N

0
\W\”

N T
ame, 51220

Mgy gigu 1o

2XEATAZMOZX APXITEKTONIKHE
ZYNOAOY ENTOAQN KAI
YAOITOIHXZHX VHDL ENOX
EITEEEPTAXTH VLIW

Ao tov

I'ewpyio MNamaddmovio

Amhwpatinn epyaoia tpog HEQIXY TANOWON TwV
novmobecewy yo ™y andxton tou TTVYLOL TOL

Hiextpovixod Mnyavixod s Muyavixod
Ynoloyotow

[ToAvteyveio Konne

NXoavia, 2002

EmAenwv xabnynmg :

Awoviotog [vevpatiegtoc

E€etaotny emtponn :
Awoviorog [vevpatigtoc
Anoatorog AdIac

I'ewpyroc Stapoving

© Copynght by George Papadopoulos,

2002

Instruction Set Architecture and VHDL Implementation
Design of a VLIW Processor

~ ABSTRACT

Historically we can notice a continuous increasing demand for more computing power,
both for general and for special purpose applications. Improvements in processor
performance come from two main architectural features: faster semiconductor technology
coupled with higher integration of components, and exploiting parallelism. Parallelism 1s a
key element in achieving high performance in processors, where different parts of the
computation should be executed in parallel. Some methods for exploiting parallelism
include pipelining and multiple processors. However, recent high performance processors
have depended on Instruction Level Parallelism (ILP) to achieve high execution speed. ILP
processors achieve their high performance by causing multiple operations to execute n
parallel using a combination of hardware and software techniques. Two particular types of
such processor styles are Superscalar and VLIW processors. VLIW and superscalar
implementations have many similarities while the basic idea is the same for both. They
both require an instruction stream analysis to exploit the available ILP. Their difference lies
on the fact that in superscalars this analysis mostly occurs in the hardware during run-time,
while in VLIW designs this is explicitly a compiler’s role. Thus, a VLIW implementation
achieves the same effect as a superscalar one, but the VLIW design is freed from the most
complex parts of high-performance superscalar design.

This thesis goal is the study of both the Superscalar and VLIW architectures, focusing
mostly on VLIW hardware and compiler issues, to define the ISA of a 4-way integer VLIW
processor, and to implement it in the VHDL hardware description language. Defining the
Instruction Set Architecture, in this processor design I include the basic design issues and
organization techniques of the VLIW architecture. It is organized in a five-stage pipeline,
and a complex bypassing network to handle resulted data hazards. In order to venfy the
correctness of the design, I created an assembler that translates an assembly code into
bytecode, which is used as data for the instructions memory. Furthermore, I developed a
software simulator of the processor that executes the same program bytecode. The VHDL
code was verfied using functional simulation, comparing the results with those of the
software simulator.

Table of index

I INTRODUCTION ... |
2 OVERVIEW OF ILP ARCHITECTURESccooccvvveirnnnn... 4
2.1 PIPELINED PROCESSORSooeeeeeeeee e eeeeaaaiaaaaaeee s 4
2.2 SUPERSCALAR ARCHITECTUREooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeaeeeens 5
22,1 Static SChedUIINE......ccvoiiiiiiieiicicceeee et 6
2.2.2 Dynamic SCheduling............ccocoioiiiiiiiiiieiieeeeee e 7
2.3 VLIW ARCHITECTURE......ueeeeieeeeeeeeeeeeeeeeeeeeeeeeeseesseaeesseeeesseeneesens 9
EPIC = TA-04 IS A . oo e, 11
3 ORGANIZATION ISSUES OF SUPERSCALAR AND

VLIW PROCESSORS ..o 13
3.1 THE ORGANIZATION OF A TYPICAL SUPERSCALAR PROCESSOR 13
3.1.1 Static Superscalar (IN-OTAET)c.coveuioeioeieeeeeeeeeeeeeeeeeeeee e 14
3.1.2 Dynamic Superscalar (Out-0f-0rder)...........cocooveeoeeeeeeeeeeeeeeeeeeeeeeeeren, 14

3.2 VLIW GENERAL ORGANIZATION ISSUES — ADVANTAGES OVER
TYPICAL SUPERSCALAR IMPLEMENTATIONovveeeoeeeeeeeeeeeeeeeeoe 19
3.3 VLIW VS STATIC SUPERSCALAR ARCHITECTURE ..oooeeooeeeon 21
3.4 EXTENDED VLIW ORGANIZATION ISSUES ...ooooeoooeeooeooeo 22
4 VLIW — A DETAILED DESCRIPTION ..o 26
4.1 COMPILATION TECHNIQUES FOR VLIW ... 26
4.1.1 Scheduling AIZOTTtMSooviieieiiiceeeeeeeeeeeee e 26
4.1.1.1 Trace Scheduling (TS)......oovovoiooeee oo 27
4.1.1.2 Trace Scheduling — 2co.oooovimiiiiieeeoeeeeee oo 30
4.1.1.3 Region Scheduling...........c.cooovovuiiioiooooeeeeeeeeeeeeeeeeeeeeeo 9|
4.1.1.4 Superblock Schedulingccoouovoieoeeoeeoeeeeeeeeo 31
41.1.5 Percolation Scheduling (PS)...........coooouooooeeeeeeeeeeoeeeeeo 32
4.1.1.6 Critical Path RedUCtion...............ooooiioooooeeoee 34
4.1.1.7 Interaction with register allocation...................oocoooooovooooooo 35
4.1.2 Software PIPEliNING.........co.ovovviviioiieioeeeeeeeeeeeeeeeeeeeeeeeo 35
Modulo Scheduling............coiueiiiiiieieceeeeeeeeeee e 38
4.1.3 Value Prediction for VLIWcoocooooiioooooeoeo 38
4.2 SOME DESIGN ISSUES FOR VLIW ARCHITECTURES ..o 39
4.2.1 Multiway Branchescocooooooiiiieiiieoeeeoeeeeoeeoeoeeoeeoeeo 39
4.2.2 Speculative EXECUtION........o.ovieiuiicieeeeeeeeeeeeeeeeeeeeee oo 41
4.2.3 Predicated EX€CUtiON................oouoveuieeeeoeeeeoeoe 42
4.3 OBIJECT COMPATIBILITY ISSUESoovoovoeeeeoeooeooooo 44
4.3.1 The hardware Approach..............coocoooooemoooeoeooo -
The Split-Issue Approachcoocooovuioiiiiioiooeeoooooo 45
The Fill-Unit Approach...........c.coooueioioiiooooeeoeeeeeoeoooooo 45
4.3.2 The Software Approach - Dynamic Rescheduling 46
5 DESIGN OF A VLIW INTEGER PROCESSOR........ 48

52 PROCESSOR ARCHITECTURE AND INSTRUCTION e 24 50

5.2.1 OPEIALONScovrurueuenccnensusriniersssasssssnsssassssssssnssmasusscatatsssssasatsnsasasessasasssssses 50
52.1.1 Control Transfer OPErations..........c.ceoeerreseseresususmsssmsessssesssiussisnsssssscs e 50
52.1.2 Load/ Store OPErations............cccouruermruerssesesmesmsusssnsnssssssssssssinnsssssssssencnes 51
52.1.3 Arithmetic / Logic OPErations...........ceceveeueercsrsucsessnsesnsncssussnsacssssansnsacensaces 51

5.2.2 INStruCtion FOIMAL........oevvviiiiiiiiiiiieeeieeiiiiiiiniiniirnrrseeeeeeseeeeeetsasassasseseesssnaaaae 53

5.3 PROCESSOR CORE DESIGNccoeiiiiiiieeeeaiiiinreeeensiiinneeeessssennnnnns 55

5.3.1 INStruction DECOAETceevrrrureeieirreresssnensessesscssssnssasssnasssssssansesssssssassassssas 55

5.3.2 REZSET FIleccoiviieeieecceiccisniiiinensteessssssescsscisssnerstssasssnsesssnssnsasees 56

5.3.3 FUNCHONAl UNIES ..oooiiiiiiieeeeeeeieiiieeeeeeenrrreeeeessenrnrreeseeesssssnsnseeesssssssssssssnnns 57

5.3.4 Control Design for the Non-Pipelined Implementation..............c.cccoocenes 60
The Instruction EXeCUtion StEPS.........cccceeireeerrermssessessmsssessesessssacssnsmisnissssnsssassssesassssasens 62

53.5 INSHUCHON CACRE ...ccineeisessrioresssvamsosssasassssassorsnnanssasesasassssansssasasanmusssans ssensavas 63

5360 Data CAshioeesssmsrssmmemmssssassrssstsaesassanmenibs tissis AE LTS AR IS SR LEs sy smnntod 63

54 PIPELINING THE PROCESSOR.ooeesssnsssassssssnmsssiarsssssnmssmsasssmesssums 66

5.4.1 Pipeling StrUCLUTEcccoeveruireriniiiniiniierestetessstsestseseeessetsist st ssanes 66

54.2 Pipelined Control.......o..cxmuremmmencemmenisssssssmssasissinsssnsnssssnsmpassssassssvsnssmonsnmpsonses 70

54.3 Bypassing and Stallsc.csmmnmmnsmmmemsommmessmmmmrmsrsyeseses 72
543.1 IDALATHAZATASccociiisvacsassesasssssssasennesvessssnssssnssnnnnnnnssnsis st ssssiFasaetons sistesssnsrass 72
5432 CONTOL HAZATAS ..ot 75

6 TESTING — TOOLS AND SIMULATION METHODS 77
6.1 THE ASSEMBLY LANGUAGEccoiiuieiiiiiieeeeeiieeeeeeieieeeeesieineeeee e 77
6.2 BYTECODE GENERATION USING THE ASSEMBLER.........ccceeerunnen. 79
0.3 THE SIMULATOR.......ociiiiiieeeiieeeeeeiaeeeeeiasaeeeeeaseeeeesnssaeeeeessnnnaeeeesas 80
OA TEBTING...cosseremransoessossrmessiosssssmmmsins svetimssats s ssssios s s csmss s o s 82

64.1 A Complete Routine EXamiple................covminneonosorserassmsasansansssaisgasssosssisnsasss 83

7 CONCLUSIONS .o 87
7.1 THESIS CONCLUSIONScoiuuiieiureeeeieeeeeeeeeeteeeeeaeeeeeseeeeeeasseeeenaneens 87
7.2 THE FUTURE OF VLIW PROCESSORS.......ccouutiiiiiieeiieeeeeiieeeeeenenn &8

The Intel Itanium ProCESSOTvviiiiiiieeeeee e 89
The Transmeta Crus0€ ProCeSSOT..........vviiiiiiiie e 91

List of Figures and tables

Chapter 2
Figure 2. 1: In-Order-Issue with In-Order-Completion DIagraimL.......cooeeseeeeevvvmmmsssssssssssssssssssimsssssssssene 7
Figure 2. 2 : In-Order-Issue with Out-Of-Order-Completion DIagramm. ..c.ooooooccuuummmumsmssmmmsmssssssssssssseeee 7
Figure 2. 3 : Out-Of-Order-Issue with Out-Of-Order-Completion DIagram.ccceeeeeessssssssssmmsenrsvnnseeses 8
Figure 2. 4 : Detection of parallelism and packaging of operations into instructions s done, by the
COMPILET, OFf-LINE. covuvvriverritnneririssisie s aas s a0 10
Chapter 3
Figure 3. 1: Block Diagram of a Typical Superscalar Implementation. It uses reservation stations
to implement the instruction window, and reorder buffer to maintain the state of the
TEEISTEL FIIE. cuvrevuurerenennniassiasssissssisses s s R R s 15
Figure 3. 2 : Superscalar Execution Diagram. It performs out-of-order eXecution. ... 15
Figure 3. 3 : A typical Superscalar Pipeline Structure. Three pipelines operating concurrently. At
some pipeline stages the FUs may be shared by multiple pipelines and also of variable
JENGERL correeereecncrctncnn s R R 18
Figure 3. 4 : Block Diagram of a Generic VLIW implementation. It seems quite similar to the
Superscalar one, but with most of the complex parts are not included.coovvvenrerenseernsecrnnnne. 20
Figure 3. 5 : The pipeline structure of a typical VLIW processor with five pipeline stages. It
reminds of RISCs pipeline designs. The only exception is in the EX stage where the
operations in the Long Instruction are executed in parallel.........oouueeerenrenseisessnsrisessssisnenanennne 21
Figure 3. 6 : The General View of a Typical VLIW Processor Organizationesssssssssssssssssses 23
Figure 3. 7 : The Long Instruction Word Format for the above Organization (figure 3.6).c...ouu..... 23
Figure 3. 8 : A VLIW Processor Organization with Increased Hardware Resources.ocuuvrruerrrnnnnee. 24
Figure 3. 9 : The Long Instruction Word Format for the above Organization (figure 3.8).cccouuee. 24
Chapter 4
Figure 4. 1: Compensation code at IeJOIN POIMLS.uueuseresersscssmssessmmsesssssssmsssssssssssssssssssssssssssssssssssses 29
Figiire 4. 2 Compensation eade at SPUL [OMIS. ciuisessaxssssssnsasesssss ssssssmmsmmsms s smmimmas 29

Figure 4. 3 : Loop-free code Trace Scheduling example. (1) The code flow graph; each block
represents a basic block of the code. (1) A trace is selected from the flow graph. (i1) The
trace has been 1solated and scheduled but hasn’t been relinked to the rest of the code. (iv)
The new compensation code appears at the code splits [S] and rejoins [R]......cceeereeeresresunnnncs 30

Figure 4. 4 : Superblock Scheduling Example. (1)) The code control flow graph. (i) A trace is
selected from the flow graph. (w) Superblock formation and branch expansion.

Superblocks are Shown in green COIOUL. ...t sssees ¥4
Figure 4. 5 : Move-up instruction transformation example. A: Move-up of a single assignment.

B: Move-up of multiple aSSIZNMENL.cuueurerererernsinseesssssesssesseessssssessessssssssssssssssssssasssnssens 34
Figure 4. 6 : A conditional branch move-up transformation example.........c.oocueevererrrrnrrereeneersssseennen. 34
Figure 4. 7 : A Loop Unrolling eXample...........cceeuueercunneunsieneiissnsiesinsssssesssssesssssessessessssssesssssssssssessens 36
Figure 4. 8 : A software-pipelined loop chooses instructions from different loop iterations, thus

separating the dependent instructions within one iteration of the original loop.c..eee... 36
Figure 4. 9 : Software Pipelining EXamPple.cccuevverveerueereecrcseecieieciecessesecsessesesssesessesssssssssssssseees 37
Figure 4. 10 : The previous code example after software pipeline. Instructions in the loop are

independent. These code groups can usually fit in a VLIW (InStruction).eeeeeeeeeeennece 38
Figure 4. 11: An example program segment and its CONAItION TIEE.cveveeeeceeeeeeereereeerssesessessessesenns 40
Figure 4. 12 : Example of speculative eXeCUtION.vucvuecveeveceeeeeieeeeeeeeeeseeesesesssssssssessesses s s s 42
Figure 4. 13 : Example of data SPecUlation...........cccueeueereennriinnssssssiesesssssesesesssseseseesesesssesesssesen 42
Figure 4. 14 : An if-CONVErSION eXAMPIe.ccuuuereumerusnseussnsireesssiessssessssssssssssssssssseesessesesssessssssessssssees 43

v

Figure 4. 15 : (i) The hardware approach to compatibility, (i) The off-line (static) rescheduling of

the program for COMPAUDILLY.uuuuuerreesuessssssserssmssssssssssmmsssssssssssssssssssssssssssssssss s ennssseces 46
Figure 4. 16 : Dynamic ReSChedULNG. .u.uuuuuuumummmmsssnscecesssssssnnsinmssssssssssssssssssss s sssseneness 47
Chapter 5
Figure 5. 1: The general non-pipelined view of the organization of my VLIW processor design......... 49
Figure 5. 2 : Layout of the operations of the instruction word. Each one is encoded in one of the

THIEE TYPES. ceurruereuesersncsusiassssssisssanssssssssas bbb 53
Figure 5. 3 : Instruction Decoder Block DIagramm.cuuuuuucceviumsunnrssmmmmssssisssssssssisssssssnisssssssssssssinsss 55
Figure 5. 4 : Register File Block DIagramL.......oocvvuuuereeusserimsscsmmssssssmmsssismessisssssssssssssssssssssssessssssenss 57
Figure 5. 5 : Block Diagram of the Load / Store Interface GIrCUItIY.......cvvuummuunresrsssssssssssessssssssssssssses 59
Figure 5. 6 : Block Diagram of the Program Counter ULeereeusscessmsssnsssssmssssssisssssssssssssssssssenss 59
Figure 5. 7 : Bit-Mapping of the instruction Word and the Operations.uceummsssissssssssnssnnne. 61
Figure 5. 8 : The Complete Datapath for the Single Cycle Implementation of the VLIW Processor. ..65
Figure 5. 9 : Pipeline Structure of Typical RISC ProCesSOrS. cu.ueuuseruusecrussecsussesssssssssssssssssssssssssssssssss 66
Figure 5. 10 : Pipeline Structure of my VLIW ProCESSOT....muuurussrsssssssssssessssesssssssssssssssssssssssssssssssssses 67

Figure 5. 11: The Pipelined Version of the Processor. The Datapath is separated in the five stages.
The pipeline registers , in orange colour, separate each pipeline stage and are labeled by the
T IR 10 1 PSSRSO —— 68
Figure 5. 12 : Bypassing description. a. Values from the EX/MEM pipeline registers are bypassed
to the ALU input. b. Values from the MEM/WB pipeline registers are bypassed to the

0oV IR /11 T —— 73
Figure 5. 13 : Bypassing network diagram. Each one of the four output values in the pipeline
registers may be bypassed to each one of the eight inputs of the ALU.ccovvuvvrvcurviuncinncnnnns 74
Figure 5. 14 : Pipeline stall example. Unlike 12 to which loaded data can be bypassed, data required
for execution of 11 are not yet loaded from the data cache and cannot be bypassed. 75
Table 5. 1: Complete list of the Long Instruction Word Operations.c.eceeeeeeuerseesecsessseseeeenne 52
Table 5. 2 : Encoding of the operations of the InStruction WOId.eeeeeeeeseueeeseesesensersensesssnseessennes 54
Chapter 6
Figure 6. 1: A sample of an assembly code for the VLIW ProCessor.uweueenseesssesssssesssesssssesees 77
Figure 6. 2 : The output file with the bytecode of the code in figure 6. 1, generated by the
asxembler: Pans of code in bloecoloutate PIOPS, .ot 80
Figure 6. 3 : Sample of the output files generated by the software simulator, after simulating the
code 1n figure 6. 1. (a) part of the log_file, (b) the first 32 memory cells, (c) the register file.....82
Figure 6. 4 : A sample of the Memory Initialization File, generated for loading of the code in
FIGUIE 6. Tttt s s sssesse s esss s ssassasssssssssassanees 83
Figure 6. 5 : The example program that computes the factorial of a number recursively, in VLIW
SEEHE (csnmieensiiocs s e et B A AV S AR S e mees s B BRSSO SRR ARG 84

Figure 6. 6 : The post execution state of the register file and the memory. The values given by the
software simulator are identical to the ones derived from the functional simulation of the
[PEOICESBIIT. snesnensonsanssssshnnsarmasssusssaieswssss i ses 5451055545 H4545H3 SHS5R5n3 3434 WSS AR S4 1 SOma hwemmmmmmsmsonomresassraesssas 85

Table 6. 1: Execution results of both the sequential and VLIW code, and a comparison between
LT 5505388 AR iaimeanes ey SR AR R P AR AR YRS S RS R 85

Chapter 7

Figure 7. 1: IA-64 instruction format. (a) IA-64 VLIW instruction encoding, (b) IA-64 operation

ENCOAINE, ovurvvevriaseciseeesasncesseenssesssesssessssssssssssessssasssessssssses st ssseeseeseseeeseneesseeesesssesssseesesesseessneens 90

Chapter 1

1 INTRODUCTION

Historically we can notice a continuous increasing demand for more computing power,
both for general and for special purpose applications. Improvements in processor
performance come from two main architectural features: faster semiconductor technology
and exploiting parallelism. Parallelism can at first be achieved by overlapping of different
parts of execution. This is achieved with pipelining, which takes advantage of only
temporal parallelism. Pipelining is now universally implemented in high-performance
processors. However, concurrency is the key element to achieve high performance
computing and thus a higher level of parallelism is necessary to achieve this and has been
issued in many ways, such as Data Level Parallelism, Instruction Level Parallelism,
Algorithm Level Parallelism, Thread Level Parallelism etc.

Parallel processing on multiprocessors, multicomputers and processor clusters has
traditionally involved a high degree of programming effort in mapping an algorithm to a
form that can better exploit multiple processors and threads of execution. Such
reorganization has often been productively applied especially for scientific programs. The
general-purpose muicroprocessor industry on the other hand has pursued methods of
automatically speeding up also for non-parallel programs without major restructuring
effort. This lead to the development of Instruction Level Parallel (ILP) processors that try
to speed up program execution by overlapping the execution of multiple instructions from

an otherwise sequential program.

Two main approaches for mstruction level parallelism are the Superscalar architecture and
the VLIW architecture. They both require the same instruction stream analysis in order to
exploit the available parallelism, but they differ in the way this analysis occurs. Superscalar
processors perform this analysis during run-time. They can improve performance for all

types of operations while they also preserve the architectural compatibility. This

compatibility advantage is the key of the success for many desktop microprocessors such
as the x86 architecture that dominates the desktop computer market. But the x86 is now
recognized as a deficient instruction set while the recent superscalar implementations
turmed out to be very complicated. VLIWSs seem to be a quite promising direction in
microprocessor architecture. Their big advantage is that a highly parallel implementation 1s
simpler and cheaper to build in VLIW architecture than an equivalent superscalar

processor, as the scheduling to exploit the available parallelism is explicitly a software

responsibility.

Because VLIW architecture transfers most of the complexity from hardware to software,
better and more efficient compilers are required. Currently, some of the highest
performance Digital Signal Processors are of the VLIW architecture. These types of
applications are less difficult to compile for VLIW. Some VLIW DSP architectures include
the StarCore SC140 from Agere Systems and Motorola, the TMS320C6x series from Texas
Instruments, the Carmel Core from Infineon, etc. Finally, VLIW compiler technology has
made major advances during the last decade. Thus, duning the last two years there have
been great efforts in building desktop microprocessors, like the Transmeta Crusoe
processor [3] and the most recent Intel Itanium processor, both of which have special

hardware to support x86 emulation.

In this thesis I will present and analyze the VLIW architecture and discuss some issues that
characterise such processors showing both their advantages and the drawbacks. I will also
show some of the design aspects of VLIW architecture building an integer VLIW
processor. First, I present a thorough overview of high performance processor
architectures, discussing the two main architectural approaches that exploit instructions
level parallelism, superscalar and VLIW. In chapter 3, I analyse in detail some main issues
about the VLIW architecture, such as compilation techniques, design aspects, object
compatbility issues etc. Then, in the fourth chapter, I describe some organization issues of
the VLIW architecture performing a comparison with those of the superscalar approach,

and showing the distinction between VLIW and the static superscalar approach.

Finally, in chapters 5 and 6 I present the implementation of an integer VLIW processor,
providing all the necessary information about its organization and architectural design, and
the way it was tested. At first I designed the architecture and the instruction set, and I

designed a non-pipelined single cycle implementation, describing its organization. I also

[RS]

wrote an assembler that translates the assembler language code to the machine’s bytecode,
in order to easily write programs for processor testing. Moreover, I created a software
simulator in C language that simulates the instruction execution of the processor, in order
to verify the processor execution results. After I validated the proper functionality of the
non-pipelined implementation, I designed the final pipelined version of the processor,
adding the necessary pipeline registers and implementing other required pipeline hardware.
The last chapter concludes this thesis, while I present a general description of the Intel
Ttanium processor based on the IA-64 (EPIO) architecture, and the Transmeta Crusoe

processor, a VLIW processor compatible with the x86 architecture.

Chapter 2

2 OVERVIEW OF ILP ARCHITECTURES

The most commonly used way in achieving parallelism is pipeline, where multiple
instructions are overlapped in execution. With Instruction Level Parallelism, multiple
instructions can be issued per cycle by a single processor. These multiple instructions can
also be pipelined to achieve an even more extensive parallelism. ILP processors achieve
their high performance by allowing multiple operations to execute in parallel using a
combination of compiler and hardware techniques. One particular style of processor
design is Very Long Instruction Word (VLIW), which tries to achieve high levels of
instruction level parallelism by executing long instruction words composed of multple
operations. Another approach is superscalar processors, that issue various numbers of
instructions per cycle. Parallel processors is another way used to achieve high level of
parallelism, where a collection of processing elements cooperate to execute identical

operations simultaneously. However, paralle] processors are out of the scope of this thesis.

In this chapter I will firstly present a sort description of the pipeline implementation
technique, as a global charactenistic of all processor designs, which takes advantage of
temporal parallelism by using pipelined functional units. Moreover, I will discuss these two

processor designs and also figure out the main issues of each one of them.
2.1 Pipelined Processors

Pipelining 1s an implementation technique whereby multiple instructions are overlapped in
execution, and it 1s the key used to make fast CPUs. It is sometimes compared to a
manufacturing assembly line in which different parts of a product are being assembled at
the same ume although ultimately there may be some parts that have to be assembled

before others are. Even if there is some sequential dependency, the overall process can take

advantage of those operations that can proceed concurrently. In the world of processors
each step in the pipeline completes a part of the instruction. Each of these steps is called a
pipe stage or a pipe segment. These stages are connected one to the next to form a pipe.

The throughput of the pipelining is determined by how often an instruction exits the
pipeline.

Pipelining is a technique that exploits parallelism among instructions in a sequential
instruction stream. It yields a reduction in the average execution time per instruction. This
reduction can be obtained by decreasing the clock cycle time of the pipelined machine or
by decreasing the number of clock cycles per instruction, or both. Typically, the goal of
pipelining is a decreased CPI and thus provides increased throughput, which reaches one
instruction per cycle when the pipeline is filled, though it can also be used to improve the
clock speed too.

2.2 Superscalar Architecture

Superscalar processors are uniprocessor organizations capable of increasing machine
performance by executing multiple scalar instructions in each cycle. In these machines, an
instruction fetching unit can fetch more than one instruction at a time from the instruction
cache. Then an instruction decoding logic decides when instructions are independent and
thus executed simultaneously by sufficient execution units which are able to process several
instructions at one time. These are the key to superscalar execution. The execution units

may also be pipelined.

Typical superscalar architectures shift most responsibilities to the hardware. Although they
are able to run unmodified object code of former sequential architectures, they certainly
need compiler assistance to execute programs efficiently. Hardware complexity limits
superscalars to a very small run-time scheduling window. Therefore the compiler has to
schedule code in such a way that operations within the scheduling window are independent

from each other as much as possible.

Instruction-level parallelism can be extracted either statically (at compile-time) or
dynamically (at run-time). It is generally known that changes in control flow due to
conditional branches can severely restrict ILP. Furthermore, branch prediction and
speculative execution can further expose ‘parallelism. Superscalar architectures mostly use

dynamic scheduling that transfers all ILP complexity to the hardware.

2.2.1 Static Scheduling

The basis for statically scheduled superscalar processors comes from the field of
horizontally-microcoded machines and Very Long Instruction Word (VLIW) architectures.
Statically scheduled superscalar processors exploit instruction level parallelism with a
modest amount of hardware by exposing the machine’s parallel architecture i the
instruction set. The compiler potentially has an infinite instruction window and uses global
program knowledge, dependences, and resource constraints in constructing each
instruction schedule. Thus, instructions are scheduled statically across many basic blocks
and are fetched by the processor within single fetch blocks. Instructions that are selected to
be independent are then issued and executed in program order. Thus, there is no overhead

during run-time to schedule instructions, and the hardware is simple.

However, the effectiveness of statically scheduled superscalar processors is limited because
of many unpredictable delays caused in many cases. For example, because the compiler
does not know the address of some memory access operations, a static scheduler may not
be able to achieve load bypassing efficiently. Moreover, it is unable to determine detailed
cache behaviour at compile time. Thus, instruction issue is stalled when a functional unit
conflict occurs or when an instruction has a multiple cycle latency. Finally, the effectiveness
of static scheduling is also limited by the presence of conditional branches because
speculative computation in compilers is too complex and not much powerful and it

prevents efficient parallelization.

The Multiflow and Impact compilers are two basic examples of software schedulers that
perform global code motion. Both rely on static branch prediction techniques to generate
traces of execution that form the basis for global code motion between multiple basic
blocks. The Multiflow compiler uses trace scheduling to perform code motion, whereas the
Impact compiler includes a variant of trace scheduling called superblock scheduling. Other
techniques for static global scheduling are the Enhanced Percolation Scheduling, the RS/600
Global Sdhediuling and the Region Schediling,

An example of such a superscalar processor is the TigerSHARC from Analog Devices [2].
TigerSHARK is a DSP superscalar processor where all the scheduling is determined by the

compiler and performs in-order instruction execution.

2.2.2 Dynamic Scheduling

In order to generate efficient schedules, compilers are given machine descriptions that
specify the functional units, their latencies, and any issue restrictions. Even with these
detailed machine descriptions, the compiler cannot get a complete picture of the dynamic
behaviour of the machine. The memory system and branch architecture are two
components whose behaviour cannot be fully represented by the machine description
because they introduce instruction behaviour that is variable at run-time. Dynamic
scheduling has the ability to address each of these issues by performing scheduling at

run-time, when this information becomes known.

Decode Execute Write Cycle

I 12 11 12 12 I1 12 1
I3 14 3 14 14 I3 14 2
I3 14 I3 14 14 I3 14 3
14 14 14 14 4

I5 16 I5 16 16 I5 16 5
16 16 16 16 6

7

8

Figure 2. 1 : In-Order-Issue with In-Order-

Completion Diagram.

Decode Execute Write Cycle
I1 12 1
13 14 I1 12 2
14 I1 I3 12 3
I5 16 14 I1 I3 4
16 I5 14 5
16 I5 6
16 7

Figure 2. 2 : In-Order-Issue with Out-Of-Order-
Completion Diagram.

Multiple instruction execution occurs when the hardware issues independent instructions
from a window of dynamic instructions. To maintain scalar code compatibility, all

mnstruction scheduling is done from this window by the hardware. Unlike to statically

scheduled processors, in dynamically scheduled processors three primary issue policies are
supported; in-order issue with in order completion, in-order issue with out-of-order
completion and out-of-order issue. The first issue policy is the one implemented in the
static superscalar machines and is described in Figure 2. 1. With out-of-order completion,
as shown in Figure 2. 2 instructions can be pipelined within each functional unit, but in
order to preserve program correctness, results must be written in correct order. Thus, a
reorder buffer can be used to keep track of the original instruction order and to support

recovery from exceptions and speculative execution.

Decode Window Execute Write Cycle
[L i I
B | 4 112 nye 2
15 | 16 1314) 11 13 12 3
| 14,1516 | 6 | 14 TR EY 4
P I5 15 4 | 16 5
] i I5 6

Figure 2. 3 : Out-Of-Order-Issue with Out-Of-
Order-Completion Diagram.

The most aggressive issue policy is implemented with out-of-order issue, which provides
these machines the ability to simultaneously execute instructions from multiple basic
blocks and not in program order. This method is described in Figure 2. 3. These
nstructions are buffered in a lookahead window and decoding may continue on
subsequent instructions even if prior instructions have not been executed. However, this
buffering is still performed in program order, and the issuing from that window to the
functional units is the one performed out-of-order. Moreover, data dependencies must still
be preserved so the processor must determine which instructions in the window can be
issued to the functional units and executed. Buffering within the processor supports the
conditional evaluation of instructions that are executed before previously fetched branches
(speculative execution), increasing the opportunities for the hardware to find instructions
to issue in parallel. The advantage of this technique is that it provides a larger number of
instructions from which the processor can find independent instructions to exploit

machine parallelism.

The main advantage of typical superscalar processors, where the scheduling is performed

during run-time, is that it provides backward object code compatbility. Even an old

compiled sequential code can be run, as the code scheduling for the specific architecture is
performed by the processor itself. Although all these hardware abilities overcome some
static scheduling drawbacks and make compilers much simpler, dynamic scheduling has
also some shortcomings. The additional hardware, necessary to look far ahead in the
instruction stream to detect and schedule independent operations out of order, is costly
and complex. Finally, in contrast to the compiler capabilities, the hardware can only analyze
a small window of dynamic instructions during each cycle, thus limiting the possible

candidates for parallel issue.
2.3 VLIV Architecture

Out of order speculative execution comes at a significant hardware expense. The
complexity and non-scalability of the hardware structures used to implement these features
could significantly hinder the performance of future processors. An altemative solution to
this problem is to simplify processor hardware and transfer some of the complexity of
extracting ILP to the compiler and run time system the solution explored by VLIW

Processors.

Joseph Fisher, who coined the acronym VLIW [5] characterized such machines as
architectures which issue one long instruction per cycle, where each long instruction called
a MultOp consists of many tightly coupled independent operations each of which execute
in a small and statically predictable number of cycles. However, the multiple number of
such operations s also fixed. Unlike its successor (superscalar architecture), in the VLIW
architecture, all scheduling is static. This means that the complex task of grouping
independent operations into a MultiOp and being handled as a result of ILP is done by a
compiler or binary translator. Thus, the processor freed from the cumbersome task of
dependence analysis has to merely execute in parallel the operations contained within a

MultiOp. This leads to simpler and faster processors implementations

This is also the main advantage of VLIW. Hardware complexity is reduced greatly since the
executable instructions are generated directly by the compiler that are then processed as
“native code” by the execution units present in the hardware. An important thing to note is
that the compiler used here is not the same as the one used in HLL (High Level Language)
code compilation. This compiler is VLIW specific. It recompiles the program source code

into the executable VLIW instruction code, which is then passed to the processor. Thus, a

VLIW compiler is needed as an integral part of the VLIW system. Figure 2. 4 shows how

instructions are packaged into Very Long Instruction Words and build the instructions for

VLIW machines.

Sequential
code

v 4 14 v
Op4 Op2 OpP3 OP4

instruction - 1

1 « »
. tVLI\t/.V —> 0p;q opz empty = opy
nstructions instruction - 2
N » »
9Py | SWPY | OBy | OPs

instruction - 3

Figure 2. 4 : Detection of parallelism and
packaging of operations into instructions is done, by
the compiler, off-line.

VLIW machine are in some respects similar to vector machines, but they are also different.
Vector machines perform the same operation on a vector of data while the VLIW

machines have to have many more branch statements in the instructions, which is a key

difference.

The long instruction word called a MultiOp consists of multiple arithmetic, logic and
control operations each of which would probably be an individual operation on a simple
Reduced Instruction Set Computing processor. Thus, VLIW is sometimes viewed as the

next step beyond the RISC architecture, which also works with a limited set of relatively

10

basic instructions and can usually execute more that one instruction at a ume (a
characteristic referred to as superscalar). Since the hardware complexity is moved to the
software, the challenge in VLIW systems is to design a compiler or pre-processor that is
intelligent enough to decide how to build the very long instruction words. If dynamic pre-

processing is done as the program is run, performance may be a concern.

VLIW architecture technology had predated existing Superscalar technology that proved
more useful due to greater compatibility with traditional architectures. However different,
both architectures were based on the same ideology of “multiple-instruction” execution,
referred to as Instruction Level Parallelism. Since superscalar technology was more
compatible with traditional architectures, VLIW systems quickly became less popular as
Superscalar systems started dominating the market. Two companies were founded in 1984
to build VLIW based mini supercomputers. One was Multiflow, started by Fisher and
colleagues from Yale University, which delivered the Trace 200, 300 and 500 seres
machines. The other was Cydrome founded by Bob Rau, who was another VLIW pioneer,
and his colleagues. In 1987, Cydrome delivered its first machine, the 256 bit Cydra 5, which
included hardware support for software pipelining, a feature that can be found in Intel
Itanium processors today. Unfortunately, the early VLIW machines falled commercially
owing to which Muluflow closed in 1990 and Cydrome mn 1998.

Since then recent improvements to VLIW architectures have lead to their rebirth and re-
emergence into the high-performance computer systems industry. Some of the notable
VLIW processors of recent years are the Crusoe processor from Transmeta, the Trimedia
media processor from Philips, the TMS320C62x DSP’s from Texas Instruments and the

[A-64 or Itanium from Intel.
EPIC- IA-64 ISA

EPIC stands for Explicitly Parallel Instruction Computing, which comprises an evolution
of traditional VLIW architectures developed by Intel and Hewlett Packard, and IA-64 is an
mstruction set architecture based on EPIC. In this design style, the interface between
hardware and software is designed to enable the software to exploit all available compile-
time information, and efficiently deliver this information to the hardware. The EPIC
constructs provide powerful architectural semantics, and enable the software to make

global optimizations across a large scheduling scope, thereby exposing available instruction

11

level parallelism to the hardware. The hardware takes advantage of this enhanced ILP, and

provides abundant execution resources.

Despite Intel’s marketing claims, EPIC is a VLIW implementation, probably in order to
ease compatibility with current x86 architecture. The easiest way to achieve this is to have a
small part of the chip that can read the old complex x86 instruction and expand 1t into a
single VLIW instruction group. This allows for an on-chip emulator to run old code, and it

is easiest to do by converting one instruction into a long instruction word.

The first product based on the EPIC design technology is the Itanium processor member
of the Itanium processor family. The first version was code-named “Merced” and was
onginally scheduled for 1997. Finally, Intel has already announced the next version of the

Itanium processor family with the code-name “McKinley”.

Chapter 3

3 ORGANIZATION ISSUES OF SUPERSCALAR AND
VLIW PROCESSORS

VLIW and superscalar processors are both instruction-level parallel architectures that
require the same instruction stream analysis in order to exploit the available ILP. Their
difference lies on the way this analysis occurs. However, statically scheduled superscalar
processors have many similarities to VLIW processors, but they are sull different. In this
chapter, I will firstly present the main organization issues of both static and dynamic
superscalar architectures. Then I will describe the organization of VLIW architecture
performing a comparison with typical superscalar implementation and showing the
distinction between them, and also discuss the difference between VLIW and static

superscalar designs. Finally, I will extend some organization issues on VLIW processors.
3.1 The Organization of a Typical Superscalar Processor

As T have already discussed in Chapter 2, most superscalar processor implementations
share fundamental complexities. It is the need for the hardware to discover and exploit
instruction-level parallelism. The only exception is the limited portion of those superscalar
processors that are based explicitly on the compiler to do the whole scheduling task.
Superscalar processors may also be static or dynamic. However, what is mostly used is the
dynamic superscalar architecture, which implements all the features of a typical superscalar
processor. On the other hand, static superscalars use part of the features of typical
superscalar processors, simplifying the hardware. Actually the main difference between
static and dynamic superscalars is focused in the way instructions are executed. Static
superscalars perform in-order execution, while dynamic ones perform out-of-order

execution.

13

Firstly, I will briefly describe the static superscalar architecture and its features. Then, I will
present the dynamic superscalar describing all the features of a typical superscalar

processor, where some of whose are also implemented in static superscalars too.

3.1.1 Static Superscalar (in-order)

A superscalar machine can be either statically or dynamically scheduled. Typical superscalar
processors perform all the scheduling tasks dynamically, that 1s dependency and structural
checking, branch prediction and out-of-order execution. In case scheduling is made
explicitly by the compiler, superscalar hardware is freed from the complex parts of code
scheduling and the execution of the instructions scheduled is performed in program order.
This comprises a fully static superscalar design with a much simpler hardware than a typical
dynamic superscalar design. However, in a common approach for a static superscalar

processor some tasks are still performed during run-time.

Static superscalar processors generally forgo the advantages of dynamic instruction
scheduling in favour of a high clock rate. A number of instructions are fetched and
decoded in parallel. The hardware is responsible to identify and eliminate possible
structural hazards and data dependencies among instructions. Moreover, to get more
parallelism, control dependencies due to updates of the program counter, especially due to
conditional branches, have to be overcome. Thus, branch and jump prediction may be
performed before issuing instructions to the functional units. Following instruction fetch,
and decode, instructions are inspected and arranged according to their type (the functional
unit that they will use). Then, provided operand is ready, instructions are issued for
execution. During this entire process, instructions are not allowed to pass one another.

They are issued and complete the execution in program order.
3.1.2 Dynamic Superscalar (out-of-order)

As already mentioned, dynamic superscalar processors share all the features of typical
superscalar processors. Figure 3. 1 shows a block diagram of the hardware organization of
a typical superscalar processor and Figure 3. 2 describes the superscalar execution
procedure. The major parts this implementation consists of are the execution units, which
are also called as functional units (FU), the instruction buffers, decoders and dispatcher

that feed the execution units with operations, and register file and reorder buffer that feed

14

the FUs with operands. Functional units may be a collection of other units like integer

ALUs, floating point ALUs, load/ store units and control/ transfer units.

INSTRUCTION
‘ CACHE

[]

Reorder Buffer

Instruction Buffers, Register File
Decoders, Dispatcher

|
e : 1 —] _ EECesslee

Execution Unit #1 Execution Unit #2 Execution Unit #3 Execution Unit #4

| DATA CACHE

Figure 3. 1 : Block Diagram of a Typical
Superscalar Implementation. It uses reservation
stations to implement the instruction window, and
reorder buffer to maintain the state of the register

file.
instruction instruction
instruction fetch dispatch e
’ e e======- . : ; ;

) and branch ' K instruction instruction
static prediction 1 execution reorder and
rogri i

program) commit
/,/'#
1
|
S— —
1
\L
1
1
1

window of
execution

Figure 3. 2 : Superscalar Execution Diagram. It
performs out-of-order execution.

15

To sustain the execution of multiple instructions per cycle the fetch phase must be able to
ferch muluple instructions per cycle form the instruction cache. The number of
instructions fetched per cycle should at least match the peak instruction decode and
execution rate and in some cases it has to be higher. This extra margin of instruction fetch
bandwidth allows for instruction cache misses and for situations where fewer than the
maximum number of mnstructions can be fetched. Thus instruction buffers are used so that
to build up a “stockpile” to carry the processor through periods when instructions fetching

is stalled or restricted.

The job of the decode phase is to set up one or more execution uples for each instruction.
An execution tuple is an ordered list containing information that define an operation to be
executed, the identities of storage elements where the input operands reside (or will
eventually reside) and locations where the instruction’s result must be placed. The
instruction dispatcher examines a window of instructions contained in a buffer. The
dispatcher looks at the instructions in the window and decides which ones can be
dispatched to functional units. It tries to dispatch as many Instructions at once as is
possible; in other words it attempts to discover the maximum amount of instruction level
parallelism. Higher degrees of superscalar execution with more functional units require

wider windows and more sophisticated dispatcher.

As already mentioned in chapter 2, there are three main policies for issue and completion
of instructions: in-order issue and completion, in-order issue with out-of-order completion,
and out-of-order issue and completion. There are two main methods to implement an

nstruction window in order to support out-of-order execution:

* Reseruion stations: Reservation stations were first proposed as a part of Tomasulo’s
algorithm. They partition the instruction window by functional units. Only
instructions at each station are considered for scheduling on its assigned functional

unit, which simplifies control logic.

o Cownl instrution wndow A central instruction window keeps all unissued
mnstructions in one unit, regardless of the type of the instruction. It determines
which ready-to-run instructions are scheduled onto what functional unit, which

thereby complicates control logic.

16

The default instruction fetching method is to increment the program counter by the
number of instructions fetched, and to use the incremented program counter to fetch the
next block of instructions. However, in case of branch instructions, the fetch mechanism
must be redirected to fetch instructions from the branch target. Conceptually, the
processor must wait until the branch is resolved before it can begin to look for parallelism
at the target of branch. To avoid waiting for conditional branches to be resolved, high-
performance superscalar implementations implement branch prediction. With branch
prediction, the processor makes an early guess about the outcome of the branch and begins
looking for parallelism along the predicted path. The act of dispatching and executing

nstructions from a predicted, but unconfirmed, path is called speculative execution.

Unfortunately, branch prediction is not always accurate. Thus, with speculative execution,
It 1s necessary to be able to b the effects of speculatively executed instructions in the
case of a mispredicted branch. Some implementations simply prevent instructions along
the predicted path from progressing far enough to modify any visible processor state, but
to gain the most from speculative execution 1t is necessary to allow instructions along the

predicted path to execute fully.

Moreover, out-of-order issue and completion requires that the state of the register file be
maintained. In order to maintain the state of the register file and also to be able to undo
the effects of full, speculative execution, a hardware structure called a reorder buffer is the
most common approach employed. This structure is an adjunct to the register file that
keeps track of all the results produced by instructions that have recently been executed or
that have been dispatched to execution units but have not yet completed. The reorder
buffer provides a place for results of speculatively executed instruction and is also used to
maintain proper instruction ordering. It renames each destination register instance to a
unique identifier. An associative lookup maps this identifier to the entry when results are
written. After the execution completion the values are written back to the register file and
the identifiers are discarded. In case of a conditional branch, when it is resolved, the results
of the speculatively executed instructions can be either dropped from the reorder buffer
(branch mispredicted) or written from the buffer to the register file (branch predicted

correctly).

The final phase of the lifetime of an instruction is the commit state, where the effects of

the instruction are allowed to modify the logical process state. The purpose of this phase is

17

to implement the appearance of a sequential execution model even though the actual
execution is very likely non-sequential, due to speculative execution and out-of-order

instruction completion.

Another important characteristic of superscalar processors is that of pipelining. In an 72
issue typical superscalar processor, the instruction decoding and execution resources are
increased to form essentially 72 pipelines that operate concurrently. This pipeline structure
is shown in Figure 3. 3. Moreover at some pipeline stages, the functional units may be
shared by multple pipelines. At first, the fetch pipeline, reads instructions from the
nstruction cache, decodes them, performs register renaming and dispatching to the
nstruction issue buffers, the reservation stations for example. Then, 7 pipelines allow
overlapped instruction execution by issuing instructions to the corresponding functional
units. The out-of-order execution capability of superscalar processors results in variable
length pipelines for each functional unit. For example, a floating-point unit may require

more time to complete execution and thus more pipeline stages.

Time
.
IF ID
IF ID
IF ID 3
IF ID s WB
Q@ IF ID R WB
2 = IF D B WB
8 = IF WB
= IF WB
IF WB
MEM WB
MEM WB
v MEM WB

Figure 3. 3 : A typical Superscalar Pipeline
Structure. Three pipelines operating concurrently.
At some pipeline stages the FUs may be shared by
multiple pipelines and also of variable length.

18

3.2 VLIW General Organization Issues - Advantages over Typical

Superscalar Implementation

A VLIW implementation achieves the same effect as a superscalar implementation, but the

VLIW design does so without the most complex parts of high-performance superscalar

design.

VLIW instructions explicitly specify several independent operations, which means that they
explicitly specify parallelism. Thus, it is not necessary to have decoding and dispatching
hardware that tries to reconstruct parallelism from a seral instruction stream as in
superscalar processors. Instead of having hardware attempt to discover parallelism, VLIW
processors rely on the compiler that generates the VLIW code to explicitly specify

parallelism.

This 1s also the main advantage of VLIW processors for many reasons. First, the compiler
has the ability to look at much larger windows of instructions than the hardware. For a
superscalar processor, a larger hardware window implies a larger amount of logic and
therefore chip area. What is more, even before a simple limit on the amount of hardware is
reached, complexity may adversely affect the speed of the logic, and thus the window size
is constrained to avoid reducing the clock speed of the chip. Software windows can be
arbitrarily large. As, a result, exploiting parallelism from a software window is likely to

provide better results.

Moreover, the compiler has knowledge of the source code of the program. Source code
typically contains important information about program behaviour that can be used to help
exploit maximum parallelism at the instruction-set level. There are some scheduling
techniques that help to produce efficient VLIW codes, such as the trace scheduling,
superblock scheduling, software pipelining, loop unrolling etc, which can be employed to
dramatically improve the quality of code output by the compiler. Taking advantage of these
techniques the compiler may have access to some of the dynamic information that would

be apparent to the hardware dispatch logic in a superscalar processor.

Furthermore, with sufficient registers, it is possible to mimic the functions of the
superscalar implementation’s reorder buffer. The purpose of the reorder buffer is to allow
a superscalar processor to speculatively execute instructions and then be able to quickly

discard the speculative results if necessary. With sufficient registers, a VLIW machine can

19

place the results of speculatively executed instructions in temporary registers. The compiler
knows how many instructions will be speculatively executed, so it simply uses the
temporary registers along the speculated (predicted) path and ignores the values in those

registers along the path that will be taken if the branch tum out to have been mispredicted.

Figure 3. 4 shows a generic VLIW implementation, without the complex reorder buffer

and decoding and dispatching logic.

Finally, the pipeline structure for VLIW processors is quite more simple to implement. The
compiler defines the operations executed in parallel explicitly and groups them into the
instruction (VLIW). Thus, the pipeline structure for the VLIW architecture could be
compared to that typically used in RISC processors, assuming the long instruction word as
a RISC instruction. In, fact the operations that comprise a long instruction word are
supposed to be RISC operations and are executed in parallel in the EX pipeline stage. As,
shown in Figure 3. 5, in contrast to the pipeline structure of superscalar architecture, all the
operations in each instruction word are fetched passed through the pipeline stages as if

they are a single instruction.

INSTRUCTION
CACHE

Execution Unit #1 Execution Unit #2 Execution Unit #3 Execution Unit #4

\
‘ DATA CACHE

Figure 3. 4 : Block Diagram of a Generic VLIW
implementation. It seems quite similar to the
Superscalar one, but with most of the complex parts
are not included.

Successive
Instructions

Figure 3. 5 : The pipeline structure of a typical
VLIW processor with five pipeline stages. It
reminds of RISCs pipeline designs. The only
exception is in the EX stage where the operations in
the Long Instruction are executed in parallel.

3.3 VLIW vs Static Superscalar Architecture

The basis for fully static superscalar processors comes from the field of horzontally-
microcoded machines and VLIW architectures. In fact, the distinction between fully static
superscalar machines and VLIWs is blurry. The basic difference comes from the
terminology of the two architectures. VLIW machines refer to operations within a singly

fetched instruction, while static superscalar processors refer to instructions within a single

fetch block.

Both machines rely on the compiler to generate efficient schedulers to explicitly specify the
instruction-level parallelism and manage the hardware resources. The scheduling
techniques used for static superscalar processors are also used to perform code scheduling
for VLIW processors as well. Such paradigms are the Muluflow compiler that uses #ace
shediding and the Impact compiler that uses supedlodk scheduling. Another scheduling
technique commonly used by both superscalar and VLIW machines is the enhaned

perclation scheduling.

As far as for typical static superscalars is concerned, the difference is more obvious. Typical

static superscalar processors perform main code scheduling during run-time and not at

21

compile-time. However, all the static superscalar designs seem to be quite similar to
VLIWs as far as issuing for execution is concemed. VLIW processors issue all the
operations contained in the instruction word concurrently and proceed with parallel
execution. Static Superscalars, issue the already scheduled instructions to the functional

units for parallel execution.
3.4 Extended VLIW Organization Issues

Operations executed by a processor can be divided into three types. A corresponding type

of hardware execution unit executes each type of operation:

1. Control Transfer (CT) operations
2. Load/Store (LS) operations
3. Anthmetic/ Logic (AL) operations

Based on this classification, the set of hardware resources available to a processor can be

expressed in terms of the following parameters:

1. Maximum number of control transfer operations in each instruction
2. Maximum number of load/store operations in each instruction
3. Maximum number of arithmetic/logic operations in each instruction

These parameters are determined by the number of execution units of each type available

in the processor hardware.

A key element for a processor that maintains a CPI factor below one (by executing more
than one operation per cycle) is the ability to fetch multiple instructions. The instruction
fetch bandwidth available to the processor places an upper bound on the maximum
performance the processor can attain. It is also important that the processor have sufficient

hardware resources to execute all of the operations that are fetched in each cycle.

A typical VLIW processor is capable of fetching and executing four operations in each
cycle. As shown in Figure 3. 6, the processor has four execution units: one CTU (Control
Transter Unit), one LSU (Load/Store Unit), and two ALU's (Arithmetic/ Logic Unit).
Thus, in each cycle, the processor can execute one control transfer operation, one
load/store operation, and two arithmetic/logic operations, all in parallel. The CTU interact

with the Program Counter (PC), and the LSU is connected to the data memory subsystem.

22

Finally all the four execution units interact with a global Register File (RF). The instruction
format for this configuration is shown in Figure 3. 7. For each hardware execution unut,
there is an operation field in the instruction. This will allow the processor to fetch as many

operations as the hardware resources of the processor can handle in each cycle.

Data MEM

Program Counter

U I

CTU ALU ALU LSU

§ 8§ 3 3

Global Register File

Figure 3. 6 : The General View of a Typical VLIW
Processor Organization

CT AL AL LS

Figure 3. 7 : The Long Instruction Word Format
for the above Organization (figure 3.6).

One disadvantage of the organization shown in Figure 3. 6 and the associated instruction
format is that instructions that do not have control transfer or load/store operations will
result in empty slots in the long instruction word. This effectively results in wasted

nstruction fetch bandwidth.

To achieve a higher level of performance, we could add more execution units and fetch
more operations in each long instruction word. For example, the organization shown in
Figure 3. 8 can fetch and execute eight operations in each cycle. The performance
improvement is due to the increase in the fetch bandwidth and the existence of additional

execution units. However, this organization still suffers from the problem that the first one

23

did. As shown in the instruction format in Figure 3. 9, to keep the machine completely
busy, each instruction must have two CT operations, two LS operations, and four AL
operations. Instructions that do not have CT or LS operations result in wasted instruction
fetch bandwidth. Another problem with this new configuration is that the register file must
have twice as many ports as before. This will slow down the register file and will lengthen

the processor cycle time.

Data MEM

Program Counter

f] f] f] f]

CTU CTU LSU LSU

g]

Global Register File

I 3

ALU ALU ALU ALU

Figure 3. 8 : A VLIW Processor Organization with
Increased Hardware Resources.

RN e AL | AL | AL | AL |

Figure 3. 9 : The Long Instruction Word Format
for the above Organization (figure 3.8).

An alternative approach to increase performance is to combine different types of execution
units into groups. Each group corresponds to an operation field in a long instruction word
and is commonly known as Functional Unit. The advantage of this strategy is that each
operation field in an instruction is not restricted to a specific type. A long instruction word

can have various combinations of CT, LS, and AL operations. This will result in better

24

utilization of the instruction fetch bandwidth because to keep the machine busy we are not

required to have a specific combination of operations in each mstruction.

This strategy can improve the performance of the processor because it allows the
processor to execute instructions that have, for example, four AL operations whereas the
configuration shown in Figure 3. 6 will require that the instruction be broken into two
instructions during the Resource Constrained Scheduling phase of compilation. This will
increase the path length of the program and result in more execution cycles. An important
aspect of this organizational strategy is that performance gain is achieved without
increasing the required instruction fetch bandwidth or the number of register file ports.

Since each register file port is now connected to more than one execution unit, there is a

greater load on each port.

Another important goal is to keep the machine organization as “clean” as possible in terms
of its resource limitations. This approach will simplify code generation. A machine with
many restrictions and idiosyncrastes is difficult to generate good code for. A simple way to
achieve this is to make each functional unit able to execute all types of operations
supported in the instruction set. This would considerably simplify code generation because

the compiler would not have to worry about assignment of operations to functional units.

However, combining all types of execution units in each functional unit has also some
drawbacks. Being able to send operations of all types to all functional units increases

hardware complexity and resources.

25

Chapter 4

4 VLIW - ADETAILED DESCRIPTION

In this chapter I perform a thorough description of many issues concerning VLIW
architectures. I firstly discuss some software and then some hardware techniques used to
exploit the maximum available parallelism for a VLIW processor. Finally, I present the
main drawback of VLIW processors, the object compatibility problem, and discuss some

approaches in order to overcome the problem.
4.1 Compilation Techniques for VLIW

Generating code for a VLIW processor is a difficult issue as the compiler is faced with the
task of extracting parallelism from a sequential algorithm and scheduling independent
operations concurrently. The degree of ILP that can be uncovered by the compiler is based

on some compilation techniques that I summarize in this section.
4.1.1 Scheduling Algorithms

Instruction scheduling algorithms are critical to the performance of a VLIW processor.
The algorithms I discuss here are also called global acyclic schedulers and each of these is
able to perform code motion across branches, including speculative code motion. In this
section, I describe some important scheduling algorithms, starting with the trae scbediing
algorithm, which started off the VLIW style of architectures, approaching it more
extensively. Moreover, I briefly discuss the role of speadation and predicated exeaution, and
finally the relationship of instruction scheduling to the task of register allocation.

26

4111 Trace Scheduling (TS)

Compilers for the first ILP processors used a 3 phase method to generate code. The passes

were:

o Generate a sequential program. Analyze each basic block in the sequential program

for independent operations.

e Schedule independent operations within the same block in parallel if sufficient

hardware resources are available.

e Move operations between blocks when possible.

This three-phase approach fails to exploit much of the ILP available in the program for
two reasons. Often times, operations in a basic block are dependent on each other.
Therefore sufficient ILP may not be available within a basic block. Moreover arbitrary
choices made while scheduling basic blocks make it difficult to move operations between
blocks.

Trace scheduling is a profile driven method developed by Joseph Fisher at Yale in the
Bulldog compiler as a part of the ELI-512 project [5] to circumvent this problem. In trace
scheduling, a set of commonly executed sequence of blocks is gathered together into a

trace and the whole trace is scheduled together.

To sketch the trace algorithm briefly, we start by generating a possibly unoptimized version
of the program, run it on sample input and collect statistics on the probability of each
conditional branch. Then, given a basic block level data dependence graph (also known as
DAG for Directed Acylic Graph), we can find loop free linear sequence of basic blocks

which have a high probability of execution. Such a sequence is called a trace.

Considening the trace as if it were a basic block, we build a DAG for it considering
branches like all other operations. In order to prevent the scheduler from making
absolutely illegal code motions between blocks, we add new, special edges to the graph.
The new edges are drawn between operations that conditionally jump to where the variable
is live and could be overwritten. Also edges are added to preserve the relative order of
conditional branches. The edges are added to the graph and look just like all the other

edges. The scheduler may now schedule the resulting DAG as if it were a basic block doing

register allocation and function unit selection as each operation is scheduled.

Scheduling the trace can be done using any local scheduling algorithm. After the scheduling

though, program semantics may have changed. Two cases have to be looked at:

e Rgars: A first problem is that branches into the trace (rejoins) at some point
cannot always branch to the same place after the trace has been scheduled.
Operations that are moved below the onginal branch target must not be executed
when that branch is taken. This means that the highest valid target in the trace is
the point below the last instruction onginating from before the target. But then
again, some operations that were orginally found after the old join point may now
appear before the new join point. Since these instructions have to be executed
when the branch into the trace is taken, they are duplicated into a new basic block,

which is inserted before the branch. An example is given in Figure 4. 1.

e Sphis: Another problem is when operations that were used to precede a conditional
branch are moved below that branch. Since these operations were originally always
executed, they have to be duplicated in a new basic block preceding the off-trace

target of the conditional jump. Such an example is given in Figure 4. 2.
This recovery process of the algorithm is also called bookkegping.

Finally, the new trace is linked into the old DAG. An example of the trace scheduling
procedure is described in steps in Figure 4. 3. After scheduling the very first trace, new
operations would have been added to the onginal DAG. We, then, pick a different
frequent trace and schedule it. This is repeated untill the DAG has been covered using

disjoint traces and no unscheduled operations remain.

28

=
Operation 1 { Operation 1
Operation 2 Operation 6 | Operation 4 Operation 6
v ' v
Operation 3 Operation 3 OperaJIon 3
. v
Operation 4 Operation 2 E Operation 4
v voox _
Operation 5 Operation 5 Compensation
code
before after
Figure 4. 1: Compensation code at rejoin points.
Operation 1 Operation 1
v
Operation 2 Conditional
branch Compensation
Conditional e
branch Operation 2 Operation 2
v v v
Operation 3 Operation 4 Operation 3 Operation 4
before after

Figure 4. 2 : Compensation code at split points.

Trace scheduling provides a natural solution for loops. Hand coders use software
pipelining to increase parallelism, rewriting a loop so as to do pieces of several consecutive
iterations simultaneously. Trace scheduling can be trivially extended to do software
pipelining on any loop. We simply unroll the loop for many iterations. The unrolled loop is

a stream, and the stream gets compacted as above.

29

Figure 4. 3 : Loop-free code Trace Scheduling
example. () The code flow graph; each block
represents a basic block of the code. (1) A trace is
selected from the flow graph. (i) The trace has
been isolated and scheduled but hasn’t been
relinked to the rest of the code. (iv) The new
compensation code appears at the code splits [S]
and rejoins [R].

4112 Trace Scheduling - 2

Trace scheduling - 2 [4] goes beyond trace scheduling in that it allows nonlinear code
motion, Le. it allows operations from both sides of a conditional branch to be moved
above the branch. Trace scheduling usually misses code motions that are speculative or
moves operations from one trace to another, because a trace contains only one direction of
if-then-else structures. Trace Scheduling-2, on the other hand, enables the motion of code
before a conditional jump from both directions at the same time and is more considerate

of code coming from less likely paths.

Trace scheduling - 2 uses an expected value function called speculative yield to consider the
cost of speculative execution and decide whether or not to move operations from one
block to another. Unlike trace scheduling, which operates on a linear sequence of blocks,
the newer algonthm works by picking clusters of operations where each cluster is a
maximal set of operations that are connected without back edges in the flow graph of the

program.

30

4.1.1.3 Region Scheduling

Region Scheduling is a program transformation system that operates upon the program
dependence graph representation of the program. Instruction scheduling is carried out by
first reordering code within a control dependence region and then by performing code
motions across control dependent regions. In regions that contain too much parallelism for
the underlying architecture to be exploited, parts of their instructions are moved to other
regions where more parallelism can be used. Code reordering within a control dependence
region is given preference because it results in less code growth and unlike speculative code
motion it does not harm any program paths. Such code reordering, unlike trace scheduling,
also enables instructions to be moved across loop boundaries. Much of the redundant code
generated by a trace scheduler during bookkeeping is also avoided. The nstruction
schedule is progressively improved through code motion transformations untul no more

improvements in the schedule can be idenufied.
4.1.14 Superblock Scheduling

Super block scheduling is a region scheduling algorithm developed in conjunction with the
Impact compiler at the University of Illinois [6]. Like trace scheduling, super block
scheduling 1s based on the premise that to extract ILP from a sequential program, the
compiler should perform code motion across multiple basic blocks. Unlike trace
scheduling, super block scheduling is driven by static branch analysis, not profile data. A
super block is a set of basic blocks in which control may enter only at the top, but may exit

at more than one point.

Super blocks are formed by first identifying traces and then eliminating side entries into a
trace by a process called tail duplication. Tail duplication works by creating a separate
off-trace copy of the basic blocks in between a side entrance and the trace exit and
redirecting the edge corresponding to the side entry to the copy. An example of superblock
formation is shown in Figure 4. 4. Traces are identified using static branch analysis based
on loop detection, heuristic hazard avoidance and heuristics for path selection. Loop

detection identifies loops and marks loop back edges as taken and loop exits as not taken.

31

(i)

BBx: Basic Block x
SBx: Superblock x

Figure 4. 4 : Superblock Scheduling Example.
() The code control flow graph. (i) A trace is
selected from the flow graph. (i) Superblock
formation and branch expansion. Superblocks are
shown in green colour.

Hazard avoidance uses a set of heuristics to detect situations like ambiguous stores and
procedure calls that could a cause a compiler to use conservative optimization strategies
and then predicts the branches so as to avoid having to optimize hazards. Path selection
heuristics use the opcode of a branch, its operands and the contents of its successor blocks
to predict its direction if no other method already predicted the direction of the branch.
These are based on common programming pattemns like the fact that pointers are unlikely
to be NULL, floating point comparisons are unlikely to be equal etc. Once branch
information is available, traces are grown and super blocks created by tail duplication
followed by scheduling of the super block. Studies have shown that static analysis based

super block scheduling can achieve results that are comparable to profile based methods.
4.1.15 Percolation Scheduling (PS)

Percolation scheduling is also a program transformation system that has certain advantages
over a trace scheduler. A trace scheduler divides program transformation into two stages.
The first stage reorders code along the trace while the second bookkeeping stage modifies
the rest of the program to preserve program semantics. This separation of transformation

process mto two steps can lead to the generation of redundant code duning the

32

bookkeeping stage. By applying semantics preserving transformations in one step,

percolation scheduling avoids this problem.

Percolation scheduling works on the parallel program graph, in which nodes contain one
or more operations that can be executed in parallel and edges determine the execution
paths of the program. A well-defined set of transformations, guided by heuristics,
rearranges the code globally to exploit more parallelism. Since execution starts at the top

node and goes node by node, those nodes traversed by a program must be decreased.

Nodes are generally defined as a set of operations and conditional branches that are called
components. If there are no conditional branches, a continuation (successor) node is
contained in the node. Several conditional jumps may be present in one node, if they form
a tree. This means that paths following a jump can lead to another jump in the node

(internal jump) or to a successor (outgoing jump).

The base program transformations used to achieve code percolation are the following:

e Dédetior Nodes that become empty due to previous transformations can be

removed from the parallel program graph.

e Mowup: Operation components can be moved from node 7 to node m if no
dependencies exist between node 7 and the components being moved. Paths
passing through 7, but not through 7 must preserve their semantics. An operation

move-up example is shown in Figure 4. 5.

o Mow andional junps: Conditional jump components can be moved up if
dependencies allow it. If necessary, some nodes and components have to be
duplicated to preserve program semantics. A branch move-up example is shown in

Figure 4. 6.

o Unmfiation: Under certain conditions, different instances of identical operations can

be replaced by one instance in the common predecessor of these nodes.

Backward code motions are not allowed since they could endanger the guaranteed

termination of the PS algonthm.

33

A B

(i) (i) (i) i (i)
| | A
| I

Code 1 Code 2 E Code 1 Code 2 Code 1 . Code 1
! =) Z:? (x=...)
|

1 w1] =,

(=) | x=...) =) |

Code 3 i | Code3 Code 3' Code 2 Code3| | | Code?2 Code 3
i E
= ;

Figure 4. 5 : Move-up instruction
transformation example. A: Move-up of a single
assignment. B: Move-up of multiple assignment.

(i) (ii)

Code1
Conditional branch

LConditjonal branchj

7S
P N G o o

: I

Code 2 Code 3

Code 2 Code 3

Figure 4. 6 : A conditional branch move-up
transformation example.

4116 Cntical Path Reduction

In this technique the program region being scheduled is a multiple entry multiple exit
acyclic region. The region exits are classified into two categories, frequently taken and
infrequently taken. Even if the paths leading to frequently taken exits do not include any
delay slots, an attempt is made to reduce the schedule length by pushing statements off
these paths and to the infrequently taken exits. This transformation is sometimes possible
because a path to a frequently taken exit may contain statements that are dead along these
paths even though they may be live along other paths. Essentially, this technique integrates

the partial dead code elimination optimization into the instruction scheduler.

34

4.1.1.7 Interaction with register allocation

The interaction of instruction scheduling and register allocation is an important issue for
VLIW architectures that exploit significant degrees of ILP. Register allocation and
instruction scheduling have somewhat conflicting goals. In order to keep the functional
units busy, an instruction scheduler exploits ILP and thus requires that a large number of
operand values be available in registers. On the other hand, a register allocator attempts to
keep the register demand low by holding fewer values in registers so as to minimize the

need for generating spill code.

If register allocation is performed first, it limits the amount of ILP available by introducing
additional dependences between the instructions based on the temporal sharing of
registers. If instruction scheduling is performed first, it can create a schedule demanding
more registers than are available, causing more work for the register allocator. In addition,
the spill code that s generated must be incorporated in the schedule by another scheduling
pass, degrading the performance of the schedule. Thus, an effective solution should
integrate register allocation and instruction scheduling. The significance of integration is
greatly increased in programs where the register demands are high since the likelihood of
spill code generation is high for such programs. Also, when compiling programs for wide
issue machines, the need for integrating register allocation and instruction scheduling is the

greatest.
4.1.2 Software Pipelining

The instruction window from which ILP is extracted by acyclic schedulers consists of
paths that cannot extend across loop iterations. Thus, acyclic schedulers cannot exploit ILP
present across code blocks from different loop iterations. One approach to uncover such
parallelism is to unroll the loops to transform parallelism across loop iterations into
parallelism that exists within a single loop iteration of the transformed loop. An acyclic
scheduler can then schedule the transformed loop. A loop-unrolling example is shown in

Figure 4. 7. However, this approach can result in substantial code growth.

35

for (i=6; i<=100; i=i+1)

{
}

Y[i]=Y[i-5]+Y[i]

» Each iteration i depends on the value of the iteration /-5. Iteration |, I+1, I+2,
I+3, 1+4 are independent! (1+5 is dependent on |) so we can unroll the loop:

for (i=6; 1<=96; i=1+5)

{
Y[i]=Y[i-5]+Y[1i]
Y[i+1]=Y[1i-4]+Y[i+1] ;

. % ; Larger Basic Block
bl e = With extended parallelism
Y[i43]=Y[i-2]+Y[i+3]

Y[i44]=Y[i-1]+Y[i+4]
}

Figure 4. 7 : A Loop Unrolling example.

For loops where some iteration depends on some previous iteration, which appears to be a
common case in real programs, executing the iterations in pipeline fashion is an attractive
way to achieve speedup [9]. In the context of microprogrammable architectures, this
technique is called software pipeline. Software pipelining exploits ILP across loop iterations

without causing considerable code growth.

Iteration
0 Iteration
1 Iteration
2 Iteration

3 Iteration
4

Software-pipelined
iteration

Figure 4. 8 : A software-pipelined loop chooses
instructions from different loop iterations, thus
separating the dependent instructions within one
rteration of the original loop.

36

Software pipelining is a technique that overlaps execution of operations from different
loop iterations and thus exploits ILP across loop iteration boundaries. This execution
overlapping of operations is described in Figure 4. 8. After the reorganization of the loops
some additional code is required. That is a start-up code in order to execute code left out
from the first original iteration, and a finish code in order to execute code left out from the
last original loop iteration. Figure 4. 9 shows the way loops are software pipelined, and
Figure 4. 10 shows the transformed code and the effectiveness of software pipeline in
VLIW processors in the way this code is executed. The objective of software pipelining is
to generate a schedule, which minimizes the interval at which iterations are initiated, that is,
the mmaton interval. A software pipelining algornthm must take mto account the
struction latencies and resource availability while scheduling the operations from the
loop. In addition, any increase in register demands must be met to avoid generation of spill
code mside loops. Generally the techniques for software pipelining assume that the loop
body of the pipelined loop contains no branches.

Finally, loop unrolling may be applied before software pipelining in order to provide better

performance.

for (i=6; 1i<100; i++)

{
A[i]=B[i] <+— Stage X
A[i]=A[i]+1 <— StageY
Cli]=A[1] <«— Stage Z

}

. lteration 2
5 Start-up |

4 code ‘
A[0]=A[0]+1 A[1]=B[1]

Cl01=A[0] | A[1]=A[1]+1 | A[2]=Bl2] |
v [cl11=A[1] T A[2]=A[2]+1 e

Iteration O Iteration 1

A[o]=B[0]

[Cl2]=A[2] I |

Figure 4. 9 : Software Pipelining Example.

37

Pipelined loop iteration
Original loop iteration of 1|2~ | 1|~97|98]99
X Z
A[0]=B[0] N\ ————F— N e
A[0]=A[0]+1 Y| Z
X Z
for (i=0;i<98;i++) 3 X
{ .
4 X
Clil=A(i] N\ |
Ali+1]=A[i+1]+1
A[i+2]=B[i+2] I
} s
— r
: 1+1]=A[i+1]‘+\
Cli+1]=A[i+1] <« -
~ Z
[~
___________________________ \-\
99] Y

Figure 4. 10 : The previous code example after
software pipeline. Instructions in the loop are
independent. These code groups can usually fit in a
VLIW (instruction).

Modulo Scheduling

Modulo Scheduling is the most commonly used algorithm for implementing software
scheduling. In this approach a lower bound on the initiation interval is established based
upon the data dependences in the loop and the resource demands of the loop. The modulo
scheduler then searches for a schedule with the minimum initiation interval. If the search
fails, the initiation interval is increased and the search is performed again. The above
process is repeated until a schedule can be found. In the above manner the modulo

scheduler finds a schedule with the minimum initiation interval.
4.1.3 Value Prediction for VLIW

The performance of VLIW architectures is dependent on the capability of the compiler to
achieve effective scheduling to extract instruction level parallelism. Instructions are
reordered to reduce the length of the code schedule and minimize the cycle count for
execution. Code reordering, which is necessary to achieve this goal, is limited by both

control and data dependencies. These dependencies can prevent the compiler to fill the

38

instruction word with operations. One approach used to reduce the instruction length is
control speculation by moving code above branches. Although control speculation is
effective in removing control dependencies, true data dependencies are frequent and long
dependency chains become a bottleneck to the scheduler. VLIW machines, where
conservatively computed data dependencies sequentialise the order of the operations for

execution, suffer from this problem.

Value prediction is found in many hardware based value predictor designs. However,
VLIW machines are scheduled statically and hence value prediction can be applied to
operations selected at compile-time. Executing operations with predicated values, value
speculation, results in significant speedups for VLIW machines [11]. A predicated value is
eventually verified by executing the onginal operation that was predicated, and comparing
the correct value with the predicated one. In case the prediction is found to be correct,
code s executed as before. However, if the value was mispredicted, all operations that were

value-speculated using the incorrect value are re-executed with the correct value.
4.2 Some Design Issues for VLIW Architectures

Very Long Instruction Word Architectures can exploit the instruction level parallelism
typically found in sequential-natured program code. Global compaction algorithms in
parallelizing compilers for VLIW architectures generally produce wide instructions packed
with multiple tests along with data operations. Depending on the results of parallel tests a

rultiwry branch mechanism selects the next instruction from many targets.

Another proposal for altemative execution models for VLIW architectures, as an
architectural improvement, is the specdatiwe exeattion of operations where an operation may
be issued before it is known that its execution is required. Finally, predhaated exeartion
provides hardware support for exploiting more instruction-level parallelism by allowing

conditional execution of operations.
4.2.1 Multiway Branches

In a “traditional” computer, branch instructions can specify a “condition” and a “target
address”, and the program counter is set to the target address if the condition is true.
VLIW instruction sets, however, often contain a means for specifying a number of

conditions and targets, such that the program counter value is selected from among the

39

targets depending on a combination of conditions. In general, it is faster to execute a single
multiway branch instruction than an equivalent series of two-way conditional branches,

especially in non-numerical integer code, where conditional branches are more frequent.

VLIW processors execute highly optimized code. Compilation techniques for optimization
include global scheduling and software pipelining. After the compiler schedules data
instructions, conditional branches tend to cluster together. Since sequential execution of
these branches becomes a bottleneck in increasing performance, multiple branches are also
scheduled in a VLIW for parallel execution, possibly with other independent data

Instructions.

if bl then
if b2 then I0
else Il

else
if b3 then I2
else I3

end

Figure 4. 11: An example program segment and its
condition tree.

Multiway branch mechanisms fall into two categories: those that implement a fixed
branching structure and those that implement a variable branching structure. All multiway
branch mechanisms are designed to solve the same problem. The CPU provides a set of
condition bits. The control structure programmed in a VLIW specifies a subset of these
condition bits, a set of target identifiers and a mapping from condition bit values to target
identifiers. This mapping takes the form of a condition tree (Figure 4. 11). A condition tree
(also known as decision tree) is a binary tree whose interior nodes select condition bit
values and whole leaf nodes are target identifiers. Selecting a branch-target involves
traversing the condition tree based on the condition bit values until a leaf node (target
identifier) is reached. A primary design objective for any multiway branch hardware is the

ability to perform this traversal in a single clock.

A multway branch mechanism provides a targer selection 1ot which is a hardware device that
maps condition bit values to target identifiers. Mapping the condition bits onto the

condition bit values is done outside the target selection unit. Given a series of condition bit

40

values, the target selection unit provides a combinational mapping into the target
identifiers. Although target identifiers can be used in a number of different ways, the ways
are used does not affect the nature of the target selection mechanism provided by the
hardware. For example, the target identifier might be used to select one of the address
registers or immediate address operands. Alternatively, the target identfier might be
concatenated with another quantity as a prefix or a suffix to form an address, so that all
target VLIW instructions can be prefetched at the beginning of the cycle, while the target
identifier of the tree path that is being taken can act as a late-select to obtain a faster

instruction cache access path.
4.2.2 Speculative Execution

Speculative execution refers to the issuing of an operation before it is known that its
execution is required. Speculative execution occurs when the scheduler places an operation
above a preceding conditional branch, and thus it is also called control speculation.
Operations that are data ready but not control ready (that is, operations for which the input
operands have been computed but to which control flow has not yet reached) are
candidates for speculative execution. It is desirable for the compiler to make use of
speculative operations to reduce time required for a computation. However, operations
that cause exceptions or side effects cannot be executed speculatively. An example of

control speculation is shown in Figure 4. 12.

In order to perform speculation execution, the processor must permit it. This can be
achieved by setting a mode bit in the processor that tums off exception processing for all
operations marked as speculative. However, this significantly changes a program’s error
behavior because operations that would have caused errors will cause no errors after
optimization. Another approach is to provide non-trapping versions of those operations
that can cause exceptions, which then can be used in speculative execution. With this
approach the program’s error reporting behavior is improved because errors caused by
non-speculative operations will halt execution when they occur. With additional
architectural support, a program can precisely report errors even in presence of speculative

execution.

41

Original program Program with speculative execution

a=expression-1
b=expression-2

a=expression-1
b=expression-2
if (b!=0)

{
}

Speculative divide must

t=a/b ¢==== —
not cause an exception
if (b!=0) @ P

{
y=t

}

y=a/b

Figure 4. 12 : Example of speculative execution.

Another kind of speculative execution is that of data speculation. As shown in the example
in Figure 4. 13, it might be useful to move the load operation before the store one in order
to fill slots between the definition of register R1 and the store. However, this kind of
speculative execution may violate correct execution semantic. For example, if the store and
the load addresses are the same (0(r1) = 5(r5)), it results in read-after-write hazard. Thus,
the load operation can only be moved before if it is sure that there is no address aliasing.
Finally, some architectures, like [A-64, perform a later check for a RAW hazard and make

explicit correction to what has been done.

Original program Program with data speculation

store 0(rl),r2 load r3,5(r5) " .
load r3,5(r5) dgaﬁgﬁbuse r3 ‘.."“h Must 5(xr5) 1=0(r1)

use r3 store 0(rl),r2

Figure 4. 13 : Example of data speculation.

4.2.3 Predicated Execution

Predicated execution is an architectural model in which each operation is guarded by a
Boolean operand whose value determines whether the operation is executed or nulled.
This makes it possible to execute an operation conditionally depending upon the value of
its predicated onginal acyclic code. The control flow through an acyclic code fragment that

is implemented through branches can be entirely eliminated by predicating the instructions.

42

The resulting code may be viewed to simultaneously execute all the paths through the

onginal acyclic code.

Predication may be used to eliminate unpredictable branches and consequently reduce the
harmful effects of such branches on the execution. Instead of jumping around an operand
that should not be executed, the hardware can just ignore the effects of the operation. The
Boolean result of a condition testing is recorded in a (one-bit) predicate register p. An
operation is executed if its predicate register p is true. If p is false, either the operation is
ignored (treated as no-op) or is executed but the result register is not changed. The latter
option allows the operation to be executed in the same instruction as the predicate is
computed. Since the results of predicate evaluation are known before the target register is

written, such overlap is possible. Such hardware support may eliminate a physical jump.

Often, an entire acyclic control flow region can be converted into a single, branch free
block of predicated code. This process of converting code into predicate code is termed £
conversion. Conditional branches are removed and control dependencies become data
dependencies, as conditionally executed operations are data dependent on the operation

that generates the predicate on which they depend. Figure 4. 14 describes an if-conversion

procedure.
I
—
l |
B1 : start:
: pl=a<b
start: : p4=!pl
if a<b goto exit I c=a+b (p4) B2314
c=a+b : p2=a>b (p4) B3 :(;p&)4
if a>b goto exit B1 : p3=1p2 (p4) (pB4 p4)
c=a-b | p5= p3 & p4
exit: | c=a-b (p5)
return c , , exit:
| return c
B1 = B1 :
I
I
' :
before | after

Figure 4. 14 : An if-conversion example.

There are some more situations in which the use of predication can be quite useful. For

example if a speculatively issued load frequently causes a cache miss along some program

43

path then by predicating the load it may be possible to avoid the speculative issue along

that path and hence minimize the cache musses.

While in the above situations the benefits of predication are clear, its aggressive application
is a far more challenging task. If the lengths of the paths through an acyclic code vary
greatly, predication would extend the execution times of shorter paths. Moreover the
demand for register resources may be increased to a point that predication no longer yields
superior instruction schedules. Finally the data flow analysis techniques used to analyze
programs, for such basic tasks as uncovering data dependences and performing
optimizations, is based upon explicit control flow. A further analysis must be done in order

to accurately handle the implicit control flow expressed in predicated code.

4.3 Object Compatibility Issues

VLIW processors are viewed as an attractive way of achieving instruction level parallelism
because of their ability to issue multiple operations per cycle with relatively simple control
logic. However, the lack of object compatbility in VLIW architecture is a severe limit to
their adoption as a general-purpose computing paradigm. Two classes of solutions have
been pursued to solve the VLIW object-code compatbility problem: software-based and
hardware-based techniques. The hardware approaches include spliz-sssue proposed by B. R.
Rau, and the fill-wut proposed by S. Melvin, M. Shebanow and Y. Patt, and finally the
software approach dymanic resheduling proposed by M. Conte and W. Sathaye. These three

techniques are briefly discussed in this section.
4.3.1 The hardware Approach

A hardware-based solution for VLIW processors was proposed bye B. R. Rau in [12],
wherein the concept of delayed split-issue together with dynamic scheduling hardware is
introduced. These characteristics allow using the interlocking and score-boarding
techniques known for dynamic scheduling in superscalar processors. Many studies on this
approach have shown that dynamic scheduling is as viable for VLIW processors as with
more conventional ones. As a result, the object-code generated for one implementation of
a VLIW processor family can be executed on an implementation with fewer functional

units and/ or different latencies for the operations.

44

Another related class of hardware-based solutions consists of using sequential code as the
compatible representation and performing dynamic parallelizing. For example, the fill-unit
approach extracts VLIWs from the sequential execution of a program, so that successive
executions of the same instructions are performed using the parallel rather than the onginal
sequential version. However, this type of approaches is limited due to the small window of

instructions analyzed, and the complexity associated to run-time parallelizing.

The Split-Issue Approach

Split-Issue was presented by Rau [13] as a technique for dynamic scheduling in VLIW
processors. It provides hardware capable of splitting each Op into an Op-pair:
(read_and exeaute; destination_unte-back). Read and execute uses an anonymous (Le. a non-
architected) register as its destination, whereas destination write-back copies the
destination of read and execute to the destination specified in the onginal Op.
Read and execute operation is issued in the next available cycle, provided there are no
dependence or resource constraints. The destination_write-back operation is scheduled to
be issued in the latest cycle after (sssue_qde (read _and exeane) + ongnal_operation latency - 1).
To ensure that the destination write-back operation is not issued before the
read and execute completes, support in the form of hardware flags is provided. The
splitting of operations and issuing them in the correct time order preserves the program

semantics, and correct program execution is guaranteed.
The Fill-Unit Approach

The Fill-Unit approach combines the advantage of code compatibility of as in superscalars
and the absence of complex dependency checking logic form the decoder as in VLIW. The
objective 1s to provide hardware that monitors the instruction stream and groups multiple
mstructions into VLIW-type instructions, which are then stored in a structure, called a
shadow cache, within processor itself. When a shadow cache line contains the instructions
requested by the fetch unit, the scalar instruction stream is preempted and all operations in
the shadow cache line are simultaneusly issued and executed. The mechanism that

compacts instructions is called a All-iout.

Fill-unit was first proposed [15] for dynamically compacting microoperations generated
from sequentially-fetched instructions into large executable units, by Melvin, Shebanow

and Patt in 1988. Some years later, in 1994, M. Franklin and M. Smotherman [14] extended

45

this approach to directly handle data dependencies, delayed branches and speculative
execution. This method would allow a sequential instruction stream to be fed to the
processor, with execution of parts of the code accelerated by wide issue whenever possible.

At the same time it would preserve code compatibility.

4.3.2 The Software Approach - Dynamic Rescheduling

The principle of hardware techniques used to support object-code compatibility is shown
in Figure 4. 15(1). It reminds something of superscalar architectures in that they perform
run-time scheduling in hardware. A limitation of hardware approaches is that the scope of
scheduling 1s limited to the window of ops seen at run-time, hence available ILP is

relatively less than what can be exploited by a compiler.

(i) (ii)
before run at run time before run at run time
time time
Parallel Parallel
execution execution
- : = — ! -
Scheduled code > ?gg;?e:jc::g > Scheduled code —»- r:;iﬂzz'ze >
(old architecture) - > (old architecture) — . ; >
»| in hardware - | incompiler -~

Figure 4. 15 : () The hardware approach to
compatibility, (i) The off-line (static) rescheduling
of the program for compatibility.

Static recompilation is the most obvious software technique and is illustrated in Figure 4.
15(). It recompiles the entire program off-line, and hence can take advantage of
sophisticated compiler optimizations to achieve desirable performance. However, the fact
that an extra step is required in order to achieve code compatibility is a considerable

drawback. It complicates both the development process and the user installation process.

Orher software-based approaches, excluding source recompiling due to its inherent
limitations, rely on binary-to-binary (object-code) translation, either with or without
hardware support. Some of these actually correspond to translating binary code among
different architectures, but they can be applied to different implementations of the same
architecture, such as VLIW-based ones. Of particular relevance is the Dynanac Resdheduling
software scheme, which applies a limited version of software scheduling during first-time

46

page faults, requiring no additional hardware support. To make this practical, requires
support from the compiler, the ISA, the operating system, and a fast algonthm for

rescheduling.

Dynamic Rescheduling is illustrated in Figure 4. 16. When a program is executed on a
machine generation other than what it was scheduled for, the dynamic rescheduler is
invoked. The exact sequence of events is as follows: The OS loader reads the program
binary header and detects the generation mismatch. After the first page of the program is
loaded for execution, the page fault handler invokes the dynamic rescheduler module. The
rescheduler reschedules the page for execution on the current host. This process is
repeated each time a new page fault occurs. Translated pages are saved to swap space on
replacement. Only the pages that are executed during the life-span of the program are
rescheduled. The knowledge of architectural details of the executable's VLIW generation is

necessary for the dynamic rescheduler to operate, and is retained in the executable image.

Dynamic Rescheduling is a promising general technique, capable of coping with any
implementation constraint. Its limitations are the overhead introduced at page-fault time
and the added complexity required to manage rescheduled and non-rescheduled pages.
Finally, this scheme assumes that the object-code is already an explicit representation of

ILP, and is able to exploit that representation accordingly.

before run time at run time
Parallel
execution
First-time
— page fault
Scheduled code —
(old architecture)]
Dynamically
reschedule in
nardware

Figure 4. 16 : Dynamic Rescheduling,

47

Chapter 5

5 DESIGN OF A VLIWINTEGER PROCESSOR

In this chapter I describe the architectural design, analysis and implementation of a very
long instruction word (VLIW) processor. The object of this design implementation is to
put into practice the basic design issues and organization techniques of the VLIW
architecture and to come up against some of the implementation features and difficultes
such architectures have. The implementation is divided into two parts. The first and also
the most basic part of the processor is a non-pipelined version but with a five-stage
pipeline in mind. The second part constitutes a more integrated version with a five-stage

instruction execution pipeline added.
5.1 Processor organization

As we have already seen in Chapter 3, one way to increase performance is to combine
different types of execution units into groups called Functional Units (FU). A simple way
to keep a VLIW machine as clean as possible is to make each functional unit able to
execute all types of operations supported in the instruction set. This would considerably
simplify code generation because the compiler would not have to worry about assignment

of operations to functional units.

However, this may not be very practical from an implementation point of view. Enabling
sending every operation in the instruction word to every functional unit requires additional
hardware resources and could also lengthen the cycle time of the processor. To avoid this,
the approach I took in my design, as shown in Figure 5. 1, was to allow all functional units
to be able to execute all types of operations, but also to limit the maximum number of

control transfer and load/ store operations in each instruction to one and two respectively.

48

: ‘
\ |
j AU | |
FU1 | [[
A N
FU2 ALU
‘ r, -
< > || ’ |
\ \ LSU |
8-port ‘
| Program : LS S Data MEM
| Counter [cTu GIOba'F:T:g'Ster interface e
L
/ 5 Lsu ‘
< : > :
FU3 ALU
- ‘ >
U ALU

Figure 5. 1: The general non-pipelined view of the
organization of my VLIW processor design.

As shown in the figure, the processor contains four integer functional units that are
connected through a shared eight-port register file. There are four ALUs, one for each
functional unit, that allow the execution of instructions that have four AL operations.
There 1s one Control Transfer Unit (CTU), which interacts with all the FUs, which means
that there can only be one CT operation in each instruction word. Finally, there are two
Load Store Units (LSUs) that also interact with all the FUs through a load-store interface.

Therefore an instruction may contain at most two LS operations.
Thus, the hardware resources of the processor can be summarized as follows:

1. Each instruction contains four operations that are executed by four Functional
Unuts.

2. There is one Control Transfer Unit that is shared to all the Functional Units, but
only one FU can use it at a time.

3. There are two Load/Store Units that are shared to all the Functional Units, but at
most two of the FUs can make parallel use of the two LSUs.

4. Each Functional Unit is able to execute all types of operations.

49

5.2 Processor Architecture and Instruction Set

The architecture has thirty-two 32-bit general-purpose registers where the value of RO is
always 0. All the “Very Long Instructions” are 128 bits and they consist of four
independent operations (subinstructions) 32 bit each. These four operations in each 128-
bit instruction word are guaranteed to be independent and are executed in parallel. In this

section I will present a general description of the processor architecture and the format of

the instruction set.
5.2.1 Operations

The operations executed by this processor can be divided into three types. Each type of

operation 1s executed by a corresponding type of hardware execution unit:

1. Control Transfer operations (CT)
2. Load/Store operations (LS)
3. Anthmetic/Logic operations (AL)

Each instruction can have a maximum of four operations, which are analyzed in:

1. One Control Transfer operation, which can be any of the four operations but
cannot be followed by any other operation in the instruction.

2. Two Load/Store operations, which can also be any of the four operations.

3. Four Anthmetic/Logic operations.

Any of the general-purpose registers may both be loaded or stored, except the register RO.
Register RO is hardwired to contain zero at all times. Therefore, writing to RO is allowed

but has no effect on its contents.

It has some of the typical attributes of a RISC processor. It has a simple operation set that
is designed with efficient pipelining and decoding in mind. All operations follow the
register-to-register execution model. I will analyze the types of the operations in the

following subsections.
5211 Control Transfer Operations

Control 1s handled through a set of jumps and a set of branches. There are four jump

nstructions: junp (), jump-register (JR), jurmp-andlink (JAL) and Jurmp-and-link-register (JALR).
Using the instructions / and /AL the PCis set to the value defined by the 26-bit unsigned

displacement. The two other jump instructions specify a register that contains the

50

destination address. Moreover, JAL and JA LR save the current PC value into register r31
enabling returning to that position. Finally, there are two branch instructions: frandrequal
(BE Q) and brand»not-equal (BNE Q). These instructions are conditional. They compare two
registers and if the condition is true the new value of the PC s specified by the sum of the

PC and the 16-bit sign-extended offset.

52.12 Load / Store Operations

Data memory is accessed with explicit Load/Store operations. These operations are the
laackword (L'W) and the storeword (SW). They use the displacement addressing mode, base

register + 16-bit signed offset, to load/store 32-bit data to/from a register from/to a data

memory cell.
5213 Anthmetic / Logic Operations

The Arthmetic/Logic operations that make use of the ALU are: ADD, subtract (SUB),
AND, OR, XOR, imert (NOT) and logical shifts (SLL and SRL). All these operations are also
provided in immediate forms except for the NOT one. The operation LHI (load high
immediate) loads the 16-bit offset to the top half of a register, while keeping the lower half
intact. This allows a full 32-bit constant to be built in two instructions. There also
conditional operations, which compare two registers. In these operations the destination
register is set if the condition is true, otherwise value O is placed to it. These are: set-less-than
(SL'T), serequal (SEQ), set-not-equal (SNE) and set-less-equal (SLE). There are also provided
immediate forms of these instructions, where a register is compared to an unsigned 16-bit
immediate. All these AL operations perform at least one rad from the register file and one

wnte to 1t.

All the above operations, including their meaning, are summarzed in the following table

(Table 5. 1).

51

Instruction type / opcode Instruction meaning
Control Conditional branches and jumps
BEQ, BNEQ Branch GPR equal / not equal
J,JR Displacement jump, Register jump
JAL, JALR Displacement jump and link, Register jump and link
Data transfers Move data between registers and memory
LW, SW Load word, store word (to / from integer registers)
Anthmetic / Logical Operations on integer or logical data in GPRS
ADD, ADDI Add, add immediate
SUB, SUBI Sub, sub immediate
AND, ANDI And, and immediate

OR, ORI, XOR, XORI, NOT

Or, or immediate, exclusive or, exclusive or immediate, mnvert

LHI

Load high immediate

SLIL. SRL 5111, SRL]

Shift: left logical, right logical (variable and immediate form)

S .S 1

Set conditional: “ " maybe LT, EQ, NE, LE

Table 5. 1: Complete list of the Long Instruction
Word operations.

5.2.2 Instruction Format

As I have already mentioned in subsection 5.2.1, all of the four independent operations 1n

an instruction are 32-bit long and they have a 6-bit opcode field. The register fields are 5-

bit long, necessary to address the thirty-two registers of the Register File. The format of the

operations is categorized into three types (R-type, I-type and J-type) according to the way

they are encoded. A more detailed description of this operation layout and also the

grouping of them is given in Figure 5. 2. Furthermore, in Table 5. 2 I describe the encoding

of these subinstructions.

R-type instruction

6-bit 5-bit 5-bit 5-bit 5-bit
(Opcode l rs rt ‘ rd : not Used
| |

Encodes:

AL: ADD, SUB, AND, OR, XOR, SLT, SEQ, SNE, SLE

I-type instruction
6-bit 5-bit 5-bit 16-bit
o —)
Opcode rs rt 1 Immediate

Encodes:

CT: BEQ, BNEQ, JR, JALR

LS: LW, SW

AL: ADDI, SUBI, ANDI, ORI, XORI, NOT, LHI, SLL, SRL, SLLI, SRLI,
SLTI, SEQI, SNEI, SLEI

J-type instruction

6-bit 26-bit
Opcode Displacement Offset }
Encodes:
CT: J, JAL

Figure 5. 2 : Layout of the operations of the
nstruction word. Each one is encoded in one of the
three types.

53

Opcode | Instruction | Meaning
000001 ADD RF[rd] ¢« RF[rs] + RF[rt]
000010 SUB RF[rd] ¢ RF[rs] - RFI[rt]
000011 AND RF[rd] ¢« RF[rs] & RF([rt]
000100 OR RF[rd] ¢ RF([rs] | RF[rt]
000101 XOR RF[rd] « RF([rs] ® RF([rt]
000110 8L if (RF[rs] < RF[rt]) RF[rd] « 1
else RF[xd] <« O
000111 SEQ if (RF[rs] = RF[rt]) RF[rd] « 1
else RF[rd] « O
001000 SNE if (RF[rs] != RF[rt]) RF[rd] « 1
else RF[xrd] « O
001001 SEE if (RF[rs] < RF[rt]) RF[rd] « 1
else RF[rd] « O
001011 BEQ if (RF[rs] = RF[rt])
PC « PC + 1 + SignExtend(Imm)
else PC « PC + 1
001100 BNEQ if (RF[rs] != RF[rt])
PC « PC + 1 + SignExtend(Imm)
else PC « PC + 1
001110 JR PC « RF[rt] (rt = 0)
010000 JALR RF[r31] « PC + 1, PC ¢« RF([rt] (rs = 0)
010101 LW RF[rt] ¢« MEM[RF[rs] + SignExtend(Imm)]
010110 SW MEM [RF [rs] + SignExtend(Imm)] < RF([rt]
100001 ADDI RF[rt] « RF[rs] + SignExtend(Imm)
100010 SUBI RF[rt] ¢« RF([rs] - SignExtend(Imm)
100011 ANDI RF[rt] ¢« RF[rs] & ZeroFill(Imm)
100100 ORI RF[rt] ¢« RF[rs] | ZeroFill(Imm)
100101 XORI RF[rt] ¢ RF[rs] ® ZeroFill(Imm)
010100 LHI RF[rt] « Imm << 16
010010 SLL RF[rt] ¢« RF([rs] << 1
010011 SRL RF[rt] & RF[rs] >> 1
110010 SEE]L RF[rt] « RF[rs] << ZeroFill(Imm)
110011 SRLI RF[rt] « RF([rs] >> ZeroFill(Imm)
100110 SLTI if (RF[rs] < ZeroFill(Imm)) RF[rt] <« 1
else RF[rt] « O
100111 SEQI if (RF[rs] = ZeroFill(Imm)) RF[rt] <« 1
else RF[rt] « O
101000 SNEI if (RF[rs] != ZeroFill(Imm)) RF[rt] ¢ 1
else RF[rt] « O
101001 SLEI if (RF[rs] < ZeroFill(Imm)) RF[rt] < 1
else RF[rt] « O
010001 NOT RF[rt] « ! RF[rs]
001101 J PC ¢« displacement
001111 JAL RF[R31] « PC + 1, PC « displacement

Table 5. 2 : Encoding of the operations of the
instruction word.

54

5.3

In this section the basic components of the processor and explain their characteristics and

their function.

5.3.1

Each instruction word loaded form the instruction cache consists of four independent
operations. The instruction decoder has the role of separating the instruction into the four

subinstructions and then to perform a classic decoding for each one of them. The fields to

Processor Core Design

Instruction Decoder

which each operation is decoded are:

6-bit for the opcode

5-bit for the rs
5-bit for the rt

5-bit for the rd

26-bit for the offset, from which is also extracted the 16-bit immediate.

Then each field of each operation is grouped together with the corresponding fields of the

other operations building arrays of same fields. The block diagram of the Instruction

Decoder, in the Figure 5. 3, provides a graphical representation of this decoding.

Long
Instruction
Word
(from IC)

128-bit

Operation 1

Operation 2

Instruction word

Operation 3

Operation 4

32-bit
32-bit)

32-bit

32-bit)

6-bit opcode
5-bit rs
5-bit rt
5-bit rd

\—:')

- v

26-bit offset

6-bit opcode
5-bit rs
5-bit rt
5-bit rd

26-bit offset

6-bit opcode
5-bit rs
5-bit rt
5-bit rd

?

N

26-bit offset
6-bit opcode

5-bitrs
5-bit rt
5-bit rd

26-bit offset

4x6 bit

4x5 bit

1 B

Figure 5. 3 : Instruction Decoder Block Diagram.

opcode
array

array

array

rd
array

offset
array

55

After the decoding of the instruction, the gpaxk array is driven to the Control Unit and to
the ALUs. As defined by the ISA of the processor the fields of rs and rt provide the
source registers, thus the arrays of 75 and 7 are driven to the read-address ports of the
Register File. Moreover, the destination register is given by either the 7 or 7 depending on
the type of the operation. Therefore, a multiplexer will have to choose the field of the
destination register, for each operation, according to its type. Finally, each 26-tut offset 1s

either zero-filled or is being used to extract the 16-bit immediate (sign-extended or not).

5.3.2 Register File

As T have already discussed in section 5.2 at the heart of the processor core is a mult-port
register file that can hold thirty-one of the thirty-two 32-bit general purpose registers as the
register RO is hardwired to contain zero at all umes. All the four operations of the
nstruction word may be ALU operations which means that the register file must be able to
allow eight read and four wnte concurrent accesses, two reads and one write for each
operation. Thus, it has four wnte data ports and eight read data ports with the
corresponding 5-bit address ports. In each clock cycle it can perform eight read and four
write accesses. Reading the register RO always gives zero while writing to RO is allowed but

has no effect on its contents.

There are two different designs for the register file. That is because the non-pipelined
design is a single-cycle implementation and in case of concurrent write and read of the
same register there could be a false register-read result. In a long instruction word, all
operations are scheduled to be freed of flow dependencies (RAW). Thus, register writes
should not change the state of registers until they have been read, and in that case I
followed the write-after-read (WAR) scheme. On the other hand, in the pipelined version
of the processor, register writes and reads in a LIW take place in separate pipeline stages,
but a concurrent write and read of the same register from different LIWs may happen. In
that case, when an instruction writes on a register that a successor instruction reads in the
same clock cycle, the “read” instruction must get the value been written and thus register
untes must be performed before 7. This lead to the decision to change the RF function
to a read-after-write (RAW) scheme.

In Figure 5. 4 I present a detailed description of the register file implementation. The

register file consists of thirty-one separate registers that are handled through special

56

decoders and multiplexers, in order to perform the register-write function, and also eight

multiplexers that represent the eight read data ports.

rden
wren
——
i
| q0
N\ a0
™\ |MUX
[d1| \ rdaddr 0
a2 . B by - K o
\d3/ J i . register wren 1
\v/ B ! write MUX rden 0).)
— |
wraddr 0— DEC 5 to 31 ‘—m____ a
| | register 2 wren 2, reg2. MUX A
write MUX rden ‘;_;?3 Pl rdaddr 1
wraddr 1—s DEC 5to 31
x 31 x 31
x8
wraddr 2—= DEC 5to 31 # d
i o 1] register 31 | wren 31
! write MUX rden e S
wraddr 3— DEC 510 31 i | q7
MUX — q 7
- rdaddr 7

Figure 5. 4 : Register File Block Diagram.

The values that are inputs to the read-address ports come directly from the Instruction
Decoder, and the output data are lead to the ALU and to some other components that
construct an interface between the Datapaths and the Register File. On the other hand, the
write addresses can be defined in proportion to the type of each operation, where in some
operations the destination register is defined by the 7/ field and in some others 1s defined
by the 7 field, while in JAL and JALR operations the destination register is the 731.
Therefore, a write-address multiplexer is added to select the proper destination register.
Finally, the data to be wntten to the Register File may come from the ALU, the Data
Cache or the Program Counter, so a destination-data multiplexer is placed at the Register

File data input ports.
5.3.3 Functional Units

Generally, in VLIW literature, Functional Units are groups in which different types of

execution units are combined. All the FUs in the processor are identical as they are all able

to execute all types of operations. A general view of the Functional Units has also been

given in Figure 5. 1.

The processor’s data path consists of four 32-bit identical data paths, which are capable of

executing all of the arithmetic and logic functions in the instruction set. Each of these data

paths consist of two major blocks:

e An operand unit, which provides an interface between the data path and the
register file.

e An Arithmetic/Logic Unit, which is capable of integer addition and
subtraction, numerical comparison functions, logical and arithmetic shift
operations, and logic function computation.

Thus every functional unit contains one ALU, and as a result the processor has four ALUs.
The data of the register defined by the rs field is always the one of the two operands in any
ALU function and is the first input to the ALU. The other source operand comes either
from the register 1t or from the 26-bit offset or from the 16-bit, sign-extended or not,

immediate. Thus, one multiplexer is placed at the second ALU input in order to select

between a register, an offset or an immediate.

The processor organization contains two Load/Store Units, but all the functional units
must be able to have access to these LSUs as they can execute all types of operations. To
implement this, I include a special interface circuitry in the two load/store unts to interact
with the data memory. This is reflected in Figure 5. 5, which contains the block diagram of
this design.

The store-data come from the register file and the interface provides multiplexers to define
which of the four operations uses the first LSU and which uses the second. There are also
similar multiplexers that define which operation gives the write/read address for memory

access and which operation reads data from memory through the first or the second LSU.

The processor also contains one Control Transfer Unit which 1s also usable by all the
functional units, as the operation that performs the control transfer can be anywhere in the
instruction. Similarly to the LSUs, the PC must also comply with this flexibility feature. The
organization of the program counter is shown in the block diagram in Figure 5. 6, where
additional multiplexers are used to define which operation is the one that performs the

control transfer.

58

DP 0 store data sy

DP 1 store data s MUX

4t01
DP 2 store data sl

DP 3 store data e

DP sel for
DC port 0

DP 0 LS address s

DP 1 LS address = MUX

4t01
DP 2 LS address s

DP 3 LS address =i

DP 0 store data s

P1 t
DP 1 5t0re Jata me— MUX

DP 2 Store data s po v 54

DP 3 store data sy

DP sel for
DC port 1

DP 0 LS address s

DP 1 LS address MUX

- Data in 0

Address 0

- Data in 1

- Address 1

Data Cache

Data out 0

Data out 1

MUX
2to1

\/

MUX
2to1

4
DP 2 LS address s it

DP 3 LS address

71 MuUX
2to 1

Tl MuUx
2to1

ey DF O |l0ad data

T— DC port sel

for DP 0

ey DF 1 |0ad data

L_ DC port sel

for DP 1

pmp DP 2 l0ad data

| DC port sel

for DP 2

ey DP 3 l0ad data

; DC port sel

Figure 5. 5 : Block Diagram of the Load / Store
Interface Circuitry.

DP 0 disp/req =—

DP 1 disp/req =——

DP 2 disp/reg

DP 3 disp/reg j J 4

DP 0 offset
DP 1 offset
DP 2 offset

for branches

DP 3 offset
v ‘ Yy Vv

DP sel |

MUX 4 to 1

DP sel MUX 4to 1
for jumps
DP sel

for branches

DP 0 branch condition ———{

DP 1 branch condition =——p{
MUX

DP 2 branch condition ———{ &0

DP 3 branch condition ———{

—

PC source

for DP 3

DP stands for DataPath

select control

Branch type

}

Figure 5. 6

Counter Unitt.

Yy ¥
MUX 3to 1
A
PC

Y
To instruction
Memory

: Block Diagram of the Program

‘TDP stands for DataPath “

e |

59

5.3.4 Control Design for the Non-Pipelined Implementation

As I have mentioned at the beginning of this chapter, the first part of the implementation
is a non-pipelined single cycle implementation. The objective was to ventfy the proper
functionality of the processor and thus simplify the extension to an efficient five-stage

pipelined implementation.

The control logic for this implementation is distributed into four blocks, each of which is
tightly coupled to the functional unit with which is associated. As the four functional units
of the processor are identical, these four blocks of the control are identical too. The major
observations about the format of each operation in the instruction word that we will rely

on are the following:

o The gpaxi field is always contained in bits 31-26.

o The two registers to be read are always specified by the 75 and the 7 fields, at
bit positions 25-21 and 20-16. This is true for the R-fype instructions,
BRANCH and for STORE.

e The base register for LOAD and STORE instructions is always in bits 25-21

(r5).

e The 16-bit immediate for BRANCH, LOAD and STORE instructions is
always mn bit positions 15-0.

e The 26-bit offset for JUMP instructions is in positions 25-0.

e The destination register is in either defined by the 7 or the 77 field. For LOAD,

NOT and for all AL instructions with immediate it is in position 20-16 (),
while for an R-ype instruction 1t is in bits 15-11 ().
The bit-mapping of the operation format is also shown in Figure 5. 7. As I have discussed
in section 5.3.1, instruction decoding following this scheme is hardwired and the only input
the Control Unit needs is the opcode field. Moreover, the ALUs use this opcode field for
ALUgp and as a result there is no need for any signal to control ALU, except from those
which control the four multiplexors needed to define whether the input of the four ALUs

comes from the register file or the 16-bit immediate.

There are many control signals that must be set. For the Register File, the Control Unit

controls:

e The write-enable signal.
e The multiplexor that defines the source of the data to be written.
e The muluplexor, which defines the field of the destination register.

60

Long Instruction Word Format
0-31 32-63 64-95 96-127

r Operation 0 [Operation 1 Operation 2 Operation 3 J

Operation Format

R-type instruction
31-26 25-21 20-16 15-11 10-0
(Opcode rs rt rd not Used

I-type instruction
31-26 25-21 20-16 15-0

. Opcode rs ot 1 Immediate |

| 1

J-type instruction
31-26 25-0
Opcode Displacement Offset

(
L

Figure 5. 7 : Bit-Mapping of the instruction Word
and the operations.

Moreover, the Control Unit is the one that manages the two ports of the Data Cache,
where the first LS operation in the instruction uses the first DC port whereas the other
port is used by the next LS operation in the same instruction. Thus, for the Load / Store

Units and Interface the control values:

e The read-enable and write-enable signals of the Data Cache.

e The multiplexors in the LS interface (Figure 5. 5) that define which operation
writes to each of the two write ports of the DC.

e The multplexors in the LS interface that define which operation reads from
each of the two ports of the DC.

The control also defines some control signal for the CTU. These are:

e Defines whether a register or an offset is going to be used as the PC
displacement, in case of a JUMP operation.

e Defines the source of the new value of the Program Counter. This can be a
value given by a JUMP operation, a branch target value, or the next value of
the counter.

e Defines the operation that causes the Control Transfer.

61

Finally, the 16-bit immediate is passed through a sign-extender, where the control also

decides whether to sign-extend the immediate value or just fill it with zeros to produce a

32-bit value.

The Instruction Execution Steps

Having discussed the organization of the parts of the processor and defined the signals of

the Control Unit, I am able to describe the steps of the execution for each of the four

operations of the Instruction Word.

1. An 128-bit long Instruction Word is fetched from the Instruction Cache, passed to
the Instruction Decoder and the Program Counter is incremented.

2. The ID decodes the four operations contained in the instruction and the two
registers specified by the 75 and 7 fields are read from the Register File. The
Control Unit also reads the four opcodes.

3. Depending on the type of the operation there are four cases:

In case of AL operation, the ALU operates on the data read from the
register file if it is an R-type operation, or on the value of register 75 and the
immediate if it is I-type, using the instruction opcode to generate the ALU
function.

In case of branch operation, the corresponding data path is selected, and
then the ALU is used to compare the data read from the register file in
order to define the branch condition. The branch target is also calculated.
In case of jump operation, the Control firstly selects the value of register s,
if it is for a jump-register operation, or the 26-bit offset if it is for a jump-
offset one, and then selects this selected value given by a JUMP operation
as the new value for the PC.

In case of a load/store, the ALU calculates the sum of the value of register
s and the sign-extended immediate, in order to produce the memory

address.

4. Depending on the type of the operation there are five cases:

In case of R-type operation, the result from the ALU is written into the
register file selecting register 7/ as the destination register.

In case of I-type AL operation the result from the ALU is written into the
register file selecting register 77 as the destination register.

In case of branch operation, the control unit selects the previously
calculated branch target value as the new PC value, if the condition is true,
or else the incremented PC value if the condition is false.

In case of jump-and-link operation, the old value of the PC is written into
the register r31.

In case of load/store operation, the memory is enabled for read or write
respectively, using the address previously calculated by the ALU.

62

5. 1If it is a load operation, the data read from memory is written into the register file
using register 7t as the destination register. For a store one, the value of register 7t 1s

stored into the memory.
This is the general description of how the instructions operate in steps. But, there are
distinct features as far as load/store operations are concerned. When there is only one LS
operation in the instruction word, then the port-set 0 (Data in 0, Data out 0 and Address 0)
is selected for memory access, while the corresponding data path is also selected for this set
of ports. In case there are two LS operations in the instruction word, then the port-set O 1s
selected by the first LS instruction in the instruction word, selecting its data path for port-
set 0, and the port-set 1 is selected by the second LS instruction in the instruction word,

selecting its data path for port-set 1.

5.3.5 Instruction Cache

The basic characteristic of VLIW architectures is that of the large instruction word, which
as a result requires an instruction cache quite different of that of standard processors.
Specifically, in my processor the instruction word is 128-bit wide. Thus the processor
instruction memory subsystem must have the capability of fetching the 128-bit instruction
word in a single cycle. In order to fetch such an instruction in a single cycle, the read

bandwidth of the cache must be four times greater than that of a single processor machine.

The instruction address width the processor supports is 32 bit. However, the instruction
cache I implemented can hold 256 long instructions, thus its address bandwidth is 8 bits,

and it is able to provide the output in a single cycle.

As the most important goal of this processor implementation is to present the basic design
and organization issues of a VLIW architecture, in order to keep the implementation
simple enough but also between these goal boundaries, I chose to use this cache as the
basic memory for instructions. This means that the processor does not mind for cache

misses or hits, but assumes that the whole program is put in this memory.
5.3.6 Data Cache

The data memory subsystem of the processor must be designed to meet several
requirements unique to a VLIW architecture. Since it has two parallel data ports both, for
load or store, the data memory subsystem must be able to service two requests per cycle.

The two data ports are independent, so both ports are able to load or store data regardless

63

of the operation of the other port. Moreover, the data ports’ width is 32 bits and so is the
width of the address ports.

Thus, I implemented a dual-port memory scheme m order to service both data ports of the
processor independently. Unfortunately, using the tools provided by the design application
I wasn't able to implement the memory scheme I intended to. Therefore, I employed a
dual-port memory with two read ports and one write port. As a result this scheme supports
two independent loads, or a load and a store simultaneously, without having the ability of
two simultaneous stores. Moreover, storing and loading from the same memory address 1

allowed but since it follows the WAR scheme it loads the same value being stored at the

same time.

The memory size is 256 kilobyte with 16-bit wide address ports, and can hold 65536 data
words. For the same reason I mentioned above, in the instruction cache section, the
processor assumes that this is the only memory for data access, and the processor does not

concern about cache manners.

The block diagram for the non-pipelined implementation of the processor is shown in the
following figure (Figure 5. 8).

64

10882001 M [TA 24 Jo uoneiuowdur] a4 ofduig ap 103 pederey aodwon) oy : g *¢ amSig

65

39 cexy

¥q ze
A XNW }q ZEXY
¥l snq uoneunsap
A
iepueixe-ubis
wa [~1 vuEes
Zexp sjeipauwiw| / 19SHO
XN 3ndu e ;
il , TN oM ¢ W
Lury Ny ﬁ \M) 9Txy
Zndur 4 XOW : siojsibas n Al_l P!
st 1 oyq F snae | . eep oM s_\‘l_ ¥q Sxp fe : :
S EXp A] : & N i
ynsel \ /K\ uq cexy }N B ac) sioisibel |, t Japodaq
ng | NIy) . puc peal | nqoxp | uononnsul
XN Indut e eep sio)sibol
. 1 Indu; = sieisibes | ;
sselppe 0J o g zexp | sk vmob sl peal 9 Sxp ﬂ :
domy :
) apoado
nap 314 Jays163y
/ \\’/ \
{ x E——
_ XN \ n ¥q oxp ﬁ Jojuswaiou|
o616} ppe H W _ _ od

3q

19j3unon
weiboid

-

5.4 Pipelining the Processor

As I said at the beginning of this chapter, the processor implementation is divided into two
parts. In the previous sections I presented and analyzed the non-pipelined version, which
constitutes the most basic part of the processor. The second part that I will describe in this
section constitutes a more integrated version with a five-stage instruction execution
pipeline added. T will discuss some issues about the pipeline structure, hazards and

bypassing. Moreover, I will provide some changes that may be required in order to

implement the pipeline design.
5.4.1 Pipeline Structure

One of the most important goals of RISC processors is efficient pipeline. Because of the
simplicity of the instruction set, processors are also simple and this makes the pipeline
hardware quite simple to design. The pipeline structure typically used in RISC processors
consists of five basic stages: IF (Instruction Fetch), ID (Instruction Decode), EX

(EXecute), MEM (MEMory access), WB (Wrte Back), and it is shown in Figure 5. 9.

L ———

10 IF ID EX MEM WB

IT ceeeeeinns IF ID EX MEM WwB

| i R IF ID EX MEM WB

[TSR IF ID EX MEM WB

IF: Instruction Fetch
ID: Instruction Decode
EX: Execute

MEM: Memory Access
WB: Write Back

Figure 5. 9 : Pipeline Structure of Typical RISC
Processors.

Because the VLIW processor I designed has some of the typical attributes of a RISC
processor, having an operation set that follows the idea of the RISC instruction set, I
decided to illustrate its pipeline according to the typical pipeline structure used in RISC

processors, as described above. So, in the single-cycle implementation described in

66

previous sections, I divided the operations into five stages, which means a five-stage
pipeline, which in tumn means that five instruction words will be in execution during any
single cycle. The steps are the same with the ones of typical RISC processors and the

general structure is shown in Figure 5. 10, where we can also see the paralle] execution of

the four operations contained in an instruction.

My processor has four operations in each instruction word, which means that the
performance depends not only by the possible stalls happening but also the number of
NOP’s in an instruction. Thus, an efficient scheduling during compile-time 1s necessary in

order to achieve efficient pipeline for a VLIW processor.

Time -

10 IF ID MEM WB

1§ R— IF EX | MEM WB
EX

IF: Instruction Fetch
ID: Instruction Decode
EX: Execute

MEM: Memory Access
WB: Write Back

Figure 5. 10 : Pipeline Structure of my VLIW
processor.

In order to describe how this pipeline works and also the five stages, I used the classic five-
stage pipeline datapath representation as descnbed in [ref. 1], and I separated the single
cycle implementation datapath n Figure 5. 8 into five parts that denote these five pipeline

stages, as shown in Figure 5. 11.

67

oyeredoas

£ap sadeas oy Aq pareqey o3k pue aFess surppdid yoea sreaedas anojod sFuero ur ‘s1o3s1dox ourppdid
oy ['sadeis aay op wr pajesedoas st pederecy oy] 1089003 Ay JO uoisId A pauradi oy : 7 °§ In31g

¥a zexy
.||.4)
[x
n
) W
XNW
snq uopeupsep e 1q ZeXy
B XN Induy
eep g [N Biep
o sum Wa |
LUy Ny j aoxy
XAW XNW 16 L——
ndno Z indu = ; sng-s e Slm 19 GXp
19 | eep oa ; Zexy < 1 .2 pes)
zexy unsas _ /S Wew . P8 6.
ny ol PB3L 39 6xp
R XNW induy .
ssaippe L indy . —-..H... c.u.z
58 o ¥a zexy = L] ¥ Sxp
NI
a ZEXY ¥a Zexy ot L
AT
/ \
XN S
adfy _ M g 9xp
, ol ppe | w!
L L
¥aze
amMm / W3N W3W /X3 X3/al

ai/ 4

68

Instructions and data move generally from left to right through the five stages as they
complete execution. There are however two exceptions to this left-to-night flow of
instructions: The selection of the next value of the program counter which happens in the
EX stage, and the register-write action that takes place dunng the write-back stage.
Moreover, between each of the five components of the datapath division, there are the
pipeline registers that carry the needed signals from the one pipeline stage to the other and

they are represented by the elongated orange rectangles.

A brief description of the five pipeline stages and which parts of the execution take part in

each of them, as shown in Figure 5. 11 is given below:

1. Dsstudion Fed (IF): The program counter addresses the instruction cache and is
also incremented to the next value, which is passed to a multiplexer that selects the
PC target value to be ready for the next clock cycle. The new incremented PC
value and the new instruction read from the cache are placed in the IF/ID pipeline

register.

2. Instruction Decode and Register Read (ID): The instruction decoder reads the mnstruction
from the IF/ID pipeline register, and supplies the register numbers to read the
eight registers (two for each operation). The decoder also supplies the four
opcodes and the 26-bit offsets that are transferred through the ID/EX pipeline
register to the next stage. Moreover, the register numbers in the 77 and 7 fields are
also stored in the ID/EX pipeline register as they will be used to define the register
write addresses. Furthermore, the data read from the register file are stored into the
ID/EX pipeline register too for later use. Finally, the incremented PC value is
passed from the IF/ID pipeline register to the ID/EX one.

3. Exeation (EX): The opcodes and the values that represent the first operand are
dnven from the ID/EX pipeline register directly to the ALUs. The offsets also
read from the register are either zero filled to 32 bits or, selecting the lower 16 bits,
sign-extended to 32 bits and then sent to the s-bus muluplexer. The values read
from the second registers are passed from the ID/EX pipeline register to the DC
input multiplexer and also to the s-bus multiplexer, which selects the second
operand for each operation and directs them to the ALUs. The DC input
multplexer selects the two data to be written to the memory and sends them to the

next pipeline register, while the ALUs results are used by the DC address MUX to

69

define the two addresses for the memory access that are also placed to the
EX/MEM pipeline register. In addition to that, the ALU results are stored into the
EX/MEM pipeline register too. Moreover, the register-write-address multiplexer
takes as input the 77 and 7 register numbers from the ID/EX pipeline register and
the selected write-registers are stored to the EX/MEM pipeline register. In case of
a branch operation the four sign-extended immediate’s are driven to a multiplexer
that selects the immediate of the appropriate operation, which is then added to the
PC value read from the ID/EX pipeline register and sent to the PC target MUX.
Moreover, in case of a junp operation the 32-bit extended offset is also sent to the
PC target MUX, which selects the appropriate target value for the program
counter. This new PC value is loaded to the PC if it is a jump operation or if it is a
taken branch, and the loading takes action in the same clock cycle providing the
new address for the IC in the next cycle. Finally, the PC value read from the
ID/EX pipeline register is transferred again through the EX/MEM one to the

next stage.

4. Menory Aawss: The EX/MEM pipeline register provides the two addresses for the
memory access and also the two values to be written to each of the two memory
ports are dniven to the data cache input ports. Moreover, the data loaded from the
memory are stored to the last pipeline register (MEM/WB). Finally, the ALUs
results, the program counter value, and the write-addresses for the register file are

transferred from the EX/MEM pipeline register to the MEM/WB one.

5. Whte Badk: The write data are transferred from the MEM/WB pipeline register
directly to the write ports of the register file. The destination addresses are defined
by the destination bus multiplexer that takes as input the data loaded from the

memory, the program counter and the results of the ALUs, that are all given by the
MEM/WB pipeline register.

5.4.2 Pipelined Control

Just as we added control to the simple non-pipelined datapath in subsection 5.3.4, T will
now define control for the pipelined implementation. The control logic for this
implementation is similar to that in the non-pipelined version and the only input needed to
define the control signals is the opcode for each one of the four operations. The control

unit takes the opcodes as soon as they are exported from the instruction decoder thus it

70

takes action in the EX stage of the pipeline too. It controls all the processor components
in all stages and each control line is associated with a component active in only a single

pipeline stage. Thus, T will divide the control lines into five groups according to the

pipeline stage:

1. Dstrudion Fetdr The control has nothing to do in this stage as the control signal

needed for the instruction memory read and the PC write are always asserted.

2. Instruction Deaode and Register Read- Similarly to the previous stage there is nothing to

control in this stage too.

3. Exeate: The signal that have to be set are:

e Four signals, one for each operation, to control the ofset/inmediate selector and
sign-extender component in order to select between the 32-bit zero-extended 26-
bit offset, the zero-extension of the 16-bit unsigned immediate and the sign-
extension of the 16-bit sign immediate.

e Four signals to select either a register or an immediate for the ALU, or to select
either a register or an offset in case of a jup operation according to 1ts type.

e Four signals to select the result registers

e One signal to define which operation performs a control transfer and also one
signal to select between a brandh or a jup.

e Four signals to select which /laad/store operation uses the first memory port and

which one uses the second memory port. These signals are used for both the
address and data port multiplexers.
4. Memory Aaess: The only signals that must be set in this stage are the memory write-

enable signal in case of store operations.

5. White Back: Two control signals are needed to define which operation performs a
memory load using the first memory port and which using the second one.
Moreover, four control signals are set to control the destination bus multiplexer
which decides which value to send to the each one of the four write ports of the

register file. Finally, it sets the register-write-enable signals.

I should also notice that all the signals are transferred to the stages where are being used
through the ID/EX, EX/MEM and MEM/ WB pipeline registers.

71

5.4.3 Bypassing and Stalls
5.4.3.1 Data Hazards

As I have described the register file is separated into two halves and each one takes action
in different pipeline stages. The registers read happens during ID and registers write during
WB. Thus, some operation may read a register that is to be written by another operation,
which is in EX or in MEM stage. Meanwhile, there is no problem if the operation that is
about to write the required register lies at the WB stage, as the register file follows the
RAW scheme and the operation in ID reads the new value wnitten in the WB stage at the
same clock cycle. Such dependencies, also called data hazards, seem to be a quite

complicated 1ssue for a VLIW processor and as a result for this processor too.

For each one of the four operations there must be performed data dependency tests
between both the two read registers at the ID stage and the write registers of all the four
operations both at the EX and the MEM stage of the pipeline. In a typical RISC processor
pipeline there are required 2d comparators (where d is the number of pipeline stages
between ID and MEM) to discover the possible data dependencies between different
stages, whereas in a VLIW pipeline the number of required comparators is 2¢7 where 7 is
the number of the functional units. Thus, for a four-operation architecture with five-stage
pipeline, like this one, there are needed 64 comparators to construct the data hazard

detection unit.

In order to detect the data dependencies I designed a data hazard detector unit, which
performs the necessary comparisons. I will define the comparisons describing separately

the detection performed for the EX stage and for the MEM stage:

1. EX hazard (32 comparisons):

for i in 1 to 4 loop
for j in 1 to 8 loop
EX(reg_we(i)) and (EX(write_register(i)) = ID(read register(j))
end loop
end loop

72

2. MEM hazard (32 comparisons):

for i in 1 to 4 loop
for j in 1 to 8 loop
MEM (reg we(i)) and (MEM(write register(i)) = ID(read register(j))

end loop
end loop

The simplest way to resolving data hazards in hardware is to stall the instructions in the
pipeline until the hazard is resolved. This is achieved by holding the instruction, where the
hazard appeared, out of execution until the WB stage of the instruction that performs the
register-write. But stalling the pipeline has very bad effect in the processor performance.
The hazard may only occur in only one of the four operations of the instruction word but
stalling goes for the whole instruction word. Thus I implemented a complex bypassing
hardware in order to provide the correct inputs to the ALU directly from the EX/MEM
and MEM/WB registers.

IF/D ID/EX EX'MEM MEMWB
10 iIC H RF ALU DC * RF
U L
i _ 1 .
| § I IC RF ALU DC RF
i - i .
12 oo Ic RF Y aLu DC RF
. . ;
W I3 e e s s e s IC RF ALU DC RF

Figure 5. 12 : Bypassing description. a. Values from
the EX/MEM pipeline registers are bypassed to the
ALU input. b. Values from the MEM/WB pipeline
registers are bypassed to the ALU input.

This bypassing hardware is like an interconnection network that connects different
functional units together. If the hazard is between ID and EX stages then the required
values are forwarded from the EX/MEM pipeline register to the ALU input. Moreover, if

the hazard occurs between ID and MEM stages then the required values are forwarded

73

from the MEM/WB pipeline register to the ALU input. These bypassing steps are
demonstrated in figure Figure 5. 12, and the diagram in figure Figure 5. 13 demonstrates the

bypassing network for each case.

Source
(Pipeline registers)

Target
(ALU inputs)

Figure 5. 13 : Bypassing network diagram. Each
one of the four output values in the pipeline
registers may be bypassed to each one of the eight
mnputs of the ALU.

However, when an operation tries to read a register following a load operation that writes
the same register, bypassing cannot provide correct execution. This is also illustrated in
figure Figure 5. 14. The data is still being read from memory during the same clock cycle
the following operation lays in the EX stage. In this case, the pipeline must still be stalled
in order to ensure correct execution. This is achieved by flushing the instruction in the ID
stage. To flush this instruction, the data hazard detection unit zeros the control signals in

order to prevent the instruction from changing the state of the execution.

74

10 IC RF ALU DC RF

) 1A)
H oo i RF ALU DC RF —
U U U (.
12 o IC RF {7 ALU DC RF
W I3 e st s i it i i IC RF ALU DC RF

Figure 5. 14 : Pipeline stall example. Unlike 12 to
which loaded data can be bypassed, data required
for execution of 11 are not yet loaded from the data
cache and cannot be bypassed.

5432 Control Hazards

Another kind of pipeline hazard involves branches. When there is a branch operation in an
mstruction word then the instructions that must be fetched at the following clock cycles
depend on the result of the branch condition. But this cannot be known unul the EX
pipeline stage, which means that the decision about whether to branch doesn’t occur until

that stage. This delay in determining the proper instruction to fetch is called branch hazard.

One solution s to stall the pipeline until the branch is complete. But this would encounter
a penalty of two clock cycles for each branch in order to be able to define the new address
in the nstruction memory. Thus, the approach I took to improve the pipeline behaviour
during branches was to allow a conditional execution assuming the branch as not taken.
This constitutes a common improvement over stalling, simply by allowing the hardware to
continue as if the branch were not executed. If the branch is taken, the instructions that are

being fetched and decoded are discarded, and the execution continues at the branch target.

To discard the instructions at IF and ID stages I need to flush these instructions in a way
similar to the load data hazard. The only difference is that the instruction in the IF stage
must be discarded too. This is achieved using another control line that zeros the IF/ID
pipeline register.

75

Unfortunately, stalling cannot be avoided in case of jump operations. In the ID stage the
hardware knows that a junp is going to happen and thus it does not allow other
instructions to follow the execution by flushing each instruction fetched in the IF stage.

The new address is being stored during the EX stage, and then the pipeline restarts the

instruction fetch after the inevitable two cycle stalling.

76

Chapter 6

6 TESTING - TOOLS AND SIMULATION METHODS

In this chapter I will describe the testing environment of the processor. In order to be able
to test the processor behaviour in running complete programs, I created an assembly
language and also an assembler to produce the machine language code, which is used as
data for the instruction memory. Then, the verification of the processor simulation results

is achieved by the use of a software simulator also written for this reason.
6.1 The Assembly Language

Creating the assembly language allows easy program wrnting in contrast to programming
directly into the machine language. The language syntax is quite simple and similar to the
assembly syntax of DLX. The main difference is that each line corresponds to a long
instruction word that consists of at most four separate subinstructions (operations). These
subinstructions that are contained in the same instruction are written in the same line and
are separated by semi-colons. A sample of a program written in assembly language is given

n Figure 6. 1.

lw r4,r10,12; addi r5,r0,226; ori r6,r0,1
labelX:
add r7,r4,r5; addi r4,r4,4; addi r5,r5,-2; sub r8,r4,r5
slt r9,r7,r8; sle r20,r4,r5; bneq r4.r5,labelX
sw r4,r10,12

Figure 6. 1: A sample of an assembly code for the
VLIW processor.

77

In order to define the operation syntax, I will classify them in three types, according to the

types into which they are encoded as shown in Figure 5. 2. Thus, the syntax of the

operations is the following:

R-type operations

The operations that belong to this type are:

AL: ADD, SUB, AND, OR, XOR, SLT, SEQ, SNE, SLE
and their syntax 1s:

OPER Rd, Rs, Rt

where Rd is the destination register and Rs, Rt are the source registers.
I-type operations

The syntax for this type varies according to the operations. One category uses the

syntax:
OPER Rt, Rs, immediate
and the operations that use this are:

AL: ADDI, SUBI, ANDI, ORI, XORI, SLTI, SEQI, SNEI, SLEI, SLLI, SRLI.
LS: LW, SW

For AL operations Rt represents the destinations register while Rs and the
immediate are the source operands. As far as the LS operations is concemed, the
memory address 1s the sum of [Rs + immediate] while the register Rt is either the
one to be loaded or stored according to the memory access type. The immediate

may be in decimal or even hexadecimal form (ex. 0x404).

The AL operations NOT, SLL and SRL follow a similar form but with no
immediate, where the source register is Rs and the destination is Rd. This syntax is

given bellow:

78

OPER Rt, Rs
Another set of I-type operations is:

CT: BEQ, BNEQ, JR, JALR

The branch operations use the syntax OPER Rt, Rs, /abel The comparison is
performed between the two registers and the label defines the branch target. The
way labels are written in the assembly is shown in Figure 6. 1. Moreover, the

syntax of the above jump operations is OPER Rt, where Rt contains the program

counter target value.

Finally, the way the operation L HI is written is shown in the following example:
LHI Rt, immediate,
where Rt is the register of which the upper 16 bits are replaced by the immediate.
e J-type operations
This type contains the / and /4 L operations, which syntax is:
J labeland JAL label.
The label defines the program counter target point.
6.2 Bytecode Generation Using the Assembler

In order to translate the assembly language into the machines language code, an assembler
was necessary. Thus, I built a program in PERL language, which translates a file of
assembly language statements into a text file of processor byte code. This file contains the
representation of each instruction in ‘0" and ‘1’, and each instruction word is in a separate
line. This output file will have the same name as the input assembly file with the extension
“out” added. Assuming that the assembly code routine shown in Figure 6. 1 is contained in
file paradigmas the file produced by the assembler will be named paradigmas. ot and looks
like the one shown in Figure 6. 2.

79

010110010100010000000000000011000000000000000

0000100001001000010000000000000001001000 | — 54di r4,r4,4

0000001001001000010110100000000000000011

Figure 6. 2 : The output file with the bytecode of
the code in figure 6. 1, generated by the assembler.
Parts of code in blue colour are NOPs.

The translation process has two major parts. The first step is to scan the assembly language
file for labels and to define the memory locations, so the relationship between symbolic
names and addresses is known when instructions are translated. During the second step,
the assembly file is scanned from the start, this time ignoring the labels, and the subroutine
parslate is called for each instruction (that is for each new line). This routine performs the
translation of each assembly statement by combining the numeric equivalents of opcodes,
register specifiers and labels into a legal operation. These numeric equivalents are placed in
the file assigmrenss, which is opened by the assembler to perform these combinations. In
case there are less than four operations in a instruction word then for each operation

“missing”, the assembler adds 32 zeros that correspond to a NOP.

The assembler also performs some error checking such as illegal assembly syntax providing
the line of the invalid token and also the invalid token. Moreover, it checks the length of
the immediate not to exceed the 16 bits. Finally, the assembly language file may contain

comments starting with ‘#’ that are ignored by the assembler.
6.3 The Simulator

In order to test the processor I had to give some instructions as an input and then watch
the processor state after the execution. Using the assembler I can easily write the required
mstructions in the assembly code, or even a whole program, and then initialising the
nstruction memory with the byte code generated. However, it is pretty difficult to verify

that the post execution state of the processor is correct, especially when running more

80

complicated routines. Thus, I created a program that simulates the processor and provides

a better environment for programming and testing.

The software simulator I built is written in C language and runs programs written for the
processor. It is named gsim and can read the byte code generated by the assembler and
execute the instructions just like the processor. Using the byte code as input for the
simulator rather than the assembly language code ensures that possible differences in the
results means processor bug and not assembler problem, assuming that the simulator is
completely debugged. Moreover, it is simpler to use the byte code in order to perform

control transfers, as the assembler has already performed the label handling.

The simulator does not work exactly like the actual processor. It doesn’t emulate the
processor pipeline and thus it doesnt report anything about stalls or bypassing. The
objective of the s/w simulator is to be able to know the processor state after the execution,
so I chose to avoid this programming complexity. It works like the single cycle
implementation of the CPU. At first it opens the assembler output file that contains the
byte code and a file that contains the data of the data memory (memfile.txt), which can be
edited before in order to contain the required data. Then, it reads the code line by line
executing the operations contained in the instructions word. An array that represents the
register file is changed after completing the execution of all the operations of each
nstruction word, while the array that emulates the data memory is refreshed after the

execution of the store operation even in the middle of the instruction word.

At the end of the whole program execution the simulator provides three output files. One
is the 7znfiletct that represents the data memory of the CPU and gives the memory final
status. The second file is 7egfile txt that provides the values of the registers of the processor
after the program ending. Finally, a log file is also created that describes the execution
providing a sequence of the execution steps and the number of non-NOPs for each
instruction word allowing watching the intermediate changes in the memory and the
register file. Samples of these output files are given in Figure 6. 3 that correspond to the

program shown in Figure 6. 1

81

r7= r4 + r5 =

rg8=r4 - x5 =
instructions:

326

ri= r4 +i 4 = 104

r5= r5 +1 65534 = 224
r8= r4 - r5 = -126
instructions: 4

19 A-rT < X8) =0
r20= (r4 <=1r5) =1
instructions:. 3
r1="74 '+ 5 =328

r4= r4 +i 4 = 108

r5= r5 +1 65534 = 222
r8= r4 - r5 = -120
instructions: 4

r9= ((r7 <r8) =0

r20= (r4 <= 1r5) =1
instructions: 3

r7="¥4 « x5 =330

r4d=r4 +i 4 = 112

r5= r5 +i 65534 = 220

r8=r4 - r5 = -114
instructions: 4

r9= (r7 < r8) =0

r20= (r4 <= r5) =1
instructions: 3

x7= T4 + 5 = 332

r4= r4 +i 4 = 116
r5= r5 +i 65534 = 218

-108
4

a. logfile sample

6.4 Testing

Index Value
[0] 5

[1] 120

[2] ©

[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
(12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

O O O O O o o

o
o

O 0O 0O 0O O0ODO0DO0O0DO0OO0OO0ONOODODOOOOLHKH OO
N
o))

b. mem_file sample

Figure 6. 3 : Sample of the output files generated
by the software simulator, after simulating the code
in figure 6. 1. (a) part of the log_file, (b) the first 32
memory cells, () the register file.

Index Value
[0] O

[1] O

[2] ©

[3] O

[4] 184
[5] 184
[6] 1

[7] 366
[8] -6

[9] O
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
(21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

O 0O 0O 00000000 H OO0OOOOOOOOoOOo

c. register file

The proper functionality of the processor was tested not only after the completion of the

design but also during the implementation. I wrote several small programs in order to

ensure the correct processor behaviour around some specific cases. For example I used

nstructions having data dependencies in order to venify the correctness of the bypassing, I

used branch and jump operations to see the program counter change and also the pipeline

flushing and stalling capability.

82

The first step is to write the assembly code and then translate it into byte code using the
assembler. Then using the output file that has been generated by the assembler I create a
Memory Initialization File (.mif) in order to initialize the instruction memory. A sample of
that .mif file is shown in Figure 6. 4. Having the program loaded into the instruction
memory of the processor I can start the simulation and watch the steps of the execution.

Moreover, I use the same output file with the software simulator in order to figure out

possible processor errors.

-- Instruction memory initialization file

WIDTH
DEPTH

128;
256, ;

ADDRESS RADIX = HEX;
DATA RADIX = BIN;

CONTENT BEGIN
0101010101000100000000000000110010000100000001...;

0000010010000101001110000000000010000100100001...;
0001100011101000010010000000000000100100100001. .. ;
0101100101000100000000000000110000000000000000. .. ;

w N R o

Figure 6. 4 : A sample of the Memory Initialization
File, generated for loading of the code in Figure 6. 1

The processor simulation is performed using the Altera Max +plus II functional simulator.
The instruction and data memory can easily be read and changed. For that reason I created
two 7f files that I can modify using a text editor in order to load a program or even to

preload the some values in the data memory.

The whole testing procedure is demonstrated in the following subsection where I use an

assembly program that illustrates a recursive factorial algorithm.
6.4.1 A Complete Routine Example

In order to demonstrate the processor evaluation procedure I wrote a recursive factorial

algonthm in VLIW code. This program is shown in Figure 6. 5.

It is a simple program but it covers many special conditions in execution that can denote

the proper functionality of the processor, such as jump, jump and link, branches and

83

conditional execution, memory access, all of which may cause the processor to stalling and

data bypassing.
—
1w r1,r0,0x100; ori r30,r0,100; ori r2,r0,1; jal start
sw r3,r0,41; j done
start: ‘
slt ¥29,r2,xrl; addi r2,r2,1
factorial:
sw r31,1r30,0; slt r29,r2,rl; beq r29,r0,isz
Bw T1,r30;1; addi r30,r30,2; subi ri1,rl,1; jal factorial
lw r4,r30,-1; ori r5,r0,0; addi rl11,r0,16; jal multiply
end:
iw r31,r30;-2; subi r30,r30,2
jr r3i
182:
sw rl,r30,1; addi r30,r30,2; ori r3,r0,1; j end
multiply:
andi r1l0,r4,1; subi rll,rll,1
beq r10,r0,skip
add x5,13,x5; sll r3,x3; srl r4,r4; bneq r11l,r0,multiply
or r3,r5,r0; Jr r31
skip:
gll r3.r3: srl r4,r4; bneq r11l,r0,multiply
or r3,r5,r0; jr r3i
done:

Figure 6. 5 : The example program that computes
the factorial of a number recursively, in VLIW code.

The first step is bytecode generation using the assembler. Then I use the generated
bytecode as input for memory initialization in the Compiler and Simulator of Max+Plus II.
Moreover, I used the same generated bytecode file as input for the software simulator to
evaluate the execution results of the functional simulation of the processor. I run the
program for several factorial computations and the results prove the proper execution of
the processor, as the final state of the register file and the data memory were the same and

are given 1n Figure 6. 6.

Finally, both the software and the functional simulator provided useful information about
the execution of this program, such as the total number of the long instruction words and
the operations executed and also the clock cycles required for the computation of the
factorial of number 12. Moreover, I wrote and simulated the same program in simple
sequential mode and compared the simulation results with those of the VLIW code. These

results are provided in Table 6. 1.

84

Index Value

Index Value

[1] © (111] 7
[2] © [112] 5
[113] 6
[114] 5
. [115] 5
[38] O [116] 5
[39] © [117] 4
[40] 12 [118] 5
[41] [119] 3
479001600 [120] 5
[42] © [121] 2
[43] 0 [122] 5
[123] 1
[124] 5
. [125] 1
[98] © [126] ©
[99] © [127] ©
[100] 1
[101] 12
[102] 5 .
[103] 11 [254] ©
[104] 5 [255] ©
[105] 10 [256] 12
[106] 5 [257] ©
[107] 9 [258] ©
[108] 5
[109] 8
[110] 5

Index Value

[0] O
[1] O
[2] ©
[3] O
[4] 184
[5] 184
[6] 1

[7] 366
[8] -6
[9] ©

[10] ©
[11] O
[12] O
[13] ©
[14] ©
[15] ©

Index Value

[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

O OO0 00000000 HKHOOO O

b. final memory state

c. final register file status

Figure 6. 6 : The post execution state of the
register file and the memory. The values given by
the software simulator are identical to the ones
derived from the functional simulation of the

processor.
Sequential Code VLIW code Relative difference
Clock 1972 1304 33.9% less
8 NN\ S \\ N\
nstructions OSt same
CPI 1.554 1.026 34% better

Table 6. 1: Execution results of both the sequential
and VLIW code, and a comparison between them.

85

As it is described in the above table, the processor needs 33.9% less clock cycles to execute
the VLIW form of the program than the simple sequential form, although the total
instructions executed are almost the same. This results to a better CPI of 34% for the
VLIW code, which is almost 1 but may be improved even more if the code was properly
scheduled for VLIW.

86

Chapter 7

7 CONCLUSIONS

Concurrency is the key element to achieve high performance computing and a way to
achieve this is through Instruction Level Parallelism. In this thesis I firstly performed a
complete presentation of the two basic approaches that have been taken n order to
achieve Instruction Level Parallelism in CPUs; The Superscalar and the VLIW processor
architecture. I also described the difference between these two architectures figuring out
the main advantages and disadvantages of both the two approaches. However, I analyzed

more extensively most of the organization and architectural issues on VLIW architecture.

After having discussed many issues concerning VLIWs, I proceeded in building a simple
VLIW processor in VHDL, following basic principles that charactensse this processor type.
I designed the Instruction Set Architecture for the processor and also implemented the
hardware logic design based on this ISA. Furthermore, I implemented an assembly
language translator necessary to easily produce byte-code used to load the nstruction
memory, and a software simulator that simulates the functional output of the CPU, n

order to evaluate the proper processor program outputs.
7.1 Thesis Conclusions

VLIW microprocessors and superscalar implementations of traditional instruction sets
share some charactenistics. They both have multiple execution units and thus the ability to
execute multiple operations simultaneously. The techniques used to achieve high
performance, however, are very different because the parallelism is explicit in VLIW

nstructions, but must be discovered by the hardware at run time by superscalar processors.

87

In VLIW processors, with software being responsible for analyzing dependencies and
creating execution schedule, the size of the instruction window that can be examined for
parallelism is much larger than what a superscalar processor can do in hardware. Thus, a
VLIW can expose more parallelism. Moreover, since the control logic n a VLIW
processor does not have to do any dependency checking, VLIW hardware can be much

simpler to implement than superscalar hardware that is quite complex.

This lack of complexity in a VLIW processor is also ascertained on my processor design. I
can safely say that the control logic was one of the simplest parts to implement, while the
four-functional-unit datapath was quite more complex. Actually, the main thing that made
this implementation being a quite hard task was the size of the design with a large number

of components, which made the project hard to be compiled and simulated.

On the other hand, VLIW processors suffer from some other issues that superscalars
overpass. One issue is the poor code compatibility between different instances of the same
architecture, such as the number and type of the functional units and the instruction issue
width. Moreover, too many NOP insertions in the instructions results in large code size.
Therefore, I could imagine that the key in designing high performance processors lays
somewhere between these two architectures. Probably a superscalar like architecture with
improved support for static parallelization, or even VLIW architecture but with improved

support for dynamic parallelization.
7.2 The Future of VLIW Processors

In the 1980s, a few small companies attempted to commercialize VLIW architectures in
the general-purpose computer market, such as Multiflow and Cydrome. Unfortunately,
they were ultimately unsuccessful. VLIW compiler technology has made major advances
during the last decade. However, most of the compiler techniques developed for VLIW
are equally applicable to super scalar processors as well. Stream and media processing
applications are typically very regular with predictable branch behavior and large amounts
of ILP. They lend themselves easily to VLIW style execution. The increasing demand for
multimedia applications will continue to encourage development of VLIW technology.
However, in the short term, super scalar processors will probably dominate in the role of
general-purpose processors. Increasing wire delays in deep sub micron processes will

ultimately force super scalar processors to use simpler and more scalable control

88

structures and seek more help from software. It is reasonable to assume that in the long

run, much of the VLIW technology and design philosophy will be adopted into general-

purpose computer architectures

In recent years, some VLIW and VLIW-based processors have enjoyed moderate
commercial success. The most commercially known are the Intel Itanium and the

Transmeta Crusoe processor, which I describe in the next paragraphs.

The Intel Itanium Processor

The Itanium processor is Intel’s first implementation of the IA-64 ISA. TA-64 is an ISA
for the EPIC (Explicitly Paralle] Instruction Computing) style of VLIW developed jointly
by Intel and HP. It is a 64 bit, six-issue VLIW processor with four integer units, four
multimedia units, two load/store units, two extended precision floating point units and
two single precision floating point units. This processor running at 800 MHz on a 0.18

micron process has a 10 stage deep pipeline.

Itanium has 128 general-purpose registers and the same number of floating point
registers. An operation encoding hence uses 7 bits each to specify the two source
operands and another 7 bits to specify the destination operand. The type of operation
itself is encoded using 14 bits. Many operations also use a predicate argument that takes
up another 6 bits since there are 64 predicate registers. The predicate registers store a bit,
depending on whose truth value the processor decides to either execute the concerned
operation or skip its execution (execute a nop). This accounts for a total of 41 bits to

specify an operation and its encoding is shown in Figure 7. 1(b).

89

a. 128-bit LIW

(bundle)
41 bit 5 bit

41 bit 41 bit

Template
field

41-bit IA-64
instruction

7 bit 7 bit 7 bit
Register 1 Register 2 Register 3

Figure 7. 1: [A-64 instruction format. (a) [A-64
VLIW 1nstruction encoding, (b) [A-64 operation

encoding.

Each VLIW mnstruction is called lunde and consists of 128 bits. This means that each
VLIW mstruction can accommodate three 41-bit operations. The five bits left are used for
the template, which assists in decoding and routing the instructions and also the location of
stops that mark the end of a group of instructions that can execute in parallel. The 128-bit

bundle encoding is shown in Figure 7. 1(a).

The main architectural features supported by the Itanium processor are:

* Preduated eceamion: Tt reduces the branch penalty by eliminating branches using
predicated execution via the compiler technique known as famersion. Predicated
execution conditionally executes operations based on a Boolean-valued input

(predicate) associated with the basic block containing the operation.

Comrd speadation: Another feature to increase operation mobility across branches.
To do control speculation, the compiler moves an operation before its conditional
branch. The operation then carries a flag that indicates that it needs speculative

operation code.

90

o Data specilation: If the compiler cannot disambiguate between the addresses of a
store and a later load, it can issue an adune load ahead of the store, which 1s also
called speadatie load. Moreover, it schedules a data-wenfyng load called speadatiwe dredk,

after potentially aliasing stores and uses hardware to detect whether an unlikely

alias has occurred.

o Softurre pipelining: The Ttanium register mechanism is somehow complex in order to
implement software pipelining support. The general purpose registers O to 31 are
fixed, but registers 32 through 127 can be renamed under program control to
support a register stack or to do modulo scheduling for loops. In case this is used
for software pipelining support it is called regster roanon. Like general purpose
registers, predicated registers O through 15 are fixed and 16 through 63 can be
made to rotate in unison with general purpose ones. Finally, floating point registers

also support register rotation.

o [A-32 ampatibility: The Intel Itanium processor supports 32-bit binary compatibility

in hardware.

Itanium was built to improve performance, thus it includes several features that are not
found in traditional VLIW architecture. The Intel Itanium processor is probably the most

complex VLIW ever designed.
The Transmeta Crusoe Processor

Traditionally, VLIW processors have been designed to maximize both ILP and
performance. The designers of the Crusoe on the other hand designed a VLIW processor
with moderate performance compared to current processors, but with low power
consumption. This would enable the use of these processors in mobile systems like laptops
allowing many hours of operation times between recharges. Moreover, it is able to
efficiently emulate the ISA of other processors, particularly the 80x86 even though the

architecture of Crusoe nowhere resembles that of an 80x86 processor.

Crusoe 1s a simple VLIW architecture. The long instructions are either 64 or 128 bits long.
A 128-bit instruction word is called a 7oleade in Transmeta parlance and encodes four
operations called atons. The molecule format directly determines how operations get

routed to functional units. It has two integer units, a floating-point unit, a load/store unit

91

and a branch unit. It has 64 general purpose registers and supports strictly in-order issue.

Instead of using predication, Crusoe uses condition flags, which are identical to those of

the x86 architecture for ease of emulation.

To achieve binary compatibility with an x86 programs, the Crusoe processor relies on a
software technique called dynamic binary translation. An x86 program is dynamically
translated to execute on the Crusoe VLIW processor. This translation scheme has been
dubbed code morphing by Transmeta. In this scheme, the software, also called the virtual
machine manager since it presents an x86 virtual machine to an x86 program, uses a

combination of interpretation and translation to speed up program execution.

92

10.

11.

12.

13.

REFERENCES

David A. Patterson, John L. Hennesy, Conpuger Orgarization and Design: the
harduzre/softunre interface, Morgan Kaufmann Publishers, 1994.

S. Hacker, Static Supersailar Desige A new ardntecure for the TignSHARK DSP
Proaessor, Analog Devices GmbH.

A. Klaiber, The tedmology behind the Crusce progssor, Transmeta Corporation White
Paper, 2000.

Joseph A. Fisher, Glotul code generation for instruction-lewl parallelisnt Trace Scheduling 2,
Tech. Rep. HPL-93-43, Hewlett-Packard Laboratones, June 1993.

Joseph A. Fischer, Very Long Instrution Word Ardntecurres and the ELI-512,
Proceedings of the 10'th Symposium on Computer Architectures, pp. 140-150,
IEEE, June, 1983.

P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter and W. W. Hwu, Inpaa: an
ardhteciral - franeuok for - nudtple mstucion-issue - proassos. Proc. 18th Annual
International Symposium on Computer Architecture (Toronto, Canada, May
1991), pages 266-275.

D. E. Hudak and S. G. Abraham, Compiling Parallel Logps for High Peformance

Computers -~ Partiiorng, Data Assigmrent and Renupping, Kluwer Academic Pub.,
Boston, MA, 1993.

R. Gupta, S. Pande, K. Psarnis, and V. Sarkar, Conpilation Tedmiques for Parallel
Systerrs, Paralle] Computing journal, North Holland, Vol. 25, No. 13-14, pages
1741-1783, December 1999.

K. Ebcioglu, Some Design Ideas for a VLIW A rdtecture for Sequential-Natured Softusre,
in Paralle] Processing (Proc. IFIP WG 10.3 Working Conference on Parallel
Processing, Pisa, Italy), pages 3--21. North Holland, 1988.

W-m. Hwu, Tedmalogy Outlook: Introduction to Predicated E xeation, IEEE Computer,
Vol. 31, No. 1, pages 49-50, January 1998.

CFu, M. Jennings, S. Y. Lanin, T. M. Conte, Value Speaiation Scheduling for High
Peformance Proasssors, International Conference on Architectural Support for
Programming Languages and Operating Systems, October 1998.

B.R. Rau, Dymamic sdheduling tedmuques for VLIW processors, Technical Report
HPL-93-52, Computer Research Center, Hewlett-Packard Company, June 1993.

B. R. Rau, Dymamiaally scheduled VL IW processors, in Proc. 26th Ann. International
Symposium on Microarchitecture, (Austin, TX), pp. 80--90, Dec. 1993.

93

14. M. Franklin and M. Smotherman, A fill-wt approadh to multsple trstruction issie, in
Proceedings of 27th Annual International Symposium on Microarchitecture
(MICRO-27), pp. 162-171, December 1994.

15. S. Melvin, M. Shebanow, and Y. Patt, Harduzre support for large atomc wts n
dyramiaally scheduled madhines, in Proceedings of 21st Annual International
Symposium on Microarchitecture (MICRO-21), pp. 60-66, December 1988.

16. S. W. Keckler and W.]. Dally, Proassor Caupling: Integrating Compule Tirre and Runtie
Scheduling for Parallelism, in Proc. 19th Ann. Int'l Symp. Computer Architecture,
(Gold Coast, Australia), May 1992.

17. G. Prasadh and C. Wu, A Bewhmwk Ewduation of a Multihreaded RISC Progessor
Ardnteaure, in Proc. of Int'l Conf. on Parallel Processing, pp. 184--191, Aug. 1991.

18. A. Wolfe and J. P. Shen, A Varniable Instuction Stream Externsion to the VLIW
Anrdnteaurre, in Proc. 4th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, ACM Press, pp. 2--14, Apr. 1991.

94

