TECHNICAL UNIVERSITY OF CRETE

School of Electronic and Computer Engineering (ECE)

Virtual Machine Deployment and Migration on

Heterogeneous Cloud Platforms

by

Dimitrios G. Kargatzis

Dissertation Thesis

Thesis Committee:

Professor Euripides Petrakis
Assistant Professor Vasilis Samoladas

Research Collaborator Dr. Stelios Sotiriadis

Chania, 73100, Greece

Page | 1

Page | 2

Abstract

Cloud computing offers an innovative business model for organizations to adopt I'T
services at a reduced cost with increased reliability and scalability. Adopting a cloud
solution means binding to a specific platform and vendor, using specific protocols,
standards and tools of the cloud and finally, running into a vendor lock-in situation.
The fear of vendor lock-in is often cited as a major impediment to cloud service
adoption. If the provider decides to raise its prices or change its security policies, the
customer may have to consider to move his workloads to another provider. In this
work we focus on the automatic migration requirements in Openstack systems and as
a use case we present a mechanism for Virtual Machine (VM) migration (or of their
running instances) between Openstack and KVM virtualization and another cloud
platform that runs a different Virtualization engine (Stratogen and VMware is our
case). The standards approach is to freeze the running instance of a VM and restart it
under the new environment. We examined the requirements for successful migration
and the conclusion is that migration is not always fully automatic as it might need lots
of parameter tuning depending on differences in the type of virtualization engines
used at source and target environments (a task that can be performed by a specialized
expert). To alleviate the requirement of human intervention in the loop, we suggest
using containers as the underlying virtualization technology. We propose a
mechanism that implements migration using containers in a few steps and we run a
series of experiments to show proof of concept. As a conclusion, the later technology
proved to be feasible and more promising although it is still not fully supported by
infrastructure (operating system) tools that allow migration independent of the state of

the underlying operating system kernel at the time of transfer.

Page | 3

epiinyn

To vmoAoylotikd NEQOG TPOGPEPEL €V KAVOTOUO ETLXEIPNUOTIKO HOVTELO GTOLG
OPYOVIGLOVG Y10 VO DIOOETGOVY VANPEGIES TANPOPOPIKNG LEIDVOVTAG TO KOGTOG, LUE
peyoAvtepn aglomotio Kot emextacipotnTa. EmAéyovtag pia cuykekpiuévn AOon 6to
voAoyloTikd NEQog 1 emyelpnon eivon dpeco GLVOEdEUEVT UE TOV GUYKEKPIUEVO
TOPOYO, TO TPMTOKOAAD, TO TPOTLTA Kol TO €Pyoreion oL Ypnouwomolel pe
OTOTEAECUO, VO U1 UTTOPEL VO KOTAPVYEL GE OLLPOPETIKN AVoN 6TO0 HEAAOV. AVTOG
elval o kupldtEPOG AOYOG Yo TOV OmOl0 Ol EMIXEPNGEIS Oev LIOBETOVV LINPEGiEg
VTOAOY1GTIKOD NEPOVG. AV 0 TAPOYOG OAAAEEL TNV TOATIKY AGPUAELNG 1) AVENCEL TIG
TIHEG Y10 TOVG TOPOLG OV TOPEYEL, N EMLYEIPNON TPEMEL VoL EYEL TN SOLVATOTNTA VO
LETOQEPEL TIC EPYOCieg NG 68 GAAOV TTAPOY0. Xe ovTN TN SOVAELH, ECTIACANE OTIG
OTOLTGELS TNG OVTOUOTOTOUEVIG LETAPOPAS TOV EPYUCLOV oG emyeipnong omd
&vay TApPoYo G€ KATOoV GAAOV Kol GLUYKEKPUUEVO TOPOVCLAGAUE £VOL UNYAVICUO Y10l
TN HETOPOPA EIKOVIK®OV pnyavav arnd mepiPdirov Openstack ce VMware (Stratogen).
H Baocwmn npocéyyion eivan va whpovpe Eva GTIYUIOTUTO LOG EIKOVIKNG UNYXOVIAG 0O
éva epPAAAOV Kol Vo TO PETOQEPOVUE oe éva OAA0 mepiBdirov. EEetdoaue tig
OTOLTIGELS Y10, TNV ETITUYNUEVT] LETOPOPA KO TO CLUUTEPAGHA Elval OTL 1| dladKaGTL
dgv glvol TAP®G CVTOUOTOTOINUEVT] TAVTO, OTOLTMOVTIOS OPKETN TOPUUETPOTOINOT
aviAoyo pE TOV TPOMO OV Yivetor 1 €wkovomoinon oto kdébe mepidArov (pio
dwdwacioc mwov amontel eEgdkevpéves yvaooelg). [a va yiver 66o 10 dvvatdv
TEPIGGOTEPO OLTOHATOTOMUEVT 1 dtodkacio, mpoteivovpe) ypnon “containers”
O0TOVG TaPOYOLE. Xyedldlovpe Eva PNoVIGd TOV LVAOTOLEL LETAPOPA HE TN YPNON
“containers” og Alyo povo Ppato Kot TPEYOLUE o CEPA OmO TEPAUOTO Yo VO,
amodei&ovpe ot TNV TOPUdOYN. ZVUTEPAIVOVTAS, 1] KOvVOUpYLa TEXVOAOYia QaiveTal
va Vol TOAAG VTooyOpueVN aALd akOpa dgv vmootnpiletol TANP®G and Ta epyoieia
OV GTOYEVOLV GTY| LETAPOPE AVEEAPTNTA TOL AEITOVPYIKOV GLGTHHOTOG,

Page | 4

Contents

Chapter 1 — Introduction

1.1. Cloud Computing
1.2. Cloud Computing for Enterprises
1.3. Problem Definition

1.4. Proposed Solution
Chapter 2 — Background & Related Work

2.1. Cloud Computing Architecture
2.1.1. Service Models
2.1.2. Virtualization
2.1.3. Hypervisor
2.1.4. Image
2.1.4.1. Disk Formats
2.1.4.2. Container Format
2.1.5. Cloud Hosting

2.1.6. Image Conversion Tools
2.2. Containers in Cloud Computing

2.2.1. Container-based Virtualization
2.2.2. Docker
2.2.3. Kubernetes
2.3. Migration in Cloud Computing
2.3.1. Virtual Machine Migration
2.3.2. Process Migration using CRIU
2.3.3. Container-based Migration
2.4. Other Technologies
2.4.1. Representation State Transfer (REST)
2.4.2. Client URL Library (cURL)
2.4.3. Extensible Markup Language (XML)
2.4.4. JavaScript Object Notation (JSON)

Page | 5

Chapter 3 — Virtual Machine Migration

3.1. Migration between Cloud Providers
3.1.1. Homogeneous Migration
3.1.2. Heterogeneous Migration

3.2. Migration Service
3.2.1 Service Model

3.3. Service Functionality
3.3.1. Source Cloud Procedure
3.3.2. Target Cloud Procedure

3.4. Service Model

3.5. User Interface
Chapter 4 — Implementation
4.1. Implementing Homogeneous Migration

4.2. Implementing Heterogeneous Migration

4.3. Performance Analysis

Chapter 5 — Conclusions & Future Work

5.1. Conclusions
5.2. Future Work

5.2.1. Container-based migration

References

Page | 6

Page | 7

Chapter 1

Introduction

1.1 Cloud Computing

Cloud computing is a type of Internet-based computing that provides shared computer
processing resources, services and data to computers and other devices on demand.
Nowadays, cloud technology is not only for scientific use but also for commercial
use. Companies or individuals may need large amounts of computing power or
storage for limited time. Possessing the hardware and software for their operation is
not the optimal solution in many cases in terms of capital investment or in terms of
human resources required for maintenance. In these cases, cloud computing offers a
pay-per-use solution thus minimizing investment in terms of capital and human
resources. Cloud technology can be also used in many other ways in order to provide
a suitable and affordable solution in many use scenarios by exploiting features such

as:

Elasticity: The ability of cloud computing adjusts computing resources (i.e. CPU,
memory, bandwidth) to the actual (possibly varying in time) needs of an application
and apply a business model to take this into account. A consumer can be charged by
the resources he consumes and is able adjust the amount of resources according to his

needs.

On-demand self-service: A consumer can adjust his computing resources, without

human interaction.

Broad network access: The ability to use the cloud over the internet, any time and
from anywhere. The interaction between user and cloud is realized by means of Web
interfaces and APIs and other established technologies adopted by existing client

platforms like smartphones, laptops etc.

Resource pooling: This enables serving multiple customers by dynamically

Page | 8

allocating the resources according to demand. Typically, customers allocate
computing power over the Web without caring about the ownership or physical
location of the resources. The offered services become more reliable due to the fact

that if a physical component fails, the system dynamically switches to another.

Measurable services provision: A business model is applied and ensures clouds'
sustainability. A business model applies a pricing model which is realized by means
of additional tools for resource utilization and resource monitoring (e.g., utilization of

CPU power and memory).

Quality of Service (QoS): Except reliability, which is an important aspect of Quality
of Service [1], other criteria must be met by a cloud provider ensuring the quality of
services to customers including, response time, throughput, packet loss frequency,
CPU load etc. Furthermore, Cloud systems are a valid choice for a wide scope of
applications not only for offering desirable computational characteristics but also for

its economics [2]:

Pay per use: The consumer can pay for exactly the resources he/she uses, meaning
that he/she can scale up or down according to his needs without the risk of over or

under pricing.

Cost Reduction: A consumer achieves cost reduction, not only with the pay per use
scheme but also, without having to maintain or upgrade the infrastructure or software
that he/she uses. There are no idle machines (virtual or not) due to the automatic

scaling of allocated resources according to processing load.

Computing is ideal for a wide audience of consumers. For example, a small or startup
business can lease computing power and storage space without risking with the
procurement of expensive hardware, software or paying maintenance costs. Apart
from large or small business, there are also examples of individuals that can be also

benefited from cloud technology (e.g., by using cloud storage such as Dropbox’,

1
https://www.dropbox.com/

Page | 9

Google Drive®, iCloud® etc.). The applications that are using cloud computing

technology are many and their number keeps growing.

1.2 Cloud Computing for Enterprises

Cloud computing is becoming a game changer for Small-Medium Enterprises (SMEs)
by offering scalable infrastructure and capabilities available as services [3]. In an
enterprise that needs complex and expensive IT technology to support its business
processes, cloud provides an attractive alternative by which the compute resources are
made available at a fraction of the cost and without to get IT services without being

concerned with the details of how this is done.

Adopting cloud computing can save money, but it is important to choose the right
cloud hosting service and the right cloud solution for your business needs.
Determining which provider is best for a business depends largely on what you the
business needs in terms of services, time of use, degree of required control over
hardware and software for application development or hosting. Additional factors that
may affect a decision are provider's current security accreditations in which case an
evaluations of the encryption options the company supports is mandatory prior to

taking a decision to select a provider.

1.3 Problem Definition

Adopting a cloud solution means binding with the specific protocols, standards and
tools of the cloud provider (vendor lock-in). Enterprises may leave the opportunity
open to migrate to different clouds. If the provider decides to raise its prices or change
its security policies, the customer may consider to move his workloads to another

provider. However, the complexity of the problem depends on the way a cloud

2
https://www.google.com/drive/

3
https://www.icloud.com/

Page | 10

provider tweaks its infrastructure (heterogeneity), making migration difficult and
expensive. Basic migration constraints between heterogeneous cloud providers are

architecture, hypervisors, container formats and disk formats.

1.4 Proposed Solution

There are many platforms and tools to migrate from a cloud provider to another with
the same infrastructure. In this work we focus on the problem of migrating workloads
between different cloud infrastructures. We propose an implementation that will
transfer and deploy an instance or a service from Openstack® to VMware’. The
implementation consists of three modules, the first is responsible for downloading the
instance from source cloud provider, the second is responsible for solving migration
constraints and the last one is responsible for uploading and deploying the instance on
the target cloud provider. We focus on the automatic migration requirements in
Openstack systems and as a use case we present a mechanism for Virtual Machine
(VM) migration (or of their running instances) between Openstack and KVM
virtualization and another cloud platform that runs a different Virtualization engine
(Stratogen and VMWARE is our case). The standards approach is to freeze the
running instance of a VM and restart it under the new environment. We examined the
requirements for successful migration and the conclusion is that migration is not
always fully automatic as it might need lots of parameter tuning depending on
differences in the type of virtualization engines used at source and target
environments (a task that can be performed by a specialized expert). To alleviate the
requirement of human intervention in the loop, we suggest using containers as the
underlying virtualization technology. We propose a mechanism that implements
migration using containers in a few steps and we run a series of experiments to show
proof of concept. As a conclusion, the later technology proved to be feasible and more

promising although it is still not fully supported by infrastructure (operating system)

4
https://www.openstack.org/

5
https://www.vmware.com/

Page | 11

tools that allow migration independent of the state of the underlying operating system

kernel at the time of transfer.

Chapter 2

Background and Related Work

2.1 Cloud Computing Architecture

Cloud computing architecture refers to the layers and components required for cloud
computing. Cloud architecture can be divided into 4 general layers that map to the
available business models: the hardware layer, the infrastructure layer, the platform
layer and the application layer (Figure 1). For research and developing purposes,
each layer can be divided into sub layers. Infrastructure is the lowest layer and is a
means of providing processing, storage, networks, and other fundamental computing
resources as standardized services. Cloud providers’ clients can deploy and run
operating systems and software for their underlying infrastructures. The platform
layer provides higher abstractions and services to develop, test, deploy, host, and
maintain applications in the same integrated development environment. This layer
provides a runtime environment and middleware to deploy applications using
programming languages and tools the cloud provider supports. The application layer

is the highest layer and features a complete application offered as a service [4].

Page | 12

Web Services, Web Platforms,

Software as a Multimedia Google Docs,
Service (SaaS) Application Facebook, YouTube
____________________ Software frameworks (Java, Python, C), TTTTTTTTTTTTTTTTTTTTTTTT
Platf Storage (Databases, File) Fiware, Microsoft Azure,
atform as a ,
Service (PaaS) Platform Google AppEngine,

Amazon S3, Stratogen
------------------------ Virtual machines, storage (block), load Messsss—sssssssssasssass

balancer Openstack, VMware,
Infrastructure Amezon EC2
Infrastructureasa —pF7¢7¢5-—F70—7"-—"7—7—F— A ______ o ___.
Service (laaS) / CPU, Memory, Disk, Bandwidth Data Centers

________________________ | Hardware

Figure 1 — Cloud Computing Layers

2.1.1 Service Models
Cloud computing services are offered in three different service models:

e Infrastructure as a Service (IaaS)
The consumer leases hardware such as storage, computing power or network. The
consumer is responsible for installing and maintaining the operating system and other
software, but the responsibility of upgrading or maintaining the hardware resides to

the provider. Examples of storage clouds are Amazon S3°, SQL Azure.

e Platform as a Service (PaaS)
The cloud provider provides a software platform (with all basic tools and software
services such as Generic Enablers in the case of FIWARE-LAB’) for deploying their
applications. The consumer gets a functional virtual machine with an operating
system of his choice and he can use it for deploying services without worrying about

upgrades or maintenance. Examples of such services are Google App Engine®,

6
https://aws.amazon.com/s3/

7
https://account.lab.fiware.org/

8
https://cloud.google.com/appengine/
Page | 13

Windows Azure’ (Platform) and FIWARE-LAB.

e Software as a Service (SaaS)
This i1s the most usable cloud service. It allows a consumer to use services provided
by a cloud provider or even other consumers (e.g. Google Docs). The consumer has
no control over the service’s software or hardware and he can only use it thought
provided APIs or interfaces by the service provider. In addition, he is not required to
maintain or upgrade the hardware or the software. Examples are Google Docs,

Dropbox.

2.1.2 Virtualization

Virtualization provides a layer of abstraction between the hardware and the software.
Hardware or platform virtualization refers to the creation of a virtual machine (VM)
that acts like a real computer with an operating system. The main difference from the
tradition computer is that it allows definition of multiple VMs with different operating
systems over the same hardware. The host machine is the actual machine on which
the virtualization takes place and the guest machine is the virtual machine created by

hypervisor (Virtual Machine Manager).

A cloud provider typically has a specific amount of computing resources to share but
virtualization enables optimal sharing and use of resources among a large number of
consumers with diverse service demands (e.g. each one may use different operating
system). As a result of virtualization, clouds are able to efficiently exploit their

computing power.

2.1.3 Hypervisor

Hypervisor is the software responsible for creating the virtual environment where the
virtual machines operate and for dynamically allocating hardware resources to them.

Also known as Virtual Machine Manager (VMM), is the program that allows multiple

9
https://azure.microsoft.com/

Page | 14

operating systems to share a single hardware host [5]. Each virtual machine appears
to have the host’s processor, memory and other resources all for itself. However, it is
actually controlling the host processor and other resources, allocating what is needed
to each operating system and making sure that the guest machines (virtual machines)
can’t disrupt each other. It can be one of two types (Figure 2). This type of hypervisor
is referred to as type 1 hypervisor also known as native or bare metal hypervisor.
Typically, there is a “light” software operating directly on the system hardware to
control the hardware and to manage guest operating systems. Instead, type 2
hypervisors, need a full host operating system to run onto but this affects the overall

performance of the hypervisor.

HYPER
VISOR

HARD
WARE

TYPE 1

native

TYPE 2

(bare metal) hosted

Figure 2 — Hypervisor types

The following are the main hypervisors of choice in use.

e KVM
KVM'’ runs on most Linux distributions today and is perceived as the default

hypervisor to be used in all virtualization and cloud products offered by most

10
https://www.linux-kvm.org/page/Main_Page
Page | 15

Linux vendors, probably making it one of the most widely used hypervisors in the

world. KVM is an open source hypervisor.

e XEN

Xen'' an open source hypervisor, The project started in University of Cambridge,
then moved to Xensource, then acquired by Citrix, and finally to its current place
of residence — the Linux Foundation. Amazon Web Services (AWS)'? is the
biggest cloud provider that uses Xen today. Xen offers a number of advantages
over KVM such as the efficiency of paravirtualization (an efficient and
lightweight virtualization technique), which exceeds what is available in KVM
due to the closer access Xen has to the physical hardware, and the fact that it is a
more mature product. Xen is not actually part of the Linux Operating system,

whereas KVM is part of the Linux kernel.

o ESXI
ESXI™ is a product of VMware. 1t is the feature-rich hypervisor that many enterprises
use is ESXI (vSphere). It supports any operating system, be it Linux or Windows,

with almost any kind of distribution that you could imagine covered by ESXi.

e Hyper-V

Hyper-V'* is a Microsoft product. However, there are free versions available but
with many limitations built-in. Hyper-V and Microsoft have always feud with
VMware. Over the past few years, they have managed to cut away from
VMware’s market share by providing a native hypervisor that does most of what

vSphere (a VMware product) can do and at a more attractive price.

2.1.4 Image

An image is a virtual hard disk file that is used as a template for a virtual machine

(VM). An image is a template because it doesn’t have the specific settings that a

11
https://www.xenproject.org/

12
https://aws.amazon.com/

3
http://www.vmware.com/products/vsphere-hypervisor.html

14
https://technet.microsoft.com/en-us/library/mt169373(v=ws.11).aspx
Page | 16

configured virtual machine has, such as the computer name, network, or user account
settings. In simple words it is a software implementation of a machine (i.e. a
computer) that executes programs like a physical machine. Image may contain a boot
loader, an operating system and a root file system that is necessary for starting an

instance, data files and applications just like your personal computer.

Snapshot is a “point in time image” of a virtual guest operating system (VM). That
snapshot contains an image of the VMs disk, RAM, and devices at the time the
snapshot was taken [6]. With the snapshot, you can return the VM to that point in
time. All changes made after the snapshot was taken may be based on that snapshot
information (they are incremental changes). You can take snapshots of your VMs, no
matter what guest OS you have and the snapshot functionality can be used for features
like performing image level backups of the VMs without ever shutting them down.

Snapshots can be taken in just about every virtualization platform available.

2.14.1 Disk Formats

The disk format of a virtual machine image is the format of the underlying disk

image.

RAW format has the advantage of being simple and easily exportable to all other

emulators [7]. It has no metadata associated and it is as fast as possible.

ISO was created by the International Standards Organization’s 9660 standard. An ISO
archive is a CD/DVD image. Creating a package as an ISO image allows you to

install a pre-configured virtual machine image using a CD ROM drive [8].

VHD (Virtual Hard Disk) is another file format which represents a virtual hard disk
drive (HDD). It may contain what is found on a physical HDD, such as disk
partitions and a file system, which in turn can contain files and folders. It is typically

used as the hard disk of a virtual machine [9]. It is supported by Hyper-V and Xen

Page | 17

hypervisors and was initially used by Microsoft Azure and thereafter by Rackspace'’

and other cloud providers.

VMDK (Virtual Machine Disk) is one of the disk formats used in the Open
Virtualization Format (OVF) for wvirtual appliances. Initially developed
by VMware for its virtual appliance products like VMware Workstation'® or
VirtualBox"”.

Qcow used by a virtual machine monitor (QEMU'®). An image format like Qcow has
the largest overhead compared to raw images, when it needs grow, the image. This
allows for smaller file sizes than raw disk images, which allocate the whole image
space to a file, even if parts of it are empty. Qcow?2 [10] is an updated version of the

Qcow format.

2.1.4.2 Container Formats

There are several container formats for packaging and distributing a pre-configured
virtual machine image (virtual appliance) to run on a hypervisor. The container format
refers to whether the virtual machine image is in a file format that also contains

metadata about the actual virtual machine such as architecture and hypervisor type

[11].

Bare indicates there is no container or metadata envelope for the image. It is safe to

specify bare as the container format if you are unsure about image metadata.

Open Virtualization Format (OVF) describes an open, standard, secure, portable,
efficient and extensible format for the packaging and distribution of software to be
run on VMs. It is not tied up with any particular hypervisor. OVF consists of several
files placed in one directory and contains exactly one OVF descriptor (XML) which

describes metadata about virtual machine image, such as name, hardware

5
https://www.rackspace.com/

6
http://www.vmware.com/products/workstation.html

17
https://www.virtualbox.org/

18
http://www.gemu-project.org/
Page | 18

requirements and references to the other files in the OVF package. May typically
contain one or more disk images and optionally certificate files. Furthermore, OVA is

a tar file with the OVF directory inside [12].

Amazon Machine Image (AMI) provides the information required to launch an
instance. AMI" includes a template for the root volume for the instance (an operating
system and applications) and a block device mapping that specifies the volumes to

attach to the instance when it's launched.

Docker container format isn’t a format for packaging and distributing virtual machine
images. Docker containers wrap a piece of software in a complete filesystem that
contains everything needed to run, code, runtime, system tools, system libraries [15].

It’s a different architectural approach that is not tied with any specific infrastructure.

2.1.5 Cloud Hosting

Openstack and VMware are the industry’s most popular full infrastructure suite that
deliver comprehensive virtualization, management, resource optimization, application

availability and operational automation capabilities is an integrated offering.

Some Cloud Hosting enterprises build their environment with Openstack and
VMware infrastructures to provide compute capacity in the cloud. Furthermore, there
are Cloud Hosting enterprises which build their own software for virtualization,
management and resource optimization to provide compute capacity in the cloud,

such as Amazon®, Microsoft and Google®'.

The following figure (3) shows the standards of most popular Cloud Providers.

19
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

20
https://aws.amazon.com/ec2/

21
https://cloud.google.com/
Page | 19

TG T AMI AMI Xen v X XML

Microsoft

VHD BARE Hyper-V v v XML

Azure

Google
Compute RAW, AMI, VDI BARE KVM v v JSON

Engine
Rackspace VHD BARE Xen v v/ XML/JSON
(Openstack)

i- OVE, AMI,

LR QCOW2, AMI BARE KVM, Xen v v JSON

(Openstack)

Figure 3 — Most popular Cloud Providers standards

2.1.6 Image Conversion Tools

QEMU is a generic and open-source machine emulator (also called software
virtualizer, emulate the complete hardware in software) and virtualizer (also called
hardware virtualizer, both the host and guest share some of physical hardware). It also
provides a set of tools to create and convert disk images and supports many image file
formats that can be used with virtual machines as well as with any of the tools
(like gemu-img) [13], including

QCOW2 (KVM, Xen)

Raw

VDI (VirtualBox)

VHD (Hyper-V)
VMDK (VMware)

OVF Tool is a command line utility that helps users to generate OVA packages (is a
part of OVF standard and contains all the files of a virtual machine) and convert
formats supported by vSphere*’, vCloud® Director, VMX hypervisors or OVF to any
format supported by the hypervisors above [8].

22
http://www.vmware.com/products/vsphere.html

23
http://www.vmware.com/products/vcloud-suite.html

Page | 20

Supported File and Package Types for OVF Tool Input and Output

OVF
OVA
VMX
VMDK
ISO

2.2 Containers in Cloud Computing

Containers are an attempt to abstract applications from the underlying OS to enable
faster development and easier deployment. And unlike virtual machines, containers
execute directly on the host OS, sharing the kernel with other containers. Container
manager allocates resources to containers dynamically and they are able to operate
with the minimum amount of resources to perform the task they were designed for,

that means you can buy less hardware, build or rent less data center space.

2.2.1 Container-based virtualization

Container-based virtualization, also called operating-system-level virtualization, is an

approach in which the virtualization layer runs as an application within the operating
system. In traditional hardware virtualization, a hypervisor (either software or bare
metal) can run one or more guest operating systems. Each operating system acts as if
it 1s in control of the entire machine. In container-based virtualization approach, the
operating system’s kernel runs on the hardware node with several isolated guest
containers. Unlike with hypervisors, there is no emulation layer, just a thin layer

controls resource access.

The key point is that hypervisors are an abstraction at the hardware level and
containers are an abstraction at the OS kernel level. Anything you can do with
hardware, you can do with a hypervisor but some things are incredibly hard to do with
hardware, like memory hot unplug. With containers we actually virtualizing at the

level of the kernel, that means in a containerized system everything that runs shares

Page | 21

the same kernel. Resource management becomes easy because a single kernel is

managing the memory in the system.

The following figure (4) shows the architecture differences between hardware and

container-based virtualization.

app app apps

VM1 . VM2 . VM3 II
App1 App2 App3
Container3

Container1 Container2

Virtual Machine Monitor

Virtual Virtual Virtual
‘ . ‘ Hardware Hardware Hardware
OS Virtualization Layer Hypervisor

Standard Host OS Driver Support OS
Hardware Hardware
Container-based Hypervisor

Figure 4 — Virtualization Types

2.2.2 Docker

Is an open-source project that automates the deployment of applications inside
software containers. Docker** kicked off the container trend by standardizing the
packaging and APIs for Linux containers, providing an additional layer of abstraction
and automation of operating-system-level virtualization on Linux. Docker uses the
resource isolation features of the Linux kernel to allow independent "containers" to
run within a single Linux instance, avoiding the overhead of starting and

maintaining virtual machines. Docker containers wrap a piece of software in a

24
https://www.docker.com/
Page | 22

complete filesystem that contains everything needed to run: code, runtime, system
tools, system libraries [15]. You may package your application into standardized unit
to run on all major Linux distributions, on Microsoft Windows and on top of any

infrastructure.

2.2.3 Kubernetes

Is also an open-source system for automating deployment, scaling, and management
of containerized applications. It is a project created to manage a cluster of Linux
containers as a single system, managing and running Docker container across multiple
hosts, offering co-location of containers, service discovery, and replication control
[16]. It was started by Google and now is supported by RedHat, Microsoft, IBM, and
Docker.

Kubernetes® serves two purposes: It scales and starts containers across multiple
Docker hosts, balancing the containers across them. It also adds a higher level API to
define how containers are logically grouped, allowing defining pools of containers

and loading balancing.
2.3 Migration in Cloud Computing

The process of moving our workload between cloud providers is referred as migration
in cloud computing. There are three types of migration, virtual machine migration,
process migration and container-based migration. There are techniques and tools to

achieve each type of migration but also there are limitations for each one.
2.3.1 Virtual Machine Migration

The process of moving a running instance from one cloud providers to another called
virtual machine migration. In virtual machine migration, transferred data contains
everything an application would find in host, including the OS, middleware and

virtual versions of the devices. Because of virtual machine applications are depended

2 https://kubernetes.io/
Page | 23

on cloud provider specifications, virtual machine migration is difficult. Cloud
provider specifications may differ in hypervisor type, image format, container format,
tools and APIs. A virtual machine is tied up with cloud provider specifications and we
can’t migrate to a cloud provider with an alternate infrastructure. To achieve virtual
machine migration between heterogeneous cloud environments we have to use a

middleware to bridge the specification gaps between cloud providers.
2.3.2 Process Migration using CRIU

The process of moving a running application to a different host referred as process
migration. CRIU? is a software tool for Linux operating system to freeze a running
application (or part of it) and checkpoint it as a collection of files on disk [17].
Specifically, this tool lets you store a state of a process and restore it as it was during
the time of freeze on the same or another host with the initial PID. CRIU separates the
application from the underlying OS and freeze all the processes which are associated
with this application. All information related to the process is stored in one or more
image files. These image files contain information, such as memory maps, pipes, file

descriptors, inter-process communication, etc.

The initial purpose of this tool was to avoid application data loss caused by system
failures. In this thesis, we examined how CRIU tool could achieve a successful

process migration from one host to another.

Process migration is a kernel level migration and requires Linux kernel v3.11 or
newer, with some specific options set. Depending on application functionality, some
kernel configurations are required. Assuming that our system supports all
dependencies of process migration we have to use CRIU command tool with various
parameters. Checkpoint process is not a straightforward process, differs depending on
the application we want to migrate and requires knowledge of operating system to use

the appropriate parameters.

Beyond kernel configuration and the appropriate checkpoint parameters, CRIU has

26
https://criu.org/Main_Page
Page | 24

some limitations. The basic limitation is that for a successful migration both the
source and destination system must have the same versions of libraries. Also restore
process fails if the PID is in use on destination system. Furthermore, checkpoint
process freezes the process and its process tree, we can’t checkpoint and restore a

process on its own [18].

2.3.3 Container-based Migration

Container-based migration is also a software level migration. In contrast virtual
machine applications, the host OS and some middleware are shared and transferred
data in container-based migration contains only the application and some system
libraries. Applications designed for containers are forced to be compatible in most
systems that deploy applications in containers. Docker uses CRIU tool to checkpoint

and restore a container [19].

Blue outline in figure (5) below shows the data that transferred during virtual machine

and container-based migration process.

Container / Virtual Machine \

libraries libraries

uperspace uperspace

\& o

Page | 25

Figure 5 — Transferred data during virtual machine and container-based migration

respectively

2.4 Other Technologies

2.4.1 Representation State Transfer (REST)

REST is an architectural style based on a set of principles that describe how data
objects or resources can be defined and addressed on the internet. Clients and servers
are separated from REST operations and communicate by transferring representations
of resources through an interface, which improve client code portability. REST’s
decoupled architecture and light weight communications between server and client,
make REST a popular building style for cloud-based APIs. REST runs over Hypertext
Transfer Protocol (HTTP) and has constraints such as stateless existence, cache and

layered system leverage.
2.4.2 Client URL Library (cURL)

cURL is a library for transferring data using various protocols. Users use this library
in order to simplify the development of RESTful web services in PHP. We used this

library to make HTTP requests to achieve client-server communication.
2.4.3 Extensible Markup Language (XML)

In computing, XML is a markup language that defines a set of rules for encoding
documents in a format that is both human-readable and machine-readable. The design
goals of XML empathize simplicity, generality and usability across the internet. It is
textual data format and it is widely used for the presentation of arbitrary data

structures such as those used in web services.
2.4.4 JavaScript Object Notation (JSON)

An alternative to XML, Json is also a human — readable data format that is mainly

Page | 26

used for communication between client — server or between web applications. Json is
a language independent data format which originated from JavaScript and is
consisting of attribute — value pairs same as JavaScript objects. Json is easy to read
and write also it is shorter than XML because it does not require end tags which are

some advantages over XML.

Chapter 3

Virtual Machine Migration

3.1 Migration between Cloud Providers

Cloud to cloud (C2C) migration is the process of moving physical or virtual machines
along with their associated configuration, operating systems, applications and storage
from a cloud environment to another. In any case, successful migration to another

environment may require the use of middleware, such as a cloud integration tool.
3.1.1 Homogeneous Migration

Virtual machine migration from a node / zone to another in any cloud environment or
virtual machine migration between two cloud environments with the same
architecture is a straightforward process. There are no gaps because of the use of the
same protocols and standards. We have to move a running instance between clouds
or nodes in a cloud while maintaining its hardware, software and network

configurations [20].
3.1.2 Heterogeneous Migration

Heterogeneous migration process is more complicated. In this case, we have to move
an instance from a cloud environment to another with different architecture, protocols
and standards. So have to use a middleware to bridge the gaps between these
environments. The migration restrictions between heterogeneous cloud platforms

may are on hypervisor, image, virtual machine description (meta-data) they use.

Page | 27

3.2 Migration Service

This section presents our approach to virtual machine migration between
homogeneous but also heterogeneous cloud environments. Our service utilizes the

Openstack’s and VMware’s REST API to allow users to perform migration.
3.2.1 Service Model

The service is designed as a modular cloud PaaS in order to allow easy deployment
using API interfaces. The user uses a web interface to provide required information
which will be used by the service for a successful migration. The migration service is
responsible for transferring a running instance from one cloud environment to
another. In heterogeneous case, the service is also responsible for configuring the

instance to be portable on target cloud environment.

The model composed by the user that interacts with the service through the front-end
interface (using GUI), the service that performs VM migration include all needed
actions and the back-end system that includes the source and target cloud as

demonstrated in Figure 6.

[Migration Process \

i MigrationTool | 1. Connect to source cloud
. S /2. Selectinstance/image to migrate
. — |~ e * Image Conversion | 3. Convertimage format
O %] Tool i 4. Connect to target cloud
User " Instance configuration | 5. Initiate and configure instance
i Tool . 6. Transfer among target cloud
gi VM
O, transfer ' ©
ource : 5 Target
Cloud T T Cloud
Fiware / Intellicloud Fiware / Stratogen

Figure 6 — Service Model

Page | 28

The following list details the specification of each component.

- The UI allows user to interact with the service to provide information and achieve a
successful migration. The user, through the GUI, uses the migration tool in order to

transfer an instance among the target cloud.

- The migration tool composed by two modules, one for the download procedure from
source cloud and one for upload procedure for target cloud. The migration tool guides
the user to perform an instance migration between two homogenous or heterogeneous
clouds in a few steps. On each step, the user provides required information and the

migration tool performs the corresponding action on the cloud.

- The image conversion tool is responsible to convert the downloaded image to a

portable format for the upload procedure on target cloud.

- The instance configuration tool performs an action on target cloud to initiate the
virtual machine. Specifically, the tool uploads a XML file (OVF descriptor) on target

cloud with initial instance details.

- The back-end of the service offers all the functionality of the service. The back-end
stores temporarily the image until to be portable by the image conversion tool and

uploaded on target cloud.

3.3 Service Functionality

The service guides the user to migrate virtual machines or services with a few easy
steps. Currently, it offers this functionality for Fi-Lab, Intellicloud”” and Stratogen®
environments. Fi-Lab and Intellicloud built their environment based on Openstack
infrastructure and Stratogen built its environment based on VMware infrastructure. At
the same time, the service performs automated actions to bridge the gaps between

these infrastructures.

27
http://cloud.intellicloud.tuc.gr/

28
http://www.stratogen.net/
Page | 29

With this service anyone can migrate an existing virtual machine from Intellicloud to
Fi-Lab and vice versa or migrate an existing virtual machine from one of these
Openstack environments to Stratogen. It does not require any special knowledge other
than the basic process to launch a new instance from Openstack dashboard or
VMware dashboard. User Interface guides the user with the steps below to achieve the
migration, we present one use case scenario for homogeneous cloud environments
(Intellicloud and Fi-Lab) and one for heterogeneous cloud environments (Fi-Lab and

Stratogen).
3.3.1 Homogeneous Migration

1. Authentication: User provides his username, password and tenant name to be
authenticated on Intellicloud. Authenticating generates a unique token for every user

for which is being in every action user performs on the source cloud.
2. Get Instances: The service retrieves all existing instances registered to this user.

3. Get Images: The service retrieves a list of public images and images registered to

this user including snapshots.

4. Create Snapshot: User selects an existing running instance for migration.
Snapshot makes a copy of this instance, also contains all the hardware configuration

of the instance.

5. Download Image: User selects an existing public image or a snapshot for

downloading.

6. Authentication: User provides his username, password and tenant name as the

source cloud authentication to be authenticated on Fi-Lab cloud.

7. Select Fi-Lab Region: User selects the region which wants to transfer his virtual

machine.

8. Upload: The user provides provides the name of the new image and the service

performs actions automatically to upload the image or snapshot which user

Page | 30

downloaded earlier.
- It creates a new blank image with the name provided by the user.
- It uploads the data of downloaded image to the blank image which created

above and the initial instance is read to deploy on Fi-Lab cloud.

3.3.2 Heterogeneous Migration

1. Authentication: User provides his username, password and tenant name to be
authenticated on Fi-Lab cloud. Authenticating generates a unique token for every user

for which is being in every action user performs on the source cloud.
2. Select Fi-Lab Region: User selects the region which has his workload.
3. Get Instances: The service retrieves all existing instances registered to this user.

4. Get Images: The service retrieves a list of public images and images registered to

this user including snapshots.

5. Create Snapshot: User selects an existing running instance for migration.
Snapshot makes a copy of this instance, also contains all the hardware configuration

of the instance.

6. Download Image: User selects an existing public image or a snapshot for

downloading.

7. Authentication: User provides his username, password to be authenticated on
Stratogen cloud. Authenticating generates a unique token for every user for which is

being in every action user performs on the source cloud.

8. Create vApp: User creates a new vApp which is necessary to deploy a new virtual

machine.

9. Upload OVF descriptor: VMware vApps operate on the Open Virtualization
Format (OVF) and also are exported in OVF format. User uploads the OVF descriptor

to initiate this vApp template which contains virtual machine’s meta-data such as

Page | 31

hardware configuration and virtual machine image size.

10. Upload Image: If the previous step is done successfully user uploads the
reference file (VMDK image) and user’s virtual machine is ready to deploy on

Stratogen source cloud.

- The service performs automatically the conversion of downloaded image to
VMDK format.

3.5 User Interface

Cloud Migration

on heterogeneous platforms

Home Supported Providers Contact

Skip Stepe el Licioud

‘3‘.: FIL Lab

Log in with FIWARE Cloud credentials to start the download procedure,

Figure 7 — Fi-Lab Authentication

Page | 32

Cloud Migration P

on heterogeneous pl.x[f:’.\r'nﬁ

Home Supported Providers Contact
Images
Project
Image Name v
dkangatzis dowd
+)
Region -
migration server
migration server
Crete v
migration server
migration server
Instances=
migration server
| images= TestImage

migrationServer

Download Image | Upioad image
Figure 8 — List of images

Cloud Migration

on heterogeneous platforms

Home Supported Providers Contact

Back .

StratoC e

Up Time. On Time. Every Time.
Log in with Stratogen Cloud credentials to start the upload procedure.

Figure 9 — Stratogen Authentication

Page | 33

Cloud Migration

on heterogeneous platforms

Home Supported Providers Contact
vApp Templates
Organization
Template Name v
TuC
)
[omptuer] R
fiware image

intellickoud image

Figure 10 — List of vApp templates

Cloud Migration

on heterogeneous platforms

Home Supported Providers Contact
newvapp
Organization
TuC Stepr,
Tomplateses | Uplaad the OVF descriptor to initiate this template

uplo-i'

Figure 11 — Upload OVF descriptor

Page | 34

ndnw_n; v

a dimitris «

Important
convert image to valid
format with QEMU tool

Cloud Migration P

on heterogeneous platforms

newvapp Important
Organization convert image to vald
format with QEMU tool
T Step1
Tomplates=s Uplaad the OVF descriptor to initiate this template
upload v
Step 2,
L d reference file to complete the upload
[t duare (vmdk format
upload

Figure 12 — Upload File reference

Chapter 4

Implementation

The abstract flow of process of the service is that it interacts with source and target
environments through XML or JSON API. It uses information in order to perform

actions on two clouds by communicating with the cloud’s REST API.
4.1 Implementing Homogeneous Migration

The communication with the clouds is done by performing calls on Openstack APIs.

STEP 1. Intellicloud Authentication

Page | 35

REQUEST TYPE POST

http://cloud.lab.fi-ware.org:4730/v2.0/tokens

HEADERS {“Content-Type”: “application/json”}

{
"auth": {
"tenantName": "user cloud",
"passwordCredentials": {

"username": "user@mail.com",
"password"; "FxHEEHEEXL

Description: The service prepares and performs the call for authentication by the
Intellicloud. The Openstack identity service generates and returns a token that
represents the authenticated identity of a user and grants authorization on a specific

project or domain.

STEP 2. Retrieve the list of instances

REQUEST TYPE GET

http://147.27.50.1:8774/v2/Stenant-id/servers

HEADERS {“Content-Type”: “application/json”, “X-Auth-Token”: “Stoken”}

Description: The service retrieves and displays the list of instances owned by the

user.

STEP 3. Create Snapshot

Page | 36

REQUEST TYPE POST

http://147.27.50.1:8774/v2/Stenant_id/servers/Sserver_id /action

HEADERS {“Content-Type”: “application/json”, “X-Auth-Token”: “Stoken”}

{

“createlmage":
"name": "Snapshot", "metadata": {}}

Description: The user selects one instance (running or idle) which he wants to

migrate and creates a snapshot of.

STEP 4. Retrieve the list of images

REQUEST TYPE GET

http://147.27.50.1:8774/v2/Stenant_id/images

HEADERS {“Content-Type”: “application/json”, “X-Auth-Token”: “Stoken”}

Description: The service retrieves and displays the list of images. This list contains
public images that published either from other users or from cloud environment and

user’s private images.

STEP 5. Download Snapshot

REQUEST TYPE GET

http://147.27.50.1:9292/v2/images/Simage_id/file

Page | 37

{“Content-Type”: “application/json”, “X-Auth-Token”: “Stoken”}

Description: The user selects an image which he wants to download, in our case the

snapshot that created earlier.

STEP 6. Fi-Lab Authentication

REQUEST TYPE POST

http://cloud.lab.fi-ware.org:4730/v2.0/tokens

HEADERS {“Content-Type”: “application/json”}

{
"auth": {
"tenantName": "user cloud",
"passwordCredentials": {

"username": "user@mail.com",
"password"; "FxHEEHEEXL

Description: The service prepares and performs the call for authentication by the
cloud. The Openstack identity service generates and returns a token that represents the
authenticated identity of a user and grants authorization on a specific project or

domain.

STEP 7. Create new Image

REQUEST TYPE POST

http:// 147.27.60.1:9292/v2/images

Page | 38

HEADERS {“Content-Type”: “application/json”, “X-Auth-Token”: “Stoken”}

"name": "Sname ",
"container_format": "bare",

n,on

"disk_format": "qcow2",

n,n

"visibility": "public"

Description: The cloud creates a new image with the properties we include in the

request body and returns the image id.

STEP 8. Upload the image reference file

REQUEST TYPE PUT

http://147.27.60.1:9292/v2/images/Simage_id/file

HEADERS {“Accept:application/octet-stream”, “X-Auth-Token”: “Stoken”}

Description: The service uses the image id that returned in the previous step to

upload the reference file for the snapshot.
4.2 Implementing Heterogeneous Migration

In this case the procedure is different. The communication with the clouds is done by
performing calls on Openstack APIs, furthermore, the service has to perform actions

such as image conversion and instance details configuration.

STEP 1. Fi-Lab Authentication

REQUEST TYPE POST

Page | 39

http://cloud.lab.fi-ware.org:4730/v2.0/tokens

HEADERS {“Content-Type”: “application/json”}

{
"auth": {
"tenantName": "user cloud",
"passwordCredentials": {

"username": "user@mail.com",
"password"; "FHHEEHEEXL

Description: The service prepares and performs the call for authentication by Fi-Lab
cloud. The Openstack identity service generates and returns a token that represents the
authenticated identity of a user and grants authorization on a specific project or

domain.

STEP 2. Retrieve the list of instances

REQUEST TYPE GET

http://147.27.60.1:8774/v2/Stenant-id/servers

HEADERS {“Content-Type”: “application/json”, “X-Auth-Token”: “Stoken”}

Description: The service retrieves and displays the list of instances owned by the user
on a specific region. Specifically, the first part of URL (147.27.60.1) specifies the

region which the service performs requests.

STEP 3. Create Snapshot

Page | 40

REQUEST TYPE POST

http://147.27.60.1:8774/v2/Stenant_id/servers/Sserver_id /action

HEADERS {“Content-Type”: “application/json”, “X-Auth-Token”: “Stoken”}

{

“createlmage":
"name": "Snapshot", "metadata": {}}

Description: The user selects one instance (running or idle) which he wants to

migrate and creates a snapshot of.

STEP 4. Retrieve the list of images

REQUEST TYPE GET

http://147.27.60.1:8774/v2/Stenant_id/images

HEADERS {“Content-Type”: “application/json”, “X-Auth-Token”: “Stoken”}

Description: The service retrieves and displays the list of images. This list contains
public images that published either from other users or from cloud environment and

user’s private images.

STEP 5. Download Snapshot

REQUEST TYPE GET

http://147.27.60.1:9292/v2/images/Simage_id/file

Page | 41

{“Content-Type”: “application/json”, “X-Auth-Token”: “Stoken”}

Description: The user selects an image which he wants to download, in our case the

snapshot that created earlier.

STEP 6. Stratogen Authentication

REQUEST TYPE POST

http://mycloud.statogen.net/api/sessions

HEADERS {“Accept”: “application/*+xml;version=5.1"}

BASIC AUTH {username@organization_name:password}
HEADERS

Description: The first thing user needs to do is login and get the authentication token.
The service needs to use this authentication token as a header in all subsequent API

calls.

STEP 7. Create a new VApp

REQUEST TYPE GET

http://mycloud.statogen.net/api/org/Sorganization_id

HEADERS {“Accept”:“application/*+xml;version=5.1",“x-vcloud-authorization”:

“Stoken” }

Page | 42

Description: The service explodes the organization id from the authentication
response body and makes a get request to the cloud with this organization id as URL
parameter. The response body provides links to various attributes and actions to do

with the organization.

REQUEST TYPE POST

http://mycloud.statogen.net/api/Snew_vdc_link

HEADERS {“Accept”:“application/*+xml;version=5.1",”Content-Type”:

“application/vnd.vmware.vcloud.uploadVAppTemplateParams+xml”,“x-

vcloud-authorization”: “Stoken” }

<?xml version="1.0" encoding="UTF-8"?>
<UploadVAppTemplateParams
name="Svapp_name"
xmlns="http://www.vmware.com/vcloud/v1.5"
xmlins:ovf="http://schemas.dmtf.org/ovf/envelope/1">
<Description>Ubuntu vApp Template</Description>

</UploadVAppTemplateParams>

Description: The service explodes from a previous response body the link for the

new VApp and makes a POST request to initiate this new vApp with some properties.

STEP 8. Upload OVF Descriptor

REQUEST TYPE PUT

http://mycloud.statogen.net/api/Sovf_link

Page | 43

{“Accept”:“application/*+xml;version=5.1",“x-vcloud-authorization”:

“Stoken” }

Description: The response body of vApp creation request contains the link for the
OVF descriptor. The OVF descriptor is a XML file which contains initial instance
properties such as virtual disk name and size, virtual disk information (capacity),
virtual machine information (name, OS type) and virtual hardware requirements

(resources, controllers, network).

STEP 9. Convert Image

$ gemu-img convert -f qcow2 -0 vmdk image.qcow2 image.vmdk

Description: The service executes the above command to convert the downloaded
image to a portable format for the target cloud.

STEP 10. Upload Reference File

REQUEST TYPE PUT

http://mycloud.statogen.net/api/Sfile_link

{“Accept”:“application/*+xml;version=5.1",“x-vcloud-authorization”:

“Stoken” }

Description: The response body of vApp creation request also contains the link for
the reference file. If the upload of OVF descriptor succeeded, user needs to upload the

reference file and the snapshot is ready to deploy on Stratogen cloud.

4.2 Performance Analysis

Page | 44

The migration service implemented its functionality in homogeneous environments
but also in heterogeneous environments as shown in section above. Specifically,
homogeneous migration implemented its functionality in Openstack environments
with Intellicloud of the Technical University of Crete® as source cloud and Fi-Lab as
target cloud and heterogeneous migration implemented its functionality in Fi-Lab as
source cloud and Stratogen as target cloud. Stratogen infrastructure is based on
VMware platform. The performance evaluation of the service involves two
experimental use cases that demonstrate the time required for each instance migration

procedures, homogeneous and heterogeneous.

For homogeneous procedure, the assumption is that the user performs a migration of
an instance from Intellicloud to Fi-Lab system. Figure 13 demonstrates the variation
among the required calls. We used an image of Centos 7 (958.4 MB) and an image of
Ubuntu 12.04LTS-64 (243.6 MB) to deploy two small flavors virtual machines.

29
http://www.tuc.gr/index.php?id=5397
Page | 45

60 59.45

50

46.2
40
33.1
30 27.8
20
10
148 266 2.99
A48 1.25 0.955 0.992
0.155 0.166 0.709 0.613 0.491 0.501
0 — I e - - — — [e—
Source Cloud Retrieve Create Retrieve Download Target Cloud Retrieve Upload Image

Login Instancses Snapshot Images Image Login Images

M Centos 7 (958.4 MB) M Ubuntu 12.04 LTS64 (243.6 MB)

Figure 13 — Homogeneous migration performance

For heterogeneous procedure, the assumption is that the user performs a migration of
an instance from Fi-Lab to Stratogen system. Figure 14 demonstrates the variation
among the required calls. We used an image of Centos 7 (896.6 MB) and an image of
Ubuntu 12.04 (458.8 MB) to deploy two small flavors virtual machines.

Page | 46

148

140

119
120
100
80
60

49.21
42.44
40
20
0.9550.992 0.4530.339 1.25 1.42 0.4910.501 1.06 1.1 0.4890.532 2.01 1.96
0 — — — — — — I
Source Retrieve Create Retrieve Download Target Cloud Create new Upoad OVF Upload file
Cloud Login Instancses Snapshot Images Image Login VvApp reference
B Centos 7 (896.6 MB) Ubuntu 12.04 (458.8 MB)

Figure 14 — Heterogeneous migration performance

We observed that the size of the snapshot is bigger than the size of the initial image.
Specifically, in Fi-Lab the initial size of Centos 7 image is 896.6 MB and the size of
the snapshot is 1.9 GB and the initial size of Ubuntu 12.04 image is 458.8 MB and the
size of the snapshot is 1.3 GB.

Finally, it should be mentioned that the service executes most of the APIs calls related
with configurations but the time required for downloading and uploading increases
significantly the total time of migration, actions that depend to the image size and on

the bandwidth speed.

Chapter 5

Page | 47

Conclusions & Future Work

5.1 Conclusions

Looking back, the problem we tried to address was the “vendor lockin”. In this thesis
we present an implementation of virtual machine migration with two case scenarios
and the problem still exists because there are many heterogeneous cloud
environments. Also if one of these cloud providers decides to update its tools and API
or change standards, specific protocols, our implementation may not achieve a
successful migration. So, it’s not effective to add more use case scenarios in this
implementation because the procedure for each use case scenario may differs and
image conversion may be impossible. Process migration abstracts applications from
the underlying OS and may bridge the heterogeneity gaps. Because of these
limitations we describe in section 2.3.2, we can’t achieve a process migration
successfully. As a conclusion, the later technology proved to be feasible and more
promising although it is still not fully supported by infrastructure (operating system)
tools that allow migration independent of the state of the underlying operating system

kernel at the time of transfer.

5.2 Future Work

5.2.1 Container-based migration

We want compare hardware virtualization and container-based (operating-system-
level) virtualization and examine how container-based virtualization could avoid the
heterogeneity in cloud computing. Applications designed for containers are forced to
be compatible in most systems that deploy applications in containers. We built
containers such as mongodb® and Cassandra® on Google compute engine’” and we

achieved a successful transfer of our workload to a different zone through Google

0
https://www.mongodb.com/

31
http://cassandra.apache.org/

32
https://cloud.google.com/compute/
Page | 48

compute engine console. In a future work, we will propose a mechanism that
implements migration using containers in a few steps and we will run a series of
experiments to show proof of concept. As a conclusion, the later technology proved to

be feasible and more promising.

Page | 49

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Schubert L, Jeffery K, Neidecker-Lutz B (2010) “The Future of Cloud
Computing — Opportunities for European cloud computing beyond 20107,

European Commission, http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-

final.pdf

Amid Khatibi Bardsiri, Seyyed Mohsen Hashemi, “QoS Metrics for Cloud
Computing Services Evaluation”, http://www.mecs-press.org/ijisa/ijisa-v6-

nl12/IJISA-V6-N12-4.pdf

The Open Group, “Maximizing the Value of Cloud for Small-Medium

Enterprises”, http://www.opengroup.org/cloud/cloud sme/

Linkedin , “Cloud Computing Architecture”,
https://www.linkedin.com/pulse/20140621112709-142734032-cloud-computing-

part-3-architecture

Wikipedia, “Hypervisor”, https://en.wikipedia.org/wiki/Hypervisor

Virtualization Admin, “What is the Snapshot”,

http://www.virtualizationadmin.com/fag/snapshot.html

Qemu Project “Disk Image File Formats”, http://download.qemu-

project.org/gemu-doc.html - disk 005fimages 005fformats

VMware “OVF Tool User’s Guide”,
https://www.vmware.com/support/developer/ovi/ov{420/ov{tool-420-

userguide.pdf

Wikipedia “VHD File Format”,
https://en.wikipedia.org/wiki/VHD (file format)

KVM “Qcow?2”, http://www.linux-kvm.org/page/Qcow2

Openstack “Disk and Containers Formats”,

Page | 50

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

https://docs.openstack.org/developer/glance/formats.html

Wikipedia “Open Virtualization Format”,
https://en.wikipedia.org/wiki/Open Virtualization Format

Openstack “Converting between Image Formats”,

https://docs.openstack.org/image-guide/convert-images.html

Openstack “Converting between Image Formats”,

https://docs.openstack.org/image-guide/convert-images.html

Docker “What is a Container”, https://www.docker.com/what-container

Kubernetes “Building High-Availability Clusters”,
https://kubernetes.io/docs/admin/high-availability/

CRIU “Checkpoint / Restore”, https://criu.org/Checkpoint/Restore

Redhat “Checkpoint / Restore in User Space”,
https://access.redhat.com/articles/2455211

CRIU “Docker”, https://criu.org/Docker

Vakanas, L., Sotiriadis, S. and Petrakis, E. (2015) "Implementing the Cloud
Software to Data approach for OpenStack environments",
http://www.intelligence.tuc.gr/~petrakis/publications/ARMS-CC2015.pdf

Page | 51

