσσερα άλλα εργαλεία / μέθο-

δοι εκμεταλλεύονται τους μηχανισμούς γονιδιακής ρύθμισης στα ΓΡΔ, τα GGEA, 

SPIA, TEAK και PATHOME. Η κύρια διαφορά της προτεινόμενης μεθοδολογίας 

από αυτά τα τέσσερα συστήματα είναι ο χειρισμός των γονιδιακών ρυθμιστικών 

μηχανισμών. Όλες οι άλλες μεθοδολογίες μετράνε με +1 τις ενεργοποιήσεις και -

1 τις αναστολές. Κάθε μονοπάτι παίρνει ένα τελικό αποτέλεσμα το οποίο χρησι-

μοποιείται επίσης ως μια φόρμουλα κατάταξης. Αντίθετα, η προσέγγιση μας ε-

λέγχει και λαμβάνει υπόψη μόνο μονοπάτια που είναι πλήρως λειτουργικά 

(σύμφωνα με τις σχέσεις των γονιδίων και τις εκφράσεις τους). 

Ένας άλλος βασικός περιορισμός με τη χρήση αυτών των μεθόδων είναι η έλ-

λειψη ενός παραγωγικού περιβάλλοντος με αποτελεσματικό, δια-δραστικό και 

φιλικό προς το χρήστη τρόπο απεικόνισης που να προσφέρει διερευνητικές ικα-

νότητες για την κατανόηση των ρυθμιστικών μηχανισμών των φαινοτύπων. Σε 

αντίθεση με παρόμοιες προσπάθειες, οι οποίες απεικονίζουν την κατάσταση των 

γονιδίων σε ένα ΓΡΔ, μια βασική καινοτομία της πλατφόρμας MinePath έγκειται 

στις δυνατότητες απεικόνισης και ειδικά, στην οπτικοποίηση των ενεργών γονι-

διακών ρυθμιστικών σχέσεων που διαφοροποιούν τους υπό μελέτη φαινοτύ-

πους. Το MinePath υποστηρίζει ενεργή αλληλεπίδραση με τα οπτικοποιημένα 

δίκτυα όπως η εκ νέου ρύθμιση της τοπολογίας τους και είναι εξοπλισμένο με 

ειδικά λειτουργικά χαρακτηριστικά που επιτρέπουν άμεση αλληλεπίδραση, ά-

μεση απεικόνιση των ρυθμιστικών σχέσεων και τη μείωση της πολυπλοκότητας 

των ΓΡΔ χρησιμοποιώντας ειδικές λειτουργίες τοπολογίας. 

Επιπρόσθετα, η προτεινόμενη μεθοδολογία είναι η μόνη που λαμβάνει υπόψη 

και οπτικοποιεί μονοπάτια πλήρως λειτουργικά και για τους δύο φαινοτύπους. 

Αυτά τα μονοπάτια δεν έχουν καμία διακριτική αξία αλλά μέσα σε ένα ΓΡΔ τα 

μονοπάτια που είναι πάντα ενεργοποιημένο μπορεί να συνδέσουν το κενό (λει-

τουργική αλληλεπίδραση) μεταξύ δύο μονοπατιών και να αποκαλύψουν ένα 

πλήρες λειτουργικό μονοπάτι που είναι βιολογικά πολύτιμο όπως για παράδειγ-

μα η σύνδεση του χάσματος μεταξύ λειτουργικών εξω-κυτταρικών γονιδίων και 

ενός τελικού μηχανισμού κυτταρικής λειτουργίας (απόπτωση, νέκρωση, πολλα-

πλασιασμός, κτλ). 

Η μεθοδολογία του MinePath και η διαδικτυακή της υλοποίηση έχει ως στόχο 

την αποτελεσματική αντιμετώπιση αυτών των ζητημάτων. Η μεθοδολογία ε-

φαρμόστηκε  σε μικροσυστοιχίες γονιδίων και miRNAs με στόχο την ανάδειξη 

πιθανών μηχανισμών που διέπουν και ρυθμίζουν την ανταπόκριση σε θεραπεία 

συγκεκριμένων φαινοτύπων (π.χ. ασθενείς με καρκίνο του μαστού, σύμφωνα με 
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το προφίλ τους σε υποδοχείς οιστρογόνων, ή την πρόβλεψη της ασθένειας 

Wilms' tumor). Τα αποτελέσματα είναι αρκετά ενθαρρυντικά και υποστηρίζο-

νται από τη σχετική βιοϊατρική βιβλιογραφία. Οπλισμένο με τα παραπάνω χα-

ρακτηριστικά, το MinePath εξυπηρετεί διερευνητικές ανάγκες ερευνητών για 

την ανακάλυψη ρυθμιστικών μηχανισμών που αποτελούν τη βάση και ορίζουν 

την έκφραση συγκεκριμένων φαινοτύπων. 
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1. Introduction 

More than a decade after the completion of the Human Genome Project1, advanc-

es in genome research and biotechnology (omics-comprehensive analysis plat-

forms) have influenced drastically the concept of disease diagnosis and treat-

ment. Genome sequencing identified approximately 22.000 genes in human De-

oxyribonucleic acid (DNA) and determined the sequence of the about 3,2 billion 

chemical base pairs that make up human DNA. To overcome complexity, scien-

tists developed tools and techniques to map and handle the massive volumes of 

data.  

The two of the most important and significant genomic data sources come from 

microarray gene-expression experiments and respective databanks and from 

molecular pathways and gene regulatory networks (GRNs) stored and curated in 

public as well as in commercial repositories. The association of these two 

sources aims to give new insight in disease understanding and reveal new mo-

lecular targets in the treatment of specific phenotypes. 

1.1. Microarrays 

A DNA microarray (also commonly known as DNA chip or biochip) is a collection 

of microscopic DNA spots attached to a solid surface. Scientists use DNA micro-

arrays to measure expression levels of large numbers of genes simultaneously or 

to genotype multiple regions of a genome. DNA microarray is a widely used tool 

to analyse genome-wide messenger ribonucleic acid (mRNA) expression levels 

within a particular sample. 

Most common type of microarrays is the two colour, which measures tens of 

thousands of expressions on a single chip and use two colours to differentiate 

[1]. Applications of microarrays include measuring gene expression in different 

developmental stages, identifying biomarkers for particular phenotypes or dis-

eases and monitoring treatment response. The process of expression data analy-

sis encompasses three major categories: 

I. The first one is “class comparison”, in which expression levels from two or 

more different types of samples are compared in order to identify differ-

entially expressed genes between these classes. Most such experiments 

are of the case/control type and try to identify the genes that contribute 

to a particular phenotype, for example breast cancer tissue versus normal 

                                                        
1 http://www.genome.gov/10001772 (last day visited 11/08/2014) 

http://www.genome.gov/10001772
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tissue [2]. Other experiments may focus on the differences in downstream 

gene expression following a gene deactivation due to a mutation, or artifi-

cial gene silencing methods, in order to gain insight into the function of 

that particular gene [3]. 

II. The second one is “class discovery”, which can be applied to a collection of 

samples that share a common phenotype. Clustering techniques such as 

hierarchical clustering or k-means are used to generate molecular sub-

groups that share common features and can be used as diagnostic classifi-

ers [4]. A well-known example is the classification of breast cancer into 

distinct phenotypes [5]. 

III. The last category is “class prediction”. Two or more predefined classes of 

samples are needed in order to construct the classifier using their expres-

sion profiles. Unknown samples can then be matched to one of the classes, 

by comparing their expression profile to the profiles of the known ones. 

Common class assignment techniques are nearest neighbour algorithms, 

support vector machines and decision trees. Such an example is the pre-

diction of the existence of BRCA1 and BRCA2 mutations in breast cancer 

samples [6]. 

A limitation of microarrays is that most of the datasets contain noisy data or var-

ious types of systematic errors [7]. Another limitation relates to the learning de-

ficiencies of inference algorithms where we have (i) the ‘curse of dimensionality’- 

the number of features characterizing these data is in the thousands or tens of 

thousands and (ii)  the‘ curse of sparse dataset’- the number of samples is limited 

[8]. Nevertheless, a lot of experiments and algorithms have been published try-

ing to identify the most promising group of genes for specific phenotypes. 

1.2. Gene Regulatory Networks 

System biology is an area that studies the interactions between the components 

of biological systems and the behaviour of the systems into specific functions. It 

provides a global view of the dynamic interactions in a biological system. On the 

molecular level the purpose of systems biology is to ascertain the interactions 

and dynamic behaviour of molecules within a cell. The molecular mechanisms 

determine how cells interact and how they develop and maintain higher levels of 

organization and function. Systems biology tries to formulate these mechanisms 

in mathematical models. 

Biological pathways represent complex reactions at the molecular level in living 

cells. Based on the overall effect they have on the functioning of an organism, 

pathways may be divided into several different categories. Three main categories 

are:  
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 metabolic pathways  

 gene regulatory networks/pathways 

 signal transduction pathways 

Current study focuses on the gene regulatory networks but can be extended to 

other pathway categories too. 

A GRN is a collection of DNA segments in a cell that interact with each other (in-

directly through their RNA and protein expression products) and with other sub-

stances in the cell, thereby governing the rates that genes in the network are 

transcribed into mRNA.  

Typically GRNs are represented as graphs, consisting of nodes and edges. The 

network by itself acts as a mechanism that determines cellular behaviour where 

the nodes are genes and edges are functions that represent the molecular reac-

tions between the nodes. Each gene is represented by a node in a directed graph. 

Each node (gene) can have two states: on or off where on corresponds to a gene 

been expressed and off corresponds to a gene not expressed. An edge in a path-

way usually represents a relationship or some form of interaction between the 

nodes. The interaction could be of many types such as activation, inhibition, ca-

talysis, binds to, co-cited. An indicative example of the “pathways in cancer” GRN 

from the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database is shown 

in Figure 1. More details regarding the KEGG pathways notations can be found in 

the   
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Appendix I (KEGG pathways). 

 

Figure 1: Pathways in Cancer GRN from KEGG 

1.3. Integrating microarrays and gene regulatory 

networks 

In recent years, high throughput data capture technologies such as microarray 

experiments have vastly improved life scientists’ ability to detect and quantify 

gene, protein and metabolite expression. Furthermore, systems biology studies 

the behaviour of biological components such as molecules, cells, organisms or 

entire species. The primary aim of systems biology is to use and discover a com-

putational model with genes, proteins and cells interacting with each other and 

reproducing the organism’s function. GRNs are part of systems biology dealing 

with the modelling of genes interactions in a cell. These models have been devel-

oped to capture the GRNs in a mathematical way. Most of the gene regulatory 

networks are based on laboratory experimental observations, which make the 

generation and validation of such networks a very difficult and time-consuming 

task.  

An important requirement for the biologists is the need to associate microarray 

data with gene regulatory networks diagrams to get the most biologically rele-

vant insights from the data. Using GRNs information in microarray data analysis, 

scientists aim to extract more accurate and meaningful results. In a general set-

ting, given a certain network or part of it (a sub-network), a particular gene-
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selection processes could focus just on the genes participating in the network, or 

the network participating genes could be as-signed prioritized.  

On the other side, systems biology community took advantage of the human ge-

nome and the microarray technology to reconstruct and validate gene regulatory 

networks in an automatic way. Strong associations of genes in microarray data 

could be candidates for gene to gene interactions in a regulatory network.  

Another area that combines GRNs and microarray data, tries to identify the most 

discriminant GRNs for specific phenotypes. The phenotype information is ex-

tracted from microarrays and the evaluation of the most discriminant GRNs is 

based on the value of each gene in the GRNs as it is expressed in microarray data. 

Figure 2 captures the main areas that combine microarray data and GRN 

knowledge, i.e., their topology and the gene to gene underlying interactions. 

 

Figure 2: Scientific areas that combine GRNs and microarrays. 

1.4. Problem definition 

Microarray technology has advanced life scientists’ ability not only to detect but 

also to quantify gene-expressions for targeted phenotypes. Initial expectation 

was that microarrays would reveal specific gene co-expression patterns (gene 

signatures) for various phenotypes, but the utility of gene-expression profiles 

seems to be bounded to a number of limitations, mainly because of the complexi-

ty and the individual variations and heterogeneities associated with the induced 

gene-signatures [9], [10]. 
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Figure 3 provides an artificial but indicative example, of the limitations in analys-

ing solely gene-expressions data. Sample cases 1, 2 and 3 are assigned to the 

'POS' class and samples case4, 5 to the 'NEG' class. At first sight we may observe 

that no sole gene or no group of genes can discriminate between the two classes 

(‘POS’ and ‘NEG‘). Inducing an un-pruned decision-tree could prove this; all the 

tree-branches conclude to multi-class assignments. 

 

Figure 3: Gene expression data example. Rows represent genes, columns cases in two categories 
(POS and NEG), ON represents up-regulated gene for the specific case and OFF down-regulated gene. 

Since the initial expectations have been limited, bioinformatics and systems biol-

ogy research communities focus on more enhanced methods that utilize 

knowledge from known and established molecular pathways, especially in the 

form of gene regulatory networks and try to combine and couple such 

knowledge with gene-expression data.  

A performance evaluation of such methods concluded that GRNs encompass ad-

ditional biological features, such as the network’s topology and the underlying 

gene to gene interactions and may efficiently address statistical barriers in gene 

selection [11]. In particular, gene interaction knowledge solves the major prob-

lem of conflicting constrains when two significantly up-regulated genes increase 

the enrichment of the gene-set in expression data, even if the first gene inhibits 

the other in a GRN. 

Figure 4 highlights the paradigm shift from the mining of differential genes to the 

mining of GRN functional sub-paths. Using the previous example we match our 

samples against known sub-paths of GRNs. The same gene expression example is 

shown in the upper part and the calculation based on sub-paths is shown on the 

bottom of the figure. The first sub-path (IL-1R  TRADD) satisfies cases 1,2,3,5. 

Second sub-path (IL-1R  TRADD --| FLIP) satisfies the cases case1, case2, case3 

only. Third sub-path satisfies all samples and the forth sub-path does not satisfy 

any case. The √ symbol indicates that the second sub-path (Sub-path2) yields the 
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maximum differential power and it contains a potential function differentiation 

since it is consisted only with samples that belong to the ‘POS’ class. In the figure, 

‘’ represents an activation (if source gene is “ON” then the target gene is “ON” 

too) and ‘|’an inhibition (target gene has the opposite expression of the source 

gene e.g. “ON”| “OFF” or “OFF”| “ON”). Furthermore, the regulatory finger-

print reflected by this sub-path could be considered to cause and in a way to 

‘govern’ the specific expression status of the genes. 

 

Figure 4: Matching functional sub-paths and gene-expression profiles. Upper part the example from 
figure 3 and on the bottom the shift from genes to sub-paths and the expressions in the specific cases 

Barabási et al in their review [12] stated that “Given the functional interdepend-

encies between the molecular components in a human cell, a disease is rarely a 

consequence of an abnormality in a single gene, but reflects the perturbations of 

the complex intracellular and intercellular network that links tissue and organ sys-

tems”. The authors concluded that there is progress towards a reliable network-

based approach to disease but is currently limited by the incompleteness of the 
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available interactome map (the whole set of molecular interactions in a particu-

lar cell) identifying also the limitations of the existing methodologies and tools to 

explore the role of networks in the molecular understanding of the disease. 

GRNs knowledge, as it relates to specific phenotype, necessarily implies that a 

key molecular target should be considered within the framework of its network. 

A network focus enables us to more effectively infer key transcriptional changes 

related to the specific phenotype by examining multiple downstream (or cross-

talk) effectors of the target [13]. The current gene set analysis (GSA) tools utilize 

mainly over-representation analysis (ORA), which reports the enrichment of 

functional groups (for example, gene sets) for the genes of interest. Such tools 

compromise the connectivity in favour of computational simplicity that is based 

on cellular components and not their connectivity (topology and the type of in-

teractions) [14]. Most pathway analysis tools use the expression changes meas-

ured in high-throughput experiments only to identify pathways with unexpect-

edly high number of differentially expressed genes using ORA approaches or 

pathways whose genes are clustered in the ranked list of differentially expressed 

genes, but not to directly estimate the impact of such changes on specific path-

ways [15]. So, ORA techniques cannot distinguish cases that a subset of genes is 

differentially expressed just above the detection threshold from cases that the 

same genes are changing by many orders of magnitude.  

Furthermore, probably the most important current limitation is that the 

knowledge embedded in GRNs concerning the genes interactions is largely unex-

ploited. The very purpose of the pathway diagrams is to capture our current 

knowledge of how genes interact and regulate each other on various pathways. 

However, the existing analysis approaches consider only the sets of genes in-

volved on these pathways, without taking into consideration their topology [15]. 

And last but not least, some genes have multiple functions and are involved in 

several pathways but with different roles. 

1.5. MinePath approach 

Our methodology, called MinePath, relies on a novel GRN processing approach 

that takes into account all possible functional interactions present in the net-

work. We are inspired and guide our approach by a statement made by 

Geistlinger et al [16], namely: “As the sign of gene expression changes and the di-

rection of regulatory interactions are so far not taken into account, substantial fea-

tures of the data are still ignored and the dynamics of the transcriptomic system 

are not realistically reflected. Activation and inhibition are essential regulatory 

mechanisms in the transcriptional machinery of the cell and are causes for up- and 
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down-regulation of particular genes.”  In this setting, gene-expression profiles 

and their phenotype assignments are extracted form microarray data and all 

sub-paths of the GRNs are assessed and evaluated for their differential ability to 

discriminate between the target phenotypes, and the selection of the most in-

formative ones.   

Having in our disposal the sub-paths resulted from the functional decomposition 

of the GRN and the gene expression data we can precede to the identification of 

the sub-paths that are functionally differential. By functionally differential we 

define the sub-paths that are functional in one phenotype and non-functional in 

the other. Our purpose is to locate those paths that exhibit a high differential 

ability and power to discriminate between the phenotypes assigned to the sam-

ple cases of a microarray experiment. 

MinePath takes advantage of interactions between genes (e.g. activation, inhibi-

tion, association etc.). A sketch outline of our approach goes as follows (as shown 

in Figure 5): initially we locate all functional sub-paths encoded in GRNs and we 

try to assess which of them are compatible with the expression status of the 

genes for the input samples that belong to different phenotypes (clini-

cal/histopathological categories, diseases, prognostic states etc.); then the differ-

ential power of the selected sub-paths is computed and their biological relevance 

is assessed. The whole approach is applied on a set of microarray studies with 

the target of revealing putative regulatory mechanisms that govern the treat-

ment responses of specific phenotypes.  
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Figure 5: MinePath abstract flow of operations. From top to bottom, we start with pathways decom-
position into sub-paths, we enrich with microarray expression data and we identify the most discri-
minant sub-paths. 

In other words, the quest is for the sub-paths that exhibit high matching scores 

for one of the phenotypic class and low matching scores for the other. This is a 

paradigm shift from the mining of differential genes to the mining of GRN func-

tional sub-paths. We applied our coupled GRN and gene-expression data analysis 

methodology on a set of microarray studies with the target of revealing putative 

regulatory mechanisms that govern the targeted phenotypes.  

1.5.1. Contribution beyond the state of the art 

MinePath (www.minepath.org) is a web-based platform that implements a novel 

methodology for the identification and visualization of differentially active paths 

or sub-paths within a GRN, by coupling and analysing gene-expression data in 

the light of the regulatory machinery reflected in the network. The platform 

takes advantage of the topology and the regulatory mechanisms of GRNs, includ-

http://www.minepath.org/
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ing the direction and the type of the involved interactions. The methodology ini-

tially locates all functional sub-paths encoded in selected and targeted GRNs and 

tries to identify which of them are compatible with the expression status of 

genes in the given sample cases assessing at the same time the differential ability 

of these sub-paths to discriminate between the cases’ phenotypes. 

Apart from the proposed methodology, only a limited number of tools take ad-

vantage of the underlying GRN gene regulation mechanisms. The main difference 

of MinePath from these methodologies is the handling of the gene regulatory 

mechanisms. In general, all relevant existing systems and tools follows a scoring 

methodology in which each gene to gene network relation is scored according to 

its status in the gene-expression data, with activations to receive a ‘+1’ and inhi-

bitions a ‘-1’ score depending if they hold in the gene-expression data. A final 

score is calculated and the sub-paths are accordingly ranked. In the contrary, the 

MinePath approach strictly checks and takes into account only sub-paths that are 

functional according to the gene relations and the expression values status in the 

given sample cases. Each sub-path is considered as functional according to its 

structure and type of the interactions it involves. For example, the simple activa-

tion relation A  B between two hypothetical genes A and B is considered as 

functional only and only if gene A is up-regulated (‘ON’) and gene B is down-

regulated (‘OFF’). More complex patterns of gene expression statuses could be 

formed for more complex paths, i.e., the sub-path A  B | C is considered as 

functional only and only if genes A and B are in the ‘ON’ status and gene C in the 

‘OFF’ status. That is, as gene B is up-regulated and the relation states that it in-

hibits gene C, then for the inhibition relation to holds, gene C should be ‘OFF’. 

Then, the samples are scanned to check and count the number of samples in 

which the gene A is ‘ON’ and gene B is ‘OFF’. Finally, a class-inclination formula is 

applied to assess if the relation, or the whole sub-path, holds mostly (even exclu-

sively) for one class (phenotype) or the other. 

MinePath uses binary data structures and Boolean algebra for the calculations, 

so that it is capable of operating in real time even on large datasets with hun-

dreds of pathways and tens of thousands of sub-paths.  This approach is quite 

innovative, and according to our knowledge no other similar system applies it. 

We consider functional sub-paths to present evidential molecular mechanisms 

that govern the phenotype itself, and in a way uncover putative regulatory fin-

gerprints for it. 

Furthermore existing differentially expressed pathway analysis systems suffer 

from insufficient visualization features, a fact that does not facilitate inspection 

of results and limit the users’ exploratory potentials. Some systems utilize path-
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way visualization approaches to overcome this problem but since these are 

based on a gene-oriented approach, are unable to handle differentially expressed 

pathways or even differentially expressed sub-paths. Such methodologies visual-

ize just the pathway genes using some colour scale or colour-coding schema and 

neglect the gene interactions. This problem is apparent even for small pathways. 

For example, the inhibition relation A | B (A inhibits B; A, B represent genes) 

could be considered as active in two cases: when A and B (up-regulation of A 

inhibits B and makes it down-regulated), and when A and B (down-regulation 

of A leaves B unaffected and/ or turns it up-regulated). For such different cases, 

different colors should be assigned to the genes. The situation becomes even 

more complicated when one has to visualize the phenotype inclination of an in-

teraction, e.g., an inhibition being active for one phenotype and not for another. 

MinePath overcomes the aforementioned problems offering an effective Web-

based platform for the identification and visualization of differentially active 

GRN sub-paths in real time. MinePath supports live interaction, immediate visu-

alization of regulatory relations and it is equipped with special topological and 

network-adjustment functionalities. To the best of our knowledge, MinePath is 

the only tool that visualizes differentially expressed relations instead of just dif-

ferential genes. 

Furthermore the MinePath methodology is the only one that takes also into ac-

count and visualizes sub-paths that are functional in both phenotypes. Even if 

such sub-paths possess no discriminant power their presence can link the gap 

(functional interaction) between two different sub-paths and reveal a complete 

functional route that is biologically valuable (e.g. link the gap between extracellu-

lar gene interactions and the final result of the pathway such as apoptosis). This 

feature serves the users’ exploratory needs to reveal the regulatory mechanisms 

that underlie and putatively govern the expression of specific phenotypes.  

More details and examples can be found in the Methodology chapter. 

1.6. Dissertation structure 

The dissertation is organized as follows: 

 Chapter 2: A literature review of existing methods and tools supporting 

the integration of gene expressions and gene regulatory networks is pro-

vided. We start with gene regulatory network reconstruction methods fo-

cusing on the reconstruction using microarray experiments. Then we re-

port methods and tools for gene expression data analysis based on gene 

regulatory network knowledge (Gene Set Analysis section) and we review 
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algorithms and tools for gene regulatory networks selection using micro-

array data (Discriminant pathways and sub-pathways section). 

 Chapter 3: A detailed description of the proposed methodology and the 

overview of the MinePath approach are provided. All the learning tech-

niques and the tools utilised and appropriately customised for this work 

are introduced. The goal of MinePath is to identify a set of sub-paths that 

differentiate two experimental groups (for example, healthy vs diseased) 

by considering both prior knowledge about gene regulations and experi-

mental gene expression data. 

 Chapter 4: A discussion of the experiments, including testing and evalua-

tion, is presented along with results that clearly highlight the effective-

ness of the MinePath approach towards molecular mechanisms identifica-

tion. The evaluation scenarios and their implementation on experimental 

data are described and a discussion of the results is reported. 

 Chapter 5: Summarizes the conclusions of this work. Future work is dis-

cussed as well as the contributions made by this work and the scientific 

publications that have resulted out of it. 
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2. Literature 

In this chapter we survey existing methods that support the different types of 

gene-expression and GRN integration with a focus on methodologies that aim to 

identify phenotype-discriminant GRNs or sub-networks. We present all the re-

lated tools and algorithms in a unified way, using standardized notations in or-

der to reveal their technical details and to highlight their common characteristics 

as well as their particularities. Extensive literature search and analysis led us to 

the conclusion that relevant methodologies increased significantly over the past 

years, a fact that indicates the importance of such an integration endeavour. In 

addition, all reported methodologies have significantly contributed to the identi-

fication of informative associations between GRNs and target phenotypes. 

Currently bioinformatics community focuses on more enhanced methods for 

gene selection on microarrays mainly by adding and amalgamating knowledge 

from other sources, such as GRNs. Integrating GRN information into the class 

comparison, discovery and prediction process is an important issue in bioinfor-

matics, mainly because the provided information possesses a true biological con-

tent. By changing the focus from individual genes to a set of genes or pathways, 

the gene set analysis (GSA) approach enables the understanding of cellular pro-

cesses as an intricate network of functionally related components. A perfor-

mance evaluation of GSA methodologies [11] concluded that the inclusion of ad-

ditional biological features such as topology or covariates would be more useful 

than simple gene selection approaches. In addition, utilizing more domain 

knowledge is likely to reveal more insights in the analysis. 

Similarly to bioinformatics, systems biology community took advantage of the 

human genome and the microarray technology to reconstruct and validate gene 

regulatory networks in an automatic way. GRN reconstruction or reverse engi-

neering aims toward the inference GRN models from data (in most of the cases 

from gene expression data). In the literature a large number of computational 

methods are reported with the target of inferring gene regulatory networks from 

expression data [17]. 

A special focus of the review reported here concerns a relatively new line of re-

search in the field: the identification of the most discriminant GRNs, or parts of 

GRNs (i.e., sub-networks) that differentiate between specific phenotypes by cou-

pling GRNs and microarray data. Assessment of the discriminant power of (sub)-

networks is based on the identification of those genes whose expression values 

are consistent, i.e., could be justified, by their corresponding interaction pattern 
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in the target GRN. Figure 6 captures and illustrates the main research areas that 

combine microarray data and GRN knowledge. 

 

Figure 6: Integration of microarray data with GRNs. Columns represent the two scientific areas, 
while rows map the data from these areas and the respective methodologies based on combinations 
of the data.  

The initial search revealed that a lot of publications come from specific journals. 

We identified these journals and screened in depth the respective published arti-

cles. The journals that we focused are: (a) the annual Web Server issue of Nucleic 

Acids Research2 and (b) the BMC Systems Biology (Software articles)3. We also 

identified that quite a few methodologies take advantage of the Cytoscape4 plat-

form to visualize and analyse gene regulatory networks. Thus we searched all the 

Cytoscape plugins in order to identify more tools/applications related to the 

identification and assessment of discriminant pathways. 

After removing duplicates from the combined searches, the screening of the two 

journals and the screening of the related Cytoscape plugins, we came up with 

more than 100 unique citations. Most of the citations fall into the advanced Gene 

Set Analysis (GSA) or, into the GRN reconstruction categories (Figure 6). Out of 

these citations, 48 are related to GSEA with the utilization of GRN knowledge, 54 

are related to GRN reconstruction using microarray data and 25 are related to 

discriminant pathways or, sub-pathways. Since this review focuses on methodol-

                                                        
2 http://nar.oxfordjournals.org/content/41/W1.toc#WebServices (last day visited 11/08/2014) 
3 http://www.biomedcentral.com/bmcsystbiol (last day visited 11/08/2014) 
4 http://www.cytoscape.org (last day visited 11/08/2014) 

http://nar.oxfordjournals.org/content/41/W1.toc#WebServices
http://www.biomedcentral.com/bmcsystbiol
http://www.cytoscape.org/
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ogies that target the identification of the most phenotype-discriminant GRNs, the 

citations from the two first categories were rejected and our final pool of meth-

odologies is limited to 25 citations. Here we have to note that such a distribution 

is expected since GSA and GRN reconstruction is the earliest research line in 

which coupling of gene-expression data and gene regulatory networks is utilised. 

As GSA and GRN-reconstruction methods are out of the scope we refer the inter-

ested reader to the related literature reviews [11], [17]. 

2.1. Gene regulatory networks reconstruction 

Biologists use pathways to integrate results from literature, formulate hypothe-

ses, capture empirical results, share current understanding and even run simula-

tions. A common goal of research in the life sciences is to develop pathway mod-

els for biological processes of many different organisms. 

Many studies focus on the problem of GRN reconstruction or reverse engineering 

of GRNs, which is how to construct, update or validate a network from other data 

sources. 

2.1.1. Reconstruction using literature 

Natural language processing (NLP) is a set of techniques that can help facilitate 

analysis, retrieval and integration of textual and electronic information. Recently 

the field of molecular biology has enjoyed an explosive development. As a result 

more and more publications on this field are available to the researchers. Taking 

advantage of the gowning size of documents related to gene interactions many 

researchers have propose automatic pathway identification using scientific pub-

lications.  

Leroy et al [18] proposed a shallow parser, based on natural language pro-

cessing, which captures the relations between noun phrases automatically from 

free text. The corpus of the parser consists of biomedical abstracts stored in a 

document warehouse. Evaluation of the parser has been done from 3 experts of 

the area. Park at el [19] and Daraselia et al [20] proposed two different systems 

to support parsing from MEDLINE. Park at el [19] extracts information about 

protein-to-protein interactions. The methodology of the parser is based on com-

binatory categorical grammar using appositions and compound nouns and ana-

phoric expressions. Daraselia et al [20] introduced a commercial software called 

MedScan, which uses natural language processing to extract interactions be-

tween proteins from related paper abstracts. The system validated using 3.5 mil-

lion MEDLINE abstracts dated after 1988 and extracted 3601 interactions corre-

sponding to 2976 distinct protein–protein interactions. 
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Other methodologies for gene regulatory network reconstruction have been 

proposed using text mining on complete text articles (publications) such as 

Friedman et al [21] who proposed the GENIES system. An NLP parser called 

MedLEE, which was applied to the domain of molecular biology for the extrac-

tion of molecular pathways from journal articles. MedLEE has been adapted to 

the molecular biology domain using a special molecular tag generator called 

term tagger. Another methodology in that direction proposed by Gaizauskas et al 

[22] called Protein Active Site Template Acquisition (PASTA), aims to extract in-

formation about the role of residues in protein molecules using text mining tech-

niques. 

2.1.2. Reconstruction using microarrays 

The study of the function, structure and evolution of GRNs in combination with 

microarray gene-expression profiles and data is essential for contemporary biol-

ogy research. Having in mind that differential expression analysis is a well-

established strategy to screen genes or sets of genes associated with specific 

phenotypes, a lot of efforts focused on the reconstruction of GRNs by exploring 

gene-expression data have been done. Strong associations between genes found 

in microarray analysis can be candidates for gene interactions in a GRN. 

According to microarray analysis new genes and gene associations are proposed 

to be added or deleted in the GRN. Figure 7 gives an example of GRN reconstruc-

tion where microarray data analysis identified a new path from RTK to P13K via 

PAK gene, an association between P13K and PIP3 and an activation of AkPKB 

from PIP3. At the top of Figure 7 we can see the original GRN and at the bottom 

the revised GRN according to a specific microarray dataset. 
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Figure 7: GRN reconstruction using microarray data. From top to bottom: Using known pathways 
and microarray expression data GRN reconstruction methodologies propose new gene to gene rela-
tions (e.g. PAK and AkPKB in the revised pathway).  

An example of GRNs reconstruction using microarrays is RankGRN [23]. 

RankGRN evaluates a number of alternative hypothesises about the structure of 

a regulatory network against microarray data. RankGRN is a useful tool for eval-

uating the merits of different hypothesises on the structure of gene regulatory 

network using existing microarray data. It ranks the hypothetical gene network 

models based on their capability of explaining the microarray data.  

Huang et al [24] proposed two scalable gene regulatory network learning algo-

rithms: a modified information- theory-based Bayesian network algorithm and a 

modified association rule mining algorithm. Two types of evaluation were used 

to assess the practical value of these two techniques in helping researchers ana-

lyse large amounts of gene expression data. The simulation-based evaluation re-

sults indicated that the two techniques could infer about 20% of the relations in 

pre-defined network models.  
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Another methodology related to differentially expressed genes through microar-

ray data and using interactome-transcriptome analysis was proposed by [25]. 

The paper concludes that the up-regulated genes in cancer samples tend to be 

“central hubs” in a network and the genes that are differentially expressed in 

contrast to the surrounding normal tissue, are essential for survival and prolifer-

ation.  

A slightly different approach into that area proposed by Dutta et al [26] called 

PathNet. PathNet is a method for identifying enrichment and association be-

tween canonical pathways in the context of gene expression data. It takes into 

account topological information present in pathways to reveal biological infor-

mation and is available as an R workspace image. PathNet utilizes the connectivi-

ty information in canonical pathway descriptions to help identify study-relevant 

pathways and characterize non-obvious dependencies and connections among 

pathways using gene expression data. It considers both the differential expres-

sion of genes and their pathway neighbours to strengthen the evidence that a 

pathway is implicated in the biological conditions characterizing the experiment. 

As an adjunct to this analysis, the system uses the connectivity of the differential-

ly expressed genes among all pathways to score pathway contextual associations 

and statistically identify biological relations among pathways. 

Very few methods of gene regulatory inference are considered superior, mainly 

because of the intrinsically noisy property of the data, ‘the curse of dimensionali-

ty’ and the lack of knowledge about the ‘true’ underlying structure of the net-

works. 

2.2. Gene Set Analysis 

Gene set analysis (GSA), also called pathway inference, is a widely used strategy 

for gene expression data analysis based on pathway knowledge. GSA focuses on 

sets of related genes and has established major advantages over individual gene 

analyses, including greater robustness, sensitivity and biological relevance. GSA 

methods are better able to detect biologically relevant signals and give more co-

herent results across different studies. GSA incorporates prior knowledge of bio-

logical pathways and other experimental results in the form of gene sets.  

Recently a lot of effort has been done in order to enrich the microarray analysis 

results with other biological data sources. One common approach is the combi-

nation of GRNs with microarray analysis for gene selection. Many methods use 

GRN information as groups (plain list) of associated genes in order to identify the 

most discriminant genes within microarray data (Figure 8 upper left part). Bio-
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logical pathways are effectively reduced to sets of gene sets using a GSA ap-

proach with GRNs as a list of genes. 

Although pathways maps carry important information about the structure of 

correlation among genes that should not be neglected, the currently available 

methods for gene set analysis do not fully exploit it. Recently, more and more 

methods take advantage of the topology of the gene regulatory network based on 

the graph theory and network visualization toolkits. Most of these tools take ad-

vantage of network visualization toolkits and display the discriminant genes 

from GSA methods on predefined gene regulatory networks (Figure 8 middle).  

To our knowledge only a limited number of the published methodologies take 

advantage of the signalling information within the gene regulatory networks (e.g. 

the topology and the type of association between genes activation/inhibition) 

and can provide more biologically accurate interpretation of the data (Figure 8: 

downright part).  

 

Figure 8: Evolution of Gene Set Analysis using GRNs. Initially the GRNs were treated as list of genes 
(left part) then the knowledge of the GRNs topology is taken into account (centre) and currently 
more and more methodologies take advantage of the regulatory mechanisms (right part).  

The following sub-sections report methods, tools or algorithms that use microar-

ray studies and GRN information as lists, topology or regulatory mechanisms in 

order to perform better accuracy at phenotype classification.  A table which 

summarizes the gene set analysis methodologies according to main features such 

as input/data usage, output/purpose of use and type of application and visuali-

zation functionalities can be found in the end of the sub-section 2.2. 
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2.2.1. GSA & gene list from GRNs 

Most of the methods proposed for gene set analysis use GRNs as group of genes 

to find differentially expressed group of genes on phenotype. Even though the 

knowledge from GRNs improves the efficiency of the selection algorithms, these 

methods do not take advantage of the topology of the network and the reac-

tions/relations between genes. Gene regulatory networks are considered to be 

only group/list of genes (Figure 9) and such tools limit down the full list of genes 

in microarrays into the known list of genes from GRNs. 

 

Figure 9: Gene set analysis. From top to bottom: Having microarray expression data, we use GRNs to 
identify the genes that participate into known GRNs and we filter (narrow down) the microarray 
matrix. 

Siu et al [27] proved that correlations among genes in a pathway are valuable 

and cannot be ignored in a gene expression analysis. The methodology is based 

on three statistical algorithms able to combine dependent P-Values of genes 

within a pathway.  

Wang et al [28] proved that differential expression between two groups of sam-

ples is significantly different for genes in the pathway compared with the rest of 

the genes. Wang et al used linear mixed models for the analysis of microarray 

data at the pathway-level. The information used from the pathways is if a gene 
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belongs to a pathway or not (basically if a pair of genes belong to the same path-

way without taking into account the reactions of the pathway). 

One common approach to combine microarray data with pathways is to incorpo-

rate known pathway information to reduce the dimensionality of gene interac-

tions, such as [29] or [30]. Braun et al [29] proposed method identifies pairs of 

gene-pathway that are considered to be highly discriminant on microarray da-

tasets. This method defines the expression of a known pathway via a summary 

value based on principal component analysis and uses KEGG pathways and han-

dles the pathways as group of genes. Tai et al [30] proposed several versions of a 

modified linear discriminant analysis, group regularized discriminant analysis 

that aims to take advantage of existing gene functional groups. The algorithms 

make the assumption that the genes within the same pathway are correlated to 

each other. Methods were tested with simulated and real data and perform well 

compared to other known linear discriminant analysis algorithms for microarray 

analysis. 

Sfakianakis et al [31] proposed a model for integration of gene annotations and 

pathways in order to guide the cluster analysis of gene expression data. The 

model gets information from the Gene Ontology (GO) and KEGG. The methodolo-

gy takes advantage of the knowledge of pathways and creates a covariance ma-

trix according to their existence or absence in pathways. Then an Expectation-

Maximization algorithm is used for the identification of maximum likelihood so-

lutions hidden variables in the model. 

Another model that compares microarray experiments at the pathway level have 

been proposed by Beltrame et al [32] where the authors use pathways as a list of 

genes and computes the probability of a set of pathways to be related to some 

clinical/biological outcome. The proposed methodology for pathway signatures 

is based on the Eu.Gene application.  

2.2.2. GSA with topology information from GRNs 

The web based KEGG tool, Colour and mapper5 is the simplest form of topology 

information on GRNs. The user can set colour to any gene within the gene regula-

tory network (Figure 10). Graph colour coding is a well-known approach that's 

used to simplify larger problems. The topology of a gene regulatory network is 

essential since the value of specific genes (drug targets) mainly because these 

genes can easily be used / manipulated using existing or new drugs. For example, 

a deviation from normal regulatory network topology may reveal the mechanism 

                                                        
5http://www.genome.jp/kegg/tool/map_pathway2.html (last day visited 11/08/2014) 

http://www.genome.jp/kegg/tool/map_pathway2.html
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of pathogenesis [33] and the genes that undergo the most network topological 

changes may serve as biomarkers or drug targets.  

 

Figure 10: Example of the KEGG colour Mapper web application (source 
http://www.genome.jp/kegg/tool/map_pathway2.html)  

Another indicative example from KEGG is the insulin pathway6 as shown in Fig-

ure 11. If the insulin receptor (INSR) is not present, the entire pathway is shut 

off. Conversely, if several genes are involved in a pathway but they only appear 

somewhere downstream, changes in their expression levels may not affect the 

given pathway as much. 

                                                        
6 http://www.genome.jp/kegg-bin/show_pathway?hsa04910 (last day visited 11/08/2014) 

http://www.genome.jp/kegg/tool/map_pathway2.html
http://www.genome.jp/kegg-bin/show_pathway?hsa04910
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Figure 11: The KEGG insulin pathway (source http://www.genome.jp/kegg-
bin/show_pathway?hsa04910) 

Towards that direction a wealth of web based or standalone toolkits that take 

advantage of software platforms for visualizing complex networks exist. Most of 

the solutions rely on the cytoscape7 Network Data Integration, Analysis and Vis-

ualization toolbox. 

Genoscape [34] is an open-source Cytoscape plug-in that visually integrates gene 

expression data sets from GenoScript8, a transcriptomic database and KEGG 

pathways into Cytoscape networks. Genoscape automatically maps most gene or 

gene product identifiers to KEGG identifiers, enabling the import of expression 

data from various sources. When importing KEGG pathways, elements are fil-

tered in order to keep only those nodes corresponding to genes or enzymes. Us-

ing Genoscape, KEGG pathways are displayed as Cytoscape networks. Each 

pathway element is represented as a node. Genoscape generates a visualisation 

style that highlights gene expression changes and their statistical significance 

(Figure 12). The nodes represent genes and are coloured with a classical 

red/green gradient according to the expression ratio level. The size of the nodes 

is enlarged if the corresponding expression ratio is labelled as statistically signif-

icant. 

                                                        
7 http://www.cytoscape.org/ (last day visited 11/08/2014) 
8 http://genoscript.pasteur.fr/cgi-bin/WebObjects/GenoScript (last day visited 11/08/2014) 

http://www.genome.jp/kegg-bin/show_pathway?hsa04910
http://www.genome.jp/kegg-bin/show_pathway?hsa04910
http://www.cytoscape.org/
http://genoscript.pasteur.fr/cgi-bin/WebObjects/GenoScript
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Figure 12: Visualisation of GRN at GenoScape (source [34]) 

A similar approach incorporated Cytoscape is PiNGO [35]. PiNGO implements a 

simple network-based method to find genes associated with processes or path-

ways of interest. Input networks may be gene co-expression networks, protein or 

genetic interaction networks, or integrated networks. Edge weights are not taken 

into account. The candidate genes for each target category are listed along with 

P-values and associated raw counts that give a good indication of the prominence 

of the target category in the candidate gene's neighbourhood. Finally, the output 

network reveals the genes contributed to the discovery of particular candidate 

genes. 

It appears that many publications at GSA and topology information use the Cyto-

scape open source visualization toolkit. Cline et al [36] proposed a protocol that 

explains how to use Cytoscape to analyse the results of mRNA expression profil-

ing and other functional genomics and proteomics experiments, in the context of 

an interaction network obtained for genes of interest. Five major steps de-

scribed: (i) obtaining a gene or protein network, (ii) displaying the network us-

ing layout algorithms, (iii) integrating with gene expression and other functional 

attributes, (iv) identifying putative complexes and functional modules and (v) 

identifying enriched Gene Ontology annotations in the network. Authors also 

made a comparative study of network analysis platforms that can be used for 

expression profiles and cellular networks. 

The caBIG9 project introduced the Differential Dependency Network (DDN) [37]. 

DDN is an analytical tool for detecting and visualizing statistically significant 

                                                        
9 https://cabig.nci.nih.gov (last day visited 11/08/2014) 

https://cabig.nci.nih.gov/
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topological changes in transcriptional networks representing two biological con-

ditions. DDN enables differential network analysis and provides an alternative 

way for defining network biomarkers predictive of phenotypes. DDN has been 

implemented as a standalone Java application to integrate network analysis and 

visualization seamlessly but a Cytoscape plug-in, CytoDDN, also exists. 

Ibrahim et al [38] described a gene selection method, which identifies groups of 

strongly correlated genes that discriminate disease traits. In addition to using 

static predefined pathways knowledge, the method is adaptive in the sense that 

it involves a pathways ranking process to identify the most relevant pathways 

perturbed in a given pathological state and pathway topology.  

A different topological approach, such as the centrality of nodes in the network 

or their tendency to form clusters has been implemented at the TopoGSA [39] 

(Topology-based Gene Set Analysis) web-application10. TopoGSA computes topo-

logical properties for the entire network, the uploaded gene/protein set and 

random sets of matched sizes. The available network topological properties are: 

(i) The degree of a node (gene or protein) is the average number of edges (inter-

actions) incident to this node, (ii) The local clustering coefficient quantifies the 

probability that the neighbours of a node are connected, (iii) the shortest path 

length(SPL) for two nodes, (iv) the “betweenness” of a node that can be calculated 

from the number of shortest paths and (v) the centrality scores are given by the 

entries of the dominant eigenvector of the network adjacency matrix.  

While the previous approaches are useful, the valuable information from GRNs 

such as the inherent regulatory relationships found in biological pathways 

among the different genes has never been incorporated in a gene set analysis 

methodology.  

Table 1 summarizes the gene set analysis methodologies according to main fea-

tures such as input/data usage, output/purpose of use and type of application 

and visualization functionalities. As we can see from the table none of these 

methodologies can identify discriminant sub-paths and all neglect the regulatory 

mechanisms reported in the GRNs. Furthermore, a few methodologies support 

visualization features and only one supports web based interface. 

Table 1: List of Gene Set Analysis methodologies using pathways according to main features such as 
data usage, purpose of use, visualization functionalities and platform information 

                                                        
10 http://bree.cs.nott.ac.uk/R-php-1/PPI (last day visited 11/08/2014) 

http://bree.cs.nott.ac.uk/R-php-1/PPI


27 

  
U

se
 o

f 
m

ic
ro

a
rr

a
y

 d
a

ta
 

U
se

 G
R

N
s 

U
se

 s
u

b
-p

a
th

s 

U
se

 p
a

th
w

a
y

 g
e

n
e

s 

U
se

 t
o

p
o

lo
g

y
 

U
se

 r
e

g
u

la
to

ry
 m

e
ch

a
n

is
m

s 

Id
e

n
ti

fy
 d

is
cr

im
in

a
n

t 
g

e
n

e
s 

Id
e

n
ti

fy
 d

is
cr

im
in

a
n

t 
p

a
th

w
a

y
s 

Id
e

n
ti

fy
 d

is
cr

im
in

a
n

t 
su

b
-p

a
th

s 

W
e

b
 b

a
se

d
 

V
is

u
a

li
za

ti
o

n
 s

u
p

p
o

rt
 

G
e

n
e

 S
e

t 
A

n
a

ly
si

s 

Siu et al [27] √ √ X √ X X √ X X X X 

Wang et al [28] √ √ X √ X X √ X X X X 

Braun et al [29]  √ √ X √ X X √ √ X X X 

Tai et al [30] √ √ X √ X X √ X X X X 

Sfakianakis et al [31] √ √ X √ X X √ X X X X 

Beltrame et al [32] √ √ X √ X X √ X X X X 

KEGG color mapper X √ X X √ X X X X √ √ 
Genoscape [34] √ √ X √ √ X √ X X X √ 
PiNGO [35] √ √ X √ √ X √ X X X √ 
Cline et al [36] √ √ X √ √ X √ √ X X √ 
DDN [37] √ √ X √ √ X X √ X X √ 
Ibrahim et al [38] √ √ X √ √ X √ √ X X X 

TopoGSA [39] √ √ X √ √ X √ √ X X X 

2.3. Discriminant pathways and sub-pathways 

An area that combines GRNs and microarray data, tries to identify the most dis-

criminant GRNs for specific phenotypes. The phenotype information is extracted 

from microarrays and the evaluation of the most discriminant GRNs is based on 

the value of every gene in GRNs as it is expressed in microarray data. 

The study of the function, structure and evolution of GRNs in combination with 

microarray gene-expression profiles and data is essential for contemporary biol-

ogy research. The usual computational task involving microarray experiments is 

the gene selection procedure with GRNs used mainly for data annotation or 

GRNs reconstruction. Due to limitations in DNA microarray technology higher 

differential expressions of a gene do not necessarily reflect a greater likelihood of 

the gene being related to a disease and therefore, focusing only on the candidate 

genes with the highest differential expressions might not be the optimal proce-

dure. A table which summarizes the pathway selection methodologies according 
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to main features such as input/data usage, output/purpose of use and type of 

application and visualization functionalities can be found in the end of the sub-

section 2.3. 

2.3.1. Pathway selection using microarray data  

The straightforward approach for the identification of the most discriminant 

GRNs is to extract phenotype information microarrays and evaluate all the 

known GRNs (from literature or databases such as KEGG) for the identification of 

the most informative GRNs at the specific phenotype. The evaluation is based on 

the value of every gene in GRNs as it is expressed in microarray data.  

Draghici et al [40] proposed a tool called Onto-Express, which automatically 

translate lists of differentially regulated genes into functional profiles. Onto-

Express proposed a methodology for use of gene regulatory networks to find the 

pathways that contain the most discriminate genes (extracted from microar-

rays). The work is based on a combination of microarrays and gene regulatory 

networks (pathways) but the pathways are only used for informative purposes. 

Oncomine [41] is a bioinformatics application for cancer signature identification. 

At version 3 of the application pathway information was added to the system for 

enrichment analysis of gene expressions. The extracted signature from multiple 

microarrays related to cancer reveal pathways that are co-ordinately over ex-

pressed in the respective cancer types. 

Eu.Gene [42] is an application that tries to identify biological pathways transcrip-

tionally affected under experimental conditions. The application can use multiple 

pathway databases and convert them to a common format (Ensembl Gene and 

Transcript IDs). Eu.Gene Analyzer implements two different statistical methods 

to evaluate the pathways that are most affected by differences in gene expression 

observed in a functional genomic experiment: the one-tailed Fisher Exact Test 

and Gene Set Enrichment Analysis (GSEA). 

Adewale et al [43] proposed a statistical analysis of pathways using microarray 

data. Specifically the authors’ handle the microarray data to identify pathways 

associated with the phenotype (e.g. time to death for breast cancer).Genes that 

participate (active at the microarray data) in a pathway make the pathway can-

didate. Then candidate pathways are tested if are significantly associated with 

various phenotype data and finally only the statistically significant pathways 

(group of genes) are selected. 

Ma et al [44] proposed a methodology for the identification of gene pathways 

with predictive power for breast cancer prognosis. The work is based on statisti-
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cal significance methods (p-value) using two quality controls: (i) to compute the 

predictive power of each gene within each pathway (ii) to compute the predic-

tive power of each pathway in multiple datasets. The method works with multi-

ple datasets, the pathway information is extracted from KEGG and it ignores the 

relationships between genes in a pathway (use the pathway as a group of genes). 

PathBLAST [45] identifies and visually promotes pathway alignments of two dif-

ferent networks At PathBLAST the user specifies a short protein interaction path 

for query against a target protein–protein interaction network selected from a 

network database. PathBLAST returns a ranked list of matching paths from the 

target network along with a graphical view of these paths and the overlap among 

them. PathBLAST performs alignment of protein networks just as BLAST is used 

to perform rapid alignment of protein. The approach does not take into account 

microarray data. 

GeneMANIA prediction server [46] constructs and displays an interactive func-

tional association network constructed from a user-defined list of genes and 

functionally similar or shared propertied genes. Data sources used for gene simi-

larity search include co-expression data from Gene Expression Omnibus; physi-

cal and genetic interaction data from BioGRID; predicted protein interaction da-

tabase I2D; and pathway and molecular interaction data from Pathway Com-

mons, which contains data from BioGRID, Memorial Sloan-Kettering Cancer Cen-

ter, Human Protein Reference Database,  HumanCyc, Systems Biology Center 

New York, IntAct , MINT, NCI-Nature Pathway Interaction Database and Reac-

tome. The main drawback is GeneMANIA is that it can support only a limited set 

of initial genes due to the high complexity of the data sources used in the similar-

ity search. Authors reported also an implementation of GeneMANIA as a Cyto-

scape plugin [47].  

An approach for the identification of differentially expressed pathways has been 

proposed by Nacu et al [48].  The proposed methodology compute a score that 

measures to what extent a group of genes is differentially expressed. With a scor-

ing function the system reveals groups of interacting genes. Two scoring meth-

ods developed and evaluated: (i) go through a limited list of predefined groups 

and select the ones with high scores (ii) search for high-scoring sets among all 

possible sets subject to some structural constraints.  

All the above methods handle the gene regulatory networks only as a group/list 

of genes. Information about the topology of the network and the reac-

tions/relationships between genes in a pathway is ignored.  
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2.3.2. Discriminant sub-pathways from MA and GRN topology 

Several approaches for integrating microarray measurements with network 

knowledge were described in the literature and some of them proposed compu-

tational methods for detection of sub-networks that show correlated expression.  

Chen et al [49] proposed a sub-pathway-based enrichment approach for identify-

ing a drug response principal network, which takes into consideration the quan-

titative structures of the pathways. Authors are based on the biological pathways 

hint that a sub-pathway may respond more effectively or sensitively than the 

whole pathway. The methodology consists of the generation of a large number of 

relative sub-pathways (from the KEGG public database), mapping of the unfil-

tered expression data onto them and statistically scoring for identification of the 

principal component of sub-pathways that is most perturbed by two stage de-

signs. Principal component of sub-pathways are then combined into a larger 

drug response network, on which topological and biological analyses are per-

formed. The algorithm uses the NetworkAnalyzer [50] for the analysis of the 

topological properties of the sub-pathways. NetworkAnalyzer computes and dis-

plays a comprehensive set of topological parameters, from the network diameter 

to average clustering coefficients and shortest path lengths but ignores the regu-

latory mechanisms of the signalling pathways (activations/inhibitions).  

DEGAS [51] (De Novo Discovery of Dysregulated Pathways in Human Diseases) 

methodology identifies connected gene sub-networks significantly enriched for 

genes that are dysregulated (disrupted of normal function) in specimens of a dis-

ease using correlation expressions.  Given a set of expression profiles labelled as 

cases and another set of controls, DEGAS aims to detect sub-networks dysregu-

lated in multiple genes in the cases, while allowing for distinct affected gene sets 

in each case profile. 
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Figure 13: Identification of dysregulated pathways using DEGAS (source [51]) 

As shown in Figure 13 DEGAS methodology takes as input expression data of 

case and control cohorts (A) and a protein interaction network. The expression 

data are converted into a binary matrix. The output is the interaction network 

(C): The vector next to each protein is the dys-regulation status (0 or 1) of that 

gene in each case. A dysregulated pathway is a minimal sub-network in which at 

least k genes are dysregulated in all but l cases. 

The gene regulatory relations we consider are restricted to what might be ob-

served in a microarray experiment: a change in the expression of a regulator 

gene modulates the expression of a target gene mainly via protein-DNA interac-

tions. In other words, there are genes that causally regulate other genes. A 

change in the expression of these genes might change dramatically the behaviour 

of the whole network. The identification and prediction of such changes is a chal-

lenging task in bioinformatics.  

Another similar effort that actually uses the same algorithm for the identification 

of the dysregulated genes/cases is the KeyPathwayMiner [52].  Given a biological 

network and a set of case-control studies, KeyPathwayMiner efficiently extracts 

all maximal connected sub-networks (Figure 14). These sub-networks contain 

the genes that are mainly dysregulated, e.g., differentially expressed. The exact 

quantities for “mainly” and “most” are modelled with two easy-to-interpret pa-

rameters (K, L) that allow the user to control the number of outliers (not dysreg-

ulated genes/cases) in the solutions. KeyPathwayMiner use the Cytoscape visual-
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ization library to map the dysregulated sub-networks. Version 2.0 of Key-

PathwaMiner [53] provide two more algorithms (one greedy and one optimal) to 

solve the formal graph problem and an improved user interface. 

 

Figure 14: KeyPathwayMiner methodology (source http://keypathwayminer.mpi-inf.mpg.de) 

Once again the main limitation of the KeyPathwayMiner is that interactions be-

tween two nodes (genes) are computed according to the expression values of the 

corresponding genes. 

Ideker et al. [54] used sub-graph extraction as a technique to predict pathways 

from biological networks and a set of genes. The authors extended the method-

ology to the extraction of more complex, non-linear sub-networks in protein–

protein and protein–DNA networks given yeast gene expression data. A recently 

work of the same team apply a protein network-based approach that identifies 

markers not as individual genes but as sub-networks extracted from protein in-

teraction databases [55]. The resulting sub-networks of the methodology pro-

vide models of the molecular mechanisms underlying metastasis. Authors 

proved that the identified sub-networks are significantly more reproducible be-

tween different breast cancer cohorts than individual marker genes selected 

without network information and network-based classification achieves higher 

accuracy in prediction, as ascertained by selecting markers from one data set and 

applying them to a second independent validation data set. To integrate the ex-

pression and network data sets, authors overlaid the expression values of each 

gene on its corresponding protein in the network and searched for sub-networks 

http://keypathwayminer.mpi-inf.mpg.de/
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whose activities across the patients were highly discriminative of metastasis. An 

overview of the sub-network identification is mapped visually at the Figure 15. 

 

 

Figure 15: Sub-network identification process (source [54]) 

Sub-networks do not take into account initial relation of genes (from gene regu-

latory networks), but are considered active whenever they involve highly ex-

pressed genes. Sampling the space of possible sub-networks with simulated an-

nealing can identify such sub-networks. 

Wu and Stein [56] described a semi-supervised algorithm that first discovers 

modules of interacting genes (sub-pathways) involved in the disease process in-

dependently of clinical status and then identifies clinically significant modules 
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using supervised principal component analysis. The implementation is based on 

top of a human protein functional interaction network constructed by combining 

curated and un-curated data sources. This functional interaction network covers 

roughly half of annotated human proteins and is highly reliable based on a varie-

ty of metrics, including confirmation of its predictions by domain experts. The 

network as a whole is un-weighted without regulation mechanisms and is not 

specific for any particular tissue or phenotype. 

CLiPPER algorithm [57] implements a two-step empirical approach based on the 

exploitation of graph decomposition into a junction tree to reconstruct the most 

relevant signal path. In the first step clipper selects significant pathways accord-

ing to statistical tests on the means and the concentration matrices of the graphs 

derived from pathway topologies. Then, it "clips" the whole pathway identifying 

the signal paths having the greatest association with a specific phenotype. For 

example, a proportional increase of the expression of the genes A and B in one of 

two conditions will result in significantly different mean expression between the 

two conditions. The correlation strength between A and B, however, does not 

change. In this case, we would have pathways with significant altered mean ex-

pression levels but unaltered biological interactions. CliPPER searches for path-

ways strongly involved in a biological process by requesting that the mean or the 

variance of the expression levels result significantly altered between two condi-

tions. Clipper empirically identifies the portions of the network mostly associat-

ed to the phenotype using the structure of the junction tree as a backbone. 
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Figure 16: Clipper toy example of sub-path selection (source [57]) 

Figure 16 shows a toy example of clipper approach to sub-pathway selection. 

The construction of the junction tree with significant cliques is shown in red 

(part A). Identification of the paths in the tree is shown in part B, the identifica-

tion of all the sub-paths within each path in part C, the selection of the best sub-

path for each path and cluster analysis for sub-path collapse in part D and the 

final sub-path selected  in part E.  

Even though CliPPER uses parts of the pathway (sub-pathways) as junction tree, 

the sub-pathway selection method ignore the relations/regulations between 

genes participating in the signalling pathways. 

Figure 17 shows results of CliPPER for the chronic myeloid leukaemia KEGG 

pathway with complexes belonging to the sub-path identified colour according to 

their expression. 
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Figure 17: CliPPER results over KEGG pathway (source [57]) 

Kazmi et al [58] developed a meta-analysis tool for functional gene regulatory 

paths and sub-paths using information from microarray data. The up-regulated 

genes (found in microarray data) that participate in pathways are highlighted on 

the gene regulatory networks. The system takes advantage of the activations be-

tween genes within the pathway and tries to identify the functional paths or pro-

pose new paths. Expression values for genes that are not available from the mi-

croarray experiment are also added using a predictive algorithm.   

Another software package (R based software) for identification of pathways is 

the SubpathwayMiner [59]. It is a pathway analysis tool relative to pathway an-

notation and identification, which applies pathway structure information to 

pathway identification. According to pathway structure information provided by 

KEGG, the system can detect distance similarity among enzymes in each pathway 

and mine each sub-pathway in which distance among all enzymes is no greater 

than the parameter k (a user-defined distance). SubpathwayMiner converts each 

metabolic pathway to an undirected graph with enzymes as nodes. Two nodes in 

an undirected graph are connected by an edge if there is a common compound in 

the enzymes corresponding reactions. As a result, the metabolic pathway is sim-

plified when chemical compounds are omitted from the graph. Visualization of 

the resulting pathways is possible through linking to the KEGG website as shown 

in Figure 18 where (b) shows enzymes coloured red if the according enzyme is 
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identified in the submitted sets of genes and (c) visualize a pathway through 

linking to the KEGG website. On the pathway map, enzymes are coloured red if 

the according enzyme is identified in the submitted set of genes 

 

Figure 18: SubpathwayMiner environment (source [59]) 

The main limitation of the above proposed approaches is that all the interactions 

between genes within a GRN are considered to be connections in a graph (e.g. 

they do not take into account if an interaction is activation or inhibition) where 

the nodes are the genes and edges are interactions between genes. 

2.3.3. Discriminant sub-paths from microarray, GRN topology 

and regulatory mechanisms 

The most informative and promising methodology of microarrays and GRNs 

combination is the identification of discriminant sub-paths taking advantage of 

topology and regulatory mechanisms. 

Geistlinger et al [16] introduced the Gene Graph Enrichment Analysis (GGEA), 

which exploit fundamental regulation types in a novel enrichment framework for 

signed and directed gene regulatory networks, to judge whether the topology of 

the network is well fitted by the expression data. GGEA performs three essential 

steps (Figure 19): first, the gene set is mapped onto the underlying regulatory 

network, yielding an induced sub-network. That is the affected part of the net-

work, which consists of edges that involve members of the gene set. Second, each 

edge of the induced network is scored for consistency with the expression data, 

i.e. the signs of the expression changes of two interaction partners are evaluated 

for agreement with the regulation type (activation/inhibition) of the link that 
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connects both genes. Third, the edge consistencies are summed up over the in-

duced network, normalized and estimated for significance using a permutation 

procedure. 

 

Figure 19: GGEA steps (source [16]) 

The GRNs are modelled as Petri Nets having features of fuzzy logic. The regula-

tions of the GRN are required to be specified with direction and effect. In that 

model (Figure 20), regulator (R) and regulated target (RT) are represented via 

Petri Net places holding tokens of fuzzy values for both fold change (fc) and sig-

nificance of fc (sig). The variety of regulatory effects occurring in the GRN are 

defined by specific fuzzy rules reg∈{f+,f−,f+−,f?,…} meaning activation f+, inhibi-

tion f− and dual effects f+−.  

 

Figure 20: GGEA regulatory interactions mapping to Petri Net (source [16]) 

GGEA uses the regulation type of GRNs (activation/inhibition) to measure the 

consistency between expected (i.e. modelled) behaviour and the measured val-

ues. This approach solves the major problem of the set enrichment strategies, 

which is the contrary constrains between GRNs and expression data (e.g. two 
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significantly up-regulated genes increase the enrichment of the set, even if one 

gene inhibits the other), but the GRN regulation information is only be used as a 

significance/ranking parameter in the whole pathway. 

Similar to GGEA, another advanced discriminant sub-pathway identification sys-

tem is the signalling pathway impact analysis (SPIA) [60]. SPIA combines the ev-

idence obtained from the classical enrichment analysis with a novel type of evi-

dence, which measures the actual perturbation on a given pathway under a given 

condition. To our knowledge this is the most advanced effort is in terms of gene 

interactions. The authors introduce a global probability value, PG, which is calcu-

lated for each pathway, incorporating parameters, such as the log fold-change of 

the differentially expressed genes, the statistical significance of the set of path-

way genes and the topology of the signalling pathway. PG is a combined probabil-

ity value of PNDE and PPERT that can be used to rank the pathways. PNDE is the 

probability of observing the given number of differentially expressed genes or 

higher, just by chance and PPERT is calculated in a bootstrapping process in which 

both the pathway and the number of differentially expressed genes per pathway 

are fixed. PPERT, is calculated based on the amount of perturbation measured in 

each pathway and defined as: 

𝑃𝐹(𝑔𝑖) = 𝛥𝛦(𝑔𝑖) + ∑ 𝛽𝑖𝑗

𝑃𝐹(𝑔𝑖)

𝑁𝑑𝑠(𝑔𝑖)

𝑛

𝑗=1

 

Where the sign of β reflects the type of interaction: +1 for induction (activation), 

−1 for repression and inhibition, as described by each pathway. Note that β will 

have non-zero value only for the genes that directly interact with the gene 𝑔𝑖 ac-

cording to the pathway description. Each pathway is finally marked as activated 

(positive perturbation score = positively perturbed) or the inhibited (or nega-

tively perturbed) 
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Figure 21: SPIA perturbation analysis example (source [60]) 

Figure 21 shows a six-gene pathway with two differentially expressed genes 

(shown in grey) in two different situations. One of the two differentially ex-

pressed genes is in common (gene B) while the second gene is either a leaf node 

(a), or the entry point in the pathway (b). In (a), gene (F) cannot perturb the ac-

tivity of other genes; in (b) gene (A) has the ability to influence the activity of all 

the remaining genes in the pathway, as the topology of the pathway indicates. An 

over-representation analysis would find the two situations equally (in) signifi-

cant (PNDE=0.48 for a set of 20 monitored genes, out of which five are found to be 

DE). The perturbation evidence extracted by SPIA will give more significance to 

the situation in (b) (PPERT=0.24), even though fold-changes in (b) are almost 

twice as small as those in (a) (PPERT=0.57). SPIA provides information of the 

pathway as a whole only and does not tackle functional and non-functional parts 

of the pathway (sub-pathways). 

Graphite Web11 [61] is a web tool for gene set analysis exploiting pathway topol-

ogy.  Graphite web implements five different gene set analyses on three model 

organisms and two pathway databases and is freely available. Graphite web 

deals with microarray or RNA-seq data. It implements different multivariate 

gene set analyses, gene set enrichment analysis (GSEA), signalling pathway im-

pact analysis (SPIA), CliPPER on three model organisms (human, mouse and dro-

sophila) and two pathway databases (KEGG and Reactome). We added Graphite 

web in this category since it uses the SPIA methodology for signalling pathway 

analysis. 

                                                        
11 http://graphiteweb.bio.unipd.it (last day visited 11/08/2014) 

http://graphiteweb.bio.unipd.it/
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Figure 22: Graphite Web flow of operations (source [61]) 

Graphite web implements a system of pathway visualization and provides an 

easy access to multivariate and topological pathway analyses. The combination 

of a pathway-specific visualization with powerful gene set analyses gives to the 

user the possibility to explore in great detail signalling pathways and the posi-

tion of the influential genes within them. 

Another method that identifies intergenic relationships within enriched biologi-

cally relevant sub-pathways is the Topology Enrichment Analysis frameworK 

TEAK [15]. TEAK employs a novel in-house algorithm and a tailor-made Clique 

Percolation Method to extract linear and nonlinear KEGG subpathways, respec-

tively and scores subpathways using the Bayesian Information Criterion for con-

text specific data and the Kullback-Leibler divergence for case-control data. Sub-

pathway extraction is an important component of TEAK that extracts root to leaf 

linear paths or subpathways from the directed edges of the KEGG non-metabolic 

pathways. A root r has zero incoming links and a positive number of outgoing 

links, whereas a leaf l has a positive number of incoming links and zero outgoing 

links.  
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Figure 23: TEAK methodology to identify the subpathways of a network (source [15]) 

The subpathway algorithms and the Bayesian networks used by TEAK are only 

applicable to directed networks. The type of regulation between the nodes 

(genes) is considered to be always activation (e.g. over expression of gene A 

leads always to over expression of gene B if we have an AB link). It’s not clear 

if inhibition of genes is also treated in the same way or it is ignored. To rank the 

linear and nonlinear subpathways, TEAK first uses the Bayes Net Toolbox to fit a 

context specific Gaussian Bayesian network for each sub-pathway. Briefly, a 

Gaussian Bayesian network is a Bayesian network in which all of its nodes are 

linear Gaussians. 

PATHOME [13] (pathway and transcriptome information) is another recent 

methodology for detecting differentially expressed biological pathways. The goal 

of this algorithm is to identify a set of sub-pathways that differentiate two exper-

imental groups (for example, cancer vs non-cancer) by considering both prior 

knowledge about mutual regulations and experimental gene expression data. 

If two adjacent entries are connected by an edge that denotes activation (arrow-

headed edge), the expression correlation between the two entries is assumed to 

be positive; if the two entries are connected by an edge that denotes inhibition 

(blunt-ended edge), the expression correlation between the two entries is as-

sumed to be negative (Figure 24). This rule is applied separately to each experi-

mental group. In each group, PATHOME identifies the consecutive segment start-

ing from the leaf node of each sub-pathway so that all the edges of the segment 

should satisfy the association rule. That leads to the determination of the seg-

ment (in the sub-pathway) that is to be statistically evaluated in the test step. 
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Figure 24: PATHOME pathway decomposition and genes regulation mapping (source [13]) 

PATHOME analyses the interconnectivity between two adjacent nodes. The in-

terconnectivity measure, the Pearson product-moment correlation coefficient, is 

obtained even in three samples in a group. PATHOME can be applied to a small 

number of samples, such as three samples in a group. Summarizing the first step, 

a candidate sub-pathway for the next step should satisfy the following two condi-

tions: (i) the two experimental groups agree with the association rule between 

the expression correlation and the edge information for the adjacent entries 

along the path; and (ii) both consecutive segments for the two groups have at 

least four elements (three consecutive edges) in order to filter a sub-pathway 

with short segments. 

Table 2 summarizes the discriminant pathways methodologies according to 

main features such as input/data usage, output/purpose of use and type of appli-

cation and visualization functionalities. As we can see from the table only five 

methodologies (Graphite Web uses SPIA) can handle effectively the regulatory 

mechanisms and only three out of them can identify discriminant sub-paths in 
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GRNs. Furthermore, most of the methodologies lack of visualization features and 

support for web based platform. 

Table 2: List of discriminant pathways and sub-pathways methodologies according to main features 
such as data usage, purpose of use, visualization functionalities and platform information 
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Draghici et al [40] √ √ X √ X X X √ X X X 

Oncomine [41] √ √ X √ X X X √ X X X 

Eu.Gene [42] √ √ X √ X X X √ X X X 

Adewale et al [43] √ √ X √ X X X √ X X X 

Ma et al [44] √ √ X √ X X X √ X X X 

PathBLAST [45] √ √ X √ X X X √ X X √ 
GeneMANIA [46] √ √ X √ X X √ √ X X √ 
Nacu et al [48] √ √ X √ X X √ √ X X X 

Chen et al [49] √ √ √ √ √ X X √ √ X X 

DEGAS [51] √ √ √ √ √ X X √ √ X X 
KeyPathwayMiner 
[52] √ √ √ √ √ X X √ √ X √ 
Ideker et al. [54] √ √ √ √ √ X X √ √ X X 

Wu and Stein [56] √ √ √ √ √ X X √ √ X X 

CLiPPER [57] √ √ √ √ √ X X √ √ X √ 
Kazmi et al [58] √ √ √ √ √ √* X √ √ X √ 
SubpathwayMiner 
[59] √ √ √ √ √ X X √ X √ √ 
Geistlinger et al [16] √ √ √ √ √ √ X √ X X X 

SPIA [60] √ √ √ √ √ √ X √ √ X X 

Graphite Web [61] √ √ √ √ √ √ √ √ X √ √ 
TEAK [15] √ √ √ √ √ √ √ √ √ X X 

PATHOME [13] √ √ √ √ √ √ √ √ √ X X 

  

* takes advantage only of the activations between 
genes 
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2.4. Outcome from the literature 

The study of the function, structure and evolution of GRNs in combination with 

microarray gene-expression profiles is essential for contemporary biology re-

search. Due to limitations in DNA microarray technology - due to the different 

platforms utilised, to the different experimental protocols and mainly to small 

sample sizes, higher differential expressions of a gene do not necessarily reflect a 

greater likelihood of the gene being related to a disease and therefore, focusing 

only on the candidate genes with the highest differential expressions might not 

be the optimal procedure [9], [10]. 

Based on our literature research we identified and propose taxonomy of the 

methodologies that combine gene-expression data and GRNs in order to identify 

and assess discriminant pathway and sub-pathways (Figure 25).  

 

Figure 25: Taxonomy of discriminant pathways and sub-pathways. Three main categories: Pathway 
selection, sub-pathway selection using topology and sub-pathway selection using regulatory mecha-
nisms 

A general observation concerns the different levels of knowledge extraction from 

the GRNs employed by the different methods.  

 The first category naming “pathway selection” focuses on the identifica-

tion of differentially expressed pathways using microarray data. Within 

this approach information about the topology, the existing sub-paths, as 

well as the reactions/relationships between genes in a pathway is ig-

nored.  

 The second category “sub-pathway selection using topology” goes one step 

further and tries to identify discriminant pathways or sub-pathways. 

Within this approach identification and selection of the most discriminant 

paths ignore the present gene relations/regulations.  
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 The last and most informative category is the “sub-pathway selection using 

regulatory mechanisms”. This approach takes advantage of the GRN topol-

ogy as well as the type of GRN gene relations (e.g. activation or inhibition).  

The last category – being in its infancy, exhibits the fewer methodologies so far, 

but it takes the most out of GRNs and gene-expression data compared to the oth-

er two and is a promising alternative for the identification of the regulatory 

mechanisms that underlie and putatively govern various phenotypes. 

The sub-paths selection using the underlying GRN gene regulatory interactions 

approach solves the major problem of the set enrichment strategies that refers to 

the conflicting constrains between GRNs and gene-expression data. A typical ex-

ample of the conflicting constrains is reflected in the situation when two signifi-

cantly up-regulated genes increase the enrichment of the set in microarray ex-

pression data, even if the first gene inhibits the other in a GRN.  

There exists a limited number of systems that utilize knowledge from known 

GRNs, namely GGEA [16], SPIA [60], TEAK [15] and DEAP [62]. However, these 

systems cannot visualize efficiently the results, a fact that does not facilitate in-

spection of results and limits the exploratory potential by the users. Some gene 

set enrichment analysis methodologies and tools utilize pathway visualization 

approaches to overcome this problem. Since these are based on a gene-oriented 

approach are still unable to handle differentially expressed pathways or even 

differentially expressed sub-paths. 

In chapter 3 we introduce our proposed methodology for the identification of 

differentially expressed functional paths or sub-paths within a gene regulatory 

network (GRN) using microarray data analysis. The analysis takes advantage of 

interactions among genes (e.g. activation, inhibition) as nodes of a graph net-

work, which are derived from expression data.  
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3. Methodology 

Deciphering and manifestation of functioning and regulation of genes represents 

a necessary condition toward the effective incorporation of genomic data in eve-

ryday clinical practice. Two of the most significant forms of molecular data come 

from microarray gene expression sources and gene interactions sources – as en-

coded in Gene Regulatory Networks.  

Existing GRN databases provide us with widely utilized networks of proved mo-

lecular validity. The most known are networks that describe important cellular 

processes such as cell-cycle, apoptosis, signalling and regulation of important 

growth factors. Online public repositories contain a variety of information that 

includes not only the network per se but links and rich annotations for the re-

spective nodes (genes) and edges (reactions). MinePath utilizes the KEGG path-

ways [63] repository. KEGG provides a format representation standardized by its 

own mark-up description language (KGML12). 

Figure 26 outlines the flow of operations in the MinePath methodology. 

MinePath presents a novel perception of GRNs and gene expression data. Initially 

we locate all functional paths encoded in GRNs and we try to assess which of 

them are compatible with the gene-expression values of samples that belong to 

different clinical categories (diseases and phenotypes). The differential power of 

the selected paths is computed and their biological relevance is assessed. The 

approach is applied on a set of microarray studies with the target of revealing 

putative regulatory mechanisms that govern the treatment responses of specific 

phenotypes.  

                                                        
12 http://www.genome.jp/kegg/xml/ (last day visited 11/08/2014) 

http://www.genome.jp/kegg/xml/
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Figure 26: MinePath flow of operations. Four main processes starting from data pre-processing to 
annotation, then data analysis and finally to the visualization of the results  

GRN and gene-expression data matching aims to differentiate GRN paths and 

identify the most prominent functional sub-paths for the given samples. In other 

words, the quest is for the sub-paths that exhibit high matching scores for one 

phenotypic class and low matching scores for the other. This is a paradigm shift 

from the mining of differential genes to the mining of GRN functional sub-paths. 

The whole algorithmic process for the identification of phenotype differential 

sub-paths is inherently simple.  

The method unfolds into four modular steps:  

I. Data pre-processing: On the one hand, gene expression values are dis-

cretized into two states with values 1 and 0 for up-regulated and down-

regulated genes, respectively, so that a binary gene-expression sample 

matrix is formed. On the other hand, each target GRN is decomposed into 

its constituent sub-paths, e.g., the path A  B | C is decomposed into 

three sub-paths, A  B, B | C and A  B | C (note that all sub-paths, 

as well as the overlapping ones, are identified, formed and stored). The 

pre-processing step for gene expression data discretization will be dis-

cussed in section 3.1.1 and the gene regulatory networks decomposition 

will be described in section 3.1.2. 

II. Identification of functional sub-paths: Each sub-path is interpreted on 

the basis of its functional active-state and is represented by a binary or-

dered-vector with active states. For example, sub-path A  B | C is con-

sidered active when A and B (up-regulated) and C (down-regulated), 

resulting into its active-state ordered vector <1,1,0> for the correspond-
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ing genes. Section 3.2 describes in depth the identification and formation 

of active sub-paths and the respective data annotation procedure. 

III. Data Analysis (data mining): The binary ordered-vector of each sub-

path is aligned and matched against all (discretized) binary gene-

expression sample profiles. A sub-path is considered to match a sample if 

and only if all the corresponding genes in the sub-path exhibit the same 

active-state in the sample, i.e., genes A, B are up-regulated and gene C is 

down-regulated, resulting into the corresponding sample ordered-vector 

<1,1,0>, which matches the sub-path vector. In addition, a binary sub-path 

expression matrix is formed with rows the sub-paths, columns the input 

samples and cell-values 1, 0 for the respective sub-path being active for 

the corresponding sample or not. In other words, the sub-paths are taking 

the place of sample descriptor features, and are utilized for the construc-

tion of sub-path based phenotype prediction models. More details about 

the data mining procedures, the filtering and the selection of the best sub-

paths can be found in section 3.3. 

IV. Visualization: Finally the differential power of each sub-path is computed 

and appropriate parameterized metrics are implemented (users may ad-

just them to his/her exploratory needs). The highly ranked (best match-

ing) sub-paths are kept according to user-defined thresholds. Subsequent-

ly each sub-path is characterized about its phenotype inclination; sub-

paths with positive differential power values are characterized as inclined 

to phenotype 1 and those with negative power as phenotype 2. The sys-

tem also identifies the sub-paths that are always active in both pheno-

types. More details about the innovative visualization of active gene–to–

gene regulatory relations that differentiate between the target pheno-

types are presented in section 3.4. 

The following sections (3.1, 3.2, 3.3 and 3.4) describe the core steps of the 

MinePath methodology and the web based user interface. Section 3.5 provides 

the implementation details for the realization of the MinePath platform and in 

section 3.6 we introduce implemented extensions of the platform. 

3.1. Data pre-processing 

Data pre-processing is an important step in the data mining process. Real-world 

data is often incomplete, inconsistent and/or lacking in certain behaviours or 

trends and is likely to contain many errors. Data pre-processing is a proven 

method of resolving such issues especially in the genomics domain where we 

also face the “curse of dimensionality” phenomenon (as discussed in the introduc-

tion), where the convergence of any estimator to the true value of a smooth func-
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tion defined on a space of high dimension is very slow. Furthermore, microarrays 

are challenging for machine learning methods, since the respective datasets typi-

cally have a very large number of features and small number of instances. Learn-

ing algorithms are thus confronted with the phenomenon and need to address it 

in order to be effective. 

3.1.1. Microarrays and gene expression data  

Microarray technology aims to identify the genes that are expressed in particular 

cells of an organism at particular time or, at particular conditions (e.g., disease-

states or, disease-types). A microarray is typically a glass (or some other materi-

al) slide, on to which DNA molecules are attached at fixed locations (spots). 

There may be tens of thousands of spots on an array, each containing a huge 

number of identical DNA molecules (or fragments of identical molecules), of 

lengths from twenty to hundreds of nucleotides. The spots are either printed on 

the microarrays by a robot, or synthesized by photo-lithography (similarly as in 

computer chip productions) or by ink-jet printing.  

Figure 27 shows the general schema of a microarray experimental set-up. After 

hybridization and scanning the total mRNA from the samples in two different 

conditions is extracted and labelled. The final product is a microarray image (the 

‘.tiff’ format is followed). Each spot on the array image is identified, its intensity 

measured and compared to the background (the image quantization process, 

conducted by dedicated image analysis software). To obtain the final gene-

expression matrix from spot quantization, all the quantities related to some gene 

are combined and the entire matrix is scaled to make different arrays compara-

ble. In the resulted gene-expression matrix, rows represent genes, columns rep-

resent samples and each cell contains a number characterizing the expression 

level of the particular gene in the particular sample. 
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Figure 27: Experimental set-up of Gene Expression Data. The process starts from the hybridization 
(up left) to image analysis (down left) and the result is the gene expression matrix (right part of the 
figure) 

3.1.1.1. Discretization of gene expression data 

In many gene-expression profiling studies the researchers decide to visualize the 

potential clustering of the genes (or, the samples), as well as the final selected set 

of genes in a discretized manner. It is known that the predictive accuracy of clas-

sifiers improves when gene expression data is discretized [64]. This procedure 

transforms the expression values of each gene into two or more discrete values 

making easier the characterization of each gene as “expressed” (or else over ex-

pressed, up regulated) or “not expressed” (or else under-expressed, down regu-

lated) for a given sample. Apart from the easier data interpretation, discretiza-

tion offers some additional benefits as the elimination of the strong influence 

that causes the outliers coming from incomplete experimental setup. This can 

lead to more qualitative data analysis [65]. Many extensive studies exist for the 

discretization of gene expression data such as [66] and [67]. 

MinePath utilizes discretization of the gene-expression continuous values into 

the core of the gene-selection process. Discretization of a given gene’s expression 

values means that each value is assigned to an interval of numbers that repre-

sents the expression-level of the gene in the given samples. A variable set of such 

intervals may be utilized and assigned to naturally interpretable values e.g., low, 

high. Given the situation that, in most of the cases, we are confronted with the 

problem of selecting genes that discriminates between two classes (i.e., disease-
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states) we believe that it is convenient to follow a two-interval discretization of 

gene-expression patterns. Below we give a general statement of the discretiza-

tion problem when two classes are present, followed by an algorithmic process 

that heuristically solves it. Therefore, expression value represented with 0 indi-

cates a non-expressed or under-expressed gene, whereas value of 1 indicate 

overexpressed gene. These values are being derived using the following process 

(shown in Figure 28) in the heart of which resides an information theoretic rank-

ing formula:  

i. The expression levels of gene A over the total number of samples are 

sorted in descending order. 

ii. The midpoints between each two consecutive values are calculated 

iii. For each midpoint, the samples are clustered into two subgroups, H and L.  

iv. For each midpoint, an information gain formula is applied, which com-

putes the entropy [68] of the system in respect to its division into sub-

groups. IG(μκ) is the Information Gain of the system for midpoint μκ. E(L) 

is the total entropy of the system taking into account their prior assign-

ment into classes (ex. case - control), whereas E(L/μκ) = E(Ηκ,Lκ) is the 

entropy of the system taking into account its division into subgroups 

around midpoint μκ. 

v. Finally, the midpoint that results in the highest information gain is select-

ed as the best one able to discriminate against the two subgroups and all 

the samples in the H group are considered to be overexpressed getting a 

value of 1, whereas the ones in the L group are the non-expressed/under-

expressed, getting a value of 0.  
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Figure 28: The Gene Discretization process. The algorithm sorts the expression values of a gene, 
then identifies the mid-points, splits into sub-groups, calculates the information gain and selects the 
best split point. 

This discretization process is applied to each gene separately and the final da-

taset is a matrix of discretized gene expression values. A similar approach has 

been used before in other expression profiling studies [69] [70]. Figure 29 shows 

an indicative example of a “dummy” microarray with 5 genes (rows) and 6 sam-

ples (columns) categorized into two classes, normal and diseased. To the left of 

the figure we can see the absolute or normalized values of our “dummy” micro-

array and to the right we have the discretized matrix when we applied the pro-

posed methodology.  

 

Figure 29: Microarray discretization, an indicative example. To the left the gene expression matrix 
and to the right the discretised gene expression matrix 

3.1.2. Gene regulatory networks 

The origin of concurrent knowledge about GRNs does not come from any con-

crete theoretic framework. GRNs are inferred from the biological literature on a 

given system and represent a distillation of the collective knowledge about a set 

of related biochemical reactions. 

However, although incomplete, this knowledge covers almost every biology func-

tion such as metabolism, genetic/environmental information processing, cellular 

processes, human diseases and drug development, while it is constantly under 

refinement and enrichment. Online sources of GRN data include KEGG13, 

STRING14 [71], BioCarta15 [72], ReActome16 [73], BioPax17 [74], Pathway Com-

mons18 [75], just to name few.  

We chose to incorporate KEGG data for our analysis. Since its first introduction in 

1995, KEGG DB for pathways has been widely used as a reference knowledge 

base for understanding biological pathways and functions of cellular processes. 
                                                        
13 http://www.genome.jp/kegg/ (last day visited 11/08/2014) 
14 http://string-db.org/ (last day visited 11/08/2014) 
15 http://www.biocarta.com/ (last day visited 11/08/2014) 
16 http://www.reactome.org/ (last day visited 11/08/2014) 
17 http://www.biopax.org/ (last day visited 11/08/2014) 
18 http://www.pathwaycommons.org/ (last day visited 11/08/2014) 

http://www.genome.jp/kegg/
http://string-db.org/
http://www.biocarta.com/
http://www.reactome.org/
http://www.biopax.org/
http://www.pathwaycommons.org/
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The knowledge from KEGG has proven of great value by numerous works in a 

wide range of fields [76].  

Although it has been shown that KEGG has some errors [77], these are not so 

prominent and can be counterbalanced by the simplicity, the variety and the 

standard ontology that KEGG provides. Through KEGG public database, pathways 

can be downloaded in KGML format. KGML (stands for KEGG Markup Language) 

is an exchange format of KEGG graph objects including GRNs. The GRN is de-

scribed through standard graph annotation. Nodes can be either genes, groups of 

genes, compounds or other networks. Edges can be one of the gene relations 

known from the biology theory (activation, inhibition, expression, indirect, 

phosphorylation, diphosphorylation, ubiquination, association and dissociation). 

Each gene relation has a different semantic that depicts the precise biology phe-

nomenon that happens during the regulation of the specific network (Table 3). 

Table 3: The types of gene interactions and the corresponding gene truth tables; Column relation 
represents the biological relations in GRNs; Symbol: the KEGG symbol for the relation; Graph repre-
sentation: an example from KEGG; Truth table: mathematical table used in logic; Semantic: the rep-
resentation of the relation in pseudocode. 

Relation Symbol 

Graph representa-

tion in KEGG (ex-

amples) 

Truth table Semantic 

Activation A B  

 B 

A 

 ON OFF 

ON   

OFF   
 

B is ON iff A 

is ON 

Inhibition A --| B  

 B 

A 

 ON OFF 

ON   

OFF   
 

B is OFF iff 

A is ON OR 

B is ON iff A 

is OFF 

Expression A B  
Same as activation 

Indirect A B  Same as activation 

Phosphorylation A B  In KGML file is stated either as activa-

tion or as inhibition 
Diphosphorylation A B  

Ubiquination A B  Same as inhibition 

Association A---B 

 

 B 

A 

 ON OFF 

ON   

OFF   
 

Physical 

bonding 

(nonfunc-

tional) 

Dissociation A-|-B 

More details about the mapping of the relations within MinePath are described 

in section 3.2.2 and in   



E



I


p


p



u


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Appendix I (KEGG pathways).  

3.1.2.1. Pathway decomposition 

MinePath relies on a novel approach for GRN processing that takes into account 

all possible functional interactions of the network. The different interactions cor-

respond to the different sub-paths that can be followed during the regulation of a 

target gene.  

 

Figure 30: Functional-path decomposition: Left: A target part of an artificial GRN; Right: The eleven 
decomposed functional sub-paths. 

GRNs are downloaded from the KEGG repository. With an XML parser (based on 

the specifications of KEGG’s KGML representation of GRNs) we obtain all the in-

ternal network semantics. Even though we use a powerful and open source 

graph theory library for the processing and the decomposition of the gene regu-

latory networks, called Cytoscape19 [78] we had to implement our own parser for 

the transformation of KGML files to XGMML (format supported by Cytoscape). 

Solutions like the kgmlreader20, a Cytoscape plugin for importing KGML files to 

Cytoscape, could not be used because during the transformation valuable infor-

mation could be lost (e.g. some edges at metabolic pathways do not have direc-

tionality and errors at transforming specific pathways).  A description of KGML 

with the KGML entries and all the possible values can be found at the KEGG 

Markup Language21. 

                                                        
19 http://www.cytoscape.org/ (last day visited 11/08/2014) 
20 https://code.google.com/p/kgmlreader/ (last day visited 11/08/2014) 
21 http://www.kegg.jp/kegg/xml/docs/ (last day visited 11/08/2014) 

http://www.cytoscape.org/
https://code.google.com/p/kgmlreader/
http://www.kegg.jp/kegg/xml/docs/
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In a subsequent step, all possible GRN sub-paths are extracted as exemplified in 

Figure 30. Each sub-path is uniquely annotated as functional according to Kauff-

man’s principles [79] that follow a binary setting: each gene in a functional sub-

path can be either ‘ON’ or ‘OFF’. Following the principles reported in [80] the fol-

lowing functional gene regulatory semantics apply.  

1. The network is a directed graph with genes (inputs and outputs) is the 

graph nodes and their directed connecting edges to represent the causal 

(regulatory) links between them.  

2. Each node can be in one of the two states ‘ON’ or ‘OFF’. These states cor-

respond to the gene being expressed (i.e., the respective substance being 

present) or not expressed, respectively.  

3. Time is viewed as proceeding in discrete steps; at each step the new state 

of a node is a Boolean function of the prior states of the nodes with ar-

rows pointing towards it. Since the directed edge connecting two genes 

defines explicitly their regulation we can set all possible state-values that 

a gene may take in a functional sub-path. Thus, each extracted sub-path 

contains not only the relevant sub-graph but the state-values of the in-

volved genes as well. A sub-path is functional if it is ‘active’ during the 

GRN regulation process; in other words we assume that all genes in a sub-

path are functionally active.  

Furthermore, we extended the MinePath algorithm and can optionally (using a 

parameter as input) export and take into account the starting and ending points 

of each sub-path as a new sub-path. This extension proposed by the molecular 

biology group (Dr. Dimitris Kafetzopoulos) from the Foundation of Research and 

Technology Hellas (FORTH) Institute of Molecular Biology and Biotechnology 

(IMBB) and it is based on the limited knowledge (incompleteness) encoded in 

GRNs.  GRNs provide us information about specific sub-pathways between two 

genes but it is unknown if other pathways/roots connect these two genes. Such 

an approach could reveal new roots in the GRNs and bypass the limited 

knowledge of the connection between two genes. Following our example in Fig-

ure 30 this parameter of the algorithm will add the following sub-paths: A--|C 

and B--|C (these extra sub-paths do not appear in Figure 30). 

3.1.2.2. Binary representation of regulatory edges 

We encode the GRNs as Cytoscape networks using binary representation for the 

regulatory edges connecting the gene nodes. Cytoscape is freely distributed un-

der the open-source GNU Lesser General Public License, which allows any use of 
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the software, including feature extension by programming22. In Cytoscape nodes 

representing biological entities, such as proteins or genes, are connected with 

edges representing pairwise interactions, such as experimentally determined 

protein–protein interactions. Nodes and edges can have associated data attrib-

utes describing properties of the protein or interaction. 

The main reactions in a gene regulatory network are inhibition, activation, asso-

ciation and disassociation. Table 3 and Figure 31 describe the mapping of GRN 

network to Cytoscape network with edges encoded in binary format according to 

the GRN reactions. Expression and indirect reactions are expressed as activa-

tions; ubiquination is expressed as inhibition; and phosphorylation/ diphos-

phorylation reactions are either activation or inhibition (stated in KGML the file). 

 

Figure 31: Encoding of GRN reactions to binary edge representation. Activation is represented as an 
edge with label 1, inhibition as an edge with label 0 and associations/disassociations remain in the 
graph representation as non-directed interactions which represent a physical interaction between 
two genes. 

Using the pathway decomposition we can retrieve functional paths from a varie-

ty of different GRNs (cell-cycle, apoptosis, etc.) and may combine different mo-

lecular pathways and networks. Furthermore the binary representation of the 

network in conjunction with the binary representation of the gene expression 

data gives us a robust and scalable data structure that can be queried and ana-

lysed using machine learning techniques in real time. 

3.2. Functional sub-paths and data annotation 

MinePath exploits microarray experiments and respective gene-expression data 

for which the research scientist expects (suspects) that the targeted GRNs play 

an important role. For example the cell-cycle and apoptosis GRNs play an im-
                                                        
22 http://www.gnu.org/licenses/lgpl.html (last day visited 11/08/2014) 

http://www.gnu.org/licenses/lgpl.html
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portant role in tumour genesis and cancer progression. With an operation that 

matches gene-expression profiles with sub-paths, the valid and most prominent 

GRN functional sub-paths are identified. These paths uncover and present poten-

tial underlying gene regulatory mechanisms that govern the gene-expression 

profile of the samples under investigation. Such a discovery may guide the fine 

classification of samples as well as the re-classification of diseases, based on the 

most prominent molecular evidence. 

The samples of a binary transformed (discretized) gene-expression matrix are 

matched against targeted molecular pathways and respective GRN functional 

paths (retrieved form the pathway decomposition).  

3.2.1. Probe Sets to Genes 

For MinePath the appropriate mapping between the genes identifiers used in the 

gene expression data to the corresponding KEGG identifiers is needed. Both the 

GRNs and the gene expression data have to use the same ids. GRNs use gene ids 

while gene expression platforms use probes. A probe is a specific segment of sin-

gle-strand DNA that is complementary to a desired gene. For example, if the gene 

of interest contains the sequence AATGGCACA, then the probe will contain the 

complementary sequence TTACCGTGT. When added to the appropriate solution, 

the probe will match and then bind to the gene of interest.  

Due to the large number of databases and associated IDs, the conversion of gene 

identifiers is one of the initial and central steps in many workflows related to 

genomic data analysis. In the literature and the web we can find several freely 

available ID conversion tools. Although each tool has distinct features and 

strengths, as reviewed by Khatri et al [81], they all adopt a common core strategy 

to systematically map a large number of interesting genes in a list to the associ-

ated biological annotation. One of the first online annotation tools in the ge-

nomics is the Database for Annotation, Visualization and Integrated Discovery 

(DAVID23) tool [82]. Other online tools that annotate probes to gene IDs are Ba-

blomics24, DRAGON25, GeneCruise26 and AILUN27 just to name a few. A generic fig-

ure highlighting the relations among identifiers is shown in the Figure 32.  As we 

can see the KEGG ids can be annotated through the Entrez Gene IDs.  

                                                        
23 http://david.abcc.ncifcrf.gov/ (last day visited 11/08/2014) 
24 http://babelomics.bioinfo.cipf.es/ (last day visited 11/08/2014) 
25 http://pevsnerlab.kennedykrieger.org/annotate.htm (last day visited 11/08/2014) 
26 http://genecruiser.broadinstitute.org/genecruiser3/ (last day visited 11/08/2014) 
27 http://ailun.stanford.edu/ (last day visited 11/08/2014) 

http://david.abcc.ncifcrf.gov/
http://babelomics.bioinfo.cipf.es/
http://pevsnerlab.kennedykrieger.org/annotate.htm
http://genecruiser.broadinstitute.org/genecruiser3/
http://ailun.stanford.edu/
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Figure 32: Annotation, relations among Gene identifiers (source 
http://idconverter.bioinfo.cnio.es/IDConverter.pdf)  

For MinePath we use the Bablomics web platform as an offline pre-processing 

step when the gene-expression data come from platforms that do not support 

annotation to KEGG IDs or to Entrez IDs. For instance Affymetrix GeneChips28 

provide annotation files for the probes as Entez IDs.  

The mapping from a gene nomenclature and thesaurus to another rises the many 

to one issue where many probes are assigned to the same KEGG gene ID. An in-

dicative example is shown in the upper part of Figure 33 where the gene 

hsa:1000 is mapped to three Affymetrix probes from the U133A platform and the 

same holds for the hsa:4824 and hsa:208. 

                                                        
28http://www.affymetrix.com/catalog/131455/AFFY/Human-Genome-U133-Plus-2.0-Array#1_3 (last day visited 
11/08/2014) 

http://idconverter.bioinfo.cnio.es/IDConverter.pdf
http://www.affymetrix.com/catalog/131455/AFFY/Human-Genome-U133-Plus-2.0-Array#1_3
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Figure 33: Probes to Gene IDs (many to one); on top the mapping of KEGG ids to U133A probe-sets, 
each colour is one gene assigned to many probes; at the bottom one sub-path and under each gene 
the corresponding probes 

In general, the multiple probes targeting the same gene does not (should not) 

show different expression levels’. So, taking into account the expression status of 

just one of the probes is enough. Since we cannot assure the consistency between 

the different microarray platforms, MinePath provides two options to cope the 

one to many (probe to gene) issue: 

1. Max Probe: This is the default option that checks the multiple probes for 

the gene and places a logic OR for the assessment of the gene’s value. This 

is actually the selection of the value of the probe with the highest intensi-

ty out of all the probes that map to the same gene. 

2. Probes clones: The user may optionally set at MinePath to produce all the 

possible combinations of sub-paths based on probes and not on gene ids. 

We call this option “probes clones”. 

Robinson et al [83] proposed that for genes with multiple probe-sets, isoform 

specific expression changes may be a more appropriate means of interpreting 

standard microarray expression data than the current one gene = one probe-set 

paradigm. Going back to the example of Figure 33 we see, at the lower part, a 

sub-path with two gene interactions and five genes. Under each gene we have the 

genes mapped to probes for the U133A platform. While in the default option of 

MinePath this is a single sub-path if we initiate the “probe clones” option 

MinePath will generate 3*3*1*3*2 = 54 sub-paths with all the possible probe 

combinations. Table 4 shows the number of sub-paths for 14 KEGG pathways in 

the default and the “probes clones” options. The “probes clones” have been com-

puted for the U133A Affymetrix probes. 
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Pathway Description 

Genes in 
U133A 

plat. 

Sub-
paths 

Sub-
Paths 
after 

clones 
hsa04010 MAPK signalling 481 1291 21109 
hsa04012 ErbB signalling 164 486 4277 
hsa04020 Calcium  335 157 189 
hsa04110 Cell cycle 231 161 437 
hsa04115 p53 signalling 123 277 1939 

hsa04150 mTOR signalling 91 65 365 
hsa04210 Apoptosis 157 145 1505 
hsa04310 Wnt signalling 256 277 371 

hsa04350 
TGF-beta signal-
ling 140 57 79 

hsa04370 VEGF signalling 129 61 187 

hsa04510 Focal adhesion 404 420 1275 

hsa04520 Adherens junction 179 442 10873 

hsa04912 GnRH signalling 205 145 1488 

hsa05200 
Pathways in can-
cer 634 988 16014 

Table 4: Number of genes and sub-paths for 14 KEGG pathways with and without “probes cloning” 

Even though the complexity of the system grows exponentially when we take 

into account the “probes clones” the system is capable to compute the differen-

tial sub-paths without significant delays. 

3.2.2. Matching Gene Expression Data and GRNs 

We aim to identify the sub-paths that exhibit high matching scores for one of 

phenotypic class and low matching scores for the others. This is a paradigm shift 

from the mining of differential genes to the mining of GRN functional sub-paths. 

The algorithm for differential sub-path identification is inherently simple. We 

enrich the binary representation of the GRN network with the (binary) data from 

the discretized microarray data (Figure 34). 
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Figure 34: Combining microarray binary data with GRN network; to the left the binary graph repre-
sentation of the GRN and the discretized microarray data; to the right the discretised gene expres-
sion data mapped on the binary graph of the GRN 

With such a setup the entire data are in binary format and are stored in a di-

rected graph with binary representation of the relations between the genes 

(nodes). The candidate sub-paths can be easily extracted from the graph using 

basic Boolean operations [84] for optimization.  

 The activation between two genes A and B can be mapped as a logical 

AND into their respective microarray data.  

 An inhibition between two genes (e.g. A--|B) can be mapped using the log-

ical operation XOR at the microarray data of the target gene (in our case 

gene B). Figure 35 shows the mapping of the activation and inhibition 

gene interactions. Table 3 shows the complete mapping of all the sup-

ported (by KEGG) gene interactions to the two basic (activa-

tion/inhibition) states. A common misunderstanding is that inhibition is 

functional only when the source gene is up-regulated, e.g. A--| B, A is up-

regulated then B is down-regulated. Inhibition is also function when A is 

down-regulated and B is up-regulated. In the literature we can find such 

examples [85]. 

 Association and disassociation are special cases of a gene regulatory net-

work since they does not represent a specific regulatory mechanism be-

tween two genes or two group of genes, but a condition in which specific 

genotypes are associated with other factors, such as specific diseases [86]. 

In most of the cases, genetic association studies aim to detect association 

between one or more genetic polymorphisms and a trait, which might be 

some quantitative characteristic or a discrete attribute or disease. For 

that reason, MinePath identifies and visualizes the associations and disas-

sociations independently of the gene expression values. 
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 Computing sub-paths with more than one reaction: When the candidate 

sub-path has more than one reaction we have to take into account: (i) the 

last reaction (between the final and pre-final gene or group of genes) and 

(ii) the resulting binary representation of the previous sub-path (sub-path 

without the last reaction). The last reaction is combined with logic AND 

with the previous sub-path to compute the final sub-path vector as shown 

in Figure 35. 

 

Figure 35: Mapping gene interactions using logic gates. Activation mapped as logic AND, inhibition as 
logic XOR while sub-paths with more than one reaction require the combination of previous sub-
path and the last relation using a logic AND 

All the possible sub-paths are known using the methodology of the Pathway de-

composition (section 3.1.2.1) and the binary tree data structure gives us the 

needed information (binary representation per gene). With the help of the logical 

operations the creation of the matrix with the candidate sub-paths per sample 

can be produced in a fast and optimized way.  

Of course the sub-paths do not contain only one gene to gene relation. In most of 

the cases sub-paths are a chain of reactions (activations or inhibitions) linking 

many genes or gene groups. The binary operations as described previously are 

used to map sub-paths that contain more than one relation too. In the case of 

sub-paths that include multiple activations e.g. ABC, MinePath initially com-
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putes the AB (using a logic AND) and the BC (using a logic AND), then the 

resulting binary representations are merged using a logic AND, which will give 

the final binary representation of ABC. The same holds for sub-paths that 

include more than one inhibition in a row, but in that case we use the logic XOR.   

A simple example of the Boolean algebra for the identification of the candidate 

sub-paths is given in Figure 36. As we can see the activation AB is calculated 

using the logic gate AND. The same holds for ABD where we compute the 

result of AB in conjunction (using again a logic AND) with the binary represen-

tation of BD. Then the resulting vector of ABD and the vector (binary rep-

resentation) of D─|C are combined using logic gate AND to create the vector for 

our sub-path ABD─|C. To compute the D─|C we use logic XOR at the binary 

representation of D and C genes, as described in Figure 35. 

 

Figure 36: Boolean algebra for the differentially expressed sub-paths, calculation of the ABD─|C. 
On top the discretized gene expressions and the sub-path; in the middle step by step the calculations 
for the sub-path; bottom the results of the sub-path for the specific samples 
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After the decomposition of each pathway into its functional components, each 

sub-path is matched against the respective samples’ gene-expression profiles of 

the respective microarray studies. The result is an array of sub-paths with binary 

values for every sample in the form of a discretized microarray. 

3.3. Analysis (data mining) 

As already exemplified, GRN and gene-expression data matching aims to differ-

entiate GRN sub-paths and identify the most prominent functional sub-paths for 

the given samples.  

The data annotation step of MinePath (section 3.2) produces a binary matrix 

containing information about the sub-paths (active or not) for the specific sam-

ples.  This transformation does not aim to reduce the dimensionality issue of mi-

croarrays (tens of thousands of genes for tens of samples). In fact the produced 

matrix (sub-paths & samples) contains more features than the initial gene ex-

pression dataset (genes & samples). Let’s take an indicative example of a well 

know microarray platform the Affymetrix U133A29. This is a relatively small, in 

terms of probes, chip supporting 22.283 probes. Using the annotation files pro-

vided by Affymetrix we identify 20967 genes in the form of Entrez IDs. The sub-

paths that we identify when we decompose all (224 in total) the human (hsa) 

GRNs from KEGG are more than 50.000. So initially we had a matrix (the gene 

expression data) with ~22.000 genes per sample and after the transformation 

we get a matrix with more than 50.000 sub-paths per sample. 

Following sections describe the methodologies for the filtering/ranking of the 

sub-paths and the validation procedure that is based on well-known algorithms 

from the machine learning area.  

3.3.1. Sub-paths selection 

Having a dataset with tens of thousands of features (sub-paths per sample) is 

apparent that a researcher would try to identify the “best” or in our case the 

most discriminant features (sub-paths). MinePath uses feature selection meth-

odologies for the specific step. 

In the literature, we can find a plenitude of feature selection methods, most of 

them rising as a need to analyse data of very high dimension [87]. This step tries 

to select the features that best discriminate between the different phenotypes 

(disease states). The problem is well-known in the machine learning community 

                                                        
29 http://www.affymetrix.com/estore/browse/products.jsp?productId=131536#1_1 (last day 
visited 11/08/2014) 

http://www.affymetrix.com/estore/browse/products.jsp?productId=131536#1_1
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as the problem of feature-selection (with its dual ‘feature-elimination’) [88] and 

various ‘wrapper-based’ [89], or, ‘filtering’ [90], approaches have been proposed. 

Traditionally, in machine learning research the number of features, m, is quite 

smaller than the number, k, of cases (samples in the case of gene-expression 

studies) that is, m << k. In contrast, gene-expression studies refer to a huge 

number of features and quite few samples. In most domains the number of sub-

paths is in the range of 2.000 – 200.000 (depending on the gene expression plat-

form) and the number of samples in the range of 50 – 200, that is k << m. In a 

situation like that it is questionable if a ‘wrapper’ based feature-selection ap-

proach could help, because of its high-computational cost. That is why we follow 

a ‘filtering’ approach. 

The feature selection algorithms for gene expression data, target to identify the 

most discriminant genes for specific phenotypes. One could see many similarities 

in the gene selection and sub-paths selection objective. The main difference 

comes from the handling of the non-expressed sub-paths, which in our case are 

informative and can be interpreted as non-functional roots in the GRN for a spe-

cific phenotype. That type of knowledge is informative and valuable for sub-

paths contrary to gene selection approaches where an under-expressed gene 

means that it is not activated and most of the algorithms ignore it.  

For the purposes of MinePath we have implement two different filtering/ranking 

methodologies, (i) the discriminant ranking and (ii) the polarity ranking. The 

discriminant is a methodology introduced initially for gene expression data [69] 

while the polarity has been implemented for MinePath. The user has the option 

to select these filtering methods and by default the system uses the polarity. The 

following sections introduce these two methodologies. 

3.3.2. Discriminant power 

The discriminant power feature selection implementation is based on a ranked-

ordering approach. For each sub-path we count the number of samples that it 

holds or not. Assume the two phenotypic classes P (positive), N (negative). The 

following quantities are computed: 

 HP = number of P samples that the sub-path holds. 

 LP = number of P samples that the sub-path does not hold. 

 HN = number of N samples that the sub-path holds. 

 LN = number of N samples that the sub-path does not hold. 

Formula (1) computes the discriminant rank for each sub-path (𝑟𝑠𝑏) that 

measures the power of the sub-path to distinguish between the two classes: 
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(1)                       𝑟𝑠𝑏 = (𝐻𝑃 × 𝐿𝑁) − (𝐻𝑁 × 𝐿𝑃)  

A complete positive sub-path holds for all P cases and does not hold for any N 

case i.e., HP =P, LN = N, LP = HN = 0 and rsb takes its maximum positive value PxN. 

In this case the sub-path is considered as descriptive for, or is associated with or, 

is inclined to class P. The sub-path remains completely distinguishing in the in-

verse case where, LP = P, HN = N, HP = LN = 0, only that now rsb takes its maximum 

negative value. In this case the sub-path is associated with class N. In other 

words the sub-path ranking formula encompasses and expresses a differentiation 

characteristic that represents the descriptive power of the sub-path with respect 

to the present phenotypic classes. So, ordering the positive ranks in descending 

order and the negative ranks in ascending order we may identify the most dis-

criminant sub-path with respect to phenotypic classes P and N. 

3.3.3. Polarity 

Since MinePath handles sub-paths instead of genes, a special ranking system able 

to take into account the absence of a sub-path to the opposite class is needed. As 

we have already mention the information that a sub-path is non-active (or non-

functional) in a specific phenotype is crucial and most of the ranking algorithms 

devoted to gene selection does not take into account such functionality.  

The polarity ranking has been implemented specifically for MinePath and is a 

two-step filtering procedure. Let’s take again the same mapping for the comput-

ed quantities: 

 HP = number of P samples that the sub-path holds. 

 LP = number of P samples that the sub-path does not hold. 

 HN = number of N samples that the sub-path holds. 

 LN = number of N samples that the sub-path does not hold. 

Formula (2) computes the polarity rank for each gene (rsb) that measures the 

power of the sub-path to distinguish between the two classes: 

(2)        𝑟𝑠𝑏 =
(𝐻𝑃−𝐻𝑁)

(𝐻𝑃+𝐻𝑁)
            

The formula provides positive values for sub-paths, which are more informative 

for class P and negative values for class N.  In addition we apply two extra filters 

for the polarity ranked sub-paths, even if they get high polarity rank.  

 First filter for the polarity ranking: For the positive ranked sub-paths 

(derived from formula 2) we keep only the sub-paths that have polarity 

ranking over the average polarity of the positive sub-paths. 
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𝐼𝑓          𝑟𝑠𝑏 > 0 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑟𝑠𝑏𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

Else if    𝑟𝑠𝑏 < 0 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑟𝑠𝑏𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 

 Second filter for the polarity ranking: 

𝑎𝑏𝑠(𝑟𝑠𝑏) ≥
(𝐻𝑃 + 𝐻𝑁)

(𝐻𝑃 + 𝐻𝑁 + 𝐿𝑃 + 𝐿𝑁)
 

With the second filter the system discards highly ranked sub-paths that 

have quite a few functional cases in the opposite phenotype (e.g. pheno-

type 2) even if the sub-path is fully functional for the represented pheno-

type (e.g. phenotype 1).  

An indicative example of the polarity filtering is shown in the following figure. 

 

Figure 37: Polarity filtering example. Red represent functional sub-paths and blue non-functional 
sub-paths, the vertical white line distinguishes the two phenotypes (columns are samples) while the 
horizontal the best sub-paths for the two phenotypes (rows are sub-paths) 

Furthermore, MinePath supported two more variations of the polarity ranking 

and gives the option to the user to select the best (according to the dataset) rank-

ing method. The two options are: 

 Relative polarity: A variation of the polarity ranking formula where in-

stead of absolute counts for the over expressed sub-paths for the pheno-

typic classes P, N (HP, HN) we use the percentages of the over expressed 

per class. For the relative polarity ranking the algorithm scores each sub-

path with the following formula: 

(𝟑)        𝑟𝑠𝑏 =

𝐻𝑃

𝐻𝑃 + 𝐿𝑃
−

𝐻𝑁

𝐻𝑁 + 𝐿𝑁

𝐻𝑃

𝐻𝑃 + 𝐿𝑃
−

𝐻𝑁

𝐻𝑁 + 𝐿𝑁

 

Formula 3 is valuable for datasets with unbalanced number of samples 

per class. Instead of the number of over expressed sub-paths (formula 2) 

we use the percentage of the over expressed sub-paths per class. This 

formula assures that the unbalanced datasets are not biases to the class 

containing more samples. 
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 Boost true positive: Another variation of the ranking algorithm, which is 

applicable only to the polarity filter, is the boost true positive option. The 

polarity or the relative polarity ranking formula are multiplied by the 

percentage of the over expressed sub-paths in the respective class. If the 

ranking formula (polarity or relative polarity) has positive value (the sub-

path is associated with class P) then we multiply the score with the per-

centage of over expressed sub-paths in class P. The same holds for class N. 

The formula for the boost true positive option is computed as follows: 

(𝟒)                              𝐼𝑓          𝑟𝑠𝑏 > 0        𝑟𝑠𝑏 = 𝑟𝑠𝑏 ×
(𝐻𝑃)

(𝐻𝑃 + 𝐿𝑃)
 

𝑒𝑙𝑠𝑒                           𝑟𝑠𝑏 = 𝑟𝑠𝑏 ×
(𝐻𝑁)

(𝐻𝑁 + 𝐿𝑁)
 

Where 𝑟𝑠𝑏  can be the score from formula 2 or formula 3. 

The boost true positive variation gives a low ranking “penalty” to sub-

paths, which are activated in a small number of samples for the one class 

and in none or almost none samples in the other. This variation of the po-

larity will assure that the almost always non-functional sub-paths will be 

rejected. 

3.3.4. Selection of best common sub-paths  

Best common sub-paths are the sub-paths that appear to be functional for both 

phenotypes. Such sub-paths has no informative value in other domains, e.g. when 

we are handling gene expressions, since a gene that is always up-regulated can-

not positively contribute in any research question. In the case of pathways, the 

sub-paths, which are always activated may fill-in the gap (functional interaction) 

between two sub-paths and reveal a complete functional and biologically valua-

ble route. Figure 38 highlights the need for the best common sub-paths. The ver-

tical dashed lines distinguish the outer from the inner cell and the grey dashed 

arrows (down right of the figure) show biological procedures that the paths ini-

tiate. Part A (upper part) of figure visualizes the ErBb signalling pathway, where 

the red lines are sub-paths functional for phenotype-1 and blue lines are func-

tional for phenotype-2.  Part B (lower part) of figure, visualizes the same path-

way along with the common functional sub-paths (orange relations). As we can 

see in part B of the figure there are pathways from the extra-cellular (AREG, 

NRG1 and NRG2), which lead to protein synthesis and metabolism for pheno-

type-1 and for phenotype-2 from BTC and HBEGF to cell survival and cell cycle 

progression. These pathways share one or more sub-paths (e.g. the 
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PIK3R5AKT3), which are functional for almost all the samples and link the gap 

between the outer genes to biological procedures. 

.  

Figure 38: The need for the always functional sub-paths. On top (part A) the pathway with the differ-
entially expressed sub-paths (red for phenotype1, blue for phenotype2), at the bottom (part B) the 
same pathway with the common sub-paths (orange), The root from the extra-cellular to the biologi-
cal functions is clear with the common sub-paths 

3.3.5. Validation 

The main innovations introduced by MinePath come from the matching of the 

different biological data sources (gene regulatory networks and gene expression 

data) and system’s visualization capabilities. MinePath provides also mecha-

nisms that validate the best sub-paths against the different phenotypes using 
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well-known algorithms and validation procedures from the area of machine 

learning. For that reason the open source java library of Weka [91] has been in-

tegrated into the system.  

Given a set of training samples, each assigned to one of two phenotypic catego-

ries, a training algorithm builds a predictive model able to classify new samples 

into one phenotype or the other. Validation is performed building a non-

probabilistic binary linear classifier using randomized 10 fold cross validation 

procedure. 10 fold means that we divide the data into 10 subsets of (approxi-

mately) equal size. We train the classifier 10 times, and measure the respective 

‘out-of-sample’ accuracy performance. Then we measure the accuracy, which is 

the proportion of true results both true positives and true negatives in the popu-

lation. The overall accuracy is the measured as the mean of the accuracies 

achieved in the 10 runs. 

MinePath supports three well known machine learning algorithms: 

 Decision tree learning (C4.5 [92] software Weka J48). The C4.5 algorithm 

builds a decision tree from the top, identifying each time the most dis-

criminative variable. 

 Naïve Bays [93] software Weka). A simple probabilistic classifiers based 

on applying Bayes' theorem with strong (naive) independence assump-

tions between the features. 

 Support Vector Machines (Linear kernel support vector machines [94] 

software Weka SMO) are supervised learning models with associated 

learning algorithms that analyse data and recognize patterns, used for 

classification and regression analysis.  

By default MinePath computes, stores and shows 10-fold cross-validation results, 

but additional modelling experiments could be conducted and evaluated (e.g., 

following a train vs. independent test experimentation mode). 

Furthermore a special implementation of the MinePath methodology towards 

the devise of models that predict disrupted pathways from miRNA’s was also 

implemented. More details about the miRNA case study can be found at the ex-

tensions section and the experiments section. 

MinePath uses binary data structures and Boolean algebra for the calculations, 

so that it is capable of operating in real time even on large datasets with hun-

dreds of pathways. As a stress test, all KEGG human (‘hsa’) pathways (224 in to-

tal) were used over an artificial dataset (called ‘4 ER datasets’) that contains 

gene-expression profiles of 914 samples from 4 different microarray datasets 

(samples are assigned ER positive or ER negative and all come from the Affymet-



72 

rix U133A platform). MinePath computed and identified the most discriminant 

sub-paths in about 2.5’. 

3.4. Visualization 

In the literature there exist a limited number of systems that utilize knowledge 

from known GRNs, namely GGEA, SPIA, TEAK and DEAP. However, these systems 

suffer from insufficient visualization features, a fact that does not facilitate in-

spection of results and limits the exploratory potential by the users. Some gene 

set enrichment analysis methodologies and tools utilize pathway visualization 

approaches to overcome this problem. Since they are based on a gene-oriented 

approach, they are still unable to handle differentially expressed pathways or 

even differentially expressed sub-paths.  

Solutions such as the KEGG Atlas/Mapper [95], WebGestalt [96], NetworkTrial 

[97] or even Graphite Web [98] visualize just the pathway genes using some col-

our scale or colour-coding schema. This problem is apparent even for small 

pathways such as the inhibition relation A | B (A inhibits B; A, B represent 

genes) which could be considered as active in two cases: when A is up-regulated 

and B down-regulated or when A is down-regulated and B up-regulated. For such 

different cases, different colours should be assigned to the genes. The situation 

becomes even more complicated when one has to visualize the phenotype incli-

nation of an interaction, e.g., an inhibition being active for one phenotype and not 

for another.  

Contrary to similar efforts, which visualize the state of genes in a GRN, MinePath 

identifies and visualizes the differentially expressed GRN sub-paths. In addition, 

MinePath supports active interaction and re-adjustment of the visualized net-

work and is equipped with special operational features enabling the reduction of 

GRN’s complexity. 

One of the key innovations of MinePath rest in its visualization capabilities and 

especially, in the visualization of active gene to gene regulatory relations that 

differentiate between the target phenotypes. To the best of our knowledge, 

MinePath is the only tool that visualizes differentially expressed relations instead 

of just differential genes. The colour coding of the relations in MinePath is as fol-

lows: 

 ‘Red’ is used to encode sub-path relations that are active for phenotype 1 

(Class 1) 

 ‘Blue’ for relations that are active for phenotype 2 (Class 2) 
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 ‘Magenta’ for relations holding for both phenotypes 

 ‘Orange’ for relations that are “always-active” 

 “Yellow” for the association/disassociation relations 

 ‘Grey’ for inactive relations. 

MinePath also supports active interaction and immediate visualization of path-

ways when the user sets new thresholds for the best or always active sub-paths. 

It further supports the option to hide/show the overlapping relations and the 

association-dissociation relations (in yellow) in the pathway. In all cases, the 

KEGG layout topology is preserved. In addition, MinePath is equipped with spe-

cial functionality enabling the reduction of network’s complexity (deletion of 

genes, relations and/or parts of the network) and re-orientation of its topology. 

A detailed description of the user interface can be found in section 3.5.2.   

3.5. Implementation 

3.5.1. Standalone tool 

MinePath is a Java based program taking advantage of various libraries. 

The structure of the source code can be found in the Figure 39. As we can see the 

main java packages of MinePath are: 

 Annotation: Contains classes related to annotation of genes e.g. from a 

specific platform to KEGG ids or Entrez Ids. 

 Decomposition: Contain classes for the handling and representation of 

the pathways to our binary graph based data structure. 

 Discretization: Contains classes for the discretization of the gene expres-

sion data and various filtering classes for the ranking of the extracted sub-

paths. 

 Gui: The main classes for the invocation of MinePath as standalone tool 

along with special invocation classes for specific scenarios like the miR-

NA. 

 Misc: This package contains many general purpose classes, which help in 

various steps the core functionality of MinePath. Same holds for misc.io, 

which contains classes dedicated to read from and write to intermediate 

or output files.  

 Predictor: The predictor package contains files for the generation of the 

miRNA prediction models for the one sample prediction scenario. 
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As we have already mention, MinePath uses open source java libraries for the 

handling of the graphs and the validation of the best sub-paths based on well-

known machine learning algorithms. The libraries used are: 

 Cytoscape: an open source software platform for visualizing molecular 

interaction networks and biological pathways and integrating these net-

works with annotations, gene expression profiles and other state data. 

Although Cytoscape was originally designed for biological research, now 

it is a general platform for complex network analysis and visualization.   

Cytoscape core distribution provides a basic set of features for data inte-

gration, analysis and visualization.  

 Weka: a collection of machine learning algorithms for data mining tasks. 

The algorithms can either be applied directly to a dataset or called from 

your own Java code. Weka contains tools for data pre-processing, classifi-

cation, regression, clustering, association rules and visualization. It is also 

well-suited for developing new machine learning schemes. 

  

Figure 39: Structure & statistics of the source Code. To the left the java packages and the classes, to 
the right the lines of code per java package 
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Until now the lines of code of MinePath are more than 5.500. The lines of code 

per java package are shown in the right part of Figure 39. 

The usage of command line MinePath is as follows:  

MinePath <MicroArray FileName full path> <Pathways Folder Path>  

 

Optional (parameters must appear after microarray & pathways paths): 

 -upBoth N (% selected up regulated sub-paths for both classes)  De-

fault 80 

 -addSD N (Add SD at the Threshold. Positive value (e.g. 0.5 or 1 or 2) 

makes threshold stricter. Negative value makes threshold more elastic)  De-

fault 0 

 -addStartEnd (add as subpath the first - last genes of every big (over 

2 reactions) sub-path)   Default false  

 -i (ignore Paths with only 1 reaction)   Default false  

 -ignoreInverseInhibition (ignore inverse inhibition Down --| Up) De-

fault false (use it) 

 -filterSimpleRelative (R1-R2)/(R1+R2)      De-

fault = Polarity filter with relative values 

 -filterAbsolute (use absolute values for filtering)  Default = Polar-

ity filter with relative values 

 -discr (use discriminant filter)       De-

fault = Polarity filter with relative values 

 #N (best select for discriminant filter)     De-

fault = 100 

 #-classifier (10 fold cross validation of best subpaths)   1 = 

C4.5 decision tree (Default) 

           2 NaiveBayes 

      3 Support Vector Machines 

  0 none 

 

Usage for Kegg conversion to XGMML: 

MinePath -kegg2xgmml <Pathways Folder Path> 

 

MinePath, either as standalone tool or as the web based platform, provides a 

wealth of output files. We do not provide only the results and accuracies of the 

MinePath methodology but we also provide the generated sub-paths to samples 

matrix, which could be used by statisticians or bioinformaticians to mine the da-

taset in terms of sub-paths.  

Following we describe the output files of the MinePath.  

The validation.txt file is generated only if the user has select to validate the data 

using one of the 3 available options (10 fold cross validation using decision tree, 

support vector machines or Bayesian networks). The file provides detailed accu-

racy and confusion matrix. An example of the validation output file follows. 

Validation of Best sub-pathways. 

Algorithm: Support Vector Machine (10-fold cross validation). 

 

Correctly Classified Instances           11              100 % 

Incorrectly Classified Instances          0                  0 % 

Kappa statistic                            1      
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Mean absolute error                       0      

Root mean squared error                   0      

Relative absolute error                   0 % 

Root relative squared error               0 % 

Total Number of Instances                11      

=== Detailed Accuracy By Class === 

                 TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                   1         0          1         1         1          1        JKAT1_MUT 

                   1         0          1         1         1          1        JKAT1_CTRL 

Weighted Avg.     1         0          1         1         1          1     

=== Confusion Matrix === 

 A       b   <-- classified as 

 3       0 | A = JKAT1_MUT 

0 8 | B = JKAT1_CTRL 

The pathwayStats.xml file contains information related to statistics for the da-

taset such as the min, max, mean and standard deviation for the best sub-paths 

at each class. This information can be found in the Experiment_information tag of 

the xml. The file also contains statistics for each pathway participated in the ex-

periment and provides information related to the number of genes, the number 

of sub-paths, and number of sub-paths for each class and for the common sub-

paths, percentages and scores. We provide three different score formulas, which 

can be used to rank the selected pathways (option of the web application of 

MinePath). The three scores are: 

I. Pathway power (pwA): is the sum of the significant sub-paths in the 

pathway (including the common sub-paths) divided by the number of 

the total sub-paths of the pathway.  

II. Pathway discriminant power (pwDS): is the number of the significant 

sub-paths for the two classes divided by the number of the total sub-

paths of the pathway. 

III. The pathway score (Score) is calculated using the formula Score = pwA 

* pwDS  

Information for each pathway exists in the xml tags Pathway. An example of the 

pathwayStats.xml follows. 

<MinePath> 

 <Experiment_information> 

  <DataSet>GSE18239.txt</DataSet> 

  <class1>JKAT1_MUT</class1> 

  <class1Mean>0.3703267027541743</class1Mean> 

  <class1Std>0.23195214689559882</class1Std> 
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  <class1Threshold>0.3703267027541743</class1Threshold> 

  <class1max>1.0</class1max> 

  <class2>JKAT1_CTRL</class2> 

  <class2Mean>-0.2775619311429376</class2Mean> 

  <class2Std>0.19363961897309606</class2Std> 

  <class2Threshold>-0.2775619311429376</class2Threshold> 

  <class2min>-0.10000000000000002</class2min> 

  <class2max>-1.0</class2max> 

  <commonThreshold>0.8</commonThreshold> 

 </Experiment_information> 

 <Pathway> 

  <name>hsa04010.xgmml</name> 

  <title>MAPK signalling pathway - Homo sapiens (human)</title> 

  <numOfGenes>249</numOfGenes> 

  <numOfSubPaths>761</numOfSubPaths> 

  <score>0.369</score> 

  <pwA>0.515</pwA> 

  <pwDS>0.717</pwDS> 

  <numOfSubPathsClass1>143</numOfSubPathsClass1> 

  <numOfSubPathsOverThrClass1>41</numOfSubPathsOverThrClass1> 

  <persOfSubPathsOverThrClass1>5</persOfSubPathsOverThrClass1> 

  <numOfSubPathsClass2>588</numOfSubPathsClass2> 

  <numOfSubPathsOverThrClass2>240</numOfSubPathsOverThrClass2> 

  <persOfSubPathsOverThrClass2>31</persOfSubPathsOverThrClass2> 

  <numOfSubPathsCommon>9</numOfSubPathsCommon> 

 </Pathway> 

 <Pathway> 

  <name>hsa04012.xgmml</name> 

  <title>ErbB signalling pathway - Homo sapiens (human)</title> 

  <numOfGenes>87</numOfGenes> 

  <numOfSubPaths>267</numOfSubPaths> 

  <score>0.416</score> 

  <pwA>0.674</pwA> 

  <pwDS>0.617</pwDS> 

  <numOfSubPathsClass1>124</numOfSubPathsClass1> 

  <numOfSubPathsOverThrClass1>56</numOfSubPathsOverThrClass1> 

  <persOfSubPathsOverThrClass1>20</persOfSubPathsOverThrClass1> 

  <numOfSubPathsClass2>125</numOfSubPathsClass2> 

  <numOfSubPathsOverThrClass2>55</numOfSubPathsOverThrClass2> 

  <persOfSubPathsOverThrClass2>20</persOfSubPathsOverThrClass2> 

  <numOfSubPathsCommon>1</numOfSubPathsCommon> 

 </Pathway> 

</ MinePath> 
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The file with the extension -colours.txt contains all the participating genes in the 

selected sub-path with a specific colour coding and the gene ids as Entrez Id for 

use with the KEGG colour mapper30. One can provide this list to the KEGG colour 

mapper and by selecting Search against: hsa can view the participating genes 

(genes from the best sub-paths) in a specific colour coding. That was the initial 

attempt for visualization in MinePath. Soon enough it was apparent that such 

tools, which visualize the status of a gene in GRN are not suitable for MinePath 

since we have to produce a very big and confusing colour mapping for the two 

phenotypes and the different types of relations in the GRN. The problem comes 

from the limitation that such tools are based on a gene-oriented approach and 

are unable to handle differentially expressed pathways or even differentially ex-

pressed sub-paths. The situation becomes even more complicated when one has 

to visualize the phenotype inclination of an interaction, e.g., an inhibition being 

active for one phenotype and not for another. 

The most informative and valuable for further exploratory analysis are the ma-

trices that MinePath produces in tab delimited or arff format. The file with exten-

sion: 

 -all-pathways.txt provide the full matrix (sub-paths vs samples) of the da-

taset.  

 -all-pathways.txt.arff is the same matrix in arff format for auto load in the 

Weka standalone application 

 Ranked-all-pathways.txt provides again the full matrix with the ranking 

system of the MinePath (discriminant or polarity metric) 

 Ranked-all-pathways.txt-Best.txt provides only the best (according to the 

ranking) sub-paths. 

 Ranked-all-pathways.PlusBest.txt provides only the best (according to the 

ranking) sub-paths that characterize the first class of our dataset. 

 Ranked-all-pathways.MinusBest.txt provides only the best (according to 

the ranking) sub-paths that characterize the second class of our dataset. 

 Ranked-all-pathways.OrangeBest.txt provides only the best sub-paths that 

are always function (in both class) of our dataset. 

In the perPathway folder the user can find the sub-paths to samples matrix for 

each pathway individually in tab delimited format with .txt extension or arff for-

mat (.arrf file). The system also provides a .json file per pathway, which provides 

information (and is the input) for the visualization feature of the MinePath web 

application. 

                                                        
30 http://www.genome.jp/kegg/tool/map_pathway2.html (last day visited 11/08/2014) 

http://www.genome.jp/kegg/tool/map_pathway2.html
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3.5.2. Web based MinePath 

The final product of MinePath (www.minepath.org) is a web-based platform that 

implements the methodology for the identification and visualization of differen-

tially active paths or sub-paths within a gene regulatory network (GRN), using 

gene-expression data. The platform takes advantage of the regulatory mecha-

nisms and the topology of GRNs, including the direction and the type of the in-

volved interactions (activation/expression, inhibition).  

Its core algorithm determines differentially expressed pathway sub-paths and 

relations instead of just differential genes. These sub-paths present evidential 

molecular mechanisms that govern the disease itself, its sub-type, state or other 

targeted disease phenotypes. In this form, MinePath introduces a new and effi-

cient representation of the differentially expressed sub-paths over a Web-based 

human-computer interface. Furthermore, MinePath supports live interaction, 

immediate visualization of regulatory relations and it is equipped with special 

topological and network-adjustment functionalities.  

The MinePath web-server is implemented as a Web 2.0 application. It relies on 

the frontend-backend software design using AJAX calls for the communication. 

The layout, appearance and interface of the front-end are based on the open 

source version of Ext-JS31 library and pure JavaScript. For visualization and inter-

action of the differential GRN sub-paths the Cytoscape Web32 library has been 

deployed and expanded. The backend of MinePath is a java-based application 

and takes advantage of the Weka33 API for the implementation and evaluation of 

phenotype prediction models.   

Use of MinePath is relatively simple and straightforward. The user selects or up-

loads a microarray dataset, then selects the gene regulatory networks to explore 

and run MinePath. The system will compute in real time the differentially ex-

pressed functional paths or sub-paths of the selected pathways. Then the user 

selects the pathway to explore and the system visualizes the differentially ex-

pressed regulatory mechanisms (relations) and sub-pathways. The complete list 

of operations (in steps) follows. 

  

 

                                                        
31 www.sencha.com/products/extjs/  
32 http://cytoscapeweb.cytoscape.org (last day visited 11/08/2014) 
33 www.cs.waikato.ac.nz/ml/weka (last day visited 11/08/2014) 

http://www.minepath.org/
http://www.sencha.com/products/extjs/
http://cytoscapeweb.cytoscape.org/
http://www.cs.waikato.ac.nz/ml/weka
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1. Select input data and parameters 
1.1. Select gene expression dataset 

1.2. Select the gene regulatory networks to be analyzed (by default 14 cancer re-

lated pathways are pre-selected) 
1.3. Select thresholds for differentially expressed functional sub-paths, the sub-

path ranking method and the validation algorithm (default values are pre-

set) 
 

2. Run MinePath 

2.1. View and download results (best sub-paths arff & tab delimited files) 

2.2. View ranked pathways and select which to visualize. 
 

3. Visualize/explore the selected pathway using the web-based interface 
 

3.1. From the controls panel (left panel of the visualization) 

3.1.1. Set/change dynamically threshold for class1 (phenotype 1) 

3.1.2. Set/change dynamically threshold for class2 (phenotype 2) 
3.1.3. Set/change dynamically threshold for always active sub-pathways 

3.1.4. Show/Hide associations and dissociations 
 

3.2. In the viewer using right click 

3.2.1. Remove inactive genes 

3.2.2. Remove inactive relations 
3.2.3. Remove selected genes/relations. 

3.2.4. Change the layout (random) topology of the network 
 

 

 

 

3.5.2.1. Select input data and parameters 

3.5.2.1.1. Select or upload gene expression dataset 

MinePath uses microarray experiments and respective 

gene-expression data for which we expect (suspect) 

the targeted GRNs play an important role. MinePath 

(currently) provides 12 public gene expression da-

tasets from the Gene Expression Omnibus (GEO) data-

base. The user can select one of the 12 annotated da-

tasets or upload his/her own dataset. The uploaded 

dataset is private, viewable just by the uploaded (the 

uploaded data are deleted as soon as the processing of MinePath ends). The up-

loaded dataset should be in the form of a tab delimited txt file where the rows 

are the annotated gene names and the columns are the sample values.  The anno-

tated gene names must have the format <probe>#<KeggID> (keggID is identical 

to the corresponding Entez ID with prefix for each species, e.g. for human “hsa:”). 

For example if you have the probe “1007_s_at” for human, which maps to the 

“780” Entez ID, then the annotated gene name for MinePath must be 
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“1007_s_at#hsa:780”. The first row contains the phenotype of each sample. At 

the web site of MinePath annotation lists for the most common microarray can 

be found, downloaded and used from the following links (U133A, U133B, 

U133plus). The phenotype must be one word without white spaces and the sys-

tem expects 2 phenotypes (2 different classes). MinePath supports nominal (dot 

as decimal separator) or binary (0,1) values. A sample of an input data-file is 

shown at the figure below. 

 

3.5.2.1.2. Select pathways 

Current version of MinePath supports all the human (hsa) related gene regulato-

ry networks from the KEGG database.  

By default the system has preselected 14 hsa can-

cer-related pathways. The preselected pathways 

are: ECM-receptor interaction (hsa04512), Cyto-

cin-cytocin receptor interaction (hsa04060), Ad-

herens junction (hsa04520), Wnt signalling 

(hsa04310), Focal adhesion (hsa04510), Jak-

STAT signalling (hsa04630), ErbB signalling 

(hsa04012), MAPK signalling (hsa04010), mTOR 

signalling (hsa04150), VEGF signalling 

(hsa04370), Apoptosis (hsa04210), p53 signalling 

(hsa04115), Cell cycle (hsa04110) and TGF-β sig-

nalling (hsa04350). All these pathways are en-

gaged with the ‘Pathways in Cancer’ integrated 

pathway of KEGG (hsa05200). 

The user can add or remove any pathways by se-

lecting/unselecting from the “Pathways to use” tree view menu, or use all the hsa 

pathways by selecting the “All hsa (224 pathways)” option.  

We have also created an artificial pathway, which is the merged pathway of the 

14 cancer related pathways and can be found in the pathways tree as “Merged 

(14 cancer related)”. For more information please refer to the Extensions sec-

tion. 

http://139.91.190.87/minepath/manual/U133A.txt
http://139.91.190.87/minepath/manual/U133B.txt
http://139.91.190.87/minepath/manual/U133_Plus.txt
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3.5.2.2. Run MinePath 

The user can also optionally set some parameters re-

garding the minimum thresholds of the two sub-paths 

phenotypes, the minimum threshold for the always ac-

tive sub-paths, variations for the ranking algorithm and 

select validation algorithm as shown at the figure to the 

left. 

3.5.2.3. Selected sub-paths validation 

MinePath validates the best (over a threshold) sub-paths using 10 fold cross val-

idation methodology over the selected validation algorithm that can be:  

 Decision Tree  

 Naïve Bayes or  

 Support Vector Machines (default option). 

The phenotype information is extracted from microarrays and all the selected 

GRNs are evaluated for the identification of the most informative GRNs at the 

specific phenotype. The efficient ranking of sub-paths provides the most differ-

entiating and prominent GRN functional sub-paths for 

the respective target phenotypes. These sub-paths 

present evidential molecular mechanisms that govern 

the disease itself, its type, its state or other targeted 

disease phenotypes (e.g., positive or negative response 

to specific drug treatment). The results are shown to 

the user, as soon as the algorithm finishes, along with 

the option to download the result files (as shown at 

the figure to the left). 

At the downloadable results the user can find overall 

statistics, Weka (.arff) files for all the sub-paths along 

with binary values per sample, the best overall path-

ways sub-paths and best sub-paths per pathway - 

formed to enable the application of a variety of mining 

tasks; induction of different predictors (e.g., decision-

trees, SVMs etc.); and application of different predic-

tion performance experiments (e.g., on independent 

datasets). By default the web based MinePath validates 
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the results using 10-fold cross validation.  

Validation of independent datasets is as simple as follows. Run Minepath for test 

and train datasets (must be from the same microarray platform and with the 

same phenotypes). Download the results and use the best sub-paths .arff file of 

train dataset as train in weka. Then select the all sub-paths .arff file of the 

downloaded test dataset as test at weka. 

3.5.2.4. GRNs statistics 

At the next step, MinePath shows the list of the involved pathways ranked along 

with statistics that helps to select which pathway to visualize. The statistics per 

pathway are:  

 number of genes 

 number of sub-pathways 

 the MinePath score 

 coverage score 

 differential power 

 statistics for sub-paths in class 1 (phenotype 1) 

 statistics for sub-paths in class 2 (phenotype 2) 

 number of always active sub-paths 

An example is shown at the figure below. 

 

Figure 40: Selection of pathway to visualize, the GUI provides statistics for each pathway such as 
number of genes, number of sub-pathways and various scores. The user can also short the results 
based on any of these categories 

3.5.2.5. Visualize/explore 

The user can select any of the pathways to explore/visualize. An example of the 

ErbB pathway for the ‘4ERdatasets’ dataset (a set of four independent discre-

tized and then merged gene-expression studies targeting the ER phenotypic sta-

tus of the respective patients, from the four studies are naming GSE2034,  
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GSE2990, GSE3494 and GSE7390) using the 14 preselected pathways is shown at 

the figure below. We also deleted the inactive gene interactions (in the viewer - 

right click feature).  

 

Figure 41: Indicative example of MinePath visualization. To the left are the controls of the MinePath 
visualization tool. To the right is the viewer where we see the pathway (with the KEGG topology) and 
red edges represent functional sub-paths for phenotype1 (in this case ER+), blue for phenotype 2 
(ER-), orange always active sub-paths, magenta overlapping functional sub-paths and grey non func-
tional sub-paths 

The graph preserves the KEGG layout topolo-

gy. It is enriched with the expressed regulato-

ry mechanisms (relations) between genes that 

differentiate between the two phenotypes: 

 

 Red indicates relations active at class 1, which in our example is the 

ERpos  

 Blue indicates relations active at class 2 (ERneg)  

 Magenta indicates overlapping relations in the two classes 

  Orange for sub-paths that are always active.  

Contrary to other pathway visualization tools, MinePath calculates and visualizes 

differentially expressed relations instead of just differential genes. Furthermore 

MinePath supports active interaction and immediate visualization when the end 
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user sets new thresholds for the two phenotypes or for the always active sub-

paths, as well as to hide/show the overlapping relations and hide/show the as-

sociation-dissociations of the pathway from the control panel (left part of 

MinePath viewer).  

In addition, MinePath is equipped with special func-

tionality that enables the reduction of network’s 

complexity (deletion of genes, relations and/or parts 

of the network), as well as re-orientation of its to-

pology.  The functionality is available with a right 

click (in the viewer).  

Using the aforementioned example and exploring the specific pathway we can 

stress the thresholds to retain ‘strong’ sub-paths per phenotype (class): Using 13 

as threshold for class 1 (ERpos) results to 18 sub-paths and again 13 for class 2 

(ERneg) results to 33 sub-paths; We also use 95% for all always active sub-

paths, which results to 45. Then, by right clicking at the viewer we delete all in-

active genes, delete all inactive gene interactions and merge the 2 GRB2 gene-

rectangles (GRB2 appears 2 times in ErbB due to the topology of KEGG). The re-

sulting (reduced) pathway will become as the one in the following figure (mov-

ing around gene-rectangles and relation-edges we made its layout ‘prettier’).  

 

Figure 42: Using MinePath controls over a GRN. Thresholds 13 for class 1 (ERpos), 13 for class 2 
(ERneg), 95% for always active sub-paths and deleted all inactive genes and gene interactions 
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Inspecting the reduced network, it is clear that there is a pathway starting from 

NRG (1 and 2) and ends at inhibiting the GSK3B and EIF4EBP1 for ERpos pheno-

type; and a pathway starting from TGFA or BTC or HBEFG that ends-up at inhib-

iting BAD and CDKN1B for ERneg phenotype. You can see that these sub-

pathways share common parts, which are active at both phenotypes (ERpos and 

ERneg). More details for the established clinico-genomic information and 

knowledge that supports the finding need for pan-erbb inhibitors can be found in 

the experiments section. 

Armed with the aforementioned features, MinePath serves the users’ exploratory 

needs to reveal the regulatory mechanisms that underlie and putatively govern 

the expression of target phenotypes. 

3.6. Extensions  

MinePath has been implemented to be modular and to be easily extended to 

support more algorithms (e.g. discretization algorithms, filtering algorithms and 

validation algorithms) and different clinical scenarios or research questions. 

3.6.1. miRNAs to disrupted sub-paths 

Such a need came from a European Union funded research project called P-

Medicine34. MinePath was demonstrated to the consortium, feedback was very 

good and the project coordinator (prof. Norbert Graf) asked if we could use and 

extend MinePath to identify disrupted sub-paths from GRNs using only miRNA 

data.  

To our knowledge such a tool, which will be able to identify disrupted sub-paths 

from miRNA data, does not exist in the literature. Similar tools such as the Gen-

eTrial35 or the mirPath36  use ORA and measure the disruption of the pathway as 

whole and not specific sub-paths in the pathway. 

The research question for the miRNA extension was:  

 To find disrupted pathways in nephroblastoma using miRNA expression da-

ta. 

miRNA data from nephroblastoma serve as the source of disrupted metabolic 

pathways. These data needs to be normalized and then correlated to pathway 

                                                        
34 http://p-medicine.eu/ (last day visited 11/08/2014) 
35 http://genetrail.bioinf.uni-sb.de (last day visited 11/08/2014) 
36 http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=mirpath/index (last day visit-
ed 11/08/2014) 

http://p-medicine.eu/
http://genetrail.bioinf.uni-sb.de/
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=mirpath/index
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data coming from the KEEG pathway database. MinePath will analyse the tumour 

of disrupted metabolic pathways. By correlation to clinical data of patients, indi-

vidual pathway disruptions or main disruptions for a cohort of patients with 

nephroblastoma will be produced as a result. The tool should be made in a gen-

eral way that by describing the databases and the interfaces the tool will get do-

main independent. 

The need to use miRNAs instead of gene expression data in such a scenario is 

essential in the clinical practice since miRNA exams can be produced fast, with 

blood sample the first day of the patient in the hospital. With such a tool we 

could possibly get personalized insights in the clinical routine since we could 

categorize the new patient to responsive or non-responsive of a possible treat-

ment, prior the treatment.  

For the miRNA scenario we assume that all the KEGG pathways are fully func-

tional. Disrupted pathways will be the pathways that are not “active” according 

to the specific cohort (microRNAs for nephroblastoma or gene expressions for 

ALL). 

The idea is that miRNAs have known targeted genes, which means that an up-

regulated miRNA can target (down-regulate) one or more genes. As we men-

tioned earlier we assume that all the KEGG pathways are functional, which 

means that all the sub-paths are functional. We identify the genes that have been 

down-regulated due to the targeting of miRNAs and we consider the rest genes 

as up-regulated. An example of the mapping of miRNAs to targeted genes is 

shown in Figure 43.  

 

Figure 43: miRNA example. To the left are miRNAs with targeted gene (blue) and to the right the 
effect of the targeted genes in a specific pathway. Green represents the active (up-regulated) genes 
and blue the targeted (down-regulated) genes. 
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The pathway analysis scenario has two steps. The first step is to create and train 

a model able to predict outcomes for new samples. MinePath uses two classes 

approach to identify differentially expressed pathways & sub-pathways and has 

been extended to support miRNA expression data. The reference cohort for the 

creation of the model is based on the hsa (human) KEGG pathways and the 

GSE38419 public miRNA dataset.  

MirTarBase37 database has been used to identify targeted genes from the miR-

NAs. The clinical variable of GSE38419 dataset is the characterization to a wilm’s 

tumour patient or to a healthy person and the model has been trained to predict 

one of these two classes. Steps for the first part of the scenario are shown in Fig-

ure 44. Then the prediction model is registered to the p-medicine workbench as 

a new biomedical resource for possible use. 

 

Figure 44: Flow of operations for the training step of the miRNA pathway analysis model. From left 
to right: Initially we collect the data, we identify the target genes from the miRNAs, we analyse using 
MinePath and finally we train the model using the disrupted sub-paths (from MinePath). 

The second part is to predict if a new patient is characterized (according to 

his/her miRNA expression data) to wilm’s tumour patient or to healthy person.  

When a new patient, who is candidate for wilm’s tumour, arrives in the hospital 

the clinician requests for a miRNA exam and searches in the p-medicine work-

bench for tools able to predict the disease based on disrupted pathways from 

miRNA expression data. The pathway analysis tool is identified as a candidate 

tool and the doctor downloads the tool (Figure 45). 

                                                        
37 http://mirtarbase.mbc.nctu.edu.tw/ (last day visited 11/08/2014) 

http://mirtarbase.mbc.nctu.edu.tw/
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Figure 45: Download (from p-medicine workbench) and use of pathway analysis model in the clini-
cal domain  

The doctor gives as input to the tool the miRNA expression data of the patient 

and the tool normalizes/discretizes the genomic data according to the reference 

cohort (from step 1). Then the Mirtarbase database is used to identify targeted 

genes from the miRNAs. MinePath extracts the disrupted sub-paths for the spe-

cific patient and feeds the prediction model (created at step 1) to identify if the 

sample belongs to wilm’s tumour patient or to a healthy person according to 

his/her miRNA expression data. 

For the feasibility study of the miRNA extension we used the public dataset 

(GSE38419) from GEO.  The dataset contains: 

 Clinical data: Healthy and wilm’s tumour patients 

 Genomic data: miRNAs (848) per sample/patient 

Details about the validation of the results can be found in the Experiments sec-

tion. 

3.6.2. Merging gene regulatory networks 

A common operation on graphs is merging, that is, combining different graphs 

together. It is inspired by the fact that many KEGG pathways embed other path-

ways, for example MAPK signalling pathway embeds 6 pathways including Wnt 

signalling pathway. This extra functionality provides the possibility to merge 

them into one graph for further analysis. This is an extra of-line functionality that 

can be used only from the standalone tool of MinePath.  

Using this extra functionality we created an artificial pathway, which is the 

merged pathway of the 14 cancer related pathways and can be found in the 

pathways tree of the web based platform as “Merged (14 cancer related)”. The 

pathways that have been merged are shown in Table 5. 
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 Table 5: Pathways engaged within the ‘Pathways in Cancer’ KEGG (hsa05200) 

  KEGG Id Pathway description 

1 has04310 Wnt signalling 

2 hsa04010 MAPK signalling 

3 hsa04012 ErbB signalling 

4 hsa04060 Cytocin-cytocin receptor interaction 

5 hsa04110 Cell cycle 

6 hsa04115 p53 signalling 

7 hsa04150 mTOR signalling 

8 hsa04210 Apoptosis 

9 hsa04350 TGF-β signalling 

10 hsa04370 VEGF signalling 

11 hsa04510 Focal adhesion 

12 hsa04512 ECM-receptor interaction 

13 hsa04520 Adherens junction 

14 hsa04630 Jak-STAT signalling 

The merged pathway contains more than 2.500 sub-paths. An indicative example 

(screenshot from the MinePath web site) is shown in the following figure. 

 

Figure 46: The merged pathway (14 cancer related pathways)  



91 

4. Experiments 

In this chapter we discuss indicative results from MinePath using some of the 

available datasets from the web site of the tool.  

The experiments prove the validity of MinePath methodology and highlight the 

value of the web based user interface in the quest of biological interpretation of 

the pathway analysis results. 

4.1. MinePath comparison study 

Though a comparative benchmark is hard to find, due to a missing gold standard 

that classifies detected sub-paths as right or wrong in the context of the investi-

gated expression data, we tried to identify biological evidence in the literature 

and focussed on the specificity of the findings and the sensitivity of the method 

used. From the four known methodologies which cope with the regulatory 

mechanisms, only the glioma experiment used by GGEA is publicly available. 

4.1.1. Glioma, comparison with GGEA 

Glioblastoma or Glioma is the most common and malignant primary intracranial 

human neoplasm. GGEA [16], one of the four pathway analysis algorithms which 

takes advantage of the regulatory mechanisms, observed large agreement in the 

result lists of significant pathways with FiDePa [99] method. 17 pathways listed 

in the FiDePa result also occur in the top 25 of the GGEA ranking over public da-

tasets for glioma. According to the authors, the positive control glioma is better 

ranked (and has higher significance) by GGEA. Further, several unspecific and 

disease unrelated pathways detected by FiDePa are discarded by GGEA and re-

placed by specific, cancer-related pathways (e.g. renal cell carcinoma, endome-

trial cancer). For the top rank, GGEA (Pathways in Cancer; not detected by 

FiDePa) gives a clear disease-related hint, while FiDePa (MAPK signalling path-

way) reports a general signalling process. 

We applied MinePath to the glioma dataset that has been investigated before 

with the method GGEA [16]. The reference dataset is a merging of two different 

studies using as classes the glioma cases from the GSE4271 [100] (100 samples) 

versus the control cases from the GSE1133 [101] (158 samples). For consistency 

evaluation, we used the regulatory interactions occurring in human non-

metabolic KEGG pathways (gene regulatory and signaling pathways) similarly to 

the experiment from GGEA. Specifically we used all the human KEGG pathways 

which fall under the signal transduction, cell, immune system, endocrine system, 

nervous system and cancer related categories (in total 76).  
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MinePath identified the most discriminant sub-paths (1915 in total) which were 

evaluated based on the support vector machines algorithm from the Weka soft-

ware and performed in both 10-fold and leave-one-out cross validation 100% 

accuracies. Detailed results for the leave-one-out cross validation can be found in 

Table 6. 

Table 6: LOOCV & 10-fold CV results of best sub-paths from the Glioma dataset (Weka SVM) 

Accuracy 100% 
 Precision 1 
 Recall 1 
 

   Confusion Matrix 

  Glioma Control 

Glioma 100 0 

Control 0 158 

 

FiDePa and GGEA report only the significant pathways while, MinePath identifies 

discriminant sub-paths. Based on the outcome of these two methodologies and 

the results of MinePath we can see from Table 7 that most of the best pathways 

from GGEA have been identified as highly discriminant using MinePath (path-

ways with ranking over 0.8). We observe large agreement in the result lists of the 

three methods. Furthermore we can see that MinePath ranked Glioma pathway 

as highly discriminant (score 1) while using FiDePa is ranked in 20th position and 

using GGEA in 12th position. MinePath identified cell cycle and Adipocytokine 

signaling pathway as highly discriminant pathways which is in accordance with 

FiDePa but not with GGEA. Cell cycle in most cancer cell types, including glioma, 

is a critical mechanism of development, progression, and resistance to treatment 

[102]. Pathways with the highest discriminant power in MinePath are Glioma, 

Neurotrophin signaling, Pancreatic cancer, Renal cell carcinoma, Chronic mye-

loid leukaemia, Insulin signaling and Adherens junction. The results of MinePath 

show high similarities with GGEA and FiDePa methodologies. 

Table 7: Comparison of pathway analysis results from MinePath, GGEA and FiDePa methodologies in 
Glioma dataset. In grey pathways under the threshold of MinePath 

Pathway 
MinePath 

score (pw diff)  

ORA P 

(GGEA)  

Rank 

(FiDePa) 

Neurotrophin signalling 1 5.5E-15 – 

Pancreatic cancer 1 3.8E-14 12 

Renal cell carcinoma 1 1.3E-13 – 

Chronic myeloid leukaemia 1 6.3E-13 8 

Glioma 1 5.1E-12 20 

Insulin signalling 1 3.2E-11 18 

Adherens junction 1 4.9E-11 6 
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MAPK signalling 0.977 0.0000044 1 

Cell cycle 0.966 --- 19 

Adipocytokine signaling pathway 0.964 --- 14 

Toll-like receptor signalling 0.962 1.2E-09 10 

Acute myeloid leukaemia 0.957 0.00000039 – 

Apoptosis 0.955 0.04 3 

Leucocyte transendothelial migration 0.952 3.9E-11 24 

Nature killer cell mediated cytotoxicity 0.938 6.5E-11 2 

Pathways in cancer 0.93 1.8E-24 – 

T cell receptor signalling 0.926 1.2E-17 7 

ErbB signalling 0.926 8.9E-13 – 

mTOR signalling 0.92 0.0000012 15 

B cell receptor signalling 0.917 4.2E-12 17 

Colorectal cancer 0.875 1.1E-14 11 

Focal adhesion 0.855 1.4E-18 5 

Wnt signalling 0.851 1.2E-10 – 

GnRH signalling 0.829 6.5E-11 16 

VEGF signalling 0.8 1.5E-13 22 

Non-small cell lung cancer 0.8 0.00000034 – 

Fc epsilon RI signalling 0.44 4.1E-13 9 

Endometrial Cancer --- 0.00000016 – 

Going one step further, the most discriminant sub-path based on the MinePath 

ranking (also functional for glioma – meaning that is active in most of the glioma 

samples and inactive in most of the control cases) is the NF-kBHIF-1a in the 

HIF-1 signaling pathway.  HIF-1 signaling pathway plays a critical part in tumor 

proliferation due to its role in hypoxia [103] and it is known that the hypoxic en-

vironment is created because of the extreme energy demands of the rapidly di-

viding cells when a tumor develops and grows.  

Mendez et al [104] proved, in glioma cells, that HIF-1α protein plays a role in the 

survival and self-renewal potential of cancer stem cells. Authors identified genes 

that might further elucidate the role of HIF-1α in tumor migration, invasion and 

stem cell biology, making HIF-1α gene a very important gene for glioma. 

Another interesting outcome comes from the Ras1 signaling pathway where we 

can see in Figure 47 that is mainly functional for the glioma samples (glioma 

functional sub-paths are shown in the figure with red).  While it is known that 

alterations in the rap1 signaling pathway are common in human gliomas [105], it 

is not clear how the Rap1A hub gene is altered. A methodology like MinePath and 

its visualization capabilities could assist in the quest of such research questions. 
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Figure 47: Ras1 signalling pathway for glioma dataset. Red edges represent glioma sub-paths, blue 
control sub-paths and orange common sub-paths. 

4.1.2. Gastric cancer, comparison with PATHOME 

The comparison sample groups in the gene expression data set GSE1386138 were 

65 primary gastric adenocarcinoma frozen tissue samples and 19 normal ap-

pearing gastric tissue samples. Gastric cancer is the second leading cause of can-

cer-related death in the world, and prognosis is difficult to predict for individual 

patients. Most of gastric cancer patients receive similar treatments, typically sur-

gery followed by chemotherapy because there are no reliable biomarkers to op-

timize therapy [106]. PATHOME was compared with two GSA tools, the GSEA 

and DAVID using the gastric cancer dataset and having as reference standard for 

cancer related pathways the pathways reported at the review of Vogelstein & 

Kinzler [107].  

PATHOME used a lower significance cut off compared with that of the GSEA and 

DAVID methods and detected more differential cancer-related pathways. Actual-

ly PATHOME identified 8 out of the 19 cancer related pathways, DAVID and GSEA 

identified 1 out of the 19 each and MinePath identified 11 out of the 19. For 

MinePath we used the 19 pathways with the most gastric cancer functional sub-

                                                        
38 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13861 (last day visited 11/08/2014) 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13861
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paths while in PATHOME the 27 most significant pathways were used. From the 

cancer related pathways reported in the reference standard, MinePath identified 

3 out of the 9 while the other PATHOME and GSEA identified only one and DAVID 

none.  

Table 8: Comparison table of PATHOME, DAVID, GSEA and MinePath for gastric 

cancer gene expression data using a reference standard for cancer pathways. 

Note: X (not detected), 0 (detected).  

Reference 

Standard** KEGG 
Pathway Title PATHOME* DAVID GSEA MinePath 

HIF1 hsa04150 mTOR signaling  X X X 0 

  hsa05200 Pathways in cancer  0 X X 0 

  hsa05211 
Renal cell carcino-

ma  
X X X X 

P53 hsa04115 P53 signaling  X X X X 

RB(cell cy-

cle) 
hsa04110 Cell cycle  X X 0 X 

Apoptosis hsa04210 Apoptosis  X X X X 

GLI hsa04340 
Hedgehog signal-

ing  
X X X X 

APC hsa04310 Wnt signaling  0 X X 0 

RTK hsa04012 ERBB signaling  X X X X 

  hsa05200 Pathways in cancer  0 X X 0 

SMAD hsa04350 TGF-βsignaling  X X X 0 

PI3K hsa04012 ERBB signaling  X X X X 

  hsa05200 Pathways in cancer  0 X X 0 

  hsa04150 mTOR signaling  X X X 0 

  hsa04010 MAPK signaling  0 X X 0 

  hsa04910 Insulin signaling  0 X X 0 

  hsa04510 Focal adhesion  0 0 X 0 

  hsa04062 
Chemokine signal-

ing  
0 X X 0 

  hsa04370 VEGF signaling  X X X X 

 

19 Hits 8 1 1 11 

  

Selected 27 15 17 19 

 PATHOME reported significant sub-paths relating to WNT signalling, MAPK sig-

nalling, insulin signalling, focal adhesion and chemokine signalling (Table 8). 

Among these identified pathways, selected the WNT pathway as identified 

uniquely by PATHOME for further cell line and animal studies for accuracy vali-

dation. We have to mention that MinePath also identified WNT pathway as sig-

nificant to gastric cancer. 
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4.2. MinePath Biological Validation - Cranio-

synostosis 

Craniosynostosis is a birth defect in which one or more of the joints between the 

bones of the baby's skull close prematurely before the baby's brain is fully 

formed. Seven bones make up the skull of a newborn which are separated by 

spaces called sutures. The sutures meet at the fontanelles, the soft spots at the 

front and the back of a baby's skull. In order for the brain to grow, the sutures 

usually remain open and gradually grow together to form the adult skull. Cranio-

synostosis is the premature fusion (closing) of one or more of the sutures of a 

baby's skull. 

In most cases of craniosyntosis there are no other birth defects, known as non-

syndromic while the development with other birth defects, is known as syn-

dromic. Non-syndromic craniosynostosis is the most common form of the condi-

tion, accounting for more than 80% of all cases [108]. Non-syndromic cranio-

synostosis usually occurs in a non-inherited fashion (not passed on from either 

parent), only involves fusion of one suture and are classified according to which 

suture is fused including unicoronal synostosis, metopic synostosis, sagittal 

synostosis and lambdoid synostosis. Frequencies of the various sutures involved 

are (i) sagittal: 40% to 58% while the etiology is unknown; (ii) unicoronal: 20% 

to 29%, estimated one third caused by single-gene mutations; (iii) metopic: 4% 

to 10%, etiology unknown; and (iv) lambdoid: 2% to 4%, etiology unknown 

[109]. 

Most cases of syndromic craniosynostosis are caused by genetic mutations [110] 

contrary to non-syndromic craniosynostosis which has proven to be a difficult 

task due to the complex nature of the disease [111]. 

4.2.1. The craniosynostosis dataset (GSE27976) 

In this experiment, we use the GSE2797639 [111] gene expression data from 199 

patients with isolated sagittal (n = 100), unilateral coronal (n = 50), and metopic 

(n = 49) synostosis, compared against a control population (n = 50).  

Stamper et al [111] concluded that FGF7, SFRP4, and VCAM1 emerged as poten-

tial genetic biomarkers for single-suture craniosynostosis due to their signifi-

cantly large changes in gene expression compared to the control population. Au-

thors also reported differentially regulated gene networks which were extracted 

using two thousand genes with the highest gene information content scores (the 

percent variance explained by the first eigengene obtained from a decomposition 

                                                        
39 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27976 (last day visited 11/08/2014) 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27976
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of the probe-level data for each gene). These genes were uploaded into DAVID 

[112] web application in order to identify biological pathways associated with 

genes in the dataset that had consistent changes in expression at the probe level. 

Using this gene list, focal adhesion and ECM-receptor interaction were the two 

most significantly implicated pathways. In addition, the TGF-beta signaling 

pathway, regulation of actin cytoskeleton, cell adhesion molecules (CAMs), and 

gap junction were also identified as significantly enriched pathways (p<0.01). 

The following table reports the full list of the significantly enriched pathways. 

Table 9: Significantly enriched pathways of GSE27976 using DAVID web application 

hsa04510 Focal adhesion 

hsa04512 ECM-receptor interaction 

hsa05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 

hsa05200 Pathways in cancer 

hsa05410 Hypertrophic cardiomyopathy (HCM) 

hsa05414 Dilated cardiomyopathy 

hsa04350 TGF-beta signaling pathway 

hsa00480 Glutathione metabolism 

hsa05222 Small cell lung cancer 

hsa04810 Regulation of actin cytoskeleton 

hsa04115 p53 signaling pathway 

hsa04514 Cell adhesion molecules (CAMs) 

hsa04360 Axon guidance 

hsa00980 Metabolism of xenobiotics by cytochrome P450 

hsa05218 Melanoma 

hsa04540 Gap junction 

hsa04610 Complement and coagulation cascades 

hsa05220 Chronic myeloid leukemia 

hsa00010 Glycolysis / Gluconeogenesis 

hsa04010 MAPK signaling pathway 

hsa04020 Calcium signaling pathway 

hsa05210 Colorectal cancer 

hsa04110 Cell cycle 

DAVID uses over-representation analysis (ORA), which statistically evaluates the 

fraction of genes in a particular pathway found among the set of genes showing 

changes in expression. The main limitation of the ORA algorithms is that assumes 

that each gene is independent of the other genes neglecting that gene regulatory 

networks are complex networks of interactions between genes. Furthermore 

ORA uses only the most significant genes, discards the rest genes and assumes 

that each pathway is independent of other pathways, which is erroneous. 

We ran MinePath for the GSE27976 dataset using as classes all the synostosis 

cases (199 samples) versus the control cases (50 samples). We selected all the 
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human KEGG pathway (in total 221). The best (2471) sub-paths were evaluated 

based on the support vector machines algorithm from the Weka software which 

performed in both 10-fold and leave-one-out cross validation accuracies over 

97.5%. Detailed results for the leave-one-out cross validation can be found in 

Table 10. 

Table 10: LOOCV results of best sub-paths from the GSE27976 (Weka SVM) 

Accuracy 98.39% 
 Precision 0.984 
 Recall 0.984 
 

   Confusion Matrix 

  Synostosis Control 

Synostosis 198 1 

Control 3 47 

The fibroblast growth factor-7 (FGF7) is member of the fibroblast growth factor 

FGF family. FGF members which are known for broad mitogenic and cell survival 

activities, and are involved in a variety of biological processes, including embry-

onic development, cell growth, morphogenesis, tissue repair, tumor growth and 

invasion. FGF7 protein is a potent epithelial cell-specific growth factor, whose 

mitogenic activity is predominantly exhibited in keratinocytes but not in fibro-

blasts and endothelial cells [113]. FGF7 identified as the most discriminant and 

potential genetic biomarker for single-suture craniosynostosis along with SFRP4, 

and VCAM1 proteins by Stamper et al [111]. MinePath identified Rap1 signaling 

pathway as one of the most discriminant pathways out of the 221 and the most 

informative for Synostosis (contains the most functional sub-paths for this class).  
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Figure 48: Rap1 signaling pathway for craniosynostosis. Red indicates relations active at synostosis, 
blue indicates relations active at control, magenta indicates overlapping relations and orange for 
sub-paths that are always active. 

Figure 48 shows the discriminant sub-paths identified by MinePath for the Rap1 

signaling pathway. Red indicates relations active at synostosis, blue indicates 

relations active at control, magenta indicates overlapping relations and orange 

for sub-paths that are always active. The vertical dashed lines distinguish the 

outer from the inner cell and we can see that only a group of genes belongs to the 

outer cell, the CSF1 which contains among others the FGF7 protein. MinePath 

identified a functional sub-path only for the Synostosis cases starting from this 

group of genes. Specifically the 

CSF1CSF1RCRKRAPGEF1RAP1AAPBB1PTLN1ITGA2B which 

leads to the focal adhesion pathway is considered to be discriminant for the two 

phenotypes and functional only in Synostosis.  We can see that MinePath not on-

ly validated the results of Stamper et al [111] but also identified the path from 

FGF7 (the most discriminant gene according to Stamper et al) to the focal adhe-

sion pathway (the most discriminant pathway according to Stamper et al). 

Another finding of MinePath is the discriminant sub-path which is functional on-

ly for the Synostosis cases and starts again from the extracellular protein 

CSF1/FGF7 to the RAP1A hub gene which finally activates the PLCE1, leading to 

the PI3K-Akt signaling pathway. Dufour et al [114] identified that PI3K/Akt at-

tenuation plays important role in the control of osteoblast survival by FGFR2 

signaling (member of the fibroblast growth factor FGFR family). 



100 

Furthermore MinePath identified pathways functional only or mainly in one of 

the two phenotypes.  P53 signaling pathway (in Figure 49 upper left) dominated 

by Synostosis meaning that the discriminant sub-paths are functional only for 

the Synostosis cases while discriminant sub-paths in Prolactin/Ras (in Figure 49 

upper right), ErBb (in Figure 49 lower left) and Chemocine (in Figure 49 lower 

right) signaling pathways are mainly functional for the control samples. In Figure 

49 we can see these four pathways where the red links indicate sub-paths func-

tional in Synostosis, blue links indicate sub-paths functional in control samples 

and magenta links indicate sub-paths functional in both phenotypes.  

 

Figure 49: Pathways functional only or mainly in one of the two phenotypes (synostosis and control). 

According to Moenning et al [115], PDGFRα signaling stimulates osteogenesis of 

neural crest cells derived osteoblasts by activating the PLC-γ pathway, using 

transgenic mice in vivo and in vitro experiments. Because the phenotype of 

transgenic mice resembles human craniosynostosis, the authors aimed to detect 

an involvement of PDGFRα in the etiology of human craniosynostosis. A sequenc-

ing analysis of the PDGFRα gene in 15 patients did not reveal PDGFRα mutations 

in the known hot-spot regions involved in autoactivation of the receptor. Never-

theless, the possibility of identifying mutations by screening an expanded group 

of craniosynostosis patients and sequencing the complete PDGFRα gene remains. 

The PDGFRα is part of the extra-celullar gene group (CSF1R) of Prolactin/Ras 
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signaling pathway which was identified by MinePath as a descriptive pathway 

for control samples. 

Feeding the best sub-paths, based on the MinePath ranking, in a C4.5 decision 

tree algorithm we can see that one pattern covers most of the Synostosis samples 

(154/199) while only one out of the fifty control samples follow this pattern. The 

pattern contains 7 sub-paths from which the two most discriminant (first and 

second selection of the decision tree algorithm) must be functional and the rest 

non-functional for a sample to be classified as Synostosis case. The pattern is 

shown in the following table. 

Table 11: Pattern using sub-paths for the prediction of Synostosis. 

hsa:4615-->hsa:3569 hsa:3569 = 1 (at Legionellosis) 

|   hsa:5584 #hsa:5590_--> hsa:56288--> hsa:150084 hsa:50848 hsa:58494 hsa:83700 = 1 

(at Tight junction) 

|   |   hsa:22800 hsa:22808 hsa:3265 hsa:3845 hsa:4893 hsa:6237_--> hsa:10928 = 0 (at 

RAS signaling) 

|   |   |   hsa:84152--| hsa:5499 hsa:5500 hsa:5501--| hsa:775 hsa:775 hsa:776 

@hsa04728 = 0 (at Dopaminergic synapse) 

|   |   |   |   hsa:355--> hsa:8772--> hsa:843 = 0 (at Apoptosis) 

|   |   |   |   |   hsa:2323--> hsa:2322--> hsa:2885 = 0 (at Pathways in Cancer) 

|   |   |   |   |   |   hsa:1794--> hsa:5879 hsa:5879 hsa:5879 hsa:5880--> hsa:5058 

hsa:5058--> hsa:3984 hsa:3985 = 0 (at Fc gamma R-mediated phagocytosis) 

 

4.3. MinePath vs. Original Gene-Expression Data 

(MinePath as prognostic/Diagnostic predictor for 

GSE3494) 

Most of breast cancer (BRCA) cases are estrogen responsive, implying the activa-

tion of a series of growth-promoting pathways, for example the estrogen recep-

tor (ER) related ErbB signalling GRN. In an effort to reveal the underlying regula-

tory mechanisms that govern BRCA patients’ treatment responses we applied 

our methodology on public gene-expression studies from the GEO repository. 

This experiment is based on the public dataset from the GEO repository 

GSE349440 [116]. The biological tumour samples (i.e. breast tumour specimens) 

consisted of freshly frozen breast tumours from a population-based cohort of 

women representing 65% of all breast cancers resected in Uppsala County, Swe-

den, from January 1, 1987 to December 31, 1989. Estrogen receptor status was 

determined by biochemical assay as part of the routine clinical procedure. Tran-

                                                        
40 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3494 (last day visited 11/08/2014) 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3494
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script profiles of 251 primary breast tumours were assessed by using Affymetrix 

U133 oligonucleotide microarrays.  

In the original paper of the study, Miller et al [116] evaluated several linear 

learning methods including: diagonal linear discriminant analysis, k-nearest 

neighbours and support vector machines. In each case, the optimal gene classifi-

er was obtained by leave-one-out cross validation, where the linear model-fit 

procedure was iteratively applied to all samples minus the left-out sample. The 

resulting prediction accuracies were highly similar, ranging from 84.9% to 

85.7%. 

We used the same dataset (gene expressions only from Affymetrix Human Ge-

nome U133A Array) targeting the ER phenotypic status of the respective pa-

tients, i.e., ER+ (ER positive) vs. ER- (ER negative). We targeted 14 pathways all 

of which are engaged within the ‘Pathways in Cancer’ integrated pathway of 

KEGG (hsa05200) as shown in Table 5. 

We used the default values for the parameters of the web based MinePath, spe-

cifically: 

 Min % for both up (80%): A sub-path to be considered as up regulated 

for both classes must cover at least 80% of the cases for each class. 

 Add StD at Thr (0): No StD added at the threshold (remained the median) 

 Boost true positives (True): Polarity filtering 

 Use percentage for Ranking (True): Relative polarity ranking formula 

MinePath identified 4632 sub-paths from the 14 pathways and the probes list of 

U133A platform. From the 4632 sub-paths 746 were selected using the ranking 

algorithm.  

The best (746) sub-paths evaluated based on the support vector machines algo-

rithm from the Weka software performed in leave-one-out cross validation. 

Table 12: LOOCV results of best sub-paths from the GSE3494 (Weka SVM) 

Accuracy 95.95% 
 Precision 0.959 
 Recall 0.96 
 

   Confusion Matrix 

  ERpos ERneg 

ERpos 209 4 

ERneg 6 28 
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The proposed methodology performed better than the three different algorithms 

used in the gene signature of the Miller et al [116] (accuracies ranging from 

84.9% to 85.7%). 

4.4. MinePath as A discovery of New Biologi-

cal/Clinical Knowledge (4 breast cancer datasets) 

The ‘4ERdatasets’ dataset (can be found in the datasets of MinePath) is a set of 

four independent discretized and then merged gene-expression studies targeting 

the ER phenotypic status respective patients, i.e., ER+ (ER positive) vs. ER- (ER 

negative), from the GSE203441 [117], GSE299042 [118], GSE349443 [116] and 

GSE739044 [119] studies.  

For the discretization, the same methodology as in MinePath was used in the lev-

el of probes. Each dataset was discretized individually and then the four datasets 

were merged. The merging after the discretization was straight forward since 

these four clinical trials used the same microarray platform. The platform used 

was the GPL96 HG-U133A Affymetrix Human Genome U133A Array45. The U133 

set (U133A & U133B) includes 2 arrays with a total of 44928 entries and was 

indexed 29-Jan-2002. The set includes over 1.000.000 unique oligonucleotide 

features covering more than 39.000 transcript variants, which in turn represent 

greater than 33.000 of the best characterized human genes. The HG-U133A Array 

includes representation of the RefSeq database sequences and probe sets (22282 

probes) related to sequences previously represented on the Human Genome 

U95A Array. More details regarding the datasets, the numbers of samples per 

class, the number of probes and the annotated KEGG Id genes can be found in 

Table 13.  

Table 13: Details for the four ER datasets; Each column is one dataset while rows provide infor-
mation regarding the platform, the class, the number of samples per class, the number of probes for 
the platform and the identified number of genes (as KEGG/Entez IDs) 

Dataset GSE2034 GSE2990 GSE3494 GSE7390 4datasets 

Platform 
Affy-
U133A 

Affy-
U133A 

Affy-
U133A 

Affy-
U133A 

Affy-
U133A 

Class ER ER ER ER ER 

ER+ samples 209 149 213 134 705 

ER- samples 77 34 34 64 209 

                                                        
41 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse2034 (last day visited 11/08/2014) 
42 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2990 (last day visited 11/08/2014) 
43 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3494 (last day visited 11/08/2014) 
44 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse7390(last day visited 11/08/2014) 
45 http://www.affymetrix.com/estore/browse/products.jsp?productId=131536&categoryId=35760#1_1 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse2034
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2990
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3494
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse7390
http://www.affymetrix.com/estore/browse/products.jsp?productId=131536&categoryId=35760#1_1
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Probes 22283 22283 22283 22283 22283 

Annotated to KEGG 20967 20967 20967 20967 20967 

For this experiment we did a validation on the independent datasets. Initially we 

compared the original gene expression data on independent datasets and we did 

the same using sub-paths. The results of the independent (train on one dataset 

and test on another) for the four ER datasets for genes and sub-paths can be 

found in Table 14. As we can see the sub-paths provide better accuracies in most 

of the cases and show a high consistency compared to genes. We must say that 

such an outcome is expected since sub-paths contain more information and  pro-

vide more consistent and meaningful information. 

Table 14: Validation on independent datasets for genes and sub-paths 

Genes 

      GSE2034 GSE2990 GSE3494 GSE7390 

GSE2034   81.42% 86.23% 67.67% 

GSE2990 26.92%   86.23% 39.89% 

GSE3494 26.92% 91.25%   38.88% 

GSE7390 73.07% 21.85% 13.76%   

     Sub-paths (Best syb-paths vs All sub-paths) 
   GSE2034 GSE2990 GSE3494 GSE7390 

GSE2034   53.55% 85.02% 70.20% 

GSE2990 73.07%   86.23% 67.67% 

GSE3494 77.27% 54.64%   79.29% 

GSE7390 83.56% 73.77% 89.87%   

On the next step, we ran Minepath for the five datasets (including the merged 

“4datasets”). Downloaded the results and used for each dataset the best sub-

paths .arff file as train in weka. Then we evaluated the all sub-paths .arff file of 

the rest datasets as test in the weka trained model. Table 15 summarizes the re-

sults of this independent validation. As we can see the merged dataset performed 

the best accuracies overall and the average of accuracies is 99.595%. Even 

though the merged dataset actually contains the test subset each time, its trained 

model provided very high accuracies (over 99%) overall the datasets. This find-

ing is in compliance with the conclusions of the authors from [120] who proved 

that “due to the small sample sizes relative to the complexity of the entire expres-

sion profile, existing methods suffer certain limitations, namely the prevalence of 

study-specific signatures and difficulties in validating the prognostic tests con-

structed from these signatures on independent data. Integrating data from multi-

ple studies to obtain more samples appears to be a promising way to overcome 

these limitations.” 
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Table 15: Rows represent the train (best sub-paths) datasets versus the test (all sub-paths) in the 
columns across the four independent datasets and the merged dataset using the SMV implementa-
tion of Weka. Accuracy (Acc.), Precision, Recall and area under the curve (ROC area) for each train 
versus test experiment is reported. 

   
Test (using all sub-paths) 

  
Dataset GSE2034 GSE2990 

 

Sub 
pat
h 

  Acc 
Preci-

sion 
Re-
call 

ROC 
Area 

Acc 
Preci-

sion 
Re-
call 

ROC 
Area 

T
ra

in
  (

b
es

t 
su

b
-p

at
h

s)
 

645 GSE2034 86.71% Acc. (10-fold) 53.550 0.604 0.536 0.329 

126
4 

GSE2990 73.07 0.534 0.731 0.500 87.43% Acc. (10-fold) 

746 GSE3494 77.27 0.778 0.773 0.721 54.644 0.627 0.546 0.370 

794 GSE7390 83.56 0.829 0.836 0.748 73.770 0.891 0.738 0.839 

101
3 

4ER 
datasets 

99.30 0.993 0.993 0.987 100 1.000 1.000 1.000 

           

  
Dataset GSE3494 GSE7390 

 

Sub 
pat
h 

  Acc 
Preci-

sion 
Re-
call 

ROC 
Area 

Acc 
Preci-

sion 
Re-
call 

ROC 
Area 

T
ra

in
  (

b
es

t 
su

b
-p

at
h

s)
 

645 GSE2034 85.02 0.867 0.850 0.740 70.202 0.786 0.702 0.747 

126
4 

GSE2990 86.23 0.744 0.862 0.500 67.670 0.458 0.677 0.500 

746 GSE3494 95.54% Acc. (10-fold) 79.292 0.812 0.793 0.794 

794 GSE7390 89.87 0.888 0.899 0.694 87.87% Acc. (10-fold) 

101
3 

4ER 
datasets 

99.59 0.996 0.996 0.985 99.49 0.995 0.995 0.992 

           

  
Dataset 4ER datasets AVERAGE 

 

Sub 
pat
h 

  Acc 
Preci-

sion 
Re-
call 

ROC 
Area 

Acc 
Preci-

sion 
Re-
call 

ROC 
Area 

T
ra

in
  (

b
es

t 
su

b
-p

at
h

s)
 

645 GSE2034 80.19 0.829 0.802 0.777 72.241 0.772 0.723 0.648 

126
4 

GSE2990 80.96 0.847 0.810 0.584 76.984 0.646 0.770 0.521 

746 GSE3494 79.64 0.812 0.796 0.747 72.714 0.757 0.727 0.658 

794 GSE7390 86.43 0.888 0.864 0.867 83.408 0.874 0.834 0.787 

101
3 

4ER 
datasets 

87.41% Acc. (10-fold) 99.595 0.996 0.996 0.991 
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But MinePath is not only a pathway analysis methodology, is a complete web 

based platform that aims to aid the quest of functional or disrupted sub-paths in 

known pathways. Going one step further, after the validation of the algorithmic 

process, we try to identify biological insights using the specific dataset for the 

distinction of the ER positive and the ER negative patients. 

The statistics of the selected (for our experiment) pathways are shown in the 

following figure. 

 

Figure 50: Statistics (from the MinePath web application) of the selected pathways for the 
4ERdatasets dataset 

It is known that ErbB-1 is overexpressed in many cancers [121]. Hence ErbB sig-

nalling pathway is one of the most important pathways to explore. The visualiza-

tion of the MinePath results for the ErbB signalling (hsa04012) can be found in 

Figure 51. 

As described in chapter 2, the MinePath web based graph GUI preserves the 

KEGG layout topology. It is enriched with the expressed regulatory mechanisms 

(relations) between genes that differentiate between the two phenotypes and 

the colour coding is as follows:  

 Red indicates relations active at class 1, which in our example is the 

ERpos 

 Blue indicates relations active at class 2 (ERneg) 

 Magenta indicates overlapping relations in the two classes 

 Orange for sub-paths that are always active. 

The figure highlights only the “interesting” sub-paths, which in our case are the 

most discriminant sub-paths for the specific two phenotypes.  
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Figure 51: Visualizing ErBb for the 4ERdatasets using MinePath 

Once we have the visual representation of the specific pathway, we can start ex-

ploring biological meaningful paths and sub-paths. Armed with the visualization 

functionalities of MinePath we can stress the thresholds to retain ‘strong’ sub-

paths per phenotype (class): Using 13 as threshold for class 1 (ERpos) results to 

18 sub-paths and again 13 for class 2 (ERneg) results to 33 sub-paths; we also 

use 100% for all always active sub-paths, which results to 0. Then, we can “clean 

up” our pathway from the non-functional genes and reactions. By right click in 

the pathway viewer we select “Delete all inactive genes” and then we select the 

Delete all inactive gene interactions”. 

Then we merge the 2 GRB2 gene-rectangles (GRB2 appears 2 times in ErbB due 

to the topology of KEGG). The resulting (reduced) pathway will become as the 

one in Figure 52.  
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Figure 52: Exploring ErBb for the 4ERdatasets using MinePath. Thresholds 13 for class 1 (ERpos), 13 
for class 2 (ERneg), 100% for always active sub-paths and deleted all inactive genes and gene inter-
actions 

Both phenotypes (ER positive and ER negative) have extra-cellular origins:  

 MinePath identified that the ER positive path originates from AREG (am-

phiregulin) that activates EGFR and consequently we have an activation of 

a common path (ER positive and ER negative) from 

EGFRGRB2GAB1PI3KPKB/Akt. It continues with two different 

sub-paths. The first one guide to the activation of mTOR, which leads to 

the inhibition of the EiF4EBP1 gene and blocks “protein synthesis” and 

the second one act as inhibitor of GSK-3 and blocking of “Metabolism”.  

Another clear path that leads to the same biological mechanisms for ER 

positive start from the extra-cellular NRG1, NRG2 (neuregulin1,2) growth 

factors that activate ErbB-3 and ErbB-4 viral oncogenes followed by the  

PI3K  PKB/Akt activation reaction. 

 The ER negative path originates from the extra-cellular BTC (betacellulin) 

and HB-EGF (Heparin-binding EGF-like growth factor), shares the same 

sub-path with ER positive (EGFRGRB2GAB1PI3KPKB/Akt) but 

now this sub-path leads to the inhibition of BAD that is linked to “cell sur-
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vival” and the inhibition of the CDKN1B protein, which blocks the “cell cy-

cle progression”. 

According to recent literature, the aforementioned results are quite relevant to 

the estrogen-receptor status. Based on a search of the related biomedical litera-

ture we focus our exploration on the mechanisms underlying the resistance to 

pure estrogen antagonists (e.g., fulvestrant - a drug treatment of hormone recep-

tor-positive metastatic breast cancer in postmenopausal). Recent studies show 

the significant role of both ErbB3 and ErbB4 as alternative targets for the treat-

ment of BRCA patients. As Sutherland notes in [122]: “the initial growth inhibito-

ry effects of fulvestrant appear compromised by cellular plasticity that allows 

rapid compensatory growth stimulation via ErbB-3/4. Further evaluation of pan-

ErbB receptor inhibitors in endocrine-resistant disease appears warranted”.  

In addition, Hutcheson et al. in [123] investigated whether induction of ErbB3 

and/or ErbB4 may provide an alternative resistance mechanism to antihormonal 

action. Their conclusion is that fulvestrant treatment is sensitive to the actions of 

the ErbB3/4 ligand HRGb1 (NRG1) with enhanced ErbB3/4-driven signalling 

activity and significant increases in cell proliferation. 

4.5. MinePath using miRNAs (a clinical predictive 

model) 

MicroRNAs (miRNAs) are endogenous molecules containing about 22 nucleo-

tides that can play an important regulatory role in animals and plants by target-

ing mRNAs for cleavage or translational repression [124]. miRNA research has 

revealed multiple roles in negative regulation [125] (transcript degradation and 

sequestering, translational suppression) and possible involvement in positive 

regulation (transcriptional and translational activation). A miRNA controls gene 

expression post-transcriptionally either via the degradation of target mRNAs or 

the inhibition of protein translation. Using high-throughput profiling, dysregula-

tion of miRNAs has been widely observed in different stages of cancer [126], 

[127]. The up-regulation (overexpression) of specific miRNAs could lead to the 

repression of tumour suppressor gene expression and conversely the down-

regulation of specific miRNAs could result in an increase of oncogene expression; 

both these situations induce subsequent malignant effects on cell proliferation, 

differentiation and apoptosis that lead to tumour growth and progress [128], 

[129]. 

As Chen et al stated [128], miRNAs play key roles in human cancer, identifying 

the underlying pathways will provide a more complete understanding of their 

functions and regulations during cancer progression and may have clinical appli-
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cations in the future. It is known that miRNAs affect (target or down-regulate) 

genes and that interactions between genes exist (pathways or parts of it). There-

fore activations of miRNAs can result in the posttranscriptional down-regulation 

or up-regulation of the expression of certain genes [130]. 

In this experiment, we merge miRNAs and MinePath in order to identify disrupt-

ed sub-paths from miRNA expressions in known pathways. The methodology 

and the extension of MinePath to support miRNAs have been described in the 

Methodology chapter (section miRNAs to disrupted sub-paths). 

The reference cohort for the experiment is based on the hsa (human) KEGG 

pathways (223 in total) and the GSE38419 public miRNA dataset [131]. The da-

taset contains 23 samples taken from Wilm’s tumour patients prior to chemo-

therapy and 19 samples with the consent of healthy controls. The mean age of 

the treated patients was 3.3 years +/- 2.2 and the mean age of healthy controls 

was 37.8 years +/- 14.2. The microfluidic biochip (Geniom Biochip Homo sapiens 

v12, febit biomed GmbH, Heidelberg, Germany) contained 7 replicates of 848 

miRNAs as annotated in the Sanger miRBase [132] version 12.0.  

The clinical variable of GSE38419 dataset is the characterization to a Wilm’s tu-

mour patient or to a healthy person and the model has been trained to predict 

one of these two classes. 

The discretization process of MinePath applied to each miRNA separately and 

the final dataset is a matrix of discretized values. Initially the expression levels of 

each miRNA over the total number of samples are sorted in descending order. 

Then the midpoints between each two consecutive values are calculated and for 

each midpoint, the samples are clustered into two sub-groups, high and low. For 

each midpoint, the information gain formula is applied, which computes the en-

tropy of the system with respect to its division into subgroups. Finally, the mid-

point that results in the highest information gain is selected as the one that best 

discriminates against the two subgroups and all the samples in the high group 

are considered to be overexpressed getting a value of 1, whereas the ones in the 

low group are the non-expressed/under-expressed, getting a value of 0. 

Many miRNA-related database systems have been developed in recent years to 

provide further insight into miRNAs and their target genes. For the identification 

of the targeted genes we used the miRTarBase46, a comprehensive collection of 

miRNA–target interactions (MTI), which are validated experimentally. The bio-

logical features of miRNA - target duplex are observed based on the largest col-

lection of human MTIs currently available. 

                                                        
46 http://mirtarbase.mbc.nctu.edu.tw (last day visited 11/08/2014) 

http://mirtarbase.mbc.nctu.edu.tw/
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miRTarBase has accumulated more than fifty thousand miRNA-target interac-

tions, which are collected by manually surveying pertinent literature after data 

mining of the text systematically to filter research articles related to functional 

studies of miRNAs. The collected MTIs are validated experimentally by reporter 

assay, western blot, microarray and next-generation sequencing experiments. 

While containing the largest amount of validated MTIs, the miRTarBase provides 

the most updated collection by comparing with other similar, previously devel-

oped databases. We used the current release (release 4.5), which contains: 

 Number of articles: 2,636 

 Number of species: 18 

 Number of target genes: 17,520 

 Number of miRNAs: 1,232 

 Number of miRNA-target interactions: 51,460 

For the specific dataset (GSE38419), that contains 848 miRNAs, we identified 

7067 validated microRNA-target interactions from the miRTarBase. 

After the decomposition of each of these pathways into its functional and dis-

rupted sub-paths, the ranking formula of MinePath identified the most discrimi-

nant sub-paths (980). Then using the WEKA [91] machine learning library we 

created and trained two different predictive models able to predict new sample’s 

category (healthy or Wilms tumour patient).  

The second part of the scenario comes from the treatment domain (e.g. the hos-

pital) and aims to predict if a new patient is characterized (according to his/her 

miRNA expression data) to Wilms tumour patient or to healthy person. When a 

new patient, who is candidate for Wilms tumour, arrives in the hospital the clini-

cian requests for a miRNA exam and searches in the p-medicine workbench for 

tools able to predict the disease based on disrupted pathways from miRNA ex-

pression data. The pathway analysis tool is identified as a candidate tool and the 

clinician downloads the tool. Figure 53 shows the standalone prediction tool for 

Wilms tumour or healthy individuals based on miRNA expression data. 

 

Figure 53: The pathway analysis standalone prediction tool 
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The clinician provides as input to the tool the miRNA expression data of the pa-

tient and the tool normalizes/discretizes the genomic data according to the ref-

erence cohort (from step 1). Then the MirTarBase database is used to identify 

targeted genes from the miRNAs. In the last step, MinePath extracts the disrupt-

ed pathways for the specific patient and feeds the prediction model (created at 

step 1) to identify if the sample belongs to Wilms tumour patient or to a healthy 

person according to his/her miRNA expression data. 

4.5.1. Support Vector Machines model 

The support vector machines linear kernel classifier created a model using 780 

sub-paths out of the 980 most discriminant and the remaining 200 sub-paths 

characterized as zero biased from the linear kernel. Randomized V-fold cross 

validation was performed using 10- fold and leave-one-out. 10 fold means that 

we divide the data into 10 subsets of (approximately) equal size. We train the 

classifier 10 times, each time leaving out one of the subsets from training for 

measuring “out-of-sample” performances. Then we measure the accuracy, which 

is the proportion of true results both true positives and true negatives in the 

population. The overall accuracy is the measured as the mean of the accuracies 

achieved in the 10 runs. Leave-one-out implies that all cases but one are used to 

train the model and then the model is tested using the left-out case. The process 

is repeated as many times as the number of records and the final results aggre-

gate successes and misses.  

The performance of our support vector machines linear kernel model was meas-

ured using the 10-fold cross validation and the leave-one-out cross validation 

methods, which both achieved 100% accuracy. 

4.5.2. Decision Tree learning model 

The decision tree learning (C4.5 [92] software Weka J48) was applied using data 

of the disrupted sub-paths as variables and Wilms tumour or healthy as different 

classes. The C4.5 algorithm builds a decision tree from the top; first the most dis-

criminative variable (sub-path PLCβPKCMEKK from GnRH signalling path-

way) for classifying between Wilms tumour or healthy is selected. Then, the al-

gorithm searches for the next best informative variable (sub-path 

PDK1AKTCREB from the PI3K-AKT signalling pathway) of the tree to im-

prove the model. The third and final node of the decision tree is the P50COX2 

sub-path from the NF-KAPPA B signalling pathway. Figure 54 provides a graph-

ical representation of the decision tree. Feature selection is a part of the decision 

tree algorithm. Interactions between features are taken into account. To measure 

the performance of the models, we calculated the accuracy for train versus train, 
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which was 100%, for 10-fold cross validation 80% and for leave-one-out cross 

validation 78%.  

 

Figure 54: Decision tree for Wilms tumour prediction model. Starting from the top the most discrim-
inative sub-path PLCβPKCMEKK from GnRH signalling pathway is selected then the 
PDK1AKTCREB sub-path from the PI3K-AKT signalling pathway and the final node of the deci-
sion tree is the P50COX2 sub-path from the NF-KAPPA B signalling pathway 

Even though the decision tree model did not achieve the accuracy of the support 

vector machines model in leave-one-out cross validation (78% and 100% re-

spectively), it is interesting that the decision tree uses only three sub-paths to 

predict new samples. Investigating the three selected sub-paths for the decision 

tree model we can see (Figure 55, Figure 56 and Figure 57 in red) that these sub-

paths have a central role, in terms of topology and number of connections, in 

their respective pathways. 
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Figure 55: The PLCβPKCMEKK disrupted sub-path (red) in the GnRH signalling pathway 

 

Figure 56: The PDK1AKTCREB disrupted sub-path (red) in the PI3K-AKT signalling pathway 
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Figure 57: The P50COX2 disrupted sub-path (red) in the NF-KAPPA B signalling pathway 

The results are in agreement and justifies an already known finding about the 

regulatory role of miRNAs: miRNAs preferentially regulate hub nodes, i.e., top 

5% of the highly connected nodes in the network, and the network cut points 

which are the bottle-necks of metabolic flows, however, avoid regulating inter-

mediate nodes which are the nodes between the hub nodes, cut points, upstream 

nodes and the output nodes [133].  

Furthermore, the protein kinase C (PKC), which has been identified by the deci-

sion tree as the most discriminant (the first) disrupted sub-path, is implicated in 

the regulation of neuroblastoma (pediatric kidney tumor) cell growth and prolif-

eration [134]. Zeidman et al [135] proved that PKCε through its regulatory do-

main can induce immature neurite-like processes via a mechanism that appears 

to be of importance for neurite outgrowth during neuronal differentiation in 

neuroblastoma cells. 

The second sub-path of our model comes from the PI3K-AKT signaling pathway. 

In many types of tumor PI3K-AKT pathway inhibition can lead to a wide spec-

trum of direct effects including cell-cycle arrest, induction of autophagy, inhibi-

tion of metastasis as well as cell differentiation and death [136]. Recently, Santo 

et al [137] identified the forkhead transcription factor FOXO3a as a key target of 

the PI3K/AKT pathway in neuroblastoma and concluded that the inactivation of 

FOXO3a by AKT was essential for neuroblastoma cell survival.  
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Similarly, Brown et al [138] using morphoproteomic analysis revealed the activa-

tion of the NF-kappaB pathway in high risk neuroblastoma cases. Preclinical 

studies such as the Brignole et al [139] and Michealis et al [140] using the prote-

osome inhibitor bortezomib, proved that NF-kappaB pathway regulates the pro-

liferation of human neuroblastoma cells in vitro.  

In conclusion, we identified, by supervised machine learning algorithms, a com-

plex of potential causative factors for Wilms tumour: the simultaneous suppres-

sion of specific signalling sub-paths as discriminators between healthy and non-

health. On the basis of these variables, patterns may be recognized to identify 

individuals at risk for Wilms tumour.  

Around 10% of Wilms tumour patients are diagnosed having a concurrent syn-

drome that enhances the risk of Wilms tumour. But not all of these patients will 

develop such a tumour [141]. A screening method for early detection of Wilms 

tumour in these patients would be beneficial as the size or stage of a tumour is 

related with outcome [142]. In addition the detection of tumour specific disrupt-

ed pathways might help to find targeted therapies for individual patients. In one 

child with relapse of a bilateral nephroblastomatosis and disrupted retinoic acid 

pathway the treatment with retinoic acid did cure the child without tumour sur-

gery [143]. If it can be shown that this pathway analysis tool is beneficial for 

Wilms tumour it can serve as a proof of principle for usage in other cancer. From 

a technological point of view a translation in other domains is easy as it is only 

necessary to link the tool with the corresponding database of patient specific 

miRNAs in other clinical domains. 
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5. Conclusions 

Microarray experiments have advanced life scientists’ ability not only to detect 

but also to quantify gene expression for target phenotypes. Initially the belief 

was that microarrays would reveal genotype categories (gene signature) for spe-

cific phenotypes. Unfortunately, microarray data mining has a number of limita-

tions with most prominent (i) the noisy content (ii) the low reproducibility of the 

experiments and (iii) the fact that different gene-selection methodologies and 

techniques, even for gene-expression data acquired from the same experiment, 

produce gene lists that are strikingly different [9].  

On the other hand, gene regulatory relations are restricted to what might be ob-

served in an experiment. A change in the expression of a regulator gene modu-

lates the expression of a target gene mainly via protein-DNA interactions. In oth-

er words, there are genes that causally regulate other genes. A change in the ex-

pression of these genes might change dramatically the behaviour of a part or the 

network as a whole. The identification and prediction of such changes is a chal-

lenging task, with the extraction and utilization of knowledge from GRNs to be of 

paramount importance.  

Recently, bioinformatics community focused on more enhanced gene-selection 

methods, mainly by utilizing knowledge from other sources such as GRNs. Initial 

efforts used GRN information as groups (plain list) of associated genes in order 

to identify the most discriminant and phenotype-differentiating genes. Molecular 

pathways effectively reduced the resulting sets of genes, extracted from a gene 

set analysis approach and in some cases improved prediction performance but 

GRNs encompass much more knowledge form just a plain list of genes.  

More and more methods take advantage of the GRNs topology and the underly-

ing gene interaction patterns. In addition, most of the developed tools to take 

advantage of advanced network visualization toolkits in order to map and dis-

play the differentiating genes on target gene regulatory networks e.g., Cyto-

scape47 and KEGG Mapper48. 

Pathway selection methodologies show similarities with gene signatures in 

terms of level of information used over the years. Although GRNs hold important 

information about the structure and correlation among genes that should not be 

neglected, most of the currently available methods in pathway selection do not 

fully exploit it. Analysing the literature we identified three categories of method-

ologies that focus on the identification and selection of discriminant pathways 

                                                        
47 http://www.cytoscape.org/ (last day visited 11/08/2014) 
48 http://www.genome.jp/kegg/mapper.html (last day visited 11/08/2014) 

http://www.cytoscape.org/
http://www.genome.jp/kegg/mapper.html


118 

and sub-pathways, based on the different levels of knowledge extraction from 

target GRNs. Initially the focus was on the identification of differentially ex-

pressed pathways (as a whole) using microarray data. Then the efforts concen-

trated on the knowledge of the GRN topology using decomposition mechanisms 

to reveal discriminant sub-pathways based on the graph theory concepts and 

network visualization toolkits. Recently more advanced methodologies are de-

veloped, which takes in consideration not only the topology of the GRNs but also, 

the regulation type (activation/inhibition) of the interaction link that connects 

two or more genes. 

We classified the methodologies into three categories according to the level of 

the utilised GRN information. The categories are: pathway selection using GRNs 

as list of genes, sub-pathway selection using the topology of GRNs and sub-

pathway selection methodologies using the underlying GRN gene regulatory in-

teractions.  

I. The first category naming “pathway selection” focus on the identification 

of differentially expressed pathways using microarray data. Nine (9) 

methodologies fall into this category. The proposed methodologies ex-

tract knowledge from gene regulatory networks trying, with the use of 

gene-expression data, to identify those pathways that contain the most 

discriminant genes.   

II. The second category “sub-pathway selection using topology” includes 

eleven (11) methodologies. The respective methods go one step further 

and focus on the extraction of the discriminant pathways or, parts of 

pathways. Chuang et al [55] proved that the identified sub-networks are 

significantly more reproducible between different breast cancer cohorts 

than individual marker genes selected without network information. The 

authors also stated that network-based classification achieves higher ac-

curacy than individual marker genes in prediction of independent valida-

tion data sets. 

III. The third and most informative category is the “sub-pathway selection us-

ing regulatory mechanisms”. While the previous approaches are useful, 

the valuable information from GRNs - such as the inherent gene regulato-

ry relations found in biological pathways, is not taken in consideration. 

This category takes advantage not only of the topology of the GRNs but of 

the underlying gene relation types as well (i.e., activation or inhibition). 

This approach solves the major problem of the set enrichment strategies 

that refers to the conflicting constrains between GRNs and gene-

expression data. A typical example of the conflicting constrains is reflect-
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ed in the situation when two significantly up-regulated genes increase the 

enrichment of the set in microarray expression data, even if the first gene 

inhibits the other in a GRN. 

The last category – being in its infancy, exhibits the fewer methodologies so far, 

but it takes the most out of GRNs and gene-expression data compared to the oth-

er two and is a promising alternative for the identification of the regulatory 

mechanisms that underlie and putatively govern various phenotypes. 

 

Figure 58: Number of methodologies for each category over the years 

An overview of the number of the developed methodologies over the last years in 

the three reviewed categories is illustrated in Figure 58. It can be observed that 

for the pathway selection category the methodologies range from 2003 to 2010. 

The second category (sub-pathway selection using topology) has its first publica-

tion on 2007 and exhibits a relatively stable pattern until today. The most ad-

vanced and newer category is the third one (sub-pathway selection using regula-

tory mechanisms), which seems that it is at its first steps and could possibly gain 

a momentum. Our assumption for that momentum amplifies with the similarities 

we can find between the discriminant gene regulatory (sub)-networks and mi-

croarray gene selection methodologies. 

Apart from the proposed procedure, only four (4) other tools take advantage of 

the underlying GRN gene regulation mechanisms, naming GGEA [16], SPIA [60], 

TEAK [15] and PATHOME [13]. The main difference of the proposed methodolo-

gy from these four systems is the handling of the gene regulatory mechanisms. 

To our knowledge all the other methodologies count with a +1 the activations 

and -1 the inhibitions. Each sub-path gets a final score, which is also used as a 

ranking mechanism. Contrary, our approach strictly checks and takes into ac-

count only sub-paths that are functional (according to the gene relations and the 
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expression values). Our approach is binary and leads to distinction between 

functional and non-functional sub-paths per sample instead of a representation 

of the sub-path per class (the sum).  

MinePath relies on a novel approach for GRN processing that takes into account 

all possible functional interactions of the network. The phenotype information is 

extracted from microarrays and all the selected GRNs are evaluated for the iden-

tification of the most informative GRNs at the specific phenotype. The efficient 

ranking of sub-paths provides the most differentiating and prominent GRN func-

tional sub-paths for the respective target phenotypes. The formulas possess a 

polarity characteristic according the class phenotype, i.e., positive for class S1 

and negative for class S2.  These sub-paths present evidential molecular mecha-

nisms that govern the disease itself, its type, its state or other targeted disease 

phenotypes (e.g., positive or negative response to specific drug treatment). The 

methodology was applied on gene-expression studies including the target of 

identifying putative mechanisms that underlie and govern the treatment re-

sponse of breast cancer patients according to their ER-status profiles. Results 

were quite indicative and strongly supported by the relevant biomedical litera-

ture. 

Another advantage of MinePath over the similar tools is the productive environ-

ment with efficient, interactive and user-friendly visualization that offers rich 

exploratory capabilities towards the insight of key phenotype regulatory mecha-

nisms, a fact that all the other solutions does not facilitate and inspection of re-

sults limits the exploratory potential of the users. Some gene set enrichment 

analysis methodologies and tools utilize pathway visualization approaches to 

overcome this problem. However, since they are based on a gene-oriented ap-

proach, they are still unable to handle differentially expressed pathways or even 

differentially expressed sub-paths. Solutions such as the KEGG Atlas/Mapper 

[95], WebGestalt [96], NetworkTrial [97] or even Graphite Web [98] visualize 

just the pathway genes using some colour scale or colour-coding schema. This 

problem is apparent even for small pathways. For example, the inhibition rela-

tion A | B when up-regulation of A inhibits B and when down-regulation of A 

turns B up-regulated. For such different cases, different colours should be as-

signed to the genes. The situation becomes even more complicated when one has 

to visualize the phenotype inclination of an interaction. MinePath overcomes the 

aforementioned problems offering an effective identification and visualization of 

differentially active GRN sub-paths in real time on a solely Web-based platform. 

Furthermore, MinePath takes also into account and visualizes sub-paths fully 

functional in both phenotypes. These sub-paths have no discriminant power but 
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in the area of gene regulatory networks, the sub-paths that are always activated 

can link the gap (functional interaction) between two sub-paths and reveal a 

complete functional root, which is biologically valuable (e.g. link the gap between 

extracellular gene interactions and final biological reaction such as apoptosis).  

The MinePath platform and its Web-based implementation aim to effectively ad-

dress these issues. Its core algorithm determines differentially expressed path-

way sub-paths and relations instead of just differential genes. These sub-paths 

present evidential molecular mechanisms that govern the disease itself, its sub-

type, state or other targeted disease phenotypes. In this form, MinePath intro-

duces a new and efficient representation of the differentially expressed sub-

paths over a Web-based human-computer interface. Furthermore, MinePath 

supports live interaction, immediate visualization of regulatory relations and it is 

equipped with special topological and network-adjustment functionalities.  

Armed with the aforementioned features, MinePath serves the users’ exploratory 

needs to reveal the regulatory mechanisms that underlie and putatively govern 

the expression of target phenotypes.  

The current version of MinePath has been thoroughly tested for its stability. Ex-

ploratory results are quite satisfactory and the modular implementation of the 

core MinePath algorithm gives us the ability to “build on demand” new tools such 

as the miRNA scenario. 

Additional functionality is foreseen in planned future releases of the methodolo-

gy, the algorithm and the platform. The modular implementation gives us the 

ability to “build on demand” new tools based on end user scenarios. Such an ex-

ample is the miRNA scenario/extension and we plan to create a validation tool of 

candidate sub-paths (GRN reconstruction validation).  

For the methodology we plan to: 

 Introduce new ranking algorithms 

 Introduce other pre-processing methodologies (apart discretization) 

 Support multi-class datasets 

 Support other quantified gene-expression data (e.g., RNA-seq) 

For the platform we plan to: 

 Create automated uploading system of microarray data from public 

sources (e.g., GEO)  

 Add merging of gene-expression datasets (to serve meta-analysis needs) 

 Visualize two or more pathways in order to enrich exploratory quests. 
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It is known that integrating heterogeneous data sources is more effective than 

working within the boundaries of a single data domain, an observation that is 

particularly valid for the biomedical domain [144]. Bioinformatics and systems 

biology have demonstrated that knowledge across domains can better aid rele-

vant scientific communities in their research endeavours or even reveal and cre-

ate new research domains, such as translational bioinformatics [145]. Methodo-

logical approaches for pathway analysis have moved from employing algorithms 

using simple gene lists to the utilization of the topology and the regulatory 

mechanisms of biological networks. 

Extracting out the most of the knowledge will always give us more natural and 

meaningful, as well as more accurate results.  
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Appendix I (KEGG pathways) 

KEGG is part of the GenomeNet49 project of the Kyoto University. KEGG initiated 

in 1995 for sequence information from a number of organisms into metabolic or 

regulatory pathways. KEGG consists of 4 main databases: PATHWAY, GENES, 

LIGAND, and BRITE. 

The KEGG PATHWAY database is a collection of manually drawn graphical dia-

grams, called KEGG pathway maps, representing molecular pathways for metab-

olism, genetic information processing, environmental information processing, 

other cellular processes, human diseases, and drug development. Pathway maps 

are based on extensive survey of published literature. If available, different or-

ganisms are compared. The pathway map is drawn and updated with the nota-

tion shown below. 

 

Figure 59: KEGG pathway notations (source KEGG help documentation) 

There are two types of KEGG pathways, (i) reference pathways which are manu-

ally drawn and (ii) organism-specific pathways which are computationally gen-

erated based on reference pathways. 

                                                        
49 http://www.genome.jp/  

http://www.genome.jp/
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In the organism-specific pathways, green boxes are hyperlinked to GENES en-

tries by converting K numbers (KO identifiers) to gene identifiers in the refer-

ence pathway, indicating the presence of genes in the genome and also the com-

pleteness of the pathway. 

Maps are available both as GIF-files and as XML version. These KEGG Markup 

Language (KGML) files contain computerized information about graphical ob-

jects and their relations in the KEGG pathways as well as information about 

orthologous gene assignments in the KEGG GENES database. Each pathway is 

identified by a five-digit number preceded by one of: map, ko, ec, rn, and three- or 

four-letter organism code.  

In KGML the pathway element specifies one graph object with the entry elements 

as its nodes and the relation and reaction elements as its edges. The relation and 

reaction elements indicate the connection patterns of rectangles (gene products) 

and the connection patterns of circles (chemical compounds), respectively, in the 

KEGG pathways. The two types of graph objects, those consisting of entry and 

relation elements and those consisting of entry and reaction elements, are called 

the protein network and the chemical network, respectively. Since the metabolic 

pathway can be viewed both as a network of proteins (enzymes) and as a net-

work of chemical compounds, another distinction of KEGG pathways is: 

 metabolic pathways viewed as both protein networks and chemical net-
works 

 regulatory pathways viewed as protein networks only 

The following figure shows an overview of KGML. 
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Figure 60: Overview of KGML schema (source the KEGG Markup Language) 

The pathway element is a root element, and one pathway element is specified for 

one pathway map in KGML. The entry, relation, and reaction elements specify the 

graph information, and additional elements are used to specify more detailed 

information about nodes and edges of the graph. 

More details can be found in the KEGG Markup Language50. 

The pathway maps are classified into the following sections: 

 Metabolism 
 Genetic information processing (transcription, translation, replication and 

repair, etc.) 
 Environmental information processing (membrane transport, signal 

transduction, etc.) 
 Cellular processes (cell growth, cell death, cell membrane functions, etc.) 
 Organismal systems (immune system, endocrine system, nervous system, 

etc.) 
 Human diseases 
 Drug development 

The metabolism section contains aesthetically drawn global maps showing an 

overall picture of metabolism, in addition to regular metabolic pathway maps. 

The low-resolution global maps can be used, for example, to compare metabolic 

capacities of different organisms in genomics studies and different environmen-

tal samples in metagenomics studies. In contrast, KEGG modules in the KEGG 

MODULE database are higher-resolution, localized wiring diagrams, represent-

ing tighter functional units within a pathway map, such as sub-pathways con-

served among specific organism groups and molecular complexes. KEGG mod-

ules are defined as characteristic gene sets that can be linked to specific metabol-

ic capacities and other phenotypic features, so that they can be used for automat-

ic interpretation of genome and metagenome data. 

 

  

                                                        
50 http://www.kegg.jp/kegg/xml/docs/  

http://www.kegg.jp/kegg/xml/docs/
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Appendix II (Datasets) 

MinePath uses microarray experiments and respective gene-expression data to 

identify discriminant sub-paths in known GRNs. Currently provides 15 public 

gene expression datasets from the Gene Expression Omnibus database for 6 dif-

ferent disease categories naming (i) breast cancer, (ii) leukemia, (iii) cranio-

synostosis, (iv) lung cancer, (v) colon cancer and (vi) mental disorder. The user 

can select one of the annotated datasets or upload his/her own dataset. Details 

for the preparation of a private dataset and upload to the MinePath server can be 

found in section 3.5.2.1.1 (Select or upload gene expression dataset).   

In the following sections we describe in short the (currently) available datasets.  

Breast cancer 

Most of the datasets currently available in the web based MinePath application 

fall into the breast cancer category. This series represents 180 lymph-node nega-

tive relapse free patients and 106 lymph-node negate patients that developed a 

distant metastasis.  

GSE2034 

GSE2034 dataset [117] comes from a breast cancer relapse free survival study. 

The Erasmus Medical Center (Rotterdam, Netherlands) tumour bank used for the 

frozen tumour samples from patients with lymph-node-negative breast cancer 

who were treated during 1980–1995, but who did not receive systemic neoadju-

vant or adjuvant therapy. Tumour samples were submitted to the laboratory 

from 25 regional hospitals for measurements of steroid-hormone receptors. 

Analysis conducted with Affymetrix Human U133a GeneChips, the expression of 

22 000 transcripts from total RNA of the frozen tumor samples. 

GSE2990 

The patients coming from Uppsala Hospital have been also used in other studies 

as in GSE3494. The dataset contains 64 microarray experiments from primary 

breast tumours used in the original publication [118] as training set to identify 

genes differentially expressed in grade 1 and 3 and 129 microarray experiments 

from primary breast tumours of untreated patients used as validation set to vali-

date the list of genes and its correlation with survival. No replicate, no reference 

sample in the dataset. Analysis conducted with Affymetrix Human U133a 

GeneChips. 
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GSE3494 

The biological tumour samples (breast tumour specimens) consisted of freshly 

frozen breast tumours from a population-based cohort of 315 women represent-

ing 65% of all breast cancers resected in Uppsala County, Sweden, from January 

1, 1987 to December 31, 1989 [116]. Oestrogen receptor status was determined 

by biochemical assay as part of the routine clinical procedure. All tumour speci-

mens were assessed on Affymetrix Human U133 A and B arrays. 

GSE7390 

Gene expression profiling of frozen samples from 198 lymph node-negative sys-

temically untreated breast cancer patients was done at the Bordet Institute, 

blinded to clinical data and independent of Veridex. The Veridex organization is 

dedicated to providing physicians with high-value in vitro diagnostic oncology 

products, including CELLSEARCH51 Circulating Tumour Cell testing for more than 

a decade. Genomic risk was defined by Veridex, blinded to clinical data. The orig-

inal paper [119]  tried to predict distant metastases and the study conducted by 

TRANSBIG project. 

E-GEOD-13671 

The E-GEOD-13671 dataset included duplicates from four normal controls and 

from two BRCA1 mutation carriers and single arrays from another two BRCA1 

mutation carriers using a three-dimensional culture technique to grow mamma-

ry epithelial cells ex vivo. Ten colonies were collected and RNA was isolated us-

ing the Absolutely RNA Nanoprep kit (Stratagene). Samples were hybridized to 

the Human Genome U133 Plus 2.0 (Affymetrix) at the Partners Genomics Centre. 

E-GEOD-20685 

The primary goal of this study is to identify molecular subtypes of breast cancer 

through gene expression profiles of 327 breast cancer samples and determine 

molecular and clinical characteristics of different breast cancer subtypes. Ex-

pression signatures of different cellular functions (e.g., cell proliferation/cell cy-

cle, wound response, tumor stromal response, vascular endothelial normaliza-

tion, drug esponse genes, etc.) in different breast cancer molecular subtypes in-

vestigated and assessed how microarray-based breast cancer molecular sub-

types may be used to guide treatment. Gene expression profiles of 327 breast 

cancer samples were determined using total RNA and Affymetrix U133 plus 2.0 

arrays. 

                                                        
51 https://www.cellsearchctc.com  

https://www.cellsearchctc.com/
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GSE22035 

43 ER-positive breast tumours including 14 tumours with PIK3CA mutations and 

29 tumours without PIK3CA mutations were used as screening set for microar-

ray. PI3K/AKT pathway plays one of pivotal roles in breast cancer development 

and maintenance. The ERα-positive breast tumours PIK3CA mutations have been 

observed in 30% to 40%. However, genes expressed in connection to the path-

way activation in breast tumorigenesis remain largely unknown. Samples were 

hybridized to the Affymetrix U133 plus 2.0 arrays 

4ERdatasets 

The ‘4ERdatasets’ dataset is a set of four independent discretized and then 

merged gene-expression studies targeting the ER phenotypic status respective 

patients, i.e., ER+ (ER positive) vs. ER- (ER negative), from the GSE2034, 

GSE2990  GSE3494 and GSE7390studies.  

The four datasets used the same hybridization platform, the GPL96 HG-U133A 

Affymetrix Human Genome U133A Array, making the procedure of merging rela-

tively easy. For the discretization, the same methodology as in MinePath was 

used in the level of probes. Each dataset was discretized individually and then 

the four datasets were merged.  

Leukaemia 

Leukaemia in MinePath is currently represented by one dataset, the GSE18239, 

an expression data from JAK1 wild-type and JAK1 mutation-positive T cell acute 

lymphoblastic leukaemia blasts. The Janus kinase 1 (JAK1) gene encodes a cyto-

plasmic tyrosine kinase that noncovalently associates with a variety of cytokine 

receptors and plays a nonredundant role in lymphoid cell precursor prolifera-

tion, survival, and differentiation. Somatic mutations in JAK1 occur in individuals 

with acute lymphoblastic leukemia. The study used microarray to compare the 

gene expression profile of JAK1 mutation positive or negative acute lympho-

blastic leukaemia blasts. The hybridization platform Human Genome U133 Plus 

2.0 (Affymetrix) was used. 

Glioma 

A glioma is a type of tumor that starts in the brain or spine. Three types of nor-

mal glial cells can produce tumors—astrocytes, oligodendrocytes, and ependy-

mal cells. These tumors are usually highly malignant (cancerous) because the 

cells reproduce quickly and they are supported by a large network of blood ves-

sels. In the adult population, glioblastoma multiforme (GBM), is a common and 
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one of the most malignant primary brain tumors, representing up to 50% of all 

primary brain gliomas52. 

In MinePath you can find a dataset which is a merging of two different studies 

using as classes the glioma cases from the GSE4271 (100 samples) versus the 

control cases from the GSE1133 (158 samples). 

Craniosynostosis 

Craniosynostosis is a disease defined by premature fusion of one or more cranial 

sutures. In MinePath currently we can find one annotated dataset for cranio-

synostosis, the GSE27976. In this study, gene expression data from 199 patients 

with isolated sagittal (n= 100), unilateral coronal (n = 50), and metopic (n = 49) 

synostosis are compared (all together) against a control population (n = 50). For 

the study, the HuGene-1_0-st Affymetrix Human Gene 1.0 ST Array [transcript 

(gene) version] was used. 

Lung cancer 

Lung cancer in MinePath is currently represented by one dataset containing sixty 

pairs of tumour and adjacent normal lung tissue specimens from non-smoking 

female lung cancer patients who were admitted to National Taiwan University 

Hospital or Taichung Veterans General Hospital were analysed by using 

GeneChip Human Genome U133 Plus 2.0 expression arrays (Affymetrix) by 

Partek (Partek, Inc.) for mRNA expression levels. The mean ± SD age of patients 

used for microarray experiments was 61 ± 10 years. Most of the tumours were 

adenocarcinomas (93%), and 78% of the samples were in stage I or II. Because 

the cancer and normal tissues were from the same individual, paired t tests and 

Bonferroni post hoc P value adjustment were used. 

Colon cancer 

In MinePath currently we can find one annotated dataset for colon cancer. The 

specific dataset (GSE4107) extracted RNA from colonic mucosa of healthy con-

trols (10samples) and patients (12samples) were analysed using Affymetrix 

Human Genome U133 Plus 2.0 Array. Patients and controls were age- (50 or 

less), ethnicity- (Chinese) and tissue-matched. 

Tumour specimens and adjacent grossly normal-appearing tissue at least 8 cm 

away were routinely collected and archived from patients undergoing colorectal 

resection at the Singapore General Hospital. Young (≤50 years old) Chinese pa-

                                                        
52 CBTRUS. Statistical Report: Primary Brain Tumors in the United States. 1998–2002:2005. Cen-
tral Brain Tumor Registry of the United States. 
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tients whose tumours were classified as microsatellite-stable were included in 

this retrospective study. Five to seven pinch biopsies from several locations 

throughout the colon were obtained from Chinese individuals (≤50 years old) 

undergoing colonoscopic examination and were found to have no polyps and no 

known family history or previous CRC incidence: these were designated as 

healthy controls. 

Mental disorder 

The GSE12649 mental disorder study has been annotated and uploaded in the 

MinePath web platform. Since the dataset contains three phenotypical categories 

and MinePath operates over datasets with two phenotypes, we split the study 

data into three independent datasets, the bipolar disorder versus control, the 

schizophrenia versus control and the bipolar disorder versus schizophrenia. 

The study is screened a total of 102 postmortem brains obtained from the Stan-

ley Medical Research Institute were used for DNA microarray analysis. Fresh fro-

zen samples were used for RNA extraction. RNA samples extracted from the pre-

frontal cortices Broadmann's Area 46 (part of the frontal cortex in the human 

brain). They contain total RNA samples from 35 individuals in each of the three 

diagnostic groups, bipolar disorder, schizophrenia and controls. Diagnoses had 

been made according to the Diagnostic and Statistical Manual of Mental Disor-

ders, Fourth Edition (DSM-IV; American Psychiatric Association). 


