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Abstract

This work highlights state-of-the-art probabilistic graphical models and infer-

ence algorithms that exploit rather than avoid the symbol-level asynchrony

in multi-user wireless communications. More specifically, the recently pro-

posed inference algorithm SigSag is studied, where multiple users transmit

their data packets at the same time and frequency channels, with however

random delays; assuming channel state information (CSI) at the receiver,

linear equations are formed, which produce a probabilistic graphical model

(PGM), amenable to inference algorithms. This work implements the sum-

product belief propagation algorithm on the crafted PGM and a) derives

the message passing equations, b) studies initialization and c) complements

with CSI estimation, using linear minimum mean squared error (LMMSE)

estimator. Performance was tested for 2 or 3 users. It was found that per-

formance was sensitive to initialization, as expected, due to the inherently

loopy nature of the crafted PGM for small packet lengths. On the contrary,

bit error rate (BER) decreases with increasing packet length, at the expense

of convergence time. Moreover, reduced convergence time results to higher

BER.
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Chapter 1

Introduction and System Model

1.1 State of the art multi-user

communication

There has been a tremendous amount of theoretical work in multi-user

detection and interference cancellation, where most implementations rely on

carrier sense multiple access (CSMA) to limit collisions while code-division

multiple access (CDMA) receivers decode each user by treating interference

as noise.

A different innovative approach by [1] proved that probabilistic graphical

models and inference algorithms can be a great tool for performing multi-

user joint decoding and interference cancellation. Another important step

towards more practical systems that decode interfering users was ZigZag

decoding by [2], that exploited the asynchrony across succesive collisions.

After that, based on the same assumptions as the original ZigZag framework

SigSag, a soft-decoding version was developed by [3].

In this work, it is assumed that there are N users, each wanting to transmit

a packet of B bits, trying to communicate with an access point (AP) where

each user relies on carrier sensing to detect if other users are transmitting. If

this method fails, there is interference at the AP, modelled by a simple linear

superposition of the symbols plus noise.

The focus of this work is on the worst-case scenario where carrier sensing

constantly fails and packet collisions are always formed in the AP. In that

case, the model that is used assumes that each of the N users transmits its

packet N times and the AP receives linear equations involving the sum of the

collided symbols plus noise.

The problem that is being solved in this work, is a maximum likelihood
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detection problem that consists of finding the most probable user symbols

given the noise statistics. In the high-SNR case(when the noise is negligible)

this simply reduces to solving linear equations, while for the noisy case it

becomes a statistical inference problem which is well known to be computa-

tionally intractable.

1.2 Lack of Symbol-level synchronization

As mentioned by [2] there are a few practical issues that should be mentioned

because they complicate the process of estimating the transmitted symbols

from the received symbols. Two core problems that should be mentioned,

are sampling offset and inter-symbol interference.

a) Sampling Offset: The transmitted signal is a sequence of complex

valued samples separated by a period T. However when they are transmitted

on the wireless medium, these discrete values have to be interpolated into

a continuous signal. The continuous signal is equal to the original discrete

samples, only if they are sampled at the exact same positions where the

discrete values were. Due to general lack of synchronization a receiver will

not be able to sample the received signal exactly at the right positions and

there will always be a sampling offset µ. This offset originates from the drift

in the receiver and transmitter clock. Hence, decoders have algorithms to

estimate and keep track of it over the duration of a packet.

b) Inter-Symbol interference:In a fully-realistic scenario there will be

inter-symbol interference because the symbol duration will not be the same

and the received symbol y[n] will not just be a product of the transmitted

symbol x[n] but in practise neighboring symbols may interfere with it.

In the system model presented in this work, for simplicity’s sake it was

assumed that symbol duration is always the same and the delay of each user

is an integer multiple of the slots of the transmission.
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1.3 General System Model

In the system model of this work, there are N users trying to communicate
to an access point. Each user re-transmits N times and the packets collide
forming linear equations at the access point. A block Rayleigh fading channel
model is assumed where data sent by user i on the cth transmission are
attenuated by coefficients h

(c)
i that are assumed known at the receiver. For

the sake of completeness in 3 a way to estimate the fading coefficients h
(c)
i at

the receiver by using a known preamble sequence to each packet is presented.
So, for this estimation to be exact, the fading is required to be extremely
slow. Under this model, the access point receives the signal:

~uc =
N∑
i=1

h
(c)
i Tw(i,c)(~xi) + ~v(c), (1.1)

where c ∈ (1, 2, ..., N) is the collision round and ~xi = [xi,1 xi,2 ... xi,B] is
the packet (assuming BPSK, xi,j = ±1) sent by the ith user with B bits
packet length. Also v(c) is the channel noise vector of the cth collision which
is assumed to be independent and identically distributed complex Gaussian
noise. The access point receives the noisy data on the cth collision noted as ~uc.
Finally, Tw(i,c)(~xi) is an operator that takes the B dimensional vector ~xi and
creates a B+W dimensional vector by padding zeros to the beginning and
the end, where the number of padded zeros at the beginning is determined by
the time delay i chooses randomly before the cth transmission. It is assumed
that the time delay is known at the access.

So considering all of the above the whole system can be modelled as
A~x + v = ~u where A is the collision matrix, ~x = [x1 x2 ... xN ]T and ~u =
[u1 u2 ... uN ]T . For the aforementioned system a factor graph is designed as
it is explained in chapter 2.1.3 and proved in 6.1.

1.3.1 System Model for N=2 Users

In this part, a thorough example of the system model for 2 users is presented
that considers all the things mentioned in 1.3. To start with because there
are 2 users, each user re-transmits each packet 2 times and the packets collide
forming linear equations at the access point. In this example it is considered
that the 2 Users are transmitting packets that have 5 bits each like in the
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Figure 1.1: Two consecutive collisions of two packets ~x and ~y of B=5 symbols
sent by N=2 users. Both packets are transmitted twice and the access point
receives ~u1 and ~u2

figure 1.1, so the set of linear equations corresponding to the collision patterns
shown in the figure 1.1 are:

u11 = h
(1)
1 x1 + v

(1)
1

u12 = h
(1)
1 x2 + v

(1)
2

u13 = h
(1)
1 x3 + h

(1)
2 y1 + v

(1)
3

u14 = h
(1)
1 x4 + h

(1)
2 y2 + v

(1)
4

u15 = h
(1)
1 x5 + h

(1)
2 y3 + v

(1)
5

u16 = h
(1)
2 y4 + v

(1)
6

u17 = h
(1)
2 y5 + v

(1)
7

u21 = h
(2)
1 x1 + h

(2)
2 y1 + v

(2)
1

u22 = h
(2)
1 x2 + h

(2)
2 y2 + v

(2)
2

u23 = h
(2)
1 x3 + h

(2)
2 y3 + v

(2)
3

u24 = h
(2)
1 x4 + h

(2)
2 y4 + v

(2)
4

u25 = h
(2)
1 x5 + h

(2)
2 y5 + v

(2)
5
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and the corresponding collision matrix A as it is mentioned in 1.3 is the
following:



h
(1)
1 0 0 0 0 0 0 0 0 0

0 h
(1)
1 0 0 0 0 0 0 0 0

0 0 h
(1)
1 0 0 h

(2)
2 0 0 0 0

0 0 0 h
(1)
1 0 0 h

(2)
2 0 0 0

0 0 0 0 h
(1)
1 0 0 h

(2)
2 0 0

0 0 0 0 0 0 0 0 h
(2)
2 0

0 0 0 0 0 0 0 0 0 h
(2)
2

h
(2)
1 0 0 0 0 h

(2)
2 0 0 0 0

0 h
(2)
1 0 0 0 0 h

(2)
2 0 0 0

0 0 h
(2)
1 0 0 0 0 h

(2)
2 0 0

0 0 0 h
(2)
1 0 0 0 0 h

(2)
2 0

0 0 0 0 h
(2)
1 0 0 0 0 h

(2)
2



(1.2)

In this problem, if there was no noise ( ~v(c) = 0), the optimal decoder
would simply have to solve these linear equations.However, in the presence of
noise, optimal decoding would correspond to finding which vectors ~x ∈ (±1)B

, ~y ∈ (±1)B have the highest likelihood under the noise statistics, which
for general N reduces to a computationally intractable integer least-square
problem.

So the approach to solve this problem, was to create a probabilistic graph-
ical model based on the equations and the collision matrix and then use a
message-passing algorithm to find the most likely transmitted symbols for
user x and y. The probabilistic graphical model that was crafted considering
the figure in 1.1 is the following:
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Figure 1.2: Factor graph based on Figure 2.1

After that the factor graph is simplified by applying the factor graph
design equations that are mentioned in 2.1.3 and then proved in 6.1.
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Figure 1.3: Simplified factor graph based on Figure 2.1 after Factor Node
Design equations
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1.3.2 System Model for N=3 Users

Figure 1.4: Three consecutive collisions of three packets ~x, ~y and ~z of B=3
symbols sent by N=3 users. The packets are transmitted thrice and the
access point receives ~u1 , ~u2 and ~u3

In this part, a thorough example of the system model for 3 users is pre-
sented that considers all the things mentioned in 1.3. To start with because
there are 3 users , each user re-transmits each packet 3 times and the packets
collide forming linear equations at the access point. In this example it is con-
sidered that the 3 Users are transmitting packets that have 3 bits each like
in the figure 1.4, so the set of linear equations corresponding to the collision
patterns shown in the figure 1.4 are:
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u11 = h
(1)
1 x1 + v

(1)
1

u12 = h
(1)
1 x2 + h

(1)
2 y1 + v

(1)
2

u13 = h
(1)
1 x3 + h

(1)
2 y2 + h

(1)
3 z1 + v

(1)
3

u14 = h
(1)
2 y3 + h

(1)
3 z2 + v

(1)
4

u15 = h
(1)
3 z3 + v

(1)
5

u21 = h
(2)
1 x1 + v

(2)
1

u22 = h
(2)
1 x2 + h

(2)
2 y1 + h

(2)
3 z1 + v

(2)
2

u23 = h
(2)
1 x3 + h

(2)
2 y2 + h

(2)
3 z2 + v

(2)
3

u24 = h
(2)
2 y3 + h

(2)
3 z3 + v

(2)
4

u31 = h
(3)
1 x1 + h

(3)
2 y1 + h

(3)
3 z1 + v

(3)
1

u31 = h
(3)
1 x2 + h

(3)
2 y2 + h

(3)
3 z2 + v

(3)
2

u31 = h
(3)
1 x3 + h

(3)
2 y3 + h

(3)
3 z3 + v

(3)
3

and the corresponding collision matrix A as it is mentioned in 1.3 is the
following:



h
(1)
1 0 0 0 0 0 0 0 0

0 h
(1)
1 0 h

(1)
2 0 0 0 0 0

0 0 h
(1)
1 0 h

(1)
2 0 h

(1)
3 0 0

0 0 0 0 0 h
(1)
2 0 h

(1)
3 0

0 0 0 0 0 0 0 0 h
(1)
3

h
(2)
1 0 0 0 0 0 0 0 0

0 h
(2)
1 0 h

(2)
2 0 0 h

(2)
3 0 0

0 0 h
(2)
1 0 h

(2)
2 0 0 h

(2)
3 0

0 0 0 0 0 h
(2)
2 0 0 h

(2)
3

h
(3)
1 0 0 h

(3)
2 0 0 h

(3)
3 0 0

0 h
(3)
1 0 0 h

(3)
2 0 0 h

(3)
3 0

0 0 h
(3)
1 0 0 h

(3)
2 0 0 h

(3)
3



(1.3)
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So the approach that was made to solve this problem was the same as the
one we used to solve the 2-user problem. The probabilistic graphical model
for the transmissions mentioned in 1.4 is the following:

Figure 1.5: Factor graph based on Figure 2.4

After that the factor graph is simplified by applying the factor graph
design equations that are mentioned in 2.1.3 and then proved in 6.1.
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Figure 1.6: Factor graph based on 1.4 after the Factor Node Design



Chapter 2

Inference Algorithms

In this chapter, the Sum-Product Algorithm is explained based on the break-
through paper [4]. Additionally descriptions are given on the factor graphs
and on the factor node design that was used in 1.3.1 and 1.3.2. Lastly the
stopping conditions that were used in our simulations are explained.

2.1 Sum-Product Algorithm in Factor

Graphs

Definition of Factor Graphs [4]:

A factor graph is a bipartite graph that expresses the structure of the
factorization. A factor graph has a variable node for each variable xi, a
factor node for each local function fj, and an edge-connecting variable node
xi to factor node fj if and only if xi is an argument of fj.

Thus a factor graph is a standard bipartite graphical representation of a
mathematical relation.

2.1.1 Sum-Product Algorithm

The Sum-Product message passing algorithm also known as belief
propagation is a message passing algorithm that performs inference on
graphical models, such as Bayesian networks or Markov random fields. The
basic idea of this algorithm is to compute the marginal distribution of the un-
observed nodes, based on the conditional distribution of the observed nodes.
There are many variations of the Sum-Product algorithm but this work re-
volves around the variation that operates on factor graphs.
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2.1.2 Message passing

The aforementioned algorithms core idea is to pass real valued functions
called messages along with the edges between the hidden nodes. More pre-
cisely, if v is a variable node and a is a factor node connected to v in the
factor graph, the messages from v to a, (denoted by µv→a) and from a to
v (denoted by µa→v) are real-valued functions. These messages contain the
”influence” that one variable exerts on another. The messages are computed
differently depending on whether the node receiving the message is a variable
node or a factor node. Keeping the same notation:

• A message from a variable node v to a factor node a is the product of
the messages from all other neighboring factor nodes :

µv→a(xv) =
∏

a∗∈N(v)\a

µa∗→v(xv). (2.1)

Figure 2.1: Message sent from variable node to factor node

where N(v) is the set of neighboring (factor) nodes to v. If N(v)\a is
empty, then µv→a(xv) is set to the uniform distribution.

• A message from a factor node a to a variable node v is the product
of the factor with messages from all other nodes, marginalized over all
variables except the one associated with v:

µa→v(xv) =
∑

x′a:x′v=xv

fa(x
′
a)

∏
v∗∈N(a)\{v}

µv∗→a(x
′
v∗) (2.2)



2.1. Sum-Product Algorithm in Factor Graphs 21

Figure 2.2: Message from factor node to variable node

where N(a) is the set of neighboring (variable) nodes to a. If N(a)\v
is empty then µa→v(xv) = fa(xv) , since in this case xv = xa .

As shown by the previous formula: the complete marginalization is re-
duced to a sum of products of simpler terms than the ones appearing in the
full joint distribution.This is the reason why it is called the sum-product
algorithm.

In sum-product there are two different types of scheduling, the one being
serial and the other one being parallel.In this work, the scheduling that was
chosen was the parallel.

2.1.3 Factor Node Design

As it is mentioned in chapter 1.3 the factor nodes are initialized to simplify
the factor graph. This simplification is achieved by applying the Bayes the-
orem in the factor node design equations. A full proof about the factor node
design is given in 6.1 for N=2 and N=3 users.
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2.2 Application of the Sum-Product in this

work

In this section, two examples are given about how all the theory that was
mentioned in 2.1 functions upon the cases we studied in chapters 1.3.1 and
1.3.2.

Proper Complex Gaussian Vector:

It is important to define proper complex Gaussian vector ~r ∼ CN (~µ,Λ)
where

• ~r ∈ CN

• E[~r] = ~µ

• E[(~r − ~µ)(~r − ~µ)H ] = Λ

• f~r(~r) = 1
πN |Λ|e

−(~r−~µ)HΛ−1(~r−~µ)

For N=1 we get the circularly symmetric complex Gaussian

Circularly Symmetric Complex Gaussian:

• ~r ∈ C

• E[~r] = ~0

• E[~r~rH ] = Λ

• f~r(~r) = 1
π|Λ|e

−~rHΛ−1~r
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2.2.1 Application of the Sum-Product in the 2-User
case

Figure 2.3: Example based on case 1 and 2 upon the factor graph
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In this part, the application of the Sum-Product algorithm is presented based
on the example that was covered in 1.3.1. To start with, an example that
shows how the factor node design works (2.3) is presented. Observing 2.3 we
can discriminate two different factor types, those with 1 edge and those with
2 edges. It is important to note that the factor nodes get designed based on
the Circularly Symmetric Complex Gaussian.

• In case 1 (considering BPSK modulation) where we have just one edge,
the factor node design is the following:

f11(x1 = +1) =
CN (u11, h

(1)
1 , σ2)

total

f11(x1 = −1) =
CN (u11,−h(1)

1 , σ2)

total

• In case 2 (considering BPSK modulation) where we have two edges,
the factor node design is the following:

f22(x2 = +1, y2 = +1) =
CN (u22, h

(2)
1 + h

(2)
2 , σ2)

total

f22(x2 = +1, y2 = −1) =
CN (u22, h

(2)
1 − h

(2)
2 , σ2)

total

f22(x2 = −1, y2 = +1) =
CN (u22,−h(2)

1 + h
(2)
2 , σ2)

total

f22(x2 = −1, y2 = −1) =
CN (u22,−h(2)

1 − h
(2)
2 , σ2)

total

After all the factors get designed the message passing phase begins. As it
was mentioned in 2.1.2 there are two versions of sum-product, in this work
the parallel version is being used. In the parallel sum-product there are 2
core steps:

Initialization: In the initialization step the messages from variables to
factors got initialized to 0.5 each

Update: In the first sub-step of the update rule messages were sent
from all the factor nodes to all the variable nodes (with edges in-between
them) like it was mentioned in 2.2 In the second sub-step of the update rule
messages were sent from all the variable nodes to all the factor nodes (with
edges in-between them) like it was mentioned in 2.1
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An example is given based on the case 2 of 2.3.

Factor to variable message:

µtf22→y2(y2 = −1) = f22(x2 = −1, y2 = −1)µt−1
x2→f22(x2 = −1)+

f22(x2 = +1, y2 = −1)µt−1
x2→f22(x2 = +1)

µtf22→y2(y2 = +1) = f22(x2 = −1, y2 = +1)µt−1
x2→f22(x2 = −1)+

f22(x2 = +1, y2 = +1)µt−1
x2→f22(x2 = +1)

The binary message sent is the message from factor f22 to variable y2.
It is important to note that before we sent it we have to normalize it.

Variable to factor message:

µty2→f22(y2) = µt−1
f14→y2(y2)

The message passing continues until the stopping condition. The stopping
condition that was used in this work was a heuristic one where the algorithm
compares the messages it sent on the t − 1 iteration with the messages it
sent on the t iteration and if they did not change more than a threshold it
terminates.

If the threshold is a large number, that means that the tolerance for
terminating the algorithm is large which means that it will do less iterations
with the trade-off being slightly higher bit error rate. On the other hand
if the threshold is a small number that means that the algorithm will have
smaller bit error rate with the trade-off being more iterations.
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2.2.2 Application of the Sum-Product in the 3-User
case

Figure 2.4: Example based on case 1,2 and 3 upon the factor graph
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In this part, the application of the Sum-Product algorithm is presented based
on the example that was covered in 1.3.1. To start with, an example that
shows how the factor node initialization works (2.4) is presented. Observing
2.4 we can discriminate three different factor types, those with 1 edge, those
with 2 edges and those with 3 edges. It is important to note that the factor
nodes get designed based on the Circularly Symmetric Complex Gaussian.

• In case 1 (considering BPSK modulation) where we have just one edge,
the factor node design is the following:

f11(x1 = +1) =
CN (u11, h

(1)
1 , σ2)

total

f11(x1 = −1) =
CN (u11,−h(1)

1 , σ2)

total

• In case 2 (considering BPSK modulation) where we have two edges,
the factor node design is the following:

f12(x2 = +1, y1 = +1) =
CN (u12, h

(1)
1 + h

(1)
2 , σ2)

total

f12(x2 = +1, y1 = −1) =
CN (u12, h

(1)
1 − h

(1)
2 , σ2)

total

f12(x2 = −1, y1 = +1) =
CN (u12,−h(1)

1 + h
(1)
2 , σ2)

total

f12(x2 = −1, y1 = −1) =
CN (u12,−h(1)

1 − h
(1)
2 , σ2)

total

• In case 3(considering BPSK modulation) where we have three edges,
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the factor node design is the following:

f13(x3 = +1, y2 = +1, z1 = +1) =
CN (u13, h

(1)
1 + h

(1)
2 + h

(1)
3 , σ2)

total

f13(x3 = +1, y2 = +1, z1 = −1) =
CN (u13, h

(1)
1 + h

(1)
2 − h

(1)
3 , σ2)

total

f13(x3 = +1, y2 = −1, z1 = +1) =
CN (u13, h

(1)
1 − h

(1)
2 + h

(1)
3 , σ2)

total

f13(x3 = +1, y2 = −1, z1 = −1) =
CN (u13, h

(1)
1 − h

(1)
2 − h

(1)
3 , σ2)

total

f13(x3 = −1, y2 = +1, z1 = +1) =
CN (u13,−h(1)

1 + h
(1)
2 + h

(1)
3 , σ2)

total

f13(x3 = −1, y2 = +1, z1 = −1) =
CN (u13,−h(1)

1 + h
(1)
2 − h

(1)
3 , σ2)

total

f13(x3 = −1, y2 = −1, z1 = +1) =
CN (u13,−h(1)

1 − h
(1)
2 + h

(1)
3 , σ2)

total

f13(x3 = −1, y2 = −1, z1 = −1) =
CN (u13,−h(1)

1 − h
(1)
2 − h

(1)
3 , σ2)

total

After all the factors get initialized the message passing phase begins. As
it was mentioned in 2.1.2 there are two versions of sum-product, in this work
the parallel version is being used. In the parallel sum-product there are 2
core steps:

Initialization: In the initialization step the messages from variables to
factors got initialized to 0.5 each

Update: In the first sub-step of the update rule messages were sent
from all the factor nodes to all the variable nodes (with edges in-between
them) like it was mentioned in 2.2 In the second sub-step of the update rule
messages were sent from all the variable nodes to all the factor nodes (with
edges in-between them) like it was mentioned in 2.1

An example is given based on the case 3 of 2.4.

Factor to variable message:
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µtf13→z1(z1 = −1) =

f13(x3 = +1, y2 = +1, z1 = −1)µt−1
x3→f13(x3 = +1)µt−1

y2→f13(y2 = +1)+

f13(x3 = +1, y2 = −1, z1 = −1)µt−1
x3→f13(x3 = +1)µt−1

y2→f13(y2 = −1)+

f13(x3 = −1, y2 = +1, z1 = −1)µt−1
x3→f13(x3 = −1)µt−1

y2→f13(y2 = +1)+

f13(x3 = −1, y2 = −1, z1 = −1)µt−1
x3→f13(x3 = −1)µt−1

y2→f13(y2 = −1)

µtf13→z1(z1 = +1) =

f13(x3 = +1, y2 = +1, z1 = +1)µt−1
x3→f13(x3 = +1)µt−1

y2→f13(y2 = +1)+

f13(x3 = +1, y2 = −1, z1 = +1)µt−1
x3→f13(x3 = +1)µt−1

y2→f13(y2 = −1)+

f13(x3 = −1, y2 = +1, z1 = +1)µt−1
x3→f13(x3 = −1)µt−1

y2→f13(y2 = +1)+

f13(x3 = −1, y2 = −1, z1 = +1)µt−1
x3→f13(x3 = −1)µt−1

y2→f13(y2 = −1)

The binary message sent is the message from factor f13 to variable z1. It
is important to note that before we sent it we have to normalize it.

Variable to factor message:

µtz1→f13(z1) = µt−1
f22→z1(z1)µt−1

f31→z1(z1)

As it was mentioned before, the message passing continues until the stop-
ping condition. The stopping condition that was used in this work was a
heuristic one where the algorithm compares the messages it sent on the t− 1
iteration with the messages it sent on the t iteration and if they did not
change more than a threshold it terminates.

If the threshold is a large number, that means that the tolerance for
terminating the algorithm is large which means that it will do less iterations
with the trade-off being slightly higher bit error rate. On the other hand
if the threshold is a small number that means that the algorithm will have
smaller bit error rate with the trade-off being more iterations.



Chapter 3

Channel Estimation

The system models in 1.3 assumes CSI knowledge, thus for completeness sake
it is important to estimate the channels of each user.

In this chapter, it is assumed that each user sends a preamble with his
data packet that is known at the access point. In 1.3, it is also assumed
that the time delay of the 2nd user compared to the 1st user is known on
the access point. Thus with the knowledge of these two things, the LMMSE
estimator is applied on the problem so that the channel can be estimated.

3.1 LMMSE estimator

The LMMSE estimator definition and the Bayesian Gauss Markov Theorem
that are described, are based on [5].

It is assumed that there is a parameter ~θ that needs to be estimated based
on the data set {q[0], q[1], ..., q[N−1]} or in vector form ~q = [q[0] q[1] ... q[N−
1]]T . The unknown parameter is modelled as the realization of a random

variable. There is no need for knowledge of the joint PDF p(~q, ~θ), however

it is necessary to know the first two moments. ~θ can be estimated from ~q
due to the assumed statistical dependence of ~θ on ~q as summarized by the
joint PDF p(~q, ~θ) and in particular, for a linear estimator we rely on the

correlation between ~θ and ~q. The class of all linear estimators are considered
to have the following form:

~̂θ =
N−1∑
n=0

anq[n] + bN (3.1)

and the choice of the weighting coefficients an’s so that the Bayesian MSE
gets minimized are:

Bmse(~̂θ) = E[(~θ − ~̂θ)2] (3.2)

where the expectation is with respect to the PDF p(~q, ~θ) . The estimator
that was described above is the linear minimum mean square error
(LMMSE) estimator.
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Bayesian Gauss-Markov Theorem If the data are described by the Bayesian
linear model form

q = Aθ + w (3.3)

where ~q is an N × 1 data vector, A is a known N × p observation matrix, ~θ
is a p× 1 random vector of parameters whose realization is to be estimated
and has mean E(~θ) and covariance matrix Cθθ, and w is an N × 1 random

vector with zero mean and covariance matrix Cw and is uncorrelated with ~θ,
then the LMMSE estimator of ~theta is:

θ̂ = E(~θ) + (C−1
θθ + ATC−1

wwA)−1ATC−1
w (q − AE(~θ)) (3.4)

3.2 LMMSE application

Figure 3.1: Application of Bayesian Markov Theorem on the preamble of the
2-User system model for channel estimation

In this part, the Bayesian Gauss Markov Theorem is applied on the problem
that was mentioned in 1.3.1. Considering that the access point knows the
preamble and the time delay as it was mentioned before, by applying the
Bayesian Gauss Markov Theorem on the preamble of the 2 users, their chan-
nels can be estimated as it is shown in 3.1. It is worth noting that Bayesian
Gauss Markov Theorem generally works for the real case, and the reason
that it can be applied here is that As in the example of 3.1, the access point
receives the linear equations for the 5 first slots:

~u = ~xh1 + ~v (3.5)

which are the same as the 3.3, so we can apply the Bayesian Gauss Markov
Theorem. x are the known preamble bits, h1 is the channel that needs to be
estimated and v is the noise. So according to the 3.4
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ĥ1 = E(h1) + (C−1
h1h1

+ xTC−1
vv x)−1xTC−1

v (u− xE(h1)) (3.6)

• E[h1] = 0 because Rayleigh Fading was assumed

• C−1
h1h1

= var(h1) = 1

• C−1
vv = E[wwH ] = σ2I where I is the identity matrix and sigma squared

is the variance of the noise

so for the example that is mentioned in 3.1 the channel estimate is the fol-
lowing:

ĥ1 = (1 + [1 1 1 1 1]Tσ2I[1 1 1 1 1])[1 1 1 1 1]Tσ2Iu (3.7)

ĥ1 = (1 + [1 1 1 1 1]Tσ2I[1 1 1 1 1])[1 1 1 1 1]Tσ2Iu (3.8)

where sigma squared is the variance of the noise. After the 1st channel
h1 gets estimated, its estimate is placed on the equation for the 5 next slots:

~u = ~xh1 + ~xh2 + ~v (3.9)

and by replacing the xh1 which is now known:

~u− ~xh1 = ~xh2 + ~v (3.10)

so by setting ~u−~xh1 = ~u′ the above equation becomes like the one mentioned
in 3.5. So by solving that equation with the exact same way we get an
estimate for the channel h2. It is worth noting that Bayesian Gauss Markov
Theorem generally works for the real case, and the reason that it can be
applied here is that the modulation that was used was BPSK so Cθθ = real
and Cww = σ2I = real. Thus Bayesian Gauss Markov Theorem can be
applied.

That concludes the chapter of channel estimation and in the section 4
there are plots that show the estimation error of the method that is being
used.



Chapter 4

Numerical Results

In this chapter, plots are provided for everything that was presented in this
work. To start with, there are plots for the Channel Estimation that showcase
the performance of the LMMSE over SNR. To continue with, there are plots
that compare the performance of 3 Users to the performance of the 2 Users
over packet length=100 Bits. Lastly there are plots that show the general
performance of the algorithm of this work in different SNR’s over different
packet lengths.

4.1 Channel Estimation Plot

In this section, plots are presented based on the example mentioned in 3.1.

5 10 15 20 25 30

SNR(dB)

10-4

10-3

10-2

10-1

100

M
S

E

LMMSE estimator for 2-user channel estimation

MSE for the 1st user
MSE for the 2nd user

Figure 4.1: Performance of the LMMSE estimator on the system model of
this work for N=2,3 users
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The average MSE for the channel estimation of the 2nd user is higher
than the one of the 1st due to the fact that the 2nd user’s channel estimation
considers in its calculation the 1st user’s estimation.

4.2 BER/SNR plots for N=2 and N=3 users
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R

 

 
BER when N=2 users
BER when N=3 users

Figure 4.2: Comparison between the 2-user and the 3-user system models
where packet length is B=100 bits

In this section, there is a comparison between the 2-user and the 3 user
system models considering a fixed packet length of B=100 bits where the
results point that the 3-user system model has a much smaller BER. The
3-user model seems to have about a 4 dB gain.
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4.3 BER/Packet length plots for N=2 and

N=3 users
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Figure 4.3: 2-User BER/Packet length plots over 5dB SNR
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Figure 4.4: 2-User BER/Packet length plots over 8dB SNR
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Figure 4.5: 3-User BER/Packet length plots over 5dB SNR

10 20 30 40 50 60 70 80 90 100

4

4.2

4.4
x 10

−4 3−User BER/Packet length when SNR=8

Packet length(bits)

B
E

R

Figure 4.6: 3-User BER/Packet length plots over 8dB SNR

In these plots, it is shown that as the length of the packets grow the per-
formance of the algorithm improves. That is due to the fact that the factor
graph becomes more and more tree-like as the length of the packet grows and
as it is known the sum-product algorithm is optimal for trees. This matches
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well with the results of [3] reference where they prove that as the length of
the packets grow their algorithm becomes more optimal.



Chapter 5

Conclusion and future work

5.1 Conclusion

This work showcased state-of-the-art probabilistic graphical model and in-
ference algorithm knowledge that can exploit the symbol level asynchrony
in multi-user wireless communications.With many steps of implementation
consisting of: Crafting a PGM, initializing its factor graph and providing
message passing equations on it, this work proves that performance is sen-
sitive to initialization and that a trade-off exists between convergence time
and BER.

5.2 Future Work

In this work, there were assumptions that were not veritable such as the
symbol-level asynchrony, the knowledge of the time delays in the access point
and the bit durations that were considered equal at all times. An idea for the
future would be, how would a system model that transcends these assump-
tions perform compared to the performance of the system model that was
presented in this work. Also another idea for future work would be, channel
estimation with the use of the data collected by the AP using an inference
clustering algorithm such as affinity propagation. Lastly another idea would
be to do joint CSI estimation instead of the sequential that was done in this
work.
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Chapter 6

Appendix

6.1 Factor Node Design Proof for N=2,3

Users

In this section the proof for the factor node design is provided for N=2 and
N=3 users.

6.1.1 2-User Case Factor Node Design

Considering that c is the transmission round (as it was mentioned before
2-users means 2 transmissions), k is the kth slot of the transmission round,
xi is the ith transmitted symbol of the 1st user and yj is the jth transmitted
symbol of the 2nd user the factor node equation is the following:

fck(xi, yj) = Pr(xi, yj|h(c)
1 , h

(c)
2 , uck) (6.1)

Bayes theorem notes that the following is true:

Pr(A|B,C) =
Pr(A,C|B)

Pr(C|B)
=
Pr(C|A,B)Pr(A|B)∑

A

Pr(A,C|B)
(6.2)

Setting A=xi, yj B=h
(c)
1 , h

(c)
2 and C=uck, and combining them with the afore-

mentioned equations we get the following proof:
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Proof.

fck(xi, yj) = Pr(xi, yj|h(c)
1 , h

(c)
2 , uck) =

Pr(xi, yj, uck|h(c)
1 , h

(c)
2 )

Pr(uck|h(c)
1 , h

(c)
2 )

=

Pr(uck|h(c)
1 , h

(c)
2 , xi, yj)Pr(xi, yj|h(c)

1 , h
(c)
2 )∑

xi

∑
yj

Pr(uck|h(c)
1 , h

(c)
2 , xi, yj)Pr(xi)Pr(yj)

=

Pr(uck|h(c)
1 , h

(c)
2 , xi, yj)Pr(xi)Pr(yj)∑

xi

∑
yj

Pr(uck|h(c)
1 , h

(c)
2 , xi, yj)Pr(xi)Pr(yj)

=

Pr(uck|h(c)
1 , h

(c)
2 , xi, yj)∑

xi

∑
yj

Pr(uck|h(c)
1 , h

(c)
2 , xi, yj)

=
CN (uck, xih

(c)
1 + yjh

(c)
2 , σ2)∑

xi

∑
yj

CN (uck, xih
(c)
1 + yjh

(c)
2 , σ2)

Because ūck is known in the AP, the factor node fck can be designed based
on the above proof with the following equations:

fck(xi = +1, yj = +1) =
CN (uck, h

(c)
1 + h

(c)
2 , σ2)

total

fck(xi = +1, yj = −1) =
CN (uck, h

(c)
1 − h

(c)
2 , σ2)

total

fck(xi = −1, yj = +1) =
CN (uck,−h(c)

1 + h
(c)
2 , σ2)

total

fck(xi = −1, yj = −1) =
CN (uck,−h(c)

1 − h
(c)
2 , σ2)

total

where CN (uck, h
(c)
1 +h

(c)
2 , σ2) stands for a complex normal probability density

function with mean h
(c)
1 + h

(c)
2 (or any of the other 4 combinations), variance

σ2 evaluated at the observed value uck. Total is equal to the sum of all the
possible factor node combinations.
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6.1.2 3-User Case Factor Node Design

Considering that c is the transmission round(as it was mentioned before 2-
users means 2 transmissions), k is the kth slot of the transmission round, xi
is the ith transmitted symbol of the 1st user, yj is the jth transmitted symbol
of the 2nd user and zv is the vth transmitted symbol of the 3d user the factor
node equation is the following:

fck(xi, yj, zv) = Pr(xi, yj, zv|h(c)
1 , h

(c)
2 , h

(c)
3 , uck) (6.3)

Bayes theorem notes that the following is true:

Pr(A|B,C) =
Pr(A,C|B)

Pr(C|B)
=
Pr(C|A,B)Pr(A|B)∑

A

Pr(A,C|B)
(6.4)

Setting A=xi, yj, zv B=h
(c)
1 , h

(c)
2 , h

(c)
3 and C=uck ,and combining them with

the aforementioned equations we get the following proof:

Proof.

fck(xi, yj, zv) = Pr(xi, yj, zv|h(c)
1 , h

(c)
2 , h

(c)
3 , ūck) =

Pr(xi, yj, zv, uck|h(c)
1 , h

(c)
2 , h

(c)
3 )

Pr(uck|h(c)
1 , h

(c)
2 , h

(c)
3 )

=

Pr(uck|h(c)
1 , h

(c)
2 , h

(c)
3 , xi, yj, zv)Pr(xi, yj, zv|h(c)

1 , h
(c)
2 , h

(c)
3 )∑

xi

∑
yj

∑
zv

Pr(uck|h(c)
1 , h

(c)
2 , h

(c)
3 , xi, yj, zv)Pr(xi)Pr(yj)Pr(zv)

=

Pr(uck|h(c)
1 , h

(c)
2 , h

(c)
3 , xi, yj, zv)Pr(xi)Pr(yj)Pr(zv)∑

xi

∑
yj

∑
zv

Pr(uck|h(c)
1 , h

(c)
2 , h

(c)
3 , xi, yj, zv)Pr(xi)Pr(yj)Pr(zv)

=

Pr(uck|h(c)
1 , h

(c)
2 , h

(c)
3 xi, yj, zv)∑

xi

∑
yj

∑
zv

Pr(uck|h(c)
1 , h

(c)
2 , h

(c)
3 , xi, yj, zv)

=
CN (uck, xih

(c)
1 + yjh

(c)
2 + zvh

(c)
3 , σ2)∑

xi

∑
yj

∑
zv

CN (uck, xih
(c)
1 + yjh

(c)
2 + zvh

(c)
3 , σ2)

Because uck is known in the AP, the factor node fck can be designed based
on the above proof with the following equations:
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fck(xi = +1, yj = +1, zv = +1) =
CN (uck, h

(c)
1 + h

(c)
2 + h

(c)
3 , σ2)

total

fck(xi = +1, yj = +1, zv = −1) =
CN (uck, h

(c)
1 + h

(c)
2 − h

(c)
3 , σ2)

total

fck(xi = +1, yj = −1, zv = +1) =
CN (uck, h

(c)
1 − h

(c)
2 + h

(c)
3 , σ2)

total

fck(xi = +1, yj = −1, zv = −1) =
CN (uck, h

(c)
1 − h

(c)
2 − h

(c)
3 , σ2)

total

fck(xi = −1, yj = +1, zv = +1) =
CN (uck,−h(c)

1 + h
(c)
2 + h

(c)
3 , σ2)

total

fck(xi = −1, yj = +1, zv = −1) =
CN (uck,−h(c)

1 + h
(c)
2 − h

(c)
3 , σ2)

total

fck(xi = −1, yj = −1, zv = +1) =
CN (uck,−h(c)

1 − h
(c)
2 + h

(c)
3 , σ2)

total

fck(xi = −1, yj = −1, zv = −1) =
CN (uck,−h(c)

1 − h
(c)
2 − h

(c)
3 , σ2)

total

where CN (uck, h
(c)
1 + h

(c)
2 + h

(c)
3 , σ2) stands for a complex normal prob-

ability density function with mean h
(c)
1 + h

(c)
2 + h

(c)
3 (or any of the other 8

combinations), variance σ2 evaluated at the observed value uck. Total is
equal to the sum of all the possible factor node combinations.
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