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Abstract

Tackling the decision-making problem faced by a prosumer (i.e., a producer that

is simultaneously a consumer) when selling and buying energy in the emerging

smart electricity grid, is of utmost importance for the economic profitability of

such a business entity. In this thesis, we model, for the first time, this problem

as a factored Markov Decision process (MDP). Our model successfully captures

the main aspects of the business decisions of a prosumer corresponding to a com-

munity microgrid of any size. Moreover, it includes appropriate sub-models for

prosumer production and consumption prediction.

Employing this model, we are able to represent the problem compactly, and

to provide an exact optimal solution via dynamic programming—notwithstanding

its large size. In addition, we show how to use approximate MDP solution meth-

ods for taking decisions in this domain, without the need of discretizing the state

space. Specifically, we employ fitted value iteration, a sampling-based approxi-

mation method that is known to be well behaved. By so doing, we generalize our

factored MDP solution method to continuous state spaces.

Our experimental simulations verify the effectiveness of our approach. They

show that our exact value iteration solution matches that of a state-of-the-art

method for stochastic planning in very large environments, while outperforming it

in terms of computation time. Furthermore, we evaluate our approximate solution

method via using a variety of basis functions over different state sample sizes,

and comparing its performance to that of our exact value iteration algorithm. Our

approximation method is shown to exhibit stable performance in terms of accu-

mulated reward, which for certain basis functions reaches 90% of that gathered by

the exact algorithm.
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Chapter 1

Introduction

Decision-theoretic planning (DTP) [13] has attracted a considerable amount of

attention recently as AI researchers seek to generalize the types of planning prob-

lems that can be tackled in computationally effective ways. DTP is primarily

concerned with problems of sequential decision making under conditions of un-

certainty and where there exist multiple, often conflicting, objectives whose de-

sirability can be quantified. Markov Decision Processes (MDPs) [41] allow the

introduction of uncertainty into the effects of actions, the modelling of uncertain

exogenous events, the presence of multiple, prioritized objectives, and the solution

of non–terminating process–oriented problems.

The foundations and the basic computational techniques for MDPs are well

understood and in certain cases can be used directly in DTP. These methods ex-

ploit the dynamic programming principle and some of them allow MDPs to be

solved in time polynomial in the size of the state and action spaces that make up

the planning problem. Unfortunately, these classic dynamic programming meth-

ods are formulated so as to require explicit state space enumeration. Classic MDP

solution methods are faced with the so–called “curse of dimensionality”: the num-

ber of states grows exponentially with the number of variables that characterize

the planning domain. However, methods have been developed that, in many in-

stances, circumvent this problem. In classical planning one typically does not

specify actions and goals explicitly using the underlying state space, but rather

”intensionally” using propositional or variable-based representations [12]. For

instance, a STRIPS representation [43] of an action describes very concisely the

transitions induced by that action over a large number of states. Classical planning

techniques such as regression planning or nonlinear planning exploit these repre-

sentations to great effect. Intuitively, such methods aggregate states that behave

identically under a given action sequence with respect to a given goal [12].



Chapter 1. Introduction 13

Similarly, many large MDPs have significant internal structure, and can be

modeled compactly if the structure is exploited in the representation. Factored

MDPs [12] are one approach to representing large, structured MDPs compactly.

In this framework, a state is implicitly described by an assignment to some set of

state variables. A dynamic Bayesian network (DBN [55] can then allow a compact

representation of the transition model, by exploiting the fact that the transition of

a variable often depends only on a small number of other variables. DBN is a way

to extend Bayesian Networks [25] to model probability distributions over a collec-

tions of random variables. Furthermore, the momentary rewards can often also be

decomposed as a sum of rewards related to individual variables or small clusters

of variables. Even when a large MDP can be represented compactly, for example,

by using a factored representation, solving it exactly may still be intractable: Typ-

ical exact MDP solution algorithms require the manipulation of a value function,

whose representation is linear in the number of states, which is exponential in the

number of state variables. One approach is to approximate the solution using an

approximate value function with a compact representation. A common choice is

the use of linear value functions as an approximation — value functions that are a

linear combination of potentially non-linear basis functions [40, 50, 32].

MDPs are a natural choice for tackling DTP problems in the Smart Grid, a

fast growing field of research [6]. Electricity is the most versatile and widely used

form of energy and global demand is growing continuously. Generation of electri-

cal power, however, is an important source of carbon dioxide emissions, making

a significant contribution to climate change [44]. Most of today’s generation ca-

pacity relies on fossil fuels and contributes significantly to the increase of carbon

dioxide in the world’s atmosphere, with negative consequences for the climate and

society in general [44]. To mitigate the consequences of climate change, the cur-

rent electrical system needs to undergo significant adjustments. To satisfy both the

increasing demand for power and the need to reduce carbon dioxide emissions, we

need an electric system that can handle these challenges in a sustainable, reliable

and economic way [38]. Smart grids will provide more electricity to meet rising

demand, increase reliability and quality of power supplies, increase energy effi-

ciency, be able to integrate low carbon energy sources into power networks. Smart

grids also possess demand response capacity to help balance electrical consump-
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tion with supply, as well as the potential to integrate new technologies to enable

energy storage devices and the large-scale use of electric vehicles [56]. Electri-

cal systems will undergo a major evolution, improving reliability and reducing

electrical losses, capital expenditures and maintenance costs. A smarter grid will

provide greater control over energy costs and a more reliable energy supply for

consumers using renewable energy sources (RES). The environmental benefits of

a smarter grid include reduced peak demand which means reduced need for con-

ventional generators; integration of more renewable power sources; and reduced

CO2 emissions and other pollutants [33].

A major scientific and societal concern in the Smart Grid is estimating the

power output of inherently intermittent and potentially distributed renewable en-

ergy sources (RES). There are a few works dealing with the estimation of the

power output such as [3]. Another important issue in the Smart Grid is enhancing

RES effectiveness. For instance, the power output of photovoltaic systems (PVS)

increases with the use of effective and efficient solar tracking techniques. A pro-

posed solution method for this problem based on reinforcement learning (RL) [36]

is described in [4]. Further, as technology evolves and electricity demand rises,

the task to keep it precisely balanced with supply at all times becomes especially

challenging. Maintaining demand curve stability, in particular, can alleviate the

risk of disastrous electricity network collapses, and leads to financial and envi-

ronmental benefits, as then some generators can be run on idle, or even be shut

down completely. Quite a few recent works deal with this so-called demand side

management problem(see, e.g. [8, 47].

In recent years, the term prosumer has been coined in order to describe an

entity that both produces and consumes energy, implying that prosumers possess

the ability to play a key role to the stabilization of the electricity network [38, 53].

As such, and assuming prosumers are able to adjust their behaviour according

to dynamic indicators, their smooth integration into the shaping Smart Grid is of

critical importance [6]. Viewed as a business entity, a prosumer could correspond

to a single residence, a specific industry, or to whole neighborhoods of houses that

are served by a dedicated microgrid—which may or may not be connected to the

rest of the electricity Grid.

Our focus of attention in this will be optimizing the business decisions cor-
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responding to a microgrid prosumer, which produces electricity from (mainly)

renewable energy resources, and which has the option of buying and selling en-

ergy from utility companies residing in the larger electricity Grid. Paradigms of

such community-oriented and renewable energy-relying microgrids are expected

to be commonplace in the near future [38]. Naturally, the viability (economic and

otherwise) of such an entity is tightly connected to the quality of its business de-

cisions, whether to buy, sell, or store energy, within some decisions horizon, in

order to possibly make a profit while ensuring the smooth operation of its energy-

consuming units; and ensuring this viability is key to the smooth integration of

prosumers into the Smart Grid.

More precisely, we created a microgrid prosumer agent, that plans electricity

purchasing, storing, and selling decisions for the day-ahead, aiming to serve its

electricity needs while perhaps making a profit via selling energy (via participa-

tion in some day-ahead market). In our scenario, we assume that the agent has the

option to buy or sell energy from/to various utility companies operating over the

Grid. The buy/sell electricity prices for the day-ahead are determined via “tariffs”

issued by the utility companies at the beginning of each day, and to which the

agent can subscribe to.

1.1 Contributions

To the best of our knowledge, no work to date has attacked this specific problem

heads on. Thus, our main contribution lies in describing compactly and evaluating,

for the first time, the decision problem faced by a microgrid prosumer planning

its energy production, storage and usage strategy for the day ahead as a factored

Markov Decision Process [13]. Our formulation enables us to provide an exact

optimal solution (using certain discretization-related modelling decisions) for the

problem faced by a prosumer corresponding to a microgrid of essentially any size.

The exact solution to the prosumer decision problem can be computed using

standard dynamic programming techniques. In this thesis, we employed value

iteration to this purpose. The effectiveness and efficiency of our approach is ver-

ified by comparisons to the performance of SPUDD, a state-of-the-art method

for stochastic planning in large environments. Our value iteration method, op-
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erating over a problem horizon corresponding to twenty–four hours, is shown to

produce policies that coincide with those produced by SPUDD [30]. However, as

we explain in Chapter 5 below, SPUDD has to operate over a state space that is

artificially larger, while, at the same time, it does not possess enough structure.

This creates a need to build huge input files for SPUDD to operate on, resulting to

a huge pre-processing time for the algorithm. As a result, while our method can

scale to larger state spaces for our problem, SPUDD cannot produce a solution in

such cases within the required twenty–four hour time–frame

In addition, we equip our consumer with specific consumption and production-

predicting submodels, which provide it with the necessary input signals on which

to base its decisions. As part of our work, we show that Gaussian processes and

Bayesian linear regression techniques can be successfully used for consumption

prediction. To obtain the production estimates of the photovoltaic systems (PVS)

and wind turbine generators (WTG) of our microgrid, we employ RENES [3], a

web-based PVS and WTG production prediction tool.

Finally, we also show how to use approximate MDP solution methods for

taking decisions in this domain without the need of discretizing the state space.

Specifically, we employ fitted value iteration, a sampling-based approximation

method that is known to be well behaved. By so doing, we generalize our factored

MDP solution method to continuous state spaces. We evaluate our approach us-

ing a variety of basis functions over different state sample sizes, and compare its

performance to that of our original “exact” value iteration algorithm. Our generic

approximation method is shown to exhibit stable performance in terms of accumu-

lated reward, which for certain basis functions reaches 90% of that gathered by the

exact algorithm. Our thesis results were presented in two scientific conferences

publications [1, 2].

1.2 Thesis Layout

This thesis is organized into the following chapters: Chapter 2 provides a brief

background on factored MDPs and reviews related work. Chapter 3 then describes

our model, its factored representation, and the production and consumption mod-

els we employed. Chapter 4 describes our solution methods (exact and approx-
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imate). Chapter 5 presents our simulation experiments; and, finally, Chapter 6

concludes and outlines future work.
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Chapter 2

Background and Related Work

In this chapter, we extensively describe factored MDPs (FMDPs), which provide

a compact way to represent MDPs. In addition, we outline several well-known

(factored) MDP solution methods, some of which can operate over both discrete

and continuous state spaces. Finally, we review several works on decision making

in the Smart Grid.

2.1 MDPs

Markov decision processes (MDPs) [41], provide a mathematical framework for

modelling decision making in situations where outcomes are partly random and

partly under the control of a decision maker. MDPs are useful for studying a wide

range of optimization problems solved via dynamic programming and reinforce-

ment learning. They are used in a wide area of disciplines, including robotics,

automated control, economics, and manufacturing. More precisely, a MDP is a

discrete time stochastic control process. At each time step, the process is in some

state s, and the decision maker may choose any action a that is available in state

s. The process responds at the next time step by randomly moving into a new

state s′, and giving the decision maker a corresponding reward Ra(s, s
′). The

probability that the process moves into its new state s′ is influenced by the chosen

action. Specifically, it is given by the state transition function Pa(s, s
′). Thus, the

next state s′ depends on the current state s and the decision maker’s action a. But

given s and a, it is conditionally independent of all previous states and actions; in

other words, the state transitions of an MDP possess the Markov property.

Thus, a Markov decision process is a 4-tuple (S,A,T ,R) composed of:

X a (finite) set S of states
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X a (finite) set A of actions

X (Markov) transition function T (s, a, s′) = Pr(s′|s, a), specifying the

probability Pr(s′|s, a) of going to state s′ after taking action a in state s

X reward function R(s), determining the

immediate reward received after transition to state s′ from state s.

An MDP can be represented graphically,as shown in figure 2.1. St represent the

current state and Rt represent the immediate reward received in that state. In

addition, the edge represents the transition from state St to state St+1, after taking

action At.

Figure 2.1: Graphically MDP representation.

The core problem of MDPs is to find a policy for the decision maker: a func-

tion π that specifies the action π(s) that the decision maker will choose when in

state s. Note that once a Markov decision process is combined with a policy in

this way, this fixes the action for each state. The goal is to choose a policy π that

will maximize some cumulative function of the random rewards, typically the ex-

pected discounted sum over a potentially infinite horizon:
∑∞

t=0 γ
tRπ(st)(st, st+1)

where γ is a discount factor that satisfies 0 ≤ γ ≤ 1.

2.2 Factored MDPs

Factored Markov Decision Processes (FMDPs) [13] provide a compact alterna-

tive to standard MDP representation. Specifically, they decompose states into sets

of state variables in order to represent the transition and model compactly—since

transitions and rewards may rely on specific model aspects, corresponding to sub-

sets of variables only. Thus, the set of states in a factored MDP representation
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correspond to multivariate random variables, s = 〈si〉, with the si variables taking

on values in their corresponding DOM(si) domains. Intuitively, state variables

correspond to a selection of features which are sufficient to describe the system

state. In FMDPs, actions are also quite often described as random variables, while

reward functions used are assumed to be factored into specific (usually additive)

components. Furthermore, FMDP models allow for external signals, described

by signal variables, affecting state variables; while temporal Bayesian networks

(TBNs) and influence diagrams can be employed to represent the effects of ac-

tions on state transitions and rewards. There are two main types of structure that

can simultaneously be exploited in factored MDPs: additive and context-specific

structure [15]. Additive structure captures the fact that typical large-scale systems

can often be decomposed into a combination of locally interacting components.

Context-specific structure encodes a different type of locality of influence: Al-

though a part of a large system may, in general, be influenced by the state of every

other part of this system, at any given point in time only a small number of parts

may influence it directly. A multitude of techniques that exploit the resulting rep-

resentational structure can then be used to solve large problems, at least approx-

imately (e.g., linear value functions, approximate linear programming, stochastic

algebraic decision diagrams, and so on) [15, 13].

2.3 Factored MDPs Solution Methods

Many solution methods can be used to solve large problems modelled as Factored

MDPs. We provide an overview of the common approaches to solving MDPs [49,

40]. In sections 2.3.1 to 2.3.3 we outline approaches that can operate only over

discrete state spaces, while sections 2.3.4 to 2.3.8 present methods that can operate

over continuous spaces also, via operating over approximate representations of the

underlying value function.

2.3.1 Value Iteration

Value Iteration is a method of computing an optimal MDP policy and its value.

Value Iteration starts at the “end” and then works backward, refining an estimate
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of either Q-function or V -function [49].

The expected value of a policy π is defined in terms of two interrelated func-

tions, V π and Qπ . Let Qπ(s, a), where s is a state and a is an action, be the

expected value of doing a in state s and then following policy π. Recall that

V π(s), where s is a state, is the expected value of following policy π in state s.

Qπ and V π can be defined recursively in terms of each other. If the agent is in

state s, performs action a, and arrives in state s′, it gets the immediate reward of

R(s, a, s′) plus the discounted future reward, γV π(s′). When the agent is planning

it does not know the actual resulting state, so it uses the expected value, averaged

over the possible resulting states: Qπ(s, a) =
∑′

s P (s′|s, a)(R(s, a, s′) + γV πs′).

V π(s) is obtained by doing the action specified by π and then acting following π:

V π(s) = Qπ(s, π(s)).

There is really no end in Value Iteration, so it uses an arbitrary end point. Let

Vk be the value function assuming there are k stages to go, and let Qk be the

Q-function assuming there are k stages to go. These can be defined recursively.

Value iteration starts with an arbitrary function V0 and uses the following equa-

tions to get the functions for k + 1 stages to go from the functions for k stages to

go:

Qk+1(s, a) =

′
∑

s

P (s′|s, a)(R(s, a, s′) + γVk(s
′)) for k ≥ 0 (2.1)

where, S is the (finite) state set , A is the (finite) action set P (s′|s, a) is the transi-

tion function, R(s) the reward function and γ is a discount–factor

Vk(s) = maxaQk(s, a) for k ≥ 0. (2.2)

2.3.2 Policy Iteration

Policy Iteration starts with a policy and iteratively improves it [49]. It starts with

an arbitrary policy π0 (an approximation to the optimal policy works best) and

carries out the following steps starting from i = 0. Policy evaluation: determine

V π
i (S). The definition of V π is a set of |S| linear equations in |S| unknowns. The

unknowns are the values of V π
i (S). There is an equation for each state. These
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equations can be solved by a linear equation solution method (such as Gaussian

elimination) or they can be solved iteratively. Policy improvement: choose πi+1 =

argmaxa Q
π
i (s, a), where the Q-value can be obtained from V using:

Qπ(s, a) =
′

∑

s

P (s′|s, a)(R(s, a, s′) + γV π(s′)). (2.3)

To detect when the algorithm has converged, it should only change the policy if

the new action for some state improves the expected value; that is, it should set

πi+1(s) to be πi(s) if πi(s) is one of the actions that maximizes Qπ
i (s, a). It stops

if there is no change in the policy – that is, if πi+1 = πi – otherwise it increases i

and repeats.

2.3.3 Stochastic Planning Using Decision Diagrams

Stochastic Planning Using Decision Diagrams (SPUDD) [30], is a well-known

algorithm for finding (near-)optimal policies in very large problems represented as

factored MDPs, for this reason we will compare our approach to it. It is essentially

a value iteration algorithm that uses algebraic decision diagrams (ADDs) [39] to

represent value functions and policies, assuming an ADD input representation

of the FMDP provided in an input script (a) describing the factored states and

actions, and (b) the transition model and reward function.

In order to define ADDs, we first have to present Binary Decision Diagrams

(BDDs). A BBD [51] is a directed acyclic graph that consists of nodes and edges.

It deals with Boolean functions. A binary decision diagram consists of a set of

decision nodes, starting at the root node at the top of the decision diagram. Each

decision node contains two outgoing branches, one is a high branch and the other

is a low branch. These branches may be represented as solid and dotted lines, re-

spectively. The binary decision diagram contains high and low branches that are

used to connect decision nodes with each other to create decision paths. The high

and low branches of the final decision nodes are connected to either a high or low

terminal node, which represents the output of the function. Figure 2.2 shown an

instance of a graphical representation of BDDs on the left side. (ADDs) then ex-

tend BDDs to represent real-valued functions. We show an instance of a graphical
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representation of ADDs on the right side of figure 2.2. In an ADD, there are mul-

tiple terminal nodes labelled with numeric values. ADDs can be used, along with

Dynamic Bayesian Networks (DBNs), in order to provide a compact MDP repre-

sentation. Specifically, they can be used in order to represent the reward function,

and the so-called Conditional Probability Tables (CPTs) that describe the MDP

state transition function.

Figure 2.2: Left:BDD graphical representation. Right:ADD graphical representa-

tion.

In some detail, DBNs are probabilistic graphical models that relate variables

to each other, over adjacent time steps. They can easily describe the effects that

the execution of some action has on specific variables under certain conditions. A

DBN for action a requires two sets of variables, one set S = S1, . . . , Sn referring

to the state of the system before action a has been executed, and S ′ = S ′
1, . . . , S

′
n

denoting the state after a has been executed. Directed arcs from variables in X to

variables in S’ indicate direct causal influence and have the usual semantics. The

conditional probability table (CPT) for each post-action variable S ′
i defines a con-

ditional distribution P a
Si

over S ′
i. This can be viewed as a function P a

Si
(S1 . . . Sn),

represented by an ADD, though the function value (distribution) depends only on

those Sj that are parents of Si. This representational technique allows one to de-

scribe a value function (or policy) as a function of the variables describing the

domain rather than in the classic ”tabular” way. The decision graph used to repre-

sent this function is often extremely compact, implicitly grouping together states
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that agree on value at different points in the dynamic programming computation.

As such, the number of expected value computations and maximizations required

by dynamic programming is greatly reduced.

Against, this background the SPUDD algorithm itself is derived from the

structured policy iteration (SPI) algorithm of [10, 11, 12], where decision trees are

used to represent value functions and policies. Given a DBN action representation

(with decision trees used to represent conditional probability tables), and a deci-

sion tree representation of the reward function, SPI constructs value functions that

preserve much of the DBN structure. SPUDD offers considerable computational

advantages in certain natural classes of problems. In addition, highly optimized

ADD manipulation software can be used in the implementation of value iteration.

2.3.4 Linear Value Function Approximation

Value Function using linear regression is a popular approximate solution method [15,

40]. The space of allowable value functions is described via a set of basis func-

tions H = h1, . . . , hk. Some coefficients w = (w1, . . . , wk) are used to define the

value function as V=
∑k

j=1wjhj = Aw. As a result of the definition of the value

function, the projection weight is defined as:

ρ(s) = (V (s)− V̂ (s))2 (2.4)

where the notion of distance is weighted as L2 norm. The projection operation

consists of computing

w = (ATΛA)−1ATΛV (2.5)

where Λ is a weight matrix with diagonal entries equal to our projection weight ρ

The key insight is that an iterative process is not required, we can find the fixed

point directly by writing an approximate version. The iterative value determina-

tion equation is

V t+1 = γPπV
t +R (2.6)

Awt+1 = γPπAw
t +R (2.7)
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A weighted least-squares approximation to Eq. 2.7 is:

wt+1 = (ATΛA)−1[γATΛPπAw
(t) + ATΛR] (2.8)

2.3.5 Approximate Policy Iteration

This method uses an approximate value function represented as a linear combi-

nation of basis functions [15]. It can be performed efficiently in closed form, by

exploiting structure in a factored MDP. Approximate solution methods generate

linear value functions which can be denoted by Hŵ. In practice, the agent will

define its behaviour by acting according to the greedy policy π = Greedy(Hŵ).

Vπ of policy π compares to V ∗ using the Bellman error analysis [45].

The Bellman error is defined as

BellmanErr(V ) = ||T ∗ V − V ||∞ (2.9)

Given the greedy policy π = Greedy(V), Bellman error analysis of Williams and

Baird (1993) [45] provides the bound:

||V ∗ − Vπ̂||∞ ≤
2γBellmanErr(V )

1− γ
(2.10)

It can efficiently compute bounds on policy quality based on the Bellman error.

The exact policy iteration algorithm iterates over policies, producing an improved

policy at each iteration. Starting with some initial policy π(0) , each iteration

consists of two phases. Value determination computes the value function Vπ(t),

by finding the unique solution to the set of linear equations:

Vπ(t)(s) = R(s, π(t)(s)) + γ
∑

s’

P (s’|s, π(t)(s))Vπ(t)(s’), ∀s (2.11)

, where s is the state and s’ the state after the transition. The policy improvement

step defines the next policy as

πt+1 = Greedy(Vπ(t)) (2.12)
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It can be shown that this process converges to the optimal policy[21]. Denoting

the reward and transition function, as well as the set of the basis functions

• Rπ(t) , where Rπ(t)(s) = R(s, π(t)(s))

• Pπ(t)(s’|s) = P (s’|s, π(t)‘(x))

• a set of basis functions H = h1, . . . , hk

we can now rewrite the value determination step in terms of matrices and vectors.

If we view Vπ(t) and Rπ(t) as N-vectors, and Pπ(t) as an N × N matrix, we have

the equations:

Vπ(t) = Rπ(t) + γPπ(t)Vπ(t) (2.13)

This is a system of linear equations with one equation for each state, which can

only be solved exactly for relatively small N . The goal is to provide an approxi-

mate solution, within H. More precisely, we want to find:

w(t) = argmin
w
||Hw− (Rπ(t) + γPπ(t)Hw)|| =

argmin
w
||(H − γPπ(t)H)w(t) − Rπ(t)||

(2.14)

Thus, approximate policy iteration alternates between two steps:

w(t) = argmin
w

Hw− (Rπ(t) + γPπ(t)Hw) (2.15)

π(t+1) = Greedy(Hw(t)) (2.16)

2.3.6 Factored Max-Norm Projection

The approaches in sections 2.3.4 and 2.3.5 suffer from ”norm incompatibility”.

When computing the projection, they utilize the standard Euclidean projection

operator with respect to the L2 norm or a weighted L2 norm. However, most of

the convergence and error analyses for MDP algorithms utilize max-norm (L∞).

This incompatibility has made it difficult to provide error guarantees. The problem
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is defined as finding w∗ such that:

w∗ ∈ argmin
w
||Cw− b||∞ (2.17)

An algorithm [23] solves this problem by linear programming:

V ariables : w1, . . . , wk, φ;

Minimize :φ;

Subject to :φ ≥
k

∑

j=1

cijwj − bi and

φ ≥ bi −
k

∑

j=1

cijwj (2.18)

The L∞ projection can be used in the context of the approximate policy itera-

tion. When implementing the projection operation, we can use the L∞ projection,

where

C = (H − γPπ(t)H) and b = Rπ(t) (2.19)

We can enhance this method to speed up computations when solving factored

MDPs [14]. The key computational step is the solution of 2.17 using the linear

program 2.18. the vectors Cw and b are vectors in R|S|, where S is our state space,

a set of vectors which are assignments to the state variables X = X1, . . . , Xn,

where n is the total number of state variables. The size of the state space is ex-

ponential in the number of variables. The goal is to optimize 2.17 without explic-

itly considering each of the exponentially many states. To make the computation

of 2.17 more efficient, we can view both Cw and b as functions of these state

variables, and hence also their difference. Thus, we can define a function such

that Fw(xi) = (Cwi − bi). The key for efficiency is to use the fact that Fw has

a factored representation. More precisely, Cw has the form
∑

j wjf
′
j(Zj) , where

Zj is a subset of X . We can express Fw as a sum
∑

j fj(Zj), where fw
j may or

may not depend on w. We can maximize such a function F using a construction

called a cost network[42], whose structure is very similar to a Bayesian network.
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Hence, the goal becomes to compute [14]:

maxx1,...,xn

∑

fj(Zj[x]).

where Zj[x] is the instantiation of the variables in Zj in the assignment.

2.3.7 Approximate Linear Programming

Linear programming provides an alternative method for solving MDPs [22]. It

formulates the problem of finding a value function as a linear program (LP). The

LP variables are V1, . . . , VN , where Vi represents V (si): the value of starting at

the ith state of the system. The LP is given by:

V ariables :V1, . . . , VN

Minimize :
∑

si

α(si)Vi

Subject to :Vi ≥ [R(si, α) + γ
∑

j

P (sj|si, α)Vj] ∀si ∈ S, α ∈ A

where the state relevance weights α are positive The approximate formulation for

the LP approach restricts the space of allowable value functions to the linear space

spanned by the basis functions. In this approximate formulation, the variables are

w1, . . . , wk : the weights for the basis functions. The LP is given by:

V aribales :w1, . . . , wk

Minimize :
∑

s

α(s)
∑

i

wihi(s)

Subject to :
∑

i

wihi(s) ≥ [R(s, α) + γ
∑

s’

P (s’|s, α)
∑

i

wihi(s’)]

∀s ∈ S, α ∈ A

2.3.8 Approximate Value Iteration

We now describe extensively approximate value iteration, which we use to solve

the prosumer decision making problem. Algorithms for approximate value iter-
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ation fall into three different categories: model-based value iteration with para-

metric approximation, model-free value iteration with parametric approximation,

and value iteration with non-parametric approximation. First, we describe the

approximate value iteration with parametric approximation approaches in some

detail. Specifically, we present below model-based algorithms, offline and online

model-free algorithms and value iteration with non-parametric approximation.

Model-based value iteration with parametric approximation

This section considers Q-iteration with a parametric approximator. Q-iteration [49]

is a model-based algorithm for approximate value iteration. Approximate Q-

iteration [34] is an extension of the exact Q-iteration algorithm. Exact Q-iteration

starts from a Q-function Q0 and at each iteration i updates the Q-function:

Qi+1 = T (Qi+1) (2.20)

where T is the mapping between the states and the Qvalue. In approximate Q-

iteration, the Q-function cannot be represented exactly. Instead, an approximation

is compactly represented by a parameter vector θi ∈ ρn, using an appropriate

approximation mapping F : Rn → Q:

Q̂i = F (θi) (2.21)

This approximate Q-function replaces Qi, as an input to the Q-iteration mapping

T. So, the Q-iteration update becomes:

Q̂i+1 = (T ◦ F )(θi) (2.22)

The Q-function Q̂i+1 cannot be explicitly stored. Instead, it must also be repre-

sented approximately. A new parameter vector θi+1 is used. This parameter vector

is calculated by a projection mapping P : Q̂→ Rn. Least-squares regression can

be used to choose P, which produces:

P (Q) = θ, where (2.23)
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θ = argminθ

∑

(Q(xi, ui)− F (θ)(xi, ui))
2 (2.24)

The most common problem is ensuring convexity, and some care is required to

ensure that θ exist. For example, when the approximator F is parametrized as a

linear function, it is a convex quadratic optimization problem, and the respective

techniques must be used in order solve the problem and find the θs. Figure 2.3

illustrates approximate Q-iteration, and the relations between the mappings of T

and P, and Q-functions considered by the algorithm. Then, Algorithm 1 presents

Figure 2.3: An illustration of approximate Q-iteration. At each iteration, the ap-

proximation mapping F is applied to the current parameter vector to obtain an

approximate Q-function, which is then passed through the Q-iteration mapping T.

The result of T is then projected back onto the parameter space with the projec-

tion mapping P. The algorithm converges to a fixed point θ∗, when passing through

P ◦T ◦F leads back to itself. Q-function F (θ∗) is the approximated solution [34].

an example of approximate Q-iteration for a Markov dcision process (MDP), us-

ing the least-squares projection. (We refer to [34] for more details.)

Another well known model-based value iteration algorithm is fitted value iter-

ation (FVI) [27, 48]. FVI was the approximation algorithm of choice for us in this

thesis as it is well-behaved, in the sense that by using a sufficiently large number

of samples for a large class of MDPs, good performance can be achieved with

high probability, as convergence rate results indicate [48].
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i← 0

repeat

for k=1,. . . , ns samples do

Qi+1(xk, uk)← ρ(xk, uk) + γmaxu′{F (θi)}

end

θi+1 ← argminθ

∑

(Q(xk, uk)− F (θ)(xk, uk))
2

i← i+1
until θ is satisfactory;

Algorithm 1: Least-squares approximate Q-iteration for deterministic

MDPs [34].

Model-free value iteration with parametric approximation

Model-free algorithms for approximate value iteration do not have any prior knowl-

edge for the transition and reward model. Algorithms from that class are can be

cast as either offline model-free approximate value iteration or online model-free

value iteration.

Offline model-free approximate value iteration The transition dynamics f

and the reward function ρ are unknown in the case of offline model-free approxi-

mation. Only some transition samples are available:

(xi, ui, x
′
i, ri)|i = 1, ..., ns

where, the next state x′
i and the reward ri are observed after taking action ui in the

state xi. The fitted Q-iteration method of Algorithm 2 is an example of a model-

free version of approximate Q-iteration. There are two changes wrt. the original

algorithm. First, a sample-based projection mapping is taking place using only the

samples (xi, ui), via least-squares regression. Second, due to the fact that F and ρ

are not available, the updated Q-function Qi+1 = (T ◦ F )(θi) cannot be computed

exactly. Hence, the Q-values Qi+1(xi, ui) are approximated using some parameter

variables θi s.t. F (θi) ≈ Qi+1.
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i← 0

repeat

for k=1,. . . , ns samples do

Qi+1(xk, uk)← r(xk, uk) + γmaxu′{F (θi)}

end

θi+1 ← argminθ

∑

(Qi+1,k − F (θ)(xk, uk))
2

i← i+1
until θ is satisfactory;

Algorithm 2: Least-squares fitted Q-iteration with parametric approxima-

tion [34].

Online model-free approximate value iteration The original Q-learning up-

dates the Q-function with:

Qi+1(xi, ui) = Qi(xi, ui) + αi[ri+1 + γmaxu′Qi(xi+1, u
′)−Qi(xi, ui)] (2.25)

after observing the next state xi+1 and reward ri+1, as a result of taking action ui

in state xi. A straightforward way to integrate approximation in Q-learning is by

using gradient descent [34]. For simplicity, we denote the approximate Q-function

at time i by:

Q̂i(xi, ui) = [F (θi)](xi, ui) (2.26)

The algorithm aims to minimize the squared error between the optimal value Q∗

and the current Q-value:

θi+1 = θi −
1

2
αi

∂

∂θi

[

Q∗(xi, ui)− Q̂(xi, ui)
]2

(2.27)

However, in reality Q∗(xi, ui) is not available, and it is thus replaced by an esti-

mate derived from the Q-iteration mapping:

ri+1 + γmax′
uQ̂i(xi+1, u

′)

The approximate Q-learning update then takes the form:

θi+1 = θi −
1

2
αi

∂

∂θi

[

ri+1 + γmaxu′Q̂i(xi+1, u
′)− Q̂(xi, ui)

]2

(2.28)
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Actually an approximation of the temporal difference is computed. With a linearly

parameterized approximator: φT (xi+1, u
′)θi and φT (xi, ui)θi, the update simpli-

fies to:

θi+1 = θi −
1

2
αi

∂

∂θi

[

ri+1 + γmaxu′

(

φT (xi+1, u
′)θi

)

− φT (xi, ui)θi
]2

(2.29)

Approximate Q-learning requires exploration. As an example, Algorithm 3 presents

gradient-based Q-learning with a linear parametrization and ǫ-greedy exploration.

Basically, at each time-step of this algorithm, with some small probability an ex-

ploratory action is chosen uniformly at random.

for i=1,. . . , N time-step do

ui ←

{

u ∈ argmax′
u(φ

T (xi, ui)θi), if probability 1− ǫi.

a uniform random action in U, with probability ǫi.

apply ui, measure next state xi+1 and reward ri+1

θi+1 ← θi+1 = θi−
1

2
αi

∂

∂θi

[

ri+1 + γmax′
u

(

φT (xi+1, u
′)θi

)

− φT (xi, ui)θi
]2

end

Algorithm 3: Q-learning with a linear parametrization and ǫ-greedy explo-

ration [34].

Value iteration with non-parametric approximation

In the non-parametric case, fitted Q-iteration can no longer be described using ap-

proximation and projection mappings that remain unchanged from one iteration

to the next. Instead, non-parametric approximators are generated at each new iter-

ation. Algorithm 4 outlines fitted Q-iteration with non-parametric approximation.

The non-parametric regression of the algorithm is responsible for generating a

new approximator Qi+1 that represents the updated Q-function, using information

provided by the available samples.
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i← 0

repeat

for k=1,. . . , ns samples do

Qi+1(xk, uk)← R(xk, uk) + γmaxu′{Qi(x
′
k, u

′)}

end

find Qi+1 using non-parametric regression on (xk, uk),Qi+1,k

i← i+1
until Qi+1 is satisfactory;

Algorithm 4: Fitted Q-iteration with non-parametric approximation [34].

2.4 Decision-Making in the Smart Grid

In recent years, there have been a few works dealing with optimal decision-making

in the Smart Grid. Agents are faced with decisions regarding buying and selling

energy in the electric grid, increasing effectiveness of their power output, and

maintaining the demand curve stability [8, 47].

Estimating the power output of inherently intermittent and potentially dis-

tributed renewable energy sources has become a major scientific and societal con-

cern. The work [3] provides an algorithmic framework, along with an interac-

tive web-based tool, to enable short-to-middle term forecasts of photovoltaic (PV)

systems and wind generators output. We use this web-based tool to specify the

current estimates about the production levels of the prosumer at a specific time

step, and help the prosumer to determine its actions.

Another major problem is enhancing the effectiveness of the (RES) production

methods. For instance, PV solar tracking techniques are used in solar plants. How-

ever, current techniques suffer from several drawbacks in their tracking policy: (i)

they usually do not consider the forecasted or prevailing weather conditions; even

when they do, they (ii) rely on complex closed-loop controllers and sophisticated

instruments; and (iii) typically, they do not take the energy consumption of the

trackers into account. The work [4] propose a policy iteration method (along with

specialized variants), which is able to calculate near-optimal trajectories for ef-

fective and efficient day-ahead solar tracking, based on weather forecasts coming

from online providers.

Besides the prediction of the power output of a Smart Grid, a main aspect
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of the electric grids is the maintenance of demand curve stability. As technol-

ogy evolves and electricity demand rises, the task to keep it precisely balanced

with supply at all times becomes especially challenging. Maintaining demand

curve stability, in particular, can alleviate the risk of disastrous electricity network

collapses, and leads to financial and environmental benefits as then some conven-

tional generators can be run on idle, or even be shut down completely. The work

of [8] present a directly applicable scheme for electricity consumption shifting

and effective demand curve flattening. The scheme can employ the services of

either individual or cooperating consumer agents alike. Agents participating in

the scheme, however, are motivated to form cooperatives, in order to reduce their

electricity bills via lower group prices granted for sizable consumption shifting

from high to low demand time intervals.

A similar problem is faced by an alternative solution method proposed in the

work [47], They propose a new scheme for efficient demand side management for

the Smart Grid. Specifically, they envisage and promote the formation of cooper-

atives of medium-large consumers and equip them with the capability of regularly

participating in the existing electricity markets by providing electricity demand

reduction services to the Grid but do not deal with shifting. Based on mecha-

nism design principles, they develop a model for such cooperatives by designing

methods for estimating suitable reduction amounts, placing bids in the market and

redistributing the obtained revenue amongst the member agents. The mechanism

is such that the member agents have no incentive to show artificial reductions with

the aim of increasing their revenues.

There are a few works that deal with the decision making of agents in mar-

ket environments. For instance, TacTex [20] was the champion agent for the

2013 Power Trading Agent Competition (PowerTAC). In PowerTAC, several self-

interested, autonomous agents corresponding to brokers compete with each other

with the goal of maximizing profits through energy trading. TacTex does not

model the decision making problem of a microgrid prosumer, as we do, but that

of a broker simultaneously participating in tariff and wholesale markets. As such,

its utility measure is the cash amount existing in a bank, while the energy amount

to buy is not considered part of the decision making problem: it is simply set to the

difference between predicted demand and the energy that is already procured for
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the targeted time period. Moreover, there are only 26 states in the MDP solved by

TacTex, and a state transition leads to one of only two potential states (by contrast,

we tackle MDPs with state-action spaces encompassing hundreds of thousands of

elements).

Similarly to TacTex, the work of Peters et al. [36] also deals with optimising

the long-term behaviour of broker agents during retail electricity trading. They

employ the classic SARSA reinforcement learning algorithm [49] for selecting

actions in a tariff market. However, it is less flexible than TacTex’s tariff market

strategy, which is not constrained to a finite set of actions.

We are however only aware of two papers that focus on prosumer decision-

making. First, Nikovski and Zhang [19] propose a method for finding the optimal

conditional operational schedule for a set of power generators, assuming stochas-

tic electricity demand and stochastic generator output. However, in contrast to

our work here, they do not tackle the problem of selling or storing the gener-

ated power. Second, Kanchev et al. [28] propose an energy management system

which could be employed by a prosumer managing photovoltaic generators, stor-

age units, and a gas microturbine. However, they assume a deterministic system,

not accounting for uncertainty and errors that may occur during the prosumer’s

operation time.
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Chapter 3

A Factored MDP Model for Buying

and Selling Energy

The prosumer we consider in this work corresponds to a microgrid distributing

power to a community. As such, it produces energy by means of renewable energy

sources, and is responsible for the well-being of residential consumers. Moreover,

the prosumer has access to storage devices (batteries), which it can use to store

energy for future use. Our prosumer is connected to the wider Grid, and it has

to take decisions regarding the amounts of energy to purchase or sell to the Grid

at pre-specified intervals during the next day. We assume that the Grid is repre-

sented by some utility company that can specify tariffs determining the sell and

buy prices of electricity, to which the prosumer can subscribe (at any one of the

aforementioned time intervals). The tariffs available to prosumers for the day-

ahead are announced by the utility company at the beginning of each day. Then,

the problem facing the prosumer is taking the right decisions as to which tariff to

subscribe to and what amounts of energy to buy, sell, or store at any given interval

of the day-ahead—so as to meet demand at a minimum cost and make a profit by

selling the electricity to the utility companies.

We acknowledge that this model formulation, presented in detail below, seem-

ingly disregards the complexity of modern and anticipated electricity markets.

Indeed, prosumers could be faced with complex decisions during their simulta-

neous participation in markets of various types (e.g., spot, forward, balancing, or

even futures). Despite this fact, we believe that solving the simpler problem of

viewing the prosumer as an entity interacting with the wider electricity Grid via

pre-specified tariffs determining energy prices (which, however, can be “variable”

or to an extent “real-time” themselves), is key to determining behaviour in more

complex business environments. In addition, ours is a model that corresponds
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to conceivable situations in the immediate near future, where (largely) energy

self-sufficient communities will be operating their private microgrids, and only

occasionally use energy from the wider Grid—essentially as a fallback strategy.

In the rest of this chapter, we first describe our factored states and actions, and

present certain physical constraints they have to adhere to; and we then present

the transition model, and our choices for representing the reward function so that

it realistically captures the gains and costs from selling and purchasing energy.

Importantly, our reward function takes into account periodic operation costs of

the prosumer related with subscription to a tariff, as well as its costs because of

accumulating battery life losses due to discharging. Moreover, there is nothing in

the formulation below that precludes the applicability of our model and proposed

solution to microgrid prosumers of a particular size or type.

3.1 Factored Representation

We now describe our problem’s factored representation in detail. To begin, the

factored states can be described as a multivariate random variable s = 〈si〉, where

each variable si can take a value in its domain DOM(si). There are three factored

state variables, listed in Table 3.1. The first one, tms, takes as values the specific

time steps at which the prosumer is able to act. Its domain is originally set to [1

. . . 24] (one time step per hour in the day). However, as we later explain, we can

drop this state variable altogether from the representation, and incorporate it in

the problem horizon over which our value iteration method operates; moreover,

we also conduct experiments that require the prosumer to act on a half-hourly ba-

sis. The second one, bat, corresponds to the amount of energy available in the

batteries, and its domain is [0 . . . Batterymax], with Batterymax corresponding

to the maximum capacity of the storage device(s). Note that bat is a naturally

continuous state variable, but it was discretized in order to enable its processing

by existing FMDP solvers (such as SPUDD). Finally, tf corresponds to the tariff

the prosumer has assigned to at the moment, and its domain is the enumerated tar-

iffs that the utility offers during the day. That is, DOM(tf)={tf1, · · · , tfi, · · · , tfK},

with K being the number of tariffs available on a specific day. Each tfi tariff is

characterized by a buying and a selling price, denoted buyingi and sellingi respec-
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tively, and communicated to the prosumer via external signals.

Features Denoted Description

time-step tms current time step within the operational day

battery bat amount of stored energy (at a specific time step)

tariff tf tariff currently in effect (at a specific time step)

Table 3.1: Factored states.

Then, actions can be described as a multivariate random variable a = 〈ai〉

where each variable ai affects the transition from some factored state to another,

and takes a value in its domain DOM(ai). The discretization for each DOM(ai) is

performed dynamically: it is based on the discretization of the DOM(si) domains,

in a way that from any given state, actions can lead to any other.

There are three factored actions. First, action buy, which describes the amount

of energy bought from the electric utility. Positive values for buy denote the ac-

tual buying of energy from the utility, while negative values mean the prosumer

sells energy to the utility. With Loadmax being the maximum total expected res-

idential consumption load, and the nominal power generating capacity of the

renewable energy sources denoted by RESnom, the domain for buy is set to [-

RESnom . . . Loadmax]. Second, factored action chg, which signifies the attempt

to store an amount of energy to the batteries. Its value range is [-Batterymax

. . .Batterymax]. Positive values represent charging the battery, and negative val-

ues represent discharging the battery. Finally, the third action, seltf, corresponds

to a selection of tariff by the prosumer. Its domain is [0 . . . K]. The value 0 signi-

fies a choice to remain attached to its current tariff, while values 1 to K signify a

choice to move to some other of the K tariffs available.1

Actions Denoted Description

buy buy buy from the utility

charge chg charge battery

select tariff seltf select a tariff to subscribe to

Table 3.2: Factored actions.

1The additional ‘stay-with-current-tariff’ action is required as subscribing and resubscribing

would entail a subscription cost (thus the action protects the prosumer from that cost).
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Now, there are three types of external signals the prosumer receives. These

are listed in Table 3.3, and can be described as multivariate random variable sg =

〈signali〉where each variable signali can take a value in its domain DOM(signali).

The prosumer employs these signals to help it determine its actions.

The first signal type, prod, specify the production levels of the prosumer at a

specific time step. Its domain are defined given the RESnom values introduced

above, DOM(prod)= [0 . . . RESnom]. We employ RENES [3], a web-based PVS

and WTG production prediction tool, to obtain the production estimates of the

photovoltaic systems (PVS) and wind turbine generators (WTG) of our microgrid.

It is extensively described in section 3.5.1.

The second signal type cons, specify the current estimates about the consump-

tion levels of the prosumer at a specific time step. Their domains are defined given

Loadmax values introduced above. Thus, DOM(cons)=[0 . . . Loadmax]. We used

regression methods to predict the load consumption of the prosumer. Specifically,

we used Gaussian Process (GP) and Bayesian Linear Regression. The input data

of our model, and the output data whose values we are trying to predict, cor-

respond to the factored state tms and the signal variable cons. The prediction

process is presented in section 3.5.2.

Finally, the third signal type, pricetf, specifies, once a day, the buy and sell

prices (buyingi and sellingi) for each one of the K tariffs, and for each t time

step of the day ahead. This signal affects the reward representation of our model,

which is described in section 3.4

Signals Denoted Description

production prod predicted levels of energy production

consumption cons predicted levels of energy consumption

{buyingi, sellingi} pricetf buying and selling price for tariff i

Table 3.3: Signal types.

Notice that all factored variables in our formulation are independent of the size

of the prosumer microgrid—i.e., they are not affected by the number of generators

or homes populating it. Moreover, despite the complexity of the problem, the

temporal dependencies among the state variables in our model are in fact quite

simple, as seen in the 2-stages temporal Bayesian network (2-TBN) of Fig. 3.1.
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It can be seen there that a variable value at t + 1 depends only on the variable’s

value at t (with value changes triggered, for bat and tf, by actions chg and seltf

respectively).

tms tms′

bat bat′

tf tf′

Time t Time t+1

Figure 3.1: Temporal dependencies among state variables.

In what follows, we use the notation xt to denote the value of a state, action,

or signal variable at time t.

3.2 Constraints

There are certain constraints that our state and action variables must adhere to.

First, in a setting involving energy exchanges, the balance energy constraint [18,

54] must be respected at all times. This means that, at any time step t, power

produced (including that bought) should match power consumed (including that

stored):

prodt − const − chgt + buyt = 0 (3.1)

The second constraint refers to the storage unit(s) of the prosumer. A storage unit

cannot be charged over its capacity:

chgt ≤ Batterymax − batt (3.2)
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Similarly, the energy quantity discharged from a unit cannot exceed that currently

stored in the unit:

−chgt ≤ batt (3.3)

Finally, for safety reasons, the battery storage level must be always kept be-

tween 20% and 100% [29]:

0.2 ≤ batt/Batterymax ≤ 1 (3.4)

3.3 Transition Function

State transitions in our model will be in general stochastic, since faults may occur

while taking actions like charging or discharging the storage devices and buying

or selling energy to the utility. The variable tms is an exception to this rule—since

one specific time step is always followed by the next one. That is, Pr(tmst+1 =

t + 1|tmst = t) = 1. For the rest of the variables, we define certain bounded

regions (with distinct boundaries for each variable), which include a subset of

discrete factored states lying close to the factored state intended to transition to

by performing a factored action taken at time t. The boundaries can be set to any

values required.

Thus, (factored) actions are assumed to have the intended result with some

probability p (arbitrarily set to 0.9 in our experiments); while, with probability

1 − p, they transition to some (factored) state within the bounded region (chosen

uniformly at random). For instance, assuming that N bat states lie within a pre-

specified boundbat bounded region, the action of charging the battery with an

energy amount c at time t (action chgt = c) is successful with probability p:

Pr(batt+1 = batt + c | chgt = c, batt) = p

whereas with probability 1 − p it fails, leading to any potential factored battery

state within the boundbat region:

Pr(batt+1 = bat ∈ boundbat | chgt = c, batt) = (1− p)/N
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Since distinct factored actions can be simultaneously utilized—i.e., the pro-

sumer can select a new tariff, buy energy, and charge the battery at the same time

step t— the overall transition probability is given by Eq. 3.5 as follows.

Pr(tmst+1, batt+1, tft+1|tmst, batt, tft, chgt, seltf,t) =

Pr(batt+1|batt, chgt) · Pr(tft+1|tft, seltf,t) (3.5)

given that the battery level at any time step depends on the previous battery level

state and on whether a chg action was used, while the tariff in place is affected by

a tariff selection action. Notice also that, in our model, buying or selling energy

does not have a direct effect on a state variable, thus no state transitions need to

be defined for action buy. It is thus implicitly assumed that buy (a positive or neg-

ative energy amount) always succeeds. This assumption is quite realistic, and it is

motivated from the need to respect the constraint in Eq. 3.1 above: choosing how

much energy to buy/sell depends on the production and consumption estimates,

and on the results of charging the battery. In practice, the latter is an action whose

outcome is indeed more uncertain than that of buying/selling energy.

3.4 Factored Reward Representation

The next step is to determine the reward function for our factored MDP. The re-

ward function is associated with (a) either the financial gain from selling power

to the utility or the financial cost of buying power in a certain price; (b) the run-

ning financial costs for being subscribed to a tariff; and (c) the operation financial

costs of using the storage devices. As such, we choose to represent the Markovian

reward function as a cost function with three main components. Specifically, the

function describing the immediate cost for a transition from state st to s
′
t+1 by

executing some at at time-step t, is defined as follows:

Cost(st,at, s
′
t+1) = Cenergy(s

′
t+1,at) + Cperiod(s

′
t+1) + Cbl(st,at) (3.6)

We now explain its components in turn. The first component, Cenergy, cap-
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tures the cost per Wh for buying electricity (or the profits from selling it to the

utility), given the buy/sell rates prescribed by the tariff in effect:

Cenergy(tft+1, buyt) =







buyt · buyingtf
t+1

if buyt ≥ 0

buyt · sellingtf
t+1

if buyt < 0
(3.7)

The second component captures the periodic costs Cperiodic inflicted on the

prosumer for being subscribed into a tariff. Naturally, one would expect that “bet-

ter” tariffs for a prosumer—that is, tariffs specifying high selling prices and low

buy prices—will actually incur higher periodic costs (flat rates). Due to this, in

our model we make the assumption that periodic costs drop exponentially with

decreasing tariff quality (i.e., as the difference between buying price and selling

price increases):

Cperiod(tft+1, price
t+1

tf
) = C1 exp{−C2 · (buying

t+1

tf
− selling

t+1

tf
)} (3.8)

with C1 = 0.013, C2 = -2.7. The function is plotted in Fig. 3.2.
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Figure 3.2: Periodic costs as a function of tariff quality.

The third component of the cost function, Cbl, captures the costs associated
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with battery life losses. That is, the costs inflicted from charging (or discharging)

the storage devices (batteries) with a charge amount of chgt, at a given time-

step t when the stored energy amount is at batt. To estimate this component, we

assume the use of deep-cycle batteries, which are lead-acid batteries designed to

be regularly deeply discharged (using most of their capacity) [7].

The Cbl cost of an attempted chg action can then be viewed as a fraction of

the Cinit−bat initial investment cost for the batteries:

Cbl = Lloss · Cinit−bat (3.9)

The “life loss”Lloss factor in the above equation is affected by the effective through-

put Ac of the battery over a certain charge period (measured in Ah) [7]:

Lloss =
Ac

Atotal

Here, Atotal is the total cumulative throughput (in Ah) during the battery’s life-

time. A battery size of Q Ah will deliver an effective Atotal = 390 ·QAh over its

lifetime [7].

Now, Ac above related to the operating state of charge (SOC) and the actual

throughput A′
c. The latter can be calculated, given the voltage of the battery, as:

A′
c =

chgt

Vbattery

To calculate Ac, we first have to define the state of charge (SOC) of the battery, as

the fraction of its total Batterymax capacity covered by its currently stored energy

amount, batt:

SOC =
batt

Batterymax

and its value has to be kept always between 0.2 and 1, for safety reasons [7]. Ac

is then expressed as

Ac = λsocA
′
c

where λsoc is an effective weighting factor given the battery’s state of charge.

When SOC is between 0.2 and 1, λsoc is approximately linear with SOC [7], which
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can be expressed as

λsoc = k · SOC + d

In our work, the values of k and d in the previous equation were set to −0.7594

and 1.43 respectively, as a result of applying linear fitting over certain empirically

set (SOC, λSOC) data points reported in [7]. The resulting fitted line is depicted

at Fig. 3.3.

With λsoc at hand, we can then fully determine the Cbl component, and use

it to determine the life loss cost incurred on batteries during their charge (or dis-

charge) by the application of a chgt action at time-step t.
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Figure 3.3: Estimating the λsoc weighting factor.
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3.5 Prosumer Production and Consumption

Models

Naturally, the estimated production from the renewable energy sources distributed

on the microgrid, and the predicted load consumption of the connected consumers,

affect the policy of the prosumer. The prosumer is notified about the expected

production and consumption values via the prod and cons signals. Thus, it is

necessary to predict values for those signals that are as accurate as possible, to

assist the decision-making process of the prosumer.

3.5.1 Production Prediction

To obtain the production estimates of the photovoltaic systems (PVS) and wind

turbine generators (WTG) of our microgrid, we employ RENES [3], a web-based

PVS and WTG production prediction tool. RENES generates PVS and WTG pro-

duction estimates given time, geographical coordinates and online weather fore-

casts, and it comes with specific performance guarantees. For PVS production

predictions, RENES utilizes non-linear approximation components for turning

cloud-coverage into radiation forecasts, which are then used for production pre-

diction. It has an interactive web-based interface, along with an API providing

XML responses to prediction requests. New production estimates are provided

every half an hour. RENES predictions are provided free-of-charge. The tool and

API can be accessed at www.intelligence.tuc.gr/renes/ .

3.5.2 Consumption Prediction

We now we show how to employ two regression methods to predict the load con-

sumption of the prosumer: Gaussian Process (GP) and Bayesian Linear Regres-

sion. To begin, the input data of our model, and the output data whose values we

are trying to predict, correspond to the factored state tms and the signal variable

cons :

x = (tms1, . . . , tmsn) (3.10)
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y = (cons1, . . . , consn) (3.11)

that is, they are sequences of consumption data, containing information about

time-steps and the respective load consumption.

Our goal in regression, is to make predictions of the target variables for new

inputs. Given a set of output data

y = (y1, . . . , yn)
T

corresponding to input values (x1, . . ., xn), where n is the length of the time

sequence we use, we predict the target variable yn+1 for a new input vector with

an additional xn+1 value.

Bayesian Linear Regression The first method we use for prediction is Bayesian

linear regression. To begin, we define a model parameter w

w = [x y]

with x, y as in Eqs. 3.10 and 3.11 above. For a set of training samples, D =

{(xj , yj), j = 1, ..., n} (xj inputs and yj outputs) we need to predict the posterior

distribution of w given the target values y.

Now, the conjugate prior of w is a Gaussian distribution:

p(w) = N (w|µ0, σ
2
0)

where µ0 is the mean and σ2
0 the variance noise; while the likelihood function

p(y|w) is given also by a Gaussian distribution of the form

p(y|w) = N (y| Φw, β−1I)

where β is noise single precision parameter, and Φ is a polynomial basis function.

With conjugate prior and likelihood function at hand, the posterior distribution

is computed using Bayes theorem for Gaussians [16]. In order to find the posterior
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distribution, we just require the mean and the variance:

p(w|y) = N (w|µn, Sn), where

µn = Sn(S
−1
0 µ0 + βΦT

y)

S−1
n = S−1

0 + βΦTΦ

In this work, we adopt a zero-mean isotropic Gaussian, governed by a single pre-

cision parameter α, so that:

p(w|α) = N (w|0, α−1I)

Then, the corresponding posterior distribution p(w|y) has:

µn = βSnΦ
T
y

S−1
n = αI + βΦTΦ

Evidence approximation [16] is utilised to calculate the optimal values of the

hyper-parameters α and β.

Gaussian Process Regression The second regression method that we use is

Gaussian Process (GP) with two form of kernels, a gaussian and a polynomial

one. The use of a GP with a Gaussian kernel appears to be the better choice for

our setting, as we demonstrate in Sec. 3.5.3 below. We note that Gaussian Pro-

cesses have also been recently applied for consumption reduction prediction in

electricity demand management settings [9, 31, 5].

Gaussian processes can be used for regression and classification without a

parametric model assumption. For a set D = {(xj, yj), j = 1, ..., n} of training

samples, with xj inputs and yj noisy outputs, we need to predict the distribution

of the noisy output at some test locations. We assume the model:

yj = f(xj) + ǫj , where ǫj ∼ N (0, σ2
noise)

with σ2
noise the variance noise.
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GP regression is a Bayesian approach that assumes a priori that function values

follow: p(f |x1, x2, ..., xn) = N (0, K) where f = [f1, f2, ..., fn]
T is the vector of

latent function values, fj = f(xj) and K is the covariance matrix that is computed

by a “kernel” covariance function k(·, ·): Kjk = k(xj , xk).

The kernel functions used in this work are given by a polynomial and Gaussian

form [16] respectively:

k(xj , xk) = θ0 + θ1(x
T
j xk) + θ2(x

T
j xk)

2

k(xj , xk) = θ0 exp
(

−
(xj − xk)

T (xj − xk)

2(θ1)2
)

where the θ∗ are the model’s hyper parameters. Their optimal values can be

found by maximizing the log likelihood [16], for instance using backtracking line

search [52], as we do in this work.

Finally, in order to proceed to the inference, we must combine the joint GP

prior obtained by the test values with the likelihood p(y|f), via Bayes rule. The

joint GP prior and the independent likelihood are both Gaussian with mean and

variance at a test point x∗ as follows:

GPµ(x∗,D) = K∗,f (Kf,f + σ2
noiseI)

−1y (3.12a)

GPσ(x∗,D) = K∗,∗ −K∗,f (Kf,f + σ2
noiseI)

−1Kf,∗ (3.12b)

3.5.3 Comparing Regression Methods

To choose a Φ polynomial basis function to use for Bayesian linear regression

(BLR), we performed cross-validation with random sub-sampling repeated 10

times for different polynomial functions [46]. For this, we split our consump-

tion dataset (described in Section 5 below) to an 80% part for training, and a 20%

one for testing. The results, in terms of mean square error (MSE), are shown of

Table 3.4. The degree of the polynomial with the minimum average MSE is D=5:

thus, this was the polynomial of choice for BLR. We then compared the perfor-

mance of BLR against that of a Gaussian process (GP) that employed either the

polynomial (GP-poly) or the Gaussian (GP-G) kernel mentioned above. The pre-

diction performance of the methods is depicted in Fig. 3.4; and Table 3.5 contains
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the methods’ MSE. Results show that GP-G does much better than GP-poly and

BLR in terms of MSE, achieving a quite low MSE value. Moreover, the prediction

mean of the GP-G method apparently follows more closely the actual consump-

tion pattern, as emerging from the actual (x, y) data points. Hence, we choose the

Gaussian process with the Gaussian kernel method to obtain the load consumption

estimates of the prosumer.

0 5 10 15 20 25
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time

kW
h

 

 

variance of trained area

(x,y)
(x

train
,y

train
)

(x
test

,y
test

)

GP−poly

GP−G

BLR

Figure 3.4: Prediction performance of GP-poly, GP-G, and BLR. The (x, y) input-

target pairs are actual consumption data points. The GP-G mean matches the (typ-

ical) daily electricity demand curve of our dataset, with two consumption peaks.
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Degree of Polynomial MSE

1 0.022372

2 0.021312

3 0.020175

4 0.017679

5 0.016861

6 0.017329

7 0.017355

8 0.017167

9 0.017399

10 0.017611

Table 3.4: MSE of Bayesian linear regression Φ functions.

GP with polynomial kernel (GP-poly) 0.0173

GP with Gaussian kernel (GP-G) 0.006943

Bayesian linear Regression (BLR) 0.0169

Table 3.5: MSE of GP & Bayesian Linear Regression.
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Chapter 4

Solving the Factored MDP

With the above FMDP at hand, the optimal policy can be derived by solving the

corresponding Bellman equations. Dynamic programming (DP) methods can be

used to obtain the optimal solution [49]. In our work here we used value iteration

(VI) as the DP method of choice, for discrete state MDP, while for continuous

state MDP we used approximate value iteration (AVI).

4.1 Solving the Discrete-State MDP

Our problem is naturally a finite-horizon problem, thus we employed a finite-

horizon VI method. By setting the horizon T to be equal to the number of time

steps at which the prosumer is required to act, we can incorporate the tms fac-

tored state into the problem’s horizon, thus effectively reducing the size of the

state space. In addition, we used a seltf action, which corresponds to a selection

of tariff by the prosumer. Tariffs can be key to group together a range of consumer

preferences, that would have had to be represented by distinct state or action vari-

ables otherwise. For instance, one would have wished to represent preferences to

consume when buying prices are low, e.g. at night, and sell when selling prices are

high—and distinct sell and buy variables would have been required to allow this.

Tariffs could potentially incorporate more information, such as special discounts,

and so on. Thus, the use of tariffs can be key at reducing the state-action space in

such problems. These choices allow us to represent the problem compactly, and

provide an exact optimal solution via dynamic programming.

Then, with s
′
t denoting the potential successor states of st; withPr(s′t+1 |at, st)

denoting the probability of state transitions from st to possible successor states

s
′
t+1, given that action at was taken; and R(st,at, s

′
t+1) = −Cost(st,at, s

′
t+1)

denoting the corresponding immediate reward (the negative immediate cost), the
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for all instantiations of s do
set VT+1(s) = 0

end

for all time-steps t in descending order

(i.e., with 1, · · · , T stages-to-go) do

for all instantiations of st do

Vt(st)← min
at

∑

s′

t+1

Pr(s′t+1 |at, st)·

(

R(st,at, s
′
t+1) + Vt+1(s

′
t+1)

)

end

end

for all instantiations of s and all time-steps t do
π(s, t) = argmin

a

∑

s′

Pr(s′ |a, s) (R(s,a, s′) + Vt+1(s
′))

end

Algorithm 5: Value iteration for solving the FMDP.

VI algorithm iteratively estimates the value function for the factored states, and

outputs an optimal policy π, as shown in Alg. 5. Interestingly, our experiments

confirm that our formulation permits VI to provide us with the solution within a

reasonable time, when run on everyday desktops or laptops. While, at the same

time, SPUDD sometimes fails to compute a solution within a reasonable time,

when taking its pre-processing requirements into account. We will discuss our

experimental results in length in Chapter 5.

4.2 Solving the Continuous-State MDP

The above solution method is used to solve decision making problems with dis-

crete state spaces. However, approximate solution methods are used for continu-

ous state spaces. We took some samples of the state space and we used regression

in order to approximate the value function of the model. More specifically, we

solve the prosumer decision problem using a model-based value iteration approx-

imation method. Model-based value iteration is appropriate for the task, due to our

prior knowledge of the transition and reward models. Specifically, our method of

choice is fitted value iteration (FVI) [27, 48, 1], a sampling-based approximation
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method that is known to be well-behaving, as mentioned in Section 2.3.8 above.

In principle, approximating the value function, and thus generalizing the MDP

solution to continuous spaces, could lead to improved decisions quality. We now

describe the method in some detail.

The decision problem of the prosumer has a continuous state space S = Rn,

but we will assume that the action space A is discrete. In traditional value iteration

operating over continuous state spaces, one needs to perform the following update:

V (s)← min
a

∫

s′

Pr(s′ |a, s) · (−R(s,a, s′) + V (s′)) .

The main idea of fitted value iteration is to approximately carry out this step

over a finite sample of states s(1),. . . , s(m). Specifically, we can use a supervised

learning algorithm–linear regression in our description below–to approximate the

value function as a linear function of the states:

V (s) = θTφ(s)

Thus, to approximate the value function, one needs to obtain the parameters θ and

the basis functions φ, where φ is some appropriate feature mapping of the states.

For each state s in our finite sample of m states, fitted value iteration will first

compute a quantity y , which will be our approximation to

∫

s′

Pr(s′ |a, s) · (−R(s,a, s′) + V (s′))

Then, it employs some supervised learning algorithm, for instance linear regres-

sion, to get V (s) close to y. In detail, the method is as described in Algorithm 6.

Fitted value iteration does not provably always converge. However, in prac-

tice, it often does converge (or at least approximately converge) [48]. If one uses

a deterministic MDP model, then fitted value iteration can be simplified by set-

ting k = 1 in the above algorithm. This is because the expectation becomes an

expectation over a deterministic distribution, and so a single iteration is sufficient

to exactly compute that expectation.
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Randomly sample m states s(1),. . . , s(m) ∈ S
for k iterations do

for each horizon h do

for each sampled state s do

for each action a do
sample state transitions s′

q(a) = 1
m

∑

( −Rh(s,a) + γ Vh−1(s
′) )

end

yh(s) = min(q(a)) % min because reward corresponds to costs

end

θ← argminθ
1
2

∑

(θTφh(s, a)− yh(s))
2

Vh(s) = θTφh(s, a)
end

end

Algorithm 6: Fitted Value Iteration with finite horizon. Algorithm description

based on the pseudocode in Andrew Ng’s lecture notes in

http://cs229.stanford.edu/notes/cs229-notes12.pdf.

Now, in order to find the optimal parameters θ, we have to solve the equation:

θ ← argminθ

1

2

∑

(θTφh(s, a)− yh(s))
2

This is an optimization problem and we employ least linear square optimization

to this purpose. IBM CPLEX provides us with a high performance optimizer to

solve such optimization problems. Selecting the basis functions φ, on the other

hand, can require extensive experimentation, in order to choose the ones whose

use results to the best performance in a given setting. In our case, we evaluated

several candidate basis functions, as we report in Section 5 below.

http://cs229.stanford.edu/notes/cs229-notes12.pdf
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Chapter 5

Experiments and Results

We evaluate our model by examining a residential prosumer at New Hampshire,

New England, northeastern United States. The data used in our prediction of resi-

dential load consumption for the area, comes from the Public Service Company of

New Hampshire, and is freely available in their website (http://www.psnh.com/).

Our simulated prosumer serves 30 households and includes 20 photovoltaic arrays

with nominal power 60kW, 2 windturbines with nominal power 1000kW and 24

deep cycle 12Volts batteries 212AH C20 / FMD200 – VRLA/AGM, with cost of

each battery 269,00 e. Estimated battery lifetime is 10-12 years. As mentioned

earlier, we employ RENES (www.intelligence.tuc.gr/renes/) to obtain predictions

regarding the power production of the prosumer’s renewable energy generators;

the services provided by RENES are also free of charge. Our simulations were

conducted with data regarding a specific day-ahead (24 / 10 / 2014), at which date

the predicted electricity consumption and electricity production profile of the par-

ticular residential prosumer was as presented in Fig. 5.1. All experiments were

conducted on a 2.10 GHz x 4 Intel Core i3-2310M processor, with 8GB of mem-

ory. We now proceed to present our experiments over discrete and continuous

state spaces.

We adopted the following discretisation for our state and action variables (sig-

nals are not discretised, but simply communicate the production and consumption

predictions, and tariff characteristics to the prosumer). The discretisation step size

is shown inside the range of the factored state bat (corresponding to the prosumer’s

batteries’ array), and the action chg below:

bat = [0kWh : 1kWh : 60kWh]

chg = [−60kWh : 1kWh : 60kWh]
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Figure 5.1: Predicted production of renewable energy sources (RES) and pre-

dicted load consumption of prosumer (Load).

We also defined nine tariffs, which are as follows:

tf1 = {0.1e, 0.1e} tf4 = {0.2e, 0.1e} tf7 = {0.3e, 0.1e}

tf2 = {0.1e, 0.2e} tf5 = {0.2e, 0.2e} tf8 = {0.3e, 0.2e}

tf3 = {0.1e, 0.3e} tf6 = {0.2e, 0.3e} tf9 = {0.3e, 0.3e}

which thus give rise to 10 possible seltf tariff selection actions (9 corresponding

to choosing one of the tariffs+1 for choosing to stay with their current one).

The transition boundaries for our state variables were initially set to boundarybat=1kWh

and boundarytf=0.1e. Given those boundaries, the maximum number of transi-

tions leading from one state to another are ∼ 15.
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5.1 Evaluation of our exact Value Iteration Method

Now, the discretisation above resulted to a state-action space size of |S × A| =

664290. Notice, that in order for SPUDD to be able to model our problem, we

need to include state variable, tms , due to the fact that SPUDD does not allow

us to incorporate the time-step into the problem horizon, but requires a complete

representation for all states. Simply put, formulating the problem requires the

states to be “stamped” by the time-step, so as to keep them distinct from each

other, for the SPUDD solver to be able to operate upon the representation. This

results to increased setup generation pre-processing time, as shown in Table 5.1.

By contrast our exact VI algorithm can operate without this variable as it is in-

corporated into the problem’s horizon (as explained in section 4.1). Thus, in the

case of SPUDD, state-action spaces shown in Table 5.1 are expanded by a factor

of |DOM(tms)| (i.e., 24 or 48, for our experiments). We also note that a policy

extracted by SPUDD can be presented through policy diagrams and the pquery

SPUDD GUI tool. Figure 5.2 provides an insight on how such diagrams look like,

for a toy example (a smaller instance of our problem).

Horizon |S ×A| bounded region size value iteration (hours)
SPUDD (hours)

Script Runtime

24

664290
15 1.76 13.4992 0.184

90 15.84 46.9188 1.19

2624490 15 8.7603 36.98 0.73975

48 664290 15 3.5 16.8221 0.4271

Table 5.1: Running time of value iteration and SPUDD for four different scenar-

ios. “Script” refers to the pre-processing time required for the SPUDD input files

to be generated, while “Runtime” denotes the subsequent SPUDD execution time.

We compared SPUDD to value iteration for our discretisation, and observed

that the optimal policy computed through value iteration and SPUDD for the day-

ahead coincide with each other. Nevertheless, value iteration produced the optimal

policy in approximately 15% of the required time for SPUDD to extract the same

policy. The exact running times are presented in Table 5.1.

Following our initial experiments, we increased the size of the transition bound-

aries so as to contain 90 state variables instead of 15. The boundaries used for the
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Figure 5.2: SPUDD’s optimal policy (below), for a toy example with |S| · |A| =
63000, and 15 factored states at most within any bounded region. Running time to

create the script was: 29.7 sec and to execute it: 1.46 sec. Variables tu, bl and trf
presented in pquery correspond to the factored states tms, bat and tf respectively.

Variables are presented in blue bubbles, with factored actions in yellow squares,

e.g. charge 40 0 trf 1 represents the actions chg= 40kWh and seltf = 1. The

pquery GUI tool is shown above.
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Figure 5.3: Part of SPUDD’s optimal policy 5.2.

transitions from one state to another in this case are: boundarybat=10kWh and

boundarytf=0.2e. SPUDD could not produce a solution within the time that our

“planning-for-the-day-ahead” problem must be solved (maximum 24 hours). This

is largely due to the fact that SPUDD has to operate on large input scripts and

requires more than 46 hours for pre-processing. By contrast, the running time for

the simple value iteration method was 15.84 hours, as shown in Table 5.1.

We then increased the size of state and action spaces to |S × A| = 2624490

(by reducing the discretisation step sizes for our factored variables), but kept

the bounded regions for state transitions quite small (boundarybat=1kWh and

boundarytf=0.1e). SPUDD, once more, was not able to produce a solution within

24 hours, and could not generate a final policy with the available memory,in con-
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trast to our value iteration method (Table 5.1).

Finally, we also experimented with a scenario involving 48 (half-hour) time

steps at which the prosumer is required to act (as is usually the case in electricity

markets). In this case, we had |S × A| = 664290, boundarybat=1kWh , and

boundarytf=0.1e. Once again, value iteration provided us with the same (opti-

mal) policy as SPUDD, but in approximately 25% of the time (Table 5.1).

The experiments above demonstrate the limitations of SPUDD when used for

problems that do not possess enough structure to allow for a compact enough rep-

resentation of the required transitions in its input files. Both SPUDD and value

iteration provide us with the same optimal policies in all experiments–that is, poli-

cies which intuitively maximize profits from selling/buying decisions while en-

suring that consumer needs are satisfied. Nevertheless, value iteration required a

fraction of SPUDD’s total required time to produce the solution. We note that this

is despite the fact that we took special care to make our factored representation as

compact as possible for SPUDD to operate upon.

We also report that the average actual reward when running the exact value

iteration (EVI) method of [2] is 1850e for the entire finite state space. While,

the average actual reward when running the exact value iteration (EVI) method

with random policy is 1150e. This experiment demonstrates a loss of 700e for

the prosumer by not following the optimal policy extracted from the exact value

iteration.

5.2 Evaluation of the Fitted Value Iteration Method

In order to learn the approximate value function for this problem and generalise

to the continuous state spaces, we use (progressively increasing) fractions of the

aforementioned finite state space as the m samples required by the FVI method of

Algorithm 6 for learning the Vh(s). Specifically, we learned 11 different approx-

imate value functions, using sample sizes of 5% and {10%, 20%, 30% . . . 100%}

of the finite state space, and then we evaluated the performance of their corre-

sponding resulting policies, by observing the actual rewards they accumulate, and

by calculating their root mean squared error (RMSE) [35] with respect to the re-

wards accumulated by the exact value iteration algorithm of [2]. In order to assess
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the effect of different basis functions on approximation quality, we tested 9 differ-

ent basis functions at each one of our 11 approximation settings. These functions

are the well-known sigmoid, gaussian, inverse quadratic, thin plate spline, and

five polynomials of 1st to 5th degree.

All the FVI variants thus obtained, compute value functions that constitute

generalised solutions; these can then be used to provide the optimal (greedy wrt.

the value function) policies, given any particular state space discretisation. Here

we assume a discretisation that is as the one presented above, and evaluate the per-

formance of each FVI variant as follows. Once the approximate value functions

and their corresponding approximate optimal policies are calculated, we execute

the policies 1, 000 times each—and compute their accumulated rewards over a

complete horizon, and its average value over the 1, 000 runs. We can thus assess

the various variants in terms of average performance wrt. accumulated rewards.

We present our findings in Table 5.2 for discount factor γ=0.9, and in Table 5.3

for discount factor γ=1. Moreover, we calculate the RMSE of the rewards derived

from policies corresponding to the approximate and non–approximate value func-

tion. The RMSE values are presented in Table 5.4 for discount factor γ=0.9 and in

Table 5.5 for discount factor γ=1.

We see in those tables that, with the exception of the inverse quadratic vari-

ants, all methods exhibit good performance, which is also quite stable across most

sample sizes used for learning. The gaussian and the polynomial variants, in par-

ticular, are doing very well, often exhibiting performance that reaches or exceeds

90% of that of our exact value iteration (EVI for short) algorithm, when it operates

in the |S × A| = 664290 environment. Moreover, they appear to be able to do

quite well even with small sample sizes. By contrast, the sigmoid method does

exhibit stable performance, regularly at 80% of that of EVI, but does not do very

well for small sample sizes. The thin plate spline variant also reaches an average

performance of 83%, but does not do as well as the gaussian or the polynomial

variants. The fact that most variants, and the polynomial variants in partic-

ular, are good approximations of the exact value function is further exhibited in

Figures 5.4 to 5.12, where blue line presents the approximate value function (es-

timated with a discount factor γ=1), while the red line presents the EVI value
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Percentage of Sampling

5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Average

sigmoid 1012 1482 1557 1634 1578 1499 1491 1507 1575 1517 1551 1491

gaussian 1685 1737 1618 1625 1668 1633 1562 1583 1648 1748 1600 1646

inverse quadratic 581 585 580 576 578 580 585 586 585 586 576 581

thins plate spline 1551 1487 1318 1375 1658 1658 1589 1596 1590 1577 1669 1551

1st polynomial 1690 1714 1529 1564 1568 1633 1678 1615 1632 1617 1625 1624

2nd polynomial 1617 1808 1647 1697 1598 1632 1584 1622 1640 1608 1679 1648

3rd polynomial 1756 1697 1662 1650 1687 1669 1692 1703 1609 1800 1679 1691

4th polynomial 1695 1621 1685 1651 1532 1592 1648 1594 1718 1711 1725 1652

Function

5th polynomial 1750 1586 1661 1526 1578 1745 1607 1692 1646 1587 1568 1631

Table 5.2: Accumulated reward when using different basis functions and different

sample sizes of the finite state space for learning the approximate value function.

All numbers in the 5% to 100% columns are averages over 1000 runs and discount

factor γ=0.9. We also report that the average actual reward when running the exact

value iteration (EVI) method of [2] is 1850 for the entire finite state space. Values

shown in bold are those that are over 1665 = 90% · 1850e.

Percentage of Sampling

5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Average

Functions

sigmoid 1321 1641 1641 1641 1641 1641 1641 1641 1641 1641 1641 1613

gaussian 1483 1778 1805 1807 1816 1817 1818 1817 1818 1818 1818 1781

inverse quadratic 1839 1822 1837 1839 1839 1837 1837 1837 1837 1837 1837 1837

thins plate spline 1469 636 1205 1205 1206 1207 1206 1207 1206 1206 1207 1179

1st polynomial 1821 1824 1824 1824 1824 1825 1825 1826 1826 1826 1827 1825

2nd polynomial 1824 1825 1824 1826 1823 1826 1826 1826 1826 1826 1829 1826

3rd polynomial 1350 1241 1141 1346 1347 1346 1346 1346 1347 1347 1268 1312

4th polynomial 1350 1241 1143 1347 1346 1347 1347 1347 1347 1347 1268 1312

5th polynomial 1821 1824 1824 1826 1823 1826 1827 1827 1827 1826 1830 1826

Table 5.3: Accumulated reward when using different basis functions and different

sample sizes of the finite state space for learning the approximate value function.

All numbers in the 5% to 100% columns are averages over 1000 runs and discount

factor γ=1. We also report that the average actual reward when running the exact

value iteration (EVI) method of [2] is 1850 for the entire finite state space. Values

shown in bold are those that are over 1775 = 95% · 1850e.

Percentage of Sampling

5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Average

sigmoid 958 471 491 540 496 532 518 526 477 488 522 547.6

gaussian 640 639 624 636 622 668 678 633 614 604 685 640.8

inverse quadratic 1264 1262 1267 1277 1272 1267 1266 1262 1264 1266 1277 1268.1

thins plate spline 612 715 576 516 628 602 658 663 594 662 503 612.2

1st polynomial 596 615 685 652 672 629 640 648 667 614 647 642.7

2nd polynomial 452 559 611 595 677 644 623 641 622 638 567 603.1

3rd polynomial 335 555 642 629 641 601 625 637 642 576 611 591

4th polynomial 383 678 638 617 685 650 631 671 588 632 578 614.1

Function

5th polynomial 484 690 635 657 674 596 644 634 619 644 673 632.4

Table 5.4: RMSE with respect to the EVI [2] policy reward for discount factor

γ=0.9.
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Percentage of Sampling

5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Average

Functions

sigmoid 1050 458 340 407 236 275 275 275 275 275 236 373

gaussian 1371 648 109 68 132 135 135 135 135 135 189 291

inverse quadratic 1488 1487 1488 1488 1488 1488 1488 1488 1488 1488 1488 1488

thins plate spline 3.9 105 7.2 106 2.8 106 9.8 105 1.9 105 1.2 105 1.2 105 1.2 105 1.2 105 1.2 105 6.1 104 1.1 106

1st polynomial 24 26 24 143 229 206 206 206 206 206 226 155

2nd polynomial 18 23 23 144 230 202 202 202 202 202 227 153

3rd polynomial 2341 7829 7585 4694 4249 4254 4254 4254 4254 4254 4358 4757

4th polynomial 2341 7829 7585 4694 4249 4254 4254 4254 4254 4254 4358 4757

5th polynomial 27 26 24 144 230 203 203 203 203 203 227 154

Table 5.5: RMSE with respect to the EVI [2] policy reward for discount factor

γ=1.

function.1 We observe there that the graphs of their approximate value functions

in general follow closely those of EVI for a large part of the state space, even

though the expected values calculated do not match those calculated by EVI. In-

deed, what is important for a good approximation is that the graph slope and the

relative ranking of the state values are as those in the EVI value function graph,

while the actual values do not matter. The graphs for the value functions of the

polynomial variants, and, to some extent, of the gaussian, exhibit this behaviour.

By contrast, the graph of the thin plate spline and the inverse quadratic variants

depart quite a bit from that of EVI, which is consistent with the fact that their

performance wrt. RMSE and accumulated rewards is not as satisfactory as that of

the rest of our methods. In conclusion, the variants that exhibit the strongest and

more stable performance are those employing a gaussian or a polynomial basis

function—with the polynomial variants and, in particular, the 3rd degree polyno-

mial variant, doing equally well, regularly reaching a performance that is at about

90% of that achieved by EVI, or even more than 95% in the case of γ=1.

1States on the x axis in these figures are ranked in reverse order wrt. steps-to-go in the horizon:

states with small indices occur early in the day-ahead, and the ones to the right late.
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Figure 5.4: Approximate Value Function with a Sigmoid Basis

Function.
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Figure 5.5: Approximate Value Function with a Gaussian Basis

Function.
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Figure 5.6: Approx. Value Function with an Inverse Quadratic
Basis Function.
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Figure 5.7: Approx. Value Function with a Thin P late Spline
Basis Function.
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Figure 5.8: Approximate Value Function with a 1stdegree poly
Basis Function.
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Figure 5.9: Approximate Value Function with a 2nddegree poly
Basis Function.
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Figure 5.10: Approximate Value Function with a 3rddegree poly
Basis Function.
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Figure 5.11: Approximate Value Function with a 4thdegree poly
Basis Function.
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Figure 5.12: Approximate Value Function with a 5thdegree poly
Basis Function.
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Chapter 6

Conclusions

This thesis employs, for the first time, factored MDPs to model the decision prob-

lem faced by a prosumer planning its energy flow management for the day-ahead.

Our model incorporates the key factors responsible for the effective operation of

a microgrid prosumer, regardless of its size; and allows us to obtain the exact op-

timal solution to the problem. We used a simple value iteration algorithm to com-

pute the solution to this sequential decision making problem, and demonstrated

our method’s effectiveness and efficiency by comparing it to the performance of

SPUDD. By so doing, we exposed the limitations of this particular FMDP solver.

While our model enables the simple VI method to compute the optimal solution

within a reasonable time, the problem does not have enough structure to allow

the creation of a compact input file for SPUDD to operate on, resulting to poor

performance.

We also show how to use approximate MDP solution methods for taking deci-

sions in this domain without the need of discretizing the state space. More specif-

ically, we solve the prosumer decision problem using FVI in order to generalize

our factored MDP solution method to continuous state spaces. Our method is

shown to exhibit stable performance in terms of accumulated reward, which for

certain basis functions reaches 90% of that gathered by the exact algorithm. Fur-

thermore, a distinct contribution of our work is the evaluation of two regression

methods (GPs and Bayesian Linear Regression) that can be used for obtaining the

prosumer load consumption estimates.

Our model and solution technique allow the determination of optimal poli-

cies regarding the main prosumer activities. However, additional state and action

variables can be added to the model, to allow for additional operations to take

place (e.g., choosing to alter the projected production and consumption levels

for increased economic benefits). Moreover, one can use these ideas in order to
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smoothly incorporate prosumers within cooperatives that are fast emerging in the

Smart Grid [26, 24]. Finally, it would be interesting to analyse the performance if

we have two or more microgrids using this kind of decision making, and to take

the interaction between microgrids into account.
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