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Abstract

Data is continuously being generated from sources such as machines, network

traffic, sensor networks, etc. Timely and accurate detection of outliers in mas-

sive data streams has important applications such as in preventing machine

failures, intrusion detection, and financial fraud detection. In this thesis,

we implement an outlier detection algorithm [1] inside the Spark Streaming

environment that, makes only one pass over the data while utilizing limited

storage. We chose the Spark Streaming environment because it offers scal-

able, high-throughput, fault-tolerant stream processing of live data streams.

The algorithm adapts ideas from matrix sketching to maintain a set of few

orthogonal vectors that form a good approximate basis for all the observed

data. Using this constructed orthogonal basis, outliers in new incoming data

are detected based on a simple reconstruction error test. Additionally, we

have implemented two methods for updating the orthogonal vectors one de-

terministic and one randomized to further speedup the algorithm with a small

cost to accuracy.



Acknowledgements

First of all I would like to thank my supervisor Prof. Antonios Deligiannakis

for his guidance throughout this work.

The members of the committee for giving their time to evaluate this work.

And especially my friends and family for their support.



4

Table of Contents

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Data Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Apache Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 The Spark Framework . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Spark Core . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Spark Streaming . . . . . . . . . . . . . . . . . . . . . 13

2.2 Cluster Architecture . . . . . . . . . . . . . . . . . . . . . . . 15

3 Outlier Detection in Data Streams Using Randomized Ma-

trix Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Streaming Outlier Detection . . . . . . . . . . . . . . 19

3.2 AnomDetect . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Concept Drift . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Updating the left-singular vectors . . . . . . . . . . . . . . . . 23

3.3.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 Randomised Matrix Sketching . . . . . . . . . . . . . 24

3.3.3 Performance comparison . . . . . . . . . . . . . . . . . 28

4 Spark Streaming Solution . . . . . . . . . . . . . . . . . . . . . 30

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



Table of Contents 5

4.2 Anomaly Detection Model . . . . . . . . . . . . . . . . . . . . 31

4.3 Actions and Transformations . . . . . . . . . . . . . . . . . . 33

4.3.1 Spark Streaming AnomDetect . . . . . . . . . . . . . . 33

4.3.2 Spark Streaming Singular Vector Update . . . . . . . 34

4.3.3 Spark Streaming Batch interval and Concurrent Jobs . 36

4.4 Small Files Problem in HDFS . . . . . . . . . . . . . . . . . . 37

5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 ROC Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4.1 Increasing Batch Size . . . . . . . . . . . . . . . . . . 44

5.4.2 Stability in continuous workload . . . . . . . . . . . . 45

5.4.3 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



6

List of Figures

2.1 Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Spark Streaming . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Discretized Streams . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Cluster Overview . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Cluster Node Architecture . . . . . . . . . . . . . . . . . . . . 16

4.1 Technologies used in this work . . . . . . . . . . . . . . . . . . 30

4.2 Spark Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Actions and Transformations Flowchart . . . . . . . . . . . . . 36

5.1 ROC curves of RandUpdate and DetUpdate for the Cod-RNA

Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 ROC curves of RandUpdate and DetUpdate for the Protein-

homology Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 AnomDetect with DetUpdate Runtime as depicted in the spark

cluster for the Cod-RNA Dataset . . . . . . . . . . . . . . . . 43

5.4 AnomDetect with RandUpdate Runtime as depicted in the

spark cluster the Cod-RNA Dataset . . . . . . . . . . . . . . . 43

5.5 Increasing Batch Size Runtime Cod-RNA dataset 2 worker nodes 44

5.6 The last 17 minutes as depicted in the Spark Cluster . . . . . 45

5.7 Performance increase due to increase in the Spark executors . 46



7

Chapter 1

Introduction

1.1 Outlier Detection

In the past decade we faced a major influx in data being generated by var-

ious sources such as network traffic, the Internet of things, social media,

sensor networks and so on. Consequently, the need to detect data points

that represent an anomaly is of paramount importance, especially in crit-

ical applications like intrusion detection, fraud detection, machine failure

prevention and many others. However, if the detection of those anomalies is

not made in a real time fashion many of those critical applications would fail.

There are three major categories of outliers :

• Point: A single instance of data is anomalous if it’s too far off from the

rest.

• Contextual: The abnormality is context specific.

• Collective: A set of data instances collectively helps in detecting anoma-

lies.

“An outlier is an observation which deviates so much from the other observa-

tions as to arouse suspicions that it was generated by a different mechanism”

- D. M. Hawkins Identification of outliers 1980
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1.2 Data Streams

Data Streams are sequences of data elements made available over time. Those

data are generated continuously by numerous data sources, which typically

send in the data records simultaneously, and in small sizes. The before men-

tioned data could be processed sequentially and incrementally on a record-

by-record basis or over sliding time windows, and used for a wide variety of

analytics.

There are many examples where streaming data processing is useful. A few

of them are projected here as listed in Amazons AWS website :

• Sensors in transportation vehicles, industrial equipment, and farm ma-

chinery send data to a streaming application. The application moni-

tors performance, detects any potential defects in advance, and places

a spare part order automatically preventing equipment down time.

• A financial institution tracks changes in the stock market in real time,

computes value-at-risk, and automatically re-balances portfolios based

on stock price movements.

• A real-estate website tracks a subset of data from consumers mobile

devices and makes real-time property recommendations of properties

to visit based on their geo-location.

• A media publisher streams billions of clickstream records from its on-

line properties, aggregates and enriches the data with demographic

information about users, and optimizes content placement on its site,

delivering relevancy and better experience to its audience.

• An online gaming company collects streaming data about player-game

interactions, and feeds the data into its gaming platform. It then an-

alyzes the data in real-time, offers incentives and dynamic experiences

to engage its players.
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An other very popular solution for big data analytics is Batch processing.

Batch processing can be used to compute arbitrary queries over different sets

of data. It usually computes results that are derived from all the data it

encompasses, and enables deep analysis of big data sets. On the contrary,

stream processing requires ingesting a sequence of data, and incrementally

updating metrics, reports, and summary statistics in response to each arriv-

ing data record. It is better suited for real-time monitoring and response

functions. Moreover, its fair to state that stream processing requires latency

in the order of milliseconds in order to achieve near real-time performance,

which in some cases could be proven a difficult task.

Furthermore, some challenges arise by working with Streaming Data. The

processing requires two layers: a storage layer and a processing layer. The

storage layer needs to support record ordering and strong consistency to

enable fast, inexpensive, and re-playable reads and writes of large streams

of data. The processing layer is responsible for consuming data from the

storage layer, running computations on that data, and then notifying the

storage layer to delete data that is no longer needed. The user also has to

plan for scalability, data durability, and fault tolerance in both the storage

and processing layers.
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Chapter 2

Apache Spark

2.1 The Spark Framework

Apache Spark [4] alongside with Hadoop and Storm is one of the most popular

frameworks for large scale data prosessing. The concept was firstly conceived

at UC Berkeley’s AMPLab in 2009, then it was donated to the Apache Soft-

ware Foundation and became a Top Level Apache project in February 2014.

In addition, Spark powers a stack of libraries including SQL and DataFrames,

MLlib for machine learning, GraphX, and Spark Streaming. Giving the pro-

grammer tools in order to solve various problems from different scientific

areas. Furthermore, it is proven that Spark is at least 10 times faster than

Hadoop MapReduce. Spark achieves it by utilizing its advanced DAG exe-

cution engine that supports acyclic data flow and in-memory computing.

Figure 2.1: Spark
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2.1.1 Spark Core

Spark Core [4] is the base of the whole project. It provides distributed task

dispatching, scheduling, and basic I/O functionalities. Spark uses a spe-

cialized fundamental data structure known as Resilient Distributed Datasets

(RDD) that is a logical collection of data partitioned across machines. RDDs

can be created in two ways: one is by referencing datasets in external stor-

age systems and second, is by applying transformations on existing RDDs.

At high level, when any action is called on the RDD, Spark creates a Di-

rected Acyclic Graph (DAG) and submits it to the DAG scheduler. The

DAG scheduler divides operators into stages of tasks. A stage is comprised

of tasks based on partitions of the input data. The DAG scheduler pipelines

operators together. The final result of a DAG scheduler is a set of stages. At

high level, there are two transformations that can be applied onto the RDDs,

namely narrow transformation and wide transformation. Wide transforma-

tions basically result in stage boundaries. Narrow transformations do not

require the data to be shuffled across the partitions. In addition, they will

be grouped (pipelined) together into a single stage. The DAG scheduler

will then submit the stages into the task scheduler. The number of tasks

submitted depends on the number of partitions. On the contrary wide trans-

formation requires the data to be shuffled. An other feature that Spark

utilizes, is lazy evaluation, which in Spark means that the execution will not

start until an action is triggered. In Spark, the picture of lazy evaluation

comes when Spark transformations occur. Transformations are lazy in na-

ture, which means that, when we call some operation on an RDD, it does not

execute immediately. Spark maintains the record of which operation is being

called through the DAG. We can think Sparks RDD as the data, that we

built up through transformations. Since transformations are lazy in nature,

we can execute an operation at any time by calling an action on an RDD. In

Spark, driver program loads the code to the cluster. When the code executes

after every operation, the task will be time and memory consuming, since

each time data goes to the cluster for evaluation.
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There are some benefits of Lazy evaluation in Apache Spark:

• Increases Manageability: By lazy evaluation, users can organize their

Apache Spark program into smaller operations. It reduces the number

of passes on data by grouping operations.

• Saves Computation and increases Speed: Spark Lazy Evaluation plays

a key role in saving calculation overhead. Since only necessary values

get compute. It saves the trip between driver and cluster, thus speeds

up the process.

• Reduces Complexities: The two main complexities of any operation

are time and space complexity. Apache Sparks lazy evaluation can

overcome both. Since it does not execute every operation as a result,

time gets saved. The action is triggered only when the data is required

so, it reduces overhead.

• Optimization: It provides optimization by reducing the number of

queries.

One of the most important capabilities in Spark is persisting (or caching) a

dataset in memory across operations. When an RDD is persisted, each node

stores any partitions of it that it computes in memory and reuses them in

other actions on that dataset or datasets derived from it. This allows future

actions to be much faster. Caching is a key tool for iterative algorithms and

fast interactive use. Sparks cache is fault-tolerant if any partition of an RDD

is lost, it will automatically be recomputed using the transformations that

originally created it. In addition, each persisted RDD can be stored using a

different storage level.
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2.1.2 Spark Streaming

Spark Streaming [5] is one of the primary libraries of Spark, it leverages

Spark Core’s fast scheduling capability to perform streaming analytics. It

works by ingesting data in batches and performing RDD transformations on

those batches of data. This design enables the same set of application code

written for batch analytics to be used in streaming analytics. However, this

convenience comes with the penalty of latency equal to the batch duration.

The use of batches makes Spark Streaming unique, the reason being, that the

other streaming frameworks use event by event processing. Spark Streaming

can consume data from various sources like HDFS, Kafka, Flume, Twitter,

ZeroMQ, Kinesis, TCP/IP sockets, it even has an API that allows construc-

tion of custom sources and with that it a versatile solution.

Figure 2.2: Spark Streaming

Discretized Stream or DStream is the basic abstraction provided by Spark

Streaming. It represents a continuous stream of data, either the input data

stream received from source, or the processed data stream generated by trans-

forming the input stream.
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Internally, a DStream is represented by a continuous series of RDDs. Any

operation applied on a DStream translates to operations on the underlying

RDDs. The RDD transformations are computed by the Spark engine.

Figure 2.3: Discretized Streams
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2.2 Cluster Architecture

Spark applications run as independent sets of processes on a cluster [6], co-

ordinated by the SparkContext object in the main program (Driver). Specif-

ically, to run on a cluster, the SparkContext can connect to several types

of cluster managers, which allocate resources across applications. Once con-

nected, Spark acquires executors on nodes in the cluster (Slaves), which are

processes that run computations and store data for your application. Next,

it sends your application code to the executors. Finally, SparkContext sends

tasks to the executors to run. Each application gets its own executor pro-

cesses, which stay up for the duration of the whole application and run tasks

in multiple threads. This has the benefit of isolating applications from each

other, on both the scheduling side and executor side. However, it also means

that data cannot be shared across different Spark applications without writ-

ing it to an external storage system. Spark is agnostic to the underlying

cluster manager. As long as it can acquire executor processes, and these

communicate with each other, it is relatively easy to run it even on a cluster

manager that also supports other applications. The driver program must

listen for and accept incoming connections from its executors throughout its

lifetime. As such, the driver program must be network addressable from the

worker nodes. Moreover, as we explained in 2.1.1 the final result of a DAG

scheduler is a set of stages. Those Stages are passed on to the Task Scheduler

to be launched via the cluster manager. The task scheduler doesn’t know

about dependencies of the stages. Furthermore the tasks are executed on the

Slaves.
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Figure 2.4: Cluster Overview

Figure 2.5: Cluster Node Architecture
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Chapter 3

Outlier Detection in Data

Streams Using Randomized

Matrix Sketching

3.1 Problem Formulation

In their work Hao Huang and Shiva Kasiviswanathan [1] create two stream-

ing anomaly detection approaches. These approaches are based in subspace-

based anomaly detection, operate by first constructing a low-rank matrix

approximation of the input and then the projection of a new data point onto

this low-rank matrix is used for deciding whether the point is anomalous or

not. This general idea can be utilized to construct a simple anomaly detec-

tion framework in a streaming fashion. At time t,let us assume that there is

a low-rank matrix U that can linearly represent well all the identified non-

anomalous datapoints till time t−1. For a new data point y arriving at time

t, if there does not exist a good representation of y using U , then y does

not lie close to the space of non-anomalous data points, and y could be an

anomaly. After identifying the non-anomalous points, the low-rank matrix

is updated to capture the insights from these non-anomalous points.

In their paper, they use streaming matrix sketching, to efficiently store and

update a low-rank matrix (with orthogonal columns) that can linearly rep-

resent well over time the identified non-anomalous data points. For matrix

sketching, they build upon and improve an idea proposed by Liberty [7] (Fre-

quent Directions). But, since in the current problem setting more than one

point could arrive at each timestep, they extend Frequent Directions to effi-

ciently deal with this scenario with a speedup over Frequent Directions that
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is almost linear to the number of data points handled at each timestep. In

addition, a second approach further improves this computational efficiency

by combining sketching with ideas from the theory of randomized low-rank

matrix approximations. The computational efficiency gains of the random-

ized approach over the deterministic approach come at a cost of a small loss

in the sketching performance.

Moreover, theoretical analysis of both approaches to show that, under some

reasonable assumptions, they attain almost the same performance as a global

approach that uses the entire data history at every timestep. The latter

requires repeated and costly singular value decompositions over an ever in-

creasing sized data matrix, while the proposed algorithms operate in a true

streaming setting utilizing limited storage. These results are obtained by

generalizing the analysis of Frequent Directions from [7–9] and by carefully

combining it with recent spectral results in matrix perturbation and random-

ized low-rank matrix approximation theories.

The proposed anomaly detection algorithms have the following features:

• Identifying anomalies in close to real time, ensuring that the detection

keeps up with the rate of data collection.

• Require only one pass for each data point.

• Are space-efficient and require only a small amount of bookkeeping

space.

• Operate in an unsupervised setting, but regular model updates allow

them to still easily adapt to unseen normal patterns in the data.

Additionally, their algorithms are significantly more time and space efficient,

compared to other popular scalable anomaly detection algorithms.
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3.1.1 Streaming Outlier Detection

It is assumed that the data arrives in batches in a streaming fashion. Each

data point has a time stamp that indicates when it arrives.

Let
{
Yt ∈ <m×nt , t = 1, 2, . . .

}
denote a sequence of streaming data ma-

trices, where Yt represents the data points arriving at time t. Here m is the

size of the feature space, and nt ≥ 1 is the number of data points arriving at

time t. Yt is normalized such that each column has a unit L2-norm. Under

this setup, the goal of streaming anomaly detection is to identify anomalous

data points in Yt at every time t.

The algorithm is based on maintaining a low-rank matrix with orthogonal

columns, at every time t, that can linearly reconstruct well the entire prior

(till time t− 1) non-anomalous datapoints that the algorithm has identified.

In other words, it identifies a small set of (orthogonal) basis vectors that

can represent well all the prior non-anomalous data points. At time t, a

new point yi ∈ Yt is marked as anomalous if it cannot be reconstructed well

linearly using these basis vectors.

Let N[t−1] = [N1, . . . , Nt−1] be the set of all datapoints (columns) in

Y[t−1] = [Y1, . . . , Yt−1] that the algorithm has identified as non-anomalous,

with Ni denoting the set of datapoints in Yi identified as non-anomalous.

Consider the rank-k approximation of N[t−1].

N[t−1]k = SVDk(N[t−1]) = U(t−1)k ΣU(t−1)k
V T
U(t−1)k

First observation, is that U(t−1)k is a good rank-k matrix to linearly rep-

resent all the points in N[t−1]. This follows from the observation that by

setting X = ΣU(t−1)k
V T
U(t−1)k∑

yi∈N[t−1]

min
xj

‖yj − U(t−1)kxj‖2 = min
X
‖N[t−1] − U(t−1)kX‖

2

F
≤ ‖N[t−1] −N[t−1]k‖

2

F



3.1. Problem Formulation 20

In many practical scenarios, most of the mass from N[t−1] would be in its top

k singular values, resulting in ‖N[t−1] −N[t−1]k‖F being small.

We can now use U(t−1)k to detect anomalies in Yt by following a simple ap-

proach. Since U(t−1)k is a good basis to linearly reconstruct all the observed

non-anomalous points in Y[t−1], we can use it to test whether a point yi ∈ Yt
is close to space of non-anomalous points or not. This can be easily achieved

by solving the following simple least-squares problem:

min
x
‖yi − U(t−1)kx‖

As the columns of U(t−1)k are orthogonal to each other, this least-squares

problem has a simple closed-form solution

x∗ = (UT
(t−1)k

U(t−1)k)
−1
UT
(t−1)k

yi

=⇒ x∗ = UT
(t−1)k

yi

The objective value of x∗ is used as the anomaly score to decide if yi is

anomalous or not, with larger objective value denoting anomalies. In other

words, the anomaly score for yi is :

‖(Im − U(t−1)kU
T
(t−1)k

)yi‖ (3.1)

Note that this anomaly score is exactly the length of the orthogonal projec-

tion of yi onto the orthogonal complement U(t−1)k.
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3.2 AnomDetect

Algorithm 1 AnomDetect (algorithm for detecting anomalies at time t)

Input: Yt ∈ <m×nt , U(t−1)k ∈ <m×k, ζ ∈ <

1: Nt ← [], N̄ t ← []
2: for ∀ yi ∈ Yt do
3: ai ← ‖(Im − U(t−1)kU

T
(t−1)k

yi‖
4: if ai ≤ ζ then
5: Nt ← [Nt,yi]
6: end if
7: if ai > ζ then
8: N̄t ← [N̄t,yi]
9: end if
10: end for
11: Utk ← Update(Nt)
12: return : Nt, N̄t, Utk

In Algorithm AnomDetect, a simple prototype procedure for anomaly

detection is presented based on maintaining the top-k left singular vectors

of the streaming data. Since we have normalized all input points (yi’s) to

have unit L2-length, the objective values (ai’s) for all points are in the same

scale. The Algorithm AnomDetect alternates between an anomaly detection

and singular vector updating step. In the anomaly detection step, the past

basis matrix is used to detect anomalies among the new incoming points by

thresholding on the objective value of the least-squares problem 3.1. Nt is

set of non-anomalous points in Yt identified by the algorithm at time t.

The main challenge is in updating the singular vectors. To start off, an in-

efficient (baseline) approach based on global SVD updates is presented, and

then ideas from matrix sketching and randomized low-rank matrix approxi-

mations are used to speedup the updating without any significant loss in the

detection quality.

At the beginning of the algorithm (when t = 1), in order to initialize Utk ,

a small training set of non-anomalous data is needed to construct N1. Al-

ternatively, if obtaining the said training set is not possible, a small set of
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data could be collected and then any good unsupervised anomaly detection

scheme could be applied to label the data. Consequently, N1 would be con-

structed through it. Since this occurs only in the initialization process, it

does not heavily influence the algorithm.

The Threshold (ζ) is chosen based on the distribution of the anomaly scores

or if instead it is assumed that the percentage of anomalies among all samples

is known a priori (p%). At each timestep of the streaming process, the top

p% data-points are marked as anomalies based on their anomaly score.

3.2.1 Concept Drift

An important feature of many real-world data streams, is concept drift, which

means that the characteristics of the data can change over time. Algorithms

for handling concept drift need to employ regular model updates as new data

arrives. In the above algorithm, concept-drift is well captured, as the under-

lying model is updated at each time t with all the identified non-anomalous

points till time t− 1.
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3.3 Updating the left-singular vectors

3.3.1 Baseline

The simplest way of correctly updating the singular vectors is to simply re-

generate them from the globally collected sample set N[t] = [N[t−1], Nt].

A more mature approach for incrementally and correctly generating the sin-

gular vectors of a matrix(with addition of new columns) is based on the

following lemma from [10] is outlined in Algorithm GlobalUpdate.

R = [P,Q],

SV D(P ) = UPΣPV
T
P ,

F = [ΣP , U
T
PQ],

SV D(F ) = UFΣFV
T
F

UR = UPUF ,

ΣR = ΣF ,

Algorithm 2 GlobalUpdate (global update of the left singular vectors at
time t)

Input: Ut−1, Σt−1 and Nt ∈ <m×nt

1: F ← [Σt−1, U
T
t−1Nt]

2: UFΣFV
T
F ← SV D(F )

3: Ut ← Ut−1UF

4: Σt ← ΣF

5: Utk ← [u1, . . . ,uk]
6: return : Ut, Σt, Utk

At time t, Algorithm GlobalUpdate takes O(mn[t]) space and

O(min(m2n[t],mn
2
[t])) time, where n[t] denotes the number of columns (data

points) in the matrix N[t]. It is obvious, that a significant disadvantage of Al-
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gorithm GlobalUpdate is, that both its computational and memory require-

ment increases with time. This problem is overcomed by using randomized

matrix sketching, by that it is proved that while gaining in computational

efficiency, the sketching approach still produces a good approximation to the

top-k left singular vectors of N[t] at every time t.

3.3.2 Randomised Matrix Sketching

The algorithm for the Matrix Sketching is derived from Liberty’s algorithm

Frequent Directions [7] with Ghashami’s low-rank matrix approximation ex-

tension [11] and some adjustments in order to add all the nt columns simul-

taneously instead of one at a time.

Frequent Directions

The inputs to the algorithm are an input data matrix Z ∈ <m×nt and a

sketch matrix S ∈ <m×l. In each iteration, one column of Z is processed by

the algorithm and the algorithm iteratively updates the matrix S such that

for any unit vector x ∈ <m, ‖ZTx‖2 − ‖STx‖2 ≤ 2‖Z‖2F/l. In other words,

the sketched matrix has the guarantee that for any direction it is close to the

input matrix.

The computation time for this algorithm is dominated by a SVD computa-

tion in each iteration, which gives it a total running time of O(mnl2) with

m ≥ l.

Frequent Directions with low-rank matrix approximation

This algorithm instead of S, it returns Sk, the rank-k approximation of S,

their main result shows that ‖Zk‖2F − ‖Sk‖2F ≤ k/(l − k)‖Z − Zk‖2F .
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Updating Sketch with multiple columns

In contrast to Frequent Directions, where the sketch is updated after ad-

dition of every new column, it is desired that the sketch could be updated

after addition of nt ≥ 1 columns. In the current problem setup, at timestep

t with nt ≥ 1 new columns, using Frequent Directions for sketching would

take O(mnt2) time. However, by an elegant trick of adding all the nt columns

simultaneously and performing a low-rank SVD, the running time is reduced

to O(max {mntl,ml
2}) with m ≥ l, without any loss in the sketching perfor-

mance and resulting in a running time O(min {nt, l}) times better than the

running time O(mnt2) of Frequent Directions.

Deterministic Matrix Sketching Update

These three major ideas form the basis for the first sketching algorithm

DetUpdate.

Algorithm 3 DetUpdate (deterministic streaming update of the left singular
vectors at time t)

Input:Nt ∈ <m×nt , k ≤ l and B[t−1] ∈ <m×l

1: Dt ← [B[t−1], Nt]
2: UtlΣtlV

T
tl
← SV D(Dt)

3: Utk ← [u1, . . . ,uk]

4: Σ
(trunc)
tl

← diag(
√
σ2
t1 − σ2

tl
, . . . ,

√
σ2
tl−1
− σ2

tl
)

5: Bt ← UtlΣ
(trunc)
tl

6: return : Bt and Utk

The overall space complexity of Algorithm DetUpdate is O(mmaxt {nt} +

ml), therefore, the additional space overhead for the algorithm is only O(ml)

(O(mmaxt {nt})) space is needed to just read and store the input matrices).

In Algorithm DetUpdate, the matrix Bt is a sketch of the matrix N[t] =

[N1, . . . , Nt]. Let Btk be the rank-k approximation of Bt .
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In addition it is proven that :

‖N[t]k
‖2
F
− ‖Btk‖

2
F ≤ k/(l − k)‖N[t] −N[t]k

‖2
F

This dictates that, while being computationally more efficient, the sketch

matrices generated by Algorithm DetUpdate have the same guarantees as

that generated by Frequent Directions.

Randomized Matrix Sketching Update

A major improvement in the previous algorithm (DetUpdate) derieved from

the observation that the low-rank SVD (Step 2) can be replaced by a ran-

domized low-rank matrix approximation. This leads to even greater com-

putational savings however, this comes at a cost of slightly higher error in

sketching as compared to DetUpdate. In this algorithm a Randomized low-

rank matrix approximation technique suggested by Halko [11] is adapted,

which is based on combining a randomized pre-processing step (multiply-

ing by a random matrix and QR decomposition) along with a simple post-

processing step (eigenvalue decomposition of a small matrix). The complete

sketching procedure is described in Algorithm RandUpdate.
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Algorithm 4 RandUpdate (randomized streaming update of the left singu-
lar vectors at time t)

Input:Nt ∈ <m×nt , k ≤ l and E[t−1] ∈ <m×l

1: Mt ← [E[t−1], Nt]
2: r ← 100l
3: Generate an m× r random Gaussian matrix Ω
4: Y ←MtM

T
t Ω

5: QR← QR(Y )
6: AtΣtA

T
t ← EIG(QTMtM

T
t Q)

7: Ut ← QAt

8: Utl ← [u1, . . . ,ul]

9: Σ
(trunc)
tl

← diag(
√
σ2
t1 − σ2

tl
, . . . ,

√
σ2
tl−1
− σ2

tl
)

10: Et ← UtlΣ
(trunc)
tl

11: Utk ← [u1, . . . ,uk]
12: return : Et and Utk

At timestep t, Algorithm RandUpdate takes O(lTmult + (m+ nt)l
2) time

with m ≥ l, where Tmult denotes the cost of matrix-vector multiplication

with the input matrix Mt. The matrix-vector multiplication is a well-studied

topic with numerous known efficient sequential/parallel algorithms. Note

that this running time is smaller than that of Algorithm DetUpdate. which

at timestep t takes O(max {mntl,ml
2}) time. The overall space complexity

of Algorithm RandUpdate is O(mmaxt {nt}+mr), therefore, the additional

space overhead for the algorithm is again only O(mr) = O(ml).
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3.3.3 Performance comparison

In their work Hao Huang and Shiva Kasiviswanathan [1] provide proof that

their Algorithms DetUpdate and RandUpdate produces good matrix sketches

at every time t.

Variables:

Ŭtk RandUpdate rank-k singular vectors

Ûtk True rank-k singular vectors

κ σ1(N[t])/σk(N[t]), where σ1(N[t]) ≥ · · · ≥ σm(N[t]) are the singular values of N[t]

L mini 6=j |λi − λj| > 0, where λi be the ith eigenvalue of N[t]N
T
[t]

At first, they compare the anomaly scores generated by using either Ûtk or Ŭtk

in Algorithm AnomDetect. The following theorem shows that under some

reasonable assumptions and settings of parameters, the Algorithm RandUp-

date can be used efficiently for singular value updating in the Algorithm

AnomDetect and still obtain anomaly scores that are close to that obtained

using the true singular vectors (Ûtk).

Let N1, . . . , Nt be a sequence of matrices with N[t] = [N1, . . . , Nt]. Let

N[t]k
= ÛtkΣ̂tk V̂

T
tk

be the best rank-k approximation to N[t] . Then for any

unit vector y ∈ <m, Ŭtk , with probability at least 1− t · 6e−99l , satisfies:

|min
x∈<k
‖y− Ûtkx‖ − ‖y− Ŭtkx‖| ≤

√
2L√

L+ 8κ2‖N[t]‖2 4

√
L2 + 16κ4‖N[t]‖4

The above bound on the difference in anomaly scores is an increasing func-

tion in L.

The same bound satisfies the algorithm DetUpdate. The only difference

being that the error due to randomization is zero because it computes the

exact low-rank matrix at each time step. Therefore, the requirement on l is

slightly weaker.
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In addition, they state that the bounds on l that are presented in their work

should be treated as existential results, as setting these bounds are tricky.

Consequently, they recommend setting l ≈
√
m, which suffices to get good

results for both Algorithms DetUpdate and RandUpdate. But, both can

be used with any l within k ≤ l ≤ m, the above bounds on l are only to

show theoretically that their performances are similar to using global singular

value decomposition updates in Algorithm AnomDetect.
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Chapter 4

Spark Streaming Solution

4.1 Introduction

In this chapter we present our implementation of the above algorithms in

the Apache Spark Streaming framework. We used the Scala programming

language featuring ScalaNLP’s Breeze library for Matrix calculations, de-

compositions and many helpful tools for linear algebraic problems [12]. We

decided to implement our solution with Spark Streaming, reason being that

it allows us to receive and process the data in batches, with low latency and

ease of implementation. We chose to code in Scala [13] instead of Java or

Python because Spark core is programmed in Scala thus, the Scala RDDs are

being processed 2 times faster than the others. We picked Breeze instead of

MLlib because the later as of now (2017) is also based on Breeze, it imposes

some limitations on the Matrix calculations and in addition it does not fully

support some matrix decompositions that we need in this work. Finally,

we use HDFS [14] as the file system for the frameworks input and output

Stream mainly because for the ease of implementation (in some professional

cases Amazon’s S3 is a better option).

Figure 4.1: Technologies used in this work
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4.2 Anomaly Detection Model

It is fair to state that we took notice of how the Spark MLlib’s developers

create a Streaming function from their github repository. Hence, we create

two Discretized Streams (DStreams), one for the training set of data and

another for the actual data that we aim to monitor. In our experiments,

the data are being inserted to HDFS folders and with the Spark API we

monitor those folders. The Spark API detects changes to the said folders

and it streams those changes to the Spark Framework creating the DStream.

At first, from the training data we initialize the Sketches, the singular

vectors, the size of the feature space of the dataset (m), the rank of the ap-

proximated matrix (k = m/5) and the size of the sketch matrix (l =
√
m).

Then, when we have new data in the input stream, AnomDetect is being

called, which creates a score for each data point. The next step is to save the

outliers (higher anomaly score than the current threshold) and the Normal

points. Finally, we update (with one of the three methods) the sketch and

the rank-k singular vectors based on the Normal points of the current time

step.

The above Model is pictured in the next page.
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Figure 4.2: Spark Model
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4.3 Actions and Transformations

4.3.1 Spark Streaming AnomDetect

In this section we present the actions and transformations that happen on

each RDD of the data Stream. The first action in our algorithm is the

forEach function on the input DStream that outputs one RDD for every

batch interval. Then, the next action is the isEmpty that checks if the RDD

has any data in the current interval. The third step, is a transformation on

the RDD which makes each column on the RDD have an L2-norm.

After that, in the AnomDetect transformation we need to broadcast some

variables to the workers so they can do the transformations that we require.

Those variables are the size of the feature space, the (Im − U(t−1)kU
T
(t−1)k

)

from the left singular vector update step and the threshold.

Now, that all is set the score is calculated. The first transformation is zip,

creating a new column (Double) in the initial input RDD[Vector] that is the

score of the respective data point. Inside that transformation we do a map

in order to calculate the said score ‖(Im−U(t−1)kU
T
(t−1)k

)yi‖. In addition, we

cache the result of that transformation in the worker nodes memory because

we are going to used the results in multiple following transformations.

Inside the AnomDetect transformation two methods are offered for the

thresholding. The first one is based on the percentage of outliers that we

expect in every batch. So, we sort the RDD based on the score. Then, we

broadcast the expected NormalPoint count in order to filter the top points

until the expected count as NormalPoints and the rest as outliers. The

second, is the method described in the paper [1] that just filters the dataset

based on a threshold.
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Finally, all those transformations are narrow transformations, which means

that are executed in each worker in a distributed fashion with no need of

communication. Except, the sortBy transformation that is a wide one and

need communication and then shuffling between the workers. Furthermore,

AmonDetect is written in a way to be perceived as a custom RDD trans-

formation, taking an RDD[Vector] as input (current batch) and yielding an

RDD[Vector] as a result (NormalPoints).

4.3.2 Spark Streaming Singular Vector Update

The first single node operation is an action collecting the RDD containing the

NormalPoints into the driver node and map it as Breeze Dense Matrix. We

have implemented all three Update algorithms from [1]. To begin with, the

first algorithm is GlobalUpdate, which is not recommended due to the fact

that it requires increasing amounts of memory overtime. So, if our streaming

algorithm runs for a long amount of time the memory will eventually run

out. As a result, we focus on the two sketch based algorithms that do not

have the above problem (DetUpdate and RandUpdate). Both of them were

a straight forward implementation from the paper, with the only change

being that they return the (Im−U(t)k
UT
(t)k

) instead of just U(t−1)k. We found

out that just sending U(t−1)k and then doing the computations to calculate
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(Im − U(t)k
UT
(t)k

) inside the AnomDetect, costs a lot more than doing them

inside the Update. That is the case because we have all the data we need in

the Update and, also, it is a single node operation, eliminating the complexity

of our computations.

In addition, the preferred way to store data on the HDFS is as single big

files rather than the default Spark choice. Spark writes one file per partition

of the input data, meaning the if we have multiple partitions per timestep

our HDFS memory limit will be exceeded (Small files problem [4.4]). To

counter that we have implemented an action that writes the data as one file.

in order to store the results to the HDFS it is preferred to save the results

as one file to create a local file to the node and then copy it to the HDFS.

Rather than creating an RDD and then using the action saveAsTextFile.

Furthermore, that solves the small files problem in the HDFS because each

partition of an RDD would have been stored in a different file.

In the next page we present a flowchart of the above actions and trans-

formations.
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Figure 4.3: Actions and Transformations Flowchart

4.3.3 Spark Streaming Batch interval and Concurrent

Jobs

The Spark framework needs a batch interval in which it will pull the data

from the streaming sources. It is recommended to pull the data in intervals,

where the time of those intervals is more than the processing time of each

batch. This recommendation is based on the way Spark Streaming works,

each batch process is sent to a queue and if the previous one has not fin-

ished the current one waits. An other solution to that problem, if we do not

want to change the batch interval, is to change a configuration parameter

”spark.streaming.concurrentJobs” (default ”1”) that enables Spark Stream-

ing to process more than one jobs at a time. But, that is not recommended

because if used without care it can lead to some weird situations. In our

implementation we set this parameter to 2 in order to prevent a big batch to

interfere with the real time nature of our implementation.
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4.4 Small Files Problem in HDFS

In the above sections we mentioned the so called small files problem inside

the HDFS. That occurs due to the way HDFS prefers to devour a limited

number of large files rather than a large number of small files. A small file is

one which is significantly smaller than the HDFS block size (default 64MB).

If we are storing lots of small files, the problem is that HDFS can not handle

lots of files. Reason being that every file, directory and block in HDFS is

represented as an object in the namenode’s memory, each of which occupies

150 bytes, as a rule of thumb. So 10 million files, each using a block, would

use about 3 gigabytes of memory. Scaling up much beyond this level is a

problem with current hardware. Certainly a billion files is not feasible. To

make matters worse, in Spark each file represents one partition in the result-

ing RDD, meaning that we can easily end up with an RDD with more than a

million tiny partitions. In order to not destroy our processing efficiency, we

will need to repartition that RDD into something more manageable, which

will require lots of expensive shuffling over the network. Furthermore, HDFS

is not geared up to efficiently accessing small files being primarily designed for

streaming access of large files. Reading through small files normally causes

lots of seeks and lots of hopping from data node to data node to retrieve each

small file, all of which is an inefficient data access pattern.

That problem also occurs in other storage solutions like S3. If we store

all the data gzipped in S3, it could result in lots of small gzipped files. In

that case, not only does Spark have to pull those files over the network, it also

has to uncompress them. Because gzipped files can be uncompressed only if

you have the entire file on one core, our executors are going to spending a

lot of time unzipping files.

So, we aim to keep the input and output files in relatively big sizes.
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Chapter 5

Experimental Results

5.1 Introduction

We conducted experiments on some of the datasets from Hao Huang and

Shiva Kasiviswanathan paper [1] in order to prove that our Spark implemen-

tation of their algorithm inside the Spark Streaming framework produces the

same results considering the quality both in runtime and in accuracy. In

addition, we conduct scalability experiments with the Spark Cluster in order

to see if the algorithms performance increases with the more resources we

provide.

Accuracy

To measure the accuracy of the algorithm we use ROC curves. In statistics,

a receiver operating characteristic (ROC) curve, is a graphical plot that illus-

trates the diagnostic ability of a binary classifier system as its discrimination

threshold is varied. The ROC curve is created by plotting the true posi-

tive rate (TPR) against the false positive rate (FPR) at various threshold

settings. The true-positive rate is also known as sensitivity, recall or proba-

bility of detection in machine learning. The false-positive rate is also known

as the fall-out or probability of false alarm. Accuracy is measured by the

area under the ROC curve. An area of 1 represents a perfect test; an area of

0.50 represents a worthless test. And precision is measured by the following

formula Precision =
TP

TP + FP
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A rough guide for classifying the accuracy of a diagnostic test, is the

traditional academic point system:

• 0.90− 1 = excellent

• 0.80− 0.90 = good

• 0.70− 0.80 = fair

• 0.60− 0.70= poor

• 0.50− 0.60 = fail

Runtime

We measure the average runtime on batches containing 5000 datapoints from

the outlier detection phase to the singular vectors update.

Scalability

The scalability is being measured in three different ways:

• Single Batch: With this experiment we see how match scaling we can

achieve with increasing the input size of a single batch. For example,

can we still achieve near real time results even with a big influx of data

on a single time step.

• Overtime: The current experiment provides us information about the

data that our framework can accumulate over time. This will provide

information if our streaming implementation is stable overtime.

• Parallelism: Here we will observe the increase in performance depend-

ing on the increase of parallelism in the spark architecture.
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Spark Cluster Setup

In our experiments we used the Spark on YARN cluster on Hortonworks

HDP 2.2.4 of our University at Softnet Lab. Our driver node has 8 cores and

2 GB of RAM and two worker nodes with 8 cores and 2 GB of RAM each.

But our parallelism tests were run on a standalone cluster due to problems

in the version of the Softnet cluster (Spark 1.2.1) that did not support some

parts of our code (Spark 2.2.0).

5.2 ROC Curve

The first test that we run is on the Cod-RNA and Protein-homology datasets

with 5000 data point batches. We aim to see if we have the same results as

the authors of [1]. In the following figure 5.2, we observe that we have the

same results with an area under the ROC curve of 0.8, which indicates a

fairly good accuracy in the current dataset. In addition, it yields a precision

of 65 %

Figure 5.1: ROC curves of RandUpdate and DetUpdate for the Cod-RNA
Dataset
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Now we produce the ROC curve for the Protein-homology dataset. At

the beginning, we observe that it has a really bad ROC curve with 0.5 area

beneath it. But, it produces results with a precision of 99 %. Furthermore,

they are the same as those of the authors of [1].

Figure 5.2: ROC curves of RandUpdate and DetUpdate for the Protein-
homology Dataset
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5.3 Runtime

The following experiment provides us with results concerning how fast our

implementation runs. In the table below, we compare the results that we

achieved with our Spark Streaming implementation with those of the authors

to see if the Spark framework improves runtime. The test were conducted

in the Cod-RNA and Protein-homology datasets with batches of 5000 dat-

apoints and the runtime that we present is the average of all the batches.

We measure from the start of AnomDetect till the end of the singular vector

Update. Our first observation, is that Rand update is much better, espe-

cially in the Protein-homology dataset, which has a much bigger feature size

and thus, the SVD algorithm is more costly for the DetUpdate algorithm.

The algorithm RandUpdate manges to keep the processing in Real-time. In

addition, the measurements inside the Spark Cluster are included 5.3, 5.4.

In those figures we observe a peak in runtime at the beginning due to the

initialization and the Spark Core starting overhead cost. Furthermore, the

RandUpdate algorithm if far more stable, never exceeding the 1 second mark

after training.

Algorithms/Dataset Cod-RNA(8 features) Protein-homology(74 features)

DetUpdate 0.821 6.357

RandUpdate 0.114 0.458

Table 5.1: Average RunTime(sec) of each algorithm in each Dataset.
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Figure 5.3: AnomDetect with DetUpdate Runtime as depicted in the spark
cluster for the Cod-RNA Dataset

Figure 5.4: AnomDetect with RandUpdate Runtime as depicted in the spark
cluster the Cod-RNA Dataset
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5.4 Scalability

In this section we conduct three experiments to the Cod-RNA dataset to see

how scalable our implementation is. At first, we test how it will react in

bigger batch sizes. Then, we let our Spark Streaming application run for an

hour to see how stable it is in a continuous workload. Finally, we increase

the level of parallelism in our Spark application to see if by running some

actions or transformations in parallel improves runtime.

5.4.1 Increasing Batch Size

In the figure 5.5 bellow we experiment on increasing batch sizes and try to

see how our spark implementation reacts in regard of Runtime with 2 worker

nodes. At first we observe that the randomized update approach yields faster

results exceeding the 1 second mark after 300.000 datapoint and reaching just

over 3 seconds on 1 million datapoints. The deterministic approach exceeds

the 1 second mark at 100.000 data points and eventually at 9 seconds it

processes 1 million datapoints.
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Figure 5.5: Increasing Batch Size Runtime Cod-RNA dataset 2 worker nodes
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5.4.2 Stability in continuous workload

The current experiment is conducted in order to see see how our implementa-

tion works in a continuous workload and in order to measure how the output

that we send to the HDFS affects performance. We observe in the figure 5.6,

which depicts the last 17 minutes of an 1 hour uptime of our algorithm, that

it is stable and runs under 1 second in all the batches of those 17 minutes.

Furthermore, the average delay is 0.073 seconds. Those results were to be

expected due to the lazy state of the RDDs and the fact that Spark dumps

the RRD data of the previous batches if we do not instruct it otherwise. The

figure has the last 17 minutes because the Spark cluster does not provide

larger delay plots.

Figure 5.6: The last 17 minutes as depicted in the Spark Cluster
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5.4.3 Parallelism

The last experiment is carried out in order to see if our implementation can

run better in parallel, both with and without writing the data to the HDFS.

The experiments were conducted for batches of 5000 over 2 minutes in order

to see how much task time takes each worker in order to complete each task.

We observe that the runtime improvement is acceptable with an improvement

around 38% on both experiments going from one to two workers and, finally,

reaching over 50% when we run it with four workers. From that point, due to

the size of our batches we do not see any further improvement. Although, if

we had bigger batches, we could have benefited from more workers. That was

expected because only a part of our algorithm did not run on a distributed

fashion.
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Figure 5.7: Performance increase due to increase in the Spark executors
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Chapter 6

Conclusion

In this work we migrated the algorithm of Hao Huang and Shiva Kasiviswanathan

[1] inside the Spark Streaming framework. They proposed a new determinis-

tic and randomized sketching-based approaches to efficiently and effectively

detect anomalies in large data streams. We proved that their idea can work

in a modern streaming data analytics framework. In addition, we conducted

various experiments proving that this implementation can work in near real

time. Moreover, we expanded it to work in a distributed fashion on the

AnomDetect part of the algorithm being able to utilize the power of the

Spark cluster. Furthermore, the experimental results prove the effectiveness

and efficiency of the proposed approaches.
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Chapter 7

Future Work

This work could be extended and improved three ways.

At first, a performance improvement would be to calculate the outlier space

and then threshold in order for the normal points to be far from it. This is

an improvement because most of the time the outliers are much less than the

normal points and we will have less data sent to the driver to calculate the

left singular vectors.

Secondly, the last centralized step in our implementation could be paral-

lelized for an increase in performance in big data clusters.

Finally, the Spark Streaming framework as of now is in a transforming state.

The RDD abstraction is slowly getting deprecated and better ones emerge

that are fully implemented in Spark Core and Spark SQL like the DataFrames

and DataSets. So, when the Spark Streaming framework decides to make the

change, we can migrate this work there.
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