TECHNICAL UNIVERSITY OF CRETE
School of Electrical and Computer Engineering

DIPLOMA THESIS

Modelling Error Gradients
in Deep Learning Methods
Using Reconfigurable Hardware

by
Michail Fragkiadakis Theodorouleas

Thesis Committee:
Professor Apostolos Dollas (Supervisor)
Professor Dionisios Pnevmatikatos
Associate Professor Ioannis Papaefstathiou (AUTH)

A thesis submitted in fulfillment of the requirements for the degree of
Diploma in Electrical and Computer Engineering.

December 2018

https://www.tuc.gr/index.php?id=5397
https://www.tuc.gr/index.php?id=5397
https://www.tuc.gr/index.php?id=5397
https://www.tuc.gr/index.php?id=5397
https://www.tuc.gr/index.php?id=5397
https://www.tuc.gr/index.php?id=5397
http://www.ece.tuc.gr/index.php?id=4481

Abstract

During the training process of a Neural Network there is significant amount of
resources that remains unused due to data dependencies, waiting for the forward pass and the
error backpropagation to complete. Decoupled neural interfaces using gradient error
modelling were introduced in order to overcome this pitfall allowing each layer to be updated
before the backpropagation is complete and it is provided with the error gradient.

In this diploma thesis we examine the parallelisation of decoupled neural interfaces
operations when implemented on Field Programmable Gate Array (FPGA), configurations that
can decrease training time as well as the effects of decoupled neural interfaces regarding the
training ability and the accuracy of the network.

In this thesis we adjudge that:

- Integration of synthetic gradient error does not have negative effect in accuracy and
representational strength.

- The addition of synthetic gradient error causes the addition of noise in the training
error which results in training error regularisation. This is beneficial for the training
process as it broadens the exploration of error space, decreases the generalisation
error of the neural network and prevents from overfitting the training dataset.

- Synthetic gradient error modelling can accomplish decrease of training time only in
particular cases.

- The combination of synthetic and true gradient error increases the number of neural
layers error correction updates and accelerate the convergence rate of the training
error.

- Despite the fact that the combination of synthetic and true gradient error increases the
training pass latency, the overall training time can decrease due to the higher error
convergence rate.

IlepiAndn

Koatd 10 Otdpxeito tng Oradixaoctiog expébdnong evog Nevpwwixod Awxtdov,
ONUOYTLXOG OYXOG TTOPWY TOPOUEVEL orENOLLOTIOLNTOG, eEaLTiog EEXPTNOEWY TTANPOPOPLaG,
TIEPLUEVOVTOG TNV OAOXANPWGY TOL LTTOAOYLOKOV TNG €EGSOL oL Tng OTLabey dL&doorg Tov
AdBoug. Ou “Amoovlevypéves” (un ovlevypéveg) Nevpwvixée Atemtaés (Decoupled Neural
Interfaces) pe yphon povieromoinong xAlong o@dApatog €xovy wpotobel Yoo va
Eemtepaoovy auTo TO EULTOOLO, ETILTPETOVTOG O XAbe eTITEDO Vo EVNUEPWVETAL TTEOTOD 1
omobey diadoomn oloxAnpwbel, wote vo ToL Yvwatomoinfel M TEOYRLOTIXY] XAlom
OQAALOTOG.

Ye out] TNV OmAwpatixy cpyooto eEgtdlovpe TNV TOPAAAMAOTOINOY TWY
OLEQYAOLLY TWV OTTOOLIEVYIEV®Y VEVPWYLXWY OLETOPWY XOTE TV LAOTOLNOY TOUS OE
Field Programmable Gate Arrays, StatéEelg mouv UTOPOVY Vo UELWOOLY TOY YPOVO
expénong, Omwe emiong xol Y ETIGPOOY TWY ATOGEGUEDUEVWY VEVPWYLXWY OLETTOPLY
600V aPOPAQ TNV txovdTTa exXpabnong xal axpifBetag Tov dtxtdov.

H ovvelo@opd g mapodoog epyoatiog sivor:

- H evowpdtwon g LovteAoTolnong xAlong CQAALATOS SV EXEL QEYNTLXY ETUTTWOY
oTNY axpiPBeLor XL OTNY LYXOVOTNTO AVOTIOPAOTOCTG.

- H mpoobnun 1ng povtedomoinong xAlong o@éApotog Tpoxahel v mTEoabxn
OopVBov ot0 OCEAALo expabnong To omolo €xel WG ATMOTEAEOUO TNV
XaYOVLXOTIOiNoY Tov. AuTd elval evepyeTrd Yo TNy dradixaotio expdbnong, xabg
OLeVPVVEL TNV EEEPELYNCT TOL YWEOL CPAALOTOG, KELWVEL TO GQAALON YEVIXEVLONG
TOL VELPWVYLXOD OLXTOOL X0l OTTOTPETEL TOV TEPLOPLOUO OTN AVOY Twv SeSoUEvmy
expdOnong (overfitting).

- H povrtedomoinon xAlong o@dApoatog umopel vor metOyel WUElWO TOL YEOVOL
expéOnong Lévo vTd ovyxexPLULEVES cuVONKEC.

- O ovvdvaoudc ™G LOVTEAOTOINONG UE TNV TEOYUOTIXY XALOT OQAALATOS OVEAVEL
Tov optiud evnuepceEwy dLOPHWONG COAALATOS TWY YEVLPWYLXWY ETULTESWY XOL
emLToyVVeEL Tov pLOUG CUYUALONG COAANLOTOG.

- Ilopého T0L 6TL 0 OLVSLOOWPOS OVTEAOTIOINOYNG %O TEXYUOTIXNG XALoMg
OQAALATOS OWEAVEL TOY YPOVO ovéd xUxA0 expabnomg, o oLYOAxdS YPOVOG
expéOnong petwveton, eEattiag Tov LPNAGTEPOL PLOLOY CVYUALONG CPAALOTOG.

Acknowledgements

First of all, I would like to thank Dr. Antonios Nikitakis, MHL laboratory research
assistant for the thesis topic proposal, his valuable advice and our collaboration throughout
the entire journey of this research. I would also like to express my deepest gratitude to Prof.

Ioannis Papaefstathiou and Prof. Apostolos Dollas who have been my supervisors for their
trust in my abilities and their excellent guidance, that have been more than helpful and crucial
for the fulfillment of this thesis, as well as Prof. Dionisios Pnevmatikatos for participating in
the committee .

Contents

1 Introduction

2 Theoretical Background

2.1. Machine Learning

2.2. Supervised learning

2.3. Artificial Neural Networks
2.3.1. Structure
2.3.2. Deep Neural Networks and Deep Learning
2.3.3. Training
2.3.4. Gradient Descent, Chain Rule & Backpropagation
2.3.5. Training Objectives

3 Relevant Research
3.1. Batch/Mini-batch Gradient Descent
3.2. Noise During Training
3.3. Parallel and Distributed Deep Learning
3.4. Layers Lock During Training
3.5. Deep learning on FPGAs

4 Modelling

4.1. Experiment Datasets
4.1.1. UCI Optical Recognition of Handwritten Digits Dataset
4.1.2. MNIST Handwritten Digits Dataset

4.2, Initial Model VO

4.3. Decoupled Neural Interfaces Model V1
4.3.1. Performance on the UCI Dataset
4.3.2. Performance on the MNIST Dataset
4.3.3. Results

4.4. Combining True and Synthetic Gradient Error Model V2
4.4.1. Performance on the UCI Dataset

co o w &

10
10
15
15
16
20

22
22
23
23
24
26

27
27
28
29
30
32
34
36
37
38
39

4.4.2. Performance on the MNIST Dataset
4.4.3. Results

5 Hardware Implementation
5.1. Hardware Architectures

5.1.1. Model VO Architecture
5.1.1.1. VO_PATH
5.1.1.2. Weights Units
5.1.1.3. Loss unit
5.1.1.4. Mem units

5.1.2.Model V1 Architecture
5.1.2.1. PATH_V1 Unit
5.1.2.2. DNI Unit

5.1.2.3. Common Components with Model VO Architecture

5.1.3 .Model V2 Architecture
5.2. FPGA Resources
5.3. Design verification
5.4. Timing Analysis
5.4.1 Model VO
5.4.2. Model V1
5.4.3. Model V2
5.4.5. Comparison of time complexity
5.5. Data Input Bandwidth
5.5.1. Architectures Initialisation
5.5.2. Examples Data Fetch
5.6. Results

6 Conclusions and Future Work

Bibliography
Books
Publications
Webpages
Data Sheets

40
41

43
43
44
45
46
47
47
48
49
50
50
51
51
52
53
54
55
58
60
60
61
63
63

66

67
67
67
70
70

Chapter 1

Introduction

Supervised Neural networks (NNs) are a main paradigm of the artificial intelligence
field that has provided answers to many problems that were impossible to solve with
traditional engineering approaches. This revealed a new engineering approach aiming in
learning from data rather than defining a solution. A main factor that has contributed to the
success of supervised learning using NNs is the growth of dataset size, a key point to the
training process. This raised the need to design efficient algorithms for the processing of large
size datasets.

Although backpropagation is the dominant algorithm for training supervised NNs, it
has a big drawback due to the fact that both forward pass and backpropagation are computed
sequentially. Forward pass is carried out by passing the input data through every layer of the
network, connecting the output of one, to the input of another, while backpropagation is the
application of the chain rule, which is based on sequential computation of a complex
derivative, thus this two processes cannot happen in parallel as they both use the same
memory, the layers parameters. The nature of NN results in significant amount of lost
processing resources, remaining inactive during the training process before error correction
can take place.

Decoupled neural interfaces (DNI) is one of the models that have been introduced to
address this problem with the addition of a single layer gradient error predictor called
synthetic gradient (SG). This predictor provides an estimation of the training error gradient for
a layer sooner than backpropagation is complete. This predictor receives the output of a layer
along with the training example labels as an input in order to produce an estimation of the
gradient error of the next layer which is needed for error correction using only the local
information of the layers output and the training labels. The predictor is updated afterwards,
according to the true gradient (TG) of the error that results from backpropagation. This means
that SG can be integrated in any type of NN as it uses the output of the hidden layers, with no
dependencies on how this is produced. When neural layers are provided with a gradient error
(the SG), they can perform weights update before backpropagation is complete. In this way,
operations of the hidden layers of a NN can be parallelised, which results in unblock from the
waiting for error gradient to be computed from the rest of the network. This reduces
communication time and data dependencies between seperate layers of the network and can
lead in acceleration of the training process in deep architectures.

The scientific contribution of this thesis constitutes of two parts. First, we review the
DNI model and examine its performance regarding the affection of the learning ability and
accuracy of the NN. We also examine the time complexity and parallelisation of DNI
operations compared to that of operations of normal backpropagation. Second, we continue in
the main purpose of our research, investigating the possibility of expanding DNI model by
combining SG with TG which in order to increase the error decreasing rate of the NN layers
during training.

The experiments we executed during our research were conducted on a fully
connected, feedforward, mini-batch NN with three hidden layers that, in its initial form, uses
backpropagation for error correction during the training process. It is one of the fundamental
architectures of neural networks that can present the layers lock problem without introducing
further issues. Despite that, all of the models we investigate in this thesis can be applied in
different NN architectures. All of the models presented, are implemented on the
Field-Programmable Gate Array (FPGA) Xilinx ~ Zynq UltraScale+ board
(xczu9eg-ffvc900-1-i-es) in order to define the time complexity. The performance of the
training process was analysed through functional simulation of each of the model, designed in
Python.

Following the introduction chapter, in chapter two we present the theoretical
background of machine learning and neural networks. Prior work that has been done
regarding the training of neural networks, which is the main part of neural networks we cover
in our research, is described in chapter three. In chapter four we explain the modelling and
functional simulations of the architectures that we explored and we continue in chapter five,
with the presentation of the analysis and design we proceed for the implementation of the
hardware architectures of our models as well as the results of our research. Chapter six
consists of the conclusion and the proposed direction of future work.

Chapter 2

Theoretical Background

2.1. Machine Learning

One formal rule can be easily comprehensible for a human. The memorization and
combination of too many formal rules can be a difficult task, while for computers it is quiet
easy. This is why conventional use of computers was very successful in finding solutions in
problems that could be described by a list of formal, mathematical rules.

A big challenge for computers, was to deal with problems that cannot be easily
described by such rules and as a result a step by step solution cannot be defined, as well as, to
be able to solve problems by processing natural data in their raw form. This raised the need
for more sophisticated algorithms, that could create and optimise a solution rather than just
implement defined solutions. The goal for these algorithms is to get an abstract description
function of the problem and find the parameters that accomplish the best solution.

Learning is any process by which a system improves its performance. Humans learn
through observation, previous mistakes or advice. This is the motivation to create machine
learning algorithms. In cases we are not able to describe a solution for a problem, we can
instead create an algorithm that can learn it through examples or through a trial and error
procedure.

“We define machine learning as a set of methods that can automatically detect patterns in
data, and then use the uncovered patterns to predict future data, or to perform other kinds of
decision making under uncertainty (such as planning how to collect more data!).” [1]

Machine Learning is concerned with computer programs that automatically improve
their performance through experience. It is the field of predictive modelling that primarily
concerned with minimizing the error of a model or making the most accurate predictions
possible, at the expense of interpretability.

2.2. Supervised learning

A fundamental model for learning from examples introduced by Vapnik [2] consists of:
1. The generator of the data (examples), G.
2. The target operator (also called supervisor's operator or for simplicity supervisor), S.

3. The learning machine, LM.

X

G > S > J

> LM ;

Figure 2.1: Supervised learning system

The generator (G) produces example inputs of the environment of the supervisor.
These examples are considered to be independently and identically distributed although we do
not own knowledge of this distribution. We consider these inputs a vector xX and the unknown
distribution F(x). In real life problems these can have more variables. These examples are
input of the supervisor which produces an output y for every example. The relation between x
and y is unknown, but we suppose it does exist and this is what we are trying to define. If this
relation is random, it would be impossible for a prediction to exist.

The pairs (x,y) are the training set that learning machine observes during the learning
process. During this process, the learning machine constructs an operator that predicts the
output yi of the supervisor for a given input xi. The prediction of the LM (output) is the y’. The
training error is defined as the distance between y and y’ and the goal of the learning process
is for the LM to modify its input-output relation in response to this error in order to minimise it
[2]. In most supervised learning training implementations the supervisor module S is not an
actual operator that the learning machine is trying to imitate. It is a set of pairs (x,y) of a
known examples. This is why a key point of such a system for achieving its task is the number
of available examples for the training process [3].

Many of the learning algorithms that have achieved significant results have not had
any important improvement for decades. The main development that has led to increase of
accuracy is the size of the training datasets.

2.3. Artificial Neural Networks

2.3.1. Structure

Artificial neural networks are one of the most important paradigms of machine
learning models that exist today, with a great success in problems like classification, voice and
image recognition and signal denoising. The fundamental module of a NN is the perceptron
which was introduced as a linear threshold unit [4] in 1943. The idea that perceptron could
help in learning representations was established in 1958 [5]. Perceptron is a simple unit that
has many inputs and produces a single output. The inputs are combined and the output is
computed according to the activation function of the perceptron which defines weather the
output should be 0 or 1.

In fact, the perceptron is a classifier that produces a binary decision according to its
Xy

inputs.

X ——> Output

X3
Figure 2.2: Perceptron

The combination of the inputs x is a sum with respect to some weights w of
importance. The activation function applies a threshold on this sum and is set to active if it is
above this:

0 if), wyx; < threshold
output = =S
I if 3 wjx; > threshold)

This function can be simplified by replacing the sum of the product of the two vectors
with the inner product and moving the threshold to the left side defining it as the bias » which
is the bias of the neuron:

10

{D fw.-x+5b<0
output =

Il fw-x+b>0
Hw-x+ b @)

The use of a threshold has the drawback of non continuous function. A small change in
one weight can cause the activation function to meet the threshold and the flip of the output.
Furthermore a derivative of the activation function is necessary for reasons explained in
chapter 2.3.4.

For the reasons above, the threshold function is replaced with a squishification,
nonlinear function. The first squishification function used is the sigmoid function:

(2) l
\Z)= T =
|+ e
3)
1.0+ i
0.8 i
0.6
0.4
0.2
0.0 - _I_-_---I-. T T T T T T T 1
-4 -3 -2 =1 0 1 2 3 4
Z

Figure 2.3: The sigmoid function

The sigmoid meets the requirements of continuity and the existence of derivative while
it is a bounded function. The most important advantage that was revealed with the use of
nonlinear functions though, is that NNs that use such activation functions can represent
solutions for both linear and nonlinear problems. In this way complex solutions for non trivial
problems are feasible. The mathematical representation of the sigmoid perceptron is

y=o(wx + b) (4)

Where w is the vector of weights, x is the vector of inputs, b the vector of biases and y is
the vector of the output. Perceptrons combined in parallel form a neural layer that produces a
sequence of real-valued outputs, called activations. A layer of N perceptrons functions as a
classifier of 2V classes. As we can see in figure 2.3, the number of weights required for a layer
occurs from the number of inputs times the number of outputs.

11

A J

¥z

X3

Figure 2.4: Neural layer

Combining such layers seemed promising for complex classifiers but there was still no
way for defining appropriate internal parameters to accomplish that. It was in 1974 that
backpropagation was introduced as a solution for that [6]. Backpropagation is an algorithm
that could achieve a minimisation process for prediction error resulting from a complex
system. Now, combination of many such layers with the activations of a layer fed as an input to
another was feasible as there was a way of tuning this whole system. Such combination forms
a NN. For that reason NNs are also determined as multilayer perceptrons. It is actual a
mathematical function, a mapping of inputs to outputs, but this is done through a complex
system with a large number of parameters. There are many ways that layers can be connected
between them and many different architectures have been demonstrated.

Here is an example of a feedforward, fully connected neural network. (Feedforward
means that activations propagations is done only in one direction, from input to output. Fully
connected is a network in which every output of a layer is connected to all the inputs of the
next layer.

12

output
layer

inputs outputs
—r —
X1 — N
X2
> W2

X3

Figure 2.5: Fully connected neural network

Inputs are the data we feed in the network for processing in its raw form. The first layer
is the input layer of the network. It has dimension and values of the form of the input data. The
intermediate layers are the hidden layers, it is the place where internal, abstract
representations of the data are created by the model during the learning process. The last
layer is the output layer, which has a dimension that can form the desired representation of
the solution. The outputs are the activations of the perceptrons of the output layer.

If a layer given some inputs, can produce a set of decisions that will be fed in a next
layer, this means that the next layer will make a more complex decision depending on the
decisions of the previous one.

When the NN receives an input, sequential calculations take place and the activations

of every perceptron of every layer propagate forward, towards next layers, deeper into the
network. This is the forward pass (FP) operation.

13

outputs
! ' ——

inputs

Figure 2.6: Forward pass

According to the notation of the network above, the activation a,"” of the first neuron
of the layer L, is:

10) _ 10 10 10
7, = x()W(),/)()+ X, W(),l()+ b, ©)
aO(Lo) = O'(ZO(LO)) 6)
where w,,"” are the weights, b,"” the bias, z,*” is the output of the perceptron and o the
squishification function of the neuron. We calculate o,*” the same way and then the
activations are propagated to the layer L1.
2,1 = x,w, 1 + x, DOy, 1 + b L0 6)
a,"” = o(z,"") (7)
This procedure is repeated until the activations of the output layer are calculated. The

general function for calculating the forward pass (also named activations) a of the neuron j in
layer L is:

N
w — (L-1)y,, (L) w
o of Za""w, Y+ b)) (8)
1

where N is the number of inputs of the neuron,equal to the number of activations of the
previous layer.

14

The forward pass equations differ according to the architecture and the way knobs of
the network are connected but the procedure is the similar. Every layer receives an input and
produces an output according to its weights, bias and the squisification function. This output
is the input for the another layer that repeats this process.

2.3.2. Deep Neural Networks and Deep Learning

In 1089, the function approximation theorem |7] proved that a neural network with a
single hidden layer could approximate any continuous function but there was no proof for the
required number of parameters and training examples. Through many experiments on the
architecture of NNs (number, width and connection configuration of the layers) it was revealed
that multiple processing layers can learn representations of data with multiple levels of
abstraction. These architectures allow the decomposition of a complex input, into many
different, abstract representations that each one is described by a layer of the network. For this
reason these architectures were named deep neural networks. A neural network is defined as
“deep” when it consists of more than one hidden layer.

It became feasible for the computer to have a deep understanding of the perceived
information, like the understanding we have of an image we are looking at, or even deeper
than a human get. This was the idea that led to a new approach machine learning that by
learning from experience, interprets the world by decomposing it in simple concepts that are
comprehensible to computers and achieve multiple levels of abstraction. Combining them in a
hierarchical way enables computers to understand complicated, real world concepts.

“If we draw a graph showing how these concepts are built on top of each other,
the graph is deep, with many layers.
For this reason, we call this approach to Al deep learning. “ (8]

A different meaning of the term “deep learning” arises from the deep understanding of
the information that is accomplished in this way, that can lead in the solution of complicated
problems. Being able to learn through experience discharges the designers from specifying all
the knowledge that is required for a solution, overcomes the restrictions of knowledge based
feature engineering approaches and makes this deep understanding attainable. This can lead
to solutions that use knowledge that was never defined by the designer. This can be
considered to be a worthwhile definition of artificial intelligence.

2.3.3. Training

Learning is process by which weighting parameters of a NN are adapted through some
process correction in order to implement a corresponding mapping between inputs and
output of the network [9].

15

In supervised NNs, we define the learning process as the training process in which
known examples are given as inputs to the NN and an output is produced. Comparing the
output of the NN with the desired output of the example we compute the training error
according to a loss function that determines the distance between the example and the
predicted outputs. The training error is then fed back to the NN which adapts its internal
weights, aiming to minimise the training error.

The training error is computed in the output of the network but each of its internal
parameters had a different impact on that. The way that this learning system can “distribute”
this error to all the internal parameters of the network, depending on the partial contribution
each one had to the final error, is by using the backpropagation algorithm.

Given its partial error, each parameter is adapted by applying gradient descent. This

appeared to be a very efficient way of finding the appropriate input-output relation of a NN in
order to define a representation function for solutions in complex problems [10].

2.3.4. Gradient Descent, Chain Rule & Backpropagation

Gradient descent is a first order algorithm for finding the minimum of a function using
the gradient of that function.

Figure 2.7: Gradient descent

Consider the function E(x) above. Point B is the the minimum of the function we are
looking for. This means that we seek the appropriate x, such that E(x,) = E,. Point B is a
minimum, which means that dE(x,)/dx = 0. Gradient descent algorithm checks the gradient of
the function for a given x in order to determine this is point like 4 or like C. Points with

16

E(x)>E, for x<x, have a negative gradient while points E(x)>E, for x<x, have a positive
gradient. For both of these cases, it is known in which direction a minima exists and we can
proceed in making a step towards this direction, which is actually direction opposite of the
gradient.

For a random given function parameter value x_, we find the new appropriate X, that

will the error £ function to make a step closer to the minimum according to the gradient
descent algorithm:

X, =X.-ax,dE(x,)/dx 9)
The parameter a in the equation above is the learning rate that defines how “big” will
be the distance we want to move towards the minima. It is important to specify an appropriate

o so that our step is neither too small, so it takes too long to reach the function minima, nor
too big because we might overshoot the minima point.

During the training process of a NN we can consider its input/output relation as a
function with the internal weights as an input and training error £ as an output. By applying
the gradient descent algorithm on that NN function E(w) we are trying to minimise the
training error. This is a very simple example though. In NNs there are hundreds of weights
and biases parameters combined both in parallel and in sequence to produce the output £ so
we need to find the relative proportion to the change of every weight and bias that affects
mostly the error function decrease. In order to apply the gradient descent algorithm for every
parameter of the NN we need the partial derivative of the £ with respect to this parameter. We
can compute that by using the chain rule.

The chain rule is a formula for calculating a partial derivative of a complex function.

Given function f{x) and g(f(x)) we calculate the partial derivative of g with respect to x using
the following rule.

gx) =g (fx) - f(x) (10)
= dg/dx = dg/df - df/dx 11

We start by applying the chain rule in a single input of a single neuron of the NN. In
order to do that, we need to represent the neuron as a computational graph as follows.

17

o(X « W + B) = Output(X, W, B)

Ouitput

\

oE . OE _ _OE_

ow ob Oout

Figure 2.8: Chain rule on a neuron

We consider the output of the neuron like this presented in chapter 2.3.1 as a function
of inputs X, weights W, biases B and squisification function ¢ and an error function E of the
output. F is the function we are trying to find a minimum for, by calculating the minimum with
respect to every parameter, except the input X, by using the gradient descent algorithm. We
do not do this for the parameter X as we wish to minimize the error in general, independently
from the input. To do that, we need the partial derivatives of b and w. The single parameter
derivative OFE/Oout is easy to compute for a known function E as it is equal to the derivative of
E. Then we continue for the rest of the partial derivatives by applying the chain rule iteratively:

E’(o(b)) = E’(out) - 6°(b) © OEIOb = OE/dout - 0c/0b (12)

E (6(B(w))) = E '(o(b))- B'(w) © OE/dw =0E/0b - 0B/ow (13)

Note that we first need to find the partial derivative of the parameter that is “closer” to
the output and then we can do the same thing step by step for parameters that are far from the
output.

Applying the chain rule to find the partial derivative of the training error with respect
to the internal parameters in complex NNs is called backpropagation. The error derivative that

18

is computed in the output of the network it is propagated, step by step, back to the internal
parameters.

mputs

—t—

Xp

Xj

Figure 2.9: Backpropagation

In this way, we calculate the partial derivative of the error in respect with every
activation. We can use that in order to calculate the partial error of every one of them,
meaning “how much” a specific activation contributes to the error. [11]

First, we calculate the error for layer L3:

8% = o - E - 0E /00 (14)

Then we can apply the chain rule for the weights and bias of the neuron to correct
them according to the error of the activation,

ow, =w;0, 06/0w,
Winew — Wicurrent _ 5Wj (1 5)

0b;=b;9;, 00/0b,
binew — bicurrent _ 51)1 (16)

and continue propagating backwards to layer L2.

19

60/ =0 E OE/0a” 17

This process is repeated until all the parameters of the network are updated according
to the current error. The goal is to minimize the overall error E_, upon the different examples
of the training set, according to the loss function E of the predicted and the desired outputs y,
and y, .

E,=2E(y, V.) (18)
ex

This usually is achieved by parsing the whole training set iteratively until £ has
reached a desired level. This iterative solution is easy to generalise and can replace the
analytic solution of a NN function that is limited by the need of linearity in the function in
order to be applied. [11]

2.3.5. Training Objectives

When designing and experimenting on the training process of a neural network we
aim to reach the desired levels in the following three objectives:

1. Convergence speed/learning ability is the rate of training error decrease. When taking
steps along the shortest path to the minima, the error decreases faster than having
some deviation from that. Furthermore, making bigger steps towards these directions
increases the convergence speed. On the other hand, big steps may causes
overshooting the global minima. This means that the fastest way is not always the
optimal because this can limit the generalisation of the solution (overfitting on the
training examples). Learning ability could become weak if the training procedure
stucks in a local minima rather than the global one which is supposed to be the best
case.

2. Representational strength/accuracy is the performance of the NN upon data different
from these that the it was trained with. This simulates the performance in a real
application where inputs will actually be unknown. Representational strength is the
accuracy of the prediction on previous unseen data. For this reason we use only a part
of our dataset for the training. This is the training set. The part of the dataset that was
not processed by the network before, is used to measure the accuracy. This is the test
set. The more general the solution found during the training process is, the better
accuracy we can achieve on the test set data. The accuracy can be defined using
various metrics according to the application. In some cases false positives of false

20

negatives are more important from the percentage accuracy, so an appropriate metric
is needed.

Computational complexity/training time is the latency of a training pass of a NN. A
training pass is the procedure of processing the needed number of examples for the
training error to be computed and the execution of the error correction update.
Depending on the architecture of the network, the loss computation and the update
method varies on how computational complexity of a training pass. Less complex
training methods can process a training dataset faster, making the training process
less time consuming.

21

Chapter 3

Relevant Research

Neural networks have proved to be capable of finding solutions in a huge range of
problems more efficient than it has never been before. Therefore there has been a significant
raise of interest in the following domains. First, in the creation of appropriate network
configurations, regarding the number and the width of layers, that can achieve best results for
different applications. Second, in the effort to make both inference and training process faster.
NNs use huge amounts of data and iterate hundreds or even thousands times during the
training procedure. This means that even small speedup improvements can achieve
significant overall acceleration. Third, in reducing operation cost for large scale applications.
The purpose of this thesis is to investigate models that achieve acceleration in the training
process, for this reason, in this chapter we present prior research and applications that have
been done towards this direction.

3.1. Batch/Mini-batch Gradient Descent

Batch and mini-batch gradient descent are variations of the gradient descent algorithm
in order to decrease the frequency of backpropagation passes and layer updates. Batch
gradient descent makes forward passes of the entire training set and calculates an average
error while mini-batch gradient descent splits the training dataset into small batches and
calculates an error for each one of them. Then the backpropagation pass takes place using this
single error_[12].

This methods achieve massive decrease of time complexity because the update lock of
the neural layers takes place a lot more rarely. Furthermore, computational complexity
decreases due to parallel computation of different examples during the forward pass. Finally,
the averaging of gradient error makes the error correction smoother which generalises the
solution and prevents it from stucking in local minimas, increasing the representational
strength of the model. However, the synchronization cost of mini-batch training is potentially
still too large for large scale applications.

22

3.2. Noise During Training

A common problem in deep neural networks is the case where the training error
decreases while test error remains the same or even gets larger. This phenomenon is called
overfitting the training data and it can happen when a model learns the details and noise in the
training data instead of a general solution.

One way of preventing overfitting is to increase the size of training data, but this is not
always feasible. For this reason regularisation techniques were developed. Regularisation is
any modification to a learning algorithm to reduce its test error without reducing its training
error.

A common way of applying regularisation is by injecting noise in the network during
the training. Techniques like this are the Dropout, presented in [13], or alternations of dropout
like [14], [15] and [16]. In [17] it was suggested that noise injected in the networks weights
creates a more fault tolerance solution than normal training while also increasing the
accuracy of the solution while [18] proposed that noise injection in the training sets labels
enhances the learning ability of a network by helping training overcome local minimas.

3.3. Parallel and Distributed Deep Learning

As the size of neural networks and dataset sizes was getting larger, the need of
parallelisation and distribution of processing among multiple machines araised. In order for
distributed processing to be feasible, there is need for existence of operations that can be
parallelised. Parallelisation of deep learning methods expands in the following three areas.

Data parallelism is the distribution of data among different processors when this is too
large to fit in a single one or in order to achieve data processing acceleration.

Model parallelism is the distribution of modules of the model among different
processors. In cases of very deep and wide neural networks for example, different layers can
be utilised along different machines.

Pipelining is parallelisation by overlapping computations (i.e. between one layer and
the next one) or by partitioning a NN and assigning different parts in different processors that
are more efficient for each process.

For data parallelisation powerful machines are often used in order to achieve parallel
computations. Matrix operations are one of the most usual operations in NNs and they are

23

quiet suitable for that. For this reason GPUs proved to achieve a huge speedup in the
computational latency of NNs. In [19] there was an operation time speedup up to 72 for a
neural network of one million parameters. Distributed memories and super scale computers
are also used for similar purposes. Methods like [20] have achieved data parallelisation
resulting in speedup up to 6 by scaling upon 7 processors for a three layer NN of 10512
parameters. Model parallelism approaches aim in distributing different part of a neural
network in multiple processors so that these are running independently. Such methods reduce
the computation time and probably memory (since the network is not stored in a single place)
but it has high demands in communication among the machines for synchronisation.
Pipelining aims in distributing the operations of different layers. The main issue of pipelining
is the data dependencies that should be respected and the synchronisation. In [21] there a 1.9
and 3.3 times end-to-end speed-up with the use of pipeline parallelisation with respect to
layers upon 2 and 4 GPGPUs.

Combination of model, data and pipelining parallelism have proved to be very
successful as it can overcome the drawbacks of every approach. A hybrid parallelism example
of AlexNet [22] achieved a speedup of up to 6.25 times for 8 GPUs over one by combining
model and data parallelism while DistBelief [23] combined all three types of parallelism
achieving a speedup up to 12x using 81 machines.

3.4. Layers Lock During Training

The training of a NN is achieved through iteration of procedure described in figure 3.1
bellow, which is composed of four tasks. (i) Every layer of the network, given an input,
produces an output according its FP function. (ii) When step (i) is complete and the output of
network is formed, the training error of the entire network is computed according to a loss
function. (iii) The training error is propagated backwards into the network and every layer
computes its partial error. (iv) Finally, layers proceed to error correction, using the gradient
descent algorithm, in order to update their weights.

24

= = = Forward Pass
Back propagation

Input = = » --- - i -

Figure 3.1: Training cycle of a neural network

This process results in several types of locking. Forward lock - during step (i), each
layer remain inactive until previous layers have produced an output, forming the input it
needs in order to process it and produce its own output. Backward lock - during step (ii) and
(iii), layers cannot compute their own partial error until the error has been produced,
propagated and provided to them. Update lock - layers cannot perform error correction
update until (i) to (iii) are complete. These problems described above, cause a major loss in
both processing resources and time.

There have been several approaches aiming in the elimination of the different types of
lock. Backward lock has been resolved by allowing loss to be broadcast directly to the layers
like [24] and [25]. For resolving update lock, real-time recurrent learning was introduced in
[26] or [27] but these methods require maintaining the full gradient of the current state with
respect to the parameters which makes it inherently not scalable.

Decoupled neural interfaces (DNI) overcome both backward and update lock,
performing error correction of layers using local information only. They were introduced in
[28] and further discussed in [29], proposing the replacement of the backpropagation
algorithm with function approximators that predict the error gradient of a layer N+1 using
output of layer N along with the training example labels. This information, is local to layer N
and available right after this layer has performed a FP, and as a result, error correction update
can start immediately, without waiting for FP of the rest of the layers, loss computation and
backpropagation to take place. This makes it ideal for large scale and distributed NNs as it
overcomes the major problems of such applications, multiple processors communication and
data dependencies. Exploration of DNI model is the main subject of the current thesis and it
will be thoroughly explained in chapter 4.3.

25

3.5. Deep learning on FPGAs

Most models for parallel and distributed NN computing like these presented in chapter
3.4 aim in the exploitation of powerful and expensive machines. This approach leads to high
demand in processing and power resources which is not efficient when seeking solution for
large scale applications.

In recent years Field-Programmable Gate Arrays (FPGAs) have come to a point of large
processing power, enough to make them an interesting alternative for deep learning methods.
First, the morphology of NNs suits in the large degree of pipelining and parallelism of the
FPGAs. Although other processors, like GPUs have proved to be great solution for parallel
computation, FPGAs are ideal for executing independent processes in parallel which gives
freedom in exploring different speedup algorithms that do not strictly depend on
parallelisation of similar computations. Second, FPGAs can achieve distribution and
localisation of memory accesses which can save a lot of time during a NN training process.
Finally, the significant high performance per watt makes them ideal for large scale and
distributed systems. These have led in several applies of deep learning models for speeding up
both training and inference process on FPGAs like [30], which took advantage of memory
localisation of FPGA to improve performance and process parallelisation for network
partitioning among multiple FPGAs and [31] that aim in increasing throughput using parallel
operators and a coarse-grain pipeline on a FPGA. In addition there have bee applications on
distributed NNs like [32], a model implemented on FPGA that reduced communication cost in
exchange with increase of computational complexity which led to overall speed up due to
advantage of FPGAs in computational strength, as well as [33] that used tile techniques, FIFO
buffers, and pipelines to minimize memory transfer operations, and reuse of the computing
units to implement the large-size NNs.

Despite the fact that FPGAs seem very efficient in NN applications considering
performance, the hardware design approach along with the big compilation time makes them
stiff for prototyping purposes. Nevertheless modern tool for FPGA programming such as
Vivado HLS and OpenCL have reached decent levels of abstraction. This can lead to
implementations with an accurately corresponding software functional simulation so that
prototypes exploration and parameters tuning can be done in top level and flexible
programming languages.

26

Chapter 4

Modelling

DNIs were originally designed in order to solve problems of NNs that are distributed
along multiple machines like communication reduction and prevention of layers lock (chapter
3.4). In the current thesis we review the performance capability of training a neural network
using synthetic error gradient, the essential component of a DNI, and we also discuss further
applications using DNIs on how this it can contribute to the acceleration of the training
process as well as to the increase of accuracy. At first we evaluate the performance of the DNI
model. Then, we continue by investigating how layers update using synthetic gradient can be
combined with the normal backpropagation update in order to achieve acceleration of error
convergence during training process.

The assessment of the models investigated in this research is based on measuring both
efficiency and computational complexity. The efficiency is determined as the learning ability
and the representational strength (accuracy) by measuring the error levels during the learning
process as well as the accuracy on test dataset after training is complete. The exploration of
models behavior was achieved with the use of Python functional simulations. This offered
flexibility on experimenting with modifications in the models architectures and parameters
tuning in a high level programming language, as well as easy representation of the metrics
with the use of Matplotlib, a Python 2D plotting library [34].

Time complexity analysis of the reviewed models was carried out by measurement of
simulated operation time of the FPGA implementation through RTL simulation in Vivado HLS.
Time analysis is presented in chapter 5.

4.1. Experiment Datasets

In order to define the efficiency of the models that we review in our research, we
experimented with training and test of our model NN upon the two datasets of handwritten
digits. The Optical Recognition of Handwritten Digits Dataset and the MNIST Dataset that are
presented below.

27

4.1.1. UCI Optical Recognition of Handwritten Digits
Dataset

Optical Recognition of Handwritten Digits Dataset [35] created by E. Alpaydin and C.
Kaynak. It consists of 5620 8x8 pixels images of handwritten digits created by collecting 250
samples from 44 writers. Images were created using using a pressure sensitive table that
produces 500x500 pixels images with pixel integer values between 0 and 500. The samples
were then normalised in the range 0 to 100 which made the representation invariant to
translations and scale distortions. Finally the samples were spatially resampled in 8 points
using simple linear interpolation. This gives us a constant length feature vector of 64 integers.

012345678 012345678 012345678 012345678 012345678

Figure 4.1: Samples of Optical Recognition of Handwritten Digits dataset

For our experiments in Python, the acquisition of the dataset was done using the
sklearn.datasets.load_digits tool from sklearn library [36]. This tool retrieves a part of the
Optical Recognition of Handwritten Digits Dataset in the form of example data 1797x64
integer elements array and integer array of 1797 elements for the data labels. The labels array
is then converted into One-Hot encoding array in order to be compatible with our NN
architecture. We split the dataset randomly into 1258 samples for training set and 539 for test
set with the use of sklearn train_test_split tool [37].

28

4.1.2. MNIST Handwritten Digits Dataset

MNIST a dataset of handwritten digits dataset [38] created by Yann LeCun, Corinna
Cortes and Christopher J.C. Burges offered for experimenting on learning techniques and
pattern recognition methods on real-world data. It is consists of 28x28 images of handwritten
digits that are more realistic than digits dataset thus more challenging. The 70,000 examples
dataset contains samples from approximately 250 writers. This dataset was created by
combining two of NIST's databases: Special Database 1 and Special Database 3. Pixels are
organized row-wise and have integer values between 0 and 255. 0 means background (white),
255 means foreground (black).

0 5 10 15 20 25 0 5 10 15 20 25

0 5 10 15 20 25 0 5 10 15 20 25

Figure 4.2: Samples of the MNIST dataset

For our experiments in Python, the acquisition of the dataset was done using the
sklearn.datasets.fetch_mldata tool from sklearn library [39]. This tool retrieves datasets from
the online repository [40] in the form of 70000x784 integer elements array for the examples
data and integer array of 70000 elements for the data labels. The labels array is then
converted into One-Hot encoding array in order to be compatible with our NN architecture..
The integer labels array is then converted into One-Hot encoding in order to be compatible
with our NN architecture. We split the dataset randomly into 49000 samples for training set
and 21000 for test set with the use of sklearn train_test_split tool [38].

29

4.2. Initial Model VO

DNIs are designed to be able to be integrated in any kind of NN architecture. In this
thesis, the experiments were carried out on a fully connected feedforward neural network that
consists of three layers. This NN is designed to implement a handwritten images recognition
classifier which uses images as an input, transformed into a feature vector with of integer
values between 0 and 100. It is a supervised learning NN, so during training, every example
that is given as an input, comes along with an one hot encoded label vector of ten elements
that indicates the true class of the example. Training is performed in mini-batches of 10
examples each.

Pk i

E g g .-m:rx = g Sattiax Dlltl] ut

MT
M1

= . »
(5] (=

1 b—i—i—e

Figure 4.3: Experiment neural network

We aim in training the NN above to produce an output of One Hot Encoding among ten
classes. Softmax is a normalisation function used on the output. While the NN output is
weights of unknown range for every one of the ten classes, softmax transforms the
representation into the probability distribution over the classes. If vector z size of K is the
output of an One Hot Encoding classifier, Softmax transforms each element of the output into
the probability rate among the classes and it is defined as:

K
o(z),=e”/ Y e* for j=1..,K (19)
k=1
Loss function of the NN is the Logarithmic loss:

K
-2 Yilog(y’y) (20)
=

30

where K is the number of classes, y is the true class and y’ is the prediction of the NN.

In the figures below we present the results from the performance experiments
that we carried out on our initial model V0. Experiments were carried out using the two
datasets that were reviewed in chapter 4.1 by keeping track of both training loss during
training and accuracy upon the test set per training iterations.

300 10

=
w

250

=
(=]

200

=
-

150

Log Loss

Test Accuracy
= =
LA h

100

=
=

o
L)

0 10 20 0 a0 50 0 10 0 0 a0 50
lterations Training iterations

@ (b)
Figure 4.4: Performance on the UCI Dataset

Training error (a) and test set accuracy (b) of initial model VO on UCI Dataset for different

learning rates.

5000 0.95
0.90
4000 -
& 085
a 3000 g
5 g oeo
2 <
= 2000 2 075
(1)
it
070
1000
0.65 1
v T T T T T T 0.80 - T T T T T T
] 10 20 0 40 50] 10 20 0 40 50
lterations Training iterations
@ (b)

Figure 4.5: Performance on the MNIST Dataset

Training error (a) and test set accuracy (b) of initial model VO on MNIST Handwritten Digits
Dataset for different learning rates.

31

The experiments that we show above were conducted with the use of two different
layers learning rates, @=0.1 and & =0.7 in order to understand the difference in behaviour
and improvement of enhancements that were applied In general. We consider these two
values as the upper and lower bounds for our experiments case. 0.7 is the largest learning rate
we managed to use without overshooting the solution and 0.1 is a relatively very small
learning rate. In this ways we can speculate that our results respond to a general solution as
well that results would be similar even in cases where a varying learning rate is used. This will
be our baseline performance for comparison with the models we review in next two chapters.

4.3. Decoupled Neural Interfaces Model V1

DNI model was introduced in order to allow neural layer to perform error correction
update using only local information, with no need for waiting the FP of entire NN, loss
computation and backpropagation to complete. This is achieved with the use of SG error
method, an approximation of the function implied by backpropagation. In order to update
weights &, of module i in backpropagation, we compute the partial error of that weight using
the following function,

OL/38 = fp,0p((hi, X, ¥, 9,),...)0h, /Oh,/ 08, 21

where / are activations, x are inputs, y is supervision, and L is the overall loss to
minimise. DNIs replaces this formula with an estimation of that, in order to use local
information only.

= Loprop (hi)R,/ 09, (22)

This leaves dependency only on 4, which achieves the decoupling of the layer as it does
no longer have to remain locked until forward pass, loss estimation and backpropagation are
complete.

Synthetic gradient (SG) is actual a function approximation of the backpropagation
function which is implemented as a single linear layer NN that uses activations hi of layer N as
an input in order to compute a prediction of the error gradient of the N+1 layer. The training of
SG module is performed along with the training of the NN. When forward pass and
backpropagation are complete, the error gradient of layer N+ is available for layer N and SG
uses it as supervision in order to compare it with the predicted output according a loss
function. This loss is used by the SG module to apply gradient descent and update its weights.
In this way the approximation of gradient error is becoming more accurate during the training
process of the NN. DNI is a normal neural layer combined with a SG module.

32

= = = Forward Pass
........ Synthetic Update

DNI Back propagation
X
Input{x,y)—l—--) -——-— == - --- ~
- 1 - — ~ o
1 7] [27] W
1 = | = = Loss
= 1 = = /
1 Lo] w
1 < : P’
: -
] \ 4
Ly
-k =-==2 »| SG

Figure 4.6: Decoupled neural interface

Given an Input, the network propagates it by performing forward pass. After Layer 1
has complete a forward pass, the activations that were produced are fed in both SG and Layer 2
while SG also receives the training labels. Forward pass can continue normally for the rest of
the network while SG computes the prediction of the error gradient of the next layer. After it is
complete, Layer 1 uses this prediction to perform weights update. This is called synthetic
update because a predicted (synthetic) gradient error is used rather than the actual one. With
the completion of backpropagation, SG is provided with the true error gradient from Layer 2 in
order to apply gradient descent and update its weights.

The first experimental model (V1) was created by we extending the baseline NN of
chapter 4.2, replacing layers 1 and 2 with decoupled neural interfaces like these presented
above, replacing the true gradient error with the synthetic gradient for the layers error
correction update. We consider that there is no need to be extended Layer 3 in a DNI as late
layers of a network are not subject to update lock as the time remaining inactive is small
compared to the time the layer spends on its own operations.

33

Pkl % Pk

. % Pike 28 " % "
=’ =|

* Z Z &
8]

I t (} - Hl e ikeied e
nput (xy. gg 5 2 g L gg g ﬁ—@%
y " ")

Pk i | l

Figure 4.7: Model V1

Soffia nutp ut

In order to evaluate that the replacement of error gradient with the synthetic gradient
will not decrease the performance of the training process we compared the results of our new
NN with these of the baseline architecture presented in chapter 4.2. The comparison is done
using both UCI and MNIST datasets. The results are presented in the following two chapters.

4.3.1. Performance on the UCI Dataset

300 300 4

— TG
250 250 e
200 4 200 1
i 7
[=]
= 150 = 150 4
o =)
3 3
100 4 100
50 4 50
0 T T T r r 0 T . T :
o 10 20 30 40 50 20 30 40 50
lterations lterations
a) (b)

Figure 4.8: Training error

Comparison of training error of true gradient (VO) and synthetic gradient (V1) for applying
gradient descent with layers learning rate @ =0.1 (a) and =0.7 (b).

34

=

(=]
=
(=]

=
1=}

=
(Y]
.__‘_-\\

=

(=]
(=]
(=]

Test Accuracy
= (=]
=3 -
Test Accuracy
b= =]
[=2] =l

=

(%]
=
A

=
S

b=}
=
= A
[=]
=

o 10 20 30 40 10 20 30 40
Training iterations Training iterations

@ (b)
Figure 4.9: Test accuracy

Comparison of accuracy on the test set of true gradient (VO) and synthetic gradient (V1) with
layers learning rate &=0.1 (a) and o =0.7 (b).

Figure 4.8 shows that the error converges in a similar way but a little slower when
using SG. In contrast, figure 4.9 we see that, even though the error convergence is worse, SG
achieves better performance regarding accuracy, especially in case (a), for a small learning
rate. This is caused due to the noise that is injected during the training by the estimation error
of SG which results in a more general solution. In (b), SG also results in better accuracy but the
difference is smaller because both SG and TG achieve high accuracy very fast, so SG is still
appropriate for replacing TG but there is small further positive impact.

35

4.3.2. Performance on the MNIST Dataset

3500

3300

—_— TG
3000 4 3000 A 5G
2500 2500
#2000 1 i 2000 4
-l -
= o
g 1500 5 1500
1000 1000
500 500
04— i 0 . _—__h‘_‘___'__'_‘_‘_‘—
o 10 20 30 40 50] 10 20 30 40 50
fterations fterations
a) (b)

Figure 4.10: Training error

Training error of true gradient (V0O) and synthetic gradient (V1) for applying gradient descent
with layers learning rate =0.1 (a) and @ =0.7 (b).

1000 1000

0.975 - 0.975 1
0.950 — — - 0.950

0.925 0.925

0.900 1 0.900 1—

0875 1 0875 4

Test Accuracy
Test Accuracy

0.850 1 0.8650 1

0.825 A 0.825 4 — TG

: : : : : : 0.800 — . : : :
o 10 20 30 a0 50 0 10 20 30 40 50
Training iterations Training iterations

(a) (b)

0.800

Figure 4.11: Test accuracy
Accuracy on the test set of true gradient (V0O) and synthetic gradient (V1) with layers learning
rate @ =0.1 (a) and o=0.7 (b).
In figures 4.10 and 4.11 we see that replacement of TG with SG has better impact for

MNIST dataset than this appeared in UCI dataset that was presented in previous chapter. SG
achieves both faster error convergence and better performance regarding accuracy. MNIST

36

consist of more complex data than UCI, with larger information per instance (MNIST images
are 64x64 pixels, while UCI only 8x8). As a result, the noise injected has a bigger positive
impact. The improvement is smaller for large learning rates (b) than for small learning rates
(a), the same way like it happens for UCI dataset.

4.3.3. Results

The graphs of training error per training iterations (Figure 4.8) and (Figure 4.10) show
that the replacement of TG update with SG update generally leads in similar error
convergence. Our experiments show that the single layer of the SG module can effectively
predict the gradient error of a hidden unit of a neural network. In addition, in the graphs of
test accuracy per iteration (Figure 4.9) and (Figure 4.11) we see that the model of SG results in
better performance on the test set. SG reaches the levels of accuracy of VO in fewer iterations
and it also achieves higher maximum accuracy even in cases where training error was larger
for SG like (Figure 4.9.a) and (Figure 4.11.b). This means that the fact that SG is an estimation
of TG and as a result it is not identical, it adds a noise in the training procedure which leads to
better generalisation of the found solution. As a result the replacement of TG with the SG has a
positive impact in the performance of the neural network.

In the table below we present the speedup in training steps we achieve with the use of
synthetic gradient instead of the true gradient, regarding the test set accuracy for the two
different datasets we used for the experiments.

UCl MMIST
Accuracy a=0.1 a=0.7 a=0.1 a=07
0.9 1,33 1 2.2 3
0.91 1,26 1.1 2.44 2.3
0.92 1.4 1.2 2,53 P
0,93 1,37 1,25 202 1.9
0.94 1,39 1.33 26 1,7
0.95 1,42 212 2.8 1,76
0,96 1,44 3 292 1,72
0.9r7 1,45 2 3 1,7

Table 4.1: Training steps speedup of model V1

37

4.4. Combining True and Synthetic Gradient Error
Model V2

In this chapter we investigate how synthetic gradient error can be used in order to
accelerate the training process. We propose combining SG with normal backpropagation
aiming to increase the error convergence rate by performing the layers weights updates with
the use of both true and predicted error gradients in every training iteration. For this reason
we extend the DNI so that, when backpropagation is complete and the layer receives a
gradient error from the next layer in order update the weight of SG module, layer also averages
the true error gradient with the SG error gradient estimation in order to perform weight
update. Now in every training pass (inference-loss-backpropagation) each layer updates its
weights using both true and synthetic error gradient.

A
1
! = = = Forward Pass

Layer N41 |77 «»» Synthetic Updf:\te
Back propagation

DNI N ;
= = = = - b - =
I > SG
A
: 0
1 YY |
Layer N I
1
A [
! 1
! |
! i
' l ,
I P
Trainin
Input Labels g

Figure 4.12: DNI combined with normal update

Input is received from the network input of from layer N-1 output

Layer N performs forward pass

Output of layer N is available for layer N+1 and SG module

SG module starts prediction process in order to produce an estimation of layer N+1
error gradient

5. The forward pass of the network continues normally

L

38

6. When forward pass, error computation and backpropagation of the network is finished
to the point of layer N+1, layer N receives the error gradient of layer N+1 along with an
estimation of the error gradient of layer N+1 produced by the SG module

7. Layer N performs weights update using the average of the true and the predicted error
gradient of layer N+1

8. SG also uses error gradient of layer N+1 to apply weights update

In the next two chapters, we compare the training process performance of our

new model V2 with the performance of our baseline model explained in chapter 4.2
upon both UCI and MNIST datasets.

4.4.1. Performance on the UCI Dataset

300 300
— '[G
750 x50 TG & 56
200 200 \
n W
w i
5 150 3 150 |
=4l =11
8 5 |
100 100
o 0 3 -
0 10 20 30 40 50 V] 10 20 30 40 50
fterations fterations
a) (b)

Figure 4.13: Training error

Training error of true gradient (VO) and combination of true and synthetic gradient (V2) for
applying gradient descent with layers learning rate &=0.1 (a) and & =0.7 (b).

39

10 10

09 0.9 /
= =3 |
[¥] [¥] |
T 08 T 08 |
S = |
1= L=
[¥] [¥]
<L =
T o7 o7
a a
= =

06 06

il | €]
TG & 56
05 T T T T T T 05 T T T T T T
0 10 20 30 40 30 0 10 20 30 40 50
Training iterations Training iterations
(a (b)

Figure 4.14: Test accuracy

Accuracy on the test set of true gradient (VO) and combination of true and synthetic gradient
(V2) with layers learning rate @ =0.1 (a) and @ =0.7 (b).

The experiments results above show that in case of small learning rate, the
combination of true and synthetic gradient can achieve a significant acceleration in error
convergence and it also results in higher accuracy. For large learning rates the positive effect
is smaller but still, we can achieve higher accuracy when using the combination of true and
synthetic gradient.

4.4.2. Performance on the MNIST Dataset

3500

3500

—_— TG
3000 1 3000 - TG & 56
2500 2500
i3 2000 1 i 2000 4
) -
= o
g 1500 g 1500
1000 1000
500 500
0+ : . . . ; 0L : : —_———,
] 10 20 30 40 50 o 10 20 30 40 50
fterations lterations
a (b)

Figure 4.15: Training error

40

Training error of true gradient (VO) and combination of true and synthetic gradient (V2) for
applying gradient descent with layers learning rate @=0.1 (a) and «=0.7 (b).

100 100

=
w
(=]

Test Accuracy
[=] =
[=:] o
[=] i

Test Accuracy
[=]
&

0.75 —
TG & 5G

: : 070 — : . : : .
o 10 20 30 40 50 o 10 20 30 40 30
Training iterations Training iterations

@ (b)

Figure 4.16: Test accuracy

Accuracy on the test set of true gradient (VO) and combination of true and synthetic gradient
(V2) with layers learning rate & =0.1 (a) and o =0.7 (b).

In the experiments on the MNIST dataset, we can see that the positive effect of
synthetic gradient is bigger for a more complex dataset like this. In both cases of small and
large learning rates we achieve acceleration of error convergence while the test set accuracy is
also higher. This means that the increase of error corrections combined with the
regularisation due to the SG estimation noise results in prevention of overfitting the training
set and it also reaches the levels of accuracy of VO in less training iterations and the overall
accuracy is higher for both small and large learning rates cases.

4.4.3. Results

The experiments we presented in previous two chapters show that the combination of
TG and SG can achieve a significant acceleration in the error convergence. The effect is bigger
in cases where a small learning rate is used. In the training on the MNIST dataset (Figure
4.15.a) we see that SG needs down to % of the iterations that TG needs to converge to the same
level. This does not have a negative effect in training fitting as it also achieves higher accuracy
(Figure 4.16.a). When large learning rate is used the error convergence is similar but the
performance on the test set is still higher. We see that the noise of SG has the same positive
effects as it had in model V1 that explained in the previous chapter, while the combination
with the true gradient results in even faster error convergence.

41

In the table below we present the steps speedup we achieve with the use of model V2
compared to the initial model VO, regarding the test set accuracy for the two different datasets
we used for the experiments.

UCI MMNIST
Accuracy a=0.1 a=0.7 a=01 a=0.7
0.9 225 0.5 1.57
0,91 2,3 0.7 28 2
0,92 2.66 1.4 3.14 2.1
0,93 318 1,2 3.4 2,33
0,94 3,125 1,35 30 2,25
0,95 3.19 2 3,75 2,12
0,96 3,22 2.7 3.9 2,20
0,97 3,23 2 4 23

Table 4.2: Training steps speedup of model V2

The increase of the performance is achieved for both of our experiment datasets and
for every layers learning rate we used. This shows that this speedup can be achieved in
general. In the following chapter we are showing the performance of our models when
implemented in hardware in order to measure the operation time and have a clear comparison
metric.

42

Chapter 5

Hardware Implementation

Both of the models discussed in this thesis, DNI (V1) and combination of SG with TG
(V2) , aim in accelerating the training process. In the current thesis, we aim to accomplish that
from an algorithmic approach, with parallelisation of the network forward pass and
backpropagation with the layers synthetic updates. For this reason FPGA seems to be an ideal
hardware to deploy our models and define the time performance.

Each model was implemented as a hardware architecture in Vivado_HLS and
synthesised for a Xilinx Zynq UltraScale+ board (xczu9eg-ffvc900-1-i-es) [41]. This board is
capable of fitting each one of our three entire example models (further analysis in chapter 5.2)
with surplus resources remaining for further design optimisation which is ideal for
distributed situations providing great power efficiency. Furthermore, this board contains a
DDR4 memory that can cover the input bandwidth required for our models (further analysis in
chapter 5.4). The operation time measurement was done through Vivado HLS RTL simulation
in order to have a clear and accurate comparison between the different models.

In this chapter we present the hardware architectures designs of our models, the
initialisation process and the hardware resources demand for each model as well as the design
verification method we use. Then we continue by analysing and comparing the time
complexity of the reviewed models and the result of the training process of each model,
compared in the time domain.

5.1. Hardware Architectures

In this chapter we present the architecture designs for each of the models we reviewed
in the previous chapter and we explain the functionality of the containing components. The
deployment of the designs was done in Vivado High Level Synthesis platform using Vivado
C++ hardware description language [42].

43

5.1.1. Model VO Architecture

In this chapter we present the architecture of our initial model that was simulated in
chapter 4.2. This is a mini batch, three layer fully connected normal backpropagation NN.

Weights 1 l l
L1_W L2 W L3_W
<A ~ A 5 A
e ////% g A N ;‘o_,/,/%
Y Y Y
LD|§| (Dl g| CDl§|
D 1 arir N i
- 32 g | 64732 _ 10
= » D_in D_out
Lab_1 VO PATH 0 TT_Erinje \ l
+\
10
)| 1 LOSS |«
{»{ (- A
@|§| (Dl g| Ol§|
b, e, oy N od ™ o
2129 —] —]
D_2 32 =[|8432 | 10
s » D in D_out]
Lab 1 V0_PATH_1 Tr_Er_infe——/
N*10 '
A = A

Figure 5.1: Top Level diagram of model V0O

44

As explained in chapter 3.1 a mini batch NN has a single set of weights for every layer
while it proceeds several examples (batch) in parallel in every pass. In the end of training
examples proces, an average loss is computed that is fed back to the network. For every layer,
we compute the mean partial error of all the examples of the batch and the weights of the layer
are updated according to the mean error. In the diagram above, we define N as the batch
number which is 10 for our architectures. This can extend in bigger batches for different
applications. Modules VO_PATH are the units that compute the forward pass and
backpropagation for each example of the training batch. Loss is the unit that computes the
loss upon all the training examples. L1_W to L3_W are the weights units, that perform error
correction with respect to the average error of each example for every layer and perform the
memory read/write. Every module will also be explained later in detail.

Ports of architecture VO:

Weights (32-bits): Input for initialisation of the layer's weights.

D_1to D_N (32-bits): Input of training examples. The training examples are
integer vectors of 64 elements. Each element of the
vectors is read sequentially.

Lab_1 to Lab_N (10-bits): Input of training labels.

5.1.1.1. VO_PATH

VO_Path_1 to VO_PATH_N are the units compute the forward pass and
backpropagation for each one of the N examples of the training batch.These units operate
synchronously in parallel using the layers weights values as an input. Weights are broadcasted
by the L_W units and VO_PATH units read them simultaneously. VO_PATH implements the NN
configuration of our model (number dimensions of layers).

45

o, E‘ 9, E‘ o, 2‘
i b 3 q b g
32// 32// 32//
i — —
W W
D.in| [64732 128732 64*32 10"32| D_out
D_in D_out D_in D_out IN ouT
FC_L1 FC_L2 FC L 3
64732 12832 64732 1032 | Tr_Er_in
“<1BP_out Er_in BP_out Er_in BP ERROR
L_in L_in
V0 PATH

Figure 5.2: PATH of model VO

Ports of VO_PATH:
D_in (64 * 32-bits): Input of training examples.

D_out (10-bits): Classification result output of the network.

L1_G (64 * 32-bits): Error gradient of layer 1 output for the layer update.
L1_W (32-bits): Layer 1 weights input for the forward pass.

L2_G (128-bits): Error gradient of layer 1 output for the layer update.
L2_W (32-bits): Layer 2 weights input the forward pass.

L3_G (64 * 32-bits): Error gradient of layer 1 output for the layer update.
L3_W (32-bits): Layer 3 weights input the forward pass.

Tr_Er_In (10*32-bits) Training error input for backpropagation.

The FC_L units perform the basic fully connected layer operations as explained in
chapter 2.3.1. Each FC_L unit implements the forward pass (chapter 2.3.1, equation 8)
according to its input D_in, layer’s weights W and passes the result in its output D_out. The
backpropagation (chapter 2.3.4, equation 13) is implemented according to the input Er_in and
the result is passed in the output BP.

5.1.1.2. Weights Units

The Weights units L1_W, to L3_W handle the broadcast of weights and biases to the
layers and also perform the error correction update.

46

Init

Weights Unit 82|
-
Y

32
Update [« » BRAM

N'32 | 2|

-1
d in d_out

Figure 5.3: Weight units of model VO

Ports of Weights Unit:

Init (32-bits): Input for weights initialisation.

d_in (N * 32-bits): Input of layer error gradient of each batch example for weights
update.

d_out (32-bits): Layer’s weights broadcasting output.

The Update module collects the error gradient of the layer that was produced from the
backpropagation for each of the N examples of the training batch. The average error gradient
is computed and then the weights update is performed as explained in chapter 2.3.4. BRAM is
the memory where the values of weights of the layer are stored. Size of BRAM is equal to the
number of parameters required for the layer.

5.1.1.3. Loss unit

Loss unit collects the output of every path of the network in order to compare it with
training labels and produce the training error. The training error is computed according to the
network’s loss function which was presented in chapter 4.2. The computation of the error for
each of the Ntraining batch examples is independent and operates in parallel.

5.1.1.4. Mem units

Mem units are buffers that collect the elements of every training example that are read
sequentially from the D ports. When the entire example vector is fetched, it is fed into the
PATH unit for the forward pass to begin.

47

5.1.2.Model V1 Architecture

In this chapter we present the architecture of the DNI model V1 that was simulated in
chapter 4.3. This is a NN similar with that of model VO where we have replaced layer 1 and 2
with decoupled neural interfaces.

Synth_Weights 2 .
e 32 B
Weights
1 Y l 1
L1 W L1_SW L2 W L2 _SW L3_W
.t Bt~ JF 7
L@ o | SL § ——
0 ™ * =
£l =
=
A Y Y VY ¥
QQ
CD|§| % (Dl B| c% I§|
— — | N oy [™
D 1 1 — =10 -1
—' 32 [o] 6432 , — = 10
5 » D_in D _out
L8b_1 10 . o 1 V1_PATH_0 Tr_Er inp ~ l
10
/) 1 Loss
) A A
[q
wﬁ
(DI;\ % wl gl% l§|
— — | NN O
D 1 — 1 — = 1 — 3
—" 82 [||e432 _ =t - o
= > D_in D out J
Lab 1 N [y V1_PATH_1 Tr Er in J
N*10 .
A s vy

Figure 5.4: Top level diagram of model V1

48

5.1.2.1. PATH_V1 Unit

As explained in chapter 4.3, model V1 is an extension of VO by the replacement of
neural layers 1 and 2 with decoupled neural interfaces DNI 1 and DNI 2. VI_PATH unit
contains an FC_L unit like this explained in chapter 5.1.1.1 for layer 3 of the network and two
DNI units for layers 1 and 2 that will be described in the next chapter.

G, El %l o, Zl %l o, Zl
o] =5 = =5 o g £
32// 32// 32| 35/ 32//
4 4 e N
w SwW h W SwW A w
D_in 64*32 128*32 64*32 10*32| D_out
D_in D_out D in D _out IN ouT
DNI 1 DNI 2 FC_L 3
64733 12832 64732 10*32| Tr_Er_in
“<1BP_out Er_in = BP out Er_in ‘ BP ERROR
L in L_in
L in 10 |
V1 PATH

Figure 5.5: PAth unit of model V1

Ports of V1_PATH:

D_in (64 * 32-bits): Input of training examples.

L_in (10-bits): Input of the training labels.

D_out (10-bits): Classification result output of the network.
Tr_Er_In (10*32-bits) Training error input for backpropagation.

L1_G (64 * 32-bits): Error gradient of layer 1 output for the layer update.

L1_W (32-bits): Layer 1 weights input for the forward pass.
L2_G (128-bits): Error gradient of layer 1 output for the layer update.
L2_W (32-bits): Layer 2 weights input the forward pass.

49

L3_G (64 * 32-bits): Error gradient of layer 1 output for the layer update.

L3_W (32-bits): Layer 3 weights input the forward pass.
L1_SW (32-bits): DNI 1 synthetic weights input for the computation of synthetic
gradient.
L2_SW (32-bits): DNI 2 synthetic weights input for the computation of synthetic
Gradient.
5.1.2.2. DNI Unit
32 32 DNI
v i
Weights
D_in N*32 M*32 D_out
IN ouT

Synth_Weights

M*32 | Er_in

FC—L—Z IN ERROR —
SG
BP out N"32
BP ERROR
10
e P

L_in

Figure 5.6: DNI unit

5.1.2.3. Common Components with Model VO
Architecture

The architecture of model V1 is an extension of the architecture of model VO, thus
there are several components that are common. Weights units L1_W to L3_W are identical
with these of architecture of model VO and they were explained in chapter 5.1.1.2. Loss
function unit is also the same for this architecture and it is explained in chapter 5.1.1.3.

50

The units L1_SW and L2_SW are the units where weights for the SG modules are
stored. They are weight units same like these presented in chapter 5.1.1.2 and they are used in
order to store and update the parameters that the Synthetic Gradient unit uses. Synthetic
gradient unit is a typical fully connected neural layer, similar to the FC_L units. It also
operates in mini batches and as a result there is a single weight unit for the N PATH_V1 units
that contain two SG modules each, for layer 1 an 2.

5.1.3 .Model V2 Architecture

The architecture of model V2 is identical with the architecture of V1. The
difference applies in the control of the units and the sequence of operations. We can
understand that difference only through the timing simulation which is presented and
explained in chapter 5.3.3.

5.2. FPGA Resources

In the following tables we present the comparison of hardware resources for deploying
each of the tested models on the FPGA. The models were deployed according to the
dimensions of both UCI and MNIST datasets. This resources values are provided through the
Vivado HLS Synthesis and the are referred to the percentage of utilisation of the target FPGA.

The UCI dataset consists of 8x8 pixels images, therefore the input of the NN is a vector
of 64 elements while MNIST dataset which consists of 28x28 pixels runs on a NN of 784
elements input. The rest of the network’s dimensions remain the same for both experiments.

Model J LUT (%) J FF (%) JDSP (%) | BRAM (%)
VO 14 5 8 12
Vi 15 5 8 17
V2 17 6 9 20
(a)

51

Model JLUT (%) JFF (%) | DSP (%) | BRAM (%)
VO 14 3 8 30
Vi 15 3 8 37
V2 17 6 9 48
(b)

Table 5.1: FPGA resources for UCI (a) and MNIST (b) datasets, three layers FCNN.

LUT: LookUp Table VO: NN presented in chapter 4.1
FF: Flip Flop V1: NN presented in chapter 4.3
DSP: Digital Signal Processor V2: NN presented in chapter 4.4

BRAM: Block RAM.

5.3. Design verification

Modern FPGA designing tools like Vivado HLS have reached a significant level of
abstraction. This gives us the ability to create hardware designing source code along with
software simulations with accurate corresponding in components and functionality. This
provides flexibility in exploring models and modifications in the software that can be easily
configured on the hardware implementations as well as verifying behaviour of hardware
architectures according to the software modelling.

In this thesis the modelling and the experiments of our different architectures
functionality was implemented in Python. The architectures hardware deploy was
implemented in Vivado HLS coding in Vivado C++. With the use of Vivado HLS c-simulation
[43] we initialised our models with the known parameters values. Then we simulated the
training process with known training examples while monitoring the output of each layer
along with the training error. The same procedure was applied in Python functional
simulations in order to examine the match of each internal parameter in every training step
between the two runs. In this way we verified that both hardware design implementation and
software functional simulation of every model discussed, have identical behaviour.

52

5.4. Timing Analysis

The timing analysis of our models was achieved through Vivado HLS RTL simulation of
training operations of our the NNs architectures presented in the previous chapter. In this way
we could define the interval of accepting a new input during training for every one of the three
different models. The time length is defined in clock cycles that were acquired from the RTL
simulation.

In order to understand the sequence of the actions that take place during the training
pass we present the timing sequence of the operations of the discrete modules. This
operations correspond to the discrete steps that take place during the training pass of a NN.
We consider that the training pass begins from the point that an input has already been stored
into the mem units described in chapter 5.1.1.4. The time it takes for an input to be fetched is
same for all three architectures and it will be discussed in chapter 5.4.

Timing diagrams use the following annotation:

Operations:

L1, L2, L3: Layer 1, 2 and 3 of the NN.

FW: Layer forward pass. It is the function between ports D_in, W and D_out
of the FC_L unit 5.1.1.1.

Loss: Computation of the training loss. It is the operation of Loss unit 5.1.1.3.

BP: Layer backpropagation. It is the function between ports Er_in and BP of
the FC_L unit 5.1.1.1.

Up: Layer weights and biases update. It is the operation of Weights unit
5.1.1.2.

SG: Production of synthetic gradient error. It is the operation of SG unit

SG Up: Update of the synthetic gradient weights. It is the operation of Synthetic
Weights unit.

Colours:

Green: Operations that use information produced from the forward pass and
normal backpropagation.

Yellow: Operations that use information produced by the SG modules.

Red: Operations that use combination of backpropagation and SG modules
Information.

Note: Timing diagrams clock cycles axis is not linear for presentation reasons.

The new input interval time is defined by the number of cycles that first layer starts the
forward pass operation for the second time. This is the point when the NN has completed a full

53

training cycle. This is the interval we use in order to compare the time complexity of the
difference models. The fetch of the input data would need 64 clock cycle. In the following
chapters we are about to show that the training pass needs 1074 range of clock cycles. For this
reason, during the comparison of time complexity of the different architectures we assume
that time to fetch the input is equal to zero.

5.4.1 Model VO
CLK Cyelas: |0 B1371 159030 165019 165382 171353 182425 2464209 328680 3086847 400879
Operations:

-

Figure 5.8: Timing diagram of model VO architecture

In the timing diagram of our initial architecture VO we see that most of the operations
of forward pass and normal backpropagation happen sequentially (points 1). The only
operations that can happen in parallel are the backpropagation of a layer N with the weights
update of a layer N-1 (points 2). The new input interval of the architecture is in point 3 and
defined by the end of weights update of layer 1 in is 409979 clock cycles.

Diagram analysis:
[0]
L1 FW - Layer 1 forward starts.
[81371]
Result of layer 1 forward is available and it is provided in L2 FW.
L2 FW - Layer 2 forward starts.
[159030]
Result of layer 2 forward is available and it is provided in L3 FW.
L3 FW - Layer 3 forward starts.
[165019]
Result of layer 3 forward is available and it is provided in Loss.

54

Loss - Calculation of training error starts.

[165382]

The training error is available and it is provided to L3 BP for the backpropagation to
start.

L3 BP - Layer 3 backpropagation starts.

[171353]

Result of layer 3 backpropagation is available and it is provided in L2 BP for the
backpropagation to continue and in L3 Up in order to perform error correction update.
L3 Up - Layer 3 error correction update starts.

L2 BP - Layer 2 backpropagation using the true error gradient starts.

[246429]

Layer 2 true error is available and it is provided in L1 BP for the backpropagation to
continue and in L2 Up in order to perform error correction update.

L1 BP - Layer 1 backpropagation using the true error gradient starts.

L2 Up - Layer 2 error correction update using the true error starts.

[328680]

Layer 1 error is available and it is provided in L1 Up in order to perform error
correction update.

L1 Up - Layer 1 correction update starts.

[409979]

Layer 1 update correction is completed. The system is ready to accept new input.

5.4.2. Model V1
CLK Cycles: [0 [159030 [165382 (182425 |246429 |247926 |321505 |386847 |391201 |471291
Operations: 81371 |165019 |171353 |205457 |248608 |287015 |330105 |389794 |461923 |550284
L1 FW
L1SG 2 | . I
L1 BP £
L1 Up o ' |

L2 FW _
L2 5G 2] =]
L2 BP

L2 Up
L3 FW

Loss
L3 BP
L3 Up

L2 5G Up
L15SGUp :

Figure 5.9: Timing diagram of model V1 architecture

55

In the timing diagram of model V1 we can see that operations of synthetic gradient can
be executed in parallel (points 2) but actually take much longer than the operations of
backpropagation. This main delay occurs from the SG module of layer 1, which is actually a
138 to 128 fully connected layer. This means that L1 SG is the widest layer of our model, thus
the forward pass and error correction update of layer 1 SG (point 4) are now, the two most time
consuming operations of our architecture while the operations of forward pass and
backpropagation are not affected (points 1). In point 3 we see that the backpropagation for
error correction using the synthetic gradient occurs later than it would occur using the true
error. As a result, the new input interval (point 5) of architecture V1 is 550284 clock cycles,
1,34 times longer than this of initial model architecture VO. Considering the speedup results of
table 4.1, DNI could probably not achieve acceleration in a NN of such scale. A precise
comparison of training time according to accuracy is presented in chapter 5.6

Diagram analysis:
[0]
L1 FW - Layer 1 forward starts.
[81371]
Result of layer 1 forward is available and it is provided in L1 SG and L2 FW.
L1 SG - Layer 1 synthetic gradient calculation starts.
L2 FW - Layer 2 forward starts.
[159030]
Result of layer 2 forward is available and it is provided in L2 SG and L3 FW.
L2 SG - Layer 2 synthetic gradient calculation starts.
L3 FW - Layer 3 forward starts.
[165019]
Result of layer 3 forward is available for Loss.
Loss - Calculation of training error starts.
[165382]
The training error is available and it is provided in L3 BP for the backpropagation to
start.
L3 BP - Layer 3 backpropagation starts.
[171353]
Result of layer 3 backpropagation is available and it is provided in L2 BP for the
backpropagation to continue and in L3 Up in order to perform error correction update.
In addition, it is provided in L2 SG in order to perform error correction update of the
SG module.
L3 Up - Layer 3 error correction update starts.
L2 BP - Layer 2 backpropagation using the true error gradient starts.
L2 SG - Layer 2 SG module is not available because it still produces the layer 2
synthetic error gradient. As a result error correction update cannot start.
[205457]

56

Layer 2 synthetic error gradient is available and it is provided in L2 BP in order to
produce the layer synthetic error.

L2 SG Up - Layer 2 SG module is available and SG error correction update starts.

L2 BP - Layer 2 is not available because it still performs backpropagation using the
true error gradient. L2 BP using the synthetic error gradient cannot start.

[246429]

Backpropagation of layer 2 using the true error gradient is completed and layer 2 is
available.

L2 BP - Backpropagation using the synthetic error gradient starts in order to produce
the layer synthetic error.

[321505]

Layer 2 synthetic error is available and it is provided in layer 2 in order to perform
error correction update.

L2 Up - Layer 2 error correction update using the synthetic error starts.

[247926]

Layer 1 synthetic error gradient is available and it is provided in layer 1 in order to
perform backpropagation.

L1 SG Up - L1 SG module is available and error correction update starts using the result
of L2 BP which is already available.

L1 BP - Layer 1 backpropagation using the synthetic error gradient starts.

[330105]

Layer 1 synthetic error is available and it is provided in L1 Up in order to perform error
correction update.

L1 Up - Layer 1 error correction update using the synthetic error starts.

[471291]

Layer 1 error correction update is completed. The system is ready to accept new input.

57

5.4.3. Model V2

CLK Cycles: |0 |159030 [165382 |182425 |246429 |247926 [321505 (386847 |391291 (461923 |551973 |
Operations: 81371 |165019 171353 |205457 | 248608 |287015 |328608 |389794 |410787 |550284
L1 FW
L15G =R
L1 BF
L1 Up
L2 FW
L2 56
L2 BP
L2 Up
L3 FW
Loss
L3BP
L3 Up

L2 5G Up
L1 5G Up

Figure 5.10: Timing diagram of model V2 architecture

In the timing diagram of model V2 we realise that all operations of backpropagation
can actually happen in parallel with the operations of DNIs with no significant additional time
overhead. In points 1, we apply backpropagation using true error gradient before synthetic
error gradient is ready and then, backpropagation using the synthetic error gradient (points
2). In addition, normal layers update are less time consuming than synthetic gradient
operations, therefore the time complexity of normal layes update is completely hidden.
Therefore in point 3 we apply weights update using both errors at the time point we did in
architecture V1. As a result, this model has the same new input interval with DNIs NN V1. A
major advantage though is that, in this model, layer 1 and 2 are updated using both
information of backpropagation and synthetic gradient modules.

Diagram analysis:
[0]
L1 FW - Layer 1 forward starts.
[81371]
Result of layer 1 forward is available and it is provided in L1 SG and L2 FW.
L1 SG - Layer 1 synthetic gradient calculation starts.
L2 FW - Layer 2 forward starts.
[159030]
Result of layer 2 forward is available and it is provided in L2 SG and L3 FW.

58

L2 SG - Layer 2 synthetic gradient calculation starts.

L3 FW - Layer 3 forward starts.

[165019]

Result of layer 3 forward is available and it is provided in Loss.

Loss - Calculation of training error starts.

[165382]

The training error is available and it is provided in L3 BP for backpropagation to start.
L3 BP - Layer 3 backpropagation starts.

[171353]

Result of layer 3 backpropagation is available and it is provided in L2 BP for the
backpropagation to continue and in L3 Up in order to perform error correction update.
In addition, it is provided in L2 SG in order to perform error correction update of the
SG module.

L3 Up - Layer 3 error correction update starts.

L2 BP - Layer 2 backpropagation using the true error gradient starts.

L2 SG - Layer 2 SG module is still producing the layer synthetic error gradient. As a
result error correction update cannot start.

[205457]

Layer 2 synthetic error is available and it is provided in L2 BP in order to produce the
layer synthetic error.

L2 SG Up - Layer 2 SG module is available and SG error correction update starts.

L2 BP - Layer 2 is not available because it is still performing backpropagation using
the true error gradient. L2 BP using the synthetic error gradient cannot start.

[246429]

Layer 2 true error is available and it is provided in L1 BP for the backpropagation to
continue and in layer 1 SG module in order to perform error correction update.

L1 BP - Layer 1 backpropagation using the true error gradient starts.

L1 SG Up - Layer 1 SG module is not available to perform error correction update using
the true error gradient because it still produces the synthetic error.

L2 BP - Layer 2 is available and backpropagation using the synthetic error gradient
starts in order to produce the layer synthetic error.

[247926]

Layer 1 synthetic error gradient is available and it is provided in layer 1 in order to
perform backpropagation.

L1 BP - Layer 1 is not available because it still performs backpropagation using the true
error gradient.

L1 SG Up - L1 SG module is available and error correction update starts using the result
of L2 BP which is already available.

[328608]

Result of layer 1 backpropagation using the true error gradient is available.

L1 BP - Layer 1 is available and backpropagation using the synthetic error gradient
starts.

59

[410787]

Result of layer 1 backpropagation using the synthetic error gradient is available. Both
true and synthetic errors ara now available for layer 1 in order to perform error
correction update.

L1 Up - Layer 1 error correction update using the average of true and synthetic error
starts.

[321505]

Layer 2 synthetic error is available and it is provided in layer 2. Both true and synthetic
errors are now available for layer 2 in order to perform error correction update.

L2 Up - Layer 2 error correction update using the average of true and synthetic error
starts.

[550284]

Layer 1 error correction update is completed. The system is ready to accept new input.

5.4.5. Comparison of time complexity

In the following figure we present the timing diagram of the new input interval, as
defined for each model in the previous chapters, in order to compare them.

CLK Cycles: 50000 |60000

Architecture:

Figure 5.11: Timing comparison of models V0, V1 and V2

5.5. Data Input Bandwidth

The implementation of our architectures was only conducted in simulation using the
Xilinx Vivado HLS RTL Simulation. In this simulation, it is assumed that data we feed as an
input to the FPGA are available without any latency. However, we have to consider the
behaviour in a real world application where input data are provided in the FPGA by the DDR
memory and ensure this will not cause a bottleneck in the training process.

60

DDR =" FPGA

Figure 5.7: System Top Level

Our initial NN VO as well as the extended architecture V1 and V2 are designed to
receive input data in two stages. First, it receives the initial values for the weights and biases
parameters during the initialisation of the NN. In this case, for architecture VO, an input
stream of 32 bits width is required while for architectures V1 and V2, two input streams of 32
bits are required which result in a maximum input bandwidth demand (new data in every
clock cycle) of 1,6 and 3,2 GB/s respectively. Second, it receives the training examples during
the training process. Each example is received through an input stream of 32 bits width along
with a 10 bits input of the training label. The architectures are designed to process 10
examples in parallel in every training pass. This results in the need of 420 width input stream
with maximum input bandwidth (new data in every clock cycle) of 4 GB/s which remains the
same for all architectures.

The Zynq UltraScale+ board that we use provides four 128-bit/64-bit/32-bit HP AXI
interfaces (up to 512 bits). These interfaces can accomplish theoretical input stream of 16 GB/s
rate. This means that, for the system initialisation and examples fetch, the number of inputs
and bandwidth would be more than sufficient. As a result during our simulation, we assume
that we can have a new input in every clock cycle. Furthermore, parallel load of parameters
could lead in faster initialisation but this is something that we did not apply in our research.

5.5.1. Architectures Initialisation

Initialisation of the architectures presented in previous chapters regards the storage of
the initial parameters in the weights units that were described in chapter 5.1.1.2 and 5.1.2.3.
Architecture V1 has three weights units, one for the parameters of each layer of the network,
while architectures V1 and V2 have additional two weight units, one for the parameters of
every SG module. We assume that the initial weights and biases parameters values are stored
in files in the DDR memory and are passed sequentially into the FPGA in order to be stored
into the weight units. The fact that parameters are read sequentially results in time complexity

61

of initialisation linear to the number of weights to be written. In the next table we present the
number of parameters for each architecture.

Component Inputs | Outputs | Weights | Biases
Layer 1 64 128 8192 128
Layer 2 128 64 8192 64
Layer 3 64 10 640 10
Total Parameters: 17226

Table 5.2: Parameters of architecture VO

Component Inputs | Outputs | Weights | Biases
Layer 1 64 128 8192 128
Layer 2 128 64 8192 64
Layer 3 64 10 640 10
SG1 138 128 17664 128
SG2 74 64 4736 64
Layers Parameters: 17226

3G Parameters: 22592

Total Parameters: 39818

Table 5.3: Parameters of architectures V1 and V2

We have implemented two input ports for writing the initialization weights. One for the
layers weights and a second one for the weights of SG modules (figure 5.4). As a result,
assuming we would use one port of the DDR for the weights and a second one for the synthetic
weights, the theoretical initialisation overhead for the extensions applied for architectures V1
and V2 is going to be the clock cycles required for storing the overhead number of
parameters. In previous chapter, we showed that a single training pass of the NN VO takes
409979 clock cycles to complete and ~550000 clock cycles for architectures V1 and V2 while the full
training for the UCI dataset would take up to 6400 training passes. This means that initialisation time is
17226 clock cycles for VO and 39818 for V1,V2 while overall operation time is ~26234*10° and
~35321*10° respectively. As aresult, we considered the time overhead added for the initialisation of the
extension architectures to be inconsiderable small.

5.5.2. Examples Data Fetch

62

In this thesis, we investigate ways that we can accelerate the training of a NN through
acceleration of the data processing. In order to evaluate the need of that, we need to ensure
that the bottleneck of the overall process applies in the processing of the data rather that the
fetch of the data. For this reason we compare the clock cycles needed to fetch every training
examples batch to the clock cycles needed for processing each training examples batch. The
examples data fetch is fulfilled within 64 clock cycles for all architectures while processing of
each example batch data is ~40*10* clock cycles for architecture VO and ~55*10* clock cycles
for architectures V1 and V2. We consider this to be a reasonable input data fetch time.

5.6. Results

In the previous chapter we concluded that there is increase of the new input interval of
the NN in both architectures V1 and V2 compared with that of architecture V0. Conversely in
chapter 4.4 experiments we show that this model achieves faster convergence than normal
backpropagation. In order to make an accurate comparison of the two models training time we
present the training error convergence and the accuracy of the NN according to the operation
time. The time is calculated given the number of clock cycles and the estimated clock period
that are provided by the Vivado HLS RTL simulation equal to 10ns.

200 i 200
‘I. — 0 — 0
175 Vi 175 Wi
150 \l) v2 150 vz
125 ' 125
w w
& 100 \ & 100
))
=2 =)
3 75 9 75
50 50
25 25
0 T 0 1 _
0 10 20 0 40 50 &0 0 0 10 20 ED) 40 50 60 70
millisecands milliseconds
a) (b)

Figure 5.12: Training error in time domain

Training error convergence comparison of models VO, V1 and V2 over milliseconds of
operation with layers learning rate &=0.1 (a) and a=0.7 (b).

63

1000 1000
0475 0.975
d—_—’J_/_ﬂ /ﬁ_'—’_’_'_’_,—
0.950 0.950
g g
@ 0925 @ 0925 |
= 3
o 0900 o 0900
< <
i i
2 0875 @ 0875
[[
0.850 0.850
— W0 — W
0.825 vl 0.825 vl
2 2
0.800 — . T . T T T f ; 0800 1 : : ; :
0 0 20 0 40 50 &0 0 80 0 10 0 El] 40 50 60 0 80
milliseconds milliseconds
(a) (b)

Figure 5.13: Test accuracy in time domain

Accuracy on the test set comparison of models VO, V1 and V2 over milliseconds of training
operation with layers learning rate & =0.1 (a) and & =0.7 (b).

The measurements of accuracy according to training time shows that although models
V1 and V2 result in longer new input interval time, they actually achieve faster training in
overall. This is accomplished because the decrease of the training steps that are required
along with the bigger time overhead applied in the architectures operation latency results in
overall shorter time.

In the following table we present the speedup in operation time for certain accuracy
levels of the architectures V1 and V2 against the initial architecture V0. The operation time
speedup according to accuracy experiment can give us a clear view of the result of our attempt
to speedup the training process.

Accuracy V1 Va2
0,91 1,00 1,68
0,92 0,93 1,76
0,93 1,05 221
0,94 1,06 2,37
0,95 1,03 2,43
0,96 1,04 2,70
0,97 1,04 3,00

@

64

Accuracy W1 Va2
0,83 1,00 1,00
0,94 0,80 1,25
0,85 1,13 1,22
0,96 4,03 315
0,97 4,22 4,00
0,98 5,00 5,02

(b)

Table 5.4: Operation time speedup

Operation time speedup, compared on RTL simulation time, of architectures V1, V2 versus
architecture VO with layers learning rate @=0.1 (a) and @ =0.7 (b).

The results of architecture V1 training for small learning rate presented in table 5.4
show that synthetic gradient can efficiently replace the backpropagation algorithm. The time
overhead that is added in the training cycle is counterbalanced by the decrease of needed
steps for convergence. As a result V1 achieves neither speedup nor delay and can reach the
levels of accuracy of initial model VO in approximately same operation time. When a large
learning rate is used table 5.4.b, V1 has achieves speedup of the training process. This
happens because the regularisation effect added by the use of synthetic gadient is more
important for cases of large learning rate. In this case, V1 needs much less steps to converge
and as a result the overall training time for certain levels of accuracy is smaller. The effect is
more tense for higher levels of accuracy achieving speedup of up to 5 for accuracy of 0,98.

The result of architecture V1 training for small learning rate (table 5.4.a) shows that
model V2 can effectively achieve speedup of the training process as a result of reaching
higher levels of accuracy using less training steps. The time overhead added by the extension
of our architecture is counterbalanced by the speedup of training steps required. The effect is
better than this of architecture V1 as it can achieve speedup of the training process for small
learning rates. The effect is more important for high levels of accuracy reaching speedup up to
3 for accuracy of 0,97. When a large learning rate is used (table 5.4.b) the positive impact is
even higher, as V2 can achieve overall higher accuracy of VO. As a result V2 achieves higher
speedup for higher levels of accuracy reaching up to 5 for accuracy of 0,98. The fact that V2
performs better than normal backpropagation in both cases of small and big learning rates
gives an insight that it could also achieve speedup of the training process for cases where a
varied learning rate is used.

65

Chapter 6

Conclusions and Future Work

The purpose of this thesis was to investigate decoupled neural interfaces as a method
for training deep neural networks. The investigation was held regarding the effect of the
learning ability as well as a methodology that uses synthetic gradient for accelerating the
training process of neural networks. We realised that replacement of backpropagation
algorithm with DNIs can speed up the training process only in particular cases. In all cases
though, the training speed was at least equal to this of the initial NN. On the other hand, DNIs
can improve the performance of the training process, increasing the accuracy and
representational strength due to the regularisation applied caused by the noise injected by the
gradient error estimation of synthetic gradient.

Consequently, we showed that the combination of synthetic gradient with normal
backpropagation gradient error (V2) can causes faster error convergence and faster increase
of the accuracy. Due to the capability of parallelisation these two processes, the architecture
that combines the synthetic gradient error and the backpropagation error results in almost
same time complexity as the architecture that uses only the synthetic gradient error. The use
of both errors during the training process achieves acceleration of the error convergences and
as a result, speedup of the training process.

As future work, we propose the implementation of our architectures in hardware to
and the expansion with low level design optimisation techniques like fine-grain
parallelisation, pipelining etc. Further research on the use of DNIs could discover large neural
network architectures where the use of DNIs could speed up the training process as well as
deep architectures where models like these presented in this thesis could achieve higher
acceleration. Finally the research could expand towards different neural network types that the
synthetic gradient model would have a positive impact.

66

Bibliography
Books

[2] Vapnik V.. “Statistical learning theory”, 1998. New York: Wiley.

[6] Werbos, P. J.. “Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences”, 1974. Harvard University.

[8] Goodfellow I., Bengio Y., Courville A.. “Deep Learning”, 2016. MIT Press.
ISBN: 978-0262035613

[9] Aizenberg I., Aizenberg N.N., Vandewalle Joos P.L.. “Multi-Valued and Universal Binary
Neurons: Theory, Learning and Applications”, 2000. Springer US.

Publications

[1] Christian Robert, Machine learning, a probabilistic perspective, CHANCE 27 (2014), no. 2,
62-63.

[4] Gualtiero Piccinini, The first computational theory of mind and brain: A close look at
mcculloch and pitts’s "logical calculus of ideas immanent in nervous activity”, Synthese 141

(2004), no. 2, 175-215.

[3] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta, Revisiting
unreasonable effectiveness of data in deep learning era, CoRR abs/1707.02968 (2017).

[5] F. Rosenblatt, The perceptron: A probabilistic model for information storage and
organization in the brain, Psychological Review (1958), 65-386.

[7] Grzegorz Lewicki and Giuseppe Marino, Approximation of functions of finite variation by
superpositions of a sigmoidal function, Appl. Math. Lett. 17 (2004), no. 10, 1147-1152.

[10] Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick Haffner, Gradient-based learning
applied to document recognition, Proceedings of the IEEE, 1998, pp. 2278-2324.

67

[11] Shun-ichi Amari, Backpropagation and stochastic gradient descent method,
Neurocomputing 5 (1993), no. 3, 185-196.

[12] Sebastian Ruder, An overview of gradient descent optimization algorithms, CoRR
abs/1609.04747 (2016).

[13] Samuel Rota Bul o, Lorenzo Porzi, and Peter Kontschieder, Dropout distillation, in Balcan
and Weinberger ICML 2016, pp. 99-107.

[14] Lei Jimmy Ba and Brendan J. Frey, Adaptive dropout for training deep neural networks, in
Burges et al. 27th annual conference on neural information processing systems 2013, pp.
3084-3092.

[15] Diederik P. Kingma, Tim Salimans, and Max Welling, Variational dropout and the local
reparameterization trick, CoRR abs/1506.02557 (2015).

[16] Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, and Bohyung Han, Regularizing deep
neural networks by noise: Its interpretation and optimization, CoRR abs/1710.05179 (2017).

[17] Alan F. Murray and Peter]J. Edwards, Enhanced MLP performance and fault tolerance
resulting from synaptic weight noise during training, IEEE Trans. Neural Networks 5 (1994),
no. 5, 792-802.

[18] Chuan Wang and Jos'e C. Pr'incipe, Training neural networks with additive noise in the
desired signal, IEEE Trans. Neural Networks 10 (1999), no. 6, 1511-1517.

[19] Rajat Raina, Anand Madhavan, and Andrew Y. Ng, Large-scale deep unsupervised
learning using graphics processors, in Danyluk et al. ICML 2009, pp. 873-880.

[20] K. Ganeshamoorthy and D. N. Ranasinghe, On the performance of parallel neural network
implementations on distributed memory architectures, in 8th IEEE International Symposium
on Cluster Computing and the Grid (CCGrid 2008), 19-22 May 2008, Lyon, France , pp. 90- 97.

[21] Xie Chen, Adam Eversole, Gang Li, Dong Yu, and Frank Seide, Pipelined
back-propagation for context-dependent deep neural networks, in INTERSPEECH 2012, 13th
Annual Conference of the International Speech Communication Association, Portland,
Oregon, USA, September 9-13, 2012, pp. 26-29.

[22] Alex Krizhevsky, One weird trick for parallelizing convolutional neural networks, CoRR
abs/1404.5997 (2014).

68

[23] Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, L eon Bottou, and
Kilian Q. Weinberger (eds.), Advances in neural information processing systems 25: 26th
annual conference on neural information processing systems 2012. proceedings of a meeting
held december 3-6, 2012, lake tahoe, nevada, united states, 2012.

[24] Balduzzi, D., Vanchinathan, H., and Buhmann, J. (2014). Kickback cuts Backprop's
red-tape: biologically plausible credit assignment in neural networks. arXiv:1411.6191.

[25] Philip S. Thomas, Policy gradient coagent networks, Advances in Neural Information
Processing Systems 24 (J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
Weinberger, eds.), Curran Associates, Inc., 2011, pp. 1944-1952.

[26] Ronald J. Williams and David Zipser, A learning algorithm for continually running fully
recurrent neural networks, Neural Comput. 1 (1989), no. 2, 270-280.

[27] Yann Ollivier and Guillaume Charpiat, Training recurrent networks online without
backtracking, CoRR abs/1507.07680 (2015).

[28] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves,
and Koray Kavukcuoglu, Decoupled neural interfaces using synthetic gradients, CoRR
abs/1608.05343 (2016).

[29] Wojciech Marian Czarnecki, Grzegorz Swirszcz, Max Jaderberg, Simon Osindero, Oriol
Vinyals, and Koray Kavukcuoglu, Understanding synthetic gradients and decoupled neural
interfaces, CoRR abs/1703.00522 (2017).

[30] Daniel Le Ly and Paul Chow, High-performance reconfigurable hardware architecture for
restricted boltzmann machines, IEEE Trans. Neural Networks 21 (2010), no. 11, 1780-1792.

[31] Lok-Won Kim, Sameh Asaad, and Ralph Linsker, A fully pipelined FPGA architecture of a
factored restricted boltzmann machine artificial neural network, TRETS 7 (2014), no. 1, 5:1-

5:23.

[32] Urs Muller and A Gunzinger, Neural net simulation on parallel computers, 12 2018, pp.
3961 -3966 vol.6.

[33] Chao Wang, Qi Yu, Lei Gong, Xi Li, Yuan Xie, and Xuehai Zhou, DLAU: A scalable deep
learning accelerator unit on FPGA, CoRR abs/1605.06894 (2016).

69

Webpages

[34]https://matplotlib.org/index.html

[35]http://archive.ics.uci.edu/mli

[36]https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load digits.html

[37]https://scikit-learn.org/stable/modules/generated/sklearn.model selection.train test
split. html

[38] http://vann.lecun.com/exdb/mnist/

[39] https://scikit-learn.org/0.19/modules/generated/sklearn.datasets.fetch mldata.html#
sklearn.datasets.fetch mldata

[40] https://mldata.org

Data Sheets

[41] https://www.xilinx.com/support/documentation/data sheets/ds891-zynq-ultrascale-p
lus-overview.pdf

[42] https://www.xilinx.com/products/design-tools/vivado/integration/esl-design. html

[43] Vivado Design Suite User Guide High-Level Synthesis UG902 (v2012.2) July 25, 2012

70

https://matplotlib.org/index.html
http://archive.ics.uci.edu/ml
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
http://yann.lecun.com/exdb/mnist/
https://scikit-learn.org/0.19/modules/generated/sklearn.datasets.fetch_mldata.html#sklearn.datasets.fetch_mldata
https://scikit-learn.org/0.19/modules/generated/sklearn.datasets.fetch_mldata.html#sklearn.datasets.fetch_mldata
https://scikit-learn.org/0.19/modules/generated/sklearn.datasets.fetch_mldata.html#sklearn.datasets.fetch_mldata
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

