
TECHNICAL UNIVERSITY OF CRETE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Dynamic Decision Trees in a Distributed
Environment

Zafeiria Moumoulidou

Thesis Committee:

Professor Minos Garofalakis (ECE)
Associate Professor Antonios Deligiannakis (ECE)

Associate Professor Vasilis Samoladas (ECE)

August 2018

https://www.tuc.gr/index.php?id=5397
https://www.ece.tuc.gr/index.php?id=4481

Zafeiria Moumoulidou ii August 2018

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Δυναμικά Δένδρα Απόφασης σε
Κατανεμημένο Περιβάλλον

Ζαφειρία Μουμουλίδου

Εξεταστική Επιτροπή:

Καθ. Μίνως Γαροφαλάκης (HMMY)

Αναπλ. Καθ. Αντώνιος Δεληγιαννάκης (HMMY)

Αναπλ. Καθ. Βασίλειος Σαμολαδάς (HMMY)

Ιούλιος 2018

https://www.tuc.gr/index.php?id=4992
https://www.ece.tuc.gr/index.php?id=4101

Zafeiria Moumoulidou iv August 2018

Abstract

Decision trees is one the most popular methods in data mining since the intuition behind the
models produced is close to human way of thinking. In particular, we focus on the stream
processing model which belongs to one of the most realistic schemes since the volume and the
production rate of data most of the time make the traditional processing methods ineffective. In
this thesis we study the state-of-the-art Hoeffding Tree algorithm designed for building decision
tree models over high speed data streams. More precisely, one of the most significant challenges
in streaming decision trees, is that each instance of data is processed only once and it is not
stored in memory. Thus, any decision regarding the growth of the tree should be made based
only on a subset of the original data. In paraller, we study the geometric approach for monitoring
threshold functions over distributed streams. In the aformentioned distributed setting, the data
needed to compute the values of a function is split among diverse processing sites. So the
authors design a monitoring scheme, where the sites do not need to send their data to a central
node in order to detect whether the value of a function has crossed a threshold; as a result they
manage to reduce the communication load. Finally, we propose a novel distributed algorithm
for mining high-speed data streams, based on the state-of-the-art Hoeffding Tree algorithm and
the ideas introduced in the geometric method.

Zafeiria Moumoulidou vi August 2018

Περίληψη

Τα δένδρα απόφασης είναι μια από τις πιο διαδεδομένες τεχνικές ανάλυσης και εξόρυξης
δεδομένων αφού τα μοντέλα τα οποία παράγουν συνάδουν με τον ανθρώπινο τρόπο αντίληψης.
Ειδικότερα, επιλέγουμε να ασχοληθούμε με το μοντέλο ανάλυσης ροών δεδομένων δεδόμενου
ότι αποτελεί ένα από τα πιο ρεαλιστικά σχήματα αφού ο όγκος και ο ρυθμός των δεδομένων
στη γενική περίπτωση καθιστά τις κλασσικές μεθόδους επεξεργασίας μη αποδοτικές. Πιο
συγκεκριμένα, μελετάμε τον state-of-the-art αλγόριθμο των Hoeffding Trees για την σχεδίαση
δένδρων απόφασης. Για τα δένδρα απόφασης σε ροές δεδομένων μία από τις πιο σημαντικές
προκλήσεις είναι ότι κάθε δεδομένο το βλέπουμε και το επεξεργαζόμαστε μόνο μία φορά
χωρίς να έχουμε τη δυνατότητα να το αποθήκευσουμε στη μνήμη. Έτσι, οποιαδήποτε
απόφαση σε σχέση με την ανάπτυξη του δένδρου πρέπει να ολοκληρωθεί βάσει ενός υποσυνόλου
του αρχικού όγκου των δεδομένων. Παράλληλα, μελετάμε το σχήμα γεωμετρικής παρακολούθησης
της τιμής μιας συνάρτησης πάνω σε κατανεμημένες ρόες δεδομένων. Σε αυτό θεωρούμε
ότι τα δεδομένα που χρειάζονται για τον υπολογισμό της τιμής της συνάρτησης είναι
διαμοιρασμένα σε διάφορους κόμβους επεξεργασίας. Στόχος λοιπόν είναι η σχεδίαση
ενός σχήματος παρακολούθησης όπου οι κόμβοι δε χρειάζεται να επικοινώνουν με κάποιο
κεντρικό για να εντοπιστεί αν η τιμή της συνάρτησης ξεπέρασε κάποια τιμή έτσι ώστε
να μειωθεί ο φόρτος επικοινωνίας. Τέλος, προτείνουμε ένα νέο κατανεμημένο μοντέλο
σχεδίασης δενδρικών μοντέλων απόφασης συνδιάζοντας κατάλληλα ιδέες από τις δύο δουλειές.

Zafeiria Moumoulidou viii August 2018

Acknowledgements

Foremost, I would like to express my sicere gratidute to my thesis advisor Prof. Minos Garo-
falakis for his continuous guidance and support throught the fulfillment of the thesis. A special
thanks for my thesis co-supervisor Prof. Antonios Deligiannakis for always having the time to
discuss any problems that come up, his useful suggestions and our fruitful conversations. I also
would like to thank Prof. Vasilis Samoladas for accepting to be in my commitee to whom I
would also like to expess my admiration for being such an ispriring spirit.

Furthermore, I would like to thank Prof. Athanasios Liavas for inspiring me throughout my
studies and introducing me to the world of telecommunications as well as Prof. Karystinos for
being so enthusiastic and motivating in class.

I would also like to thank Vasiliki Manikaki for providing me with the code of her thesis and
for being willing to help.

A big thanks goes to my family for always being supportive and their emotional support. Last
but not least, I am deeply thankful my friends here in Chania for the experiences we earned
together and especially Rafail-Athanasios Demertzis for his unconditional support in the last
years.

Zafeiria Moumoulidou x August 2018

Contents

1 Introduction 1
1.1 Thesis Contribution . 2
1.2 Thesis Outline . 2

2 Related Background 4
2.1 Classification Decision Trees . 4

2.1.1 ID3 Algorithm . 5
2.1.2 C4.5 Algorithm . 6
2.1.3 Split Evaluation Function . 7

2.1.3.1 Information Gain . 7
2.1.3.2 Gini Index . 11

2.2 Streaming Decision Tree Model . 12
2.2.1 Hoeffding Trees . 12

2.2.1.1 Very Fast Decision Tree Learner (VFDT) 15
2.2.2 Extensions of Hoeffding Trees and VFDT System 15

2.3 Distributed Streaming Decision Trees . 16
2.4 Geometric Function Monitoring Over Distributed Streams 17

3 Solution Sketch 21
3.1 Our Approach . 21

3.1.1 Formulation of Split Evaluation Function 21
3.1.1.1 Information Gain as Split Evaluation Function G 22
3.1.1.2 Gini Index as Split Evaluation Function G 25

3.1.2 Monitoring the Splitting Condition in Hoeffding Trees 29

4 Implementation 34
4.1 Storm Overview . 34

4.1.1 Storm Components . 34
4.1.1.1 Spouts . 34
4.1.1.2 Bolts . 35
4.1.1.3 Topologies . 35
4.1.1.4 Stream Grouping . 35

4.1.2 Our Topology . 36

5 Experimental Evaluation 49

xi

Contents

6 Conclusions and Future Work 56
6.1 Conclusions . 56
6.2 Future Work . 56

References 58

Zafeiria Moumoulidou xii August 2018

List of Figures

2.1 Decision Tree model . 4
2.2 Entropy over Bernoulli distribution . 8
2.3 Gini over Bernoulli distribution . 12
2.4 Estimate vector e(t), Drift vectors ui(t), current global vector v(t) and Bouncing

balls B(e(t), ui(t)), Figure Source: [6] . 18

3.1 Geometric Monitoring- No violation Schemes . 31
3.2 Geometric Monitoring- Violation Schemes . 31

4.1 A topology in Storm . 35
4.2 Topology in Storm . 36
4.3 Manikaki’s Topology in Storm . 41

5.1 Communication Load for the Proposed Monitoring Scheme 50
5.2 Increase in Violations . 50
5.3 Number of violations in relation to the evolution of the stream 51
5.4 Distribution of violations in regard to function ranking and number of processing

sites . 52
5.5 Number of Violations in regard to δ parameter 53

xiii

Zafeiria Moumoulidou xiv August 2018

Chapter 1

Introduction

Data mining and analytics is undoubtedly one of the most active and intriguing areas in the
computer science field, which simultaneously affects diverse aspects of everyday life. Actually,
human beings themselves through the regular usage of the web, social media, smartphones etc
become a significant source of data, which are then processed to reveal hidden knowledge and
patterns. In data mining area, classification is one of the basic concepts used; with classification
term, given a set of categories (or classes), we refer to the process of identifying to which of
those categories a new observation belongs based on a set of characteristics (or features). In
particular, the aim of a classification task is given a training sample of data, whose class is known,
to produce a general model which will be subsequently used to classify new arriving instances
of data. In this thesis we choose to study Decision Tree classifiers, which among others like
Logistic Regression classifiers, Bayesian classifiers, Support Vector Machines(SVM’s), neural
networks etc, are more easily human interpretable and therefore one of the most commonly
used methods in data mining. Conventional decision tree learners, including ID3 and C4.5
suppose the set of training examples is stored in main memory and is available for recurrent
processing at any time. However, nowadays the production rate and the amount of data, make
the storage of data prohibitively costly. Thus, in order to fully take advantage of the plethora of
data, a decision tree model for mining high speed data streams was proposed by Domingos and
Hulten [3], who by using Hoeffding bounds managed to build a classifier which is asymptotically
nearly identical to a conventional learner. Furthermore, data stream processing in remote sites
is also a frequent phenomenon. As a result, extending the streaming decision tree model to a
decentralized setting is of vital importance. Therefore, the fundamental aim of the current thesis
is to propose a novel distributed algorithm by adequately incorporating the model introduced in
the aforementioned work of Domingos and Hulten and the Geometric Approach for monitoring

1

the value of a function across distributed data streams which was first proposed by Sharfman
et al [5] and will be extensively described later on.

1.1 Thesis Contribution

In this thesis, we choose to study the state-of-the-art algorithm of Hoeffding Trees proposed by
Domingos an Hulten for mining high-speed data streams. Since distributed processing is one
the most active research areas nowadays, we try to expand their model to work in a distributed
and parallel manner. To the best of our knowledge, this is the first attempt to combine the
Geometric Method proposed by Sharfman et al with Hoeffding Trees so as to design a novel
decentralized setting for mining data streams.

1.2 Thesis Outline

In chapter 2 we describe how decision tree classifiers work along with the basic algorithms for
building a conventional decision tree model. In addition, we present the state-of-the-art Ho-
effding Tree algorithm for mining high spead data streams while we conclude with the overview
of the Geometric Method for monitoring threshold functions over distributed data streams. In
chapter 3, we explain how to adequately incorporate the Geometric method with Hoeffding
Trees so as to design a distributed setting for data stream mining. In chapter 4 we provide a
brief overview of Apache Storm framework [16], [15] along with the implentation details of our
solution while in chapter 5 we provide an evaluation of the decentralized monitoring scheme we
propose.

Zafeiria Moumoulidou 2 August 2018

Zafeiria Moumoulidou 3 August 2018

Chapter 2

Related Background

2.1 Classification Decision Trees

Figure 2.1: Decision Tree model

With classification term we re-
fer to the process of building a
model described of a function
y = f(x), where x is an exam-
ple to be classified and y ∈ C
where C is a finite set of discrete
classes. Building a classifier is a
supervised learning process, so
we have a set of training exam-
ple, based on which we try to create a general function model. For decision trees in particular,
an instance x of the training set can be described as a vector of d attributes and a discrete
label class c. For example, x could be the desciption of the day taking into account the Weather,
Humidity and Windy conditions, therefore attributes, and class c corresponds to playing tennis
or not. Each attribute, has a set of values; for instance, Weather might be Rainy, Overcast or
Sunny.

In order to interpret the model a decision tree classifier builds, we represent it as a graph (tree)
where each internal node corresponds to a test on the splitting attribute, each branch of the
node is one of the possible answers, thus possible values of the corresponding attribute, and
each leaf contains a class prediction.

4

Given the decision tree model in figure 2.1, consinder an instance x = {Rainy,Normal, T rue}
for which we want to find a class prediction. Beginning from the root of the tree, the test to be
taken is What is the value of the incoming instance in Attribute weather? . Since, the answer is
Rainy, we follow the second branch and the following test is What is the value of the incoming
instance in Attribute Humidity? . Since the answer is Normal, we decide that we are playing
tennis.

In general, attributes may be discrete or continuous. Discrete attributes are those whose values
are particular and come from a finite set of discrete values. For instance, Weather is a discrete
attribute with categorical values. On the other hand, continuous attributes might take any
value in an infinite set of numbers in a range. For example, age, height or time are continuous
attributes. Next, we further describe the basic algorithms for producing a decision tree model.

2.1.1 ID3 Algorithm

ID3 Algorithm [1] proposed by Quinlan is the basic algorithm for building a decision tree using
discrete attributes. ID3 builds the decision tree model recursively beginning from root and by
using a set of labeled examples S. At each step, a leaf is replaced by an internal node when
a splitting criterion over some Split Evaluation function 2.1.3 is satisfied. Every time a split
occurs, S is divided among the branches generated depending on the attribute chosen for the
split. Then, for each partition of S produced, a recursive call is made using the node that
corresponds to one of the branches of the internal node as the root of the sub-tree. We then
attach the sub-tree produced to the internal node. The terminating condition for the algorithm
is either to run out of possible splitting attributes, or to end up with a partition of S with
examples that belong to the same class. Finally, regarding the class label at each leaf, we
find the cardinalities for each possible class and we assign to the leaf the one with the higher
cardinality. The ID3 algorithm is presented below:

Zafeiria Moumoulidou 5 August 2018

Algorithm 1 ID3 Algorithm
1: procedure createDT(ExampleSet S, Set X of attributes)
2: Initialize root R
3: if S is pure or X = {} then
4: return R
5: for each attribute Xi ∈ X do
6: Calculate split evaluation criteria Gi

7: Find the Gbest, decide to split on Xbest and replace leaf with internal node
8: for each value vi of Xbest do
9: Split S as Svi

10: Treevi = createDT(Svi , X − {Xbest})
11: Attach Treevi to internal node

return Tree

2.1.2 C4.5 Algorithm

C4.5 proposed by Quinlan [2] provides extensions to its predecessor ID3 which will be briefly
descibed below:

• Supports Continuous Attributes
Recall that continuous attributes are those whose values derive from an infinite set of
numbers, e.g Age. In the case of continuous attributes, the split at an internal node will
be binary composed of the following tests ”A < θ” and ”A ≥ θ”. The question that arises
is how the θ parameter will be chosen.

The solution sketch is as follows; given a sorted order of the distinct values in attribute A,
declare as candidate splitting thresholds θ’s the midpoint between adjacent values. Then,
for each threshold θi calculate the split evaluation function G 2.1.3. Note that example
set S of a node is divided into 2 subsets; those who satisfy ”A < θi” and those ”A ≥ θi”.
The threshold which maximizes G function is the chosen one for the test to be taken on
the internal node.

• Handles Missing Values in Attributes
C4.5 provides a solution when an instance of the training set has a missing, therefore
equal to ’?’, value in an attribute. This scenario is an actual problem since if an instance
arrives at a node with no value on the test to be taken, then the model does not how to
handle it. In addition, missing values affect split evaluation function G computation for
the attribute for which we do not know how it is modified by the presence of the instance
with missing values. In order to confront this complication, they either choose to simply

Zafeiria Moumoulidou 6 August 2018

ignore the example or to replace ’?’ with the most frequent value of the attribute for
which we have no information.

• Avoids Overfitting

Recall that the terminating condition in ID3 Algorithm 1 was to either run of possible
splitting attributes, or to end up with a subset of examples that belong to the same class.
However, when following the above strategy the model is built tends to be too complex
without the ability to produce general rules. As a result, the classifier is able to classify
efficiently the examples in the training set but when examples with unknown class label
arrive, the misclassification error is significant.

In order to adress overfitting, Quinlan suggests to prune the tree after building the tree
it the traditional method. So after the decision tree model is constructed, we traverse
it bottom-up to find which nodes can be pruned. In particular, for each node we check
whether the classsification error of its branches is greater than its error. If that’s the
case the branch is replaced by the node itself, therefore its subtree is pruned. In general,
another method for pruning is to use pre-pruning, where we do not let a leaf to grow
unless its split provides the model useful information.

2.1.3 Split Evaluation Function

2.1.3.1 Information Gain

The Split Evaluation Function used in ID3 and C4.5 is entropy and Information Gain since the
success criterion of a split is decreasing the impurity for a set of training examples that arrive
to a certain leaf. In the case of entropy, we care about choosing the attribute that minimizes its
value whereas for Information Gain the best attribute is the one with the higher value. Below,
we provide the definition for entropy and Information Gain.

At first, let us define entropy H for random variable C = {c1, c2} which corresponds to the
discrete classes for our classification problem. Then, H(C) over class distribution p = {Prob(C =

c1), P rob(C = c2)} = {p1, p2} is:

H(C) = −
|p|∑
i=1

pi log2 pi = −p1 log2 p1 − p2 log2 p2

= −p1 log2 p1 − (1− p1) log2(1− p1)

(2.1)

Zafeiria Moumoulidou 7 August 2018

In the following figure, we observe how entropy behaves in relation to probability. The more
pure a set is, therefore (p1 → 1 & p2 → 0) or (p2 → 1 & p1 → 0) respectively, the value of
entropy H → 0. Meanwhile, the maximal value (H = 1) occus if p1 = p2 = 1/2 when there is
no win over a class in the set of data.

Figure 2.2: Entropy over Bernoulli distribution

For the multiclass setting, where C = {c1, c2, ..., cn} and class distribution is defined as p =

{p1, p2, ..., pn} entropy definition extends to:

H(C) = −
n∑

i=1

pi log2 pi (2.2)

To sum up, some properties of the entropy function are:

1. H(C) ≥ 0, since pi ∈ [0, 1]

2. The maximal value of Hmax(C) occrus when p1 = p2 = ... = pn = 1
n with Hmax(C) =

log2 |C| = log2 n

3. Range R of H(C) = log2 |C|

Below, we provide the definition of Information gain at a leaf l for a certain attribute Xα:

G(l,Xα) = H(l)−
∑

v ∈ Xα_values

|lv|
|l|

H(lv) (2.3)

where:

Zafeiria Moumoulidou 8 August 2018

• H(l) is the entropy of leaf l

• H(lv) is the entropy of leaf lv, the leaf where all instances of l with value v in Xα arrive

• |lv| the number of instances of leaf l whose value in Xα is v

• |l| the total number of instances of l

Let us illustrate an extensive example for calculating Information Gain at a certain leaf l for all
possible splitting attributes. The set of examples S that we use is provided in table 2.1.

Outlook Temperature Humidity Windy Class
Rainy Hot High False No
Rainy Hot High True No

Overcast Hot High False Yes
Sunny Mild High False Yes
Sunny Cool Normal False Yes
Sunny Cool Normal True No

Overcast Cool Normal True Yes
Rainy Mild High False No
Rainy Cool Normal False Yes
Sunny Mild Normal False Yes
Rainy Mild Normal True Yes

Overcast Mild High True Yes
Overcast Hot Normal False Yes
Sunny Mild High True No

Table 2.1: Set of Instances S

The candidate splitting attributes set is defined as X = {Outlook, Temperature,Humidity,Windy},
the class distribution as pc = {pyes, pno} while the values for each attribute are:

• Outlook = {Rainy,Overcast, Sunny}

• Temperature = {Hot,Mild, Cool}

• Humidity = {High,Normal}

• Windy = {False, True}

In the beginning, we calculate the entropy based on S as follows:

H(l) = −
|pc|∑
i=1

pi log2 pi = −pyes log2 pyes − pno log2 pno

= − 9

14
log2

(9

14

)
− 5

14
log2

(5

14

)
= 0.94 bits

Zafeiria Moumoulidou 9 August 2018

Next, we find how S is divided over the various branches when a certain atttribute is chosen as
the splitting attribute at an internal node. The result of the procedure derives as:

Attribute Value Yes No Line Sum

Outlook
Rainy 2 3 5

Overcast 4 0 4
Sunny 3 2 5

Temperature
Hot 2 2 4
Mild 4 2 6
Cool 3 1 4

Humidity High 3 4 7
Normal 6 1 7

Windy False 6 2 8
True 3 3 6

Table 2.2: Partitions Of S across different attributes

Our goal is to find which of those attributes best splits our node; so we need to find which one
maximizes the Information Gain criterion. We will now extensively show how Information Gain
is calculated for Outlook attribute:

• H(l) = 0.94 bits

• |lRainy|
|l|

·H(Rainy) =
5

14
0.97 = 0.346 bits with

H(Rainy) = −2

5
log2

(2
5

)
− 3

5
log2

(3
5

)
= 0.97 bits

• |lOvercast|
|l|

·H(Overcast) =
4

14
0 = 0 bits with

H(Overcast) = −4

4
log2

(4
4

)
− 0

4
log2

(0
4

)
= 0 bits

• |lSunny|
|l|

·H(Sunny) =
5

14
0.97 = 0.346 bits with

H(Sunny) = −3

5
log2

(3
5

)
− 2

5
log2

(2
5

)
= 0.97 bits

The Information Gain for Outlook attribute, is computed as:

Zafeiria Moumoulidou 10 August 2018

G(l, Outlook) = 0.94− 2 · 0.346− 0 = 0.247 bits

Following similar procedure for all attributes the final values for Information Gain in set X are:

1. G(l, Outlook) = 0.247 bits

2. G(l, T emperature) = 0.029 bits

3. G(l,Humidity) = 0.152 bits

4. G(l,Windy) = 0.048 bits

As a result, the best attribute which we choose for the split is Outlook since we care about
maximizing the value of Information Gain.

2.1.3.2 Gini Index

Another function which is used as Split Evaluation Function while building decision tree learners
is Gini Index. The definition of Gini index at a a leaf l for a certain attribute Xα is:

G(l,Xα) = Gini(l)−
∑

v ∈ Xα_values

|lv|
|l|

Gini(lv) (2.4)

where:

• Gini(l) is Gini function at leaf l

• Gini(lv) is Gini function at leaf lv, the leaf where all instances of l with value v in Xα

arrive

• |lv| the number of instances of leaf l whose value in Xα is v

• |l|the total number of instances of leaf l

Given a set of possible classes C = {c1, c2, ..., cn}, Gini function at a leaf l is defined as follows:

Gini(l) = 1−
∑
c ∈ C

(pc)
2

where pc is the class probability at leaf l.

Zafeiria Moumoulidou 11 August 2018

Figure 2.3: Gini over Bernoulli distribution

In the following figure, we observe how Gini behaves in relation to Bernoulli distribution.

Again the less pure a set is, the more increase the value of Gini while the maximum value occurs
when probabilities are equal.

2.2 Streaming Decision Tree Model

The traditional methods for building decision tree models suppose that the training set used to
create a classifier is located in main memory and that is available for recurrent processing. Nev-
ertheless, in the era of Big Data, storage might become prohibitively costly and in conjunction
with the rapid data production rate, the need for building a model for mining high speed data
streams emerges.

Below we briefly introduce some characteristics of the stream processing model:

– Data streams arrive at a high speed in continuous manner

– Data streams are considered to be infinite

– Memory is limited, no capability of storing the streams

– Each instance of data is processed only once at the moment of arrival (Single Pass over
data)

– Small processing time per record

2.2.1 Hoeffding Trees

Domingos and Hulten [3] propose a new system, which is able to process and incorporate a
potentially infinite set of data without the need to store any of the instances and with the

Zafeiria Moumoulidou 12 August 2018

ability to spend only a small constant time to process each one of them. Their solution is based
on the observation that finding the best attribute at an internal node of the model, requires
having processed only a subset of the instaces that would originally arrive to that node. In
order to understand when the number of instances that arrived to a certain leaf are sufficient to
make a decision regarding which attribute to split on, they use the statistical Hoeffding bound.
Consequently, we describe what Hoeffding bound states; Given a random variable r whose range
is R 1 and n observations of r over which the mean r̄ of the variable is computed, Hoeffding
bound guarantees that with probability 1− δ the true mean of r, µr , differs from r̄ at most by
ϵ , where ϵ is defined as:

ϵ =

√
R2 · ln(1/δ)

2n
(2.5)

In other words, by using this statistical bound we are sure that Prob
(
|r̄ − µr| ≥ ϵ

)
≤ δ. Note

that the bound depends only on the observations seen, confindence interval 1− δ and range R.
Therefore, it is independent of the distribution. However, the main disadvantage is that in the
general case different number of instances may be required to reach the same ϵ and δ for data
with different distributions.

In the case of decision trees, the aim is to ensure with high confidence that the attribute to be
chosen after seeing only a subset of examples at a leaf l will be identical to the one that would
have been chosen if the leaf had processed all of its training examples. In the traditional decision
tree models, in order to decide which attribute to split on, we need to solve a maximization
problem over diverse split evalution functions G’s, one for each candidate splitting attribute.

In the streaming setting, since we cannot calculate the true G, we have to make a decision based
on the Ḡ value which is computed over a subset of n observations of G. What Domingos and
Hulten state is that by using Hoeffding bound it can be guaranteed that the correct attribute will
be chosen at a leaf l. More specifically, suppose that the attribute with the best Ḡ is Xα whereas
Xb is the one with the second best Ḡ. Now, define the difference ∆Ḡ = Ḡ(Xα) − Ḡ(Xb) ≥ 0.
Then if the leaf has processed n training examples and ∆Ḡ > ϵ, Hoeffding bound guarantees
with confidence 1− δ that Xα is the correct choice since ∆Ḡ differs from the true ∆G at most
by ϵ. Thus, based on that observation they built the Hoeffding Tree (HT) algorithm, which is
presented at 2.

Regarding the computation of the different Ḡ’s, the sufficient information (statistics) each leaf
needs to store is the number of examples processed for each attribute, for each value and for

1for Entropy R = log c, where c is the number of classes and for Gini index R = 1

Zafeiria Moumoulidou 13 August 2018

each class; Domingos and Hulten refer to these statistics using the term nijk. Therefore, the
total memory required for the model is O(ldvc), where l is the number of leaves of HT, d is
the number of attributes, v the maximum number of values per attribute and c the number of
classes.

Below, we provide the Hoeffding Tree Algorithm for discrete attributes:

Algorithm 2 The Hoeffding Tree Algorithm
Input: Training examples set S, Set X of discrete attribute, Split Evaluation Function G, δ

1: procedure HoeffdingTree(S, X, G, δ)
2: Initialize HT Tree with leaf l1 as the root
3: Initialize sufficient statistics nijk at leaf l1
4: Let Ḡ1(X∅) be the Ḡ for the no-split scenario at l1.
5: for each instance si in training set S do
6: Use HT to sort si into a leaf l
7: for each attribute in Xl, for each value, for each class do
8: Update accordingly the statistics nijk at leaf l
9: Increment accordingly the number of instances nl that leaf l has seen so far

10: if l is not pure then
11: for each attribute Xi in Xl do
12: Calculate Ḡ(Xi) using the statistics at leaf l
13: Let Xα be the attribute with the highest Ḡ at leaf l
14: Let Xb be the attribute with the second highest Ḡ at leaf l
15: Calculate Hoeffding Bound ϵ =

√
R2ln(1/δ)

2nl

16: if ∆Ḡ = Ḡ(Xα)− Ḡ(Xb) > ϵ and Xα ̸= X∅ then
17: Replace leaf l with an internal node that splits on Xα

18: for each branch of the split do
19: Create a leaf lm and set Xm = X − {Xα}
20: Let Ḡm(X∅) be the Ḡ for the no-split scenario at lm
21: Initialize statistics for lmReturn HT

According to the Hoeffding Tree algorithm, we have a model tha initially starts from a single
leaf (root). For each training instance that we get, we use the model to lead the example to the
correct leaf l. When l has been reached, the statistics and the number of processed examples
in l are updated in addition to calculating Hoeffding bound ϵ. Notice that the value of ϵ is
inversely proportional to nl, which means that the more examples a leaf has processed, the less
evidence it needs to decide which attribute is better. Moreover, for every example that arrives
into a leaf l, Ḡ function for all attributes ∈ Xl is computed and we check whether the splitting
condition described above is satisfied. Note, that the solution Domingos and Hulten proposed
carries out pre-pruning; thus, no split takes place if the no-splitting scenario is better than the

Zafeiria Moumoulidou 14 August 2018

splitting one. Finally, when the model decides it is time to split a leaf, a new leaf is created for
each branch of the split.

2.2.1.1 Very Fast Decision Tree Learner (VFDT)

Domingos and Hulten [3] present VFDT system which is based on the Hoeffding Tree algorithm
presented above with some refinements. In particular , they notice that the probability that
a single example will be the one that would provide the model the confidence it needs in
order to conduct a split on a leaf l is negligible. Thus, they suggest to check whether the
splitting condition is satisfied at a leaf l after processing a batch of training examples (nmin).
Furthermore, in order to avoid consuming many examples so as to make a decision at a leaf l
whose the two highest Ḡ’s might have similar values, they present a tie threshold τ . As a result,
the new splitting condition is ∆Ḡ = Ḡ(Xα) − Ḡ(Xb) > ϵ or ϵ < τ . In other words, when ϵ

makes us more confident than we need, regardless of the value of ∆Ḡ, we are ready to complete
the split.

Moreover, they provide a refinement for the Hoeffding Tree algorithm so as to work efficiently
under memory constraints. In particular, they suggest to deactivate a portion of the leaves, the
least promising ones accroding to the error reduction they offer to the model. Nonetheless, they
keep monitoring the promise metric for all leaves, either active or not, and in regular basis they
check whether a deactivated leaf might have become more promising than an active one so as
to replace it. Finally, they suggest to drop from consideration an attribute at a leaf l that is
does not look promising considering that data distribution is supposed to be random.

2.2.2 Extensions of Hoeffding Trees and VFDT System

G. Hulten et al [4] propose an extension to the basic algorithm of VFDT for mining concept-
adaptive data streams. In particular, CVFDT uses a sliding window model so as to detect
changes in the concept of input streams and to evaluate the current decision tree model. In
contrary to VFDT where once a split decision is made is permanent, in CVFDT they monitor
whether the attribute chosen at an internal node remains the best choice while the stream
evolves. In case that another attribute becomes better than the one on which a split was made,
that subtree is deactivated and replaced by an alternative subtree which splits on the new best
attribute.

Moreover, Gama et al [13] propose V FDTc an extension of VFDT so as to efficiently handle
numeric attributes. More precisely, each possible split is a node in a binary tree while a new

Zafeiria Moumoulidou 15 August 2018

split point is inserted into the tree only when there is a significant proportion od input data
with that value. Finally, they propose a method for computing the split evaluation function for
every split point in the binary tree while they suggest to use a Naive Bayes classifier into the
leaves of the tree model so as to determine the class label instead of assigning to leaf the most
representative class.

2.3 Distributed Streaming Decision Trees

In the beginnining, recall that in the distributed streaming setting we consider a set of pro-
cessing sites S = {s1, s2, ..., sn} which process a set of data streams D = {d1, d2, ..., dn}. The
partitioning of the data across the sites might be horizontal or vertical. In horizontal parti-
tioning the data are equally divided across the sites whereas in vertical partitinioning, a site is
responsible for monitoring some features, thereby columns of the data. For example, in decision
trees an example of vertical partinioning is that each site monitors a subset of the attributes.

Ben-Haim et al [10] propose an approximate streaming parallel algorithm for decision trees
with horizontal partitioning. In their solution, there is a set of slave processing sites which
build histograms over the bucket of data they process so as to maintain the statistics needed for
building the decision tree while they have access to the classification tree built till the current
moment. Periodically, the sites send their histograms to a master site, which then aggregates
them accordingly so as to use them for growing the tree model.

In the work of A. Murdopo et al [10], [12] they design a distributed streaming algorithm for
learning decision trees using vertical partinioning across data on top of Apache SAMOA, a
platform for mining big data streams. More precisely, in the work of Murdopo et al there is a
model-aggregator component which is responsible for maintaining and growing the decision tree
model, while the processing sites are responsible for maintaining the local statistics for certain
attributes for the different leaves based on the updates they receive from the tree model. In
other words, each of the processing sites is able to compute the split evaluation function at leaf
l for the attribute it monitors independently. Therefore, when the model aggregator decides it
is time to check if the splitting condition at a leaf l is satisfied, the sites compute the diverse
split evaluation functions for the attributes they monitor, find the two local best and inform
the model aggregator. Once the model aggregator receives the information needed, it is ready
to find the two global best attributes among the local best and checks whether the splitting
condition is satisfied.

Zafeiria Moumoulidou 16 August 2018

2.4 Geometric Function Monitoring Over Distributed Streams

The work of Sharfman et al [5] addresses the problem of monitoring the value of a function over
distributed streams. They propose a novel method for detecting whether the value of function
has crossed a predetermined threshold T , namely whether f(·) > T or f(·) < T . While the
problem formulation might be trivial for linear functions that is not the case for the non-linear.
Thus, in the general case no conclusions for the value of f can be made from seeing only a subset
of its data.

For the problem formulation, consider a set of processing sites S = {s1, s2, ..., sn} where a set
D = {d1, d2, ..., dn} of n data streams arrives and a Coordinator site. Each site si ∈ S maintains
a d-dimensional local statistics vector vi(t) . We define the global statistics vector as follows:

v(t) =

n∑
i=1

wivi(t)

n∑
i=1

wi

(2.6)

where w1, w2, ..., wn are positive weights which can be constant or time-varying. What we want
to know at any time is whether f

(
v(t)

)
, namely the value of f expressed over the global statistics

vector, is above/below a predetermined threshold T.

Sharfman et al noticed that although local f values in sites do not provide any information for
the global f value, we can make safe conclusions by monitoring the domain of f . The solution
they propose is divided into two phases; the monitoring and the synchronization phase. In the
latter, the sites communicate with the coordinator site which gathers all local statistics vector
v′i(t), where v′i(t) refers to the last sent local statistics vector of site i. As soon as the coordinator
receives all v′i(t) ’s calculates the current v(t), which we will refer to as estimate vector e(t) and
sends it back to the sites. In other words, the estimate vector holds the last known global vector
v(t) that was calculated in the last sychronization phase. Along with e(t) and its local statistics
vector, each site holds and updates some extra vectors all of which are gathered below:

• Local statistics vector: vi(t)

• Estimate vector: e(t) =

n∑
i=1

wiv
′
i(t)

n∑
i=1

wi

• Drift Vector: ui(t) = e(t) + ∆vi(t) where ∆vi(t) = vi(t)− v′i(t)

Zafeiria Moumoulidou 17 August 2018

Figure 2.4: Estimate vector e(t), Drift vectors ui(t), current global vector v(t) and Bouncing
balls B(e(t), ui(t)), Figure Source: [6]

In [5] they prove that:

v(t) =

n∑
i=1

wiui(t)

n∑
i=1

wi

(2.7)

which declares that at any time the true global statistics vector lies within the convex hull the
drift vectors {u1, u2, ..., un} held by the individual sites form. The geometric interpretation of
the current observation can be depicted in figure 2.4. Hence, we know that if we guarantee that
all f -values over all the points within the convex hull lie in the admissible area, then f(v(t))

also lies there. In order to achieve this, Sharfman et al make use of the following theorem:

Theorem 2.1. Let x⃗, y⃗1, y⃗2, ..., y⃗n be a set of vectors in Rd. Let Conv(x⃗, y⃗1, y⃗2, ..., y⃗n) be the
convex hull of x⃗, y⃗1, y⃗2, ..., y⃗n. Let B(x⃗, y⃗i) be a ball centered centered at x⃗+y⃗i

2 with a radius of∥∥∥ x⃗−y⃗i
2

∥∥∥. Then Conv(x⃗, y⃗1, y⃗2, ..., y⃗n) ⊂
n∪

i=1
B(x⃗, y⃗i).

In our problem formulation, x⃗ is the estimate vector e(t) while yi’s are the drift vectors ui’s. So
we conclude that any time the convex hull of the drift vectors is bounded by the union of the n

balls B(e(t), ui(t)) centered at e(t) + ui(t)

2
with a radius of ∥e(t)− ui(t)∥

2
. Note that each site i

is able to construct its ball independently without the need for communication, since both e(t)

and ui(t) are known. Using the above theorem, a way to check whether all f -values over the
convex hull of ui’s lie in the admissible area, therefore f(v(t)) lies in there, is to check whether
the points of all spheres also lie in the admissible area.

Zafeiria Moumoulidou 18 August 2018

Subsequently, let the area in Rd, with y ∈ Rd, where f(y⃗) > T be green while the area where
f(y⃗) ≤ T be red. Then each site, has to check whether its Ball is monochromatic. As long as
all balls are monochromatic, it is guaranteed that the convex hull of ui’s, therefore v(t), has not
moved towards the inadmissible area.

Given the above observation, in the monitoring phase each site i checks whether its ball
B(e(t), ui(t)) remains monochromatic by calculating the minimal and maximal values of f within
B. In the event of a non-monochromatic Ball, the site communicates with the coordinator who
then initializes a sychronization process in order to detect whether f(v(t)) has crossed the
threshold. Note that since Conv

(
e(t), u1(t), u2(t), ..., un(t)

)
⊂

n∪
i=1

B(e(t), ui(t)) there are cases

when a local violation occurs but the convex hasn’t crossed the threshold surface.

Monitoring Skylines over Distributed Streams

In the work of Papapetrou and Garofalakis [6] they use the Geometric Method for monitoring a
fragmented continuous skyline over distributed streams. They observe that in order to maintain
the skyline the following events should be monitored:

1. The entrance of a non-skyline object into skyline

2. The rank between skyline objects, changes in which might cause an object to exit the
skyline

In order to monitor the above problems they define pivot points as the midpoint between the
f-values of the objects. For the first monitoring problem, they observe that a non skyline object
cannot enter the skyline if there is at least one skyline object that is better than it while for
the second monitoring problem they observe that not all pairs of skyline objects should be
monitored since some introduce tighter constraints than other, which will be violated first.

Zafeiria Moumoulidou 19 August 2018

Zafeiria Moumoulidou 20 August 2018

Chapter 3

Solution Sketch

In this chapter we show how we can incorporate the geometric monitoring method proposed by
Sharfman et al [5] so as to design a novel decentralized model for the Hoeffding Tree algorithm
presented in 2.

3.1 Our Approach

3.1.1 Formulation of Split Evaluation Function

In the beginning, recall that the main concept of the Hoeffding Tree algorithm is to decide with
high confidence which attribute is the best for a leaf to split on. In order to do so, Domingos
and Hulten suggest that each leaf maintain the statistics needed for its split evaluation functions
whose values are computed at arrival of an instance x in order to find the top-2 functions. The
split occurs when the diferrence between the two functions crosses a threshold ϵ.

From the procedure described above, we notice that we could use the Geometric Method for
monitoring that difference in a distributed and continuous manner. However, we have to express
the split evaluation function Ḡ over the mean of the local statistics vectors of n processing sites
as Burdakis and Deligiannakis do in [7] for other functions however. At first, note that the
sufficient statistics to calculate Ḡ function at a leaf l for a discrete attribute Xα are the counts
for each class, for each value of Xα.

Now, consider a set of processing nodes S = {s1, s2, ..., sn} where a set of data streams D =

{d1, d2, ..., dn} arrives in a distributed manner. In the beggining, suppose we have a discrete
attribute Xα whose values, for reason of simplicity, belong in set V = {α1, α2} and the class

21

labels C = {c1, c2}. In order to compute Ḡ(l,Xα) over a global statistics vector v(t), each site i

should maintain the following local statistics vector:

vi(t) =
[
nc1
α1,i

(t) nc2
α1,i

(t) nc1
α2,i

(t) nc2
α2,i

(t)
]T

where nc1
α1,i

(t) refers to the number of the examples which site i read and which arrived at leaf
l with value α1 in attribute Xα and class label c1. In a similar manner the notation extends to
all the vector elements.

In general, vi(t) will be a d-dimensional vector, with d = m × n, where m: number of dis-
tinct values for the monitoring attribute (|V|) and n : number of distinct classes used in the
classification (|C|). The global statistics vector, given the definition in (2.4) is:

v(t) =

∑
i
wi · vi(t)∑

iwi

wi=1 ∀ i−−−−−→

=

∑
i
vi(t)

N
where N = |P |

In vector form we get:

v(t) =
1

N
·
[∑

i
nc1
α1,i

(t)
∑
i
nc2
α1,i

(t)
∑
i
nc1
α2,i

(t)
∑
i
nc2
α2,i

(t)
]T

(3.1)

Our purpose now is to express split evaluation function G over v(t). Next, we show how both
Information Gain and Gini Index are formulated given the global statistcs vector v(t).

3.1.1.1 Information Gain as Split Evaluation Function G

Recall that the definition of Information gain at a leaf l for a certain attribute Xα is:

Ḡ(l,Xα) = H(l)−
∑

v ∈ V={α1,α2}

|lv|
|l|

H(lv) (3.2)

where:

Zafeiria Moumoulidou 22 August 2018

• H(l) is the entropy of leaf l

• H(lv) is the entropy of leaf lv, the leaf where all instances of l with value v in Xα arrive

• |lv| the number of instances of leaf l whose value in Xα is v

• |l| the total number of instances of l

Subsequently we express each term of Ḡ(l,Xα) over the global statistics vector v(t) (3.1). Given
class distribution p = {Prob(C = c1), P rob(C = c2)} = {p1, p2} we have:

H(l) = −p1 log2 p1 − p2 log2 p2

= −
∑

nc1

|l|
· log2

(∑
nc1

|l|

)
−
∑

nc2

|l|
· log2

(∑
nc2

|l|

)

= −v(1) + v(3)
4∑

i=1
v(i)

· log2
(
v(1) + v(3)

4∑
i=1

v(i)

)
− v(2) + v(4)

4∑
i=1

v(i)

· log2
(
v(2) + v(4)

4∑
i=1

v(i)

) (3.3)

Given the class distribution at leaf lα1 , pL1 = {Prob(C = c1|V = v1), P rob(C = c2|V = v1)} =
{pL11 , pL12} we have:

H(lα1) = −pL11 log2 pL11 − pL12 log2 pL12

= −
∑

nc1
α1

|lα1 |
· log2

(∑
nc1
α1

|lα1 |

)
−
∑

nc2
α1

|lα1 |
· log2

(∑
nc2
α1

|lα1 |

)

= − v(1)
2∑

i=1
v(i)

· log2
(

v(1)
2∑

i=1
v(i)

)
− v(2)

2∑
i=1

v(i)

· log2
(

v(2)
2∑

i=1
v(i)

) (3.4)

with the weighted value:

Zafeiria Moumoulidou 23 August 2018

|lα1 |
|l|
·H(lα1) =

2∑
i=1

v(i)

4∑
i=1

v(i)

·

[
− v(1)

2∑
i=1

v(i)

· log2
(

v(1)
2∑

i=1
v(i)

)
− v(2)

2∑
i=1

v(i)

· log2
(

v(2)
2∑

i=1
v(i)

)]

= − v(1)
4∑

i=1
v(i)

· log2
(

v(1)
2∑

i=1
v(i)

)
− v(2)

4∑
i=1

v(i)

· log2
(

v(2)
2∑

i=1
v(i)

) (3.5)

Similarly at leaf lα2 given the class distribution pL2 = {Prob(C = c1|V = v2), P rob(C = c2|V =

v2)} = {pL21 , pL22} we have:

H(lα2) = −pL21 log2 pL21 − pL22 log2 pL22

= −
∑

nc1
α2

|lα2 |
· log2

(∑
nc1
α2

|lα2 |

)
−
∑

nc2
α2

|lα2 |
· log2

(∑
nc2
α2

|lα2 |

)

= − v(3)
4∑

i=3
v(i)

· log2
(

v(3)
4∑

i=3
v(i)

)
− v(4)

4∑
i=3

v(i)

· log2
(

v(4)
4∑

i=3
v(i)

) (3.6)

with the weighted value:

|lα2 |
|l|
·H(lα2) =

4∑
i=3

v(i)

4∑
i=1

v(i)

·

[
− v(3)

4∑
i=3

v(i)

· log2
(

v(3)
4∑

i=3
v(i)

)
− v(4)

4∑
i=3

v(i)

· log2
(

v(4)
4∑

i=3
v(i)

)]

= − v(3)
4∑

i=1
v(i)

· log2
(

v(3)
4∑

i=3
v(i)

)
− v(4)

4∑
i=1

v(i)

· log2
(

v(4)
4∑

i=3
v(i)

) (3.7)

Combining (3.3) (3.5) and (3.7) Ḡ(l,Xα) expressed over v(t) is:

Zafeiria Moumoulidou 24 August 2018

Ḡ(l,Xα) = H(l)−
∑

v ∈ V={α1,α2}

|lv|
|l|

H(lv) =

−v(1) + v(3)
4∑

i=1
v(i)

· log2
(
v(1) + v(3)

4∑
i=1

v(i)

)
− v(2) + v(4)

4∑
i=1

v(i)

· log2
(
v(2) + v(4)

4∑
i=1

v(i)

)
︸ ︷︷ ︸

H(l)

+
v(1)
4∑

i=1
v(i)

· log2
(

v(1)
2∑

i=1
v(i)

)
+

v(2)
4∑

i=1
v(i)

· log2
(

v(2)
2∑

i=1
v(i)

)
︸ ︷︷ ︸

−
|lα1 |
|l|

·H(lα1)

+
v(3)
4∑

i=1
v(i)

· log2
(

v(3)
4∑

i=3
v(i)

)
+

v(4)
4∑

i=1
v(i)

· log2
(

v(4)
4∑

i=3
v(i)

)
︸ ︷︷ ︸

−
|lα2 |
|l|

·H(lα2)

(3.8)

3.1.1.2 Gini Index as Split Evaluation Function G

Recall that the definition of Gini index at a leaf l for a certain attribute Xα is:

Ḡ(l,Xα) = Gini(l)−
∑

v ∈ V={α1,α2}

|lv|
|l|

Gini(lv) (3.9)

where:

• Gini(l) is Gini function at leafl

• Gini(lv) is Gini function at leaf lv, of leaf lv, the leaf where all instances of l with value v
in Xα

• |lv| �he number of instances of leaf l whose value in Xα is v

• |l| the total number of instances of l

Given a set of possible classes C = {c1, c2, ..., cn}, Gini function at a leaf l is defined as follows:

Gini(l) = 1−
∑
c ∈ C

(pc)
2

Zafeiria Moumoulidou 25 August 2018

where pc is the class probability at leaf l.

We express each term of Ḡ(l,Xα) over the global statistics vector v(t) 3.1. Given class distri-
bution p = {Prob(C = c1), P rob(C = c2)} = {p1, p2} we have:

Gini(l) = 1− p21 − p22

= 1−

(∑
nc1

|l|

)2

−

(∑
nc2

|l|

)2

= 1−

(
v(1) + v(3)

4∑
i=1

v(i)

)2

−

(
v(2) + v(4)

4∑
i=1

v(i)

)2

(3.10)

Given class distribution at leaf lα1 , pL1 = {Prob(C = c1|V = v1), P rob(C = c2|V = v1)} =

{pL11 , pL12} we have:

Gini(lα1) = 1− p2L11
− p2L12

= 1−

(∑
nc1
α1

|lα1 |

)2

−

(∑
nc2
α1

|lα1 |

)2

= 1−

(
v(1)
2∑

i=1
v(i)

)2

−

(
v(2)
2∑

i=1
v(i)

)2

(3.11)

with weighted value:

Zafeiria Moumoulidou 26 August 2018

|lα1 |
|l|
·Gini(lα1) =

2∑
i=1

v(i)

4∑
i=1

v(i)

·

[
1−

(
v(1)
2∑

i=1
v(i)

)2

−

(
v(2)
2∑

i=1
v(i)

)2]

=

2∑
i=1

v(i)

4∑
i=1

v(i)

− v(1)2

2∑
i=1

v(i)

· 1
4∑

i=1
v(i)

− v(2)2

2∑
i=1

v(i)

· 1
4∑

i=1
v(i)

=

2∑
i=1

v(i)

4∑
i=1

v(i)

− v(1)2 + v(2)2

2∑
i=1

v(i) ·
4∑

i=1
v(i)

(3.12)

Similarly at leaf lα2 given the class distribution pL2 = {Prob(C = c1|V = v2), P rob(C = c2|V =

v2)} = {pL21 , pL22} we have:

Gini(lα2) = 1− p2L21
− p2L22

= 1−

(∑
nc1
α2

|lα2 |

)2

−

(∑
nc2
α2

|lα2 |

)2

= 1−

(
v(3)
4∑

i=3
v(i)

)2

−

(
v(4)
4∑

i=3
v(i)

)2

(3.13)

with weighted value:

Zafeiria Moumoulidou 27 August 2018

|lα2 |
|l|
·Gini(lα2) =

4∑
i=3

v(i)

4∑
i=1

v(i)

·

[
1−

(
v(3)
4∑

i=3
v(i)

)2

−

(
v(4)
4∑

i=3
v(i)

)2]

=

4∑
i=3

v(i)

4∑
i=1

v(i)

− v(3)2

4∑
i=3

v(i)

· 1
4∑

i=1
v(i)

− v(4)2

4∑
i=3

v(i)

· 1
4∑

i=1
v(i)

=

4∑
i=3

v(i)

4∑
i=1

v(i)

− v(3)2 + v(4)2

4∑
i=3

v(i) ·
4∑

i=1
v(i)

(3.14)

Combining (3.10), (3.12) and (3.14), Ḡ(l,Xα) expressed over v(t) is:

G(l,Xα) = Gini(l)−
∑

v ∈ V={α1,α2}

|lv|
|l|

Gini(lv) =

1−

(
v(1) + v(3)

4∑
i=1

v(i)

)2

−

(
v(2) + v(4)

4∑
i=1

v(i)

)2

︸ ︷︷ ︸
Gini(l)

−

(2∑
i=1

v(i)

4∑
i=1

v(i)

− v(1)2 + v(2)2

2∑
i=1

v(i) ·
4∑

i=1
v(i)

)
︸ ︷︷ ︸

|lα1 |
|l|

·Gini(lα1)

−

(4∑
i=3

v(i)

4∑
i=1

v(i)

− v(3)2 + v(4)2

4∑
i=3

v(i) ·
4∑

i=1
v(i)

)
︸ ︷︷ ︸

|lα2 |
|l|

·Gini(lα2)

(3.15)

Zafeiria Moumoulidou 28 August 2018

3.1.2 Monitoring the Splitting Condition in Hoeffding Trees

Consider a leaf l in a Hoeffding tree with the set of candidate splitting attributes Xl =

{X1, X2, ..., Xn} ⊆ X, with equality at the root. Given the two attributes Xα, Xb ∈ Xl, which
maximize the value of split evaluation function G the splitting condition at l is expressed as: (
see 2)

∆Ḡl = Ḡ(l,Xα)− Ḡ(l,Xb) > ϵ (3.16)

Our purpose now is to express the above monitoring problem using the appropriate and the
minimum number of thresholds. At first, notice that the problem is divided into two subprob-
lems:

– Find the top-2 Ḡ′s at leaf l over a set on n attributes

– Check whether f > ϵ

In parallel with the work briefly described in 2.4 for us the skyline is monitoring the top-2 objects
(Ḡ : object); thus, we should monitor when an object that was not in top-2, may become better
that the first or second. Note however, that in order to become better than the first, an object
has to primarily become better from the second, an idea introduced for the skyline monitoring
in [6]. Moreover, we want to know when diffence between the top-2 objects crosses ϵ without
caring if the order between the first and second changes at any given point.

At first, observe that G functions are defined as f(v(t)) : Rd
+ 7→ R and that G is not a monotonic

function over its domain. Given an initial ranking between attributes Xi ∈ Xl and the values
of Ḡ(l,Xα) and Ḡ(l,Xb), with Ḡ(l,Xα) ≥ Ḡ(l,Xb), we use their midpoint as a pivot point, idea
also introduced in [6], between the two with :

µ =
Ḡ(l,Xα) + Ḡ(l,Xb)

2

Using µ, we define a line segment Y of length ϵ with bounds [µ− ϵ

2
, µ+

ϵ

2
]. Note that as long as

both values belong in Y then it is guaranteed that ∆Ḡl = Ḡ(l,Xα)− Ḡ(l,Xb) ≤ ϵ. As a result,
the thresholds for monitoring when the difference between the two best functions crosses ϵ are
the following:

Zafeiria Moumoulidou 29 August 2018

– Ḡ(l,Xα) > µ+
ϵ

2

– Ḡ(l,Xα) < µ− ϵ

2

– Ḡ(l,Xb) > µ+
ϵ

2

– Ḡ(l,Xb) < µ− ϵ

2

Subsequently, we need to define a threshold so as to detect when a non top-2 Ḡ(l,Xi) with
Xi ∈ Xl −{Xα, Xb} might become one. Notice that, all non top-2 Ḡ(l,Xi) should check at any
given point if their value dominates the value of the second best attribute. So, a first approach
is to check whether Ḡ(l,Xi) > µ − ϵ

2
. On second thought, however, we realize that as long as

Ḡ values move in Y then despite their current rank it is guaranteed that the splitting condition
(3.16) at leaf l is not satisfied, since the distance between any points in Y is not greater than ϵ.
Therefore, the optimal threshold for all Xi ∈ Xl−{Xα, Xb} is to check whether Ḡ(l,Xi) > µ+

ϵ

2
.

Below, we provide the geometric representation of the ideas described above where Xl =

{X1, X2, ..., X5} with initial rank Ḡ(l,X1) ≥ Ḡ(l,X2) ≥ ... ≥ Ḡ(l,X5). The notation used
for the objects (functions) is I ∈ {1, 2, ..., 5} = ḠI = Ḡ(l,XI) ∈ R.

Zafeiria Moumoulidou 30 August 2018

(a) The initial rank between Ḡ functions

(b) Ḡ1 and Ḡ2 change positions but no
violation occurs since their difference is

guaranteed to be within ϵ

(c) Ḡ3 becomes better than both Ḡ1, Ḡ2

but within Y it is guaranteed that the dif-
ference between new Xα (X3) and new

Xb (X2) is less than ϵ

Figure 3.1: Geometric Monitoring- No violation Schemes

Note that we do not care whether the ranking between any any non-top 2 Ḡ changes (e.g whether
Ḡ5 gets better than Ḡ3) . Below, are presented some cases tha would cause a violation to the
scheme proposed:

(a) Ḡ2 < µ − ϵ

2
so we have to check the

new ranking of Xi’s and if the splitting
condition is satisfied

(b) Ḡ2 > µ +
ϵ

2
so we have to check the

new ranking of Xi’s and if the splitting
condition is satisfied

(c) Ḡ4 > µ +
ϵ

2
so we have to check the

new ranking of Xi’s and if the splitting
condition is satisfied

Figure 3.2: Geometric Monitoring- Violation Schemes

Zafeiria Moumoulidou 31 August 2018

All in all, the monitoring problems are the following:

• Ḡ(l,Xα) > µ+
ϵ

2
or Ḡ(l,Xα) < µ− ϵ

2

• Ḡ(l,Xb) > µ+
ϵ

2
or Ḡ(l,Xb) < µ− ϵ

2

• Ḡ(l,Xi) > µ+
ϵ

2
with Xi ∈ Xl − {Xα, Xb}

Therefore at a leaf l, given its set Xl and initial rank between Ḡ’s, the threshold monitoring
problems that describe the splitting condition (3.16) are N = 4 + |Xl| − 2 = 2 + |Xl|, which is
O(|X|+ 2) = O(|X|) while the theshold monitoring problems for a Hoeffding decision tree will
be O(

∑
l · |X|). As long as none of these problems at aleaf l cause a violation it is guaranteed

that the splitting condition at l is not satisfied. Nevertheless, if a monitoring problem gives a
local violation, the ranking of Ḡ’s at l should be recomputed and we should also check if the
splitting condition is satisfied.

Zafeiria Moumoulidou 32 August 2018

Zafeiria Moumoulidou 33 August 2018

Chapter 4

Implementation

For the implementation of the decentralized model for Hoeffding Trees using Geometric Method,
we used Apache Storm framework [16] while the programming language we chose was Java. In
the following section, we provide a brief overview of Storm:

4.1 Storm Overview

Storm is a free, open sourse distributed realtime computation system designed by Nathan Marz
1 and the BackType mostly used for stream processing. Below, we provide a brief overview of
its main concepts.

4.1.1 Storm Components

4.1.1.1 Spouts

Data streams are a possibly infinite sequence of tuples, which arrive at Spout component of
Storm. Each tuple is composed of a set of fields, which are primitive data types or any serializable
objects. Spouts are the ones responsible for emitting the tuples to the upcoming processing
stages via streams. Input sources for Spouts might be plain files, APIs like Twitter etc.

1https://github.com/nathanmarz

34

https://github.com/nathanmarz

4.1.1.2 Bolts

The Bolts are the main processing units in Storm Architecture. They receive tuples either
from Spouts’ or other Bolts’ streams. For each tuple, they conduct a type of processing and
potentially emit a new tuple to a stream.

4.1.1.3 Topologies

A topology in Storm is a graph which comprises of diverse Spouts and Bolts that communicate
the one with another via a set of streams. Each Spout or Bolt might emit to multiple streams,
which will be consumed from the following Bolts since it is frequent that topologies have the form
of a DAG. Note that the components of a topology might run in parallel while the parallelism
level of each unit is defined at declaration. Below, we provide an example of a Topology:

Figure 4.1: A topology in Storm

4.1.1.4 Stream Grouping

Considering that the parallelism of a component declares the number of tasks that perform exe-
cution, in order to declare how streams are distributed between different tasks, Storm provides
multiple grouping methods some of which are presented below:

• Shuffle grouping
Tuples are distributed among different tasks in a round robin fashion while it is guaranteed
that tuples will be equally divided between them. For example, if a bolt has parallelism
level ’2’ and the tuples to be processed are 10, it is guaranteed that each task will process
5 tuples.

• Fields grouping
Tuples are distributed based on the value of one or more tuple fields and it reminds us of

Zafeiria Moumoulidou 35 August 2018

a ”Group by” functionality. For example, consider a tuple with fields {name, age} with
fieldsGrouping on name. Then it is guaranteed that the same name will always be led to
the same task.

• All grouping
Tuples are sent to all tasks.

• Global grouping
All tuples of the stream result to a single task, the one with the lowest ID.

• None grouping
Currenlty noneGrouping works as shuffleGrouping. However they plan to execute bolts
with this grouping in the same thread as the bolt or spout they subscribe from.

4.1.2 Our Topology

Figure 4.2: Topology in Storm

Spouts

In the topology Spouts are responsible for providing the next processing stages with the tuple
of information they receive from text files in our case.

In particular, each line of the input file corresponds to a training example which contains
the values for each attribute, the class label as well as a siteID identifier so as to simulate
the set of processing sites S. For instance, a typical input line for the dataset in table 2.1,
would be ”1|Rainy|Hot|Normal|False|No”, which declares that site 1 receives an instance x =

{Rainy,Hot,Normal, False} with class label c = No. The responsibility of the Spouts, is to
produce for each line an object of type ”Example”, which holds information regarding the site
that receives the line, its value on each attribute and its class so as to facilitate its classification

Zafeiria Moumoulidou 36 August 2018

into the tree model. In order to model the attributes, we assign to each one an ID which
represents the attribute-column of the dataset their values are located at (e.g Outlook is assigned
ID ’0’) while during the processing we consider that class label is at last column of the input
line. Furthermore, a similar procedure is followed for converting a class label to an integer(e.g
Yes - ’0’ while No-’1’). So an Example Object for instance x will contain information as: {< 0,
Rainy >, < 1, Hot >, < 2, Normal >, < 3, False >, < class, 1 >, < siteID, 1 > }.

Spouts emit the Example objects produced using shuffleGrouping to Data stream, from which
Hoeffding Tree Bolts consume tuples. In addition, for each attribute they emit the value that
the input has to Value stream with tuple fields ”AttributeID,value” using fieldsGrouping on
attribute field. AttributeTracker Bolts are the ones who process the tuples from Value stream.

AttributeTracker Bolt

Algorithm 3 shows the pseudocode for the processing AttributeTracker Bolt conducts on the
tuples it receives.

Algorithm 3 AttributeTracker Bolt
Input: Tuple T

1: procedure processTuple(T)
2: if T.source equals Value stream then
3: if T.value is not monitored for T.AttributeID then
4: Assign a branchID for the new value
5: Inform the Hoeffding Tree for the new value on T.AttributeID and its branchID

via addVal stream
6: else if T.source equals split stream then
7: Inform the Hoeffding Tree for the split of T.leafID on T.attribute via splitLeaf stream

The responsibility of the AttributeTracker Bolt is to monitor the distinct values for each at-
tribute and assign to them an ID corresponding to the branch (child of an internal node) the
instances should follow while traversing the model tree. For example, for attribute Outlook At-
tributeTracker would produce the following scheme: {Rainy → 0, Overcast → 1, Sunny → 2}.
For each new value they detect for an attribute, they emit a tuple with fields ”attributeToBe-
Updated, newValue, branchID” to addVal stream using allGrouping as all Hoeffding Tree Bolts
should update their information. Also, note that it is important that this branchID assignment
procedure for an attribute should take place in a centralized manner, thus each AttributeTracker

Zafeiria Moumoulidou 37 August 2018

task is responsible for certain attributes, and that all Tree Bolts receive the same scheme so
they produce consistent tree models.

Finally, the AttributeTracker Bolt informs the Hoeffding Tree Bolts which leaf to split on which
attribute when they receive notification from the Coordinator site via split stream. They emit
tuples with fields ”leafID, attribute” to the splitLeaf stream using allGrouping. Again, all-
Grouping is necessary so as to produce the same tree model across the different tasks for the
Hoeffding Tree Bolts.

Hoeffding Tree Bolt

The Hoeffding Tree Bolt is responsible for building the Decision Tree model based on the in-
stances received from Spouts, the information for monitoring the diverse Attributes and split
decision events received from AttributeTracker Bolt. Below in algorithm 4 we provide a pseu-
docode for the behaviour of the Hoeffding Tree Bolt:

Zafeiria Moumoulidou 38 August 2018

Algorithm 4 Hoeffding Tree Bolt
Input: Tuple T

1: procedure processTuple(T)
2: for each attribute in X do
3: Initiliaze map <Value, BranchID>

4: Initialize HT Tree with leaf r as the root
5: Initialize List of Leaves L
6: if T.source equals addVal stream then
7: Update branches’ ID’s for the T.attributeToBeUpdated
8: HT ← UpdateChildren(r,A, L)
9: Sort any stored Examples using the updated HT

10: else if T.source equals Data stream then
11: Sort example to leaf l where l using HT
12: if l ̸= ∅ then
13: for each attribute Xi ∈ Xl do
14: Emit updates for the local statistics vector of T.siteID for Ḡ(l,Xi) via Gmon-

itoring stream

15: else
16: Store example to process it later

17: else if T.source equals splitLeaf stream then
18: Replace T.leafID by an internal node that splits on T.attribute and remove it from

the list of the leaves of the tree
19: for each branch of the split do
20: Create leaf lm with Xm = X − {T.attribute}
21: Add lm to the list of the leaves of the tree

Zafeiria Moumoulidou 39 August 2018

Algorithm 5 UpdateChilren
Input: Node HT.C of Tree HT, Attribute A for which we monitored new value, List of Leaves

L
Output: Tree HT

1: procedure UpdateChildren(HT.C, A, L)
2: if HT.C == leaf then
3: return HT
4: else if HT.C splits on A then
5: Create leaf lm with Xm = XHT.C − {A}
6: Add lm to L
7: return HT
8: else
9: for each branch (node) bi of internal node HT.C do

10: return UpdateChildren(bi, A, L)

return HT

The Hoeffding Tree Bolts for each Example object they receive from Spouts, they use the current
Tree model to lead the instance to the correct leaf. While traversing the tree model, in order
to find how the instance answers the test to be taken, they need to know on which attribute
each internal nodes splits on as well as the value of the instance on that attribute(which is
stored inside Example object). Then, for the current Example and for each attribute in Xl

Χ they emit a tuple via Gmonitoring stream with fields ”siteID, numOfInstances, timestamp,
functionG, value, class, n” using fieldsGrouping on ”siteID” field. More specifically, they inform
the Bolts implementing the Geometric Monitoring how the current instance x affects the local
statistics vector for each function Ḡ(l,Xj) where Xj ∈ Xl of the site si which processed x. In
particular, notice that each instance affects only one index in vi(t), which is equal to index =
value ·#classes + class. Since they continuously send the updates to the the Bolts implementing
the Geometric Monitoring, numOfInstances = 1. Otherwise, for each leaf they should aggregate
for each value for each class for each node how many examples they have seen since the last
time they emitted to Gmonitoring stream. Regarding n, it is a variable that holds the number
of examples a leaf l since the last time we sent the updates for the local statistics vector so that
the bolts for geometric monitoring update nl accordingly. Thus, for each example that arrives
at leaf l they send a batch of updates |Xl|, but nl is incremented only once.

Furthemore, note that since we depend on a streaming model, we assume that the values of
the attributes are not known well in advance. Thus, there is a chance that the instance to

Zafeiria Moumoulidou 40 August 2018

be processed might have a value on attribute of which the model was not aware of the time a
split decision was made. As a result, while traversing the tree the corresponsing branch does
not exist. In order to support this event, we assume that the Hoeffding Tree Bolts store such
instances so as to process them when they get a new-value event from AttributeTracker Bolt
which is the responsible one for monitoring the attributes. When a new-value event occurs,
they update the model the Bolt stores for the branches’ ID’s for the attribute to be updated.
Moreover, they call UpdateChildren procedure 5 , where they recursively traverse the tree
until they find all the nodes that split on the attribute for which a new value has been monitored
and add a new branch for it. The terminating condition is either reach a leaf or find the parent
of the sub-tree that splits on the attribute with the new value. Finally, when a splitLeaf event
occurs, they find the corresponding leaf from the list and split it on the attribute they are told
to and assign a unique ID to all of its children.

Geometric Method Bolt

For the implementation of the Geometric Monitoring of the Split Evaluation Functions at a
leaf l, we use the system that Vasiliki Manikaki developed on Storm in her diploma thesis
[8]. Recall that the distributed computing environment comprises of a set of processing sites
S = {s1, s2, ..., sn} which receive a set of data streams D = {d1, d2, ..., dn} and a coordinator
site. Below, we will briefly describe Manikaki’s approach along with the additions we needed so
as to implement the monitoring scheme described in 3.1.2.

Figure 4.3: Manikaki’s Topology in Storm

In our topology, Spouts are eliminated since the tuples the Geometric Method Bolts receive
come from the GMonitoring stream. Thus, the Bolts’ main responsibility is to implement the
Geometric Method for monitoring whether a function f will cross a threshold T. The Bolts are

Zafeiria Moumoulidou 41 August 2018

responsible for processing the data received from GMonitoring stream, check whether a local
violation occurs at a site after the receipt of the updates for a certain function and inform the
Coordinator if a violation is detected. In addition, in synchronization phase for a monitoring
problem they should send their computed local statistics vectors to the Coordinator. The system
developed by Manikaki supports monitoring multiple functions, while each Bolt is responsible
for representing a subset of the processing S sites. For example for a set S, with |S| = 4 and
a parallelism level in Bolts equal to 2, Bolt 1 will be responsible for two sites and Bolt 2 for
the other two. In particular, each Bolt maintains a HashMap of the functions it monitors,
while each function object contains all the information (e.g local statistics vector, estimate
vector etc) needed for the geometric monitoring distributed among the processing sites S. In
our problem formulation, each site might receive examples for multiple leaves. Therefore, the
Bolts should maintain a Hashmap of the necessary functions for each leaf for which a site that
they represent receives an example. Below we will describe the geometric monitoring of split
evaluation functions at a certain leaf l.

At first, each example that a site si process is classified to a certain leaf l using the tree model
developed by Hoeffding Tree Bolts who are responsible for sending the necessary information to
the Geometric Method Bolts so as to monitor the G functions at l. More specifically, for each
instance that arrives into l, Geometric Method Bolts receive |Xl| tuples containing the following
information:

1. The siteID that processed the example

2. The value for the function

3. Function F, whose name is generated as ”function.InfoGain_attributeID_leaf”

4. The valueID the example had in the F.attributeID

5. The label classID of the example

In order to illustrate how valueID and classID are used in our implementation, consider the
dataset in 2.1 and an instance x = {Rainy,Mild,Normal, T rue, Y es} which arrives at site s1

and arrives to l with ID=0. Below, we show how the values for each attribute and classes are
mapped to IDs :

• Outlook (Attribute_0) : { Rainy → 0, Overcast → 1, Sunny → 2 }

• Temperature (Attribute_1) : { Hot → 0, Mild → 1, Cool → 2 }

Zafeiria Moumoulidou 42 August 2018

• Humidity (Attribute_2) : { High → 0, Normal → 1 }

• Windy (Attribute_3) : { False → 0, True → 1 }

• Class labels : { Yes → 0, No → 1 }

Combining the above information, the tuples that the Geometric Method Bolt receive so as to
update the local statistics vector of site s1 for each attribute in Xl = X for x instance are:

1. ”1|1|function.InfoGain_0_0 |0|0”

2. ”1|1|function.InfoGain_1_0 |1|0”

3. ”1|1|function.InfoGain_2_0 |1|0”

4. ”1|1|function.InfoGain_3_0 |1|0”

The Bolt for each tuple, thus for each function Ḡ, updates the local statistics vector v1 since
siteID = 1. Notice, that each instance affects somehow only one count of those stored in
v1(t), index of which is defined as j = valueID · #numOfClasses + class. For instance , j

for Ḡ(l, Attribute_1) is equal to j = 1 · 2 + 0 = 1, with v1(j)+ = 1 when continuously sending
the updates each instance produces for the Ḡ functions. Above, we described the procedure
for updating the local statistics vector at a processing site si for a function Ḡ. To sum up, the
Bolts for every tuple they receive, they update the appropriate local statistics vector and check
whether a local violation occurs at the site which processed the tuple.

In our monitoring scheme, the threshold chosen depends on the rank of the function for which
we received an update. At initialization, we randomly define the two best functions, with rank
’1’ and ’2’ respectively, across different Ḡ(l,Xi) while we set the pivot point µl = 0 between the
2 best Ḡ’s since we do not have any statistics. In general, the Bolts for every function, despite its
rank, have to check whether a local violation occurs for the monitoring problem Ḡ > µl + ϵl/2.
If no local violation occurs, and the rank of the function for which the Bolts received an update
is equal to ’1’ or ’2’, we also need to check whether a local violation occurs for the monitoring
problem Ḡ < µl − ϵl/2. Note that ϵl changes for every new example a site receives and the
Bolts recalculate it accordingly based on the equation (2.5). If they detect a local violation they
inform the Coordinator Bolt via LV streams with a tuple containing information about the site,
the function and the leaf for which the violation occured.

Furthermore, the Bolts might receive a message from Coordinator requesting the local statis-
tics vector of a function Ḡ at l via SendLSV stream. In that case, the Bolts aggregate the

Zafeiria Moumoulidou 43 August 2018

local statistics vectors of function Ḡ for the sites they are responsible and send it to the Co-
ordinator Bolt via LV1 stream. In addition, each time a violation for a unction Ḡ at l occurs
the Coordinator calculates the new estimate vector and sends it back to the Bolts via GlobalV
stream.

Subsequenlty, in our scheme in case a monitoring condition is satisfied, thus local violation was
not a false positive, the Bolts receive a message from Coordinator requesting their local statistics
vector for all Ḡ functions at leaf l via SendAllLSV stream. Then, the Bolts after they receive
the batch of updates for the instance that caused the violation, for each Ḡ at leaf l aggregate
the local statistics vectors for each site they are responsible and send it to the Coordinator
via findBestAttribute stream. Finally, they may also receive a message from Coordinator via
changeRank stream so as to update the ranking for the Ḡ functions at l along with the value of
µl.

Below we provide the pseudocode describing the procedure described:

Zafeiria Moumoulidou 44 August 2018

Algorithm 6 Geometric Method Bolt
Input: Tuple T

1: procedure processTuple(T)
2: if T.source equals GMonitoring stream then ▷ instance classified into leaf l
3: Ḡl ← T.function
4: site ← T.siteID
5: Update Local Statistics Vector for Ḡl

6: ϵl ←
√

R2·ln(1/δ)
2·nl

7: Threshold t← µl +
ϵl
2

8: if site.hasLocalViolation for Ḡl > t then
9: Report local violation to Coordinator via LV stream

10: else if Ḡl.rank == ’1’ or Ḡl.rank == ’2’ then
11: Threshold t← µl −

ϵl
2

12: if site.hasLocalViolation for Ḡl < t then
13: Report local violation to Coordinator via LV stream

14: else if T.source equals SendLSV stream then
15: Ḡl ← T.function
16: Send local statistics vector for of Ḡl via LV1 stream
17: else if T.source equals GlobalV stream then
18: Ḡl ← T.function
19: Update estimate vector for Ḡl

20: else if T.source equals SendAllLSV stream then ▷ Time to check whether Splitting
condition satisfies

21: for each Ḡl do
22: Send local statistics vector via findBestAttribute stream

23: else if T.source equals changeRank stream then ▷ Rank among Ḡ’s and µl changed
24: µl ← T.µnew

25: for each Ḡl do
26: if Ḡl is in top-2 Ḡ’s then
27: update accordingly Ḡl.rank
28: else
29: Ḡl.rank ← 0

Zafeiria Moumoulidou 45 August 2018

Coordinator Bolt

The Coordinator Bolt is responsible for handling the local violations that occur at diverse
leaves l. Below, we will explain the behaviour of the Coordinator Bolt when a local violation at
a certain leaf l occurs. To begin with, the Coordinator Bolt might receive a local violation event
via LV stream for a function Ḡl. In that case, it requests from the Geometric method Bolts via
SendLSV stream using allGrouping, to send their local statisics vector for Ḡl. When it receives
the local statistics vector from all Bolts, it calculates new estimate vector for Ḡl, and checks
whether its value given the updated estimate vector satisfies the monitoring problem condition.
Recall, that for all Ḡl’s despite their rank we have to check whether Ḡl > µl +

ϵl
2

. Then for

the two best, if the above condition is not satisfied, we have to check whether Ḡl < µl −
ϵl
2

. In
the event that a monitoring condition is true, the Coordinator via SendAllLSV stream using
allGrouping informs the Bolts that they should send the local statistics vectors for all Ḡl as
soon as they receive the batch of updates for a training example (recall that an instance produce
|Xl| updates). Finally, when the Coordinator receives the local statistics vector from all Bolts
for all Ḡl’s, it calculates for each one of them the true estimate vector, finds the ranking order
between them and if the leaf is not pure it checks whether the splitting condition is satisfied.

Below we provide a pseudocode for the procedure described:

Zafeiria Moumoulidou 46 August 2018

Algorithm 7 Coordinator Bolt
Input: Tuple T

1: procedure processTuple(T)
2: if T.source equals LV stream then
3: Ḡl ← T.function
4: Request from Bolts to send their local statistics vector for Ḡl via SendLSV stream
5: else if T.source equals LV1 stream then
6: Ḡl ← T.function
7: Update estimate vector e(t) for Ḡl using the local statistics vector received
8: if all local statistics vectors arrived then
9: Calculate value myVal of Ḡl using estimate vector

10: if myV al > µl +
el
2

then
11: Request from Bolts to send local statistics vector for all Ḡl’s via SendAllLSV

stream.
12: else if Ḡl.rank ==’1’ or Ḡl.rank ==’2’ then
13: if myV al < µl +

el
2

then
14: Request from Bolts to send local statistics vector for all Ḡl’s via SendAl-

lLSV stream.
15: else if T.source equals findBestAttribute stream then
16: if local statistics vector for all Ḡl arrived from all Bolts and l is not pure then
17: for each Ḡl do
18: Calculate its value valj using its estimate vector ej(t)

19: Find the two best Ḡl, Ḡ(l,Xα) & Ḡ(l,Xb)

20: if (∆Ḡ = Ḡ(Xα)− Ḡ(Xb) > ϵl or ϵl < τ) and Xα ̸= X∅ then
21: Decide to split l on Xα

22: Inform the model of the current decision via split stream
23: else
24: Calculate new µl =

Ḡ(l,Xα) + Ḡ(l,Xb)

2
25: Inform the Bolts for new new µl and the new top-2 objects via changeRank

stream

Zafeiria Moumoulidou 47 August 2018

Zafeiria Moumoulidou 48 August 2018

Chapter 5

Experimental Evaluation

In this chapter we describe the experiments we conducted in order to evaluate the monitoring
scheme we propose for the distributed environment. We compare our solution, with the cen-
tralized scheme, lets call it Naive, a notation also used in [5]. In Naive scheme, we suppose
that all local statistics vector arrive at a central node who from the data it receives, computes
the values for each Ḡl in order to find if the splitting condition at l is satisfied. This procedure
takes place for every training example that arrives at l, so each site should communicate with
the central node to inform it in regard with its local statistics vector.

The scope of our experiments is to examine the communication load of the scheme we propose
in relation to Naive scheme. For the experiments, we created a synthetic dataset following the
idea developed in [3], [9]. In particular, we generate decision trees by randomly choosing the
splitting attributes for each node and class labels for the leaves. Then we use those trees to the
assign class label to the instances of the synthetic dataset. More specifically, we consider a set of
300 training examples that arrive at l, with |Xl| = 4 discrete binary attributes and binary class
labels while we set δ parameter equal to 10−3. For counting the number of exchanged messages
in each of the above monitoring schemes for a leaf l, we consider the following formulas:

– Naive scheme: #sites ·#functionḠl ·#instances

– Our scheme: (2 ·#sites+ 1) ·#violations+ 2 ·#sites ·#functionḠl ·#calculateRank

Regarding our scheme, as it can be examined from the formula provided, we care about calcu-
lating the messages needed for the clarification of a local violation as well as those needed for
computing the new ranking of Ḡl in case one of the monitoring conditions is satisfied. For the

49

clarification process, the site which detects the violation informs the coordinator (1 message)
which then requests the local statistics of the processing sites (thus n messages). Finally, the
sites send back to the coordinator what it needs (thus n messages). Similar thinking applies for
the other term of the formula provided. At the figures below, we show the communication load
monitored for our scheme in relation to Naive scheme while the number of processsing sites
increases and how the number of violations increase in relation to the number of sites:

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

Number of Sites

N
um

be
r

of
 m

es
sa

ge
s

Naive Approach
Using geometric method

Figure 5.1: Communication Load for the Proposed Monitoring Scheme

1 2 3 4 5
50

100

150

200

250

300

Number of Sites

N
um

be
r

of
 V

io
la

tio
ns

Figure 5.2: Increase in Violations

Note that the number of updates that arrive to the sites are equal to #sites · |Xl| (linear to
the number of sites) although each training instance affects only |Xl| local statistics vector in

Zafeiria Moumoulidou 50 August 2018

a certain site. Since threshold el for every instance that arrives in l is modified, we have to
check whether the balls remain monochromatic for the new threshold even if the local statistics
vector of a site remains the same. That in conjunction with the fact that a change in estimate
vector of a function Gl might trigger local violations in sites whose local statistics vector is not
modified because of the arrival of an instance, explains why the number of violations increases
with the number of sites. Finally, the local statistics vector for a function Gl in general are
similar across the sites, so if a local violations occurs in one site frequently occurs in others as
well.

Furthermore, we wanted to see how violations spread while the stream evolves, in other words
see when they occur. In parallel, we check the behaviour of the monitoring scheme in case that
the processing sites check whether a local violation occurs after processing a batch of training
examples in an effort to simulate the nmin parameter descibed in [3]. We set the number of
nodes equal to 2 and δ = 10−3 and the results of the experiments conducted are:

0 50 100 150 200 250 300
0
1
2
3
4

Example

#
V

io
la

ti
o

n
s

Num Of violations while stream evolves for d = 10^(-3)

0 50 100 150 200 250 300
0
2
4
6
8

Example

#
V

io
la

ti
o

n
s

Num Of violations while stream evolves for d = 10^(-3) and batch size = 5

0 50 100 150 200 250 300
0
1
2
3
4
5
6
7

Example

#
V

io
la

ti
o

n
s

Num Of violations while stream evolves for d = 10^(-3) and batch size = 20

0 50 100 150 200 250 300
0
2
4
6
8

Example

#
V

io
la

ti
o

n
s

Num Of violations while stream evolves for d = 10^(-3) and batch size = 50

Figure 5.3: Number of violations in relation to the evolution of the stream

In the first subfigure, we see how the violations occur when the nodes check whether there is a
local violation after processing each instance. Recall, that each instance produces |Xl| changes
in Ḡl functions and that each instance arrives to a certain site. Taking into account the above

Zafeiria Moumoulidou 51 August 2018

observations, notice that while stream evolves and Ḡl’s tend to stabilize around a certain range,
the number of violations reduce. In particular, we observe that after the initial examples which
tend to fire local violations for most of Ḡl, then most of the time violations refer to only one
function. That behaviour triggered our desire to understand which function(s), characterized
by their rank, are the ones which cause the violations.

So, we provide a percental distribution of the violations with reference to the ranking of the
function that produced them for diverse schemes which comprise of different number of sites:

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rank of functions

P
er

ce
nt

al
 d

is
tr

ib
ut

io
n

of
 V

io
la

tio
ns

 a
cr

os
s

G
 fu

nc
tio

ns

Figure 5.4: Distribution of violations in regard to function ranking and number of processing
sites

From the results, we notice that the functions that caused the majority of violations are produced
from the top-2 functions. Thus, the interesting part is that most of the time non-top objects
do not cause violations. So we rarely need to actually compute their values in contrary to the
naive approach where for each example we need to compute all Ḡl functions. In fact, in the
monitoring scheme we propose, the occasions for which we need to compute the value of a Ḡl is
either when it causes a local violation, or when the coordinator decides to find the new ranking
between the functions. The latter occasion is represented in our subfigure by the red line, which
declares at which example a new ranking was computed by the Coordinator. Notice, that in
the beginning of the stream where the value of Ḡl’s are computed on a small subset examples
and are not stabilized around a certain range, such occasions are more frequent. Finally, for
the batch approach, at first note that the maximum number of violations now are #sites · |Xl|
since after a set of nl examples, we check whether a local violation occurs in any of the nodes
for any of the monitored functions. We observe, that while the length of the batch increases,
the rhythm with which the violations decrease deteriorates since sites do not frequently receive

Zafeiria Moumoulidou 52 August 2018

information for the global estimate vector and the changes in Ḡl values are rapid. Note for
example, that when batch size is equal to ’5’ there are batches that cause no violations which
is not the case for batch size equal to ’20’ or ’50’, where most of the time at least ’2’ functions
trrigger a synchronization phase. Nonetheless, since the number of updates are less we manage
to reduce the communication load missing however any example inside the batch that might
have caused a violation which could lead to a synchronization phase where a split decision could
be made.

Furthermore, we conducted a set of experiments with 4 discrete attributes, 2 of which were
ternary and the other two binary, while class label was binary. We consider that leaf l processes
a set of 400 training examples, and we evaluate how violations behave for different values of δ
parameter:

0 100 200 300 400
0

1

2

3

4

Example

#V
io

la
tio

ns

Num Of violations while stream evolves for d = 10^(-2)

0 100 200 300 400
0

1

2

3

4

Example

#V
io

la
tio

ns

Num Of violations while stream evolves for d = 10^(-3)

0 100 200 300 400
0

1

2

3

4

Example

#V
io

la
tio

ns

Num Of violations while stream evolves for d = 10^(-4)

Figure 5.5: Number of Violations in regard to δ parameter

Again, for all of the monitoring schemes, while stream evolves the number as well as the fre-
quency of local violation decreases. Nonetheless, while δ decreases, thus ϵ decreases and takes
value in Ḡl function range more quickly, the number of violations in the beginning of the stream
are more.

Zafeiria Moumoulidou 53 August 2018

To sum up, from the experiments conducted we observe that the monitoring scheme presented
in 3.1.2 reduces the communication load in relation to the Naive approach. At the same time,
we observed that the number of needless computation of G function at leaf l is significanlty
reduced since most of the time non-top functions trigger no violations and computing the new
ranking between G functions occurs only when there is a chance that the splitting condition is
satisfied.

Zafeiria Moumoulidou 54 August 2018

Zafeiria Moumoulidou 55 August 2018

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In traditional Hoeffding trees every time a training instance arrives at a leaf l, the system should
compute for every candidate splitting attribute its G value, considering G is the information
gain. For the distributed setting, by using horizontal partinioning across processing sites we
consider that for calculating these G values the sites send their data to a central node who
then executes the computations needed. In this thesis, we designed a novel distributed scheme
for monitoring the splitting condition of a leaf in streaming decision trees using Geometric
Monitoring in an effort to reduce communication load. From the experiments conducted, we
observe that in comparison to the Naive approach, the communication load is reduced especially
for datasets where some attributes become clearly better than others. At the same time, when
the information gain of the attributes in the dataset is significantly different, we rarely need to
compute the information gain for less important attributes, knowledge which cannot be acquired
while using traditional methods.

6.2 Future Work

The current work can be extended in various ways. First of all, note that testing for monochromic-
ity was implemented by computing a grid in Rd inside the ball constructed by each site. Thus,
the computational cost is significant high and as a result it is important to find an optimized
way to find the maximal and minimum value of the monitored function so as to be able to
further evaluate the monitoring scheme proposed based on large data. In addition, another idea

56

is to find how to incorporate the method proposed in the work of Keren et al [14] so as to declare
safe zones for information gain method, which is not an immediate procedure and compare how
the behavior and the communication load of the monitoring system changes. Another extension
of this work would be to study how to incorporate continuous attributes in our scheme and
how to find an optimized way so as to find the best splitting point for them. Finally, we could
examine if the proposed solution can be extended for time-changing streams.

Zafeiria Moumoulidou 57 August 2018

References

[1] J. R. Quinlan, ”Induction of Decision Trees”, Machine learning, vol. 1, no. 1, pp. 81– 106,
1986.

[2] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.

[3] P. Domingos and G. Hulten, “Mining High-Speed Data Streams”, in Proceedings of ACM
SIGKDD International Conference on Knowledge Discovery and Data mining, KDD 2000.

[4] G. Hulten, L.Spencer and P.Domingos, “Mining Time-Changing Data Streams”, in Proceed-
ings of ACM SIGKDD International Conference on Knowledge Discovery and Data mining,
KDD 2001.

[5] I. Sharfman, A.Schuster and D. Keren, “A Geometric Approach to Monitoring Threshold
Functions Over Distributed Data Streams”, in Proceedings of ACM SIGMOD International
Conference on Management of Data, SIGMOD 2006.

[6] O. Papapetrou and M.Garofalakis, “Continuous fragmented skylines over distributed
streams”, in IEEE 30th International Conference on Data Engineering, 2014.

[7] S. Burdakis, A. Deligiannakis, ”Detecting Outliers in Sensor Networks using the Geometric
Approach”, in 2012 IEEE 28th International Conference on Data Engineering

[8] Manikaki Vasiliki, ”Distributed Event Detection using the STORM System”,
Diploma Thesis, Technical University Of Crete, 2014, http://purl.tuc.gr/dl/dias/
C88659C3-1CF1-4F4E-992E-4B55658B011C

[9] G. Hulten, P. Domingos and L. Spencer, ”Mining Massive Data Streams”, Journal of Machine
Learning Research

[10] Y. Ben-Haim and E. Tom-Tov, ”A Streaming Parallel Decision Tree Algorithm”, Journal
of Machine Learning Research, pp. 849-872, 2010

58

http://purl.tuc.gr/dl/dias/C88659C3-1CF1-4F4E-992E-4B55658B011C
http://purl.tuc.gr/dl/dias/C88659C3-1CF1-4F4E-992E-4B55658B011C

References

[11] A. Murdopo, ”Distributed Decision Tree Learning for Mining Big Data Streams”, Mas-
ter Thesis, UPC Universitat Politècnica de Catalunya, 2013, http://people.ac.upc.edu/
leandro/emdc/arinto-emdc-thesis.pdf

[12] N. Kourtellis, G. De Francisci Morales, A. Bifet and A. Murdopo, ”VHT: Vertical Hoeffding
Tree”, IEEE International Conference on Big Data, 2016

[13] J. Gama, R. Rocha and P.Medas, ”Accurate Decision Trees for Mining High-speed Data
Stream”, in Proceedings of ACM SIGKDD International Conference on Knowledge Discovery
and Data mining, KDD 2003.

[14] D. Keren, I. Sharfman, A. Schuster and A.Livne, ”Shape Sensitive Geometric Monitoring”,
IEEE Transactions On Knowledge and Engineering, Vol. 24, No.8, 2012

[15] J. Leibiusky, G. Eisbruch and D. Simonasi, ”Getting Started with Storm”, O’Reilly, 2012

[16] Apache Storm, http://storm.apache.org/

Zafeiria Moumoulidou 59 August 2018

http://people.ac.upc.edu/leandro/emdc/arinto-emdc-thesis.pdf
http://people.ac.upc.edu/leandro/emdc/arinto-emdc-thesis.pdf
http://storm.apache.org/

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Outline

	2 Related Background
	2.1 Classification Decision Trees
	2.1.1 ID3 Algorithm
	2.1.2 C4.5 Algorithm
	2.1.3 Split Evaluation Function
	2.1.3.1 Information Gain
	2.1.3.2 Gini Index

	2.2 Streaming Decision Tree Model
	2.2.1 Hoeffding Trees
	2.2.1.1 Very Fast Decision Tree Learner (VFDT)

	2.2.2 Extensions of Hoeffding Trees and VFDT System

	2.3 Distributed Streaming Decision Trees
	2.4 Geometric Function Monitoring Over Distributed Streams

	3 Solution Sketch
	3.1 Our Approach
	3.1.1 Formulation of Split Evaluation Function
	3.1.1.1 Information Gain as Split Evaluation Function G
	3.1.1.2 Gini Index as Split Evaluation Function G

	3.1.2 Monitoring the Splitting Condition in Hoeffding Trees

	4 Implementation
	4.1 Storm Overview
	4.1.1 Storm Components
	4.1.1.1 Spouts
	4.1.1.2 Bolts
	4.1.1.3 Topologies
	4.1.1.4 Stream Grouping

	4.1.2 Our Topology

	5 Experimental Evaluation
	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	References

