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Abstract

A stochastic model for one-dimensional virus transport in homogeneous, saturated, semi-infinite
porous media is developed. The model accounts for first-order inactivation of liquid-phase and
adsorbed viruses with different inactivation rate constants, and time-dependent distribution coeffi-
cient. It is hypothesized that the virus adsorption process is described by a local equilibrium expres-
sion with a stochastic time-dependent distribution coefficient. A closed form analytical solution is
obtained by the method of small perturbation or first-order approximation for a semi-infinite porous
medium with a flux-type inlet boundary condition. The results from several simulations indicate that
a time-dependent distribution coefficient results in an enhanced spreading of the liquid-phase virus
concentration.

1. Introduction

Groundwater contamination by pathogenic bacteria and viruses has long been recog-
nized as a serious hazard to human health (Keswick and Gerba, 1980). Most of the
microorganisms in groundwater originate from human and animal sewage from nearby
municipal wastewater discharges, septic tanks, sanitary landfills and agricultural practices.
As microorganisms are released into the subsurface environment, they infiltrate through
the vadose zone, and upon reaching the water table continue to migrate downstream (see
Fig. 1). As groundwater is often consumed without prior conventional water treatment, or
after inadequate treatment, it is necessary to understand fully the mechanisms governing
the transport and fate of these microorganisms in groundwater systems so that the health
risk owing to groundwater pollution by viruses can be evaluated. Mathematical models are
frequently used as tools for prediction of the movement of viruses in the subsurface and
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Notation

a time correlation scale of Ky’ (¢)

A defined in eqn (12)

B defined in eqn (12)

C liquid-phase virus concentration (suspended) (M L™*
C, source concentration (M L™ ?)

C sorbed virus concentration (virus mass/solid mass) (M M~ h
C’ zero mean random fluctuation of < C > (ML~ %
D hydrodynamic dispersion coefficient @rh

D defined in eqn (16)

erfc[x] complementary error function, equal to (2/x'/?) 5 exp( -2)dz
ET) expectation operator

F fundamental solution

G defined in eqn (11)

h defined in eqn (30)

H defined in eqn (12)

K hydraulic conductivity (L ¢~ ')

Ky partition or distribution coefficient (L*> M~ ")

Ky zero-mean random fluctuation of {Kg) (L* M~ ")

Q defined in eqn (27)

t time ()

U average interstitial velocity (L ')

0 defined in eqn (16b)

x spatial coordinate in the longitudinal direction (L)

0 expected value: Ef]

Greek letters

¥ defined in eqn (13)

8() Dirac delta function

€ mathematical artifice (scalar)

6 porosity (liquid volume/porous medium volume)
@)

defined in eqn (23)

inactivation rate constant of liquid-phase viruses (£ ')
inactivation rate constant of adsorbed viruses (¢ ')
defined in eqn (16)

defined in eqn (23)

dummy integration variable

bulk density of the solid matrix (solids mass/aquifer volume) (M L™ )
0% variance of Ky

T dummy integration variable

¥ defined in eqn (13)

w defined in eqn (23)

LT N B > > R

evaluation of long-term health risks, by determining safe distances between drinking water
wells and sources of contamination (Yates et al., 1987).

Viruses are intracellular parasites that can be classified as colloid particles with size
ranging from 0.02 pm to 0.3 um (Brock and Madigan, 1991). They are generally nega-
tively charged and vary widely in shape and chemical composition. A virus contains a
nucleic acid, either DNA or RNA, which is surrounded by a protein coat (capsid)
consisting of a number of protein molecules. These molecules are called capsomeres
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Fig. 1. Schematic illustration of sources and patterns of migration of microorganisms in the subsurface.

and they are arranged in a precise and highly repetitive pattern around nucleic acid.
Because viruses do not have their own respiratory and biosynthetic functions, they repro-
duce inside other cells by a process called infection. Viruses are classified on the basis of
the hosts they infect. The three major groups of viruses are animal viruses, plant viruses,
and bacterial viruses (Brock and Madigan, 1991). The most common types of viruses
found in groundwater which may infect human body are animal viruses such as adeno-
virus, coliphage, coxsackievirus, enterovirus, hepatitis, poliovirus and rotavirus (Gerba
and Keswick, 1981; Yates and Yates, 1988).

The transport and fate of viruses in porous media are mainly governed by virus inacti-
vation and adsorption onto the solid matrix (Vilker, 1981). Virus transport in porous media
is distinguished from solute transport because viruses undergo considerably different
inactivation and adsorption mechanisms. Inactivation of liquid-phase as well as sorbed
or attached viruses is an irreversible sink mechanism, owing to disruption of coat proteins
and degradation of the nucleic acid, which is commonly described by a first-order rate
expression (Yates and Yates, 1988). Unlike the case of solute decay, experimental
observations suggest the inactivation rate is smaller for attached than for liquid-phase
viruses (Hurst et al., 1980; Gerba, 1984; Yates and Yates, 1988). Sobsey et al. (1980),
Gerba (1984), and Yates et al. (1987) indicated that there exists a strong correlation
between virus adsorption and inactivation. They showed that virus survival is prolonged
for viruses adsorbed onto the solid matrix, because they are protected against disruption of
coat protein and degradation of nucleic acid. Thus, inactivation rates of liquid-phase and
attached viruses should not be assumed equal. The most important factor for virus
inactivation in the subsurface is temperature (Yates and Ouyang, 1992). Viruses remain
infective much longer at lower temperatures (1-8°C) than at higher temperatures (20—
32°C) (Park et al., 1992). Therefore, near the top layer of an unsaturated subsurface
formation, where considerable temperature fluctuations may occur, it is important to
account for virus inactivation variation owing to temperature fluctuations. Although
viruses may undergo sorption via physical adsorption, chemical adsorption or ion
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Fig. 2. Size ranges of contaminants present in groundwater and effective pore diameters of various porous media.

exchange in a fashion similar to solute adsorption, the major mechanism of virus attach-
ment results from electrostatic double-layer interactions and Van der Waals forces
(Teutsch et al., 1991). As illustrated in Fig. 2, viruses are larger than dissolved contami-
nants; however, it should be noted that viruses are at the lower end of the colloid size
distribution. For this reason, virus adsorption is often described by either colloid filtration
or solute sorption processes. For example, Sim and Chrysikopoulos (1995) derived
analytical solutions to two deterministic mathematical models for virus transport in
one-dimensional homogeneous, saturated porous media, accounting for first-order
inactivation of liquid-phase and adsorbed viruses with different inactivation rate constants,
and either nonequilibrium reversible virus adsorption (applicable to viruses behaving as
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solutes) or virus filtration (suitable for viruses behaving as colloids). The size of viruses
can be an important parameter if the porous medium is highly heterogeneous, where
viruses may move faster than conservative tracers (Powelson and Gerba, 1994). This
phenomenon is known as the pore size exclusion effect, caused by preferential transport
of colloids through pores larger than their physical sizes. Consequently, pore size exclu-
sion enhances colloid migration (Gerba et al., 1991; Powelson et al., 1993; Abdel-Salam
and Chrysikopoulos, 1995).

Virus adsorption in homogeneous porous media is commonly described by an equili-
brium adsorption relationship assuming an instantaneous equilibrium between viruses in
the liquid-phase and onto the solid matrix. For the case of a linear isotherm (linear
relationship between the amount of a virus in the liquid-phase and sorbed onto the solid
matrix) the extent of equilibrium mass partitioning is often reflected by a constant partition
coefficient or distribution coefficient, which is equal to the slope of the linear sorption
isotherm.

Several mathematical models are available in the literature for virus transport in porous
media, which account for a linear equilibrium adsorption with a constant distribution
coefficient. Grosser (1984) employed a one-dimensional advection—dispersion equation
to describe virus transport in homogeneous porous media under local equilibrium
conditions assuming equal inactivation rates for both adsorbed and liquid-phase viruses.
Tim and Mostaghimi (1991) developed a numerical model for water flow and virus
transport in variably saturated formations assuming that virus adsorption is an equilibrium
process, and virus inactivation is identical for adsorbed as well as liquid-phase viruses.
Park et al. (1992) developed a semi-analytical-numerical model (VIRALT) for both
steady-state and transient vertical virus transport in the unsaturated zone and along the
flowlines in the saturated zone, accounting for equilibrium adsorption and inactivation.
Matthess et al. (1988) presented a model accounting for equilibrium virus adsorption,
inactivation, and filtration. Yates and Ouyang (1992) developed a one-dimensional
numerical model (VIRTUS) that couples the flow of water, viruses, and heat in
unsaturated porous media and accounts for equilibrium adsorption, filtration, and
temperature-dependent inactivation.

Recent investigations suggest that the distribution coefficient for a contaminant in a
physicochemically heterogeneous subsurface formation is not constant but exhibits
temporal as well as spatial variability (Durant and Roberts, 1986; Bosma et al., 1993;
Smith et al., 1993). Excluding the possibilities of mass transport limitations and solute
transformation, this variability may be attributed to many factors, including grain size and
surface area of adsorbent, chemical composition of groundwater, pH, redox potential,
temperature, and solid to liquid ratio (Moody, 1982). Proteins (primary constituents of
viruses) are also known to exhibit sorption variations with fluctuating external conditions
(Norde, 1986). In principle, the results obtained from solutes and proteins can be extended
to viruses. Therefore, it would be reasonable to consider virus adsorption as a time-
dependent process, and consequently the distribution coefficient as a time-dependent
parameter.

Time- and space-dependent adsorption has been observed experimentally and investi-
gated theoretically in many solute transport studies. Chrysikopoulos et al. (1990) devel-
oped an analytical stochastic solute transport model for one-dimensional homogeneous
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porous media to demonstrate that spatially variable retardation increases solute spreading.
Kookana et al., 1992a,b) observed time-dependent pesticide sorption, where the variability
was attributed to the physical heterogeneity of the soil medium. Chrysikopoulos et al.,
1992a,b) employed the generalized Taylor—Aris—Brenner moment analysis to investigate
the observed increase in solute spreading caused by the spatial variability of the retarda-
tion factor and the hydrodynamic parameters. Bellin et al. (1993) and Bosma et al. (1993)
showed that spatially variable adsorption influences significantly the spreading and move-
ment of reactive solutes in physicochemically heterogeneous porous formations. Burr et
al. (1994) considered a three-dimensional numerical model for reactive and non-reactive
solute transport in statistically anisotropic porous media with spatially variable
distribution coefficient to show that the retardation factor increases with time and
plume displacement distance.

The present work focuses on a virus transport model that accounts for virus inactivation
and linear local equilibrium adsorption with a stochastic time-dependent distribution
coefficient. The analytical solution is derived by the method of small perturbation (or
first-order approximation), which has been employed in numerous groundwater (e.g. Bear
and Dagan, 1964; Dagan, 1985) and solute transport investigations (e.g. Gelhar and
Axness, 1983; Chrysikopoulos et al., 1990).

2. Model development
2.1. Transport model

The one-dimensional virus transport, in homogeneous, saturated, but geochemically
heterogeneous porous media, accounting for virus adsorption and inactivation, is governed
by the following partial differential equation (Sim and Chrysikopoulos, 1996):

aC(t * 2
C( ,x)+ BBC (t,x)=Da C(t,x)_UaC(t,x)_
at 6 o ax? ax

AC(1,x) - " gC*(t, x) (1)

where C is the liquid-phase virus concentration, C" is the mass of virus adsorbed on the
solid matrix, D is the hydrodynamic dispersion coefficient, U is the average interstitial
velocity, p is the bulk density of the solid matrix, A is the inactivation rate constant of
liquid-phase viruses, N is the inactivation rate constant of adsorbed viruses, 8 is the
porosity of soil medium, and ¢ is time. The left-hand side of Eq. (1) consists of the virus
accumulation terms, and the last two terms on the right-hand side represent the inactivation
of liquid-phase and adsorbed viruses, respectively.
The appropriate expression for time-dependent local equilibrium virus adsorption is

C™(t,x) =Ky()C(1, x) (2)

where Ky(#) is the time-dependent distribution coefficient; then

aC*(t,x) 0Ky(t) aC(t, x)
T=C(f,x) Y +Kd(t)—at—

)
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In view of Eq. (2) and Eq. (3), Eq. (1) can be written as

9C 3*C(t, aC(t,
(13) | o) P ) _ @00 1,300 0,
3t @ ot ax ox

[1 + ng(t)]
Y %Kd(t)C(t, x) (4)

For a one-dimensional, semi-infinite porous medium in the presence of a continuous
source of viruses, the appropriate initial and boundary conditions are

C(0,x)=0 (52)
-D 9C(1,0) +UC(1,0)=UC, (5b)
dx
G (50)
ox

where C, is the source concentration. The condition Eq. (5) establishes that there is no
initial virus concentration within the one-dimensional porous medium. The constant flux
boundary condition Eq. (5) implies virus concentration discontinuity at the inlet. The
downstream boundary condition Eq. (5) preserves concentration continuity for a semi-
infinite system.

The distribution coefficient and, consequently, the virus concentration are considered to
be stochastic processes. In the absence of experimental evidence a conservative approach
is to assume that the stochastic distribution coefficient is stationary with mean (K =
E[K4(1)], where the angle brackets signify ensemble average or expected value over
time of a random process. The concentration is both nonstationary and space dependent.
Therefore, the liquid-phase virus concentration and the time-dependent distribution coef-
ficient are expressed as

Clt,x)={C)t,x)+ C'(t,x) (6a)

Ky(t)=(Kg)+Kq'(8) (6b)

where (C)(t,x) is the concentration mean, the prime signifies fluctuations in time,
E[C'(t,x)]=E[K4'(1)]=0. Substituting Eq. (6) and Eq. (6) into the governing Eq. (4)
and conditions eqns (5), (5), () and (5) yields

HCXt,x) oC'(t,x)
FYRRF )

@+ 3Kd'(f))

(1+ Sk on)

+ %((C)(t,x) +C'(t, %)) ( > .

( aHC)1,x) 9*C'(t, x)) (8(C)(t, x) oC'(t, x))
=D + -U +
ax? ax? ox ox

~MUCNER)+ C'(1,2) - N G + Ky () (CN12) + C' (1) )
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{CX0,x)+C'(0,x)=0 (8a)

D ( AHCH)(¢,0) . aC’(¢t,0)

) +U{CXt,0)+C'(¢, 0))=UC, (8b)
ox ox

HCNt, =) aC'(t,)
ox * dax
It should be noted that the derivative of (Ky) with respect to time is zero because Ky(f) is
stationary. Taking the ensemble averages of all terms in Eq. (7) and Egs. (8a)—(8c) yields
the stochastic partial differential equation and initial-boundary conditions for the ensem-
ble averaged virus concentration

=0 (8¢)

)
PN, x) KONt x) P
e = oA (o1
{CX0,x)=0 (10a)
-DW +U(CX1,0)=UC, (10b)
KONt )
e (10¢)

where the function G(t,x) represents the effect of stochastic fluctuations of the liquid-phase
virus concentration and the distribution coefficient. This function is defined as follows:

G(t,x)=A(t,x)+B(t,x)+ H(t,x) n
Aleyx)= §<Kd'(r) X > (123)
B(t,x)= §<C’(t,x) BK;;(’)> (12b)
H(1,x) =\ 2(Ky (0 (1) (12¢)

The desired solution of the transport model defined by Eq. (9) and Eqgs (10a)—(10c) is the
expression for the liquid-phase virus concentration mean {C)(¢,x) = E[C(¢,x)].
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2.2. General solution
Assuming that G(t,x) is a given function of  and x, Eq. (9) subject to conditions Eqs.

(10a)—(10c) is solved analytically following the methods presented by Ito (1957a,b) and
Chrysikopoulos et al. (1990), and is given by

{C)t,x) = J; dr J: F(t-71,x, E)Y(7, £)df + Lt) F(t-7,x,0)y(r,0)dr (13a)
where
¥t,x) = i;txl (13b)
15
¥(£,0) = —q,,c°—-— (13c)
1+ %)

and F(tx,£) is the fundamental solution of Eq. (9).

The fundamental solution, F(z.x,£), is the solution to the homogeneous form of Eq. (9)
subject to a point source initial condition and homogeneous boundary conditions as
follows:

OF(t,x,8) o 9°F(t,x,8) -~ 0F(t,x,§)

o D3 0 === -NF(t,x,£) (14)
F(0,x,£)=8(x-£) (15a)
—ﬁw+ﬁF(t,O,£)=O (15b)

ox
OF (1,, £)
T=O (15¢)
where
N D
D= (16a)
P

1+ 5k
. U
U= (16b)

I9)

i )

A+ N LK)

X=[ B /) (16¢)

[1+ 5]

Taking Laplace transforms of Eq. (14) and Egs. (15a)—(15¢) with respect to time variable ¢
and space variable x, using the transformed boundary conditions and applying inverse
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transformations yields the desired fundamecntal solution

12 A 2 ~2
F(LX,E)=< ! ) exp _L_/@_(x—ﬁ) —<X+ U—A>t
4Dt 2D 4Dr
172 /) 2 rr2
+< ! ) exp Ur=8)_(+8) —<X+U>z
4Dt

4D
2D 4Dt 4D
~ ~ A2\ 1/2
U Ux U't x+§&
- —x Jexp| = —ANt|erfc - + =
2D D 4h (4De)'/?

(17)

2.3. Derivation of G(tx)

The nonhomogeneous term, G(t,x), is evaluated by a small perturbation approximation.
Assuming that the fluctuation terms in Eqgs. (6a) and (6b) are small, a dimensionless scalar,
g, is introduced to keep track of the small terms. The mean values and fluctuations are
expressed as follows:

(Ka)=e"Kq0) (18a)
Ky'(0)=&'Kg (1) (18b)
(C)t,x) = ™Co(t, ) + £ (C N1, 1) + (192)
C'(t,x)=e'C"(t,x) + (19b)

where the subscript zero indicates zero-order terms, the subscript one first-order terms, etc.
It should be noted that only a zero-order perturbation is performed for the mean distri-
bution coefficient, because Ky(¢) is assumed stationary. Substituting Eqgs. (18a) and (18b)
and Egs. (19a) and (19b) into the governing Eq. (7) yields

C , C,'(t,
(1 N g[so(KdoHEle]'(t)]) (80 3( oa)ff,x)+£1 3(C1a>ff x)+a] a 165’ x))

+ %(SO(CO)(Z, x)+e4C)(t,x) +£'C, ’(t,x)) (ao KK o) +e! Ko ,(t))

ot ot

D <s° aZ(CU)Et, ) 9C1)(1, %) V! ¥C ’(t,x)>

ox* ax? ox? (20)
U (80 HCoXt,x) Vel KC )1, x) YL ’(t,x))
ox ox ox

N ENCoNt, x) + O ), x) + ' Cy ' (1,x))

_ g)\* (e"Kg0)+ &' Ky '(0) (NCo)1, x) + £'(C )1, x) + €' C, (1, %))
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As the zero-order terms are linearly independent of the first-order terms, etc., the preced-
ing equation must be satisfied separately for terms of each order. Equating coefficients of
&” into Eq. (20) yields

:| G(CO)(I x -D

FHCo)1, %) a(co)(z, x)
ax? ox

|1+ 2Kao) ~ NCoXt ) = EX (KX Co)(t )
@1

This is a deterministic advection—dispersion equation with sorption and decay terms. The
analytical solution to this partial differential equation subject to initial and boundary
conditions Eqgs. (10a)—(10c) where (C)(¢,x) is replaced by (Cy)(t.x), is easily obtained by
Laplace transform techniques as

U x(U -«) XA -kt

(CO)(t,x)=Cc,{ {U+K} exp[ 2D ]erfc[W]
+{ U }ex {X(U*.K)]erfc[ XA +«kt ]
U-x"P| " 2p DA

U? Ux wt xA + Ut
+{ZD ]e p{D A] P &(DA:)“Z]} 22)

where the following substitutions have been employed:

k=(U? +4Dw)'? (23a)
w=A+\" %(Kd()) (23b)
A= 1+ UKuo) (23¢)

A slightly modified version of this solution can also be found in the compilation by Van
Genuchten and Alves (1982, p. 61).
Equating coefficients of order &' into Eq. (20) yields

1 ( a(C())(t x) [ —<Kd0)] <G(C1) t, x BCI'(t,x))

ot ot

=D((32(C1)(t,x)+ azCl’(t,x)) _U(G(Cl)(t,x)+ aCl’(t,x))

ax? ox? ax ox
aKdl’(t) (24)
at

MG, x) + €' (8 x)) - §>\*(Kdo)((C1)(t,X)C1 "(t,x))

a(KdO)

- g«cl)(z,x) +Cy'(1,%)) —<C0>(

— g)\*Kdl "(EXCoX(t, x)

Taking the expected values of all terms yields the following deterministic partial
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differential equation:

3<C1)(t x) 2<C1>(t,x) -U KC X1, x)
ox? ax

|1+ 24Keo)] = NC1)(E,3) = N KX, )

(25)

which, subject to the homogeneous initial and boundary conditions obtained from Egs.
(5a)—(5¢) by keeping first-order terms and taking expected values, has the trivial solution
(CiXtx) = 0.

Subtracting Eq. (25) from Eq. (24) yields the following stochastic partial differential
equation for the first-order fluctuation of liquid-phase virus concentration:

aC,'(t,x
[1+ 2] 22 g, )
20 c (26)
d L, aC (1, * ,
-pT x)—U LD 60— EN ) (00)
ox ox 0
where the following substitution for the undetermined terms was employed:
HCoXt, x 3Ky '(1) p
0.0 2k 0D By KOO By ncinen| @)
The appropriate initial and boundary conditions are
C/'(0,x)=0 (282)
aC,'(¢,0
p¥ 0, UC,'(1,0)=0 (28b)
ax
a ?
3G (=) (28¢)
ax

Assuming that Q(¢,x) is a given function of ¢ and x, the general solution of Eq. (26) subject
to Egs. (28a)-(28c) is given by (Ito, 1957a,b; Chrysikopoulos et al., 1990)

Ci'(t,x)= L dr L F(t-7,x,&)h(7, £)d¢ 29)

where the fundamental solution F(t,x,7) is presented in Eq. (17) (note that in view of Eq.

(18a) (Kg) = (Kgo)), and

_Q(tax)

B [1 + §<Kd0)J

(30)
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It should be noted that the term &Cg)(t,x)/0t in the definition of Q(¢, x), presented by Eq.
(27), is obtained by differentiating Eq. (22) with respect to time to yield

a(CO)(t,x)_C { U XA +xt x(U —«x) —(xA —kt)?
a e [U+K]{2(DA7(E3)1/Z]€XP{ 2D ]exr{ ADAL

U XA —«t x(U +x) — (xA +&t)?
+_U—K][2(DAwt3)l/2]exP[ 2D ]e"p[ 4DAL ]

+'U2 xA-Ut ex Ux o] —(xA+Ut)?
2Dw| | 20are) 2| P | D T AP aDAs

[ U? Ux wt xA+Ut
- m] exp {3 - X] erfc {—_Z(DAt)l/z] } (31)

The first term, A(,x), of the desired function G(z,x), defined in Eq. (11), can be obtained
by employing Egs. (18a) and (18b), Egs. (19a) and (19b) and Eq. (29) into Eq. (12a) and
using the linear property of the expectation operator to yield

_ 2k ind t -
Alt,x)=¢ 0E [Kdl (t)at{J[) d‘rj:F(t T,x,f)h(‘r,f)ds}:l 32)
. g JO dr JO gf.(%x’g)E[Kd, "(t)h(r, £))dE - €° %E[Kdl (DA, x)]

where Leibnitz’s rule has been employed for differentiating the integral with respect to ¢.
Similarly, the second component, B(t,x), of the function G(¢x) is given by

Bl x)=—828E[aKd—1,m

5 F” JO dr JO F(t-7,x,£)h(r, E)df]

(33)
Y K1 '(2)
=—¢ ELer F(t—r,x,S)E[———at h(T,E)] dg

and the third component, H(t,x), by
!
H(t,x)=¢ %X’E [Kdl (1) Jo dr E F(t—1,x, £)h(r, E)df}

LN j "dr j F(t-7,5% EE[Ky (Oh(r, £)|dE (34)
8 Jo 0

2.4. Evaluation of expected value terms

In view of Eq. (27) and Eq. (30), the averaged terms present in Egs. (32)—(34) are
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obtained as

ELKy 0htr, - - 51+ S| " { S0 L1k 0k )
K1 '(7)
or

+{CoX1, §)E [Kdl (1) ] + N{Co7, )E[Kg1 ' (1)K 4y '(T)]}

(35)

|:6Kd1 (t)h( E):l [ + §<Kd0)] -l{ a(CogiT,f) [aK%l (t) ( )J

e o | FaOEL D] e, | 20 O )]}

(36)

It should be noted that the derived solution is quite general, because no assumptions are
made about the time-dependent autocovariance function of the distribution coefficient
fluctuations about its mean value. In this work, the frequently employed exponential
autocovariance function (e.g. Agterberg, 1974; Chrysikopoulos et al., 1990; Bellin et al.,
1993) is assumed to characterize the fluctuations of K4'(¢), and is defined as

=(t-7)
a

E[Kdl'(z)xdl'(T)]=o%<dfexp[ } (=1 37

where oK is the variance of K;'(f), and 4 is the time correlation scale of Ky'(¢). In view of
Eq. (37), ‘the remaining three covariance functions present in Eq. (35) and Eq. (36) are
evaluated as

[ w0 2 )} - AliTOE[Km'(t)(Kdl’(T’LAT)‘Kcn'(T))]

AT

: 1 7 ! 1 1
= lim —E[Ky"()Kg'(7+ A7) - Kgy ' (K g, '(7)]
Ar—0 AT

= 2L BTKy (0K (7)) =, ~-exp [ G T)}
2
= U—I:LCXP{ _(2— T)J = %E[Kdll(t)Kdl’(T)] (38)
E {aK‘;l, Ok, '(r)] = ZEIK (0K o' ()= - SETKa (0K ()] 39
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E[GK(:; « )M] = ?‘EE[Kdll(t Kai'(1)]= - zE[Km'(t)Kdl'(T)] (40)
t a7 otor

Now the desired analytical solution Egs. (13a)-(13c) to the governing stochastic partial
differential equation Eq. (9) subject to conditions Egs. (10a)-(10c) is completed. The
ensemble average (C)(t,x) is evaluated by substituting the derived expression for the
fundamental solution F(tx,£) defined in Eq. (17), and the expression for G(¢,x) defined
by Eq. (11) in conjunction with Egs. (32-(40).

3. Model simulations and discussion

The effect of the time-dependent distribution coefficient on virus transport was inves-
tigated by presenting temporal and spatial distributions of the liquid-phase virus concen-
tration for a variety of situations. For presentation purposes, calculated ensemble average
concentrations were normalized by the source concentration. All integrals in the analytical
solution (Eq. (13a), Egs. (32)—(34)) were evaluated by the extended Simpson’s rule (Press
et al., 1992). Unless otherwise specified, breakthrough curves were predicted at a distance
x = 40 cm downstream from the source. The fixed parameter values used for the model
simulations are shown in Table 1.

For the special case where the inactivation of liquid-phase and adsorbed viruses is equal
to zero (A = A" = 0) and the distribution coefficient is constant (Ky(?) = (Ky)), the derived
solution Egs. (13a)—(13c) is equivalent to the analytical solution of the well-known advec-
tion—dispersion equation with constant coefficients and flux-type inlet boundary condi-
tions ({CXt,x) = C(t,x)) as presented by Lindstrom et al. (1967) and tabulated by Van
Genuchten and Alves (1982, p. 10):

x-Ut 0t 2 (x-01)
C(t,x)= —erf [2(1) )1/2] - CXP[_—Zﬁ-t—]

A A2 ~

C Ux Ut Ux x+Ut
SR [ Pt 4
2( b D)GXP{ Bl 3507 e

where D and U are defined in Eq. (16a) and Eq. (16b), respectively. For this particular case
the analytical solution to the ensemble mean liquid-phase virus concentration (Egs.
(13a)—(13c)) was validated via comparison with Eq. (41). All concentrations were

Table 1

Model parameters for simulations

Parameter Value
Dispersion coefficient D=16cm’h!
Interstitial velocity U=10cmh!
Bulk density p=15gcem™?

Porosity 0 =025
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Fig. 3. Comparison between the stochastic model (Eq. (13), continuous line) and the deterministic model (Eq.
(41), symbols) for the special case where of . =0.0and A=\"=0.0 day™ . (Here £ = 5 days, and (Ky) = 1.0 g cm™.)

conveniently expressed as dimensionless quantities ({C)(¢,x)/C,). Clearly, Fig. 3 illustrates
that the two simulations are virtually identical.

Snapshots (Fig. 4(a)) and breakthrough curves (Fig. 4(b)) created by the stochastic virus
transport model Egs. (13a)—(13c) were compared with the case of virus transport with
constant distribution coefficient. Two different variances for Ky'(f) were examined, includ-
ing the zero-variance, which corresponds to the situation where the distribution coefficient
is constant. It was shown that the temporally variable distribution coefficient leads to
earlier breakthrough and enhanced spreading of the ensemble average liquid-phase
virus concentration. The broadening of the predicted ensemble average liquid-phase
virus concentration curves can also be interpreted as the result of an effective increase
in the dispersive mass flux caused by the time-dependent distribution coefficient. This

1.0 1.0 T T T T
0.8 E 2 -
0.8 c-=0.0 B
S 0.6 1 L? 0.03
3 X 05 ]
v 04 1 ¢
0.2 . 02 r 1
(b)
0.0 L L D 0.0 L 1 I )
0 20 40 60 80 0 3 6 9 12 15
X (cm) t (d)

Fig. 4. Effect of the time-dependent distribution coefficient on (a) spatial and (b) temporal ensemble average
normalized liquid-phase virus concentration profiles for two different variances of the fluctuating distribution
coefficient. (Here ¢ = 5 days, (K3} = 0.33 gem™ °, a = 0.5 days; (a) of, =0.01, A = 0.004 day” ', and \" =
0.002 day™’; (b) 0%, =0.03, A = 0.03 days™ ', and X" = 0.003 days™ ')
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<C>/C,

02 i 1 |
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Fig. 5. Ensemble average normalized liquid- phase virus concentration profiles as a function of (a) time for several
A values with oK =0.0 (dashed lines) and aK +=0.01 (continuous lines), and (b) inactivation rate constant of
liquid-phase viruses for several values of ”K (Here ¢ = 20 days, (Ko = 1.0 g cm™ 3 a =05days, and X'
0.001 days™'))

observation is analogous to the enhancement of solute spreading caused by a spatially
variable retardation factor (Chrysikopoulos et al., 1990).

The effect of inactivation rate constant of liquid-phase viruses on the temporally dis-
tributed ensemble average normalized virus concentration is shown in Fig. 5(a). Three
breakthrough curves, indicated by the continuous lines, were constructed for A = 0.2, 0.4
and 0.8 day™ ', and they were compared with the case of invariable distribution coefficient,
the dashed lines in Fig. 5(a). The effect of oK on hqurd phase virus concentration as a
function of A is illustrated in Fig. 5(b). The values of aK considered are: 0.0, 0.03, 0.05
and 0.1, where 02 =0.0 corresponds to the case of constant (Ky). The concentration
profiles suggest the intuitive result that the liquid-phase virus concentration decreases
with increasing A. Furthermore, it is illustrated that K,(r) leads to earlier breakthrough
of the ensemble average liquid-phase virus concentration.

1.0 T T 0.8 T T T T
a
(a) A =0.001d!
08
(_\3: 0.5 g
A r A
v 9
02 b
00 02 1 1 1 1
0 0 0.02 004 006 008 0.1

t (d) X*(d'l)

Flg 6. Ensemble average normalized liquid-| phase virus concentration profiles as a function of (a) time for several
N’ values with af‘( =0.0 (dashed hnes) and UK »=0.01 (continuous lines), and (b) inactivation rate constant of
adsorbed viruses for several values of ﬂlq, . (Here t = 20 days, (Ky) = 1.0 g cm™°, a = 0.5 days, and A = 0.2 days” ')



216 C.V. Chrysikopoulos, Y. Sim{Journal of Hydrology 185 (1996) 199-219

The effect of inactivation rate constant of adsorbed viruses on the temporally distributed
ensemble average normalized virus concentration is presented in Fig. 6(a), and the effect
of a,2<dr on liquid-phase virus concentration as a function of A" is shown in Fig. 6(b). It is
evident that the normalized ensemble average liquid-phase virus concentration decreases
with increasing A, and that Ky() appears to cause a faster virus breakthrough.

The effect of the time correlation scale of Ky'(f) on spatial and temporal normalized
liquid-phase ensemble average virus concentration distributions is illustrated in Fig. 7(a)
and Fig. 7(b), respectively. Two correlation scales, 0.5 and 1.0 days, were considered. The
concentration profiles were conveniently compared with the case of constant distribution
coefficient (o,zq =0), which is represented by the dashed lines. It is shown that the smaller
the time correlation scale the earlier the breakthrough of the liquid-phase virus concentra-
tion. The correlation scale represents the influence period of K variation (Journel and
Huijbregts, 1978). Therefore, the smaller the time correlation scale, the higher the varia-
bility in the K4 fluctuations and consequently the greater the spreading of the liquid-phase
virus concentration.

The validity of the local equilibrium assumption, neglecting rate limitations, may be
questioned. It is, however, employed in this study in the interest of mathematical simpli-
city. Furthermore, the physical significance of the simulations presented may be criticized
because, at present, there are no experimental data available in the literature to support the
validity of the exponential autocovariance function used. However, it should be noted that
the fundamental results of this work will not be affected qualitatively if another auto-
covariance function had been employed.

4. Summary
A virus transport model was developed for one-dimensional, homogeneous, saturated,

but geochemically heterogeneous porous media. The model accounts for first-order
inactivation of liquid-phase and adsorbed viruses with different inactivation rate constants,

1.0 - T T 1.0 T T
TR a=05d (a) a=05d (b)
08 F LO . :
08
o 0.6 - 1
o =
5 % 0.5
v 04 F B @)
Y
02 k i 0.2+
0.0 1 1 T 0.0 il 1 1
0 20 40 60 0 10 20 30
x (cm) t (d)

Fig. 7. Effect of the time correlation scale of K,'(r) on (a) spatial and (b) temporal ensemble average normalized
liquid-phase virus concentration profiles. The dashed lines represent the situation where the distribution coeffi-
cient is constant. (Here (K} = 1.0 gcm™ >, o, =0.1, A = 0.2 day™ !, and A" = 0.001 day™ ")
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and local equilibrium adsorption described by a stochastic time-dependent distribution
coefficient. The governing transport equation was solved analytically, for a semi-infinite
porous medium with a flux-type inlet boundary condition. The analytical solution to the
governing stochastic partial differential Eq. (9) subject to conditions Egs. (10a)—(10c) is
given by Eqgs. (13a)—(13c), where the expressions for G(¢,x) and F(¢,x,£) are defined in Eq.
(11) and Eq. (17), respectively. The analytical small-perturbation solution is based on the
average of individual realizations of the temporal fluctuations of K;'(¢), and it is general
enough so that any autocovariance function for the time-dependent fluctuations of the
distribution coefficient can be employed.

The effect of temporally variable distribution coefficient on spatial and temporal virus
concentration profiles was investigated. It was shown that the time-dependent distribution
coefficient results in an enhanced spreading of the liquid-phase virus concentration.
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