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Abstract

Transmission of images over wireless channels is a difficult task due 

to the high probability of errors and the minimum tolerance to delays. In 

terms of source compression, the images were encoded using a wavelet 

based  image  encoding  algorithm,  motivated  by  the  Set  Partitioning  in 

Hierarchical Trees (SPIHT) algorithm, the most efficient method for lossy 

image compression.  In  order  to   overcome the effects  of  transmission 

noise,  we  implemented  a  Source-Channel  coding  scheme  exploiting 

Diversity,  a  technique  used  to  increase  the  reliability  of  the  wireless 

channels. Multiple description coding (MDC), the source coding scheme,  is 

used  to  encode  the  source  information  into  multiple  streams,  each 

independently  decodable.  So  far,  the  MDC  scheme  has  been  mainly 

examined  under  the  'on-off'  channel,  for  which  each  description  is 

presumed to be either correctly received or not received at all. In order to 

efficiently protect the streams against real channel conditions, affecting 

the received packets with noise, we combined MDC with a forward error 

correction  channel  coding  method,  the  low-density  parity  check  codes 

(LDPC).  The  multiple  streams  are  independently  channel  encoded  and 

jointly  decoded.  We  evaluated  the  proposed  scheme's  behavior  using 

various channels  (binary symmetric  and Gaussian)  and compared it  to 

other  MDC  coding  methods.  The  proposed  scheme  shows  promising 

results in combating the channel noise even in low bitrates.
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1  INTRODUCTION

Transmission  of  images  and  video  over  Internet  and  wireless 

communication channels requires robust and efficient source and channel 

coding algorithms. The current image coding standard JPEG2000 as well 

as  the Set Partitioning in Hierarchical  Trees (SPIHT) algorithm, provide 

progressive  image  compression,  where  the  original  image  can  be 

reconstructed  incrementally.  The  main  drawback  to  progressive 

organization of  the bitstream is  that  it  is  highly  prone to transmission 

noise.  This  makes channel  codes  necessary,  so as the source encoded 

bitstreams to be protected. Traditionally, the problems of source coding 

and channel coding have been addressed independently. However, when 

the  constraints  of  the  communication  channel  are  considered,  a  joint 

source/channel coding scheme (JSCC) is found to be the most promising 

choise for the transmission of images over noisy channels. 

In  [1.1],  Draper  et  al.  outline  the  characteristics  of  video 

transmission over wireless channels as a conjunction of issues concerning 

the qualities of both the video streaming and the wireless channels.  The 

sensitivity  to  errors  and  time  varying  characteristics,  along  with  the 

sensitivity  to  delay  and  packet  loss,  make  the  optimization  of  the 

transmission  a  difficult  task.  In  that  sense,  wireless  channels  have 

characteristics  that  must  be  taken  into  account  in  order  for  reliable 

transmission of the video streams to be achieved. One of those qualities 

being  diversity.  Diversity  is  based  on  the  fact  that  individual  channels 

experience different levels of fading and interference. So, various diversity 

methods are used to improve the reliability of communication as in the 

case  where  multiple  versions  of  the  same  signal  may  be  transmitted 

and/or received and combined at the receiver. Diversity can be archived in 

time, frequency, antenna and path. 

Frequency diversity,  antenna diversity,  and path diversity  provide 



significant  performance  benefits  with  limited  latency  penalties. 

Furthermore, time diversity and path diversity can be implemented at the 

application layer, which allows them to be more efficiently coupled with 

specialized source coding. Consequently, path diversity secures the most 

efficient  combination of diversity optimized source coding and low latency. 

Source-Channel coding [1.2], where source and channel coding are 

performed at the application  and the physical layer respectively, increase 

the quality of the received video, taking diversity into consideration. There 

are three types of source and channel  diversity schemes,  as shown in 

figure 1

Illustration 1: Single source - Multiple channel coding

Illustration 2: Multiple source - Single channel coding

Illustration 3: Multiple source - Single Channel - Joint Source Channel Decoding



In the first case, showing in figure 1, the source is encoded using a 

source encoder, and two codes are generated by the channel coder at the 

transmitter. After the transmission over the parallel channel, the channel 

decoder takes the two codes and produces a single source code that is 

sent to the source decoder. In the second case, presented in figure 2, two 

different  codes  are  produced  by  the  source  encoder,  and  each  one  is 

independently encoded by the channel encoder and then sent over the 

parallel channel. In the third case, the ones used in the proposed method , 

illustrated in figure 3, the source encoder again produces two codes from 

a single source and each code is independently encoded by the channel 

encoder. The difference lies in the fact that after transmission the received 

codes are jointly decoded at the source-channel decoder and the original 

source signal  is estimated. 

As pointed out in [1.2], the best source-channel coding architectures 

are  still  unknown,  and  this  is  why  this  issue  remains  a  highly  active 

research  area.  Yet,  the  authors  note  that  path  diversity  and  multiple 

description coding can be further improved by combining the two with 

some form of error correction coding.

The main objective of this thesis is to examine the transmission of 

multiple  description  video  streams  encoded  with  the  SPIHT  motivated 

algorithm over wireless erasure channels,  using error  correcting codes. 

Multiple description coding has been mainly examined using the “on-off” 

channel, a simple model for describing erasures channel, in which case 

each packet is either correctly received or not received at all. This model, 

though simple, does not reflect the real channel. In real wireless channels, 

we assume that the received packets are affected by transmission noise 

resulting is alternation of the received bitstreams and packets. In order to 

shield the multiple description coding for noise, we propose the addition of 

an  error  correcting  code.  Low  density  parity  check  codes,  have  been 

exonerated as one the most efficient method of error correction, showing 



performance near to Shannon's channel capacity theorem. Nevertheless, 

simple protecting each stream with low density parity check codes, would 

affect the needs for transmission bandwidth and would not be an efficient 

method for protecting the description, since the reason for having multiple 

description is in fact,  error protection. Following that observation, an a 

recent  paper  showing how to  apply  low-density  parity  check  codes  on 

correlated sources, we developed a source-channel decoding method for 

the  efficient  protection  of  multiple  description  coding  of  zerotrees  of 

wavelet coefficients. We tested the proposed scheme over various channel 

conditions such as binary symmetric and Gaussian channels and compared 

it  in  terms  of  reconstructed  image  quality  to  state-of-the-art  video 

transmission schemes. 

The  thesis  outline  is  the  following:  In  chapter  2  we present  the 

existing technology in image compression and transmission. In chapter 3, 

we  present  the  underlying  technologies  in  image  compression,  image 

transmission  and error  correcting codes.  In  chapter  4,  we present  the 

proposed image encoding framework, whereas in chapter 5, we present 

the  experimental  results  and  comparisons  with  other  image  coding 

schemes. We conclude the thesis and present the further work in chapter 

6.



2  EXISTING METHODS

In general,  practical  systems of image compression are based on 

first  applying  a  decorrelating  transform,  then  performing  scalar 

quantization  and  finally  performing  entropy  coding  of  the  quantized 

coefficients [2.1].

Image coding algorithms used for the source  decorrelation can be 

roughly divided into two categories; the ones based on Discrete Cosine 

Transform and the ones based on Discrete Wavelet Transform. JPEG is a 

well  known  standard  for  lossy  image  compression  based  on  Discrete 

Cosine Transform, whereas JPEG2000 and Set Partitioning in Hierarchical 

Trees  (SPIHT)  [2.2]  are  the  Discrete  Wavelet  Transform  based 

counterparts.

Discrete Cosine Transform (DCT) is a block-based transform, usually 

applied to 8x8 pixel blocks. The attribute that establishes DCT as the most 

successful transform is compactness. By compactness, we mean that most 

of the signal's energy is compacted to the lower frequency coefficients, 

while most of  the higher frequency coefficients are small  or zero after 

quantization, and small  or zero-valued coefficients tend to be clustered 

together. In practice, only a few coefficients are necessary for a coarse 

approximation  of  the  image,  making  it  suitable  for  low-bitrate 

communication. 

In  contrast  Discrete  Wavelet  Transform  (DWT)  is  applied  to  the 

entire image and not to separate blocks. DWT can be implemented by a 

cascade of low-pass and high-pass filters, a filter bank. At each stage the 

image is decomposed into  horizontal (H), vertical (V), diagonal (D), and 

baseband  (B)  subband  images,  each  being  one-fourth  the  size  of  the 

original  image.  Similar  to  the  DCT,  most  of  the  signal's  energy  is 

concentrated into the lower-frequency subbands and most of  the high-

frequency coefficients are set to zero. 



The DWT of a signal x is calculated by passing it through a series of 

filters. First the samples are passed through a low pass filter with impulse 

response g resulting in a convolution: 

 

The signal is also decomposed simultaneously using a high-pass filter  h. 

The outputs giving the detail coefficients (from the high-pass filter) and 

approximation coefficients (from the low-pass). It is important that the 

two filters are related to each other in a form known as quadrature mirror 

filter.  Then  the  outputs  of  the  filters  are  downsampled  by  2  following 

Nyquist sampling theorem.

 

 

This decomposition has halved the time resolution since only half of each 

filter output characterizes the signal. However, each output has half the 

frequency band of the input, so the frequency resolution is doubled. The 

structure of the filter analysis is shown in figure 4.   



The  most  significant  advantage  of  DWT  versus  DCT  in  terms  of 

image transmission is that DWT embedded coding allows for progressive 

reconstruction of the image using partial bitstream information. 

On the other hand, a significant disadvantage of DWT versus DCT is 

the  computational  complexity.  Traditional  DCT  encoding  of  images  is 

perform  on  8x8  bock  sizes,  minimizing  the  complexity  and  space 

requirements, whereas DWT is apply at once on the full image. Working 

through this problem, the authors in [2.5], developed a fast method for 

image  encoding  called  lifting  scheme. The  in-place  computation  of  of 

coefficients  had  a  major  impact  on  memory  and  processing  power 

required. The gain on the processing power in lifting scheme is go great 

that the JPEG2000 standard is only provided in terms of lifting coefficients. 

In the initialization phase of the algorithm a 'lazy' wavelet transform is 

applied  by  splitting  the  original  signal  into  odd  {dj
0}  and  even  {si

0} 

coefficients, as show in figure 5. 

Illustration 4: Block Diagram of analysis filter



The algorithm runs in two steps that are repeated, the prediction and the 

update. At the prediction step consist of applying linear operation on the 

odd samples and generating the prediction error vector {d1j}. In the case 

of  the  (5,3)  filter-bank  the  prediction  error  is  evaluating  using  the 

following equation: 

di1=di0-1/2(si0+si+10).

The resulting coefficients are the high-pass coefficients. In the update step 

the low-pass coefficient are evaluating in a similar manner. In the case of 

the (5,3) filter-bank, the coefficients are generating following equation

s1i=s0i+1/4(di-11+di1).

The update and prediction steps are iterated, with different weights at 

each iteration. 

Along with the development of efficient encoding algorithms, DWT 

has gain much attention. It has been applied in the JPEG2000  standard 

and  two  very  effecting  image  compression  algorithms,  the  Embedded 

Zerotree  of  Wavelets  (EZW)  [2.6],  and  Set  Partitioning  is  Hierarchical 

Trees (SPIHT) [2.7]. The last two algorithms have demonstrated increased 

Illustration 5: Block Diagram of analysis filter



compression efficiency, generation of fully embedded codes, progressive 

transmission, low complexity and fast encoding/decoding algorithms.

Moving  from   image  to  video  coding,  a  key  technology  is  the 

predictive  coding.  In  predictive  coding  coefficients  can  be  encoded 

according to already coded adjacent coefficients or event from previous 

frames, the so-called motion compensation, in which cases more than one 

frames need to be stored. Predictive coding is suitable for both lossy and 

lossless coding. 

The most successful video encoder based on DCT are the MPEG-1 

and the MPEG-2. In MPEG[2.3], each video sequence is divided into one or 

more groups of pictures (GOPs). There are four types of pictures: I-, P-, 

B-, and D-pictures. Each GOP is composed of one or more pictures, one of 

which must be an I-picture. I-pictures (Intra-coded pictures) are coded 

independently  with  no reference to  other  pictures and provide random 

access points in the compressed video data. I-pictures use only transform 

coding without  motion  compensated predictive coding,  so they provide 

only moderate compression.

P-pictures (Predictive-coded pictures) are coded using the forward motion-

compensated  prediction  from  the  preceding  I-  or  P-picture.  P-pictures 

provide  more  compression  than  the  I-pictures  and  they  also  serve  as 

references for B-pictures and future P-pictures. 

B-pictures  (Bi-directional-coded pictures)  allow macroblocks  to  be 

coded using bi-directional motion-compensated prediction from both the 

past  and future reference I-  or  P-pictures.  In  the B-pictures,  each bi-

directional motion compensated macroblock can have two motion vectors: 

a  forward  and  a  backward  motion  vector  which  references  to  a  best 

matching  block  in  the  previous  or  next  I-  or  P-picture.  The  motion 

compensated  prediction  can  be  formed  by  the  average  of  the  two 

referenced  motion  compensated  blocks.  B-pictures  provide  the  best 

compression compared to I- and P-pictures. 



D-pictures  (DC-pictures)  are  low-resolution  pictures  obtained  by 

decoding  only  the  DC  coefficient  of  the  Discrete  Cosine  Transform 

coefficients  of  each  macroblock.  D  pictures  are  rarely  used,  but  are 

defined to allow fast searches on sequential digital storage media.

The typical MPEG-1 input format has a 352x240 resolution for NTSC 

systems (30 frames/s)  and a  352x288 resolution  for  PAL systems (25 

frames/s).

Since the formulation of wavelet coded is a new idea developed by a 

Belgian mathematician Ingrid Daubechies in 1988 [2.3], the is  a small 

number  of  video  encoders  available.  One  such  coder  is  the  3D-

SPIHT[22.4], the video extension of SPIHT. The SPIHT algorithm, which 

has proved so successful in still image coding, is also shown to be quite 

effective  in  video  coding,  while  retaining  its  attributes  of  complete 

embeddedness  and  scalability  by  fidelity  and  resolution.  Three-

dimensional spatio-temporal orientation trees coupled with powerful SPIHT 

sorting and refinement renders 3D SPIHT video coder so efficient that it 

provides performance superior to that of MPEG-2 and comparable to that 

of H.263 with minimal system complexity. Extension to color-embedded 

video coding is  accomplished without explicit  bit-allocation,  and can be 

used for any color plane representation. In addition to being rate scalable, 

the proposed video coder allows multiresolution scalability in encoding and 

decoding in both time and space from one bit-stream. 

These attributes of scalability, lacking in MPEG-2 and H.263, along 

with many desirable features, such as full embedded-ness for progressive 

transmission, precise rate control for constant bit-rate (CBR) traffic, and 

low-complexity for possible software-only video applications,  makes the 

proposed  video  coder  an  attractive  candidate  for  for  multi-media 

applications. Moreover,  the codec is fast and efficient from low to high 

rates, obviating the need for a different standard for each rate range. 

Besides image and video encoding a lot of work has been done on the 



application layer of the OSI model. The most notable is  the Real-Time 

Transport  Protocol  (RTP)  [2.8]  developed by the Audio-Video Transport 

Working Group of the IETF and first published in 1996 as RFC 1889 which 

was made obsolete in 2003.  RTP provides end-to-end network transport 

functions  suitable  for  applications  transmitting  real-time  data,  such  as 

audio,  video  or  simulation  data,  over  multicast  or  unicast  network 

services.  RTP  does  not  address  resource  reservation  and  does  not 

guarantee quality-of- service for real-time services. The data transport is 

augmented by a control protocol (RTCP) to allow monitoring of the data 

delivery in a manner scalable to large multicast networks, and to provide 

minimal control and identification functionality. The functionality offered 

by  RTP  includes  resequencing  if  needed,  loss  detection  for  quality 

estimation  and   recovery,  intra-media  synchronization  which  includes 

removing  delay  jitter  through  playout  buffer,  drifting  sampling  clocks, 

inter-media synchronization such as lip  sync between audio and video, 

quality-of-service feedback and rate adaptation and source identification.

http://en.wikipedia.org/wiki/IETF
http://tools.ietf.org/html/rfc1889
http://tools.ietf.org/html/rfc1889
http://tools.ietf.org/html/rfc1889
http://en.wikipedia.org/wiki/IETF
http://en.wikipedia.org/wiki/IETF


3  UNDERLYING TECHNOLOGIES

Wavelet-based image compression 

In terms of image compression the current state-of-the-art image 

coders  are  based  on  the  wavelet  transform.  Wavelet  decompositions 

naturally  represent image data in  a hierarchical  manner.  Consequently, 

wavelet decompositions are suitable for progressive image compression. 

The  resulting  wavelet  coefficients  are  grouped  into  approximation  and 

detail coefficient subbands. Approximation coefficient subbands, calculated 

at  each  level  of  the  filter  bank  structure,  provide  a  low  resolution 

approximation of the original image being represented. As the number of 

levels increases,  this  sub-band becomes increasingly coarse.  The detail 

coefficient  subbands  provide  details  corresponding  to  the  difference  in 

information contents between the adjacent approximations levels. As the 

number  of  levels  increases,  these  details  become  increasingly  coarse. 

Each  detail  subband  contains  wavelet  coefficients  that  represent  high-

frequency  components  prominent  in  horizontal,  vertical  and  diagonal 

spatial  orientations.  This  means  that  lower-frequency,  less-detailed 

information is contained in the first transform level, while more-detailed, 

higher-frequency information is contained in further transform levels. As 

an example, the wavelet transform of the standard 'Lenna' image is shown 

in Figure 3. For simplicity,  only two levels of  the transform are shown 

here. The first transform level results in subbands LH1, HH1, HL1, and 

LL1. Only sub-band LL1 is passed on for further wavelet decomposition, 

generating the next transform level and creating subbands LH2, HH2, HL2, 

and LL2. 



Two well  known algorithms that  utilize  the  wavelet  decomposition  into 

subbands are the Embedded Zerotrees of Wavelet (EZW), developed by 

Shapiro et al. [3.1] and The set partitioning in hierarchical trees (SPIHT), 

developed by Said et al. [3.2].

The basic SPIHT algorithm, as it has been presented by Said and 

Pearlman makes intensive use of dynamic data structures to exploit the 

self similarities. The parent-child relations of the wavelet coefficients are 

shown  in  Figure  7.  In  order  to  exploit  the  self-similarities  during  the 

coding  process,  oriented  trees  of  four  offspring  are  used  for  the 

representation of a wavelet transformed image. Each node of the trees 

represents a coefficient of the transformed image. The levels of the trees 

consist  of  coefficients  at  the  same scale.  The  trees  are  rooted  at  the 

highest scale of  the representation. The SPIHT algorithm assumes that 

each  coefficient  aij is  a  good  predictor  of  the  coefficients  which  are 

represented  by  the  subtree  rooted  by  aij.  The  overall  procedure  is 

controlled by an attribute, which gives information on the significance of 

the coefficients. More formally, a coefficient is insignificant with respect to 

a threshold  t  if  its magnitude is smaller than 2t.  Otherwise it is called 

significant with respect to the threshold t. 

Illustration 6: Wavelet subband decomposition of Lenna



In the SPIHT algorithms, the coefficients of a wavelet transformed 

image are classified into three sets, namely the list of insignificant pixels 

(LIP),  which  contains  the  coordinates  of  those  coefficients  that  are 

insignificant with respect to the current threshold t  , the list of significant 

pixels (LSP), which contains the coordinates of those coefficients which 

are significant with respect to  t, and the list of insignificant sets (LIS), 

which  contains  the  coordinates  of  the  roots  of  insignificant  subtrees. 

During  the  compression  procedure,  the  sets  of  coefficients  in  LIS  are 

refined and if coefficients become significant they are moved from LIP to 

LSP. The bitstream can thus be progressively organized. The final step of 

SPIHT is entropy encoding of the resulting bitstream. We did not perform 

entropy encoding because the generated bitsreams are pass through a 

vector quantizer and forward error correction.

Illustration 7: Zerotrees formulation order



3.2.  Multiple Description Coding

An  application  layer  source  coding  scheme  that  offers  robust 

behavior in the presence of transmission errors  is Multiple Description 

Coding (MDC) [3.3].  The basic idea of multiple description coding is to 

encode  the  information  source  into  M  descriptions,  which  are  sent 

separately over  M  different channels. Each channel is assumed to have 

independent probability of failure, therefore any subset of the descriptions 

may get lost. The decoder will  make the best possible decoding of the 

arrived descriptions. 

In the classic formulation of the MDC, the goal is to create two (or 

more) descriptions of input signal under the following three conditions:

 

Condition 1: D0 < Dcentral,min

Condition 2: R1 = R2 > Rmin

Condition 3: D1 = D2 < Dside,min

where Dcentral,min is the minimum acceptable distortion at the receiver when 

both descriptions are received,D1 and D2 are the distortions when only the 

one description  is  received,  R1 and R2 are the  achievable  transmission 

rates of each channel and Dside,min are the minimum acceptable distortions 

when only one channel is working.

In the balanced case, where all descriptions are equally important, 

every description should contain enough information of the source so that 

reasonable  decoding  quality  can  be  expected  with  only  one  single 

description. When more descriptions are available, each description should 

be able to provide additional information so that the decoding quality can 

be improved. 

The intuition for designing a multiple description coder is to make 

each  description  individually  good,  and  different  from  the  others. 



Individually,  optimal  descriptions have rates close to the classical  rate-

distortion bound,  which is  the minimum amount of  mutual  information 

needed to describe the source for certain distortion. In practice, all the 

optimal descriptions have much similar information, which suggests that 

the combination of the descriptions does not provide much quality gain. To 

improve this, each of the descriptions must contain different information 

of the source, which means that individual descriptions can't be optimal. 

This is the dilemma in the design of multiple description coding.

A  terminology  often  seen  in  the  multiple  description  coding 

community  is  index  assignment. In  the  quantizer  based  multiple 

description coding, the source is first quantized with a conventional near-

optimal  quantizer,  and each quantization  cell  is  assigned to  M  indices, 

where each index is transmitted over one channel. Each index should be 

able  to  decode  to  a  reconstruction  point  close  to  the  cell,  and  the 

combination of  indices  should exactly  identify  the cell.  This  problem is 

referred to as the multiple description index assignment problem.  The 

same theory is extended to lattice quantization. 

The MDC philosophy has been implemented in a number of ways 

such as scalar based quantization [3.4], forward error correction [3.5], 

pairwise correlating transform [3.6], frame based encoding [3.7], domain 

based [3.8] and lattice vector quantization [3.9].

MDC  coding  for  image  transmission  has  been  implemented  in  a 

number of ways. In [3.4], Vaishampayan et al. showed  a systematic way 

to  construct  a  resolution  constrained  (fixed  rate)  multiple  description 

scalar  quantizer  (MDSQ)  with  two  descriptions.  The  encoder  can  be 

decomposed into two steps, a conventional scalar quantizer plus an index 

assignment function. An example of a multiple description scalar quantizer 

is presented in figure 8



 

The conventional quantizer partitions the real line into quantization cells, 

and the index assignment  function produces a pair  of  indices for each 

quantization cell. The index assignment function must be invertible such 

that the central decoder can correctly produce the original index for each 

pair of given indices. 

The  optimization  of  the  index  assignment  function  is  difficult  to 

solve, and Vaishampayan developed several heuristic solutions that were 

shown to be close to optimal. The design of the index assignment function 

in MDSQ can be visualized in an index assignment matrix, where each 

item in the matrix maps to a pair of indices. Given all possible pairs of 

indices,  the goal in MDSQ design is to find a scanning sequence of the 

index  assignment  matrix  that  gives  a  selection  of  index  pairs  that 

minimizes the spread of each side quantization cell. The matrix is filled 

only on the main diagonal, from upper-left to lower-right.  Figure X show 

an example of the index assignment.

Illustration 8: Multiple Desciprion Scalar Quantization
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The outputs from the MDSQ encoder can be further encoded using a 

variable length code to achieve improvement performance.  The extension 

is  very similar  to the extension done in the entropy constrained Lloyd 

algorithm.  Using  the  fixed  index  assignment  function  from MDSQ,  the 

necessary conditions for optimal ECMDSQ quantizer are formulated as a 

Lagrange  functional  that  minimize  the  central  distortion  subject  to 

constraints  on  side  distortions  and  entropies  of  the  descriptions.  An 

iterative  training  algorithm  is  used  to  find  a  locally  optimal  entropy 

constrained quantizer.

 In [3.5],  Yao Wang et al. proposed the use of pairwise correlating 

transform in order to generate multiple descriptions. Their idea is on the 

other  side  of  traditional  signal  transform coding,  where  the  goal  is  to 

produce uncorrelated coefficients, since the statistical dependency of the 

correlation cannot be exploited. In the case of MDC coding, the statistical 

dependency  between  coefficients  from  different  descriptions  could  be 

utilized in order to estimate coefficients that are lost during transmission. 

As an example, consider two quantized random variables X1 and X2; the 

resulting transformed coefficients as evaluate as Y1=2(-1/2)(X1+X2) and 



Y2=2(-1/2)(X1-X2), with a correlation (σ12+σ22)-(σ12-σ22). 

In  [3.6], Goyal,  V.K et al.  Used overcomplete expansions of the 

original signal to generate multiple descriptions. This multiple description 

generating framework is based on describing a N-dimensional vector with 

a  M-dimensional  vector,  where  M>N  by  multiplying  the  N-dimensional 

vector with an orthogonal basis of a higher order M-dimensional space. A 

classic example, given by the authors, is a 3x2 orthogonal basis

∣y1

y2

y3
∣=∣ 1 0

−1 /2 −3/2
−1 /2 3/2 ∣∣x1

x2∣
In order for the transform to be revisable, the orthogonal basis should be 

a frame. A set of vector Φ={φi}, is called a frame if

0A∥x∥2∑∥〈φi , x 〉∥2B∥x∥2∞

for all x≠0. A and B are called frame bounds and they represent a metric 

of the redundancy of the frame. 

The redundancy of the frame expansion has a direct impact on the 

resiliency to channel errors. Later, Channappayya et al. [3.10] examined 

the  application  of  frame expansions  to  multiple  description  of  wavelet 

coefficients.  In their work, the zerotrees, that were generated after the 

2D  discrete  wavelet  transform,  were  rearranged  as  Nx1  vectors  and 

multiplied by a MxN frame operator, resulting in a Mx1 vector, where M/N 

is the redundancy introduced with the frame expansion. 

In [3.8], Bajic et al. proposed a domain-based multiple description 

coding  for  images  and  video.  The  key  idea,  is  the  partitioning  of  the 

transform domain into sets that are maximally separated. In the case of 

image, the disjoint sets are created by partitioning the 2D lattice. This 

idea has been extended to multiple description lattice vector quantization 

In multiple description lattice vector quantization, the source signal 

is quantized using different vector quantizers for each channel. As a result 

we  have  a  coarse  representation  of  the  original  signal  when  a  single 



channel is working and finer representations when more channels work. 

Moving from the one-dimensional  scalar  quantizer  to  multi-dimensional 

space  of  vector  quantizers  closed  the  gap  between  the  two  channel 

distortion and the rate-distortion bound. More specifically for an  infinite 

size quantizer, the normalized second moment of inertial, a measure of 

the space filling ability of shape, is 2πe-1, while for the scalar quantizer is 

1/12.  The difference in space filling ability  has a  direct  impact  on the 

quantization error.

This method is known as lattice vector quantization. Servetto et al. 

in  [3.9]  first  suggested the use of  MDC wavelet  based Image Coding. 

Recently, H. Bai et al. [3.10] applied this scheme to zerotrees produced 

through  the  dyadic  decomposition  of  the  source  image,  using  wavelet 

transform, aiming at high compression of the video, with minimum visual 

distortion. 



3.3.  Error Correcting Codes

Multiple  Description Coding has been mainly examined under  the 

Gilbert  (“on-off”)  channel  model,  where  each  description's  packets  are 

either correctly received or not  received at all.  Yet,  this  model fails  to 

represent the real  channel condition.  Recently,  there has been work in 

studying the behaviour of MDC under noisy channel model, where noise 

affects the transmitted packets.  

The  most  efficient  error  correcting  algorithms  nowadays  are  the 

Turbo and  ow Density Parity Check codes. Turbo codes where developed 

by  Berrou,  Glavieux,  and  Thitimajshima  [3.11]  and  are  generally 

concatenated  codes  that  involve  concatenation  codes  via  a  random 

interleaver and an iterative maximum-a-posteriori decoder. The design is 

based on the an the use of a pseudo-random interleaver which makes the 

code appear random and an iterative decoding algorithm between the two 

concatenated codes in order to approach the channel capacity.

There is also work on the use of error correcting codes combined 

with multiple description,  such as in [3.12], where concatenated codes 

(RCPC and CRC) were used and in [3.13], where the multiple descriptions 

are turbo coded and transmitted over multiple antennas.  In [3.14], the 

authors  proposed  an  image  transmission  scheme  for  wireless 

communications using Turbo and Reed-Solomon (RS) codes for unequal 

error  protection.  The  scheme  is  based  on  the  SPIHT  for  source 

compression  and  an  unequal  error  protection  algorithm is  used of  the 

formulation of constant size channel blocks allowing efficient decoding. In 

[3.15], the authors proposed an extension to the previous algorithm by 

using a Lagrangian optimization for the combination of the packet size, 

the  interleaver  and  the  channel  coding  rate,  in  order  to  improve  the 

performance  of  the  source  coding  scheme.  In  [3.16],  irregular  repeat 

accumulate (IRA), a subcategory of LDPC codes were employed to combat 



erasures  in  scalable  transmission  of  JPEG2000  bitstreams  over  binary 

symmetric channels. 

Low density parity check codes (LDPC) were developed by Gallager 

in  1962  [3.11]  but  were  not  given  much  attention  due  to  the 

overwhelming complexity compared to the existing hardware. They were 

rediscovered by MacKay and Neal  [3.17,3.18]. Today they represent the 

most efficient method for forward error correction since they approach the 

maximum channel  capacity  set  by the Shannon Limit.  LDPC codes are 

used for error protection of video sources in the new standard for satellite 

communications,  the  DVB-S2 [3.19]  and  are  approved  for  deep-space 

communication by Nasa [3.20].

LDPC codes are linear block codes obtained from sparse bipartite 

graphs (called Tanner graphs). Suppose that G is a graph with n left nodes 

(called message or bit nodes) and r right nodes (called check nodes).  The 

graph gives rise to a linear code of block length n and dimension at least 

n-r  in  the  following  way:  The  n  coordinates  of  the  codewords  are 

associated with the  n  message nodes. The codewords are those vectors 

(c1, …,  cn) such that for all  check nodes the sum of the neighbouring 

positions among the message nodes is zero. In this work the codes are 

represented by  binary  streams.  Figure  9  illustrates  an example  of  the 

Tanner graph. 



The graph representation is analogous to a matrix representation by 

looking at the adjacency matrix of the graph: let H be a binary r × n 

matrix in which the entry (i; j) is 1 if and only if the ith check node is 

connected to the jth message node in the graph. Then the LDPC code 

defined by the graph is the set of vectors c = (c1, …, cn) such that H · cT 

= 0. The matrix H is called a parity check matrix for the code. Conversely, 

any binary r ×n matrix gives rise to a bipartite graph between n message 

and r check nodes, and the code defined as the null space of H is precisely 

the  code  associated  to  this  graph.  Therefore,  any  linear  code  has  a 

representation as a code associated to a bipartite graph (note that this 

graph is  not uniquely defined by the code).  However,  not every binary 

linear code has a representation by a sparse bipartite graph. If it does, 

then  the  code  is  called  a  low-density  parity-check  (LDPC)  code.  The 

Illustration 9: Bitparite graph (Tanner 
graph)



sparsity of the graph structure is the key property that allows for efficient 

decoding of LDPC codes using iterative decoding algorithm. 

A Tanner graph of LDPC codes is called regular if  every message 

node is connected to equal number of check nodes and every check node 

is  connected to equal  number of message nodes.  Otherwise, the LDPC 

codes are called irregular.  

Similar to turbo codes, LDPC codes with iterative decoding provide 

very good performance over a variety of  channels with reasonably low 

complexity.  In  particular,  irregular  LDPC  codes  [3.21]  are  known  to 

outperform regular codes and turbo codes and to approach the capacity of 

several  channels  at  large  block  lengths.  Moreover,  compared  to  turbo 

Codes, LDPC codes exhibit several other advantages [3.22]: i) Iterative 

decoding algorithms for LDPC codes are parallelizable and can be realized 

at much faster speed than turbo decoders, and ii) almost all the errors are 

detectable. The only drawback of LDPC codes is its encoding complexity. 

The encoding complexity of LDPC codes is in general quadratic in n. 

LDPC codes are linear codes that use a sparse parity matrix and a 

belief propagation algorithm in order to detect transmission errors. In our 

case LDPC codes are used for protection of the descriptions generate by a 

multiple  description  lattice  vector  quantizer  when  transmitting  over 

multiple binary symmetric channels, a subcategory of a multi-input multi-

output (MIMO) channel. The use of LDPC in MIMO channel was examined 

in [3.23].

In [3.24], the authors proposed a multiple description  LDPC coding 

scheme  in  order  to  combat  the  problem  of  predictive  mismatch.  The 

systems utilizes the MD scalar quantizer to produce LDPC codes that are 

used  as  side  information  in  a  Wyner-Zin  decoder  of  an   H.263  video 

encoder

LDPC has been used as part of a joint source channel coding scheme 

for  the  protection  of  JPEG2000  streams  over  uncorrelated  flat  fading 



channels, where sum-product LDPC codes are used for error correction in 

[3.25]. In the proposed algorithm, the LDPC feds  back  log-likelihood 

ratio (LLR)  to increase the reliability of the source decoding. Finally, in 

[3.26],  the  authors  proposed  iterative  decoding  of  differentially  space-

time coded multiple descriptions of images.

Both  turbo  and  LDPC  codes  exhibit  near  channel  capacity 

performance and have efficient and computational reasonable constructing 

algorithms. However, the design of LDPC codes is more flexible that Turbo, 

allowing for faster, easier and more precise design. The drawback is that 

generally turbo codes preform better in smaller block size.



4  PROPOSED METHODOLOGY

Motivation

Wireless channels are prone to errors. An image/video transmission 

coding algorithm must be able to handle those errors and display a robust 

behavior.  The  multiple  description  framework  represents  a  reliable 

mechanism  for  combating  the  transmission  errors.  It  does  so  by 

generating  multiple  descriptions  of  the  same  source  information  and 

transmitting  them  over  distinct  channels.  In  terms  of  wireless 

communication, multiple description takes advantage of the source coding 

diversity. Multiple description coding has been mainly examined under the 

“on-off”  channel  model,  where  a  transmitted  packet  will  arrive  either 

intact or not at all. This model does not represent the reality of wireless 

transmission.  What actually happens is that all packets are received, but 

they are affected by noise. In this scenario, we cannot distinguish which 

packet  is  correct  and which  is  not.  Following that  observation,  we are 

forced  to  add  some  kind  of  error  control.  Recently  rediscovered  low 

density parity check codes are channel codes that approach the theoretical 

limit in point-to-point communication. In the proposed method, different 

descriptions  generated  by  a  multiple  description  encoder,  are  further 

protected with low-density parity check codes. 

Furthermore,  in  recent  literature,  it  has  been  proposed  that 

combining diversity in source and channel coding could offer even greater 

quality in the presence of transmission errors. Under that assumption, we 

optimized the proposed scheme by jointly decoding the low-density parity 

check codes of each description. In the work of Daneshgaran et al [4.1], 

the authors concluded that the empirical  cross-correlation between two 

sequences is robust to channel errors. The empirical cross-correlation is 



simply  the  XOR  addition  of  the  binary  streams  representing  the  two 

sources.  Applying  the  iterative  decoding  of  correlated  source  to 

descriptions  generated  by  MDC  is  straightforward.  In  addition  to  the 

decoding of the LDPC codes of the  correlated, an extra step has been 

added at  the  end,  where the resulting indexes of  the descriptions  are 

cross-checked in order to  establish a valid index pair. 

The proposed scheme is presented in figure 10

There are two main parts, the encoder and the decoder. The encoder 

is  realized with five components,  the wavelet transform (2D-DWT), the 

zerotree formulation,  the lattice vector  quantization (LVQ), the labeling 

function and the low-density parity check encoding (LDPC). On the other 

side of  the transmission is  the decoder.  The decoder  consists  of  three 

components,  the  low-density  parity  check  decoder  (LDPC),  the  log-

likelihood  estimation  (LLRex(u1),LLRex(u2)  and  LLRz)  and  the  lattice 

vector decoder (LVQ). Each component will  be further described in the 

following sections.

Illustration 10: Block diagram of the proposed scheme



4.1  Lattice Vector Quantization

A lattice is define as a regular arrangement of point in  a  Euclidean 

space.  Let  a1...an be  a  set  of  linearly  independent  vectors  of  m-

dimensional Euclidean space Rm, with m>n. The set of all vectors

Λ={ x : x = u1a1 +...+ unan }, with u1..un integers is called a n-dimensional 

lattice. A lattice can also be constructed using the generating matrix G: 

Λ={ x : x = uG }. Figure 11, show two lattices the Z2 and the A2, the dots 

represent the lattice points and the edge the corresponding Voronoi cells.

 A geometrically similar sublattice Λ' can be generated from a lattice 

Λ by multiplying the lattice with an orthogonal matrix : Λ'=cΛU, where c is 

a  constant  scalar  and  U  is  an  orthogonal  matrix.  This  implys  that  a 

geometrically similar sublattice can be generated by scaling and rotating 

the original lattice. 

The  multiple  Description  lattice  vector  quantizer  (MDLVQ) can be 

defined as a triplet Q( Λ, Λ' , ℓ ), where Λ is a lattice, Λ' is a geometrically 

similar lattice to Λ and ℓ is the indexing function. Using ℓ, each point λ ε Λ 

gets mapped to a pair (λ'red,  λ'green) that uniquely identify λ. ℓ is referred 

Illustration 11: Examples of A2 and Z2 lattices



as the vector index assignment and Ν=[Λ/Λ'] is defined as the reuse index 

and serves as an indicator of the redundancy of the quantizer. A larger N 

results in smaller central distortion. 

The  algorithm  used  for  the  construction  of  the  lattice  vector 

quantizer, named SVS after the authors of the original paper, is described 

in [4.2] and is briefly presented here. At the encoder of a MDLVQ system 

the source vector  x is quantized to the closest vector λ in the lattice Λ, 

which is denoted λ=Q(x). The labeling function  ℓ maps the vector λ to a 

pair (λ'red,  λ'green) so that  l(λ)=(λ'red,  λ'green). At the decoder   the reverse 

function l' is used to reconstruct the original point λ. 

Figure 13, presents an example with reuse index N=7

Lattice point Label

a (O,A)

b (O,B)

c (O,C)

d (O,D)

e (O,E)

f (O,F)

Illustration 12: Example of lattice to Sublattice  
geometry



For the general case of Gaussian source with a total rate Rmd/2 per channel 

the rate distortion function for the MDC scheme is defined [4.3] by

Rmd  D0 , D1=
1
L

log 1
D0

 1
L

log
1−D0

2

1−D0
2−1−2D1D0

2 (1).

and the average per- channel distortion is given by

d 0=∑
λ∈Λ

∫
vλ 

∥x−λ∥2 PL x dx (2).

Assuming that each Voronoi region is small, the distortion, in terms of the 

normalized second moment G(Λ), is defined as 

d 0≈G Λv2 /L  

and the two channel distortion is given by

d s≡ d 1 d 2/2

Illustration 13: Example of N=7 multiple  
desciprion lattice quantization



4.2 Wavelet transform and Zerotrees formulation

The  image  is  decomposed  into  subbands  using  a  2D DWT.  After 

transforming  the  image  into  wavelet  coefficients,  we  employ  the 

hierarchical set partitioning algorithm for the formulation of the zerotrees. 

The choice of zerotrees is based on the robustness to transmission errors 

in a two-fold way. First, the distribution of the wavelet coefficients should 

be made in such a way that the loss of a packet in the LL subband will not 

result  in  a  catastrophic  error  and  second,   grouping  the  coefficients 

appropriately can exploit intra-vector redundancy well.

Using  an  embedded  zerotree  formulation  algorithm  we  create 

zerotrees  for  every  coefficient  in  the  low-low  (LL)  subband.  Each  LL 

coefficient has tree children in the high-low (HL), low-high (LH) and high-

high (HH) subbands. 

4.3 Lattice Vector Quantization of coefficients.

Pairs of zerotree coefficients are grouped into vector that are fed into the 

Lattice Vector Quantization module.  The LVQ is based on the A2 lattice, 

which is equivalent or similar to the hexagonal lattice. In order to create 

the lattice, we use the generation matrix G as in [4.3], 

By  taking  pairs  of  zerotree  coefficients  from each  M x  1  vector  as  2 

dimensional  vectors,  each  pair  produces  a  quantized  field  λ.  At  the 

encoder of  an MDLVQ system, the source vector  x is  quantized to the 

nearest  vector  λ  in  a  lattice  Λ.  The  quantizer  mapping  is  denoted  by 



λ Q(x). The labeling function ℓ is used to map the sublattice Λ’, that is═  

geometrically similar to Λ, so that each lattice point λ in Λ gets mapped by 

ℓ to a pair of sublattice points (λ’red, λ’green) that uniquely identifie λ. 

The mapping is done in a way such that

Λ  ℓ(Λ) С Λ΄ x Λ΄→

The index of sublattice point λ’red is transmitted over one channel and 

index of λ’green is transmitted over the other. The amount of redundancy 

that is inserted by the lattice vector quantization is controlled by a the 

reuse  index N

4.4 Selection of Scaling and Sublattice Index

In [4.4], Goyal et al. assert that  generally it is the low indexes that are 

important.  This  assumption  is  verified  by  their  experimental  results, 

showing that for reuse index N=13 the central and side distortions differ 

by  16.8  db.  When  the  channel  statistics  are  known the  average  total 

distortion can be expressed as: 

D=poDo +p1(D1+D2) (3).

where  po=(1-p)/(1+p)  is the probability of receiving both description and 

p1=(p)/(1+p) is the probability of receiving only one description

A key point in the optimization process is the increase in the encoder's 

complexity  In  the  A2  lattice,  the  search  is  performed  between  13 

possibilities in a simple way, where further improvement can be expected 

by using the symmetries of the system. 

When p=0,  the  encoder  is  the  same as  the encoder  in  [4.3]  and the 

partitioning  is  done  into  the  lattice  Voronoi  cells.  As  p  increases  the 

sublattice points get bigger Voronoi cells until p=1, when the encoder uses 

the  sublattice  points  for  the  quantization.  This  optimization  procedure 



improves the convex hull of operating points of the vector quantizer. In 

turn, knowledge of  the channel characteristics can improve the reliability 

of the transmission mechanism in the presence of errors. 

4.5 LDPC encoding

The use of LDPC codes over correlated source is mainly based on the 

work of Deneshgaran et al .[4.1]. In their work they define the empirical 

cross-correlation as follows:

Let X and Y be two binary correlated vectors of length L. Z is defined as 

the XOR addition of the two vector Z=X (+) Y. Let the number of non-zero 

elements of Z be a. The empirical cross-correlation is defined as p=a/L. 

Deneshgaran et al established in that work that  p is  a robust indicator of 

the correlation when transmitting over a binary symmetric channel, even 

in the case of crossover probability as high as 0.2. 

Each description generated by the MD Lattice Vector Quantizer is 

independently encoded by a LDPC encoder and transmitted over a  binary 

channel subject to additive white Gaussian noise. LDPC are linear codes 

with a space parity check matrix of the form H(N-K)xN  ,where N is the size of 

the codeword and K is the information bit stream size. The design of the 

space parity matrix is a key component of the design. In our case, we 

have used the parity matrices proposed in the DVB-S2 standard [4.5]. The 

parity check matrices of the DVB-S2 standard are irregular and structured 

in order to reduce the storage requirements, so that a sub-matrix has a 

lower triangular form, thus avoiding the need for the construction of their 

generator matrices. Following the standard, the parity check matrix has 

the form H(N-K)xN  = [A(N-K)xK B(N-K)x(N-K)] where B is a staircase lower triangular 

matrix. Imposing this structure to the parity check matrix has a minor 

effect in performance (within 0.1 db).Each generated codeword has the 

form u=[c,pu], where u is the systematic part and pu is the parity part.



4.6 Joint source channel decoding. (LDPC decoding)

Assume that a pair of lattice indexes l 1 and l 2  are generated by 

the MD lattice vector quantizer. Each index is transmitted through a noisy 

binary channel. In the uncoded case, where each index is binary encoded 

without any variable coding, the channel erasures will cause a number of 

bits to change. The joint LDPC decoding of the indexes will minimize the 

number of altered bits by co-evaluating the value of each bit. In order to 

further  increase  the  robustness  of  the  proposed  method  an  index 

validation method is added after the joint LDPC decoding. 

At the receiver the bit streams are jointly decoded in an iterative 

fashion  through global  and local  iterations.  At  each global  iteration an 

estimation of the source correlation is obtained and passed to the  sum-

product  decoder,  which  performs  local  iterations.  The  joint  decoding 

scheme is presented in figure X.  The LDPC decoder is based on the belief-

propagation algorithm and works on soft information quantized on 3 bits. 

Assume that x is the transmitted binary phase shift keying (BPSK) 

symbol and y is the noisy received signal so that 

y=x+n,  where  n  is  a  Gaussian  random  variable  with  zero  mean 

representing the noise. If x=+1 when transmitting bit 0 and x=-1 when 

transmitting bit 1, the a priori log likelihood ratio (LLR) for the transmitted 

bit is 

LLR x =log  p x=1 | y
 p x=−1 | y (4).

The sign of the LLR determines the symbol and the magnitude offers an 

indication for the reliability of the decision. 

At the decoder the two received sequences r1 and r2 are used to 

estimate the a posteriori probabilities of the symbols for the initialization 

phase of the LDPC decoders  as expressed in equation 5.



LLR  r j ,i=log
P x j ,i=1 |r j , i
P x j , i=0 |r j ,i

= 2
σ n

2 r j , i ∀ i=1...n and j=1,2 (5).

Each  LDPC decoder  performs  local  iteration  with  a  terminating  criteria 

based on a maximum number of iterations (50). The outputs of the LDPC 

decoders  are  hard information  of  the  estimated  transmitted  sequences 

and soft information of the LLRs. The hard estimates are used to estimate 

the source correlation following eq 6.

LLRz=log k−wH  z /wH  z (6).

Where k is the data block size and wH represent the hamming weight of 

sequences z, where Z=XOR  u1, u2 .

At each global iteration, the estimated sequences u1 and u2 and the 

estimation of  the source correlation are used to  evaluate the extrinsic 

information as show in eq. 7.

LLRex  u1,j=sign LLRz z⋅signLLRu2,j⋅min ∣LLRz∣ z  ,∣LLR∣u2,j
LLRex  u2,j=signLLRz  z ⋅signLLRu1,j⋅min∣LLRz∣ z  ,∣LLR∣u1,j

(7).

Let  l 1  and  l 2 be  the  reconstructed  index  pair  and  LLR l 1 and 

LLR l 2 be the corresponding log-likelihood ratio of each bit of the index 

pair. If the index pair is not a valid index assignment, we locate the bit 

with the smallest log-likelihood ratio 

LLRmin l j ,i=arg minLLR l 1, i , LLRl 2,i

and change its value according to its corresponding value coming from the 

reciprocal index,

 LLRmin l j ,i=LLR l k ,i

 where, for the case of two descriptions if j=1, k=2 and vice versa. If a 

valid  index pair  is  found the process is  stopped and the reconstructed 

index pair is sent to the MD lattice vector decoder. Else, the next bit is 

flipped following the same process. 

The  resulting  indexes  are  sent  to  the  multiple  description  lattice 



quantization decoder,  who estimates the original  index and the original 

image is reconstructed. 



5   SIMULATION RESULTS

In the following, we provide experimental results for the behavior of 

the proposed algorithms under various channel conditions. The proposed 

scheme was experimentally evaluated for the transmission of a 512 x 512 

grayscale 'Lena' image. The channel was modeled as a flat fading channel 

with average SNR=10db, whereas a BPSK modulation scheme was utilized 

for the transmission. The LDPC codes were the same as the ones used in 

DVB-S2 with a total block size of 61800 bits.

In figures 14 and 12, we examined the robustness of the coding 

scheme in term of the reconstructed image quality with and without the 

joint decoding for various channel SNRs. The source is encoded at 0.2 bpp 

and 0.5 bpp for each description and the LDPC codes at 4/5 resulting in 

transmission rates 0.25 and 0.625. 



Illustration 14: PSNR vs SNR at 0.25 bpp

Illustration 15: PNSR vs SNR  at 0.625 bpp



The next Table presents the received image PSNR for various channel BER 

under the binary symmetric channel model and the corresponding results 

from [5.1] and [5.2]

Separate decoding of LDPC codes

Channel BER

Rate 0,08 0,03

0,6666 (0,5+2/3) 28,96 32,96

0,994 (0,5+1/2) 36,45 36,45

0,3 (0,2+1/2) 32,43 32,43

0,2666 (0,2+2/3) 32,43 32,43

0,2 (0,1+1/2) 29,28

0,13 (0,1+2/3) 29,28

0,45 (0,3+1/2) 34.16 34.16

0,4 (0,3+2/3) 34.16 34.16

Joint decoding of LDPC codes

Channel BER

Rate 0,08 0,03

0,6666 (0,5+2/3) 36,38

0,994 (0,5+1/2) 36,45

0,3 (0,2+1/2) 32,43 32,43

0,2666 (0,2+2/3) 32,43 32,43

0,2 (0,1+1/2) 29,28

0,13 (0,1+2/3) 29,28

0,45 (0,3+1/2) 34,10 34.10

0,4 (0,3+2/3) 34,17 34.17



Comparison with [5.2]

0,24bpp 1bpp

Ref 28,84 36,32

Separate Dec. 29,28 36.4952

Joint Dec. 29,29 (0,1+4/5) 36.6020 (0,5 + 4/5)

The following table compares the results of the proposed scheme versus 

the results of [6.4]. The channel considered was a flat fading channel with 

an average SNR 10db. In both cases of 0,24 and 1bpp, the decoded image 

quality of the suggested algorithm is better than the referenced. Especially 

in the case of small rate, we observe an increase in quality of 0.5 db. 

Another point of interest is that in small rate, there is no significant gain 

from the joint decoding of the multiple descriptions. 

LENNA @ 0.5bpp PSNR

BER Ref1 Ref2 Proposed

0.01 24.79 20.2 28.51

0.001 28.62 27.5 32.22

LENNA @ 1bpp PSNR

BER Ref1 Ref2 Proposed

0.01 29.99 N/A 35.10

0.001 33.89 N/A 35.23

Next, we present the 'lenna' and the 'baboon' image after they have been 

transmitted over a binary symmetric channel with The following image are 

encoded with the proposed algorithm and subjected to various bit error 

rates.



Illustration 16:   Lenna encoded at 0,5bpp with 0,01 BER



Illustration 17: Figure X. Lenna encoded at 1bpp with 0,001 BER



Illustration 18:  Lenna encoded at 1bpp with 0,01 BER



Illustration 19:  Lenna encoded at 0,96bpp with 0,05 BER



Illustration 20:  Lenna encoded at 0,88bpp with 0,001 BER



Illustration 21:  Lenna encoded at 0,5bpp with 0,001 BER



Illustration 22: Baboon Seperate decoding, BER=0.05,  
0.4bpp,LDPC 5/6



Illustration 23: Baboon Joint decoding, BER=0.05, 0.4bpp,LDPC 
5/6



Illustration 24: Baboon Seperate decoding, BER=0.05, 0.2bpp,LDPC 
5/6



Illustration 25: 24: Baboon Joint decoding, BER=0.05,  
0.2bpp,LDPC 5/6



6  CONCLUSIONS AND FURTHER WORK

In this work, we examined robust methods for image transmission 

over  wireless  channel.  Image  transmission  and  in  general  video 

transmission is a very challenging task in terms of bandwidth and delay 

tolerance. On the other hand, wireless channel are prone to errors and 

have constantly varying characteristics. In order to combat transmission 

error,  we  presented  a   Source-Channel  Coding  scheme  for  image 

transmission over wireless channels. Our scheme consist of two parts, the 

source  coding  and  the  channel  coding.  Multiple  description  coding  has 

been  proposed as a method for  generation of multiple streams of the 

source information and transmitting them over independent channels. The 

generation of the multiple stream is archived through multiple description 

lattice  vector  quantization.  Each  description  is  independently  protected 

with a  low-density parity check code. At the receiver the decoding of the 

multiple  stream  is  performed  jointly,  taking  the  correlation  of  the 

descriptions under account. 

We examined the proposed scheme in two channels, namely the binary 

symmetric  channel  and  the  Gaussian  channel  and  made  extensive 

experiments under various channel conditions.

The scheme offers  minimum delay,  fast  decoding  algorithms and good 

results with minimum overhead. 

In  future  work,   the  proposed  source-channel  scheme should  be 

applied  to  video.  Most  highly  qualified  candidates  are  3D-SPIHT,  MC-

SPIHT, In addition, the scheme should be evaluated in Multi-Input-Multi-

Output (MIMO) channels. A closed form for the Rate-Distortion function 

should  also  be  formulated.  As  any  other  model,  the  final  test  of  its 

reliability is to implement and examine in real wireless channel conditions
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