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“Information is the resolution of uncertainty.”
- Claude Shannon

“Nature uses only the longest threads to weave her pattexm#hat each small piece of her fabric reveals the organirati
of the entire tapestry.”
- Richard P. Feynman

“I am interested in mathematics only as a creative art”
- G. H. Hardy



ABSTRACT

In wireless channels, maximume-likelihood (ML) block noheoent detection offers significant gains
over conventional symbol-by-symbol detection when thenfgaadthannel coefficients are not available
and cannot be estimated at the receiver. Certainly, in getheraomplexity of the block detector grows
exponentially with the symbol sequence length. Howevenag been recently shown that for M-ary
phase-shift keying (MPSK) modulation block noncoherenédgon can be performed with polynomial
complexity. In this work, we develop a new ML block noncoherdetector for MPSK transmission of
arbitrary order and multiple-antenna reception. The psepaalgorithm introduces auxiliary spherical
variables and constructs with polynomial complexity a polyial-size set which includes the ML data
sequence. Itis shown that the complexity of the proposeatitifign is polynomial in the sequence length
and at least one order of magnitude lower than the complexitpmputational-geometry based nonco-
herent detection algorithms that have been developedtigcen
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. Introduction

Multiple-antenna wireless systems are well known to atba@meased orders of diversity resulting in substantialiyhir
system capacity compared to single-antenna systems. Whstipehannel state information (CSI) is available or can be
retrieved through adequate channel estimation at thewexcseveral coherent detection schemes can be followedev,

the very nature of wireless channels suggests rapidly ¢hgrdpannel conditions, thus making channel estimationptexn
and cost inefficient. Even when channel fades occur slovigisp distortion is introduced and must be accounted foreat th
receiver end to avoid performance loss.

Alternatively, noncoherent detection has been studieensitely [1]-[5] and implemented in modern digital communi
cation standards. Since noncoherent detection does ndtamyechannel knowledge or estimation, it is applicable émen
most degraded and fast fading channels, making it much mueetve than coherent detection under unfavorable ablann
conditions. Due to the memory in the received data sequenteced by fading channel memory, noncoherent maximum
likelihood sequence detection (MLSD) has recently beerbjestiof extensive research [1]-[4]. Optimal receiverd thd-
fer from exponential complexity with respect to the datausegre length as well as approximate and sub-optimal detecti
algorithms were developed in [1], [5]. However, very recstudies [3], [4] proved the existence of efficient nhoncohere
MLSD receiver schemes that attain optimality with polynahtiomplexity by utilizing computational-geometry (CG)sea
optimization algorithms.

The present work shows that noncoherent MLSD of MPSK symh@$MO systems can be expressed as a rank-deficient
guadratic form maximization problem and computed effidjeimt polynomial time. We follow a completely different ap-
proach than [3],[4] and, inspired by the work in [6]-[BRonstruct a polynomial-complexity noncoherent MLSD meltiuat
is at least one order of magnitude faster than the method.iff e proposed method that is developed in this present isork
also applicable to any arbitrary-order MPSK modulationitirer analysis shows that the computational complexityeddp

only on the data sequence length and receive-diversity amdoes not depend on SNR.

1The work in [6]-[8] considers the efficient computation of thi@ary vector that maximizes a rank-deficient quadratic forrhe @uthors prove the
existence of the optimal solution and develop a method that atesjit in polynomial time. Although rank-deficient quadrdtion maximization was also
treated in [10] based on CG principles, the method in [6]-&juires at least one order of magnitude less complexity compartbe method in [10].



[I. System Model

We consider the transmission of a sequenc# afncodedM -ary phase-shift keying (MPSK) data symbsels- [s;,
s9,...,sn5]T, wheres,, is selected from an/-ary alphabetd 2 {ei 7 m+D|m =0,1,...,M—1},n=1,2,...,N. The
data sequence is shaped and transmitted bvedependent and identically distributed (i.i.d.) freqogfiat Rayleigh fading

wireless channels. The downconverted and pulse-matchedadent received signal at thith antenna is
ya = VPhgs +1ng4 1)

whereP is the constant transmitted power, dngddenotes the coefficient of the channel between the transi@ihaa and the
dth receive antenna and is modeled as zero-mean complexi@austh variancer?. Furthermoren, represents additive
white complex Gaussian noise (AWGN) and is modeled as a zearmomplex Gaussian vector with co-variance matrix

o21. We collect all received data from the receive antennas and form thex D “received matrix”

Y = [yiy2...ypl @)

The D channel coefficientd,, d = 1,2, ..., D, are assumed unknown to both the transmitter and the receiyaying
that noncoherent detection has to be performed. The MLSsidecfor the transmitted sequensggiven the N x D
observation matrixX¥ maximizes the conditional probability density functiordfpof Y givens. Thus, the maximization

problem becomes

A
Sopt — arg max f(Y|s
opt gsEA% f( | )

3)
= arg max f(y1,yo,..., s).
gse X (¥1,¥2 yDls)

M

Due to independence among tPechannels, the columns of the received ma¥bare i.i.d. given the transmitted sequence

s. Therefore,

D

Sopt = arg max [T f(yals)
M =1

- @
= arg max > In f(yals).

M g=1

The conditional received vector at thth antenna given the transmitted sequenge;js = hgs + ng wherehys is a singular

complex Gaussian vector independent fromd = 1,2,..., D. The following proposition identifies the pdf ¢f;|s.

Proposition 1 The sum of a singular complex Gaussian vector and an indeger@bmplex Gaussian vector results in a

complex Gaussian vector.



Proof Consider a singular Gaussian vector of the form
q= [01Q»G2CJ»-~~;GN(]}T7 qNCN(m(pO-g)a a1,az,...,aN €eR (5)

and an independent complex Gaussian vector

n=[ny,ng,...,nx5]Y, n~CN@m,,C,). (6)

Consider the sut_>Y (¢ +n:) = SN, ni+ 3"V | a;q and observe that bol@ >N ai) and (va:l m) are independent
complex Gaussian random variables. T@jvzl(qi + n;) is also a complex Gaussian random variable. Consequently

z = n + q is a complex Gaussian vector [12]. O

According to Proposition 1, sinde; andn, are both zero-meaiy,|s is a zero-mean complex Gaussian vector with covari-
ance matrix

A
Ry,s = E{yayl|s} = 021+ Pojss™. @

As a result, the MLSD receiver of (4) becomes

D

1
Sopt = arg max In —~
seal = mV|Ry,js
(8)
D

1
Hp-1
= ar maxg -y R +In——].
gsGAﬁ’l d1< Yd yd‘syd ﬂNRydsl)

jexP {—yf R;jsyd}

Using the propertyA + cd”| = |A|(1 + d” A~'c) found in [11], we computéR,,,\s| = o2V (1 + NP%). Since|Ry 5|

is not a function ofs, it can hence be dropped from the detector in (8). Moreow&@nguthe matrix inversion lemma, the

becomeR_! = L (I — J%SSH), implying that the decision rule in (8) is simplified to
n h

yals yals o2

inverse ofR.

Do Po?
_ 1 2 h H_ H
Sopt = arg max > — < lyall* + oy Yd)

Mg—1 T
D
= arg max » |yfs|”
s€ Ay, et

= arg max |[YZs]|. 9)
seAN

M

If the above optimization is performed through exhaustearsh, then it cost® (M) computations which is an intractable
complexity even for moderate vales 8f. In the next section, we follow an approach similar to the oh¢6]-[8] but
tailored to our detection problem in (9). Specifically, wé&rdnluce2D — 1 spherical coordinates and develop an efficient
algorithm to build a seS(Y yxp) C A}, that consists ofS(Y nxp)| = O((NM)2P~1) signal vectors, is constructed with

O((M N)?P) computations, and contains the optimal vestgy; in (9).



I1l. Efficient ML Block Noncoherent MPSK Detection

A. Theoretic developments

In order to develop an efficient technique for solving the mmzation problem in (9), we introduc2D — 1 auxiliary

hyperspherical coordinates € (—m, 7], ¢2,...,d2p_1 € (—g, g] and define theé D x 1 hyperspherical vector

sin ¢

COS ¢1 sin ¢

- A
C(¢13 ey ¢2D—1) - (10)
COs ¢1 COS ¢2D72 sin ¢2D71
COS (p1... COS Pap_9 COS Pap_1
as well as theD x 1 hyperspherical complex vector
A .
c(¢1,... 02p-1) = €1:p,1 (P15 - -, P2p—1) + j€p41:2D,1 (P15 - - -, P2p—1)- (11)
Then, the problem in (9) is rewritten equivalently as
Sopt = ar Y
pt = A1 max Y s|
(12)
H
= arg max max max s Yc(¢q,..., _
gSGAf{ p1€(—m,7] ¢2;~-~,¢2D—1€(*%,%]| (¢1 920 1)|
due to Cauchy-Schwartz Inequality which states that foramyC?”
vie(¢1,... . d2p-1)l < |IVI[ - [le(41,- ., d2p—1)]] (13)
=1
with equality if and only ifgy, . .., ¢2p_, are the hyperspherical coordinatesvofFurthermoreyv € CP,
R{viec(pr,...,ap-1)} < |[vPe(dr,. .., ¢2p-1)|, (14)
with equality if and only if¢q, ..., ¢op_1 are the hyperspherical coordinatesvofHence, the maximization problem in (12)
becomes
Sopt = arg max  max max R{sYc(o1,..., —1)} 15
Pt gsGA% p1€(=m,7] ¢2,....02p-1€(— 5, 5] { ((bl 920 1)} (15)
We interchange the maximizations in (15) and obtain thevadgmt problem
N
max max Z max R{s) Y, 1.pc(é1,P2,...,¢P20-1)}, (16)

p1€(—7,7] $2,....,02p-1E(— 5,5 ot sn€AM



we observe that the original maximization problem in (9) éeamposed in a set of symbol-by-symbol coherent detection

rules for a given set of angl€e, ..., ¢op_1) € (—m, 7] X (—g, g}w”

. For such a set of angles the maximizing argument
of a coherent decision metric of the sum in (16), say for syimhodepends only on the corresponding row of “received”
matrix Y, since that is the one related with thth transmitted symbol. A&y, ¢, ..., p2p_1 vary, the decision in favor of

sn IS maintained as long as a decision boundary is not crosseel t®the structure ofl,;, the% decision boundaries that

affect the maximization in (16) are given by
jom M
Yn71:DC(¢1a--~7¢2D71):Aej M,k:(),l,...,?—l, 7’7/:1,27...,N. (17)

The decision boundaries in (17) can be rewritten withowt twfsgyenerality (w.l.0.g.) as

. M
S{e MY, 1.pc(d1,. .., dap_1)} =0, k=01, -1, n=12..N (18)
which is equivalent to
~ N MN
Yl,1:2Dc(¢15 .. -7¢2D71) = 07 l= 13 RS ?7 (19)
where
Y2 [%(Y) %(Y)}, (20)
o A _i2m _am —j2m (A1) T
Y:Y®|:1€jM€JM...€JM 2 } , (21)

and® denotes Kronecker product. The inner maximization rule.B) fnotivates us to definedecision functiors that maps

a set of angle$gy, ¢, . .., pop_1) to a certain value of sed;; according to
A .
s(y"; 01,02, .., ¢2p_1) = arg max R{s*y"c(¢1....02p-1)} (22)
s M
for anyy € CP. Then, for the giverlV x D matrix Y, each set of angles -, 7] (—g, g] P=%is mapped to a candidate

M -ary vector
s(Y11:p:¢1,...,020-1)

A | 8(Y21.p5¢1,...,02p-1)

s(Ynxp;é1,. .., ¢2p-1) (23)

s(YN1:D; 15+ P2p—1)

and the optimal vectos,,,; in (15) belongs t(qule(—n ] U¢2 o 1€(— %] s(Ynxp;®1,-..,02p—1). Furthermore,
; soes 2D~ 5.z

since oppositel/-ary vectors result in the same metric in (9), we can ignoesvidues ofp; in (—7r, —E] u (1 7r] and

10
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considerpy,...,pap_1 € @ 2 (—g, g] hence the maximization in (16) can be rewritten as
N
max max R{s'Y, 1.pc(d1, o, ..., _1)} 24
¢17¢27~--7¢2D—1€¢n§15n€AM {n m1:D (¢1 02 ¢2D 1)} ( )

Since we have defined a new problem space, we may now collédt-ary candidate vectors to set

SYnxp)E | (s(Ywxpidi.....d2p1)} C AN (25)
b1, P2D-1EP

Such set includes the maximizer of our detection problemcée

ot = YHs|. 26
Sopt = arg Max, Y s| (26)
The setS(Yn«p) that includess,,, is later proved to have cardinalitys(Ynxp)| = O((NM)?P~1). Moreover, an

efficient algorithm for the construction of the aforemenéd set is developed in subsection B wili( N M )?P) complexity.

11
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Fig. 2.

From (21), we observe that the rows oft%é\l x2D matrixY determinej‘% hypersurfaces-‘(Ylyl;QD), ]—‘(?2,1:2,3), .
,]—“(Y%Q:D). An example of such hypersurface is shown in Fig.1ibe= 2. Each hypersurface partitions the hypercube
#2P—1 into two regions, and all hypersurfac€8Y; 1.2p), F(Y2.1:20), - - - ,]—“(?@72:[)) partition the hypercub@2?—1
into K cellsCy,Cs,...,Ck such thalLJkK:1 Cr = &?P~1, C,NC; # 0V k # j, with each cellCy, corresponding to a
uniques, € AY. Let {iy,ia,...,52p_1} C {1,2,..., @} be a subset 02D — 1 indices (that correspond D — 1
hypersurfaces) angﬂ(Y% «Dii1,- .., i2p_1) € ®*P~1 equal the vector of coordinates of the intersection of hypeaces

F(Yi, 120), ... F(Yi,, 1 1:2p). The basic property of such an intersection is presentdukificllowing proposition. The

proof is given in Appendix A.

Proposition 2 Any combination 02D — 1 hypersurfaces, sa¥ (Y, 1.20), F(Yi,1:20), - - - » F(Yiyp_, .1:20), has a unique

intersection (which is a vertex of a cell) if and only if no mdhan two hypersurfaces originate from the same row of the

12



observation matrixy'.
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In Fig.2 we present the intersection % hypersurfaces that originate from the same rowygfwith M = 8, D

We observe that such an ensemble of hypersurfaces pastitienhypercube?P—1 into M partitions, with each partition

= 2.
corresponding to a unique element of thg, alphabet. Moreover as an illustrative example for propmsi2, we present, in

Fig.3, the intersection dID — 1 hypersurfaces, where no more than two hypersurfaces ateginom the same row oY,
and observe that such unique intersection is a single ppthtiavertex of a cell.

Any cell, sayC (Y@ 2D s iQD_1> for example, is exclusively associated with a unidueary vectors(Y% 2D}

i1,...,i2p—_1), inthe sense that within that cell all single points of therfd¢, , @2, ,¢2D,1)EC(YwX2D;i17 .,igD,l)

13



yield the same candidate vects(?@ 2Dy s igp,l)that is; we collect all suchif-ary vectors to set
S A S . ;
J(Y@X2D): U {S (Y@X2D;Zl,...7lgl),1)} Q.A% (27)
{i1,..iap—1}C{1,..., 248}
The cardinality of/ (Y ax . ) iS given by
D—-1 2D—-1—-d
- N N —d M
Y = — = O((NM)*P~1). 28
%0l = 3 (1) a0 " t2) () O( ) 29
Thus,J(Y@Xw) containsO((NM)?P~1) M-ary vectors. Then, it can be shown [8] that all candidatearedorm the
set
S(YNXp) =J (?%XQD) uJ (Y@XQD—%) U...udJ (?Z\/IN ><2)
p-1 (29)
= U J (Y%xz(Dﬂi))a
d=0
with Y%XQ(D%) denoting the matrix that contains all fistD — d) columns ofY.. As a result the cardinality of the above

setis

|S(?%x2D)| =

<

(Yoo )| + |7 (Yassamoay)| 4+ |7 (Yo o)

-1

= <J6\i[> <2Q iv(z—i 2d)) (]\2/[>2Q1d - (30)

O((NM)*?71) = O((NM)?Ph),

Il
NE

O
Il

Il
WE

O
£

which is straightforward sincd (Y@Xw). with cardinality O((NM)?P~1), is the largest set among the subsets of
S(Y@ ><2D)'

To summarize the developments of this subsection, we halieedt2D — 1 auxiliary hyperspherical coordinates, and
partitioned the hypercubg2?~! into O((N M)2?P~1) cells associated with unique/-ary candidate vectors that constitute
the setS(Ynxp) C A}, which includess,, in (9). Therefore, the initial detection problem in (9) h&sh converted into a

maximization amon@((N M)?P~1) candidate vectors.

B. Algorithmic developments

The construction ofS(Y yxp) is of special interest since it determines the overall perémce of the proposed method.
According to (29), it reduces to the parallel constructibd@Y@ w2q), ford=2D,2D —2,...,2, which can be also fully

parallelized since cells in the hypersurface arrangenmrergxamined independently from each other. It can be shoatritib

14



decision function in (22) determines definitely the cormegfing symbols,, if and only if no hypersurface originates from
Y, 1.4. For the hypersurfaces that pass through the cell intessedhe rule in (22) becomes ambiguous. In such a case,
definite determination of,, is attained ifpop 1 is set to7 and (22) is examined at the intersection of the same hydacss
except from the hypersurface of interest.

The algorithm visits independently th6(Y vy« p)| = O((NM)?P~1) intersections and computes the candidate vector
in AL, for each intersection. The cost of the algorithm for eachditiate vector isD(M N) since it needs to check at most
M N inequalities. Therefore, the overall complexity for th@swuction ofS(Y x« p) becomeO((NM)?P~1) O(MN) =
O((NM)?P). The MATLAB code for the construction @ (Y y« p) is given in Appendix B..

It remains to describe how the vector of coordinaﬁéﬁ?@ wdi i1, ., l2q—1) Is Obtained efficiently. Since such coordi-
nates represent the intersection®fY, 1.24), F (Yiy.1:24); - - - » F(Yi,y ,.1:24) @ unique solution is given by the following
system of equations

Yiisinoing 1),1:2a€(1, B2, -, D24-1) = O(a—1)x1

Hc(¢17¢27 .. '7¢2d—1)” =1

We observe that the above equatigiiexplicitly imply orthogonality between th@d — 1)-dimensional hyperplane defined

(31)

by S?[ sisa_1],1:24 @nd the hyperspherical vectofe:, ¢2, . . ., ¢24-1), and(ii) constrain the solutions to unitary vectors.

11,82, ..

To further assist the present work we introduce the foll@yinoposition.

Proposition 3 Consider a full-rankd — 1) x d complex matriXxQ. Then, the equation

Qc(é1, -+, 0da-1) = O(g—1)x1 (32)

has a unique solutiop(Q) € ¢2¢~! which consists of the hyperspherical coordinates of the ket singular vector of.

d

We recall that one way to obtain the zero left singular veofd is by singular value decomposition (SVD). Such a singular
vector is known to be unitary, thus norm-constrained to 1nggguently, the solution of (31) can be efficiently obtained

simply by computing the zero left singular vector of matﬂqgh .1:24» Which is the hyperspherical vector of interest

12,..y02d 1]
c(¢1,¢2,...,Pap—1). Now, sincec(¢1, P2, - . ., p24—1) iS Obtained we need only computge = arg maxsec 4,, R{s*Y . 1.24
c(pr...,¢24-1)} Vn € {1,2,..., N}, that correspond to all elements of the candidate vectolicitkp defined by the

intersection oﬁ?(Yh,l:Qd), \7:(?1'271:2(1), .. F(Yi,, 1 1:24). However, as mentioned earlier, the determinatios,ofvhere

15



n € {i1,iz,...,i24—1} becomes ambiguous, hence, we@gt ; = 5 and solve the following system

Y[ilai27~--7in—17in+l7--<7i2<i—1]c(¢1’ G2, P2d—2, %) = O(d—2)><1 (33)

Hc(¢11¢27-~'a¢2d727g)|| =1

Solution is obtained similarly to (31), by computing thea&sft singular vector oﬁ?[ 1:24—1- Even-

11,82, B —1yint1seeyi2d—1)
tually, we computes,, = argmaxge 4,, R {s*Y,.1.24¢(P1, .- -, In—1,lnt1,. .., 924—1)} forn € {i1,ia,... 424-1}.

We recall that the corresponding complexity of [419¢(N M)*PLP(N M, 2D)) where LRN M, 2D) is the complexity
of a linear programming (LP) optimization problem witli N inequalities and 2D variables. Provided that the worsecas
complexity of LR N M, 2D) in linear in N M [13], it turns out that the method in [4] cos® (N M)?P+1) calculations, i.e.,

one order of magnitude more calculations than the propdgedithm. In addition, [4] treats only the cagé = 2 (BPSK)

andM = 4 (QPSK).

exhaustive
proposed

15

complexity
|_\
o
)
T
|

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
sequence length

Fig. 4.
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Finally, in Fig.4 we draw the complexity of the proposed aitjon and that of the exhaustive search, for= 2 ands-
PSK constellations. We observe that for sequence lengteghanV = 5 exhaustive search seems most efficient. However,
as sequence length grows, the complexity of the exhaustasels grows exponentially and becomes impractically laxgs
for moderate sequence lengths. Whereas, the complexitg girtiposed algorithm grows polynomially with respeciMpis
surprisingly faster than exhaustive search, and remaangipal even for large sequence lengths, where the caedigator

set of the exhaustive search is incomputably large.

IV. Simulation Results

conventional
—— MLSD,N=8
i . MLSD, N =14
10 ' N MRC :

BER

1 1 1 1 1 1 1 1
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
SNR (dB)

10_ 1 1 1 1 1 1

Fig. 5. BER versus SNR for conventional, (proposed) MLSD noncoheesgivers, and MRC.

As an illustration, we consider differentially encode#SK (M = 8) transmission by 1 antenna of a sequence of length

17



N = 8,14 and reception byD = 2 antennas; for the case where coherence detection is madeattimal ratio combining
(MRC) method is considered. The signal-to-noise ratio (BNRges fronbdB to 20dB and for each SNR valuk)? Monte-
Carlo simulations are run. In Fig. 5, we present bit erroe (BER) of the conventional (1-lag) differential detectfrthe
maximum-likelihood sequence detector (MLSD), and of the@Adetector. The noncoherent MLSD is implemented using
our proposed algorithm of complexit§((N M )?P). Even forN = 8 the candidate set of our proposed algorithm is much
smaller than that of the exhaustive search. The reduced sahdidates of the proposed algorithm has diz&) ~ 2'2 for

N = 8, compared to the much larger set that needs to be visited lgustkive search and has siz¢ = 16777216. For

N = 14 that difference grows with our method reducing the expdaksét of242 to approximatel\2'® candidate vectors,

in which the MLSD vector is included. Also, observe that asckllength grows the BER curve of the MLSD algorithm
is getting closer to the BER curve of coherent detection. Wfe aonclude that our algorithm truly appears as an efficient

noncoherent MLSD method that is applicable to any order oSkKIonstellation.

Appendix A

In this appendix, we provide the proof of proposition 2 fobitrary D, M, andN. For the given matrice¥, Y let aq 2
3{n.a} andby = R{Gn.at,d=1,2,...,D. SinceY, g = S{gna} ford =1,2,...,D,andY,, o = R{fn.q} ford’ =
D+1,D+2,...,2D,n=1,2,..., 4 Moreover3{e *§, 4} = ${in,a} cosw — R{fn.qa} sinw andR{e =g, 4} =

R{Gn,a} cosw + 3{Yn.a} sinw. Motivated by Section Ill we define two rotated hypersuraicethe following manner

sin ¢2

SOt o S{Unpt ®{Ona} . R{Ong}

e Gn 1} S{e G0 p IR{e D1} R{e 7 Tn.p}

=0@p-1)x1 &

COS ¢3... COS Pap_1

sin ¢o
ay ap b1 bD
=0@p-1)x1-
a1 cosw —bisinw ... apcosw —bpsinw bjcosw+ajsinw ... bpcosw + ap sinw
COS (3... COS Pap_1

(34)

The first row yields the following equation

a;sing; +...+apcosegy...cospp_osingp_1 + by cos@;...cosppsinppi; + ... +bpcos@;...cospap_1cospap_1 =0 &

ajtang; +...+apcosgs...cosdp_osingpp_1 + by cospa...cosppsingpy1 + ...+ bpcospa...cospap_jcospap_1 =0 &

18



as sin ¢2
bp COS ¢3...COS Pap_1
tan ¢y = — (35)
aq
equivalently from the second row we obtéin
T
as CoSw — by sinw sin ¢o
bp cosw + ap sinw COS (... COS Pap_1
tan g, = — . (36)

a1 cosw — by sinw
The two solutions foran ¢, define two different hypersurfaces, if we show that the geetion of those two hypersurfaces
is independent of the arbitrary rotation, then proposifionill have been proved. Continuingly, the intersectiontad two

hypersurfaces is given by

T T
as sin ¢o Qs CoSw — by sinw sin ¢o
bp COS (p3... COS Pap_1 bpcosw+ apsinw COS (3... COS Pap_1
— , & (37)
ai a1 cosw — by sinw
T T
as(ay cosw — by sinw) sin ¢ a1 (ag cosw — by sinw) sin ¢o
= =
bp(aj cosw — by sinw) COS (3... COS Pap_1 a1(bp cosw + ap sinw) COS (... COS Pap_1
T
as(ay cosw — by sinw) — ag (az cosw — by sinw) sin ¢o
=0&
bp(aj cosw — by sinw) — a1 (bp cosw + ap sinw) COS P3...COS Pap_1
T
asa1 cosw — a1by sinw — ajas cosw + a1bs sinw sin ¢o
=0&
bpajcosw — bpby sinw — a1bp cosw — bpap sinw COS (h3... COS Pap_1

2For the sake of simplicity and space, from now on we shall amtjuide the first and last element of a vector in the equations
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sin w(a1b2 — a2b1> sin ¢2

sinw(—blbD — anD)

T
(111)2 — a2b1 sin Q52
sin w
—b1bp —apbp COS ¢3... COS Pap_1
T
a1b2 — a261 sin ¢2

—b1bD — anD

COS ¢3... COS Pap_1

COS ¢3... COS Pap_1

=0¢<

=0«

=0. (38)

Since we reached the final form in (38) w.l.o.g., we ought teua®e that (38) is fully equivalent to (37), and thus the

intersection of the two hypersurfaces is independent oatb#rary rotationv # 0. Thus, proposition 2 holds true.

Appendix B

In this appendix the Matlab code for finding the polynomiaks reduced set of candidates that inclusigs is provided.

The function complexank M_candfast(Y_tilde, Y, M, N) has as input arguments the matriié@ <2d» Y v 4, the orderd]

of M-PSK and the sequence lengtit

function S = complex_rank_M_cand_fast(Y_tilde, Y, M, N)
s = exp(j *pi/lM *(2 +[0:M-1]'+1)); % MPSK constellation
[NM 2D] = size(Y_tilde);
if 2D > 2

s_reduced = [exp(-

*(pilM)) 5 exp(j *(pi/M)) ; exp(j

s 2 slices = exp(j *pilM) *[1 ; exp(j *pi);
reduced_pairs = reshape(s_reduced, 2, []);

combs = find_combsl1(N, 2D, M);
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S = zeros(N, size(combs, 1));

for i = 1l:length(combs)
J = combs(i,:);
group = ceil(2 *J/M); % generator row
Y _tildel = Y_tilde(J,:); % intersecting HSs
phi = cartesian_to_spherical(find_intersection(Y_tild el).);
c_complex = [sin(phi(1))+j * cos(phi(1)) * cos(phi(2)) *sin(phi(3)) ;...

cos(phi(1)) * sin(phi(2))+ * cos(phi(1)) * cos(phi(2)) * cos(phi(3))];

%%%% find cadidate %%%
[dummy, index_s] = max(real([Y(:,1) Y(;,2)] *Cc_complex *s’), [], 2);
S(,i) = s(index_s);
%%%%%%% %% %% %% % %% %% % %% %

%%% disambiguate %%%

group [group -1];

for m 1:2D-1
k = mod(J(m)-1, M/2);
rotation = exp(j * (2 * k* pi/M));
Y12_m = [Y(group(m),1) Y(group(m),2)];
if group(m)- group(m+1) "= 0 % different row of origin
s_reduced_m = s _reduced =+ rotation;
reduced_pairs_m = reduced_pairs * rotation;
half s reduced_m = s reduced _m(1:2:end,});
[dummy, index_s] = max(real(Y12_m *Cc_complex =*half_s_reduced_m’).’);
s_reduced_m = reduced_pairs_m(;,index_s);
phi_reduced = cartesian_to_spherical(find_intersectio n(...
[Y_tilde1([1:m-1 m+1:2D-1],1:2D-1)])."):;
[dummy, index_s] = max(real(Y12_m * [sin(phi_reduced(1))+...

j * cos(phi_reduced(1)) * sin(phi_reduced(2));...
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cos(phi_reduced(1)) * cos(phi_reduced(2)) * Sin(pi/2)+...
j * cos(phi_reduced(1)) * cos(phi_reduced(2)) * cOS(pi/2)] *s reduced_m"));
S(group(m),i) = s_reduced_m(index_s);
else
phi = cartesian_to_spherical(find_intersection(...
[Y_tildel([1:m-1 m+1:2D-1],1:2D-1)]).);
s_reduced_m = s 2 slices * rotation;
[dummy, index_s] = max(real(Y12_m * [sin(phi(1))+...
j *cos(phi(1))  =*sin(phi(2));...
cos(phi(1)) * cos(phi(2)) * sin(pi/2)+...
j * cos(phi(1)) * cos(phi(2)) * cos(pi/2)] *s_reduced_m"));
S(group(m), i) = s_reduced_m(index_s);
m=m + 1;
end
end
end
S = [S complex_rank_M_cand_fast(Y_tilde(:, 1:2D-2), Y(;, 1:(2D-2)/2), M)];
else
phi_crosses = [-pi/2 ; atan(-Y_tilde(:, 2)./Y_tilde(:, 1) );
[phi_sort, phi_ind] = sort(phi_crosses);
phi_mid = (phi_sort(1:end-1)+phi_sort(2:end))/2;
for i = ZL:length(phi_mid)
[dummy, index_s] = max(real(Y * (sin(phi_mid(i))+j * cos(phi_mid(i))) *S').");
S(,i) = s(index_s);
end

end
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