
Page | i

Technical University of Crete

School of Electronic and Computer Engineering

Σχεδιασμός και Υλοποίηση Μηχανισμού Μεταφοράς

Λογισμικού σε Δεδομένα σε Περιβάλλον Υπολογιστικού

Νέφους OpenStack

Implementation of the Cloud Software to Data Approach in

an OpenStack Environment

Lenos Vakanas

Intelligent Systems Laboratory

Thesis Committee:

Professor Euripides Petrakis

Assistant Professor Antonios Deligiannakis

Research Collaborator Dr. Stelios Sotiriadis

September 2015

Page | ii

Page | iii

Περίληψη

Η τεχνολογία του «υπολογιστικού νέφους» (Cloud Computing) έχει καθιερωθεί ως

μια τεχνολογία ανάπτυξης λογισμικού με πολλά πλεονεκτήματα με κυριότερο το

χαμηλό κόστος κατασκευής, και συντήρησης συστημάτων εφαρμογών. Είναι εμφανής

όμως η ελάχιστη αξιοποίηση αυτής της τεχνολογίας σε εφαρμογές που

χαρακτηρίζονται από την χρήση ευαίσθητων δεδομένων πού δεν επιτρέπεται να

μεταδίδονται στο διαδίκτυο ή να αποθηκεύονται σε απομακρυσμένες περιοχές του

υπολογιστικού νέφους. Μια λύση αυτού του προβλήματος αναφέρθηκε για πρώτη

φορά στο EC Cloud report 2010 [1] το οποίο εισάγει μια καινούργια έννοια του

«υβριδικού» ή «αντίστροφου» υπολογιστικού νέφους (Hybrid or reverse cloud) που

προτείνει ως λύση που εξασφαλίζει την ασφάλεια των δεδομένων, την μεταφορά του

λογισμικού στα δεδομένα. Ως μία υλοποίηση της παραπάνω προσέγγισης σχεδιάσαμε

και υλοποιήσαμε την μέθοδο S2D (Software to Data service) που λειτουργεί σε

περιβάλλον OpenStack και επιτρέπει επιπλέον την παρακολούθηση και μέτρηση της

χρήσης του λογισμικού (π.χ., χρόνος λειτουργίας) στο νέο περιβάλλον εγκατάστασης.

Το τελευταίο θεωρείται σημαντικό για περιβάλλοντα υπολογιστικού Νέφους καθώς

επιτρέπει την μίσθωσή ανάλογα με την χρήση (pay per use) που θεωρείται ένα από τα

βασικά χαρακτηριστικά της τεχνολογίας υπολογιστικού Νέφους.

Page | iv

Abstract

Cloud computing offers a development platform with many benefits such as low cost

application development and deployment along with minimization of maintenance

and upgrades. Despite the technology’s numerous advantages, health care and other

application fields related with sensitive and confidential information have been

reluctant to seize its offerings. This is because of the requirement for data processing

data on remote cloud datacenters and therefore the transferring of sensitive data over

the Internet. A solution to this problem is the reverse cloud approach that allows

software to be transferred near to the data source and to be instantiated into a new

cloud environment in order to eliminate the problems of processing sensitive data

remotely. This encompasses the concept of virtual machine migration for cloud

federations that are composed by various OpenStack systems. To achieve this we

developed an innovative software to data service that allows virtual machines in the

form of running instances or images to be migrated between OpenStack

environments. Further, the service allows easily reconfiguration (regarding hardware

features) along with monitoring and calculating of virtual machine use in the

OpenStack federation.

Page | v

Table of Contents

Chapter 1 – Introduction ... 1

1.1. Cloud Computing.. 2

1.2. Cloud Deployment Models ... 3

1.3. Motivation ... 5

1.4. Proposed Solution ... 6

1.5. Working Environment .. 7

Chapter 2 – Background and Related Work ... 9

2.1. Cloud Computing Architecture Layers .. 9

2.1.1. Service Models.. 9

2.1.2. Virtualization ... 11

2.1.3. Hypervisor.. 12

2.2. Openstack Cloud Environment ... 13

2.2.1. Openstack Components ... 13

2.2.2. Openstack and OCCI ... 15

2.2.3. Openstack Technology... 15

2.3. Representational State Transfer Application Programming Interface (REST

API) ... 17

2.4. Migration In Cloud Computing .. 17

2.5. Software to Data ... 18

Chapter 3 – Software to Data (S2D) Service .. 20

3.1. Service Functionality .. 21

3.2. Service Architecture ... 24

3.2.1. Front End (User) .. 24

3.2.1.1. User Interface (UI) ... 24

3.2.1.2. Instance Migration Tool (UI) ... 24

3.2.1.3. Instance Monitoring Tool (UI)... 25

3.2.2. Back End (Server) .. 26

3.2.2.1. Instance Migration Tool (Server)... 26

3.2.2.2. Instance Monitoring Tool (Server) .. 27

3.2.2.3. XML API Call.. 27

Chapter 4 – Implementation .. 28

Page | vi

4.1. User Interface Implementation ... 28

4.2. Back End Implementation .. 28

4.2.1. Jersey - RESTful Web Services in Java ... 28

4.2.2. JavaScript Object Notation (JSON) ... 29

4.2.2.1. Jettison – A JSON StAX Implementation 29

4.2.3. Apache HttpComponents ... 29

4.2.4. Instance Migration Tool Implementation .. 29

4.2.5. Instance Monitoring Tool Implementation .. 33

4.2.6. XML API Call Implementation ... 34

4.2.7. Apache Tomcat 7 ... 36

4.2.8. Launching an Instance In Intellicloud.. 37

4.2.8.1. Network Topology of an Instance.. 40

4.2.8.2. Implementation Details .. 41

Chapter 5 – Conclusions and Future Work ... 43

5.1. Conclusions... 43

5.2. Future Work .. 44

5.2.1. Multiple Migrations at Once .. 44

5.2.2. Alternative Ways of Monitoring .. 45

5.2.3. XML API Functionality ... 45

References .. 47

Page | 1

Chapter 1

Introduction

Cloud computing took many shapes and names over the years before it evolved to

what we know today. The idea dates back to 1961 when computing pioneer John

McCarthy1 stated that:

“Computation may someday be organized as a public utility”

 The path that guides us to today’s cloud computing is as follows:

 1960 Supercomputers2

 1997 High Performance Computing (HPC) - High Throughput Computing

(HTC)3.

 1999 Volunteer Computing4

 1999 Parallel Computing5

 1999 Grid Computing6

 2000 Utility Computing7

 2006 Cloud Computing8

The cloud computing shares many similarities with its predecessors technologies and

in simple words one may regard cloud computing as the combination of grid and

utility computing. We chose one of many possible definitions given to cloud

computing over the years [2]:

“A large-scale distributed computing paradigm that is driven by economies of scale,

in which a pool of abstracted, virtualized, dynamically-scalable, managed computing

power, storage, platforms, and services are delivered on demand to external

customers over the Internet.”

1 http://en.wikipedia.org/wiki/John_McCarthy_%28computer_scientist%29
2 http://en.wikipedia.org/wiki/Supercomputer
3 http://rc.arizona.edu/high-performance-computinghigh-throughput-computing
4 http://en.wikipedia.org/wiki/Volunteer_computing
5 http://en.wikipedia.org/wiki/Parallel_computing
6 http://en.wikipedia.org/wiki/Grid_computing
7 http://en.wikipedia.org/wiki/Utility_computing
8 http://en.wikipedia.org/wiki/Cloud_computing

http://en.wikipedia.org/wiki/John_McCarthy_%28computer_scientist%29
http://en.wikipedia.org/wiki/Supercomputer
http://rc.arizona.edu/high-performance-computinghigh-throughput-computing
http://en.wikipedia.org/wiki/Volunteer_computing
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Grid_computing
http://en.wikipedia.org/wiki/Utility_computing
http://en.wikipedia.org/wiki/Cloud_computing

Page | 2

Beside the benefits that cloud computing technology offers, there are some key

factors that attracted the attention of the industry and motivated research over the last

few years [2, 3, 6]:

 Decrease in hardware costs

o Enabled the existence of Personal Computers (PCs) in almost every

home hence the rapid spreading of the internet.

 Increase of computing power and advent of multi – core architecture

o PCs were getting more and more powerful and combined with the

reduced cost in hardware, building a network of PCs became cheaper

than a supercomputer but equally powerful.

 The exponentially growing data volumes in modern application fields and the

internet

o More organizations needed the capabilities of a supercomputer

(without its cost), with organizations being either businesses or

scientific organizations.

 Emergence of Web 2.0 applications and Web Services

o The rapid growth of the World Wide Web (WWW) in recent years has

generated the need for tools and mechanisms which automatically

handle tasks that are typically handled manually by humans (e.g.

shopping online). Eventually, these task became more complicated and

more demanding in terms of computing power, storage or network

capacity.

 Existence of large – scale datacenters

o It is a direct outcome of the above, meaning companies needed more

computing power to satisfy their growing number of customers and

their service demands.

 Virtualization

o It enabled the creation of more efficient, scalable services and

datacenters. The emerge of cloud technology paid special attention to

the way computing services and resources are offered (e.g. leased to

users) and maintained.

Page | 3

With the introduction of Elastic Compute Cloud9 (EC2) and Simple Storage Service10

(S3) in 2006, Amazon was the first to launch its own publicly available cloud. Soon

after, more companies and organizations followed this paradigm including Microsoft

(Azure11 in 2009) and Google (App Engine12 in 2008).

1.1 Cloud Computing

A very commonly asked question is “What is Cloud Computing”. The answer in its

most simple form is that cloud computing is a distributed network - based system that

provides resources, such as hardware, software and network services, over the internet

without exposing the user to the complexity of the system [5]. Previously, a

supercomputer was the solution, mainly for scientific purposes, but in recent years

supercomputers are replaced by what we call cloud technology. Furthermore, cloud

technology is not only for scientific use but also for commercial use. Companies or

individuals may need large amounts of computing power or storage for limited.

Possessing the hardware and software for their operation is not the optimal solution in

many cases in terms of investment, capital or human resources. In these cases, the

optimal solution is cloud computing offering a pay-per-use solution of computing

resources over the internet [6]. Cloud technology can be also used in many other ways

in order to provide a suitable and affordable solution in use case scenarios [1, 4].

Elasticity: The ability to adjust computing resources (i.e. CPU, memory, bandwidth)

to the actual (possibly varying in time) needs of an application and apply a business

model to take this into account. A consumer can be charged by the resources he

consumes and is able adjust the amount of resources according to his needs.

On-demand self-service: A consumer can perform various tasks automatically,

including adjusting his computing resources, without human interaction.

Broad network access: The ability to use the cloud with any device connected to the

internet. The interaction between user and cloud is realized by means of Web

9 http://aws.amazon.com/ec2/
10 http://aws.amazon.com/s3/
11 http://azure.microsoft.com/en-us/
12 https://cloud.google.com/

http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://azure.microsoft.com/en-us/
https://cloud.google.com/

Page | 4

interfaces and APIs and other established technologies adopted by existing client

platforms like smartphones, laptops etc.

Resource pooling: This enables serving multiple customers by dynamically

allocating the resources according to demand. Typically, customers allocate

computing power over the Web without caring about the ownership or physical

location of the resources. The offered services become more reliable due to the fact

that if a physical component fails, the system dynamically switches to another.

Measured service: A business model is applied and ensures clouds' sustainability. A

business model applies a pricing model which, in turn, is realized by means of

additional tools for resource utilization and resource monitoring (e.g., utilization of

CPU power and memory).

Quality of Service (QoS): Except reliability, which is an important aspect of Quality

of Service [15], other criteria must be met by a cloud provider ensuring the quality of

services to customers including, response time, throughput, packet loss frequency,

CPU load etc. Furthermore, Cloud systems are a valid choice for a wide scope of

applications not only for offering desirable computational characteristics but also for

its economics [1]:

Pay per use: The consumer can pay for exactly what he uses, meaning that he can

scale up or down according to his needs without the risk of over or under pricing.

Cost Reduction: A consumer achieves cost reduction, not only with the pay per use

scheme but also, without having to maintain or upgrade the infrastructure or software

that he uses. There are no idle machines (virtual or not) due to the automatic scaling

of allocated resources according to processing load.

Computing is ideal for a wide audience of consumers. For example a small or startup

business can rent computing power and storage needed without risking excessive

hardware, software procurement or maintenance costs. Apart from large or small

business, there are also examples of individuals that can be also benefited from cloud

technology (e.g., by using cloud storage such as Dropbox13, Google Drive14, iCloud15

etc.). The applications that are using cloud computing are many and keep growing.

13 https://www.dropbox.com/

https://www.dropbox.com/

Page | 5

1.2 Cloud Deployment Models

The deployment models describe the cloud’s operators and consumers.

Public Cloud: Usually owned and managed by enterprises or organizations this cloud

model is intent for the general public. Usage of this cloud model can be free or in a

pay-per-use. Examples of this model are Amazon, Google Apps, Windows Azure etc.

Private Cloud: Exclusively owned and operated by a single entity, this cloud model

is used for satisfying the needs of the owner enterprise and sometimes it can provide

functionality to customers if the owner chooses to. An accurate example is eBay16.

Hybrid Cloud: This cloud model is the combination of a public and a private cloud.

It provides the ability, for an entity, to own and manage a private cloud and use

functionality offered by public cloud providers, with the advantages of both models. It

comes as a solution to problems found in public cloud models, such us the problem

with patient data in e-Health environments [7, 10].

Community Cloud: It is intended to serve consumers (e.g., organizations or

individuals) sharing common interests or concerns. It can be owned and managed by

someone in the community or by a third party.

1.3 Motivation

In recent years cloud computing has been fostered as the technology to offer

virtualized resources to Internet users on a bespoke manner. This includes hardware,

software and platform that could be delivered as a service. For many areas such as

industry, agriculture etc. this has been served as an efficient approach with regards to

the minimization of operational costs and increased elasticity; yet not in the healthcare

domain. Data stored in cloud are usually available over the Internet and could contain

confidential and private health information. Today there are various standards,

regulations and recommendations such as national legislation, ISO standards (ISO

14 https://www.google.com/drive/
15 https://www.icloud.com/
16 http://www.ebay.com/

https://www.google.com/drive/
https://www.icloud.com/
http://www.ebay.com/

Page | 6

8000117) and the need to comply with security standards (ISO 2700018), thus there are

severe restrictions to data transfer and storage. As a result, cloud computing that is

profoundly based on the Internet and openness, becomes a hurdle to its adoption in

health care. Along with health care, more application owners with similar concerns

are:

 Businesses or Government related organizations

Entities that manage sensitive or classified data are reluctant to cloud based solutions

due to security risks of transferring data over the internet. Remote storage of data

might be a problem as well.

 Scientific or Research organizations

For these entities, the major problem can be the amount of data that have to be

transferred over the internet (i.e. it may cost too much or it may take too long to

transfer big amounts of data). In general, when remote storage or transferring data

over the internet is a concern cloud technology runs into a problem.

1.4 Proposed Solution

The solution to this problem comes by utilizing hybrid cloud technology [1, 8]. Also

referred to as “reversed cloud approach” [7, 9, 10] builds upon the idea of bringing

the software to the data rather than transferring the data to the public cloud where the

software is installed. To achieve this, all we need is a public cloud which is the

software provider, a private cloud which is the consumer and a service that will

transfer and deploy the software from the public to the consumer’s cloud. Afterwards,

the consumer can process his data locally and pay the usage fees to the provider. By

using this solution, a health care provider can use the technology and offerings of

public clouds, without breaking the restrictions related to data privacy.

In our work we propose an implementation of the Software to Data (henceforth called

S2D) service that will transfer, deploy and monitor the software from a public cloud

provider to the private cloud and data owner. The implementation consists of two

17 http://www.iso.org/iso/catalogue_detail.htm?csnumber=44863
18 http://www.iso.org/iso/catalogue_detail?csnumber=63411

http://www.iso.org/iso/catalogue_detail.htm?csnumber=44863
http://www.iso.org/iso/catalogue_detail?csnumber=63411

Page | 7

modules, the first being responsible for transferring and deploying the software

between the two clouds and the second one responsible for monitoring the usage of

the software e.g., up-time and for providing this information to service provider (e.g.,

for billing the customer). The software to data approach removes any restrictions or

concerns in regards to data usage in clouds as described in the previous section, by

deploying the software in the location of the data so that the processing takes place

locally. The parties, as described in the previous section, no longer have to worry

about data privacy or data size. Naturally, this solution has some drawbacks that are

not necessarily major. For example, the elasticity or scalability properties of the cloud

depend only on the consumer’s private cloud properties. Following this line of

thinking, all the properties or benefits of cloud technology are only as good as the

consumers cloud, though some of them may be better, such us reliability and QoS

metrics like response time considering that the processing takes place locally. Either

way, we believe that the solution of the software to data approach enables the use of

cloud technology, by application owners that previously needed to possess their own

hardware and software infrastructure for their work. Other requirements are that the

two clouds, public and private, must be compatible with each other and that the

private cloud must meet the hardware requirements of the transferred software.

The proposed solution proposes a service which through an easy to use GUI

(Graphical User Interface) or a REST API call with an XML document will offer easy

to transfer images (Openstack compatible), automatized configuration and easy

deployment and thus achieving migration of a running instance and re-instantiation

between two Openstack clouds.

1.5 Working Environment

Our proposed S2D solution was deployed using the Intellicloud19 and FI-LAB20

infrastructures as test bed. Both clouds are running Οpenstack21 and FI-WARE22 on

top of Openstack so they are compatible with each other. We are communicating with

the two clouds using a REST API provided by the Οpenstack environment

19 http://cloud.intellicloud.tuc.gr/
20 https://cloud.lab.fiware.org/
21 https://www.openstack.org/
22 http://www.fiware.org

http://cloud.intellicloud.tuc.gr/
https://cloud.lab.fiware.org/
https://www.openstack.org/
http://www.fiware.org/

Page | 8

FI-WARE is a European initiative that aims to provide an open platform for

developing and deploying Future Internet applications and services. Application

development is realized by means of a set of pre-defined basic services called Generic

Enablers (GEs) and which can be viewed as building blocks for an application. For

example, there is a GE for authenticating users and developers of the cloud

environment so that, they do not need to develop this service on their own. GEs offer

their functionality through a REST API or a web interface (or both) to its users.

Overall, FI-WARE aims to provide an innovative and cost-effective way of building

cloud applications while maintaining high quality of service and security.

Page | 9

Chapter 2

Background and Related Work

2.1 Cloud Computing Architecture Layers

The layers which compose cloud’s system architecture can be viewed as five different

layers (Figure 2). The first one of course is the hardware layer, which contains all the

hardware needed for the cloud to work. Processors, RAM, storage, network and others

all belong to this layer. On top of the hardware layer is the virtualization layer which

is responsible for managing the hardware, deploying the virtual machines (VMs) and

dynamically allocating capacity to them according to demand. The remaining three

layers are also called service models and they describe the functionality offered by the

cloud.

Figure 2 – Cloud Computing Layers23

2.1.1 Service Models

Cloud computing services are offered in three different service models:

 Infrastructure as a Service (IaaS)

23 Source: http://www.ibm.com/developerworks/aix/library/au-cloud_apache/

http://www.ibm.com/developerworks/aix/library/au-cloud_apache/

Page | 10

It is the ability to rent hardware such as storage, computing power or network. The

consumer is responsible for installing and maintaining the operating system and other

software, but the responsibility of upgrading or maintaining the hardware resides to

the provider. Examples of storage clouds are Amazon S3, SQL Azure.

 Platform as a Service (PaaS)

The cloud’s provision for consumers who need a software platform (providing all

basic tools and software services such as Generic Enablers in the case of FIWARE-

LAB) for deploying their applications. The consumer gets a functional virtual

machine with an operating system of his choice and he can use it as a developing

platform or as a platform for deploying services without worrying about upgrades or

maintenance of hardware. Examples of such services are Saleforce24, Google App

Engine, Windows Azure (Platform) and FIWARE-LAB.

 Software as a Service (SaaS)

This is the most usable cloud service. It allows a consumer to use services provided

from the cloud provider or even other consumers (e.g. Google Docs). The consumer

has no control over the service’s software or hardware and he can only use it thought

provided APIs or interfaces by the service provider. In addition, he is not required to

maintain or upgrade the hardware or the software. Examples are Google Docs,

Dropbox.

As showed in Figure 3, cloud’s service models aim to satisfy a consumer’s needs by

providing different levels of responsibility in resource management and thus allowing

him to focus on the part that he really wants without additional burden.

24 http://www.salesforce.com/

http://www.salesforce.com/

Page | 11

Figure 3 – Cloud Services25

2.1.2 Virtualization

Although this technology was not intended to be used in cloud computing it is vital

for today’s clouds. It dates back to 1970’s where IBM needed a technology for

running multiple applications on a mainframe [11]. Virtualization provides layer of

abstraction between the hardware and the software. The product of virtualization is

called Virtual Machine (VM) and it is representing a fully functional computer. The

main difference from the tradition computer is that allows definition of multiple VMs

with different operating systems over the same hardware.

A cloud provider may have certain amount of servers and network bandwidth but with

virtualization allows serving a large number of consumers with diverse service

demands (e.g. each one may use different operating system. As a result of

virtualization, clouds are able to efficiently exploit their computing power. Also,

combining operating system and software into a virtual machine achieves easier

backups and faster re-deployment since everything living within a virtual machine can

be fully backed up at any state.

25 Source: http://www.cetancorp.com/solutions/cloud/private-public-cloud/

http://www.cetancorp.com/solutions/cloud/private-public-cloud/

Page | 12

2.1.3 Hypervisor

Hypervisor is the software responsible for creating the virtual environment where the

virtual machines operate and for dynamically allocating hardware resources to them.

It is also known as Virtual Machine Monitor (VMM) and it can be one of two types.

Clouds use type 1 hypervisor also known as native or bare metal hypervisor. It is

usually a “light” software operating directly above the hardware resources which

results in good performance. Its responsibilities are, as described above, creation of

the virtual environment and allocating the necessary hardware resources to the virtual

machines [12]. There is also type 2 hypervisor which needs a host operating system to

operate and usually results in lower performance [11].

Overall, virtualization is a vital part of cloud. As showed in Figure 4, visualization

lays directly above the hardware resources and enables the use of cloud’s service

models with the functionality each one contains combined in a VM or several VMs in

the case of SaaS. Cloud consumers have the illusion of infinite hardware resources

available to them on demand [3].

Figure 4 – Virtualization26

26 Source: http://arstechnica.com/business/2011/02/virtualization-in-the-trenches-with-vmware-part-1-basics-and-benefits/

http://arstechnica.com/business/2011/02/virtualization-in-the-trenches-with-vmware-part-1-basics-and-benefits/

Page | 13

2.2 Openstack Cloud Environment

Openstack27 is an open source project for managing a large pool of resources such us

computing power, storage and network. It is an operating system for clouds [13]. The

initial contributors of this project, back in 2010, was Rackspace and NASA but since

then, more than 200 companies have joined the project while the list includes names

like IBM, Cisco, Dell, HP and many more. Openstack’s software is written in Python

and it is cross platform.

2.2.1 Openstack Components

Openstack components are the software or systems which manage the cloud’s

resources. A user can use them either by the dashboard (Graphical User Interface

provided by Openstack) or directly by the API each component provides for

communication. All of Openstack components are showed in Figure 5.

 Nova - Compute Service

Designed to manage the pool of compute resources, Nova is the computing resources

controller. It is written in Python and can work with type 1 or bare metal hypervisors

used in virtualization technologies.

 Quantum - Networking Service

Quantum is the system that manages the clouds networks and IP addresses. Users can

use this system to create their own networks or new Floating IPs which are used by

the virtual machine for internet access.

 Glance - Image Service

Glance is the managing service of images in the cloud. Cloud’s images are the

operating system installed on a virtual machine and can also be a backup of a virtual

machine with both operating system and additional software call a Snapshot.

 Keystone - Identity Service

27 http://www.openstack.org/

http://www.openstack.org/

Page | 14

Keystone is the authentication system of the cloud. It manages the cloud’s users both

in and out of the cloud as well as within the cloud depending on each user’s

permissions.

 Horizon - Dashboard or UI Service

The User Interface where you can control and use the above mentioned services.

Horizon is a web-based dashboard where administrators and users can manage and

view their resources.

 Cinder

Cinder is the block storage service used in Openstack. It allows the users to request

and consume those resources via a self-service API.

These Openstack components are still under development.

 Ceilometer

It is a metering and monitoring service aimed to provide all the necessary

measurements to establish a reliable and accurate billing system

 Heat

Heat is the orchestration engine under development for Openstack which will provide

the ability to launch multiple cloud applications based on templates.

Page | 15

Figure 5 – Openstack Components28

2.2.2 Openstack And OCCI

OCCI stands for Open Cloud Computing Interface and it is a RESTful – based

protocol for managing tasks in cloud. Initially, this protocol was intended for IaaS

service model but now it supports all three of the service models. It contributes to the

development of interoperable tools used for development, automatic scaling and

monitoring. Openstack has implemented this standard aiming to exploit more their

properties for integration, portability, interoperability and innovation [14].

2.2.3 Openstack Technology

Before continuing with the functionality details we provide the following

clarifications and terminology definitions concerning the Openstack cloud

environment [16].

28 Source: http://applycloud.blogspot.com/2013/05/openstack-components.html

http://applycloud.blogspot.com/2013/05/openstack-components.html

Page | 16

Cloud A: The “source” cloud of the software. Meaning the cloud we want to migrate

the software from. In a real life scenario this would be the public cloud.

Cloud B: The “target” cloud for the software. Meaning the cloud we want to migrate

the software to. Again, in a real life scenario this would be the private cloud.

Call or API call: A REST API call. The service uses calls for communicating with

the user interface and the cloud’s operating system (Openstack). All the information

about the call to the cloud’s system can be found in the Openstack REST API

documentation29.

Instance: A virtual machine that runs on the cloud. In order to launch an instance you

need to provide instance name, image name and flavor.

Flavor: Predefined virtual hardware templates defining number of CPU cores and

size of RAM and disk space. There are five different templates in order to satisfy any

consumer. Flavors are simulating the physical hardware that a consumer would buy in

order to build a PC or a server.

Images: An image is the operating system used to launch and run a virtual machine.

Snapshot: Snapshot is the image created of a running instance. Simply put, taking a

snapshot of an instance will back up the current disk state of that instance. As a result,

snapshots are also images that can be used as virtual machine templates because they

preserve any additional software that the instance had.

Security Groups: A collection of IP filters (Ports) that are being applied to an

instance’s networking. The owner of the instance must configure correctly the

security groups in order to be able to communicate with the instance and all of its

software. For example, port 22 is used for secure communication (SSH) with the

instance and port 80 is used for communication of an Apache server30. These IP filters

or ports are called Rules of a security group.

Floating IP: The public IP used to connect and communicate with an instance. The

consumer can create limited number of floating IPs and only one is allocated per

29 http://developer.openstack.org/api-ref-compute-v2.html
30 http://httpd.apache.org/

http://developer.openstack.org/api-ref-compute-v2.html
http://httpd.apache.org/

Page | 17

instance. Apart from this IP, each instance has one more IP, local IP, which is used for

communication with the cloud system only.

Keypair: The keypair allows you to access via SSH your instance. Each instance can

have only one keypair registered and the owner must provide the same key in order to

be authenticated and be granted access to the instance. On the contrary, a keypair can

belong to several instances.

2.3 Representational State Transfer Application Programming

Interface (REST API)

REST is an architectural style of designing APIs which are used for communication

between client – server or two applications. REST is a collection of guidelines and

best practices that allows you to create a web service that is lightweight, scalable,

language and platform independent [18]. Most commonly, REST runs over the HTTP

protocol and makes use of the HTTP verbs (GET, POST, PUT, DELETE, etc.) to

send and receive data and often those data are composed in JSON or XML format.

Using REST APIs as a way of communication is increasing in the web services world

and is particularly the preferred way of communication in cloud computing. For

example, in Openstack, the most of the GEs are communicating with their users and

each other via REST APIs and the use JSON or XML to format their data.

2.4 Migration In Cloud Computing

Cloud migration is the execution of a set of job tasks to relevant resources which

could offer improved load balancing and higher throughput of jobs with as little to

none downtime (Downtime: time from process state running to suspending to running

again). Migration is categorized into two generic procedures known as process and

live migration [19].

Process migration, the oldest technique of the two going back to 1980’s, is the

procedure of transferring a process between two machines. In the level of operating

systems, process migration was achieved by letting programs communicate to each

Page | 18

other in a cluster of machines via appropriate kernel design. Such operating systems

are Accent, ChorusOS, Amoeba but they do not support clusters of independent

machines running on different operating systems something that limited the interest in

this technology [20].

A step forward from operating system level migration was user level indented for

long-running applications running on cluster machines with unmodified commercial

operating systems. Such systems are Condor, CoCheck and MPVM although running

on commercial operating systems they could support only specific applications as

they required processes which did not support common operating system services

such as inter-process communications [19, 20].

In object level migration, several systems designed as middleware and programming

languages offered object-based migration. Abacus, Emerald, Globus, Legion and

Rover being some of those systems could reduce the amount of state needed to be

recorded and moved in order to achieve the migration of an application. But,

applications needed to be rewritten using new programming language environments

thus they could not move legacy applications [19, 20].

A more promising but challenging migration technique is VM migration or live

migration which provides the ability to move an entire VM from a host resource to a

target resource. Strong sell-points of this technique is that the migration is performed

without pre-emptying execution and any perceived degradation and the fact that the

whole VM is being transferred which does not affect downtime. Although being a

promising technique, VM migration faces significant challenges. Wide area

environments require large amount of bandwidth and memory capacity due to the

large amount of data being transferred [20], something that challenges the

effectiveness of this technique on today’s systems and networks.

2.5 Software To Data

A concept discussed in detail in FI-STAR project [7, 9, 10] that aims to eliminate

restrictions which are responsible for the minimal usage of cloud technology by

various application fields especially health care. Software to data refers to the idea of

Page | 19

transferring the software to the data location and thus avoiding the transferring of data

over the internet which is illegal for health care. In order to accomplish this goal,

hybrid cloud technology is utilized. As a result, the provider offers his services via

public cloud and the consumer uses these services in his private cloud achieving

maximum security over his data (patient data or otherwise).

As shown in [7], such system can be implemented by establishing two sides, the

provider’s edge and consumer’s edge. Provider’s edge represents the public cloud

which will be providing software or GEs and the consumer’s edge where a private

cloud will exist and these GEs will get instantiated. A single link will be preserved

through the two clouds and its purpose will be to allow software to be downloaded

from the public to the private cloud. By using this set-up, no sensitive data are

transferred over the internet thus this technology could help reluctant fields to seize

the offerings of cloud computing.

Alongside proposals like [7], others are focusing on network communication research

as it is a key factor of cloud computing. Software Defined Network (or SDN) is a

network that could adapt to the needs in real time. As explained in [21], hybrid cloud

technology needs an equally smart network that could dynamically adapt to the

bandwidth needs. Hybrid clouds and Software to data could take advantage of such

network due to the large amount of data that need to be transferred over the internet as

VMs can reach sizes of several gigabytes. SDNs are using software to monitor the

network traffic and dynamically switch the traffic where is most needed thus making

the use of network more efficient.

Page | 20

Chapter 3

Software to Data (S2D) Service

In the current chapter we present the design or the S2D service.

The service is utilizing Openstack’s REST API to allow its users to migrate a virtual

machine between two clouds. Users can perform the migration using the web-based

user interface or by sending an xml document containing all the needed information.

Should a user chooses to perform migration through the Web interface, we should

follow the eight steps of the interface in order for the service to gather all needed

information. The user provides information about his credentials, the virtual machine

he wants to migrate, configuration of the newly deployed machine and so on. Apart

from the web interface, the user can also send directly to the service all this

information in an xml document. The xml document has a predefined structure

validated by an xml schema and the user has to fill all the fields which will be used by

the service.

The migration service executes the three modes of operation referred to above, the

first being responsible for transferring and deploying the software, the second one is

responsible for monitoring the usage of the software (e.g. up-time) while the third one

is an alternative to the user interface but only for the first module, meaning it offers to

the user the alternative for using the migration service as an API call containing all

the needed information in an XML document.

We would define a successful migration as the process of moving a running instance

(and its software) from cloud A, deploy it in cloud B while maintaining its hardware,

software and network configurations. So, when the process is finished you would find

in cloud B a running instance including your software but it will be of the same

flavor, same rules in the security group and a public IP for you to use. Obviously, the

IP number will not be the exact same as before because it varies based on

geographical location, organization and so on.

Page | 21

3.1 Service Functionality

To achieve VM migration, the service guides the user through the process and at the

same time performs some automated actions resulting in a less complex and time

consuming process. Currently, the service offers this functionality for Intellicloud31

and FI-Lab32 with both clouds using Openstack.

Now, we describe the functionality provided by the service through both the user

interface and the API call.

Authentication: The user provides his tenant ID, username and password in order to

be authenticated by the cloud. Authenticating generates a token which is being used in

every action the user (or the service itself) performs on the cloud. The token is unique

for every user and it has a lifecycle predefined by the cloud. For example,

Intellicloud’s token is valid for 24 hours.

Get Instances: The service retrieves a detailed list of the instances registered to the

user.

Get Images: The service retrieves the images registered to the user including

snapshots.

Get Instance’s Details: Retrieves the information which describes an Instance.

Create Snapshot: Creates a snapshot of the running instance which the user selected

for migration. In addition, the service stores all the properties of this instance which

will be later be used for launching the new instance in cloud B with the same

configurations such as security group rules or flavor. For this action, the user provides

a name for the snapshot and the name of the instance he wants to snapshot.

Download Snapshot: The service downloads and stores temporarily the previously

created snapshot.

Upload Snapshot: Because a snapshot is also an image, the service creates a new a

new image containing the data of the previously downloaded snapshot. The user

provides the name of the new image, the format and if it is going to be public or

31 http://cloud.intellicloud.tuc.gr/
32 https://cloud.lab.fiware.org/

http://cloud.intellicloud.tuc.gr/
https://cloud.lab.fiware.org/

Page | 22

private (access). The service will perform the following actions to achieve this result

without exposing the user to each action.

1. Create a new blank image with the given name

2. Update the blank image according to the format (e.g. .qcow2) and access (e.g.

public) that the user specified.

3. Upload the data the snapshot’s data to the new image. The snapshot’s data

contain information about the instance’s operating system and software which

will be used to launch the same instance in the target cloud.

Keypair Actions: The keypair must be allocated to the user and provided to the new

instance before its creation. As a result, the service will save the name of the keypair

that the user chooses.

 Create Keypair: The user provides the name of the new keypair and the

service will create a new one with that name and allocate it to the user.

 Import Keypair (from Cloud A): The user selects the keypair from cloud A

and the service imports it in cloud B. For this action to be completed, the

service firsts retrieves the list of user’s keypairs from cloud A and after the

selection of the user, imports it in cloud B.

 Select Keypair (from Cloud B): The service retrieves the list of keypairs

allocated to the user and the user selects one.

 Launch Instance: The user provides the name of the instance and its security group

name. Afterwards, the service will set the following.

 Keypair: Keypair of the instance will be the previously selected by the user.

 Image: Image will be the new image which the service created from the data

of the snapshot.

 Flavor: The service will fetch it from Cloud A and set the same flavor in

Cloud B.

 Security Group: The service will either create a new security group or will

allocate to the instance the default one depending on the users input. If the

user sets the name as “default” or if he leave it empty, the service will select

the default security group. Now, if the user sets a different name, the service

Page | 23

will generate a new security group with that name. Independent of the user’s

input, the service will:

1. Get the security group that the instance had in Cloud A.

2. Get all of the rules inside that security group.

3. Insert all of the rules in the security group that the user selected for the

instance in Cloud B.

The rationale behind all these actions is that we want the instance to be launched in

Cloud B and immediately be operational (including all of its software) without any

further configuration by the user.

IP Number Actions: The user can choose from a list of free IPs or chooses to create

a new one to allocate to the new instance. Free IP is one that belongs to the specific

user but it is not allocate to any other of his instances. If the user chooses to create a

new IP, the service will

1. Create a new IP

2. Allocate it to the user’s account

3. Allocate the new IP to the instance.

Instance Overview: The service fetches all the information about the instance which

the user created. This is also a way for the user to check that the process was

successful (the other way is directly through the cloud’s dashboard). The fetched

information is directly from the cloud’s system and not by any information given by

the user during the process ensuring the success of the process.

Get Instance’s Usage Data: The user provides his cloud credentials and after his

successful authentication by the cloud’s system, the service fetches the usage data of

his instances. The usage data includes the total of CPU hours used, total GB of

storage, RAM and so on.

Reset System: This action allows the user to reset the state of the service. This means

that the user’s session will be deleted along with any information he provided till that

point, including any images that he downloaded to the service’s server. However, any

actions that had already been executed on any of the two clouds are not affected

meaning if the user wants an action done on a cloud reverted, he has to do it through

the cloud’s dashboard (e.g. deleting a snapshot). This action is only available when

Page | 24

the user uses the migration tool of the service because in the case of the monitoring

tool the user does not provide anything more than his cloud credentials.

3.2 Service Architecture

Figure 7 – Service Architecture

3.2.1 Front End (User)

The front end of the service is what the user can see and control which are the User

Interface and the information being provided to the service. Information is transferred

from the front end to the back end by REST API calls being performed by the UI on

the service REST API.

3.2.1.1 User Interface (UI)

The user interface allows the user to interact with the service and achieve his goal

which in our case is to migrate and monitor an instance. The user, through the UI,

uses the instance migration tool in order to migrate an instance and the monitoring

tool in order get the usage data of his instances.

3.2.1.2 Instance Migration Tool (UI)

The migration tool provides the necessary functionality that the user will need to

migrate his instance and guides him through the process. The layout of the migration

tool is nine numbered steps which in step 1 the process starts and ends at step 9 with

an overview of the process. During those steps the user has to provide the required

Page | 25

information of each step in order for the service to be able to perform the actions on

the cloud. The nine steps are composed into tabs where the user can find the fields

where he has to insert the information along with navigation buttons, action buttons

and information on each step and its fields. The user has to follow the steps sequential

in order to have a successful migration.

Figure 8 – Migration Tool

3.2.1.3 Instance Monitoring Tool (UI)

This tool allows the user to get the usage data of every instance he owns. The user

only needs to provide the information in order to be authenticated by the cloud’s

system and then the service fetches the usage data of his instances. The usage data

includes up-time of each instance, number of cores in use, CPU hours, storage used

and other useful metrics.

Page | 26

Figure 9 – Monitoring Tool

3.2.2 Back End (Server)

The back end of the service is composed by three main tools which offer all the

functionality of the service. Each tool is responsible of a specific task and information

required for the success of that task is provided by the UI or an XML document. The

back end stored temporarily in the server the image which the user downloads with

the intension of uploading it later on the second cloud. Also, the service stores some

information on the user’s session in case that information is needed later and avoids

asking the user for providing information he already provided.

3.2.2.1 Instance Migration Tool (Server)

The migration tool contains the necessary functionality to perform an instance

migration between the two Openstack clouds. As discussed above, the user completes

9 steps for a successful migration with each step asking for the required information

for a specific action on the cloud. The migration tool processes the information

provided by the user on each step and performs the corresponding action on the cloud.

First, the migration tool will do any processing needed on the information before

performing the request on the cloud and after a successful response it may save

temporarily some information of the request and/or response for future use.

Page | 27

3.2.2.2 Instance Monitoring Tool (Server)

The user can get the usage data of his instances by providing the authentication

credentials. This tool performs two API calls to the cloud’s system, first is the

authentication of the user and second is to retrieve from the system all the usage data

of the user’s instances.

3.2.2.3 XML API Call

Besides the user interface, the service provides to the user the ability to migrate his

instance by performing an API call containing an XML document. This xml

document must have a specific syntax and must contain all the information which the

service will need to perform the necessary actions on the two clouds and migrate the

user’s instance. As mentioned above, this API call contains the functionality to

validate the xml document, extract the information from it and feeds that information

to the migration tool. The process follows the same path as the user does from the UI,

meaning this tool performs API calls on the migration tool in the same order and

information. Though, the user cannot use the XML API call to monitor his instances.

Page | 28

Chapter 4

Implementation

In order to develop the functionality of our service we used several technologies. In

this chapter we will list the technologies used in our service and how in order to

achieve our goal.

4.1 User Interface Implementation

The UI offers an easy and simple way of migrating a VM. It does not require any

special knowledge other than the basics of an openstack environment because the

information required for a successful migration is mainly found on the user’s

openstack account. For the development of the UI, we used HTML33 and CSS34 for

the Graphical User Interface (GUI) and JQuery35 for dynamic manipulation of data on

the screen and for communication with the service REST API. Furthermore, the

communication with the service is done by JQuery Ajax36 calls on the service REST

API.

4.2 Back End Implementation

The abstract flow of process of the back end is that it gets feed information by the

front end or by direct communication with the user through the XML API. It uses that

information in order to perform several actions on the two clouds by communicating

with the cloud’s REST API. For the implementation of the back end we used as

programming language JAVA with several open source software.

4.2.1 Jersey - RESTful Web Services in Java

Jersey37 is a framework for developing RESTful web services in java. More detailed,

Jersey is a reference implementation of JAX-RS (Java API for RESTful Web

Services) which is using annotations, such as @GET, @Produces, in order to simplify

the development of RESTful web services in java. We used Jersey in order to develop

our REST API which is used for client – server communication.

33 http://en.wikipedia.org/wiki/HTML
34 http://en.wikipedia.org/wiki/Cascading_Style_Sheets
35 https://jquery.com/
36 http://en.wikipedia.org/wiki/Ajax_%28programming%29
37 https://jersey.java.net/

http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://jquery.com/
http://en.wikipedia.org/wiki/Ajax_%28programming%29
https://jersey.java.net/

Page | 29

4.2.2 JavaScript Object Notation (JSON)

An alternative to XML, Json38 is a human – readable data format that is mainly used

for communication between client – server or between web applications. Json is a

language independent data format which originated from JavaScript 39and is

consisting of attribute – value pairs same as JavaScript objects. Json is easy to read

and write also it is shorter than XML because it does not require end tags which are

some advantages over XML.

4.2.2.1 Jettison – A JSON StAX Implementation

Jettison40 is what STaX41 and DOM is for XML, meaning is a collection of java APIs

that help developers parse and manipulate Json Objects in java. Jettison is also an

open source plugin of java and it provides an easy way of processing Json. We are

using jettison to process out data in the service since Json is the format of our data.

4.2.3 Apache HttpComponents

Apache HttpComponents42 offers a toolset for creating and maintaining everything

that has to do with the HTTP protocol in java. It is also an open source project of

Apache Software Foundation and our use of this toolset comes for our need to

perform HTTP calls on the, provided by Openstack, cloud’s REST API.

4.2.4 Instance Migration Tool Implementation

The migration tool uses all the previously mentioned technologies in order to provide

the functionality for communication with both the UI and the clouds. Furthermore, the

communication with the clouds is done by performing calls on some of the Openstack

components which are Nova compute service, Glance image service, Keystone

identity service and Quantum networking service. Each component can be reached

through a URL consisting of the cloud’s IP and the port which the component listens

to, but these numbers are not the same of every cloud as a result we are not listing the

exact numbers.

38 http://en.wikipedia.org/wiki/JSON
39 http://en.wikipedia.org/wiki/JavaScript
40 http://jettison.codehaus.org/
41 http://en.wikipedia.org/wiki/StAX
42 http://hc.apache.org/

http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/JavaScript
http://jettison.codehaus.org/
http://en.wikipedia.org/wiki/StAX
http://hc.apache.org/

Page | 30

Step 1: Cloud A Authentication

 Parameters: Cloud, Tenant, Username, Password

 Description: The service prepares and performs the call for authentication by

the cloud which the user specified and after successful authentication the

service displays the log in details of the user (Username, Tenant, Source

Cloud).

 Keystone - Identity: POST, http://{IP}:{port}/v2.0/tokens

Step 2: Create Snapshot

 Parameters: Selected instance, Snapshot Name

 Description: The service retrieves and displays the instance list owned by the

user. Then, the user selects one instance which he wants to create a snapshot

of and presses the Create Snapshot button. After the cloud’s system has

successfully created it, the service will display the name of the snapshot and

instance name but behind the scenes it will also save the instance’s security

group details and flavor details for later use in the creation of the new instance

at the target cloud.

 Nova - Compute: Instance list: GET,

http://{IP}:{port}/v2/{Tenant_ID}/servers/detail

 Nova - Compute: Create snapshot: POST,

http://{IP}:{port}/v2/{Tenant_ID}/servers/{Instance_ID}/action

 Nova - Compute: Security Group: GET,

http://{IP}:{port}/v2/{Tenant_ID}/servers/{Instance_ID}/os-security-groups

 Nova - Compute: Flavor: GET,

http://{IP}:{port}/v2/{Tenant_ID}/flavors/{Flavor_ID}

Step 3: Download Snapshot

 Parameters: Selected Image

 Description: The service retrieves and displays the image list owned by the

user including snapshots. The user selects the snapshot he previously created

and presses the Download Image button. After the download is performed, the

service displays the name of the image and its size. The downloaded image is

stored temporarily in the service.

Page | 31

 Glance - Image: POST, http://{IP}:{port}/v2/images/{Image_ID}/file

Step 4: Cloud B Authentication

 Parameters: Cloud, Tenant, Username, Password

 Description: The service prepares and performs the call for authentication by

the cloud which the user specified. The service displays the log in details of

the user (Username, Tenant, Target Cloud).

 Keystone - Identity: POST, http://{IP}:{port}/v2.0/tokens

Step 5: Upload Image

 Parameters: Name, Format, Access

 Description: After the user fills the parameters and presses the Upload Image,

the service will create an empty image with the specified name, update the

image by the specified format and access and then upload the data of the

snapshot which is temporarily stored in the service. At the success of this

process, the service will display the newly created image’s details.

 Glance - Image: Create Empty Image: POST, http://{IP}:{port}/v2/images

 Glance - Image: Update Image: PATCH,

http://{IP}:{port}/v2/images/{Image_ID}

 Glance - Image: Upload Image Data: PUT,

http://{IP}:{port}/v2/images/{Image_ID}/file

Step 6: Keypair

 Parameters: User’s Selection

 Description: This step is for configuring the keypair which will be used for

the instance. If the user wants to choose an existing keypair in cloud b, the

service will display him the list of his key pairs, but if he wants to create a new

one he must provide the name of the new keypair. Also, the user can import a

keypair from cloud A and by selecting that, the service will display him the

list of his keypairs in cloud A. Depending on the user’s choice, the service will

select the appropriate keypair for the new instance. In the end, the service

displays the selected keypair name.

Page | 32

 Nova - Compute: Get Keypair: GET, http://{IP}:{port}/v2/{Tenant_ID}/os-

keypairs

 Nova - Compute: Import/Create Keypair: POST,

http://{IP}:{port}/v2/{Tenant_ID}/os-keypairs

Step 7: Launch Instance

 Parameters: Name, Security Group

 Description: The user sets the name and security group of the new instance

and presses Create Instance. The service then, will create a new instance with

the specified name, the image in step 5, the keypair in step 6 and will

automatically set the flavor the same as the snapshotted instance had. The

security group can be empty or “default” meaning that all the security rules of

the snapshotted instance will be copied in the default security group. In case

the user specifies a different name, a new security group will be created with

that name and again will have the security rules of the snapshotted instance in

cloud A. At creation end, the service displays the name and security group of

the new instance.

 Quantum - Network: Create Security Group: POST,

http://{IP}:{port}/v2.0/security-groups

 Nova - Compute: Get Default Security Group: GET,

http://{IP}:{port}/v2/{Tenant_ID}/os-security-groups

 Quantum - Network: Create Security Group Rules: POST,

http://{IP}:{port}/v2.0/security-group-rules

 Nova - Compute: Create Instance: POST,

http://{IP}:{port}/v2/{Tenant_ID}/servers

Step 8: Set Instance IP

 Parameters: IP, Create New One

 Description: The user can select between an existing IP from the list or create

a new one to be allocated to the new instance. The IP list only contains

available IPs and after the user’s choice the service displays the IP number

allocated to the instance.

Page | 33

 Nova - Compute: IP List: GET, http://{IP}:{port}/v2/{Tenant_ID}/os-

floating-ips

 Nova - Compute: Tenant’s Pool: GET, http://{IP}:{port}/v2/{Tenant_ID}/os-

floating-ip-pools

 Nova - Compute: Allocate IP To Tenant: POST,

http://{IP}:{port}/v2/{Tenant_ID}/os-floating-ips

 Nova - Compute: Allocate IP To Instance: POST,

http://{IP}:{port}/v2/{Tenant_ID}/servers/{Instance_ID}/action

Step 9: Overview

 Parameters: N/A

 Description: As a last step, the service will provide to the full overview of the

instance as it is fetched by the cloud’s system (not from saved data). The

overview includes instance name, access, flavor, image and so on.

 Nova - Compute: Instance Details: GET,

http://{IP}:{port}/v2/{Tenant_ID}/servers/{Instance_ID}

 Nova - Compute: Flavor Details: GET,

http://{IP}:{port}/v2/{Tenant_ID}/flavors/{Flavor_ID}

 Nova - Compute: Image Details: GET,

http://{IP}:{port}/v2/{Tenant_ID}/images/{Image_ID}

4.2.5 Instance Monitoring Tool Implementation

This tool allows the consumer to get the usage data of every instance he owns. The

user only needs to provide the information in order to be authenticated by the cloud’s

system and then the service fetches the usage data of his instances. The usage date

includes up-time of each instance, number of cores in use, CPU hours, storage used

and other useful metrics. The performed call for getting the usage data is:

 Nova - Compute: Tenant Usage Data: GET,

http://{IP}:{port}/v2/{Tenant_ID}/os-simple-tenant-usage/{Tenant_ID}

Page | 34

In our implementation, the consumer and the provider of the software must both have

access to the account that the VM is deployed after the migration. This gives the

ability to control the VM to both the consumer and the provider which essentially

means that the user can monitor, use and suspend the VM as per his needs and the

provider of the VM can also monitor the usage in order to get some kind of payment,

agreed from both, and also suspend the usage of his software in case the user is not

honoring their deal. A similar scenario would be if the consumer was the

administrator of a private cloud and the provider was given an account there to

migrate the VM. Again both have the ability to control and monitor the software. But

a more complex scenario would be if the consumer was a government agency or an

army one. In that case, giving an account to the provider could be problematic and

this scenario would require a more specific, elegant and probably more complex

solution.

4.2.6 XML API Call Implementation

Similar to the UI, the xml API call performs calls to the instance migration tool within

the service in order to migrate a VM. The difference is that the information used for

migration is not gathered along the nine steps of the UI but is given at once in an

XML document created by the user. This XML document must follow a specific

syntax that is predefined in order to avoid information being missing. The validity of

the document is verified against an XML schema and with successful validation the

document is passed to the service processing. The service will extract the information

and pass it to the migration tool with the same way as the UI does.

 The xml API call is focused on the migration process and as a result you cannot

monitor your instance through it. Instead the consumer should use the provided UI for

monitoring his instance. Furthermore, when a consumer creates a new keypair, the

cloud’s system provides the keypair file immediately after creation as a result this

option is disabled in the API call.

The Xml syntax follows this schema:

<MigrationSpecs>

Page | 35

<CloudAlogIn>

<cloud> Cloud A </cloud>

<tenant> Cloud A: Tenant Name </tenant>

<username> Cloud A: Username </username>

<password> Cloud A: Password </password>

</CloudAlogIn>

<SnapshotToCreate>

<InstanceID> Instance To Take Snapshot Of </InstanceID>

<SnapshotName> The Name For The Created Snapshot

</SnapshotName>

</SnapshotToCreate>

<CloudBlogIn>

<cloud> Cloud B </cloud>

<tenant> Cloud B: Tenant Name </tenant>

<username> Cloud B: Username </username>

<password> Cloud B: Password </password>

</CloudBlogIn>

<ImageToUpload>

<ImageName> The Name Of The New Image</ImageName>

<Format> Format Of New Image</Format>

<Access> (Public =) True / False </Access>

</ImageToUpload>

<Keypair>

Page | 36

<Name> The Keypair’s Name For The New Instance</Name>

<PublicKey> The Public Key Of The Keypair (Only when importing)

</PublicKey>

</Keypair>

<InstanceToLaunch>

<InstanceName> Name Of The New Instance </InstanceName>

<SecurityGroup> New Security Group Name (Empty or “default” for

default security group) </SecurityGroup>

</InstanceToLaunch>

<AllocateIP>

<IP> IP Of The New Instance (insert “new” for creating a new IP for

the instance) </IP>

</AllocateIP>

</MigrationSpecs>

4.2.7 Apache Tomcat 7

Tomcat 743 is an open source software implementation of the Java Servlet and

JavaServer Pages technologies provided by the Apache foundation. Despite being

free, tomcat is one of the best software for deploying java web applications and we

used it to properly test our service locally. In addition, we also installed it in a VM

running Ubuntu 12.04 and used it as the server of our service deployed in

intellicloud44. Launching an instance in intellicloud is explained in detail below and

after configuring correctly our new instance we install Tomcat 7 via the Ubuntu

console.

43 http://tomcat.apache.org/
44 http://cloud.intellicloud.tuc.gr/horizon/auth/login/

http://tomcat.apache.org/
http://cloud.intellicloud.tuc.gr/horizon/auth/login/

Page | 37

4.2.8 Launching An Instance in Intellicloud

Intellicloud is a private cloud located in Technical University of Crete as a result in

order to get access you need to ask the cloud’s administrators. After getting access to

the cloud we launched an instance called S2D_Service_Server with medium flavor

meaning it has 4GB RAM, 2 VCPUs and 40GB Disk as displayed in Figures 10, 11,

12. Apart from the instance’s name and flavor, we also need to select the image that

we want to make an instance of, the security group, keypair and network of our new

instance. As soon as the cloud’s system launches our new instance, which will look

like in Figure 13, we need to configure the security groups and the floating IP in order

to be able to connect to our instance. Why we need to configure the floating IP, can be

explained by looking at Figure 13 under the IP addresses tab which shows the IPs

currently associated with our new instance. Our instance does not have a public IP

yet, so we cannot access it remotely over the internet. We can partially resolve this by

allocating a new IP to our project (or tenant) and then associating that IP with our

instance (Figure 14) which will allow us to access our instance remotely. We

mentioned that allocating an IP will partially resolve the problem because we also

need to configure the security groups to allow internet traffic to our instance. Inside

the security groups we can create rules which consist of IP protocol, range of the port

and the source of the traffic. For example, port 22 is used for the ssh authentication

that allows us to connect remotely to our instance and port 8080 is used by the

Apache Tomcat 7 (Figure 15). After configuring the security groups and floating IP

we can access our instance via any ssh and telnet client like PuTTY45.

45 http://www.chiark.greenend.org.uk/~sgtatham/putty/

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Page | 38

Figure 10 – Launch Instance – Step 1

Figure 11 – Launch Instance – Step 2

Page | 39

Figure 12 – Launch Instance – Step 3

Figure 13 – New Instance

Page | 40

Figure 14 – Configuring Floating IP

Figure 15 – Configuring Security Group

4.2.8.1 Network Topology Of An Instance

By reviewing the network topology of an instance in the cloud can help us understand

where the configuring of security groups and floating IP is used. This topology exist

for every instance in the cloud so for better understating we will use the new instance

created in the previous section as an example. As displayed in Figure 16, our new

instance, S2D_Service_Server, is connected to a virtual network named lenos_net

(blue line) and has a local IP. In order to be able to connect to our instance remotely

we need to connect it with the ext_net which is the external network. This is done by

associating a (public) floating IP through the virtual router lenos_router to our

instance. In addition, by setting the rules in the security group we are saying to the

Page | 41

virtual router which internet traffic is allowed to pass to our instance from external

sources. So a data flow from an outside source will come from the external network

(green line) to our virtual router, there it will be decided to which instance it is

supposed to go through the IP to which the date was sent and then the rules inside the

security group will determine if the data are allowed to pass through our local network

(blue line) to their destination which in this example is the S2D service server.

Figure 16 – Network Topology

4.2.8.2 Implementation Details

Our service allows easy migration of VMs between Openstack environments and thus

achieving interoperability between Openstack – based clouds. VMs can be transferred

while running without any downtime and the process is easy thanks to a wizard type

GUI. What’s more, when the VM is transferred it does not need to be fully

reconfigured. In an effort to make the migration as automatized as possible some

configurations are taken directly from the source cloud such us the VM’s flavor and

security group rules and other configurations are available through the service such as

setting floating IP and keypair.

Page | 42

Furthermore, the migration can be performed through an XML document making the

migration fully automatized as the user only needs to provide the required information

and the rest are taken care from the service. The information needed can be found

through the two cloud’s dashboard such as security groups and keypair names. Also,

the XML itself is self-explained and human – readable (definition of XML) as can be

seen in section 4.2.6.

Page | 43

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Looking back, the problem we tried to address was the cloud’s lack of use by some

applications fields which possess sensitive data and they are restricted by them or

simply concerned for their data privacy. A solution that could eliminate these

concerns or restrictions that we proposed in this work builds-upon the idea of reverse-

cloud approach. In simple words, the solution revolves around the idea that

application fields which cannot move to public clouds and take advantage of its

offerings can still enjoy some of those offerings by transferring the software they

want to use in their own private clouds. This merging of public and private cloud was

named as a hybrid cloud.

 Following the approach of hybrid cloud technology, we developed a service which

could transfer and deploy a VM along with its software between two Openstack

clouds. This works by using the REST API provided by the Openstack system which

allows the service to perform all the necessary actions required by this process. Our

proposed S2D (Software to Data) service implementation creates a “backup” or

snapshot, as it is called, which contains all the information needed to deploy an

identical VM containing the same operating system and software. Then it transfers the

snapshot and deploys it to its destination cloud. When this process is done, we have

the software that was located on a public cloud and we were unable to use now

running on our own private cloud and we are using it without exposing our data to the

outside world.

We hope that S2D services (such as our proposed one in this work) will pave the way

to application fields with strong privacy or security concerns so that they can still

benefit from the advantages of clouds and at the same time meet their restrictions or

satisfy their concerns regarding the privacy of their data.

Page | 44

5.2 Future Work

Having the potential for expansion and upgrading, our service is a good candidate for

continuing the original work and we will list some of the possible work which could

be done in the future [22].

5.2.1 Multiple Migrations At Once

As it stands right now, migration of multiple VMs at once is not possible. A consumer

can migrate multiple VMs only by going through the process multiple times. Even if

the time that the services takes in order to migrate a VM stays the same, the time that

the user takes to provide the information of each VM is significant and by eliminating

it would result in a faster migration. This could be achieved by converting all the

variables which hold the information of the VM in to arrays and repeat the migrations

steps for each raw of the array. Furthermore, after enabling this functionality to work

with the UI, the only thing left would be to upgrade the XML schema to support

multiple elements in the XML document.

Migrating multiple VMs produces another challenge. For example, if you have two

VMs that communicate with each other through their IP, migrating them would result

in a change of their IPs and thus break the communication between them. A solution

to this could result by carefully designing the software to be easily configurable

without requiring code changes through a configuration file. Another idea for a

possible solution to this would be the developing of a system similar to the Domain

Name System46 (or DNS) used in World Wide Web47. More detailed, each service or

application housed in a VM installed in a cloud somewhere should register its IP with

a unique name like is done for webpages where one IP is register for one domain

name. This would result in the use of that service or application by its unique name

and thus enabling the owner of that service to migrate it anywhere without breaking

anyone else’s service which communicates with his, only by changing the IP

registered to its unique name. For example, if everyone that uses Keyrock48 as his

authentication manager, used it with the unique name Keyrock IDM, the owner of

Keyrock could migrate his service anywhere without breaking the services of others

46 http://el.wikipedia.org/wiki/Domain_Name_System
47 http://en.wikipedia.org/wiki/World_Wide_Web
48 http://catalogue.fiware.org/enablers/identity-management-keyrock

http://el.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/World_Wide_Web
http://catalogue.fiware.org/enablers/identity-management-keyrock

Page | 45

only by registering the new IP with the Keyrock IDM name as opposed to making

everyone change the code of their service anywhere they use the old IP of Keyrock.

5.2.2 Alternative Ways Of Monitoring

Monitoring the use of your software when transferred to another cloud could be done

by several ways. One of them, the one we use, is when both consumer and provider

have access to the VM where the software is housed and thus both have control over

it. A different way of monitoring, not the most secure though, would be if the provider

did not have access to the VM but was reported on a timely loop by the consumer

about the usage of its software. A better, but complex, way of monitoring would be if

the software was pre-designed to send usage information back to the provider or by

designing the software to work for a prepaid time subscription. Both of the last two

ways of monitoring are more complex and require additional components such us a

server to send back the usage information or validate that the prepaid subscription is

still valid. Also, the software itself would require additional developing to support

such functionality.

5.2.3 XML API Functionality

Possible ways to enrich the XML API functionality could be to implement the support

of monitoring or the ability to create a new keypair through an XML API call.

Supporting monitoring could become a complex solution due to the fact that

monitoring could be done with many ways, simple or complex. But as the service

stands right now, monitoring through the XML API could be resolved by getting the

usage data from the cloud’s system in JSON format, converting them to XML and

returning them to the user. Besides this, allowing the user to create and download a

new keypair by using the XML API could be a possible future work. This could be

resolved by returning both the XML response as well as the new keypair. The only

restriction here is that the new keypair must be downloaded right and that the

download only occurs ones, at the begging of every keypairs lifecycle.

Page | 46

References

[1] Schubert L, Jeffery K, Neidecker-Lutz B (2010) “The Future of Cloud

Computing – Opportunities for European cloud computing beyond 2010”,

European Commission, http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-

final.pdf

[2] Ian Foster, Yong Zhao, Ioan Raicu, Shiyong Lu, “Cloud Computing and Grid

Computing 360-Degree Compared”,

http://arxiv.org/ftp/arxiv/papers/0901/0901.0131.pdf

[3] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy

H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin,

Ion Stoica, Matei Zaharia, “Above the Clouds: A Berkeley View of Cloud

Computing”, http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-

28.pdf

[4] Peter Mell, Timothy Grance, “The NIST Definition of Cloud Computing”,

http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf

[5] Cloud Computing Presentation, Stelios Sotiriadis

[6] Jon Kuroda, “Cloud Computing - What Is It (Good For)? ”,

http://www.eecs.berkeley.edu/~jkuroda/talks/clouds/#%281%29

[7] Tom Pfeifer, Stefan Covaci, “Active Protection of Patient Data by Reverse

Cloud Approach”

[8] Open Networking Foundation, Mitch Auster (Editor), Nabil Damouny, John

Harcourt, “OpenFlow™-Enabled Hybrid Cloud Services Connect Enterprise

and Service Provider Data Centers”, https://www.opennetworking.org/

[9] Christoph Thuemmler ,Thomas Magedanz, Thomas Jell, Julius Mueller,

Stefan Covaci, Stefano de Panfilis, Armin Schneider, Klinikum Rechts der

Isar, Anastasius Gavras, “Applying the Software-to-Data Paradigm in Next

Generation E-Health Hybrid Clouds”

[10] Stelios Sotiriadis, Euripides G.M. Petrakis, Stefan Covaci, Paolo Zampognaro,

Eleni Georga, Christoph Thuemmler, “An architecture for designing Future

http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf
http://arxiv.org/ftp/arxiv/papers/0901/0901.0131.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
http://www.eecs.berkeley.edu/~jkuroda/talks/clouds/#%281%29
https://www.opennetworking.org/

Page | 47

Internet (FI) applications in sensitive domains: Expressing the Software to

data paradigm by utilizing hybrid cloud technology”

[11] Charles David Graziano, “A performance analysis of Xen and KVM

hypervisors for hosting the Xen Worlds Project”,

http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=3243&context=etd

[12] VMware, Inc., “Virtualization Overview”,

http://www.vmware.com/pdf/virtualization.pdf

[13] Atul Jha, Johnson D, Kiran Murari, Murthy Raju, Vivek Cherian, Yogesh

Girikumar, “OpenStack Beginner's Guide”, http://arccn.ru/knowledge-

base?pdf=50f6707855f16.pdf

[14] Andy Edmonds, Thijs Metsch, “Open Cloud Computing Interface - RESTful

HTTP Rendering”, https://www.ogf.org/documents/GFD.185.pdf

[15] Amid Khatibi Bardsiri, Seyyed Mohsen Hashemi, “QoS Metrics for Cloud

Computing Services Evaluation”, http://www.mecs-press.org/ijisa/ijisa-v6-

n12/IJISA-V6-N12-4.pdf

[16] Openstack org., “OpenStack Operations Guide”,

http://docs.openstack.org/openstack-ops/content/

[17] Mark Massé, “REST API Design Rulebook”,

http://shop.oreilly.com/product/0636920021575.do

[18] Roy Thomas Fielding, “Architectural Styles and the Design of Network-based

Software Architectures”,

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

[19] Stelios Sotiriadis, Nik Bessis, Pawel Gepner, Nicolas Markatos, “Analysis of

requirements for virtual machine migration in dynamic clouds”

[20] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh , “The Design

and Implementation of Zap: A System for Migrating Computing

Environments”,

http://www.cs.cmu.edu/~sosman/publications/osdi2002/osdi2002_zap.pdf

http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=3243&context=etd
http://www.vmware.com/pdf/virtualization.pdf
http://arccn.ru/knowledge-base?pdf=50f6707855f16.pdf
http://arccn.ru/knowledge-base?pdf=50f6707855f16.pdf
https://www.ogf.org/documents/GFD.185.pdf
http://www.mecs-press.org/ijisa/ijisa-v6-n12/IJISA-V6-N12-4.pdf
http://www.mecs-press.org/ijisa/ijisa-v6-n12/IJISA-V6-N12-4.pdf
http://docs.openstack.org/openstack-ops/content/
http://shop.oreilly.com/product/0636920021575.do
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.cs.cmu.edu/~sosman/publications/osdi2002/osdi2002_zap.pdf

Page | 48

[21] Mitch Auster, Nabil Damouny, John Harcourt, “OpenFlow-Enabled Hybrid

Cloud Services Connect Enterprise and Service Provider Data Centers”,

https://www.opennetworking.org/solution-brief-openflow-enabled-hybrid-

cloud-services-connect-enterprise-and-service-provider-data-centers#page-top

[22] Vakanas, L., Sotiriadis, S. and Petrakis, E. (2015) "Implementing the Cloud

Software to Data approach for OpenStack environments", Adaptive Resource

Management and Scheduling for Cloud Computing, Held in conjunction with

PODC-2015, Donostia-San Sebastián, Spain, on July 20th, 2015,

http://sotiriadis.gr/s2d.pdf

https://www.opennetworking.org/solution-brief-openflow-enabled-hybrid-cloud-services-connect-enterprise-and-service-provider-data-centers%23page-top
https://www.opennetworking.org/solution-brief-openflow-enabled-hybrid-cloud-services-connect-enterprise-and-service-provider-data-centers%23page-top
http://sotiriadis.gr/s2d.pdf

