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Abstract: We develop a predictor-based adaptive cruise control design with integral action (based
on a nominal constant time-headway policy) for compensation of long actuator and sensor delays in
vehicular systems utilizing measurements of the relative spacing as well as of the speed and the short-
term history of the desired acceleration of the ego vehicle. Employing an input-output approach we show
that the predictor-based adaptive cruise control law with integral action guarantees all of the four typical
performance specifications of adaptive cruise control designs, namely, (1) stability, (2) zero steady-state
spacing error, (3) string stability, and (4) non-negative impulse response, despite the long input delay. The
effectiveness of the developed control design is illustrated in simulation considering various performance
metrics.

1. INTRODUCTION

In traffic systems that incorporate vehicles equipped with Adap-
tive Cruise Control (ACC) capabilities, significant actuator and
sensor delays may appear, due to engine response, throttle or
brake actuators, computational time, radar or lidar systems,
wheel speed sensors, and sampling of measurements, among
other reasons; see Davis (2012), Ge & Orosz (2014), Huang
& Ren (1998), Liu et al. (2001), Ploeg et al. (2014), Wang
et al. (2016), Xiao & Gao (2011), Yanakiev & Kanellakopou-
los (2001), Zhang & Orosz (2013). The negative impact of
these delays on traffic flow may be manifested as reduced
traffic throughput and increased congestion, reduced comfort
and safety, and, last but not least, as increased fuel consump-
tion. Such a degradation of the traffic system is the result of
the decrease in capacity as well as of the deterioration of the
stability and string stability properties of the traffic flow, when
the presence of delays is not taken into account in the ACC
design; see, e.g., Davis (2012), Diakaki et al. (2015), Ge &
Orosz (2014), Klinge & Middleton (2009), Liu et al. (2001),
Sipahi & Niculescu (2010), Wang et al. (2016), Xiao & Gao
(2011), Yanakiev & Kanellakopoulos (2001), Zhang & Orosz
(2013).

Although several ACC strategies exist, such as, e.g., Huang
& Ren (1998), Ioannou & Chien (1993), Klinge & Middle-
ton (2009), Knorn et al. (2014), Liang & Peng (2000), Ploeg
et al. (2014), Roncoli et al. (2016), Shladover et al. (2012),
Swaroop & Hedrick (1996), van Arem et al. (2006) and de-
spite the existing studies on the robustness properties of ACC
laws to actuator (or sensor) delay, e.g., Davis (2012), Ge &
Orosz (2014), Sipahi & Niculescu (2010), Xiao & Gao (2011),
Zhang & Orosz (2013), rarely the problem of design of delay-
compensating ACC laws is investigated, with the notable ex-
ception of Bekiaris-Liberis et al. (2016), Yanakiev & Kanel-
lakopoulos (2001), Wang et al. (2016). It is worth to men-
tion that Cooperative Adaptive Cruise Control (CACC) systems

may also have delay-compensating capabilities, see, for exam-
ple, Ge & Orosz (2014), Shladover et al. (2012), van Arem et
al. (2006), Zhang & Orosz (2013), yet, such systems are not
considered in the present paper.

The present contribution constitutes a substantially improved
version of our previous result. Specifically, compared to our
previous paper Bekiaris-Liberis et al. (2016), in the present
work we (1) develop a new control design that incorporates
an additional integral term, (2) present new stability and string
stability analyses (since they are both based on a different
transfer function), which are, in fact, much more delicate since
they deal with a third-order transfer function (in contrast to the
second-order transfer function considered in Bekiaris-Liberis
et al. (2016)), and (3) present several new experiments for the
evaluation of the developed control algorithm in quantitative
terms, which show the significant performance improvements
achieved (compared to our previous design), such as, for exam-
ple, the elimination of steady-state errors.

In this paper, utilizing a constant time-headway nominal ACC
design, the predictor-based feedback design methodology is
employed for compensation of long actuator and sensor delays
in vehicular systems modeled or approximated by a second-
order linear system. Measurements of the relative spacing as
well as the speed and the history, over a window equal to the
delay length, of the control input (desired acceleration) of each
individual vehicular system are utilized to compute the control
input for each vehicle. Employing an input-output approach,
we prove that the predictor-based ACC law with integral action
guarantees all four typical requirements of ACC designs, see,
e.g., Ioannou & Chien (1993), namely, (1) stability of each
individual vehicular system, (2) zero steady-state spacing error
between the actual and the desired inter-vehicle spacing, (3)
string stability of homogenous platoons of vehicular systems,
and (4) non-negative impulse response of each individual ve-
hicular system, for any delay value smaller than the desired
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Fig. 1. Platoon of N+1 vehicles following each other in a single
lane without overtaking. The dynamics of each vehicle
i = 1, . . . ,N are governed by system (1), (2). Each vehicle
can measure its own speed and the spacing with respect to
the preceding vehicle. The dynamics of the leading vehicle
satisfy ẍL = aL, where xL and aL are the position and
acceleration of the leading vehicle, respectively.

time-headway (whereas analogous ACC designs without delay
compensation require that the delay value is smaller than half
the time-headway, e.g., Xiao & Gao (2011), Zhang & Orosz
(2013)), which constitutes a physically intuitive limitation. The
performance of the developed ACC algorithm is verified in
simulation and compared with an existing ACC strategy consid-
ering seven different performance indices that provide quantita-
tive performance measures for four common physical require-
ments of ACC designs, namely, (1) tracking error, (2) safety, (3)
fuel consumption, and (4) comfort.

2. PREDICTOR-BASED CONTROL WITH INTEGRAL
ACTION OF ACC-EQUIPPED VEHICLES WITH

ACTUATOR DELAY

2.1 Vehicle Dynamics

As in, for instance, Bekiaris-Liberis et al. (2016), Ge & Orosz
(2014), Sipahi & Niculescu (2010), Wang et al. (2016), Zhang
& Orosz (2013), we consider a homogenous string of au-
tonomous vehicles (see Fig. 1) each one modeled by the fol-
lowing second-order linear system with input delay

ṡi(t) = vi−1(t)− vi(t) (1)

v̇i(t) =Ui (t−D) , (2)

i = 1, . . . ,N, where si = xi−1− xi− li is spacing, with x j being
the position of vehicle j and li being its length, vi is speed, Ui
is the individual vehicle’s control variable, D > 0 is actuator
delay, and t ≥ 0 is time. System (1), (2) may be also viewed as
linearized version of a nonlinear model, around a uniform (for
all vehicles) operating point (in this case, si and vi represent
error variables), which may be obtained when vehicles have
zero acceleration and their speed is dictated by the speed of
the leader.

2.2 Delay-Free Control Design

One of the ingredients of our predictor-based ACC design is the
nominal (i.e., in the absence of the actuator delay D) constant
time-headway control strategy Ui(t) = α

(
si(t)

h − vi(t)
)

, where
α and h are positive design parameters that represent con-
trol gain and desired time-headway, respectively. This nominal
ACC law, which is used in several other works, see, e.g., Davis
(2012), Ge & Orosz (2014), is a proportional controller for the
spacing error defined as

δi = si−hvi. (3)

The proportional control law is then augmented to incorporate
an integral action for the spacing error (3) in order to eliminate

a potential steady-state spacing error, see, e.g., Ioannou & Xu
(1994). Defining the state of the i-th integrator as

σ̇i(t) =
1
h

si(t)− vi(t), i = 1, . . . ,N, (4)

the nominal ACC laws with integral action are written for all
i = 1, . . . ,N as

Ui(t) = K̄X̄i(t), (5)

where

X̄i =

[ si
σi
vi

]
(6)

K̄ =
[

k̄1 k̄2 k̄3
]
, (7)

and the gains k̄1, k̄2, k̄3 are yet to be chosen.

The stability and string stability (see, e.g., Bose & Ioannou
(2004), Swaroop & Hedrick (1996) for a definition) properties
of the nominal closed-loop system (1), (2), (4), (5) can be
studied employing the nominal transfer function

Gnom(s) =
Vi(s)

Vi−1(s)
, i = 1, . . . ,N. (8)

Remark 1. In the case of a homogenous platoon, stability and
string stability may both be studied merely on the basis of a
single transfer function, namely, transfer function Gnom(s) =

Vi(s)
Vi−1(s)

, i = 1, . . . ,N. This holds true because all transfer func-
tions that may relate either the spacing errors, or the speed, or
the acceleration, or the relative speed and acceleration errors,
between two consecutive vehicles, are identical to each other
(see, e.g., Bose & Ioannou (2004), Liang & Peng (2000)).

2.3 Predictor-Based Control Design

The predictor-based control laws with integral action are given
for all i = 1, . . . ,N by

Ui(t) = K̄
(

eΓ̄DX̄i(t)+
∫ t

t−D
eΓ̄(t−θ)B̄Ui(θ)dθ

)
, (9)

where Γ̄ =

 0 0 −1
1
h

0 −1
0 0 0

 and B̄ =

[ 0
0
1

]
. One should notice that

the control law (9) is suitable for autonomous operation since
it employs only measurements of the current spacing si and
speed vi, as well as of the past D-second history of the control
variable Ui, which are available to vehicle i using on-board
sensors, see, e.g., Huang & Ren (1998), Ioannou & Chien
(1993), Liang & Peng (2000), Ploeg et al. (2014), Wang et
al. (2016), Xiao & Gao (2011), Yanakiev & Kanellakopoulos
(2001). Note also that in the absence of the delay, i.e., when
D = 0, the control law (9) reduces to the nominal, delay-
free control design (5). The control law (9) was developed
in Artstein (1982), Manitius & Olbrot (1979); not only its
stability and robustness properties are extensively studied in the
literature Bekiaris-Liberis & Krstic (2013), Karafyllis & Krstic
(2016), Krstic (2009), but, in addition, several implementation
methodologies were developed Karafyllis & Krstic (2016).



We analyze next, adopting a transfer function approach, the
stability and string stability properties of a homogenous platoon
of vehicles modeled by system (1), (2) under the ACC law (4),
(9).

3. STABILITY AND STRING STABILITY ANALYSIS
UNDER PREDICTOR-BASED FEEDBACK FOR

HOMOGENOUS PLATOONS

Theorem 1. Consider a homogenous platoon of vehicles with
dynamics modeled by system (1), (2) under the control laws (4),
(9). There exists K̄ such that each individual vehicular system
is stable for any D > 0, and the platoon is Lp, p ∈ [1,∞], string
stable for any D < h.

Proof. We start by deriving for i= 1, . . . ,N the transfer function

Ḡ(s) =
Vi(s)

Vi−1(s)
, (10)

viewing the preceding vehicle’s speed as input and the current
vehicle’s speed as output, see, e.g., Bose & Ioannou (2004), Ge
& Orosz (2014), Liang & Peng (2000). In view of Remark 1, for
studying stability and string stability under the predictor-based
control law, it is sufficient to study the properties of Ḡ.

Taking the Laplace transform of the control law (9) we get

Ui(s) = K̄eΓ̄DX̄i(s)+M(s)Ui(s) (11)

M(s) = K̄
(
sI3×3− Γ̄

)−1
(

I3×3− eΓ̄De−sD
)

B̄. (12)

Using the i-th vehicle’s model (1), (2) and the dynamics of the
integral state (4), as well as definition (6) we have

X̄i(s) =
(
sI3×3− Γ̄

)−1 (B̄e−sDUi(s)+ B̄vVi−1(s)
)
, (13)

where B̄v = [ 1 0 0 ]
T. Substituting (13) into (11) we get that

Ui(s) =
K̄
(
sI3×3− Γ̄

)−1 eΓ̄DB̄v

1− K̄
(
sI3×3− Γ̄

)−1 B̄
Vi−1(s), (14)

and thus, from (13) we arrive at

X̄i(s) = R(s)Vi−1(s), (15)

where

R(s) =

(
sI3×3− Γ̄

)−1

1− K̄
(
sI3×3− Γ̄

)−1 B̄

(
B̄v + B̄e−sD

×K̄
(
sI3×3− Γ̄

)−1 eΓ̄DB̄v− K̄
(
sI3×3− Γ̄

)−1

×B̄B̄v) . (16)

Note that due to (16), the spectrum of the closed-loop sys-
tem is finite Jankovic & Magner (2011), Manitius & Olbrot

(1979). Using the facts that eΓ̄D =

 1 0 −D
D
h

1 −D2

2h
−D

0 0 1

 and

that
(
sI3×3− Γ̄

)−1
= 1

s3

 s2 0 −s
s
h

s2 −s− 1
h

0 0 s2

, and multiplying (15)

from the left with [ 0 0 1 ] we obtain

Ḡ(s) =

((
D+ hk̄1

k̄2

)
s+1

)
e−sD

h
k̄2

s3− hk̄3
k̄2

s2 +
h(k̄1+k̄2)

k̄2
s+1

. (17)

Stability: From (17) it follows that there exists choice of
K̄ that renders the transfer function Ḡ asymptotically sta-
ble. One can see this by matching the denominator of Ḡ
in (17) with any desired third-order polynomial of the form
(T1s+1)(T2s+1)(T3s+1), where T1 > T2 > T3 > 0, that is,
the parameters k̄1, k̄2, k̄3 can be chosen as

k̄1 =
T1 +T2 +T3−h

T1T2T3
(18)

k̄2 =
h

T1T2T3
(19)

k̄3 =−
T1T2 +T1T3 +T2T3

T1T2T3
. (20)

String stability in the Lp, p ∈ [1,∞], sense: The impulse
response of the transfer function Ḡ defined in (17) is given by

ḡ(t) =
{

0, 0≤ t ≤ D
f̄ (t−D), t ≥ D , (21)

where f̄ is the impulse response of the delay-free system under
the nominal control design, i.e.,

f̄ (t) = L −1


(

D+ hk̄1
k̄2

)
s+1

h
k̄2

s3− hk̄3
k̄2

s2 +
h(k̄1+k̄2)

k̄2
s+1

 .

Selecting the parameters k̄1, k̄2, k̄3 such that T1 > T2 > T3 > 0,
we conclude from Lin & Fang (1997) (Theorem 5) that f̄ (t)≥
0, for all t ≥ 0, when the following hold (see also Astolfi &
Colaneri (2004) for similar conditions)

D+
hk̄1

k̄2
≤ T1 (22)

D+
hk̄1

k̄2
≥ T2. (23)

Using (18)–(20), conditions (22), (23) are rewritten as

D−h+T2 +T3 ≤ 0 (24)

D−h+T1 +T3 ≥ 0. (25)

Conditions (24), (25) can be satisfied by an appropriate choice
of T1 > T2 > T3 > 0 when D < h. Since also

∣∣Ḡ(0)
∣∣ = 1, we

conclude that the system is string stable in the Lp, p ∈ [1,∞],
sense, see, e.g., Bose & Ioannou (2004). 2

Remark 2. Although stability under the predictor-based ACC
law with integral action is guaranteed for any delay value, string
stability requires that the delay value is restricted to be smaller
than the desired time-headway, which constitutes a consider-
able improvement compared to the string stability condition
that the delay is smaller than half the time-headway imposed
by other ACC designs (similar to the nominal, delay-free ACC
law that we employ) without delay compensation, such as, for
example, Xiao & Gao (2011), Zhang & Orosz (2013). The
requirement of a constant time-headway policy that the steady-
state spacing is greater than Dvd, where vd is a desired speed
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Fig. 2. Acceleration maneuver of the leader.

dictated by the leader, is a physical limitation since during the
D−second “dead-time” interval of the actuator the vehicle is
not able to respond to large disturbances emanating from the
preceding vehicle, e.g., rapid changes of its speed 1 . Thus, such
a restriction is necessary in order for a vehicle to be able to
attenuate disturbances imposed by its preceding vehicle and
track it. Moreover, this limitation is in accordance to the re-
sult in Karafyllis & Krstic (2016) dealing with the disturbance
attenuation limitations of systems with input delays under any
time-invariant feedback controller.

4. PERFORMANCE EVALUATION OF THE
PREDICTOR-BASED ACC DESIGN

We present a simulation study considering a homogenous pla-
toon of four vehicles with dynamics given by (1), (2) following
a leader with dynamics defined as

ẋL(t) = vL(t) (26)

v̇L(t) = aL(t), (27)

where xL and vL are the position and speed of the leading
vehicle, respectively, and aL is the leader’s acceleration, which
is regarded as a reference input chosen as the step input signal
shown in Fig. 2. We choose the desired time-headway as h = 2

π

s and the delay as D = 0.4 s. We compare the response of the
string of the four vehicles to a step acceleration signal aL to the
cases where the delay-uncompensated strategy (Fig. 3)

Ui(t) =
α

h
si(t)−αvi(t)+b(vi−1(t)− vi(t)) , (28)

with α = 1, b = 0.8, see, e.g., Ge & Orosz (2014), and the
delay-compensating strategy (Fig. 4) defined in (9) with pa-
rameters k̄1 = 14, k̄2 = 102, k̄3 =−20, which satisfy (18)–(20)
with T1 = 0.5, T2 = 0.125, and T3 = 0.1 (which in turn satisfy
(24), (25)), are employed. Note that there exists no choice
of (α , b) in the uncompensated strategy (28) that guarantees
both stability and string stability for these values of D and
h as it is shown in Zhang & Orosz (2013). However, with

1 Consider, e.g., the case in which the preceding vehicle comes to a complete
stop instantaneously from a speed vd, then, due to the D−second “dead-time”
interval of the actuator, the spacing between the two vehicles remains positive
only if D < h since the spacing satisfies s(t) = (h− t)vd, for all t ≤ D.
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Fig. 3. Acceleration (top), speed (middle), and spacing (bot-
tom) of four vehicles following a leader that performs the
acceleration maneuver shown in Fig. 2, under the nominal,
uncompensated ACC strategy (28).

the choice α = 1, b = 0.8, each individual vehicular system
is stable Zhang & Orosz (2013). In contrast, with the delay-
compensating strategy, one can observe from Fig. 4 that the four
typical requirements of an ACC law, see, e.g., Ioannou & Chien
(1993), namely a) stability of each individual vehicular system,
b) zero steady-state spacing error, c) fulfillment of condition
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Fig. 4. Acceleration (top), speed (middle), and spacing (bot-
tom) of four vehicles following a leader that performs the
acceleration maneuver shown in Fig. 2, under the delay-
compensating ACC strategy with integral action (9).

aL

supω∈R
∣∣Ḡ( jω)

∣∣≤ 1, and d) non-negative impulse response are
satisfied.

We evaluate further and compare to the control law (28) the
performance of the developed ACC design with integral action
considering the following four physical requirements a) track-

Table 1. Parameters of the fuel consumption cost
(29).

Parameter Value
β1 0.666
β2 0.0717
β3 0.0578
β4 0.527
β5 0.000948
β6 1.68

Table 2. Performance indices (29), (32)–(35), (37),
and (38).

Performance index Percentage improvement with (9) in comparison to (28)
Jfuel 28

Jcomfort,1 90
Jcomfort,2 20
Jcomfort,3 66

Jsafety 53
Jtracking,1 83
Jtracking,2 51

ing error, b) safety, c) fuel consumption, and d) comfort. We
consider a platoon of six vehicles and employ the following
performance indices that quantify each of the four requirements

Jfuel =
6

∑
i=1

∫ T

0
Ji (vi(t),ai(t))dt (29)

Ji =

β1 +β2RTi (vi(t),ai(t))vi(t)
+β3vi(t)ai(t)2, if RTi > 0
β1, if RTi ≤ 0

(30)

RTi = β4 +β5vi(t)2 +β6ai(t) (31)

Jcomfort,1 =
6

∑
i=1

∫ T

0
ȧi(t)2dt (32)

Jcomfort,2 = max
i

sup
0≤t≤T

|ȧi(t)| (33)

Jcomfort,3 = max
i

sup
0≤t≤T

|ai(t)| (34)

Jsafety =
6

∑
i=1

∫ T

0
J̄i (si(t),vi(t),vi−1(t))dt (35)

J̄i =

{
e

1
si(t)(vi−1(t)−vi(t))

2,if vi−1(t)≤vi(t)
0, otherwise

(36)

Jtracking,1 =
6

∑
i=1

∫ T

0
δi(t)2dt (37)

Jtracking,2 =
6

∑
i=1

∫ T

0
(vi(t)− vi−1(t))

2 dt, (38)

which are used in the literature, see, e.g., Akcelik & Biggs
(1987), Martinez & Canudas-de-Wit (2007), Wang et al. (2014).
We choose T = 40 s, whereas the parameters of (29) are shown
in Table 1. The percentage improvements of each cost when
the proposed ACC design (9) is employed in comparison to the
case where the ACC law (28) is utilized are shown in Table 2.
It is evident that the predictor-based ACC law with integral
action achieves better performance in all metrics. Note that the
performance improvement with the delay-compensating ACC
law (9) compared to the control law (28) would be larger when
one considers a larger number of vehicles in the platoon due
to the lack of string stability in the case of the uncompensated
control law (28).



5. CONCLUSIONS

We presented a predictor-based ACC design methodology for
compensation of long input delays in vehicular systems. We
showed that the developed ACC algorithm guarantees that four
of the most common performance requirements of ACC designs
are satisfied. The performance of the proposed ACC strategy is
verified in simulation considering various quantitative perfor-
mance measures.
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