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Abstract. During the last decades considerable efforts have been exerted for the development
of micro air vehicles as well as microelectromechanical systems in general, for a wide range
of applications. However, such systems involve microscale rarefied gas flows, which appear to
be significantly different comparing to flows at macroscale and continuum regime; it is this the
reason the Navier-Stokes equations fail to simulate such phenomena without further modifica-
tion. To this end, the enhancement of the in-house academic Computational Fluid Dynamics
solver Galatea to encounter such simulations is reported in this study. In case of rarefied gas
flows and particularly for fluids in slip flow regime (Knudsen number greater than 0.01) the
no-slip condition on solid wall surfaces is no longer valid; hence, velocity slip conditions as
well as temperature jump ones have to be included instead. Furthermore, to increase accuracy
at the same region the second-order accurate spatial slip model of Beskok and Karniadakis
has been incorporated, which avoids the numerical difficulties, entailed by the evaluation of
the second derivative of slip velocity when complex geometries along with unstructured hybrid
grids are encountered. Due to oscillations that might appear, especially during the initial steps
of the iterative procedure, a normalization scheme is additionally employed, to allow for the
gradual increase of the corresponding slip/jump values. Galatea has been validated against a
benchmark test case concerning rarefied laminar flow (inside the slip flow regime) over a wing
with a NACA0012 airfoil in different angles of attack. The obtained results were compared
with those of a reference solver, and with those obtained with the paralleld open-source kernel
SPARTA, based on the Direct Simulation Monte-Carlo method. According to this last approach,
the flow domain is divided into a finite number of computational cells, while the required sample
macroscopic flow properties are retrieved assuming intermolecular collisions of the simulated
particles inside such cells. An excellent agreement was achieved between the results obtained
by Galatea and SPARTA as well.
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1 INTRODUCTION

During the past decade a significant effort has been exerted by various researchers for the de-
velopment of micro air vehicles as well as microelectromechanical systems in general [1, 2, 3].
However, such systems may involve rarefied gas flows, which appear to be considerably differ-
ent, compared to flows at the continuum regime; thus, the Navier-Stokes PDEs (Partial Differ-
ential Equations), used at macroscale CFD (Computational Fluid Dynamics) solvers, appear to
fail simulating such phenomena without further adaptions and modifications [1]. In practice the
rarefied gas flows are categorized depending on the computed Knudsen number, a classification
originally proposed by Schaaf and Chambre [4]: For Knudsen numbers less than 1.0E-2 (con-
tinuum regime) the Navier-Stokes PDEs are valid without any further modification, allowing
ordinary CFD (Computational Fluid Dynamics) solvers to be employed. Nevertheless, for val-
ues between 1.0E-2 and 1.0E-1 (slip flow regime) special treatment of wall boundary conditions
is required; velocity slip conditions as well as temperature jump ones have to be applied (as in
this work) [1]. If greater than 1.0E-1 Knudsen numbers are encountered (transition regime and
free molecular regime) the rarefaction effects become the sovereign ones, necessitating for alter-
native methodologies, depending on the DSMC (Direct Simulation Monte Carlo) [5] approach
or the solution of the Boltzmann Equation [6]. Figure 1 includes a schematic representation of
the previously described classification. Although the latter method (based on the Boltzmann
Equation) can actually be employed throughout all the regimes [1], the CFD approaches are
usually preferred at continuum and slip flow ones; the implementation of Boltzmann Equa-
tion at those regimes calls for very large numbers of particles and consequently for excessive
computational load and storage.

Figure 1: Classification of flow regimes

As mentioned above, in the slip flow regime (Knudsen number between 1.0E-2 and 1.0E-1)
the Navier-Stokes PDEs remain valid, although special treatment of solid wall boundaries is re-
quired. The no-slip condition cannot longer be applied on such surfaces; velocity slip conditions
as well as temperature jump ones have to be imposed instead [1, 2, 3]. Despite the main concept
of the aforementioned conditions was initially proposed by Navier [1], the first corresponding
mathematical model was introduced by Maxwell in 1879 [7]; according to this approach the
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values of slip velocity and temperature are defined with the corresponding normal to the bound-
ary surface gradients [3]. Since then, various studies have been conducted on the prediction of
the attitude of rarefied gases,focusing on the utilization of two- or three-dimensional compu-
tational fields, structured or unstructured grids, various geometries, etc., [8, 9, 10, 11, 12, 13].
Furthermore, significant efforts have been exerted for the development of higher-order spatial
schemes to increase the accuracy of the final steady-state solution at the region of the solid
wall boundaries [14, 15, 16, 17]. Among them the model of Beskok and Karniadakis appears
to be especially attractive, as it avoids the numerical difficulties, entailed by the evaluation of
the second derivative of slip velocity when complex geometries along with unstructured hybrid
grids are encountered [14, 15]. As the aforementioned boundary conditions are imposed in a
wall-function mode, they are susceptible to produce residual oscillations, especially during the
initial steps of an explicit iterative solution; a remedy to this drawback was proposed by Ferras
et al. [18], where a normalization scheme is considered, allowing for the gradual increase of
the slip/jump values. Finally, few quite many studies include comparisons of the DSMC and
the modified by the slip/jump boundary conditions Navier-Stokes PDEs approaches (as in this
work), demonstrating the potential of such methodologies to effectively simulate rarefied gas
flows at slip flow regime [1, 14, 19].

Despite the development of slip velocity and temperature jump boundary conditions allowed
CFD solvers to extend their applications at slip flow regime, the latter appear to be inadequate
to predict flows with larger values of Knudsen number (greater than 1.0E-1) [1]. It is this ob-
servation along with the excessive computational requirements of methodologies depending on
the Boltzmann equation that created the need for the development of the DSMC approach, orig-
inally introduced by Bird [5]. Mainly due to the statistical-stochastic nature of this modelling
type, it wasn’t initially accepted by the scientific community, confining its implementation in
relatively simple simulations [5]. Nevertheless, since then it made its way, extending its appli-
cations in various engineering problems and demonstrating its capability for accurate flow pre-
dictions. The main drawback of the DSMC approach is the relatively excessive computational
requirements in test cases involving high pressure and large-scale computational fields. This
drawback was alleviated by the advance of the available computer systems and subsequently
the capability of parallel processing. The first reported parallel DSMC approach (a NASA pro-
duction code nowadays) was the DSMC Analysis Code (DAC), developed by LeBeau [20, 21],
while since then quite many such algorithms have been developed, such as the SMILE [22], the
MONACO [23], the ICARUS [24], the MGDS [25], the dsmcFoam [26] and the most recent
one the open-source kernel SPARTA [27] (used also in this work).

In this study the enhancement of the in-house academic CFD solver Galatea to simulate
rarefied gas flows inside the slip flow regime (Knudsen number between 1.0E-2 and 1.0E-1)
is reported [28]. Galatea employs the Navier-Stokes PDEs in dimensionless formulation along
with a node-centered finite-volume scheme to predict inviscid, viscous laminar, and viscous tur-
bulent flows (with RANS-Reynolds Averaged Navier-Stokes approach) of compressible fluids
on tetrahedral or hybrid unstructured grids [28]. For rarefied gases the capability of implement-
ing the aforementioned slip velocity and temperature jump boundary conditions [1] on solid
wall surfaces has been incorporated. In order to increase the accuracy at the same regions,
a second-order accurate slip scheme has been included. Particularly, the slip model of Beskok
and Karniadakis [14, 15] was adopted due to its relatively easy implementation on unstructured,
tetrahedral or hybrid grids; it can overcome the numerical difficulties, entailed by the evaluation
of the second derivative of slip velocity [14]. Furthermore, the normalization scheme, reported
in [18], was included to mitigate the excessive oscillations, caused by the Dirichlet-type of the
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slip/jump boundary conditions, especially during the initial steps of the iterative solution pro-
cedure. The proposed solver was validated against a benchmark test case concerning rarefied
laminar flow over a wing with a NACA0012 airfoil in different angles of attack [13, 19, 29].
The obtained results have been compared with those of another reference solver, confirming its
potential for such simulations. In addition, further evaluation of the Galatea algorithm was suc-
ceeded with the parallel open-source kernel SPARTA [27], a DSMC code as mentioned above.
An excellent agreement was achieved between the results obtained by Galatea and SPARTA as
well.

The structure of this paper is as follows: In Section 2 the Galatea solver is described in
brief, while the main attention is directed towards the analysis of the incorporated slip velocity
and temperature jump conditions. Section 3 contains an outline of the DSMC approach, as
well as of the employed open-source kernel SPARTA. In Section 4 the extracted by Galatea
and SPARTA results against a test case considering rarefied laminar flow over a rectangular
wing in different angles of attack are presented and compared, while Section 5 includes the
corresponding conclusions and some information on ongoing work.

2 THE CFD APPROACH

2.1 The Galatea code

In this study the in-house academic CFD code, named Galatea [28], was used, enhanced
though with appropriate modifications to account for rarefied gas flows. The proposed solver
employs a node-centered finite-volume method on three-dimensional unstructured grids, com-
posed of tetrahedral, prismatic and pyramidical elements, to simulate inviscid, viscous laminar
and viscous turbulent compressible fluid flows. For turbulence prediction the RANS approach
is implemented along with appropriate statistical two-equation models, namely the k − ε [30],
the k − ω [31] and the SST (Shear Stress Transport) [32] models. An upwind method is im-
plemented for the computation of the inviscid fluxes, applying the Roe’s [33] or the HLLC
(Harten-Lax-van Leer-Contact) [34] approximate Riemann solvers, coupled with a higher-order
accurate spatial scheme, based on the MUSCL (Monotone Upwind Scheme for Conservation
Laws) approach along with appropriate slope limiters, namely the Van Albada-Van-Leer [35],
the Min-mod [36], the Barth-Jespersen [37] and the MLP-Venkatakrishnan (Multi-dimensional
Limiting Process-Venkatakrishnan) [38, 39] limiter. For the computation of the viscous fluxes
the required velocity and temperature gradients are evaluated with an element-based (edge-dual
volume) or a nodal-averaging method [28], either selected by the user. Time integration and
iterative approximation of the final steady-state solution is succeeded with either an explicit
scheme, applying a second-order temporal accurate four-stage Runge-Kutta (RK(4)) method,
or an implicit one, implementing the Jacobi or the Gauss-Seidel algorithm [28]. In order to
increase the efficiency of the proposed solver, appropriate acceleration techniques have been
incorporated, such as an edge-based data structure [40], a local time-stepping technique [40],
parallel processing based on the domain decomposition approach and the MPI (Message Pass-
ing Interface) library functions [28], and an agglomeration multigrid scheme [28, 41]. Finally,
an h-refinement technique has been included to increase accuracy at pre-selected regions of
the examined grid, by enriching them with more nodes during the solution procedure, while
simultaneously avoiding the generation of dense meshes from the very beginning [28]. Further
details for the Galatea solver can be found in [28] and [41].
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2.2 Velocity slip and temperature jump conditions

As mentioned in Introduction, the no-slip conditions on solid wall surfaces appear to fail in
the slip flow regime; velocity slip and temperature jump wall functions have to substitute them
[1, 19]. Although their main idea was initially captured by Navier [1], the first such model
was reported by Maxwell in 1879 [7]. According to this approach, the values of slip velocity
and temperature on wall boundaries are defined with the corresponding normal to the boundary
surface gradients. A schematic representation of the previous state for slip velocity values is
illustrated in Figure 2; moreover it highlights the difference between the no-slip and the slip
boundary conditions. Mathematically, the Maxwell model is described for the dimensionless
slip velocity Us as follows [1, 7, 12, 14]

Us − Uw =
2− σu
σu

Kn
∂Us

∂n
+

3

2π

(γ − 1)

γ

Kn2Re

Ec

∂T

∂s
(1)

where Uw denotes the velocity on the wall surface, Kn is the Knudsen number and ∂Us

∂n
the

transverse velocity gradient, i.e., the derivative of the tangential slip velocity normal to the wall
surface (denoted by vector n) [12]. Further, σu is the tangential momentum accommodation co-
efficient (equal to unity in this study) [13, 19], which actually models the momentum exchange
of the gas molecules impinging on the solid boundaries. It depends on the surface quality; small
values of this constant can considerably increase the slip velocity even for low Knudsen num-
bers [14]. The second term includes the values of the dimensionless Reynolds Re and Eckert
Ec numbers, along with the ideal gas constant γ and the tangential to the wall surface derivative
of the temperature. It actually represents the slip velocity contribution induced by the thermal
creep; it appears usually to be relatively small, due to the second-order in Knudsen number as
well as due to the fact that in common engineering problems there is a small temperature change
across the wall surfaces; therefore, in this study it is neglected [12].

Figure 2: Velocity slip boundary conditions.
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The temperature jump boundary conditions are defined similarly to the slip velocity ones as
[12]

Ts − Tw =
2− σT
σT

2γ

γ + 1

Kn

Pr

∂T

∂n
(2)

where Ts represents the slip temperature, Tw the wall temperature and ∂T
∂n

the derivative of the
temperature normal to the wall surface. Pr is the dimensionless Prandtl number, while σT is
the thermal or energy accommodation coefficient; similarly to the momentum coefficient the
thermal one depends on the surface quality [14], while in this work it was set equal to unity
[13, 19].

In order to increase the accuracy of the final steady-state solution at the solid walls’ region,
several different second-order accurate spatial schemes have been reported in the open literature
[14, 15, 16, 17]. Their main concept is based on the reconstruction of the first term of Equation
(1) with the Taylor series [16, 17]. Nevertheless, such a reconstruction is not a straightforward
procedure when complex three-dimensional geometries, along with unstructured hybrid grids,
are encountered; the calculation of the second derivative of the tangential velocity in the normal
direction to the surface may introduce numerical errors, despite the a priori computational
difficulty it entails in such test cases [14]. Therefore, in this study the approach, introduced by
Beskok and Karniadakis [14] was adopted, according to which the second-order accurate slip
velocity can be computed as

Us − Uw =
2− σu
σu

Kn

(1− bKn)

∂Us

∂n
(3)

where b is the slip coefficient, which can be defined either experimentally or from other method-
ologies employing the Boltzmann equation or the DSMC approach [14]. It actually represents
the vorticity flux into the surface divided by the vorticity of the flow field on the surface, ob-
tained by the no-slip approximation; in this study it was set equal to -1.0 [14].

The velocity slip and temperature jump boundary conditions are implemented in a Dirichlet
way, hence they are susceptible to produce oscillations during the iterative procedure (especially
during the initial steps of an explicit iterative scheme), or even lead simulation to fail [18].
Therefore, a normalization scheme was incorporated in Galatea solver, allowing for the gradual
increase of the slip velocity and temperature values; mathematically, it is described as follows
[18]

U i
s = αU i−1

s + (1− α)U i
s (4)

where α is the normalization coefficient, taking values smaller than unity; in this work it was
set equal to 0.95. In case a multigrid accelerated simulation is performed, the aforementioned
slip velocity and temperature values are computed only at the finest resolution, while at next
they are restricted to the coarser multigrid levels similarly to the rest nodal values [41].

3 THE DSMC APPROACH

3.1 The particle method

The DSMC method, originally introduced by Bird [5], is a stochastic-type scheme using a
large number of particles to simulate gas flows, especially rarefied ones. Each of the afore-
mentioned particles, called simulator particle, actually represent actually a large number of real
particles [5]. According to the main idea of this methodology the computational domain is
divided in Cartesian cells, which provide the geometric boundaries and volumes required to
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sample the macroscopic properties of the flow. The latter are acquired taking into account the
movements and collisions of the simulator particles; therefore, the time step has to be defined in
a way allowing the movement and collisions of each particle to be decoupled. In conclusion, the
DSMC algorithm can be divided in four main steps: a) Given a time step the particles move to
their new positions. b) They are indexed into the computational cells. c) The collision pairs are
selected and the corresponding intermolecular collisions are performed on a probabilistic man-
ner. d) Since the temporary steady-state solution has been achieved, the required macroscopic
flow properties, such as velocity and temperature, are obtained by averaging temporally (for
several time steps) the microscopic properties of the particles in the cells [5]. The pre-described
procedure is presented in the flow chart of Figure 3.

3.2 The SPARTA DSMC kernel

As mentioned in Introduction, the parallel open-source kernel SPARTA is used in this study,
where SPARTA stands for Stochastic Parallel Rarefied-gas Time-Accurate Analyzer. It was
developed in Sandia Laboratories by Gallis and Plimpton [27] and distributed as an open source
code under the terms of the GPL license. It is capable of both serial and parallel processing,
the latter based on the domain decomposition approach and the MPI communication protocol
(similarly to the Galatea solver). Despite its robustness and flexibility it is not addressed to non-
experienced users, as it calls for a thorough understanding of the DSMC approach; it executes
by reading the commands in the script line by line [27].

3.2.1 Problem definition

In order to run a simulation with SPARTA the corresponding parameters have to be defined
first, i.e., the simulation box (computational domain), the grid, the internal boundaries (inside
the simulation box), the particle species (e.g., oxygen, nitrogen, ions) and the initial population
of the particles. For a two-dimensional run, the simulation box is defined by the coordinates of
the boundaries; minimum and maximum coordinates in x- and y- axis. For a three-dimensional
simulation the coordinates of two more boundaries have to be defined (including coordinates in
z-axis). As far as the computational discretization is concerned, SPARTA employs a hierarchical
Cartesian grid strategy. The simulation domain is considered initially as a aingle grid cell (level
0). The aforementioned cell is divided in Nx by Ny by Nz cells at level 1, while at next each
of these cells can be further divided into smaller ones at different levels. The properties of the
particle species, such as their diameter and molecular weight, are acquired from an additional
appropriately formatted file. Finally, the initial population of the particles is defined from the
Fnum number, denoting the number of real particles represented by a simulator particle. As far
as initialization of the procedure is concerned, the corresponding velocities are retrieved from a
Maxwellian speed distribution function.

3.2.2 Settings

Since the problem definition stage is accomplished the settings of the input script have to be
defined. In this section various parameters are determined, i.e., the collision model, the load
balancing (static at the beginning and dynamic during the iterative procedure), the boundary
conditions, the surface reflection models, the sample averaging-type and the desired simulation
outputs [27]. This stage is of extreme importance, as it influences the accuracy of the final
results as well as the required computation time. For example, the time step, the used flow
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Figure 3: The DSMC Method

field variables, the characteristics of the boundary surfaces, and the sampling intervals included
in this script have a serious impact on the extracted solution. Especially the latter parameter,
defining the intervals at which the macroscopic flow properties will be extracted, appears to be
very important, as an inappropriate value can lead to incorrect results or to an efficiency drop.

Furthermore, at this stage dynamic load-balancing type is defined. SPARTA can adjust
the assignments of grid cells and their corresponding particles to each processor in order to
spread more efficiently the computational load. Since the dynamic load-balancing type is de-
termined, the cells assigned to each processor are either clumped or dispersed. Actually, there
are three ways the aforementioned balancing can be succeeded; it can be performed depending
on clumped assignments of child cells to each processor, dispersed assignments of child cells to
each processor, or on a recursive coordinate bi-sectioning approach [27]. According to the first
method each grid cell is assigned randomly to one of the processors; as a result, the processors
do not get necessarily the same amount of grid cells. If the second strategy is followed, each
processor selects randomly another processor to assign its first grid cell to; at next, it loops over
its grid cells and assigns each of them to consecutive processors. Unfortunately, this method-
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Case Mach∞ Re∞ Kn∞ V∞, m/s α, deg ρ∞, kg/m3 T∞, K Tw, K
A 2.0 106 0.026 506 0 6.026× 10−5 161 290
B 2.0 106 0.026 506 10 6.026× 10−5 161 290

Table 1: Flow conditions for Cases A and B.

Number density, m−3 Fnum Time-step, sec Transient period Sample period
1.296× 1021 1.2× 1015 3.0× 10−7 140000 40000

Table 2: Parameters used for the SPARTA code runs.

ology suffers from the same to the first approach shortcoming. Finally, according to the third
scheme, the recursive coordinate bisectioning method (RCB), the processors are assigned com-
pact clumps of grid cells [27]. For every cell a weight coefficient is defined, hence, dynamic
load balancing aims to assign equal total weights to all the available processors. This weight
coefficient can be defined in various ways, e.g., if it is set equal to unity, each processor is
assigned the same number of cells, while if it is set equal to the number of the included parti-
cles, the same number of particles is assigned to all the processors. Dynamic load-balancing is
strongly influenced by two more parameters, namely the imbalance factor and the frequency in-
terval. The first one defines the maximum number of particles run by a processor divided by the
average number of particles per processor, while the second the frequency in which the imbal-
ance of the simulation is checked for change. Both the aforementioned coefficients have to be
wisely selected in order communication overheads to be avoided during the simulation. For the
test cases encountered in this study, an imbalance factor of 20%-30% (defined as 1.2 or 1.3 in
the input script) was found to be sufficient enough, without causing additional communication
load, while the imbalance was checked for possible change two times during the simulation.

4 NUMERICAL RESULTS

The Galatea solver was validated against a benchmark test case considering rarefied laminar
compressible fluid flow over a rectangular wing with a NACA0012 airfoil [13, 19, 29]. The
Mach number was assumed equal to 2.0, while the Knudsen and Reynolds numbers equal to
0.026 and 106, respectively [19]; the latter was based on the mean aerodynamic chord, which
was redimensionalized to become equal to unity due to the dimensionless formulation of the
proposed code. Two different angles of attack were examined, namely 0◦ (Case A) and 10◦

(Case B) [13, 19, 29]. Freestream temperature was assumed equal to 161K, while the corre-
sponding value on the wing surface equal to 290K. The aforementioned flow conditions are
summarized in Table 1; for Galatea solver simulations they were used though in dimensionless
formulation [28]. For the representation of the computational field a hybrid unstructured grid
was constructed, composed of 305,978 nodes, 566,245 tetrahedra and 394,760 prisms, the latter
located on the solid wall region (wing) to allow for the effective prediction of the boundary
layer region. Figure 4 illustrates the employed computational grid, while Figure 5 depicts its
density on the symmetry surface.

For the computation of the inviscid fluxes the Roe’s approximate Riemann solver along with
a second-order spatial accurate scheme, coupled with the Min-mod limiter, was employed; the
corresponding viscous fluxes were computed based on the nodal-averaging scheme. Time inte-
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Figure 4: Computational grid used with the Galatea code.

Figure 5: Density on the symmetry surface of the computational grid used with the Galatea
code.
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gration was succeeded via the incorporated explicit scheme (Runge-Kutta method) with a CFL
number equal to 0.5. Both the incorporated first- and second-order spatial accurate slip models
were implemented [14]. However, no difference was identified between their results; this lack
of difference is attributed to the relatively fine grid utilized. To accelerate the solution proce-
dure on a (DELLTM R815 Poweredge Server with four AMD OpteronTM 6380 sixteen-core
processors) the initial grid was decomposed in four sub-domains to be processed in parallel;
two coarser levels were constructed for each of them applying the full-coarsening directional
agglomeration strategy, in order the incorporated multigrid scheme to be applied [41].

Figure 6: Computational grid used with the parallel open-source kernel SPARTA.

As mentioned in Introduction, the evaluation of the proposed solver was succeeded with a
DSMC approach code, the parallel open-source kernel SPARTA [27]. The encountered com-
putational domain was designed with dimensions 0.38m and 0.24m along the x- and y-axis, re-
spectively; its discretization was succeeded with a Cartesian two-dimensional mesh, composed
of 1200 cells along x-axis and 800 cells along y-axis. Considering that the mean free path in
such test cases is approximately 0.000923m, each grid cell was constructed to be more or less
1/3 the size of it, a common practice in such simulations [5]. Furthermore, the grid around the
airfoil was generated such as no more than four points, used for airfoil representation (a total
number of 1600 was used), to be included at each computational cell; as a result, a smoother
discretization was achieved. Figure 6 illustrates a close-up view of the utilized computational
grid around the NACA0012 airfoil.

The SPARTA code was run on the same to Galatea solver computer system with the flow
conditions summarized in Table 1. As far as the simulation parameters are concerned, the
number density was set equal to 1.296×1021 m−3, while the time step equal to 3.0×10−7s; the
latter value along with the employed grid density ensures that each particle needs approximately
three time steps to cross entirely a grid cell [5]. The simulation began with a transient period of
140,000 steps, producing the initial steady-state solution, while at next samples were taken for
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(a) SPARTA. (b) Galatea.

Figure 7: Velocity contours (Case A).

(a) SPARTA. (b) Galatea.

Figure 8: Density contours (Case A).
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Figure 9: Distribution of pressure coefficient Cp around the NACA0012 airfoil (Case A).

additional 40,000 steps, aiming to reduce the statistical scattering error. The aforementioned
parameters are outlined in Table 2. Considering that DSMC simulations depend strongly on
the employed number of particles, several different numbers of them were tested (between
2 × 106 and 16 × 106) along with the aforementioned grid, as well as with a finer one; the
latter was generated by refining each computation cell around the airfoil into 5x5 smaller ones.
From this study the optimum Fnum (real particles per one simulator particle) of 1.2 × 1015

was derived, which subsequently produced a total number of 8× 106 simulator particles for the
whole simulation domain. As far as the grid is concerned, no difference was identified, hence,
the initial mesh was selected. The previous parameters defining actually the DoFs (Degrees of
Freedom) of the simulation were proved to produce the desired accuracy, avoiding though any
excessive requirements for computational load and storage.

In Figure 7 the extracted velocity contours around the NACA0012 airfoil by both the Galatea
and SPARTA solvers are presented for the first test case (Case A - angle of attack 0◦). As one
can observe a satisfactory comparison is obtained, especially in the bow shock and stagnation
regions, indicating qualitatively the potential of the proposed solver for such simulations. Fur-
thermore, a very good agreement can be observed with the available experimental and numerical
results, reported in [29] and [13, 19] respectively. The same similarity can be identified in Fig-
ure 8, depicting the corresponding density contours. It should be highlighted that dimensionless
values are included in both the aforementioned figures. Figure 9 includes the derived distribu-
tions, compared with the one reported in [19]; the distribution of Galatea code simulation was
extracted from the mid-span of the wing geometry.

Similarly to Case A, Figure 10 illustrates the extracted velocity contours around the NACA0012
airfoil by both the Galatea and SPARTA codes for Case B (angle of attack 10◦). Once more
a very good qualitative agreement is succeeded between the results of the employed solvers,
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while the same holds in Figure 11 presenting the corresponding density contours. A quanti-
tative comparison for the distributions of the pressure coefficient Cp around the NACA0012
airfoil, depicted in Figure 12. It is obvious that for both test cases (with angle of attack 0◦ and
10◦) the employed codes produce almost identical results, despite they are based on completely
different numerical approaches.

(a) SPARTA. (b) Galatea.

Figure 10: Velocity contours (Case B).

(a) SPARTA. (b) Galatea.

Figure 11: Density contours (Case B).
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Figure 12: Distribution of pressure coefficient Cp around the NACA0012 airfoil (Case B).

5 CONCLUSIONS

In this study the enhancement of the in-house academic CFD solver Galatea to simulate rar-
efied gas flows in slip flow regime (Knudsen number between 1.0E-2 and 1.0E-1) is reported
[28]. Velocity slip and temperature jump models have been incorporated to this end, as the no-
slip boundary conditions imposed on solid wall surfaces in flows in continuum regime appear
to fail when rarefied gases are examined. The incorporated second-order accurate model didnt
produce improved results; this lack of difference is attributed to the relatively fine grid utilized.
In addition, the incorporated normalization scheme [18] was revealed a considerable enhance-
ment, as the Dirichlet-type of the slip/jump boundary conditions was found to cause excessive
oscillations without it, especially during the initial steps of the iterative solution procedure. The
proposed solver was validated against a benchmark test case concerning rarefied laminar flow
over a wing with a NACA0012 airfoil in different angles of attack [13, 19, 29]. The parallel
open-source kernel SPARTA [27] was used for comparison purposes, while a very good agree-
ment between the results of the two codes was achieved. Finally, ongoing work includes further
assessment of the enhanced Galatea solver against more complex test cases of rarefied gas dy-
namics, as well as further examination of the incorporated second-order accurate slip model,
utilizing coarser grids.
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