
Technical University of Crete, Greece

School of Electrical and Computer Engineering

Hybrid Visual Simultaneous Localization

and Mapping (SLAM) on the Nao Robot

using ROS

Nektarios Sfyris
neksfiris at gmail.com

Thesis Committee

Associate Professor Michail G. Lagoudakis (ECE)

Associate Professor Georgios Chalkiadakis (ECE)

Professor Michail Zervakis (ECE)

Chania, July 2019

http://www.tuc.gr
http://www.ece.tuc.gr

Nektarios Sfyris ii June 2019

Πολυτεχνειο Κρητης

Σχολη Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων

Υβριδικός Οπτικός Εντοπισμός και

Χαρτογράφηση (SLAM) στο Ρομπότ Nao

με χρήση του ROS

Νεκτάριος Σφυρής
neksfiris at gmail.com

Εξεταστική Επιτροπή

Αναπληρωτής Καθηγητής Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)

Αναπληρωτής Καθηγητής Γεώργιος Χαλκιαδάκης (ΗΜΜΥ)

Καθηγητής Μιχαήλ Ζερβάκης (ΗΜΜΥ)

Χανιά, Ιούλιος 2019

http://www.tuc.gr
http://www.ece.tuc.gr

Nektarios Sfyris iv June 2019

Abstract

Simultaneous Localization and Mapping (SLAM) is one of the fundamental problems

a robot must solve in order to become truly autonomous. A variety of SLAM methods

have been proposed, depending on the available robot sensors for measurements (camera,

laser, infrared, lidar, sonar, GPS, compass, etc.) and the available prior knowledge about

the environment being mapped and navigated, ranging from controlled environments,

such as robotic warehouses, to totally unstructured and unknown terrains, such as the

scene of a disaster. In this thesis, we present a Hybrid Visual SLAM approach, imple-

mented and tested on the monocular case of the Nao humanoid robot. The proposed

approach combines the benefits of both a Direct (Direct Sparse Odometry or DSO) and

an Indirect (Oriented FAST and Rotated BRIEF SLAM or ORB-SLAM) visual odometry

method. Specifically, the Direct module provides the total system’s initialization process

and local camera tracking, while the Indirect module provides relocalization, loop clos-

ing and map refinement. In addition, points of the physical three-dimensional space are

selected from each module and at each camera keyframe to create the final consistent

sparse point cloud map of the environment. All these tasks are executed in a paral-

lel and multi-threaded architecture on a remote computer station, which communicates

with the robot over a wired or wireless network. To increase the system’s efficiency, we

have also included both a geometric and a photometric calibration method to correct the

camera measurements. Communication between the Direct and Indirect modules, as well

as between the robot and the remote computer station, takes place within the Robot

Operating System (ROS) framework, which enables for a common message transmission

protocol. Last, but not least, a teleoperation node is built to simulate autonomous robot

navigation during SLAM. The coupled system applied to the Nao humanoid robot is

evaluated in various indoor and outdoor environments to demonstrate its robustness and

real-time performance.

Nektarios Sfyris vi June 2019

Περίληψη

Ο ταυτόχρονος Εντοπισμός και Χαρτογράφηση (Simultaneous Localization and Mapping

- SLAM) είναι ένα από τα θεμελιώδη προβλήματα που πρέπει να λύσει ένα ρομπότ για να

γίνει πραγματικά αυτόνομο. Ποικίλες μέθοδοι SLAM έχουν προταθεί ανάλογα με τους

διαθέσιμους αισθητήρες για μετρήσεις (όπως κάμερα, λέιζερ, υπέρυθρες, lidar, σόναρ, GPS,

πυξίδα, κ.λπ.) και ανάλογα με τη διαθέσιμη πρότερη γνώση για το χαρτογραφούμενο πε-

ριβάλλον, που κυμαίνεται από ελεγχόμενα περιβάλλοντα, όπως οι ρομποτικές αποθήκες, έως

αδόμητες και άγνωστες περιοχές, όπως το σκηνικό μιας φυσικής καταστροφής. Σε αυτή

τη διπλωματική εργασία, παρουσιάζουμε μία Υβριδική Οπτική προσέγγιση SLAM, η οποία

υλοποιήθηκε και δοκιμάστηκε στην περίπτωση του ανθρωποειδούς ρομπότ Naoπου διαθέτει

μία μόνο κάμερα (monocular vision). Η προτεινόμενη προσέγγιση συνδυάζει τα οφέλη τόσο

της ΄Αμεσης (Direct Sparse Odometry ή DSO), όσο και της ΄Εμμεσης (Oriented FAST and

Rotated BRIEF SLAM ή ORB-SLAM) οπτικής οδομετρίας. Πιο συγκεκριμένα, η ΄Αμεση

μέθοδος παρέχει τη διαδικασία αρχικοποίησης του συνολικού συστήματος και την τοπική πα-

ρακολούθηση της θέσης της κάμερας, ενώ η ΄Εμμεση μέθοδος παρέχει επαναπροσανατολισμό

της κάμερας, κλείσιμο βρόχου και βελτίωση του χάρτη. Επιπλέον, επιλέγονται σημεία του

φυσικού τρισδιάστατου χώρου από κάθε μέθοδο και για κάθε εικόνα του βίντεο της κάμερας,

για να δημιουργηθεί ο τελικός χάρτης νέφους σημείων του περιβάλλοντος. ΄Ολες αυτές οι

διεργασίες εκτελούνται σε μία παράλληλη και πολυνηματική αρχιτεκτονική σε απομακρυ-

σμένο υπολογιστή, ο οποίος επικοινωνεί με το ρομπότ μέσω ενός ενσύρματου ή ασύρματου

δικτύου. Για να αυξήσουμε την αποδοτικότητα του συστήματος, έχουμε συμπεριλάβει και

μία μέθοδο γεωμετρικής και φωτομετρικής βαθμονόμησης της κάμερας για τη διόρθωση των

μετρήσεών της. Η επικοινωνία μεταξύ της ΄Αμεσης και ΄Εμμεσης μεθόδου, καθώς και μεταξύ

του ρομπότ και του απομακρυσμένου υπολογιστή, πραγματοποιείται μέσα από το Robot Op-

erating System (ROS), το οποίο επιτρέπει ένα κοινό πρωτόκολλο μετάδοσης μηνυμάτων.

Τελευταίο στοιχείο, αλλά εξίσου σημαντικό, είναι η προσθήκη ενός κόμβου τηλεχειρισμού

για να προσομοιώνει την αυτόνομη πλοήγηση του ρομπότ κατά τη διάρκεια της διαδικασίας

SLAM. Το πλήρες σύστημα εφαρμοσμένο στο ανθρωποειδές ρομπότ Nao αξιολογείται σε

διάφορα εσωτερικά και εξωτερικά περιβάλλοντα για να επιδειχθεί η σταθερότητα των απο-

τελεσμάτων και η αποδοτικότητά του σε πραγματικό χρόνο.

Nektarios Sfyris viii June 2019

Acknowledgements

First, I would like to thank my advisor Michail G. Lagoudakis for his trust and

guidance during the course of this thesis.

Next, the members of team “Kouretes”, namely Dimitris X., Tasos

K., Michalis A., Fotis L., Thanasis B., Dimitris E., Athanasia K.,

George K., George A., Hercules T., Maria K., Panagiotis G., Errikos

S., Olympia G., Spiros P. and Sotiris K. which i hope will continue

contributing to the team’s goals and will further develop what we have

to this day built together. Special thanks to Helen Tsagkarogianni for

her support and assistance to this thesis experiments conduction.

My friends Charis S., Maria D., Giannis M., with special thanks

to Alex T. and Giannis P. for their support and contribution to the

experiments completion.

Last, but not least, I would like to thank my family for their love

and constant encouragement. Without their great efforts i wouldn’t

be able to complete this thesis.

Nektarios Sfyris x June 2019

Contents

1 Introduction 1

1.1 Thesis Contribution . 2

1.2 Thesis Outline . 3

2 Background 5

2.1 Aldebaran Nao Humanoid Robot . 5

2.2 Robot Operation System (ROS) . 8

2.3 Localization and Mapping . 11

2.3.1 Mobile Robot Localization . 11

2.3.2 Robotic Mapping . 16

2.3.3 Simultaneous Localization and Mapping 21

2.4 Camera Measurement Model . 23

2.4.1 Rigid Body Motion . 24

2.4.2 Monocular Camera Measurement Model 31

2.4.3 Camera Calibration . 41

2.4.4 Visual Odometry . 48

2.5 Multiple View Geometry . 56

2.6 Bundle Adjustment . 62

3 Problem Statement 67

3.1 Monocular Visual SLAM for Autonomous Robot Explorations 67

3.2 Related Work . 68

3.2.1 Indirect or Feature-based Monocular Visual SLAM 69

3.2.2 Direct Monocular Visual Odometry 70

3.2.3 Hybrid Monocular Visual SLAM 71

3.2.4 Stereo and RGB-D Methods . 71

Nektarios Sfyris xi June 2019

CONTENTS

4 Our Approach 73

4.1 Network and ROS Communication . 73

4.2 Robot Camera Calibration . 76

4.2.1 Geometric Intrinsic Calibration 76

4.2.2 Monocular Photometric Calibration 81

4.3 Inverse Depth Estimation . 90

4.4 Direct Monocular Visual Odometry . 94

4.5 Indirect Monocular Visual Odometry . 104

4.6 Coupled Semi-Direct Monocular SLAM 118

4.7 Humanoid Robot Teleoperation . 129

5 Results 133

5.1 Indoor Environments . 133

5.2 Outdoor Environments . 136

5.3 Difficulties in Monocular Visual SLAM 139

6 Conclusion 143

6.1 Summary . 143

6.2 Future Work . 143

6.2.1 Effective Semi-Direct Visual Odometry Coupling 143

6.2.2 Inertial Visual Odometry Measurements 144

6.2.3 Online Photometric Calibration 145

6.2.4 Grid Map Generation . 146

References 152

Nektarios Sfyris xii June 2019

List of Figures

2.1 Standard Platform League . 6

2.2 Aldebaran Nao Robot . 7

2.2a Nao Motors’ position . 7

2.2b Nao Sensors’ position . 7

2.3 A high level view of a ROS system example 9

2.4 Robot pose in two dimensions . 14

2.5 Occupancy Grid Mapping Model . 18

2.6 Occupancy grid mapping on a large environment 19

2.7 Point Cloud mapping on a large environment 20

2.8 A block with volume 1 . 25

2.9 Lie Group and Lie Algebra visualization 27

2.10 The Pinhole Camera Model . 32

2.11 Thin Lens Camera Model . 33

2.12 Rearranged Pinhole Camera Model . 34

2.13 The Image Plane . 36

2.14 Radial Distortion . 38

2.14a Negative Radial distortion - “Pincushion” 38

2.14b No distortion . 38

2.14c Positive Radial distortion - “Barrel” 38

2.15 Tangential Distortion . 40

2.15a Lens and CCD/CMOS chip placement 40

2.15b Projected image . 40

2.16 Projected points that belong in this world frame have zero Z-coordinate . 42

2.17 Mapping from scene irradiance L to image intensity B 45

2.18 Monotonic response function examples from real-world cameras 46

Nektarios Sfyris xiii June 2019

LIST OF FIGURES

2.19 Process of recovering the camera response function and exposure ratios . 47

2.20 Sequence of images showing a static scene at different exposures 48

2.21 Caption without FN . 50

2.22 Point observation from successive camera poses 52

2.23 Velocity over a point displacement . 53

2.24 SIFT feature extraction . 54

2.25 Shi and Tomasi eigenvalues interpretation 55

2.26 On the left we have the stereo rectified image, and on the right the esti-

mated depth map . 56

2.27 Camera motion and 3D point X depth estimation from a two view recon-

struction . 58

2.28 Plane Representation . 61

4.1 System Network Architecture . 74

4.2 Main topics and services communicated through ROS with the naoqi driver

node . 75

4.3 Geometric calibration process . 76

4.4 Example images of the geometric calibration process 80

4.5 A small portion of the dataset’s images used for calibration (in grayscale),

showing a static scene with increasing exposures from left to right and

from top to bottom . 84

4.6 Estimation of the log image irradiance between an image with small expo-

sure value (left) and big exposure value (right) 85

4.7 Evolution of the inverse camera response function estimation during the

dataset with enabled gamma correction from left to right. In the x-axis is

the pixel intensity value, and in the y-axis the irradiance 86

4.8 Vignetting Removal process . 86

4.9 The AR Marker used with pose . 87

4.10 A small portion of the dataset’s images used for vignette calibration, over-

laid with a 3D plane P in red . 88

4.11 Estimated attenuation factors V as monochrome 16-bit image 89

4.11a Original Vignette map . 89

4.11b Smoothed Vignette map . 89

4.12 The estimated irradiance image C given the 3D plane P 90

Nektarios Sfyris xiv June 2019

LIST OF FIGURES

4.13 Point inverse depth parametrization . 92

4.14 New point observation . 93

4.15 Point’s confidence region . 94

4.16 Inverse depth parametrization example on close and far from the camera

points . 95

4.17 Pattern of pixels used over every point pi 96

4.18 An example Factor Graph for our direct odometry model 98

4.19 Pyramid levels created in our case . 99

4.20 Example depth maps coupled with their initial images. From red to blue

we denote the close to far points . 100

4.21 Example candidate point selections (shown in green) taken from real-time

Nao images . 102

4.22 Example maps created with DSO method. The top row and left bottom

maps come from Nao’s real-time video, while the one on the bottom right

from a sequence of TUM mono VO Dataset 103

4.23 FAST keypoint detection process example for a circular radius of 3 . . . 105

4.24 Defining the atan2 angle . 106

4.25 ORB feature extraction examples. From left to right, first the initial image,

the keypoints with no size, the keypoints with size and color, ORB feature

matching with the same image but rotated and blurred 108

4.26 A covisibility graph example. The camera poses are linked with covisibility

links (green lines) . 110

4.27 Place recognition by comparing bag of words vectors 111

4.28 Example maps created with ORB-SLAM by using Nao’s real-time video

with ROS . 117

4.29 Coupled DSO and ORB-SLAM system overview 119

4.30 Internal DSO and ORB-SLAM systems communication supported by the

ROS framework. The ellipsoids represent each system’s main node, while

the rectangles are the topics that transfer the information to these nodes 123

4.31 Coupled system’s point extraction from the real-time Nao video sequence.

Both ORB-SLAM features (red) and DSO map points (blue) are used in

the SLAM process . 125

Nektarios Sfyris xv June 2019

LIST OF FIGURES

4.32 Two examples of map generation for the coupled system. From left to

right, the DSO map, next to it the final system’s combined map, and on

the left, images with points extracted from the sequence 126

4.33 Loop closing from the coupled system. The second row of each sequence

shows on the left when the map has detected a loop, and on the right when

the loop connection is applied . 128

4.34a Teleoperation node’s communication graph inside the ROS framework130

4.34b Nao robot 3D pose with head rotation angles 130

4.35 Total coordinate tree for the humanoid Nao robot 131

5.1 Small indoor reconstruction of Kouretes Lab robots 134

5.2 Small indoor environment reconstruction through a 90 degrees turn at the

ECE department . 135

5.3 Big indoor environment reconstruction by making three turns of 90 degrees

at the ECE department . 136

5.4 Big indoor environment reconstruction of the Kouretes Lab 136

5.5 Big outdoor reconstruction of a stairway at the ECE department 137

5.6 Big outdoor reconstruction of the open amphitheater at the ECE department138

5.7 Big outdoor environment reconstruction of a complex course at the ECE

department . 139

5.8 Big outdoor reconstruction of the closed parking at the ECE department 139

5.9 Bad map generation of a big indoor environment due to drift and light

reflections . 140

5.10 Bad map generation of a big indoor environment due to wrong scale esti-

mation at the ECE department . 141

5.11 Bad map generation of the ECE building’s core due to wrong scale estimation141

6.1 From left to right, the total coordinate frames with the Nao robot model,

in the middle only the total coordinate frames and then just the essential

for the top camera frames . 145

6.2 A 2.5 dimensional map generated by the Grid Map ROS package 146

Nektarios Sfyris xvi June 2019

List of Algorithms

Nektarios Sfyris xvii June 2019

LIST OF ALGORITHMS

Nektarios Sfyris xviii June 2019

Chapter 1

Introduction

The first and most fundamental problem that needs to be solved by a robot in order to

become really autonomous, is the problem of Simultaneous Localization and Mapping

(SLAM). This problem has attracted a lot of attention and a lot of progress has been

made the last two decades by many Universities, technological companies and research

centers, as the modern CPUs-GPUs, with the cooperation of quality sensors and opti-

mized algorithms allow to solve it in real-time. The idea of SLAM, can find application to

many emerging technologies, such as autonomous aerial robot rescue operations, ground

robot explorations, and underwater aquaculture research. Various ways exist to approach

SLAM, such as using LiDAR laser scanning systems, an array of cameras, or even a set

of radar sensors.

We use the term Visual SLAM when the sensor used to find the robot’s location

and motion in the map it builds, is a camera sensor setup, which is usually built as a

stereo vision system consisting of two cameras with known field of view, and distance

between them. The family of methods that enable a robot to estimate the SLAM problem

using vision, is called Visual Odometry (VO). Traditionally in VO, features, also called

landmarks, are extracted from the observed scene, and their correspondence is being

searched in subsequent image frames to explain what the robot’s motion and the geometry

of what it sees are. This group of methods are referred to as Indirect VO. On the other

hand, a more straightforward group of methods exists, that try to achieve the same goal

but by only examining the brightness values of the pixels in each image. This second

group of methods are referred to as Direct VO. When a single camera is used as the only

Nektarios Sfyris 1 June 2019

1. INTRODUCTION

sensor to understand the Structure from Motion (SfM) in a sequence of images, we have

the fully-constrained case of Monocular Visual SLAM.

The goal of Visual SLAM, is to estimate the robot’s camera trajectory, while at

the same time reconstruct the observed environment in a map. Because depth is not

observable by a single camera, and can only be approximated up to a scale, drifts occur

that affect the robustness of the whole procedure. A technique that is used today in

many systems, despite how computationally costly it may be, to compensate for this

issue, is called Bundle Adjustment (BA). If enough map points match, and consecutive

camera poses are provided, it can refine a whole area of estimations helping the robot to

relocalize itself in the map in case it is lost, or find a place that it has already visited,

and thus successfully complete a loop closure in the map.

1.1 Thesis Contribution

In this thesis we describe an implementation of a combined direct and indirect Visual

Odometry system, based on the system proposed by Hun Lee and Civera in [1], which

aims to solve the problem of Simultaneous Localization and Mapping problem on the

Nao robot model using a single camera. For each of the two subsystems, the best choices

in their respective group of methods up to date were selected based on performance;

namely, the Direct Sparse Odometry (DSO) system of Engel, Cremers, and Koltun [2]

for the direct one, and the ORB-SLAM system of Mur-Artal and Tardos [3] for the

indirect one.

These two subsystems create and maintain their separate maps in real-time, which

are then coupled in a way to work complementary to each other and produce a more

accurate semi-dense Point Cloud map. In particular, DSO is used to estimate the robot’s

camera pose in a local area robustly, while also providing its initialization method for

the whole system, and points from its own map when the need to dense up the coupled

map exists. In parallel, ORB-SLAM tries to make refinements to bigger scale camera

trajectories, search and close loops, and relocalize the robot in the map it creates. All

these tasks are executed on a highly-parallel and multi-threaded architecture on a remote

computer.

Nektarios Sfyris 2 June 2019

1.2 Thesis Outline

We include both a geometric and a photometric calibration scheme for our monocular

camera, to enable for robust camera tracking, and accurate points depth estimation, both

achieved by correcting online the projected sensor measurements on the image plane.

The communication between the two subsystems and with the Nao robot takes place

within the Robot Operating System (ROS) framework [4], that allows for a common

message transmission protocol and real-time operation of the coupled system. In com-

patibility with this framework, a teleoperation node is built to simulate an autonomous

robot navigation that aims to explore an unknown environment and create a map so it

can be later used for complex tasks. Last but not least, the overall system is tested in

mostly planar ground environments, in order to measure its efficiency and performance.

1.2 Thesis Outline

In Chapter 2 we present sufficient background information needed for this thesis. We

give an overview of the Aldebaran Nao humanoid robot, the Robot Operating System

(ROS), and the general ideas behind localization, mapping, and their coupled problem

SLAM. We also provide basic information on how the camera measurements are pro-

cessed, and about the Bundle Adjustment method. In Chapter 3 we state the problem

of Visual SLAM and Visual Odometry and we refer to different approaches that have

been used over the last two decades. In Chapter 4 we describe in detail our proposed

approach; specifically, the network specifications used to conduct our experiments, the

methods for calibrating our camera both geometrically and photometrically, and the cou-

pled system’s functionality. In Chapter 5 we present results of the implemented system

on different types of environments and on various scenarios. Lastly, Chapter 6 acts as

an epilogue for this thesis, presenting our conclusions about the work done, along with

future improvements.

Nektarios Sfyris 3 June 2019

1. INTRODUCTION

Nektarios Sfyris 4 June 2019

Chapter 2

Background

2.1 Aldebaran Nao Humanoid Robot

Aldebaran Nao is an integrated, programmable humanoid robot, designed by a French

robotics company, Aldebaran Robotics, and is now further developed and manufactured

by Softbank Robotics1. Nao robot’s development began in 2004, and in 2007 Nao officially

replaced Sony’s Aibo quadruped robot in the RoboCup Standard Platform League2 shown

in 2.13, an international robotics competition in which research teams program their

autonomous Nao robots to compete in soccer matches. The robots must also be able to

locate themselves in the soccer field of predefined dimensions, thus solving the problem

of Localization. This is a subproblem of the Simultaneous Localization and Mapping

(SLAM) we want to achieve for our Nao robot in this thesis.

On a technical view, Nao V5 consists of an ATOM Z530 processor at 1.6 GHz clock, 1

GB of RAM, and 2 GB of Flash memory running an Embedded GNU/Linux distribution

based on Gentoo, giving it the ability to execute simple computatiolally on-board tasks.

It is powered by a 6-cell Lithium-Ion battery, able to store 48.6 WattHours in total,

providing 60 to 90 minutes of continuous operation, and has an IEEE 802.11g network

card, which makes it able to communicate wirelessly or with a RJ45 wired Ethernet link.

Being a robot of 58 cm in height, 28 cm in width, and weighing 5.4kg, it is a robot

with various sensors and actuators. In more detail, it has 26 motors of 4 different types

1https://www.softbankrobotics.com/
2https://spl.robocup.org/
3https://www.flickr.com/photos/robocup2013/

Nektarios Sfyris 5 June 2019

https://www.softbankrobotics.com/
https://spl.robocup.org/
https://www.flickr.com/photos/robocup2013/

2. BACKGROUND

Figure 2.1: Standard Platform League

in its body (with differences in rpm, stall torque and nominal torque), providing it with

25 degrees of freedom; 2 in the head, 4 in each arm and 2 in every hand, 5 in each leg and

1 in the hip joint for yaw, which is enabled by the inclined and coupled rotary axis joint.

Each joint is equipped with a Magnetic Rotary Encoder for position feedback, providing

12 bit precision, corresponding to 0.1o precision. Figure 2.2a shows the position of the

motors.

Likewise, Figure 2.2b shows the sensors’ position Nao robot is eqquiped. Two identical

cameras providing non-overlapping views and up to 1280 × 960 resolution at 30fps, two

ultrasonic sensors with an effective cone of 60o and a detection range around 0.5m, an

inertial unit consisted of a 3-axis gyrometer and a 3-axis accelerometer, 4 microphones,

touch sensors, force sensitive resistors and tactile sensors.

Currently, Nao robot has been through six version upgrades. The operating sys-

Nektarios Sfyris 6 June 2019

2.1 Aldebaran Nao Humanoid Robot

(a) Nao Motors’ position

(b) Nao Sensors’ position

Figure 2.2: Aldebaran Nao Robot

tem of the robot is an embedded GNU/Linux distribution that coexists with NAOq1,

the main software thats runs on the robot, controls it, and therefore gives life to it.

The NAOqi framework allows homogeneity in programming, communication of different

modules and information sharing. It is cross-platform, cross-language and provides in-

trospection, meaning that the framework can monitor which functions are available and

where. It also supports parallelism, resources, synchronization, and events.

NAOqi OS supports software development in C++, Python, Java and Javascript after

the appropriate SDK installations. Finally, Webots2 is an open-source robotic simulator

used in several online robot programming contests, including RoboCup Standard Plat-

form League, and therefore supports Nao robot model for testing behaviors on existing

or custom environments.

1http://doc.aldebaran.com/2-5/index_dev_guide.html
2http://doc.aldebaran.com/2-1/software/webots/webots_index.html

Nektarios Sfyris 7 June 2019

http://doc.aldebaran.com/2-5/index_dev_guide.html
http://doc.aldebaran.com/2-1/software/webots/webots_index.html

2. BACKGROUND

2.2 Robot Operation System (ROS)

The Robot Operation System (ROS)1 [4] started in 2007 as an outgrowth of the STanford

Artificial Intelligence Robot and the Personal Robotics Program from Stanford Univer-

sity, and continued developing under Willow Garage2. ROS is an open-source BSD-

licensed middleware, created to simplify the development, design, and maintenance of

multi-sensory systems’ applications, and generalize the communication protocol used. It

provides not only standard operating system services, such as hardware abstraction, pack-

age and process management, but also high-level functionalities, such as asynchronous

and synchronous calls, and centralised database.

Overall, the main concepts of ROS are:

• The ROS Master is the first service to run so that the whole ROS ecosystem starts

operating. It is implemented via XMLRPC, a stateless and HTTP-based protocol

that is relatively lightweight, and does not require a stateful connection. The Master

also provides naming and registration services to nodes, while tracks them to topics

and services, giving them the ability to find each other and communicate.

• The Parameter Server is part of the Master and is also implemented in the form

of XMLRPC. It is a shared database between nodes to recover and store static, non-

binary data at runtime. In brief, the Parameter Server can store basic XML-RPC

scalars, lists, base64-encoded binary data, and dictionaries.

• Nodes are the main computational units and execute different operations (map-

ping, path planning, etc.). A robotic system usually contains several nodes, which

communicate with one another peer-to-peer, by streaming topics or calling services.

There are two types of nodes, the Subscriber, when a node receives information from

a topic, and the Publisher, when the node broadcasts information to a topic. Of

course, there can be nodes who are both Subscriber and Publisher.

• Topics are declared buses with a unique name that transport information. One or

more nodes can either publish data to a topic, or one or more nodes can subscribe

to one. In fact, nodes can’t know who published data or subscribed to a topic. The

1https://www.ros.org/
2http://www.willowgarage.com/

Nektarios Sfyris 8 June 2019

https://www.ros.org/
http://www.willowgarage.com/

2.2 Robot Operation System (ROS)

type of information transported by a topic is a message, and each topic is strongly

connected to it. It is also important to mention that topics are an asynchronous

way for nodes to stream data.

• Messages are simple or complex data structures containing type fields. For ROS

messages, standard data types (such as integer, double, etc.), are supported. For

instance, a message can contain image or any other sensor data. At last, there

is used an interface definition language (IDL) to describe the messages published

through topics.

• Services, unlike Topics, exchange data synchronously and represent a small pro-

cedure that a node shall do. They support Remote Procedure Call (RPC) re-

quest/reply interactions, and are defined by a pair of messages, one for the caller

of the service, and one for the responder. In general, a node advertises a service,

offering it a name, so another node can locate it and make a request. Namely, a

service can be used for obtaining the current battery level.

Figure 2.3: A high level view of a ROS system example

Nektarios Sfyris 9 June 2019

2. BACKGROUND

A simple example, similar to how we used ROS in our work, is shown in Figure 2.31.

The ROS environment begins with the ROS Master running on the computer of the

robot. One Master is only allowed in ROS, in contrast with the new updates that ROS2

version will bring. The Master allows the nodes to register and locate each other. Here

we have two nodes on the robot and one more on a different computer system, a laptop.

Among them, a Camera Node that communicates with the camera by subscribing to the

topic the camera publishes (we will name it /image raw topic), and then publishes those

data to a topic called /image data. A Image Processing Node and a Image Display Node,

subscribing to the topic /image data published by the Camera Node. Image Processing

Node wants the camera data to do some image related computations, and Image Display

Node to display the raw images on a screen. The overall communication between the

robot and the foreign computer system can happen under a TCP/IP protocol or even an

Ethernet protocol.

We can see what the message of /image raw and /image data topics consists of in the

current example, by looking at the Table 2.1.

Because our two topics publish a stream of data, each instance of the data must have

a way to be identified and differentiated from every other set. That’s why a Header in the

message is needed, containing the unique number of sequence, timestamp, and frame id,

that each set of data belongs to. Additionally, the message contains the image height,

which is the number of rows, and the image width, the number of columns. The encoding

of the pixels, meaning the channel’s type, ordering and size, if the image is bigendian,

the image step, which gives you the distance in bytes between the first element of one

row and the first element of it’s next row, and at last the actual data of the image in a

matrix, sizing step× rows.

Strengths of ROS are also that it supports a peer-to-peer architecture, enabling each

node to communicate directly with any other in a synchronous or asynchronous way and

can record or playback the messages. It is language-neutral, meaning that it can be devel-

oped with many programming languages, such as C++, Python and Lisp. It is thin and

easy to control, since libraries, drivers, and algorithms are kept as executables, making

them reusable while ROS’s size is contained as small as it can be during execution. The

1https://robohub.org/ros-101-intro-to-the-robot-operating-system/

Nektarios Sfyris 10 June 2019

https://robohub.org/ros-101-intro-to-the-robot-operating-system/

2.3 Localization and Mapping

code written for it is reusable, and can be applied with other robot software frameworks.

And of course, it is tool based, with its microkernel design allowing for using tools to

build, run, and manipulate the various ROS components, and is suitable for large robotic

or generally multi-sensory systems. It is notable, that for different Linux distribution,

corresponds different ROS distribution.

A sensor msgs/Image ROS Message

std msgs/Header header
uint32 seq
time stamp
string frame id

uint32 height
uint32 width
string encoding
uint8 is bigendian
uint32 step
uint8[] data

Table 2.1: A ROS message definition of an

uncompressed image.

To summarize, we used the ROS frame-

work in our work because of its usability,

strengths compatibility with our system’s de-

velopment, open-source philosophy, and wide

range of tools, like package debugging and

bug tracking, robot visualization with Rviz,

and coordinates transformation manipula-

tion system tf. In addition, ROS provides

us with an already fully developed driver

for Nao Robot 2.1, naoqi-driver 1, which is

basically a NAOqi OS module that bridges

with ROS and translates the NAOqi mes-

sages to ROS messages. The module is writ-

ten in C++, and offers low latency in message

transportation and real-time CPU usage, by

collecting several sensor data of Nao robot

straight from the lowest levels of NAOqi.

2.3 Localization and Mapping

2.3.1 Mobile Robot Localization

Robot localization is the problem of determining the position of a robot with respect to

a map of its environment. It is one of the fundamental issues that a robot must solve

during an autonomous navigation, as a good estimate of its own, or a wanted object’s,

location and pose, can allow for quality decisions, leading to good future actions. The

1http://ros-naoqi.github.io/naoqi_driver/index.html

Nektarios Sfyris 11 June 2019

http://ros-naoqi.github.io/naoqi_driver/index.html

2. BACKGROUND

information needed for a robot to localize itself and establish a relation of its local coor-

dinate frame to the global coordinate frame, comes from its own perception and motion

sensors. Perception sensors, provide information from observations of the environment

and therefore can be used to understand the differences in it (e.g camera images), while

motion sensors provide data related to the robot displacement and overall motion drift

(e.g odometry data).

There are three categories of localization problems, as described in the Probabilistic

Robotics book of Thrun, Burgard, and Fox in [5], which are identified by the type of

information that is available during navigation at the initial state, and during the run-

time:

• Pose Tracking. In Position tracking, we assume that an initial estimate of the

robot pose is known, and by updating this estimate with the last sensor measure-

ments, we aim to localize its current position. As time passes, the robot pose error

accummulates and position tracking becomes more difficult. That’s why both sen-

sors that provide robot pose information in relation to itself, and in relation to

the global map are needed. On the whole, the goal is to find the correspondence

between the sensor measurements and the model of the environment, in order to

compensate incremental errors, and maintain a reliable belief about the robot pose.

Position tracking is a local problem, as the uncertainty is calculated based to the

area near the robot’As true pose.

• Global Localization. Tracking can be used when an initial position is given, but

in real life robotic scenarios, it is usually not the case. The problem when the robot

has little, or no information about its initial pose, and has to place itself in the

map, is known as global localization or pose initialization. Because of the absence

of boundaries in uncertainty, and the multimodal approaches that help with the

estimation, global localization is more difficult than pose tracking, and actually

subsumes it.

• Kidnapped robot problem. This problem is a variant of the global localization

problem and refers to the relocation or teleportation of an operating robot away

from its previous position inside the map. Without any notification, it must be

able to recognize such a change and adapt to it by correctly updating its pose. It is

Nektarios Sfyris 12 June 2019

2.3 Localization and Mapping

a more difficult task than global localization, since the robot has the belief that it

knows where it is, while it isn’t there. The practical importance of the kidnapped

robot problem, is that is gives the chance for testing new localization algorithms’

ability to recover from global localization failures, as an even more general problem.

The type of the environment can also have a substantial impact on the difficulty of

the localization:

• Static environments. In Static environments, we assume that there is no change

in the environment but the pose of the robot. These environments have simple

mathematical properties, and thus are convenient for probabilistic estimation.

• Dynamic environments. Here, other objects, including the robot, are moving in-

side the map. This has a long-term influence on the robot’s perception. Usually,

changes that are not easily measurable, affect only a single measurement, or have

big variance in their values, are treated as noise. As obvious, dynamic environments

are closer to real life scenarios.

After the data of the sensors are collected, and because of the existing high uncer-

tainty in motion and perception, probabilistic models are usually used, formulating the

localization problem as a Bayasian estimation problem.

Robot Pose

To be able to control the movements and actions of a robot, we need to have a good

understanding of its pose, relative to itself or another coordinate system. The pose, or

kinematic state, is defined by the orientation and position of the robot in the global

coordinate frame. Rigid robots moving in a 3D map, are usually described with six state

variables (or seven, depending on the method for expressing orientation). On the other

hand, if we deal with a more simple version of that problem, meaning rigid mobile robots

that move in a 2D planar environment, the robot’s position is represented with a matrix

containing its x and y Cartesian coordinate pair, and its angle of orientation, or bearing,

with θ. At a random time t, we have:

IR2 : Xt =





x
y
θ



 (2.1)

Nektarios Sfyris 13 June 2019

2. BACKGROUND

Figure 2.4: Robot pose in two dimensions

A graphical example of a robot pose in a planar environment can be seen in Figure 2.4.

Also, considering the noise that is included in a robot’s pose estimation, we can represent

the belief it has about its pose, by a probability distribution that expresses the uncertainty

related to it, denoted as bel(xt).

Motion Model

Mobile robots must have actuators (hydraulic, pneumatic, electric, or mechanical) in or-

der to move in their environment. The ability of a robot to move is deeply connected to

its localization solving problem, as it contains important information about its current

pose. In practise, we find two types of motion models differentiated by the sensor infor-

mation, providing the robot pose, available, the Odometry-based, and the Velocity-based

motion model. Odometry-based models are used when a robotic system is equipped with

actuator encoders, and therefore can get the needed information about each actuator’s

pose through them, while Velocity-based models are applied when there are no encoders

available, so they calculate the new pose based on the time elapsed of the different ve-

Nektarios Sfyris 14 June 2019

2.3 Localization and Mapping

locities provided. In general, odometry models tend to be more accurate than velocity

models.

Continuing, even if robots have a direct control over their actuators, their influence

to their actual locomotion is more complex, as actuators or sensors can suggest error

because of heat, or even hardware malfunction. During time, the locomotion action

information that took place is available at the end of each time step by issuing with the

robot controls, and given the current state of the robot and the current control input, the

robot can make a transition to a new state. Summarizing, we can describe the motion

model of a robot with a probabilistic formula as,

P (xt|xt−1,ut) (2.2)

Here, x represents the robot pose, while u a motion command. This model is describ-

ing the posterior distribution of the robot pose xt in time t, when the motion command

ut that is to be executed, and the robot pose at an earlier time t−1 are known. Note that

this motion model adopts the memoryless and stochastic process of the Markov property,

as each transition depends only on the last robot robot state and current action.

Sensor Model

Of what we’ve seen until now, in order to solve the localization problem of a robot

moving inside a map, a motion model is needed. But the motion model alone can’t give

us a good estimate of the robot’s real pose, and it gets even more difficult when we are

talking about the robot’s global localization or the kidnapped robot problem. Therefore,

external sensors are needed that can provide with additional information for a more

precise estimation. These sensors can be cameras, range sensors, or even touch sensors,

and due to sensor uncertainty caused by errors, a probabilistic formula is appropriate for

modelling them,

P (zt|xt,m) (2.3)

Here, x is the robot pose, z is the perceptual information or measurement at time t,

and m is the map of the robot’s environment. This sensor model describes the likelihood

of making the observation zt at time t, while the pose xt at the same time, and the map

that includes the robot are given. Like with the motion model, this model also adopts

Nektarios Sfyris 15 June 2019

2. BACKGROUND

the Markov property. In practice, it is often impossible to model a sensor accurately, as

the development of that model can be really time-consuming, and because the model can

include state variables that have been omitted by mistake or are unknown, such as the

exposure of an image.

2.3.2 Robotic Mapping

To use the collected measurements from a robot’s sensors, it is needed to specify the

environment, or the map, inside which the measurements were generated. We have

described the localization problem, as the robot’s effort to find its pose, meaning its

location and orientation, in an already given map. There exist real-world cases that

providing the map, inside which the robot will move, is legitimate, such as a warehouse

specially built for robots to store and retrieve objects. However, there are scenarios that

providing the map of the environment can not be possible, either because of the lack of

a portion of information, or the complete unawareness of its nature and obstacles, such

as the ruins of a building.

The ability of a robot to create a map of its environment provides it with real auton-

omy, as it can adapt to changes of it, and doesn’t need human supervision. The main

challenges that a robot will face during the mapping problem are:

• The Hypothesis space. It consists of the set of all possible approximations, or

maps, that a robot can create. Because of the continuous growth in size, and there-

fore space, of the maps during navigation, the hypothesis space gets remarkably

larger in dimension. Three main concerns for choosing a hypothesis space are, its

size, meaning the number of options-hypotheses available to choose from, random-

ness, if it is stochastic or deterministic, and the type, number, relationship between

the variables-parameters.

• Learning maps. When neither a map exists nor the pose is known, the robot has

to simultaneous make efforts to understand its position and orientation in space,

as well as map the world around it, based on the belief it has about its pose.

Because, a bad estimation in pose, can lead to false positioning of an object in

the map, and therefore a bad map. The localization and mapping (also known as

Nektarios Sfyris 16 June 2019

2.3 Localization and Mapping

SLAM, described in more detail in the Section 2.3.3 depend on each other, for an

autonomous robot navigation.

• Noise. While the robot navigates in its environment, it accumulates errors in

odometry and other perception sensors, making the overall problem more difficult.

The difficulty further increases, when the size of the environment that the robot

has to map, gets larger too.

• Perceptual ambiguity. A mobile robot can come over different places that look

alike, which can lead to mistakenly establishing wrong correspondences between

different locations.

• Loop closing is an important skill a robot must have in the mapping process, as if

it can notice an already crossed location in the map, it will be able to correct past

mistakes, in ambiguity, or accumulated sensor model errors.

We can express the map, as the collection of the objects, linked with their respective

location, inside it,

m = {m1,m2, ...,mN} (2.4)

Here, each object ∈ 1 ≤ n ≤ N , and each m ∈ m1 ≤ mn ≤ mN , are each object’s

specific attributes. Usually, we are dealling with two types of maps, either feature-based,

or location-based maps.

Occupancy Grid Mapping

Occupancy grid maps belong to the family of location-based maps, and this family of

maps, considers the n of the Equation (2.4) to be a specific location.

Most occupancy grid maps used in practice, are 2D floor plan maps, representing a

slice of the 3D world. In their 2D grid, each cell, or pixel, posseses an occupancy value,

specifying the probability that the area which the robot is mapping, is occupied by an

object. This value of likelihood of occupation ranges from 0 to 1, with 0 corresponding to

no object occupation, while 1 to a certain occupation of an object. Figure 2.5 describes

the Occupancy grid map model we discussed, but with the addition of an intermediate

value, 0, 5, for areas that the robot is unsure about their occupation. Here, the value 0

Nektarios Sfyris 17 June 2019

2. BACKGROUND

is coloured with white, 1 with black, and 0, 5 with grey. Usually, the more dark a cell is,

it represents that it is more likely to be occupied.

Figure 2.5: Occupancy Grid Mapping

Model

The goal of any occupancy grid mapping

algorithm is to compute the posterior over a

map, depending on the already given knowl-

edge about the robot state,

P (m|z1:t,x1:t) (2.5)

As we have already seen, m is the map,

z1:t is the set of all of the robot’s sensor mea-

surements up to time t, and x1:t is the set of

all its poses until t, also called as the path of

the robot. As the occupancy grid map splits space in finite i grid cells, we can describe it

with,

m =
∑

i

mi (2.6)

Here, mi denotes the grid cell with index i of the map m, and is assigned with an

occupational probability value p(mi) value in the range [0, 1]. The occupancy grid phi-

losophy can be generalized to three dimensions, but the computational complexity is very

high, meaning that it can slow down real-time mapping, and therefore can only be applied

under permissible conditions. For example, if we allow the occupational probability of

each grid to strictly take a binary value, either 1 or 0, then the number of different maps

that can be represented by a map of 1000 cells (which is a small number for a map),

equals 21000. This means that it is not possible to compute a posterior probability for

every possible map. Therefore, by breaking down the general problem, we try to estimate

the posterior of each grid cell created in the map and expand Equation (2.5) above, as,

P (mi|z1:t,x1:t) (2.7)

In this way, we get rid of the the high dimensional posterior of Equation (2.5), but

create a new problem, as we can not be represent the possible dependencies of neighboring

Nektarios Sfyris 18 June 2019

2.3 Localization and Mapping

Figure 2.6: Occupancy grid mapping on a large environment

cells. So, the posterior of a map is estimated as the product of the probabilities of all

cells inside of it,

P (m|z1:t, x1:t) =
∏

i=1

P (mi|z1:t, x1:t) (2.8)

Concluding, as shown in Figure 2.71, occupancy grid maps have a graphically sim-

plistic way of representing the robot’s environment, making it easy to find paths through

the unoccupied space, and thus can suggest effective path planning algorithms.

1https://www.mrpt.org/tutorials/programming/path-motion-planning/path_planning_

over_occupancy_grid_map/

Nektarios Sfyris 19 June 2019

https://www.mrpt.org/tutorials/programming/path-motion-planning/path_planning_over_occupancy_grid_map/
https://www.mrpt.org/tutorials/programming/path-motion-planning/path_planning_over_occupancy_grid_map/

2. BACKGROUND

Figure 2.7: Point Cloud mapping on a large environment

Point Cloud Mapping

In the real world, a feature corresponds to a distinct object, or a specific structure in the

environment. Examples of often used features are edges, patterns on objects, and textures

on walls. In robotics, features are also called landmarks, as they can represent unique

locations in the map, usually to indicate their usage for robot navigation. Landmark-

based models are usually defined in the family of feature-based maps, which consider n

in the Equation (2.4) a feature index, and the value of mn contains the properties of a

feature, and the Cartesian location of the feature. During mapping, a robot can use the

variety of features it has extracted to build a map, by positioning each individual feature

in a 3D, empty map at first, as a point. These maps are called Point Cloud Maps, as they

consist of multiple points in their space to represent the robot’s environment. Figure 2

shows a point cloud map as created from the TUM Mono VO Dataset [6] by running the

DSO system [2] we describe in Chapter 4.

Nektarios Sfyris 20 June 2019

2.3 Localization and Mapping

Features are usually obtained by range or vision sensors with a feature extractor, and

usually, there is a further need to measure the distance between their position, and the

robot’s local coordinate frame. If we assume the feature extractor to be a function f ,

then the features extracted are given by f(zt). Also, note that a feature vector is an

n-dimensional vector, conveniently describing numerical features as,

f(zt) = {f 1
t , f

2
t , ...} =

{



r1t
φ1
t

s1t



 ,





r2t
φ2
t

s2t



 , ...

}

(2.9)

Here, r is the range to the feature relatively to the robot’s position, φ is the bearing,

or angle of orientation, and s is the feature’s signature, which can be for example its

average color.

The main advantage of feature extraction, is the enormous reduction of computational

complexity, as an initial set of variables in the high dimensional space, is reduced to a low

dimensional feature space, while still accurately describing the original data set. In doing

so, the dimensionality reduced of the sensor measurements, can reach several orders of

magnitude.

In general, point cloud maps can only describe the shape of the environment, in a

more sparse, or dense way. That means, we view objects as a collection of multiple

points in the 3D space, which can not always provide us with enough information about

the object’s identity, but makes these types of maps very efficient for real-time mapping.

Also, as they depend greatly on sensor data, they can provide multiple sensor estimations

about the location of a specific object, or landmark, and therefore can locate it much

easier in space, making the method a good choice for robot navigation.

2.3.3 Simultaneous Localization and Mapping

The simultaneous localization and mapping, namely SLAM, problem, assumes that the

robot is not given a map of its environment, and has no knowledge about its poses

beforehand. Therefore, it must do the estimation of its pose and the environment’s

map at the same time. SLAM is a fundamental problem for robots to become truly

autonomous, and inside the robotics community it is considered very complex and hard,

as a map is needed for localization, and a good pose estimate is needed for mapping.

Nektarios Sfyris 21 June 2019

2. BACKGROUND

From a probabilistic perspective, there are two main categories of SLAM problems:

• The full SLAM, seeks of calculating the posterior over the entire path x1:t and the

map of the mobile robot,

P (x1:t,m|z1:t, u1:t) (2.10)

• The online SLAM insted, deals with the estimation of the posterior over its current

pose xt, and the map m at time t,

P (xt,m|z1:t, u1:t) (2.11)

Like with the fullSLAM , the measurements z1:t, and the controls u1:t are known.

Additionally, for more efficient computations, many online SLAM algorithms dis-

card past sensor measurements and controls once they have been used, to boost

real-time processing. In relation with the full SLAM, the online SLAM is the result

of integrating out past poses, meaning that the Equation (2.11) can be written as,

∫ ∫

...

∫

p(x1:t,m|z1:t, u1:t)dx1dx2...dxt−1 (2.12)

These integrations are usually computed one at a time during the SLAM.

Another important attribute of SLAM, comes from its nature, as it contains a continuous

and a discrete component. The continuous estimation gives priority to the location of the

objects, or landmarks represented in a feature form, and the robot’s own pose variables,

inside the map. On the other hand, the discrete estimation prioritises the correspon-

dences and relations of objects in the map. In this case, when an object is observed,

the SLAM algorithm will keep operating by searching its identity in relation with other

already detected objects.

In total, we could say that the idea behind online and full SLAM, is calculating the

posterior over the map and the robot’s path. In reality though, estimating the posterior

seems infeasible, as the continuous parameters we work with live in a high-dimensional

space, and the number of the discrete correspondence variables is pretty large. There are

also cases that the feature correspondences are unknown, leading to an exponential growth

of the correspondence vector u1:t, storing all possible assignments of correspondences.

Nektarios Sfyris 22 June 2019

2.4 Camera Measurement Model

Visual SLAM

Visual SLAM is a quickly developing technology, as a subcategory of the general SLAM

problem, in the embedded and computer vision community. It refers to the process of

determining the position and orientation of a sensor, often represented as a rigid-body

(discussed in Section 2.4.1), or a local coordinate system of a robot, with respect to its

surroundings, by using visual sensors, such as a monocular, a stereo camera, or a RGB-D

camera.

Some of the reasons visual SLAM has seen so much progress in recent years are, the

vast information a camera can provide in little time, its low size, weight, and power

(SWaP) footprint, and that it is cheap. You can have low-cost and agile robots, able to

solve difficult problems in robotics and machine vision.

On the technical side, most visual SLAM systems work by tracking map points

through successive camera frames, aiming to triangulate their 3D position, while simul-

taneously using this information to approximate the camera pose. It is therefore, a joint

estimation of camera motion and 3D location, also called structure and motion.

In general, visual SLAM systems are aiming to minimize a reprojection error, or the

difference between the projected points and their actual position, by often using Bundle

Adjustment (further analyzed in Section 2.6).

2.4 Camera Measurement Model

In this Section we will provide fundamental information on how the measurements re-

ceived from a camera, in our case a monocular setup, are being processed in order to

understand the camera’s motion in 3D space. A lot of what we will see from now on in

this Chapter is influenced by D. Cremer’s lectures [7]. In three-dimensional reconstruc-

tion, we aim to create a 3D representation of the world, from a set of 2D projections of

the environment. The geometric relations between the 3D scene and its 2D projections,

are based on two main types of transformations:

• The Euclidean, or Rigid body motion, which accounts for the motion of a 3D coor-

dinate system from one frame to another.

Nektarios Sfyris 23 June 2019

2. BACKGROUND

• Perspective projection, the procedure responsible for representing three dimensional

objects on a picture plane.

2.4.1 Rigid Body Motion

When we talk about a Rigid object, we mean the consistency in distance between any

two internal points on a complex body, as it moves around. For example, a robot can be

represented as a rigid body, as all of its joints (arms, legs etc.) will keep belonging to its

body and move together as the robot moves in space. A rigid body’s movements belong

in the 3D space, and we will try to represent them by extending the theory behind the

2D pose, described in Section 2.3.1.

We can say, that every point that lives in the three dimensional Euclidean space IE3,

is characterized by the following coordinates in time t, so that IE3 can be identified with

IR3,

Xt =
(
x, y, z

)⊤
∈ IR3 (2.13)

By not considering time t, we can also represent a bound vector, pointing from a point

X to a point Y at any time,

v = Y −X, v ∈ IR3 (2.14)

Inside the IR3, we can define a product that can map two vectors to another vector,

the cross product,

× : IR3 × IR3 : u× v =





u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1



 ∈ IR3 (2.15)

The outcome of the above cross product is an orthogonal vector to u and v, and as it is

not symmetric, it can describe an orientation. If u is fixed, then a linear mapping between

the two vectors is introduced, as v 7→ u × v, and can be described as a skew-symmetric

matrix,

û =





0 −u3 u2
u3 0 −u1
−u2 u1 0



 ∈ IR3×3 (2.16)

Nektarios Sfyris 24 June 2019

2.4 Camera Measurement Model

In the same way, every skew symmetric matrix ∈ IR3×3 can be identified with a vector

u ∈ IR3. The hat (∧) operator specifies an isomorphism between the space IR3 and the

space of all skew symmetric matrices so(3). The relation of these spaces by using the

inverse of the ∧ operator is, ∨ : so(3) → IR3.

Considering all that, we will start creating an idea about what a rigid body motion

is. On a high level view, it is a family of maps, so that,

gt : IR
3 → IR3, X 7→ gt(X) (2.17)

and are able to preserve the norm, providing the length, and the cross product, so

angles are preserved, ∀ vector u, v ∈ IR3, as,

• ‖gt(v)‖ = ‖v‖

• gt(u)× gt(v) = gt(u× v)

gt(x) = Rx+ T (2.18)

Figure 2.8: A block with volume 1

Rigid body motions also preserve the in-

ner product and the triple product, which can

be described as 〈 u, v × w〉, ∀u, v, w ∈ IR3,

since norm and scalar product can be rep-

resented with the polarization identity1, and

therefore can preserve volume (an example

of volume is seen in Figure 2.8). A motion in

the 3D space that belongs to a rigid body, is

a motion that consists of a translation T and

an orientation R of the moving body, and can

be described as,

The motion of the rigid body gt, since it

preserves lenth and orientation, can be well

described by a Cartesian coordinate frame assigned to an object, like a camera, given by

1https://en.wikipedia.org/wiki/Polarization_identity

Nektarios Sfyris 25 June 2019

https://en.wikipedia.org/wiki/Polarization_identity

2. BACKGROUND

the orthonormal oriented vectors e1, e2, e3 ∈ IR3 and the origin. Thus, the motion, based

on the origin, can be described with a translation T ∈ IR3, where the transformations

needed for the orthonormal vectors ei, are given by the new basis vectors, which also

preserve the scalar and cross product,

ri = gt(ei) (2.19)

The matrix R =
(
r1, r2, r3

)
belongs to the group of SO(3) = {R ∈ IR3×3 | R⊤R =

RR⊤ = I, det(R) = +1}, because it is an orthogonal matrix, and its orientation is

preserved while not including mirroring (det(R) = −1). For a brief example, if a rotation

is R =





a b c
d e f
g h i



, and we want to find the appropriate values that describe a wanted

rotation, these values of the matrix R must respect the properties of the SO(3) group as

we saw right above, as we can’t have any given values. With such a rotational matrix, we

can transform points in 3D space from their original position (we usually use R(0) = I)

to another, as,

Xtrans(t) = R(t)Xorig (2.20)

Continuing, if we want to create a differential equation providing us with the approx-

imation of a rotation R, we need a skew symmetric matrix ŵ, with ŵ(0) ∈ so(3), so

that,

R(dt) = I + ŵ(0)dt (2.21)

Considering two skew symmetric matrices ŵ, v̂, we can further define the Lie bracket,

or Lie product as,

so(3)× so(3) → so(3), [ŵ, v̂] = ŵv̂ − v̂ŵ (2.22)

Lie Group and Lie Algebra

Because a lot of problems in robotics and computer vision are engaged with manipulation

of 3D geometry, we need a robust and efficient framework to represent and work with

3D transformations. A tranformation has properties such as invertion, diorientation, or

Nektarios Sfyris 26 June 2019

2.4 Camera Measurement Model

Figure 2.9: Lie Group and Lie Algebra visualization

interpolation, and Lie groups can satisfy those operations. In essence, from what we have

seen, we can approximate a rotation R ∈ SO(3), with an element that belongs in the

skew symmetric matrices space, ŵ ∈ so(3). There are two main concepts that we need

to clarify:

• The Lie group, which is a topological group that is also a smooth manifold, that

can allow for group operations, multiplication and inversion, to be smooth maps.

The rotation group SO(3) is a Lie group.

• The Lie algebra. Associated with every Lie group is a Lie algebra, which is the

tangent space at the identity I of the lie group. The basis elements of a tangent

space are called generators, and all vectors on the tangent space describe linear

combinations of these generators. The Lie algebra of the Lie group SO(3), is so(3).

The creator of Lie algebra was Marius Sophus Lie1, a mathematician born in Norway.

Importantly, the relation between a Lie group and its associated Lie algebra is also graph-

ically shown in Figure 2.9, and allows for calculations in one to be mapped successfully

to the other.

1https://www-history.mcs.st-andrews.ac.uk/Biographies/Lie.html

Nektarios Sfyris 27 June 2019

https://www-history.mcs.st-andrews.ac.uk/Biographies/Lie.html

2. BACKGROUND

Transforming from Lie Algebra to the Lie Group

In case we have a known skew symmetric matrix ŵ, and we want to find an appropriate

representation of a rotation R(t), we first have to describe the differential equation system,

{

Ṙ(t) = ŵR(t)

R(0) = I
(2.23)

with Ṙ telling us how R changes if we move away from the identity I on the SO(3).

Then, to find the solution, which is the wanted rotation R, we use the exponential

map,

R(t) = eŵt =
∞∑

n=0

(ŵt)n

n!
= I + ŵt+

(ŵt)2

2!
+ . . . (2.24)

From the exponential map eŵt, w ∈ IR3 is the axis of rotation, and scalar t is the

angle of rotation. We can formulate it as,

exp : so(3) → SO(3), ŵ 7→ eŵ (2.25)

Transforming from Lie Group to the Lie Algebra

The inverse function of the exponential, as we know from mathematics, is the logarithm.

Thus, if we know the rotation matrix R ∈ SO(3), and we want to find a skew symmetric

matrix w ∈ IR3, we will find it from:

| w |= cos−1

(
trace(R)− 1

2

)

,
w

| w |
=

1

2 sin(| w |)





r32 − r23
r13 − r31
r21 − r12



 (2.26)

Meaning that any orthogonal transformation R, can be represented by an angle of

rotation | w |, and an axis of rotation w
|w|

. There is no unique ŵ to model the rotation,

but there is a whole set, or family, of equivalent rotations.

Representation of Rigid Body Motion

Like we described in the high-level Equation (2.18), a rigid body motion consists of a

translation T and a rotation R, and we can define its space with the help of the special

Nektarios Sfyris 28 June 2019

2.4 Camera Measurement Model

Euclidean transformations group,

SE(3) ≡ {g = (R, T) | R ∈ SO(3), T ∈ IR3} (2.27)

and in homogenous coordinates,

SE(3) ≡
{

g =

(
R T
0 1

)

| R ∈ SO(3), T ∈ IR3
}

⊂ IR4×4 (2.28)

To have a better view about the spaces presented, in the space of points IE3, we are

able to see points transform and rotate, and in the space of vectors IR3, we can see only

rotations. If we consider a family of rigid body transformations g : IR → SE(3), we can

define the Lie algebra se(3) of twists ξ̂ elements, also called exponential coordinates for

SE(3), as,

ġ(t)g−1(t) = ξ̂(t), ξ̂ ∈ IR4×4 (2.29)

The translated Lie algebra se(3), serving as the tangent space on the identity of the

Lie group SE(3), is computed by the derivative, and is the first order aproximation,

se(3) ≡
{

ξ̂ =

(
ŵ v
0 0

)

| ŵ ∈ so(3), v ∈ IR3
}

⊂ IR4×4 (2.30)

Here, ŵ is a skew symmetric matrix and w as the angular velocity provides rotation,

and the linear velocity v is a 3D vector providing translation. And we can move between

a twist and its twist coordinates with the hat ∧ and its inverse ∨ operators as,

ξ̂ ≡

(
v
w

)∧

≡

(
ŵ v
0 0

)

∈ IR4×4,

(
ŵ v
0 0

)∨

=

(
v
w

)

= ξ ∈ IR6 (2.31)

The outcome of the second equation lives in the 6-dimensional space and provides us

with 3 translation parameters, and 3 rotation parameters. As with so(3), we can use the

exponential map to map from the Lie algebra se(3) to the Lie group SE(3), ξ̂ 7→ eξ̂, as,

g(t) = eξ̂t =
∞∑

n=0

(ξ̂t)n

n!
(2.32)

There is no unique ξ̂ ∈ se(3) to model the rigid body motion g ∈ SE(3), but there is

a whole set, or family, of equivalent twists. We use the first part of the Equation (2.31)

when we want to do camera pose estimation, which is equivalent to a rigid body, and

Nektarios Sfyris 29 June 2019

2. BACKGROUND

therefore need to find its translation and orientation. We first get the ξ̂ and then use the

exponential map to give us the rigid body motion and the wanted camera movement.

Accordingly, we are now able to represent a body’s motion, as a robot’s specific

coordinate frame, for example its camera. From the camera’s initial position X0 in the

world frame, considering its motion, we find the new position at time t with,

X(t) = R(t)X0 + T (t) (2.33)

and while knowing g from Equation (2.28), we can describe between two different

time frames t1, t2, the camera motion in homogenous coordinates as,

X(t2) = g(t2, t1)X(t1) (2.34)

Here, X(t1) are the camera coordinates at t1, and g(t2, t1), is the rigid body mo-

tion of camera from time t1 to t2. We must note that in Equation (2.33), X0 denotes

a 3-dimensional vector, while in Equation (2.34), X(t) is in homogenous coordinates,

described as







x
y
z
1






.

Move from Frame to Frame

There is often the necessity in Lie groups to transform from a tangent vector of a tangent

space, to another tangent space. In case a camera changes its pose in the map relative

to another camera, we can represent that relation as,

Y = gxyX(t) (2.35)

with Y being the coordinates in another camera, gxy the rigid body transformation

between the camera poses, and X(t) the camera whose coordinates are known. The

adjoint map helps us perform the transformation we want, and because of the Lie

groups’ property, this transformation is linear. The relative points detected by a camera,

are described by a twist,

V̂y = gxyV̂ gxy
−1 ≡ adgxy(V̂) (2.36)

Nektarios Sfyris 30 June 2019

2.4 Camera Measurement Model

Summarizing, the adjoint map allows us to transfer from a frame to another when

moddeling velocities, and we will describe it as follows,

adg : se(3) → se(3), ξ̂ 7→ gξ̂g−1 (2.37)

Rotations Representation

A more intuitive method to represent the rotations of a rigid body is with the Euler

angles, which are the three angles giving the three rotation matrices. A mathematical

approach to define them is by assuming some basis (ŵx, ŵy, ŵz) of the Lie algebra so(3),

to help us with the rotations on each of the 3 axis x (roll), y (pitch), z (yaw),

wx =





1
0
0



 , wy =





0
1
0



 , wz =





0
0
1



 (2.38)

Then, we can map to the Lie group SO(3) as,

a :
(
a1, a2, a3

)
7→ exp(a1ŵx + a2ŵy + a3ŵz) (2.39)

The coordinates a1, a2, a3 are called Euler angles. Also, if we say that the angle of

rotation around x− axis is ψ radians, around y− axis is ϑ radians, and around z− axis

is φ radians, the three rotation matrices can be given by:

Rx(ψ) =





1 0 0
0 cosψ − sinψ
0 sinψ cosψ



 Ry(ϑ) =





cosϑ 0 sinϑ
0 1 0

− sinϑ 0 cosϑ





Rz(φ) =





cosφ − sinφ 0
sinφ cosφ 0
0 0 1





(2.40)

2.4.2 Monocular Camera Measurement Model

We can trace the origins of perspective projection, back in 400 B.C from Euclid of Alexan-

dria. A field of study, that has led to today’s projective geometry. In order to have a

complete view about how a camera sees and understands the physical world, we will

begin by describing the most basic camera model, the pinhole camera model.

Nektarios Sfyris 31 June 2019

2. BACKGROUND

Figure 2.10: The Pinhole Camera Model

The pinhole camera is basically a simple camera without lens but with a tiny apenture,

called pinhole. The idea is that the light rays that are correctly aligned from a scene pass

through the pinhole, and are then projected as an inverse image on the image plane,

also known as the camera obscura, and a natural optical phenomenon. An example of a

pinhole camera is presented in Figure 2.10.

In an effort to strengthen the incoming light, and not only accept the aligned light

rays of a 3-dimensional point P in the world coordinate frame, with coordinates X =
(
X, Y, Z

)
∈ IR3 to the projection plane, we will extend the pinhole camera model to the

thin lens camera model. As the name implies, this model has the addition of thin lens.

Here, the perspective projection π from a point P relative to the reference frame centered

at the optical center, and with optical axis of the lens being the axis that passes through

the optical center, is obtained by comparing the similar triangles A and B:

Y

Z
= −

y

f
⇔ y = −f

Y

Z
(2.41)

The minus “-” in this equation (expressed in metric units) is justified because a point

P in the scene, in comparison to the point p that is projected to the image plane is

anti-diametrical. We can expect more rays from point P to be gathered, meaning more

Nektarios Sfyris 32 June 2019

2.4 Camera Measurement Model

Figure 2.11: Thin Lens Camera Model

information, to create its projected point p. The model described above, is presented

with more details in Figure 2.11.

To properly continue with the consept of perspective projection, we will make a quick

explanation on the main terminology of the field:

• The optical center, is the point of the camera where all rays pass in to the image

plane.

• The image plane, is the plane where the image of the environment is projected,

and therefore formed.

• The principal axis, is the perpendicular line passing from the optical center to

the image plane.

• The principal plane, is the plane on which the optical center is located, and is

parallel to the image plane.

Nektarios Sfyris 33 June 2019

2. BACKGROUND

Figure 2.12: Rearranged Pinhole Camera Model

• The focal length f , is the distance between the optical center and the image plane.

In case of the pinhole camera model, it is the distance from the camera apenture

to the image plane.

To simplify the mathematical part, we can consider the image plane to be located

in front of the center of projection (in contrast with Figure 2.10 where it is behind) as

shown in Figure 2.12. Now, the perspective projection π is,

π : IR3 → IR2, X 7→ x = π(X) =

(
f X

Z

f Y
Z

)

(2.42)

Here, X is the 3D point mapped to a 2D point x of the image plane. To get from

3D to 2D is a nonlinear transformation, and this nonlinearity happens because of the

division with Z coordinate. As a result, in contrast with linear transformations, we can

not do matrix inversions. To avoid this, at least notationaly, we introduce homogenous

coordinates, taking the 3D point and adding one fourth element. With this addition, π

Nektarios Sfyris 34 June 2019

2.4 Camera Measurement Model

can be described as,

Zx = Z





x
y
z



 =





f 0 0 0
0 f 0 0
0 0 1 0











X
Y
Z
1







= KfΠ0X (2.43)

Now, x describes the homogenous coordinates of a 2D point. By having the Z coordi-

nate be multiplied by x, we let the remaining transformation be linear while we seperate

the aspect of transformation that was nonlinear. The outcome matrices Kf and Π0 are,

Kf =





f 0 0
0 f 0
0 0 1



 , Π0 =





1 0 0 0
0 1 0 0
0 0 1 0



 (2.44)

Π0 is called the standard projection matrix. The job ofKf , is to scale X, Y coordinates

with the focal lengths, which depend on the camera settings and are basically telling us

where in the world the camera focuses. If we assume that we are far from the points

of a scene, then each distance between the camera and the point is pretty much the

same. This translates to the coordinate Z, the depth, being a constant λ > 0. The

transformation from a 3D point to a 2D one then, happens by,

λx = KfΠ0X (2.45)

To what we saw in Section 2.4.1, where we talked about rigid body motions (an

invertible matrix), we will add the idea of perspective projection to create a total model

of an ideal perspective camera, that is able to make transformations from the world

coordinates to image coordinates considering all this,

λx = KfΠ0 g X0 (2.46)

Intrinsic Camera Matrix

Camera coordinates are such, that if i have an image, as shown in Figure 2.13, the center

is usually at the bottom or top left as the pixel coordinates can not be negative. This

means that if the image coordinates go from −1 to 1, the pixel coordinates go from (0, 0)

to (255, 255). In digital cameras there is an algorithm to do the assignment of points

from the image plane to pixel coordinates.

Nektarios Sfyris 35 June 2019

2. BACKGROUND

Figure 2.13: The Image Plane

Acknowledging the Equation (2.46), we will make

an attempt to generalize the camera model, so that it

can describe a bigger range of them. We will take into

consideration that pixel coordinates may not have

unit scale, and thus need two scaling factors sx, sy

that refer to length scaling, and do the mapping from

the image coordinates to pixels. Also, if the center of

the camera is not perfectly aligned with the optical

axis, this introduces an additional displacement for

each axis, ox, oy, in pixel coordinates. Something that is often neglected, is that the

pixles of a real camera may not be perfectly rectangular, and so introduce a certain

skew factor sϑ (usually close to 0). In consequence, we can get the pixel coordinates
(
x y 1

)⊤
, regarding the homogenous camera coordinates

(
X Y Z 1

)⊤
as,

λ





x
y
1



 =





sx sϑ ox
0 sy oy
0 0 1





︸ ︷︷ ︸

Ks





f 0 0
0 f 0
0 0 1





︸ ︷︷ ︸

Kf





1 0 0 0
0 1 0 0
0 0 1 0











X
Y
Z
1







(2.47)

This equation, leads us from world coordinates to camera coordinates, then from

camera coordinates to image coordinates, and in the end from image coordinates to pixel

coordinates. Like before, λ is the distance from camera. The matrix K,

K = KsKf =





fsx fsϑ ox
0 fsy oy
0 0 1



 (2.48)

is the Intrinsic Camera Matrix. It is called Intrinsic, because it depends on the

internal settings of the camera and not where in the world that camera is. The Equation

(2.46), is then extended to,

λx = KΠ0 g X0 ≡ ΠX0 (2.49)

The rigid body motion g in the equation, is composed by the parameters associated

with the camera motion, which are called the extrinsic parameters. The matrix Π is a

3×4 matrix called the general projection matrix. The total equation, as a transformation,

Nektarios Sfyris 36 June 2019

2.4 Camera Measurement Model

may seem linear, but is in reality nonlinear because we still have the scale factor λ, which

we consider constant. To get the the projection from a 3D world coordinate to pixel

coordinates,

x =
π1

⊤X0

π3⊤X0

, y =
π2

⊤X0

π3⊤X0

, z = 1 (2.50)

The numerator of the first equation represents the X component, while the second

equation’s the Y component, which are divided by the denominator Z component. The

elements π1
⊤, π2

⊤, π3
⊤ ∈ IR4 describe the three rows of the general projection matrix Π.

In general, we can face 2 scenarios of 3D reconstruction problems from images, either the

camera is calibrated, and so we know K, or the camera is non-calibrated.

Image Distortion

Usually, camera lenses may introduce imperfections to their 2D image projection, known

as distortions. These imperfections may occur due to the way in which a lens is designed,

or manufacturer defects. Hence, we need to include this distortion information in our

camera model to make it as efficient as possible. By considering the distortion coeffi-

cients, we can properly correct our projected 2D image. In this part of the Section, we

will mention the two most common types of distortions, the Radial distortion, and the

Tangential distortion. These are nonlinear distortions.

Radial Distortion We can say that all cameras have some Radial distortion if they

use real lenses. As the name implies, the distortion increases with the increase of radius,

meaning that the further from the optical center we go, the more distorted is the image.

This happens because the lens bend more the light rays that are farther away from their

center. The smaller the lens are, the greater the distortion that happens. An example of

real-life lenses with extreme radial distortion are the fisheye lenses1.

Figure 2.14 shows as the types of Radial Distortion. Usualy, Pincushion occurs in

older, or low-end telephoto lesnes, while Barrel distortion in wide-angle lenses.

1https://en.wikipedia.org/wiki/Fisheye_lens

Nektarios Sfyris 37 June 2019

https://en.wikipedia.org/wiki/Fisheye_lens

2. BACKGROUND

(a) Negative Radial distor-

tion - “Pincushion”
(b) No distortion

(c) Positive Radial distor-

tion - “Barrel”

Figure 2.14: Radial Distortion

We can describe the distortion model as an infinite series:

xu = xd(1 + a1r
2 + a2r

4 + a3r
6 + . . .), yu = yd(1 + a1r

2 + a2r
4 + a3r

6 + . . .) (2.51)

where, the point xd ≡ (xd, yd) is the distorted image point that is projected on the

image plane via the lenses, the point xu ≡ (xu, yu) is the undistorted image point as

projected by ideal lenses, and r is the radius of the distorted point xd and is given by

r2d = x2d+y
2
d. In case r = 0, there exists no distortion, while as r grows, so does distortion.

Also the parameters a1, a2, a3 are the radial distortion coefficients of the lenses. Usually,

a1 accounts for 90% of the distortion estimation. If the camera calibration is provided,

the value of these coefficients can be found.

Another alternative was presented from Deveray and Faugeras in [8], where they sug-

gested a method for estimating the distortion model, meaning the distortion parameters

of the camera, with a set of images. In their model they considered that the distortion

happens at the optical center c ≡ (cx, cy), which may not be the center of the image.

They also consider a1 to be the first order distortion. The undistorted coordinates are

given by,

xu = xd + (xd − cx)a1r
2, yu = yd + (yd − cy)a1r

2 (2.52)

Nektarios Sfyris 38 June 2019

2.4 Camera Measurement Model

Now, the distorted radius rd is,

rd =

√
(
xd − cx
sx

)2

+ (yd − cy)2 (2.53)

Parameter sx represents the distorsion aspect ratio. The undistorted radius can then

be computed by,

ru = rd(1 + a1r
2
d) (2.54)

Overall, the distortion model can be mathematically formulated as a comibination of

the distortion correction factor f(r) in a fourth order expansion, and the possibly optical

center displacement,

x = c+ f(r)(xd − c), f(r) = 1 + a1r + a2r
2 + a3r

3 + a4r
4 (2.55)

The distortion correction factor f(r), describes how much the distortion increases as

we move further away from the distortion center c. In time, new approaches appeared that

could estimate the radial distortion parameters, such as the work of Stein [9] where from

simple images and without knowing the camera’s and points’ 3D location could estimate

both the radial distortion parameters and the camera’s intrinsic parameters, or the work

of Fitzgibbon [10] where the estimation of the lens coefficients happens simultaneously

with the 3D reconstruction from the distorted images by approximating the fundamental

matrix from point correspondences.

To summarize, Radial distortion causes an inward or outward point displacement on

the projected image from its ideal position. The Barrel, as a positive Radial distortion

causes outer points to gather, and Pincushion, as a negative Radial distortion causes the

outer points to spread.

Tangential Distortion Tangential distortion is produced when the lenses are not par-

allel to the image plane, created by the digital camera’s CCD(charge-coupled device), or

CMOS(complementary metal-oxide semiconductor) image sensors. Figure 2.15a shows

the way Tangential distortion is created, while Figure 2.15b the outcome of the projected

image.

Nektarios Sfyris 39 June 2019

2. BACKGROUND

(a) Lens and CCD/CMOS chip placement
(b) Projected image

Figure 2.15: Tangential Distortion

To model this type of distortion, we will first need the Tangential coefficients. We

can describe this model isolated as,

xu = xd + (p1(r
2 + 2x2) + 2p2xy), yu = yd + (2p1xy + p2(r

2 + 2y2)) (2.56)

As with Radial distortion in Equation (2.52), we can further describe the Tangential

distortion by considering that the distortion happens at the optical center c, which may

not be the center of the image. We will provide a representation using the Brown -

Conrady model, that is able to jointly represent the Radial and Tangential distortions,

xu = xd + (xd − cx)(a1r
2 + a2r

4 + a3r
6)

︸ ︷︷ ︸

Radial part

+
(
p1(r

2 + 2(xd − cx)
2) + 2p2(xd − cx)(yd − cy))(1 + p3r

2 + p4r
4 + . . .

)

︸ ︷︷ ︸

Tangential part

(2.57)

yu = yd + (yd − cy)(a1r
2 + a2r

4 + a3r
6)

︸ ︷︷ ︸

Radial part

Nektarios Sfyris 40 June 2019

2.4 Camera Measurement Model

+
(
2p1(xd − cx)(yd − cy) + p2(r

2 + 2(yd − cy)
2))(1 + p3r

2 + p4r
4 + . . .

)

︸ ︷︷ ︸

Tangential part

(2.58)

The parameters ki describe the Radial distortion coefficients, while the pi parameters,

the Tangential distortion coefficients. The radius r is the same as in Equation (2.53). At

last, we can define a matrix that includes all these coefficients,

D = [a1, a2, a3, p1, p2, p3, p4] (2.59)

This matrix D is called the Distortion matrix, and can differ depending on the model

describing each individual camera’s distortions.

2.4.3 Camera Calibration

As a camera projects a scene of the 3D world to onto the 2D image plane, there is the

need to find the parameters of the camera that affect this process. Geometric Camera

Calibration is the procedure that attempts to estimate both the intrinsic, camera’s inter-

nal characteristics, and extrinsic parameters, camera’s pose in the world coordinates, as

seen in Equation (2.49). The intrinsic parameters include the focal length f and image

center (u0, v0) measured in pixels, and the lens distortion coefficients, ki for radial distor-

tion and pi for tangential distortion, which are unitless parameters, while the extrinsic

parameters correspond to the rigid body motion, translation and rotation, of the camera.

One of the most known works on camera calibration is that of Zhang in [11], where,

by having the camera constantly looking at a planar pattern provided in different orien-

tations, without the need of knowing the camera’s poses during the sequence of images,

we can estimate its intrinsic and extrinsic parameters.

As we recall from Equation (2.49), the matrix Π is a 3× 4 matrix called the general

projection matrix and is given, in relation with the intrinsic camera matrix K and the

extrinsic parameters g, by,

Π = KΠ0 g, g = [R | T] (2.60)

In general, as described from Hartley and Zisserman in [12], the point imaging equa-

tion x = ΠX is a map from world coordinates to local image coordinates. While we

Nektarios Sfyris 41 June 2019

2. BACKGROUND

Figure 2.16: Projected points that belong in this world frame have zero Z-coordinate

decide in what world coordinate frame we are going to work, we can pick one, so that

points on that plane have zero Z coordinates, as shown in Figure 2.16. We will call it

plane π. Then, the projection from plane π to the image plane can be written as,

x = ΠX =
(
π1 π2 π3 π4

)







X
Y
0
1







=
(
π1 π2 π4

)





X
Y
1



 (2.61)

The parameters πi represent the columns of the projection matrix Π. The mapping

of point xπ =
(
X Y 1

)⊤
to the image plane’s point x is called a general planar homog-

raphy, and is given by,

x = Hxπ (2.62)

Here, H is the Homography, a 3×3 matrix of rank 3, which is a projective transfor-

mation that describes a non-singular linear relation between two planes. For calibrated

cameras though, considering Z coordinate as zero, the projection of points onto the image

Nektarios Sfyris 42 June 2019

2.4 Camera Measurement Model

plane is given by,

λ





x
y
1



 = K
(
r1 r2 t

)

︸ ︷︷ ︸

Homography tranform H





X
Y
1



 (2.63)

where the ri values correspond to the columns of the rotation matrix R. If for example

the planar pattern is a checkboard, the Zhang method [11] will first need to be provided

a series of images containing the checkboard, then it must locate the checkboard in each

image and by finding the subpixel corners, feature points detection, of each checkboard,

it estimates a homography for every image. When the homographies are generated, it

makes a closed-form estimation for the intrinsic parameters of the camera from a set

of them, the extrinsic parameters based on the checkboard pose, and at last the each

distortion’s coefficients. Note that Zhang’s work considers in its model only the radial

distortion parameters.

For this case, the homography defines the mapping from the planar checkboard in

world coordinates, to the image plane in image coordinates. Therefore, to find the camera

parameters, we need first to estimate the homography,

λ





x
y
1



 =





h11 h12 h13
h21 h22 h23
h31 h32 h33









X
Y
1



 (2.64)

To calculate the homography H we need at least 3 different views of the planar

pattern, and because a pair of points gives us two equations, we need at lest 4 points

correspondences per plane. In the end, Zhang does a total nonlinear parameter refinement

with a maximum likelihood estimation conducted with the Levenberg and Marquardt

algorithm, also known as damped least squares (DLS) method.

Based on the paper of Gavin in [13], the Levenberg-Marquardt algorithm is a nonlinear

least squares method aiming to iteratively reduce the sum of the squares of errors between

the raw data and the estimated ones inside a framework of updates, and can also be

used on generic nonlinear least squares curve-fitting problems. This algorithm combines

the advantages of Gauss-Newton and gradient descent iterative methods. First, the

Gauss-Newton decreases the cost faster with every change in the attitude of the function,

while gradient descent decreases the cost faster with any changes in parameter values.

Levenberg-Marquardt optimization will start with a local minima estimation for the

Nektarios Sfyris 43 June 2019

2. BACKGROUND

parameter values. Then, if there exists only one minima in the system, the algorithm will

converge to the global minimum regardless of the initial parameter estimation, while if

there exist more than one minima, the convergence to the global minimum will probably

happen with a good initial parameter estimation. Overall, this algorithm doesn’t always

converge to the global minimum, but even if the initial guess is far from the needed, the

algorithm can still converge to an optimal solution.

For example, lens distortion can be estimated by trying to minimize a nonlinear error

function based on the Levenberg and Marquardt algorithm,

min
K,D,Ri,ti

∑

i

∑

j

‖xij − x̂(K,D,Ri, ti;Xij)‖
2 (2.65)

In brief, the process is to linearize to get a function of quadratic form, calculate its

derivative, then set it to zero and solve the linear system that came up. Continue with

this procedure iteratively. The parameters that were obtained from the solution of the

linear system can be used as initial input values to the nonlinear system.

Another work that was added in the literature, was that of Heikkila and Olli [14],

where they recommended a four step calibration procedure, as an extension of the usual

two step methods.

The two first steps of their model are dealing with the use of the direct linear trans-

formation (DLT) to estimate the initial camera parameters, and then the radial and

tangential distortion coefficients with the final camera parameters are estimated with

nonlinear optimization for residual minimization. From their experinments, two coeffi-

cients for both radial and tangential distortion are often enough.

The third step focuses on correcting the image from assymetric projections or distor-

tions, caused by the extraction of circular features, while the last step does a distoted

image coordinates correction, by using an inverse model that interpolates the actual im-

age point coordinates with the camera parameters that were already acquired.

Concluding, camera geometric calibration is a necessary process in computer vision

when we need accurate measurements. Precise calibration can allow for difficult problems

to be solved, such as reconstruction of 3D models and visual SLAM when the robot is

using its cameras to navigate.

Nektarios Sfyris 44 June 2019

2.4 Camera Measurement Model

Figure 2.17: Mapping from scene irradiance L to image intensity B

Camera Response

A lot of vision applications are also dependant on scene radiance measurements. To

describe the relation between the scene radiance and the corresponding image brightness,

or intensity, we use the camera response function. Although this function is usually not

provided for every camera setup, an estimation needs to be done to extract it. The process

of estimating the inverse camera response function is called radiometric calibration and

belongs to the family of photometric calibrations.

A work that strives to find a more complete space of the camera response functions

is that of Grossberg and Nayar in [15]. In their paper, after collecting various camera

response functions from different real-world cameras, and by analyzing each ones prop-

erties, they found common criterions every response function abides, and thus were able

to create a new, low-parameter empirical model (EMoR) that can describe many other

camera responses. Using this model, the response function of an unknown camera can

be estimated, by recording a static scene with different exposures.

Figure 2.17 provides a complete graphical representation on how the mapping from

scene radiance L to image intensity B happens. As shown, function s describes the

transmission through image irradiance E, while the function f describes the conversion

from image irradiance E to image intensity B. The function f is called the camera

response function and even though it is usually nonlinear, it is spatially uniform. By

using the inverse function of f , we can go from image brightness to image irradiance. We

can represent a digital camera’s response function in a general way as,

B = f(E) (2.66)

In most cases, camera manufacturers are constructing the response function as a

gamma curve. In Figure 2.18, coming from Grossberg and Nayar, we can see some of

Nektarios Sfyris 45 June 2019

2. BACKGROUND

Figure 2.18: Monotonic response function examples from real-world cameras

the monotonic camera response functions that they next used as a training set for their

empirical model (EMoR), with range from 0.2 ≤ γ ≤ 2.8.

The formulation of a desired camera’s response function fG, can be done by analyzing

the theoretical space of response functions WRF . A linear combination of the mean

response f0(E) and the basis function hk(E) can form the wanted response function as,

fG(E) = f0(E) +
n∑

k=1

ckhk(E) (2.67)

where (c1, · · · , cn) are the coefficient parameters of the model. In other words, based

on the Equation 2.67, we are trying to find a good approximation of WRF that its root

mean square distance, is close to that of the empirical data. To estimate the basis

functions hk and the mean response f0, a Principal Component Analysis (PCA) is applied.

And by choosing the parameters ck ∈ IR, the final camera response function fG can form.

By using the empirical model (EMoR) they suggested, the approximation of the camera

response function, considering H = (h1, · · · , hn) a basis vector, is now,

f̃ = f0 +Hc, c = H⊤(fG − f0) (2.68)

This model has also manually decides that f̃(0) = 0 and f̃(255) = 255, while the

intermediate values are monotonically increasing. Along with this response function ap-

Nektarios Sfyris 46 June 2019

2.4 Camera Measurement Model

Figure 2.19: Process of recovering the camera response function and exposure ratios

proximation, comes another work of Grossberg and Nayar in [16]. Here, they suggest

that the camera response can be estimated by mapping the intensity between images

projecting the same scene but with different exposures, hence with an intensity mapping

function. This way, the extraction of the response function is divided into two parts,

first the intensity mapping function must be recovered, and then the response with the

exposure ratios are retrieved from the intensity function. This process is presented in

Figure 2.19, as shown in the work of Grossberg and Nayar in [16].

The exposure ratio is defined as k = e2
e1
, where e1, e2 are the exposure values of two

images projecting the same scene, and describes the relation between the irradiance E

of the two images, as E1 = kE2. Consequently, as the irradiance needs to be estimated

through the intensity, the inverse response camera function, defined as g = f−1, is the one

that needs to be recovered. And by expanding the Equation from 2.66 for two consecutive

images, we have,

g(B2) = kg(B1) (2.69)

In ideal image intensity measurement conditions, the intensity mapping function τ

relates the intensity values between two images and can be described as,

B2 = τ(B1) ≡ g−1 (kg(B1)) → g(τ(B)) = kg(B) (2.70)

Nektarios Sfyris 47 June 2019

2. BACKGROUND

Figure 2.20: Sequence of images showing a static scene at different exposures

This mapping function between images is defined entirely by their histograms. In

contrast with many other methods, by assuming that the distribution of scene radiances

over a sequence of images stays close to constant, Grossberg and Nayar proved that it

is possible to retrieve the intensity mapping function even with motion created by the

camera, or motion in the environment, or a combination of those motions. Histograms

are then used to compute the response function. An example of a sequence of images

with increasing exposures projecting a static scene is shown in Figure 2.20.

Overall, recovering the inverse camera response from the intensity mapping function

gives rise to ambiguity. This ambiguity can be overcomed by making assumptions about

the form of the response, or making accurate exposure ratios selection for multiple images.

Because with given exposure ratios there is a number of camera responses that can

describe the intensity mapping, the only way to obtain a single camera response as a

solution, is by making assumptions. Assumptions are also needed in case the response

function and the exposure ratios are to be computed simultaneously, due to the existence

of exponential ambiguity.

2.4.4 Visual Odometry

Visual odometry (VO) is the incremental estimation of a rigid-body’s motion in real time

using a sequence of images, an idea that was first proposed for outer space mobile robots

exploration. The sensors that are used to apply VO are cameras, as it is based on visual

information.

Visual odometry and visual SLAM (as seen in 2.3.3) may sound similar, but in reality

they are not the same. In fact, VO is a building block for SLAM. It does not keep a long

history of the camera trajectory as SLAM, but only aims at the local consistency of it,

which provides it with real-time execution capabilities. And as the pose path it stores is

Nektarios Sfyris 48 June 2019

2.4 Camera Measurement Model

not too big, it can a handle windowed bundle adjustment optimization.

For what visual odometry is concerned, to view and understand the motion from

images, we observe the motion created from smaller parts of an image, such as lines or

points. However, once we see images, we don’t actually see points, but color or brightness.

So, to transfer from a photometric representation to a geometric one, we can recognize

a set of pixels as a uniquely characterized landmark or point, and attempt to find its

corresponding location in the next image frames to associate it.

Identifying correspondence of points may seem simple at first glance, but is a big

challenges in computer vision. Some of the main reasons for that, include the similarity

in structure in the environment, or the difference in brightness and color of a point from

frame to frame because it belongs to a shiny, reflections causing, item. Also, even if we

usually assume that objects move rigidly in the environment, that doesn’t stand for real

life, as there exist non-rigid deformations.

In general, there are two types of Visual odometry:

• Direct Visual Odometry. The Direct mathod of Visual odometry is based on

estimating the depth of points, which are coming from sensor measurements. They

can be used to reconstruct a whole area of an environment, as they can create even

dense maps of the world. Also, decisions of the model come from mostly complete

information. However, they are characterized as inflexible, as they can not easily

remove outliers, and also need a good initialization, as the overall model depends

the visual odometry generated from the series of images.

Direct methods consist of a single step, acquiring the sensor data, and based on

the images’ brightness for every pixel coordinate, they try to estimate the actual

sensor values. In total, these methods aim to minimize a photometric error.

• Indirect Visual Odometry. This family of methods also leads to feature−based

SLAM. This type of visual SLAM is usually used for creating a sparse map of the

world, as all images are sampled for features, and can contain due to efficiency

only a specific number of them, based on the feature extraction algorithm used.

Here, decisions are based on the not complete information of features. Feature-

based methods, in most cases, are faster than direct methods, as they are more

Nektarios Sfyris 49 June 2019

2. BACKGROUND

flexible, because they can seperate outliers more easily, are not greatly dependant

on initialization, and are robust of system incosistencies.

They consist of two steps, first the pre-processing of the raw sensor data to pro-

vide a part of the problems solution (e.g feature correspondences), and second the

estimation of the rigid body pose from the actual data, based on the first step’s

processed data. Indirect methods are trying to minimize a geometric error.

Both of these methods share the same idea for probabilistically estimating the actual

sensor measurements X, given the noisy measurements Y. The goal is to find each

model’s parameters that maximize the probability of getting the actual measurements,

Xactual = argmax
X

P (Y | X) (2.71)

Figure 2.21: Representation of the Inertial

Measurement Unit (IMU) that was used in

Nasa’s Apollo project

A complementary method for Direct

and Indirect visual odometry, is the addi-

tion of the robot’s inertial measurements,

to make the model more efficient and ro-

bust. These measurements are coming

from a sensor called Inertial Measurement

Unit (IMU), that consists of accelerome-

ters, gyroscopes, and even magnetometers,

and provides the robot with self-motion in-

formation. If an IMU’s measurements are

jointly contributing on the VO problem,

we call the total system Visual Inertial

Odometry (VIO). We can see an example

of an IMU sensory system in Figure 2.211.

In addition, each of the two main meth-

ods, as they are able to assist the SLAM problem, can represent an environment with a

great amount, or limited information. Therefore, there are two main design approaches

to describe space:

1https://www.hq.nasa.gov/office/pao/History/alsj/

Nektarios Sfyris 50 June 2019

https://www.hq.nasa.gov/office/pao/History/alsj/

2.4 Camera Measurement Model

• Dense methods, which aim to reconstruct all pixel coordinates in an image. As

each algorithm’s computations include the whole image at each frame, a geometric

prior is used to account for smothness and better pose estimation.

• Sparse methods, that only reconstruct a feasible and predefined amount of pixel

coordinates in an image plane. Because of the distinctiveness in pixels used for

every frame, these methods don’t support the formulation of a geometric prior.

Of course, there also exist semi-dense methods, that combine the attributes of both

the dense and sparse representation. They usually reconstruct a greater number of pixels

than sparse methods, but not the whole image as the dense ones, and depending on the

case, may formulate a geometric prior.

Optic Flow

Optic flow tries to estimate the 2D motion of points that are observable from a sequence

of images, and is created by the relative motion between an observer and a scene. Optical

flow is the projection of real motion onto the image plane, and is aiming to assist visual

odometry (VO), which attempts to estimate a 3D body’s motion. This assistance is

needed, as the estimation of motion in 3D is difficult, due to the fact that the third

component, the depth, is not captured in the image plane.

To create an optical flow, we need to find points correspondences. There are two cases

that separate the point matching process:

• Small deformation in consequtive camera frames, which means that we can expect

small changes at the next image. One of the most famous methods to estimate the

frame displacement is the Lucas and Kanade [17] method for optical flow estimation

between point features.

• Large deformation, which is creating large frame to frame displacements. In this

case, the mapping for every pixel in a prior image to every pixel in the next image

must be done. However, this procedure is computationally very expensive.

Nektarios Sfyris 51 June 2019

2. BACKGROUND

Figure 2.22: Point observation from successive camera poses

In general, it is best to assume in our problems that we deal with small deformations,

as it is an easier case in contrast with having large deformations. We can then describe

the tranformation of all point of a rigid body between images as,

x2 = h(x1) =
1

λ2(X)
(Rλ1(X)x1 + T) (2.72)

We represent the mapping of the object from the first image to the second image

with h(x1), while λ is the distance from camera, and X, x represent the point in world

coordinates, and in homogenous coordinates. We can see an example in Figure 2.22. The

simple relation between X and x is given with the help of the scaling factor λ by,

X = λx (2.73)

We can approximate the motion described above with an Affine model as,

h(x) = Ax+ b ⇔ h(x) = x+ u(x) (2.74)

Nektarios Sfyris 52 June 2019

2.4 Camera Measurement Model

Here, with the affine model, which is a linear transformation, we are able to describe

shrinking, divergent and skew motions. Parameter x represents the old point coordinates,

and u(x) the displacement or offset of point x,

u(x) = S(x)p =

(
x y 1 0 0 0
0 0 0 x y 1

)
(
p1 p2 p3 p4 p5 p6

)⊤
(2.75)

If we consider two consequtive grayscale images, I and J, and assume that a moving

point’s or pixel’s p(t) = [x, y]⊤ at time t, associated brigthness stays the same through

the images in a static scene, then I(p(t), t) = constant∀t. That means that the total

time derivative is zero,

d

dt
I(p(t), t) = ∇I⊤

(
dp

dt

)

+
∂I

∂t
= 0, ∇I =

(
∂I
∂x
∂I
∂y

)

(2.76)

This equation is called the differential optical flow constraint. The vector we are

interested in that describes how a point moves in the image plane is ~v = dp

dt
, and is called

the flow vector, or velocity. The goal, if we consider p1 = [p1x, p1y]
⊤ be a point on the

first image I, is to find p2 on J , where I(p1) and J(p2) are the same point, by using the

velocity v = [vx, vy]
⊤ at p1,

p2 = p1 + v = [p1x + vx, p1y + vy]
⊤ (2.77)

Figure 2.23: Velocity over a point dis-

placement

To make things simpler, we assume that

this velocity vector v is constant over a neigh-

borhood or windowW (p) that includes point

p. A Figure that graphically shows this idea

is 2.23. In this figure, the window size is

Wx × Wy. In real life though, the bright-

ness doesn’t stay the same as we move from

a camera frame to another, and certainly

doesn’t have the same value inside the win-

dow we just declared. In their work, Lucas

and Kanade have tried to estimate the best

velocity vector v, by using an energy function

aiming to maximize the simple least squares

Nektarios Sfyris 53 June 2019

2. BACKGROUND

Figure 2.24: SIFT feature extraction

between the two positions of the displaced point, that can provide us with some notice-

able, little movement of the window, and thus help the optical flow,

E(v) = E(vx, vy) =
∑

W

(I(x, y)− J(x+ vx, y + vy))
2 (2.78)

The function E represents the difference between the earlier and next window position.

To conclude, the optical flow indicates the motion of the camera and can be estimated

either with feature tracking, or by tracking points that hold specific image intensities.

Feature Extraction

As we already saw, feature detection is typically used to construct an optical flow from

a set of images. As features are selected in a frame, a matching at first needs to happen

in the upcoming frames, that is to find the correspondence or the pair of points at each

image that are the same point in the world. In brief, features can be edges, corners, or

generally any distinguishable and uniquely identifiable texture in a scene. They typically

don’t contain a single pixel in an image frame, but a patch of them. In Figure 2.24 we

provide an example of SIFT [18] feature extraction from an image.

Depending on the algorithm used, we have different feature extractor and feature de-

scriptor. The first one decides how we pick our features from an image, while the second

is responsible on how to keep and reuse the information we stored of each feature. Two

of the most popular works regarding feature extraction are that of Harris and Stephens

Nektarios Sfyris 54 June 2019

2.4 Camera Measurement Model

[19], and some years later, the work of Shi and Tomasi [20].

Figure 2.25: Shi and Tomasi eigenvalues

interpretation

The work of Harris was focused on a cor-

ner detector. First, window patces have to be

found inside the image, that provide unique

information. Then, based on the formula of

Equation (2.78), and considering I and J to

provide us with the intensity of the window,

by working on the difference that needs to be

maximized, we eventually end up with,

M(x) =
∑

W (x, y)

(
I2x IxIy
IxIy I2y

)

(2.79)

The M is called the structure tensor, and

Ix, Iy are the partial derivatives of I. IfM is not invertible and not zero, we can estimate

a motion with direction indicated by the image gradient. The total energy function, in

relation with the structure tensor can be written as,

E(vx, vy) ≈
(
vx vy

)
M

(
vx
vy

)

(2.80)

The structure tensor is of great importance in their work, as its two eigenvalues λ1, λ2

can determine the suitability of a determined window. A score R is therefore computed

for every window,

R = detM − k(TraceM)2 = λ1λ2 − k(λ1 + λ2)
2 (2.81)

If a window scores R more than an offset value, then it is treated as a corner, meaning

a good tracking point.

Later on, Shi and Tomasi developed a corner detector that was able to provide with

better results. In their work, they take also took into account a structure tensor, and

decided that good points would be chosen by,

R = min(λ1, λ2) (2.82)

Nektarios Sfyris 55 June 2019

2. BACKGROUND

In Figure 2.25 we see the way a window is defined based on its eigenvalues. When

λ1, λ2 belong in the green zone, they are treated as corners. If they belong in the blue or

gray, one of them doesn’t meet the required value, and then the window is treated as an

edge, while in the red zone, they don’t provide any wanted information.

Summarizing, it is not always easy to decide what is a good feature. Choosing the

right features in a visual odometry problem is one of the main priorities if you want a

robust system, and because of the many variables that can make a feature extraction

model fail, this field of study is still active and under research.

2.5 Multiple View Geometry

A single image frame from a monocular camera is not able to provide us with a lot of

depth information over an object in the 3D scene, in contrast with a stereo camera setup,

where the common field of view between the two singular camera units can, from the

very first frames taken, provide us with a disparity map, which can lead to a 2D depth

map. An example depth map created by a stereo camera from just an image taken from

the left and right camera unit is seen in Figure 2.26, as presented in the OpenCV library

documentation.

Figure 2.26: On the left we have the stereo

rectified image, and on the right the esti-

mated depth map

In order then to collect more depth data

from the environment in the monocular case,

we must view it from many more perspec-

tives than just one. But because we move

in the environment to observe the scene, we

create the task of also estimating our 3D

motion with the 3D points location. This

“chicken and egg” problem we have to solve

is called 3D geometry of camera and points

reconstruction. Note that the order of ap-

proaching the problem, is that we first try to approximate the camera motion, and then

the location of the world points.

We will continue the discussion under the assumptions that the environment we ob-

serve is static and the camera geometric calibration has already been done to correct the

Nektarios Sfyris 56 June 2019

2.5 Multiple View Geometry

projection of scene 3D world points to the 2D ones in the image plane, for a two view

reconstruction that can then be generalized to multiview.

Epipolar Geometry

We can graphically see a two view problem formulation in Figure 2.27, where the extrinsic

camera parameters, namely the camera’s rigid body motion, need to be estimated and

the X point’s 3D location. The x1, x2 are the 2D projections of the point X in each frame

respectively, and in practise the homogenous coordinates will be used for them, meaning

that the third component of each matrix will be 1. Also, o1, o2 are the optical centers of

each camera frame. The points e1, e2 that are created from the line that connects the two

optical centers and intesects the image plane, are called epipoles. For two frames we have

two epipolar lines l1, l2, that connect the 2D projected point of their image plane with

its epipole, and for each 3D point there is one epipolar plane, created from the triangle

(o1, o2, X) between the optical centers and the 3D point. The green line between the 3D

points X1, X2 represents their correspondence after the camera motion.

We can model the rigid body motion with 6 total variables, 3 for the rotation R and

3 for the translation T , and the world point X also with 3 coordinates. The estimation

of these parameters can be done even for a larger number of points i, by minimizing the

following projection error,

E =
∑

i

‖xi1 − π(Xi)‖
2 + ‖xi2 − π(R, T,Xi)‖

2 (2.83)

The lines that connect the optical center of the camera and the point in the scene

are also called bundles, and estimating a close to optimal solution for them is difficult

because of the complex and high dimensional space of the problem. The approximation of

the best fitted bundles is done with bundle adjustment, a nonlinear optimization method

that will be discussed in Section 2.6.

With given intrinsic camera parameters, meaning that the camera matrix K = 1, and

distance of the point X to the optical center λ, as shown in Figure 2.22, we can represent

Nektarios Sfyris 57 June 2019

2. BACKGROUND

Figure 2.27: Camera motion and 3D point X depth estimation from a two view recon-

struction

the overall problem as,

λ1x1 = X, λ2x2 = RX + T (2.84)

The second part of the equation contains the rotation and translation of the camera,

while also the oberved depth of the point is different. By focusing to constraint this

multi-variable problem, we first try to remove X from the equation, and then multiply

with the 3×3 skew symmetric matrix T̂ , that models the cross product with T , we have,

λ2T̂ x2 = λ1T̂Rx1 (2.85)

Now that the 3D point location is removed, by multiplying with x⊤2 from the left we

Nektarios Sfyris 58 June 2019

2.5 Multiple View Geometry

get the projection on the second frame’s image plane,

x⊤2 T̂Rx1 = 0 (2.86)

This equation is called the epipolar constraint, or essential or bilinear constraint,

and couples the 2D point parameters with the camera motion. Graphically speaking, it

means that the bundles from the optical center do intersect in dome 3D point X, and

can indeed create an epipolar plane. The matrix E = T̂R ∈ IR3×3 contained in Equation

2.86 is called the essential matrix. A matrix E is called an essential matrix if it has a

singular value decomposition (SVD),

E = UΣV ⊤, Σ = diag{σ, σ, 0} (2.87)

where σ > 0, and U, V ∈ SO(3). This system has two possible solutions for T̂ and R,

but usually the wanted one is easily found as it leads to a more logical or expected point

depth values.

Overall, the essential matrix can be estimated from the epipolar constraint of many

point correspondences, and afterwards provide the camera’s rigid body motion. The

number of point pairs needed to estimate the essential matrix was proven by Longuet

and Higgins1 to be at least 8 through their Eight Point Linear Algorithm.

Once the camera motion is computed, we try to estimate the 3D geometry of points in

the scene. We must note, that the estimated essential matrix E and camera translation

T are only defined up to a scale γ, which denotes the distance between the two camera

centers. In summary, the known parameters are the 2D coordinates of every point i in

each camera frame, and the camera rotation R and translation T , while the unknown

parameters are the relative depth of each point from the camera center λ, and the scale

factor γ. The relation between those variables is seen below,

λi2x
i
2 = λi1Rx

i
1 + γT (2.88)

1https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf

Nektarios Sfyris 59 June 2019

https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf

2. BACKGROUND

To constraint the equation, we multiply with x̂2
i from the left to remove λi2, and then

divide with λ1. We can then represent it as a linear system,

(
x̂2

iRxi1, x̂2
iT
)
(
λi1
γ

)

= 0, i ∈ (1, . . . , n) (2.89)

Because we want the scene reconstruction to be robust and as consistent as possible,

we solve the whole problem. By considering that the vector ~λ contains all λi scale

parameters of points and the γ unknown, we describe the whole two view system in a

linear way as,

M~λ = 0 (2.90)

M =










x̂2
1Rx11 0 0 0 0 x̂2

1T
0 x̂2

2Rx21 0 0 0 x̂2
2T

0 0
. . . 0 0

...
0 0 0 x̂2

n−1Rxn−1
1 0 x̂2

n−1T
0 0 0 0 x̂2

nRxn1 x̂2
nT










We try to solve this by minimizing the least squares estimate of vector ~λ described

as ‖M~λ‖2 = min~λ λ
⊤M⊤Mλ. The solution comes from the eigenvector of the smallest

eigenvalue of M⊤M .

It is important to state that the Eight Point Algorithm, is working only if the plane

that the points are positioned on is a general 3D surface which is not planar. If the points

are being located on a plane surface, then a Four Point Algorithm will be used. Building

from where we left in Section 2.4.3, a homography H transformation is used in this case,

such for a 3D point X,

X2 = HX1, H = R +
1

d
TN⊤ (2.91)

The homography H ∈ IR3×3 is characterized by the displacement from the camera’s

origin d, and the normal vector of the plane N as shown in Figure 2.28. If we project the

vector to point X on the normal vector N , we will get the distance d, and that’s true for

every point on the plane. By reformulating the epipolar constraint in Equation (2.86)

and by working on the 2D coordinates of points we get,

x̂2Hx1 = 0 (2.92)

Nektarios Sfyris 60 June 2019

2.5 Multiple View Geometry

Figure 2.28: Plane RepresentationThis equation is called the planar homog-

raphy constraint, and by solving it we can get

the motion parameters of the camera by us-

ing at least four scene points. Like with the

essential matrix E, the homography H can

only be approximated up to a scale factor.

Uncalibrated Camera

Until now, a geometric calibration of the

camera, which provides the camera matrix

K as seen in Equation (2.48), was assumed.

However, if a calibration is not possible to

happen, and therefore the matrix K is not

known, the discussed model needs to be adjusted. In general, the projected onto image

plane point x′ is used by any vision algorithm when it is first normalized through the

given camera matrix as x = K−1x′.

We can integrate the unknown camera matrix in our two view process by extending

the epipolar constraint as,

x′2
⊤
K−⊤T̂RK−1x′1 = 0 ⇒ x′2

⊤
Fx′1 = 0 (2.93)

This new constraint is especially designed for uncalibrated cameras. As seen in the

equation, we assume that the calibration matrix K is the same for both image frames.

The matrix F is called the fundamental matrix and can, in relation to the essential matrix

E which holds the extrinsic camera parameters, be formulated as,

F = K−⊤EK−1 (2.94)

Like with the essential matrix, the fundamental matrix has a SVD as F = UΣV ⊤,

but the singular units of Σ = diag{σ1, σ2, 0} are not equal and not zero.

Nektarios Sfyris 61 June 2019

2. BACKGROUND

2.6 Bundle Adjustment

When a robot with a monocular camera setup has done a long course inside an environ-

ment trying to map it, drift is accumulated from its motion and its visual scale. Bundle

Adjustment is a nonlinear optimization method that tries to simultaneously refine the 3D

scene reconstruction and camera trajectory during a robot motion. In the end, it aims

to provide with a jointly optimal solution for these parameters.

In real world conditions, there is noise to the projection of world point X, into the

image plane point x̃. Therefore, the location of x̃ isn’t equal to the true projected point’s

2D coordinates, but to the noisy ones. This noise may cause the rays between different

camera views to the world point X to not intersect, in contrast to what we have seen

in Figure 2.27, where they do. In brief, a ray or a bundle is the line coming from the

camera’s optical center, passes the projected 2D noisy point x̃ and is directed to the

possible position of the 3D world point X. Under ideal conditions these rays, assuming

that the camera poses have a common field of view, intersect to the 3D points they

observe.

We can represent the relation between the true 2D point position x with the camera’s

rigid body motion and the noisy 2D coordinates x̃ with the following aposteriori estimate,

argmax
R,T,x

P(R, T,x|x̃) = argmax
R,T,x

P(x̃|R, T,x)P(R, T,x) (2.95)

where R ∈ SO(3), T ∈ S
2 and together denote the motion that links two camera

poses. From this formulation we can see that the probability P lives in the complex

space of SE(3). However, in real-time reconstruction problems, having the prior camera

rotation and translation is not the case.

If for simplicity we consider a zero mean Gaussian noise N(0, σ2
i) applied to each

projected point x̃j in an image, then for every image i, the Bundle Adjustment can be

represented as the following cost function,

E(Ri, Tii=1,..,m, Xjj=1,..,N) =
m∑

i=1

N∑

j=1

θij|x̃
j
i − π(Ri, Ti, Xj)|

2 (2.96)

As shown, this cost function tries to minimize a reprojection error, with π(Ri, Ti, Xj)

denoting the 3D projected point’s, after the camera rotation and translation, 2D coordi-

nates. Basically, by using the Bundle Adjustment method, we want to adjust the rays

Nektarios Sfyris 62 June 2019

2.6 Bundle Adjustment

from m views directed to the possible observed points, in a way that they actually in-

tersect the wanted N target points accurately. As we take into account m camera views

we can decide which the first camera pose will be and usually, we set the global pose to

T1 = 0 and R1 being the identity which is 1.

The parameter θij in the equation is only to separate which points are visible in the

given image and thus take part in the calculation. It can be declared as,

θij =

{

0 if point j not observable in image i

1 if point j observable in image i
(2.97)

This form of Bundle Adjustment can model the problem in a non-convex way. Differ-

ent approaches can also represent the same problem. For example, if we take into account

that Xj = λj × xj, as graphically shown in Figure 2.22, we can get a cost function that

relates the noisy 2D point x̃ with the true 2D coordinates x and the scaling factor λ.

In order to minimize Bundle Adjustment cost functions, nonlinear optimization algo-

rithms are used. Some of these algorithms are :

• The Gradient Descent, which is an iterative method that aims to compute an ar-

bitary minimum cost function by using first-order derivatives. Depending on the

location of the function it is operating, it computes its local gradient. At each

iteration, it checks where does the energy decrease and chooses that direction as

the preferred one.

Assuming that the cost function is differentiable and continuous, the Gradient De-

scent can be applied to it. Its main advantages are that it can work on high

dimensions and for any differentiable cost. However, if the cost function has many

strong curves, a lot of iteration steps will need to be done.

• The Gauss-Newton method, that is an approximation of the Newton optimization.

Its goal is to find an inverse hessian matrix H−1, holding all second derivatives,

that is guaranteed to be positive definite. In contrast to the Newton method, it

is not necessary to always compute the second derivatives, meaning that if they

won’t probably provide us with a positive definite outcome, we drop them. The

Gauss-Newton algorithm is also used for solving nonlinear non-convex least squares

Nektarios Sfyris 63 June 2019

2. BACKGROUND

problems with a cost function as later shown in Equation (2.102). We can describe

it by the following formulation with the iterative step being xt+1,

xt+1 = xt +∆, ∆ = − (J⊤J)−1

︸ ︷︷ ︸

H−1

J⊤r (2.98)

The condition that decides if the Gauss-Newton method will likely work well is,

∣
∣
∣
∣
∣
ri

∂2ri
∂xj∂xk

∣
∣
∣
∣
∣
≪

∣
∣
∣
∣
∣

∂ri
∂xj

∂ri
∂xk

∣
∣
∣
∣
∣

(2.99)

This basically means that we have a good Hessian H approximation if the repro-

jection error ri is not a big value, thus the Gauss-Newton works really well for

problems that are near the linear least squares problem.

• The Levenberg-Marquardt algorithm. Building on what we discussed about this

method in Section 2.4.3, the Levenberg-Marquardt algorithm is extremely popular

for nonlinear least squares estimation. The idea behind it, is that it mixes the New-

ton and the Gradient Descent methods and uses them depending on the situtation

we are on the cost function. The formulation that Levenberg first suggested is,

xt+1 = xt +∆, ∆ = −(J⊤J
︸︷︷︸

H

+λIn)
−1J⊤r (2.100)

The parameter λ decides which of the two algorithms is influencing more the total

method behavior. More specifically, when λ is small, the Newton one is selected

dealing with the convex part of the cost function, while when λ is a large value,

the Gradient Descent is used for the non-convex part. Usually, you start with the

Gradient Descent because you may be in the concave part and the Newton method

is not going to work and then gradually reduce λ in the iterations.

Besides these methods, the traditional Nonlinear Least Squares can also be used. As

a generalization of the Linear Least Squares, its goal is to find a fitting of the x inputs,

which are the camera motions and 3D points, to a nonlinear model that also contains

the outputs ai, which are the 2D point coordinates generated by the mapping from the

Nektarios Sfyris 64 June 2019

2.6 Bundle Adjustment

3D ones. We can describe the reprojection error, meaning how far the projection of a 3D

point is from the observed 3D point, for this model as,

ri(x) = ai − f(bi, x) (2.101)

Here, the function f is the projection of the 3D points to the image plane and bi are

some parameters of the projection. The cost function that needs to be minimized is then,

Else = argmin
x

∑

i

ri(x)
2 (2.102)

In total, this is a nonlinear problem because the dependency on the unknowns x is

not linear either. If we have a convex problem, the optimality condition can easily be

computed from by setting the gradient to 0 as,

∑

i

ri
∂ri
∂xj

= 0 (2.103)

However, if we deal with a non-convex problem, an iterative technique as the ones

discussed above, namely the Levenberg-Marquardt or Gauss-Newton methods, are more

appropriate to “solve” it, or better find a locally optimal solution.

Of course, depending on the nature of the Bundle Adjustment cost function, there is

a different, often nonlinear, approximation algorithm that is appropriate for each case.

Overall, when the space of the environment during SLAM increases, so do the camera

poses and points printed and stored in the creating map. As a result, applying Bundle

Adjustment to such a large in size problem can be very costly. A way to overcome

this problem is to sparsly reconstruct the environment, keeping only a small number of

points and camera poses to represent the robot motion and exploration procedure. In

case a more semi-dense like approach is wanted instead, it can miss out only some of the

points or the frames, therefore keeping a stronger network of keyframes, or a more dense

reconstruction.

Concluding, Bundle Adjustment is a nonlinear optimization process that tries to iter-

atively refine the camera poses and points observed in them, in a way that the points will

come as possibly close to their real 3D location and thus minimize the total reprojection

error. Usually, Bundle Adjustment is used only as the last step in visual reconstruction

Nektarios Sfyris 65 June 2019

2. BACKGROUND

because it is time-consuming. We must also note that in order to provide accurate results,

a good initialization from the robot’s SLAM algorithm is required.

Nektarios Sfyris 66 June 2019

Chapter 3

Problem Statement

3.1 Monocular Visual SLAM for Autonomous Robot

Explorations

Everyday explorations are performed by humans in simple life, or in the name of sciences,

but when the area of exploration is not accessible by people, using robots is usually

a viable choice to be made. These explorations’ goal can vary from extraterrestrial

planet mapping to deep sea aquaculture analysis, where a human can not, even with

the necessary equipment, achieve this due to his physiology. However, even if he could

have access to environments like these, robots could solve this problem in ways that the

knowledge obtained can be easily reusable, and therefore are preferred.

Humans, and likewise robots, in order to create a map of the environment, need to

solve two individual problems simultaneously, the problem of mapping and the problem of

localizing themselves inside the map they create. This problem is known as Simultaneous

Localization and Mapping (SLAM). If the coupled process was performed effectively,

there would be little to no drift in the end map, which means that the map could then

be trusted for use for other complex tasks that rely on it. Having a mapped environment

and a reliable method for localization can allow a mobile robot to perform navigaiton

tasks and therefore do no to less mistakes in their work.

The robots can use many sensors to autonomously map their environment, such as

LiDAR laser scanners, a set of cameras, or radar sensors. When a single camera is used,

we have the fully-constrained problem of Monocular Visual SLAM. Besides the drift

Nektarios Sfyris 67 June 2019

3. PROBLEM STATEMENT

created from the robot motion inside the environment, there is now the addition of a

scale drift that accounts for the inability of a monocular camera to observe depth. In

total, the monocular case is a difficult case in computer vision, but can solve the problem

of SLAM with a cost-, size-, and energy-efficient sensor setup.

The monocular case is approached with Visual Odometry (VO) that tries to tell how

the camera is moving based on the motion of extracted points in each individual image

of a video sequence. From the camera’s perspective, it can be said that the points are the

ones moving. The hypothetical motion of the features is tracked and provides an Optical

Flow for each one of them, which helps in the final estimate of the camera motion.

A consistent and robust system architecture must also support relocalization of the

robot, meaning that, when a camera observes something that was recently seen and

mapped, it can adjust the robot pose with respect to that object. It must also support

loop closing, which can occur when after a long trajectory of the robot, it has returns

to the starting point and tries to close the loop in its progressively created map, while

correcting the motion drift accumulated in the intermediate period.

Our goal in this thesis is to implement a reliable and real-time method for Visual

SLAM on our Nao robot, by exploiting the capabilities of the ROS framework. The

method must be also compatible with the Nao’s monocular camera setup, and cooperate

effectively with a navigation module to simulate a real-life autonomous robot exploration

scenario.

3.2 Related Work

Visual Odometry (VO) is divided into two main categories, the Direct VO, and the

Indirect or Feature-based VO. The first tries to estimate the camera motion, while also

attempting to reconstruct the 3D scene. The reconstruction is done by sampling the

projected image’s pixels and processing their intensity values. The Feature-based tries to

achieve the same goals, but by tracking feature or landmark correspondences in a video

sequence. Here, we will provide a brief overview of the most notable Indirect, Direct,

and Hybrid VO systems, compatible with the monocular case. In the end, we will also

mention some VO methods that use different sensor setups to supplement the space of

VO systems.

Nektarios Sfyris 68 June 2019

3.2 Related Work

3.2.1 Indirect or Feature-based Monocular Visual SLAM

In this work, we use the Indirect VO and SLAM system of Mur-Artal and Tardos [3]

called ORB-SLAM in cooperation with the monocular camera setup of our Nao robot.

ORB-SLAM is highly based on the PTAM [21] SLAM system, and has adopted the idea

of conducting the mapping and tracking operations in two separate threads for greater

efficiency, while searching for FAST feature triangulation to estimate the camera pose

and points’ depth. As the mapping thread is not using every camera frame in the process,

it has enough time until the next keyframe is selected to enrich the last one with as many

valuable points as possible. PTAM also makes use of a local Bundle Adjustment, and is

used in augmented reality applications because of its good performance.

Another full visual simultaneous localization and mapping system was presented by

Pirker, Ruther, and Bischof in [22] called CD SLAM. This work supports both indoor

and outdoor environment exploration with a dynamic nature or with highly monotonous

texture. CD SLAM also uses only a part of the total camera’s frames, then creates an

unweighted graph to store them and applies Bundle Adjustment to refine them. To cope

with the environment’s non staticity, a histogram of camera poses is embedded in each

map feature’s information.

The MonoSLAM algorithm of Davison and colleagues in [23] can reconstruct the 3D

environment in a sparse manner. Each keypoint is assigned a depth value that is adjusted

during the common camera’s field of view in a probabilistic framework, and are tracked on

the epipolar line. The features selected are highly informative Shi-Tomasi points and are

described by their 2D location plus their computed depth. An Extended Kalman Filter

is used to estimate the camera’s rigid body motion through landmark correspondences

in the video sequence.

A dense and indirect approach is that of Ranftl and colleagues in [24]. The objects

in the scene are considered as moving, therefore a dynamic environment is modelled,

and an optic flow is approximated for each to predict their movements. They are also

reconstructed in the map jointly with the static environment. As moving obstacles can

add a lot of noise to the camera pose estimation and therefore make the camera fail its

tracking, a segmentation module was added to categorize the static from the dynamic

objects, to ensure robust pose estimation and correct mapping of the environment.

Nektarios Sfyris 69 June 2019

3. PROBLEM STATEMENT

Besides the ORB features [25], which are Oriented FAST and Rotated BRIEF, used

in the ORB-SLAM system, two widely used feature detectors and descriptors are the

SIFT [18], and the SURF [26]. SIFT features are scale, rotation, illumination, and

viewpoint invariant, meaning that they offer very robust detection and tracking. First,

points are extracted from an image and are represented in different scales, keypoints are

selected between them with a Laplacian of Gaussian approximation, and a orientation

is assigned to them after that. In contrast to SIFT, SURF features are extracted using

a Hessian matrix approximation. It extends the Laplacian of Gaussian methodology by

applying box filters, boosting efficiency while keeping the computations in low levels.

SURF features are also scale and orientation invariant. However, because both SIFT

and SURF are patended works, they can only be used in academic projects and not for

commercial purposes. ORB feature detector and descriptor was created because of that

reason.

3.2.2 Direct Monocular Visual Odometry

Two notable works in the space of Direct VO systems is the DTAM in [27], and the

LSD-SLAM system in [28]. DTAM can create a dense map of the scene by directly

processing pixels with high intensity gradient values in an image, and not by extracting

features that are more informative like in the Indirect methods. During camera motion,

which is described with 3 DoF for translation and 3 DoF for rotation, depths are initially

estimated and then refined for specific map points to later reconstruct local scenes and

objects skillfully. The camera pose trajectory is tracked in a local area through constant

point alignment in a SSD optimized framework, that helps compute the inverse depth

map of the scene.

A specialized method for large-scale environment explorations is the LSD-SLAM [28].

The map created from the camera’s keyframes, contains the inverse depth representation

and the variance of the inverse depth map, coming by reprojecting pixel intensities in

new frames. The total problem brakes into three main suboperations, the tracking, the

depth map estimation, and the map optimization. The map optimization is done with a

pose graph optimization, similarly to the way it is done in ORB-SLAM. A loop closure

happens by comparing the similarity tranformations on camera poses inside the graph,

and selecting the ones that minimize a cost function.

Nektarios Sfyris 70 June 2019

3.2 Related Work

3.2.3 Hybrid Monocular Visual SLAM

The Hybrid Visual Odometry approaches are a combination of Direct and Indirect meth-

ods, and basically aim to merge the advantages of both. One of the best performing

semi-direct approaches is the SVO system in [29]. The camera initialization is done with

a direct image alignment on the extracted from the image sequence points. The process

is split in two threads, the first for camera tracking, done by tracking pixel intensities,

and the second for mapping, using FAST feature descriptors that are quickly extracted

for loop closing and localization. In the mapping thread, a probabilistic depth filter is

assigned to each projected in the image feature, and is being updated with a Bayesian

manner when provided more viewpoints.

A work that incorporates the information of an IMU sensor setup in the monocular

Visual Odometry methodology, is the work of Li and colleagues in [30]. These type of sys-

tems are referred as Visual Inertial Odometry systems and try to increase the robustness

of the SLAM process by also accounting for the measurements from the accelerometer,

gyroscope, and magnetometer. It supports loop closing, and is based on the direct module

for local camera tracking, and on the indirect for camera pose refinement and mapping.

The features extracted are the same as in ORB-SLAM, namely ORB, and with the help

of the IMU, the approximated scale that is created in the monocular case is sufficiently

computed. Overall, the addition of an IMU significantly increases the efficience and

accuracy of a SLAM method.

3.2.4 Stereo and RGB-D Methods

In contrast to monocular cameras, stereo setups consist of two singular camera units.

These units can provide depth information for the area that covers their common field of

view from the very first frames taken. Some of these works are the RSLAM system [31],

the S-PTAM [32], and the LSD SLAM [33] as we previously discussed but for a stereo

setup.

The RSLAM [31] is a SLAM system mainly for large-scale mapping that represents the

points and camera pose in a relative manner. The system’s robustness is enforced with

scale invariant feature descriptors, subpixel minimization for precise tracking, quadtrees

to sparsly distribute the features in the image, and by performing relative Bundle Ad-

justment.

Nektarios Sfyris 71 June 2019

3. PROBLEM STATEMENT

The S-PTAM [32] follows the logic of the PTAM system architecture by splitting the

SLAM process in two parallel threads, meaning one for mapping and one for tracking. In

contrast with PTAM which uses a monocular camera, the stereo setup assists a lot in the

points’ depth estimation and camera pose tracking. Also, a local Bundle Adjustment runs

in an individual thread to refine the covisible map. Lastly, loop correction is supported

but not if the robot’s trajectory was great.

The stereo LSD SLAM [33] in contrast to its monocular version in [28], computes

the depth of points both from temporal and static stereo. A photometric correction

is applied to refine the camera measurements and help with local map point tracking

through the video sequence. The process brakes into the stereo camera tracking, the

depth map estimation that initializes and filters new keyframes, and lastly a pose graph

optimization to refine everything.

A special type of camera is the RGB-D setup that besides color, can provide depth

information from its measurements. One of the first works in the area of mapping with

an RGB-D camera is the KinectFusion method in [34]. This system supports real-time

camera tracking by using the iterative closest point (ICP) algorithm and merges all depth

information collected for a projected scene. The estimated scene, is represented with a

dense map of hich accuracy because of the small camera motion drift. Another one is the

ElasticFusion in [35] that builds a surfel-based dense map. Local and small loop closures

happen in a fast pace and are then combined with global level loop closures. During this

process, a non-rigid deformation is later applied that as shown, can increase the map’s

consistency and camera’s trajectory estimation. However, this method is mostly for small

environments and can not support large-scale world reconstructions.

In our work, we want to achieve robot relocalization, loop closing and effective track-

ing, all in real-time and with as high accuracy as possible.

Nektarios Sfyris 72 June 2019

Chapter 4

Our Approach

4.1 Network and ROS Communication

One of the first things that need to be established in our agent’s simultaneous local-

ization and mapping (SLAM) scenario, is the way of communicating with the robot as

it navigates in the environment. This is necessary because, in order to promise both

real-time computations and robust algorithm perforfance, all of the system’s tasks must

be managed on a different computer system than the one of the Nao robot, specified in

Section 2.1, as the real-time and load requirements need to be met. More specifically, a

laptop with a four-core i7 processor clocked at 2.4−3.0 GHz, an 8 GB DDR3 RAM and a

GeForce 940M graphics card was the main source of computing power, able to cover our

needs. In addition, a wireless network communication must be maintained with max data

transfer of 300 Mbps in the 2.4 GHz wi-fi band or an Ethernet connection of 10/100/1000

Mbps formed with a UTP/STP cable and received by a PCI Express bus slot.

To keep all the computational load on the remote computer station, we first installed

the ROS middleware [4] on it, which was discussed in Section 2.2, and then defined it

as the ROS Master, controlling all the system’s topics and nodes, instead of the Nao

robot. In our work, we used the Kinetic ROS distribution, as it was the one compatible

with the Ubuntu 16.04 LTS operating system of the remote computer station. Figure

4.1 shows the two most compatible with our scenario network architectures. The first

case is a full Ethernet connection, and enables faster data transfer and message error

minimization. The second case includes an Ethernet connection up to the access point

Nektarios Sfyris 73 June 2019

4. OUR APPROACH

Figure 4.1: System Network Architecture

completed with a wireless LAN connection operating in the 2.4 GHz spectrum, and

enables greater robot autonomy at the cost of slower communication and small-to-medium

package loss depending on the distance of the robot to the router and the nature of the

environment it is in.

It is notable, that for any kind of communication between the robot and the computer

station, each one must know the other’s IP address. That being said, in case of the full

Ethernet connection, the robot’s IP is obtained automatically by link-local addressing

without the need of setting a static IP address to it, while in the case of the semi-full

Ethernet connection, the router acts as the DHCP server, providing both the station

and Nao with their IP. In our experiments, we mostly used the full Ethernet network

connection for greater communication efficiency.

As the network has been established, next comes its exploitation. The naoqi-driver

package, which is available as an open-source project [36], runs continuously in the back-

ground, bridging ROS on the computer station with the NAOqi OS on the robot, by

translating the NAOqi messages to ROS messages. This way the remote computer is

provided from the beginning of the experiment until its end, with real-time, organized,

and adjusted to the ROS framework data, for the running processes. Figure 4.2 shows

most of the topics and services created and maintained by the naoqi-driver node.

Nektarios Sfyris 74 June 2019

4.1 Network and ROS Communication

Additionally, since we approach the general SLAM problem by using only the robot’s

vision, we make some necessary changes to the camera parameters to allow for real-time

performance and frame dropout minimization. Hence, instead of 4VGA (1280 × 960)

resolution, we work with VGA (640× 480) at 30 frames per second. Overall, our mobile

robot contributes to the total system’s computations only by sending its sensors’ data to

the computer station through ROS.

Topics provided through the naoqi driver ROS node:

/diagnostics [diagnostic msgs/DiagnosticArray]

/joint angles [naoqi bridge msgs/JointAnglesWithSpeed]

/audio [naoqi bridge msgs/AudioBuffer]

/camera/bottom/image raw [sensor msgs/Image]

/bottom/camera info [sensor msgs/CameraInfo]

/camera/front/image raw [sensor msgs/Image]

/front/camera info [sensor msgs/CameraInfo]

/head touch [naoqi bridge msgs/HeadTouch]

/imu/torso [sensor msgs/Imu]

/odom [nav msgs/Odometry]

/sonar/left [sensor msgs/Range]

/sonar/right [sensor msgs/Range]

/tf [tf2 msgs/TFMessage]

Services supported:

/camera/bottom/image raw/compressed/set parameters

/camera/front/image raw/compressed/set parameters

/get language

/set language

Figure 4.2: Main topics and services communicated through ROS with the naoqi driver

node

Nektarios Sfyris 75 June 2019

4. OUR APPROACH

4.2 Robot Camera Calibration

As the Nao robot (Figure 2.2) has two non-overlapping cameras, meaning that they act

as singular-monocular units and can not provide depth information from common field of

view, in our SLAM scenario we have focused on using only the top camera. This camera

provides around 61◦ field of view in the horizontal axis.

Figure 4.3: Geometric calibration pro-

cess

We usually define camera calibration as the

process of determining the internal parameters

of a camera, which correspond to the specific

camera properties that enable the mapping from

3D world points to 2D image points, and the

extrinsic parameters, which correspond to the

camera’s location and pose, from a sequence of

uncalibrated images, as we discussed in Section

2.4.3. The significance of camera calibration

as a process in computer vision applications, is

seen in the difference in accuracy to the pro-

jected scene information, as in 3D representa-

tions of world structures.

In this work, we have conducted Nao’s top

camera calibration in two stages, first we esti-

mate the intrinsic camera parameters, as described in Section 4.2.1, and then we reinforce

our calibration model by also estimating the camera response function and our camera’s

vignette image, as described in Section 4.2.2.

4.2.1 Geometric Intrinsic Calibration

In order to acquire Nao’s camera intrinsic parameters, meaning the focal length, the

optical center, and the distortion coefficients, while simultaneously estimating its pose in

3D space, related as described in Equation 2.49, we used the camera calibration ROS

package [37]. This package provides support for both monocular and stereo cameras,

and as in the work of Zhang [11], needs a known planar pattern with known dimensions,

as a calibration target to be used in the process. In our case, we used a chessboard of

9× 7 size, with each square’s side length being 24, 6 mm. In reality though, because the

Nektarios Sfyris 76 June 2019

4.2 Robot Camera Calibration

calibration algorithm uses only the interior vertex points of the chessboard, the beneficial

chessboard size is of 8× 6. An image of the real-size robot and chess pattern can be seen

in Figure 4.3.

The calibration information of a camera can be communicated inside the ROS frame-

work with a CameraInfo message, defined in Table 4.1. If the camera is uncalibrated,

the matrices D,K,R, and P must be zero. Instead, if the message refers to an at least

partly calibrated camera, the Header message, the height and width parameters, are as

defined in Table 2.1, and the distortion model describes the model that was used to

correct the image anomalies. The matrices, D which is the distortion matrix as seen

in Equation (2.59) but by using three parameters for the radial model and two for the

tangential, K the intrinsic camera matrix for the raw and still distorted images as seen in

Equation (2.48) but with the skew-factor as zero, R is a 3×3 rotational matrix only used

for stereo cameras to align the camera with the ideal image plane, and P the projection

matrix as seen in Equation (4.1).

Π =





f ′
x 0 o′x Tx
0 f ′

y o′y Ty
0 0 1 0



 (4.1)

The projection matrix Π holds the corrected intrinsic parameter values, including

the focal length f ′
x, f

′
y and principal point o′x, o

′
y at the image center. The last column

of the matrix is used mostly for stereo cameras, as it is related to the position of the

optical center of the second camera in the first camera’s frame. For us, because we

deal with a monocular camera, the values of the last column are all zero. The last tree

parameters of the general CameraInfo message affect the geometry of the output image.

The two binning factors represent the combination of neighborhooding pixels to super-

pixels, reducing the total image resolution, and the RegionOfInterest message defines

the window of interest in an image, described by the a new resolution (usually set as full

resolution).

The calibration node subscribes directly to the image raw topic published from

naoqi driver, and therefore all computations happen with real-time streaming of data. If

the camera has already part of its calibration information, usually provided by its manu-

facturer, then the node will be able to get that from the camera info topic. In any case,

when the process is over, the node can upload the computed calibration parameters to

Nektarios Sfyris 77 June 2019

4. OUR APPROACH

the camera driver using a set parameters service call with a CameraInfo message right

away, or can store the calibration values for later use in a YAML file. Shortly, YAML is

a data serialization language able to support the rich data structures required in today’s

distributed computing. YAML files are also compatible with the ROS framework, as they

can cooperate with different computational units (e.g C++ or Python nodes) to retrieve

and set parametes on the Parameter Server.

A sensor msgs/CameraInfo ROS Message

std msgs/Header header
uint32 height
uint32 width
string distortionmodel
float64[] D
float64[9] K
float64[9] R
float64[12] P
uint32 binning x
uint32 binning y
sensor msgs/RegionOfInterest roi

Table 4.1: A ROS message providing meta in-

formation for a camera.

After starting the calibration node,

in order to gain good calibration results,

the chessboard needs to be waved in

every direction in front of the camera,

to collect information about the whole

field of view. In specific, simple transla-

tions of the chessboard have to be made

in the x − axis, the y − axis, simula-

tion of scaling by moving towards and

away from the camera, and simulation

of skew by adding tilt with the chess-

board translation. As the process is be-

ing done with a stream of data, the al-

gorithm tries to keep track of the chess-

board in the whole video sequence, and

stores, for the computation of all the

camera parameters, snapshots that have unique information to offer for the cases we

described.

When enough snapshots have been collected, the calibration process will begin. The

goal after this calibration is the continuous rectification of the input video sequence,

meaning its correction from distortion, scaling, image plane rotation and translation. We

will describe the process to end up with the wanted K and D matrices, with a single

point X in the world coordinate frame as an example for simplicity:

1. First, the point will be projected in our already distorted camera model as we

haven’t calibrated it yet. The extrinsic parameter matrix (R | t), containing the

Nektarios Sfyris 78 June 2019

4.2 Robot Camera Calibration

combined rotation and translation of the camera in relation with a static scene,

converts the 3D world point X, to a camera coordinate system’s 3D point X′,

X′ = (R | t)X =





r11 r12 r13
r21 r22 r23
r31 r32 r33









X
Y
Z



+





t1
t2
t3



 (4.2)

2. Then, the point is projected from world coordinates in the undistorted and normal-

ized image plane’s 2D coordinates in the position
(
X
Z
, Y
Z

)
,

sx = X′ (4.3)

3. Next, the distortion matrix D will relocate the projected point in the normalized

image to its distorted position, with the help of the distortion coefficients,

x′ = D(x) (4.4)

4. Following, the intrinsic camera matrix K will convert the earlier point coordinates

to pixel coordinates (u, v),

q = (u, v)⊤ = Kx′ (4.5)

5. The above four steps described the projection of point X to the original image

plane. What we got from this series of transformations was the actual, distorted in

the image, position of the point. In order to get the rectified image of the point,

we must follow these transformations in the opposite order.

In more detail, from pixel coordinates (u, v), we apply the camera matrix K and

the distortion matrix D to return to the normalized and undistorted image, and

then use the rotation matrix R, which is usually R = I =





1 0 0
0 1 0
0 0 1



, where I is

the identity matrix, as there is no need to rotate the undistorted and normalized

image for monocular cameras. At last, we need a new camera matrix K ′, with

different intrinsic parameters than the previous camera matrix K, to produce the

calibrated and undistorted output image. The resulted projection matrix P , as

seen in Equation (4.1), projects 3D world points into the rectified image.

Nektarios Sfyris 79 June 2019

4. OUR APPROACH

Figure 4.4: Example images of the geometric calibration process

This package uses the OpenCV calib3d library, that contains classes to assist some of

the processes discussed in the above steps, such as the camera matrix estimation and the

chessboard pattern recognition, and thus hides a lot of complexity in the software side.

We provide some images during the video sequence processing from Nao in Figure 4.4.

To evaluate the accuracy of the estimated intrinsic and distortion parameters, as well

as the translation and rotation matrices, a re-projection error is used. This error tries to

estimate the normed difference between the transformed point from world coordinates to

image coordinates, and the point produced by the corner finding algorithm. The average

re-projection error is further computed by finding the mean of all the errors through

the images used. In order to minimize that error, the Levenberg-Marquardt nonlinear

optimization algorithm [13] is used, as discussed in Section 2.4.3, that computes the

overall sum of squares distance between the observed in scene points, and the projected

in image plane object points that have been affected by the camera parameters and pose.

The re-projection error is measured in pixel units, and suggests a new estimation, for

every new pattern viewed.

In our work, after varius recreations of calibration image sets, we got the best calibra-

tion results from a collection of 312 images that had the lowest mean re-projection error

Nektarios Sfyris 80 June 2019

4.2 Robot Camera Calibration

value of around 3%. The outcome matrices, including the camera matrix K, distortion

matrix D, and projection matrix P , are shown below,

K =





555, 85 0 311, 14
0 557, 91 235, 43
0 0 1



 D =









−0, 056
0, 074
−0, 001
0, 002
0









T

Π =





551, 55 0 312, 65 0
0 554, 28 234, 54 0
0 0 1 0





4.2.2 Monocular Photometric Calibration

After we gained good estimations for the intrinsic camera paremeters, the focus was

redirected on further conducting a photometric calibration for our camera. Photometric

calibration is the process of correcting an image in terms of pixel intensities, vignetting,

auto gain or even exposure, as pixels corresponding to the same point in the 3D scene

can suggest great difference in their brightness value on an upcoming image, depending

on these attributes, and thus introduce errors in vision tasks. Therefore, to calibrate

our camera photometrically we were based on the work of Engel and Cremers [6], were

they proposed an open-source framework for manually estimating the camera response

function and vignette image.

For the upcoming computations, the exposure or exposure time of every image will

need to be known. In brief, exposure is the amount of light received from the camera

sensor, and is expected to reach a pre-specified value for every image, as it is delimited

by the camera apenture. Exposure time now, is the time needed until the camera sensor

reaches the wanted exposure value, and is usually measured in milliseconds. Given the

pixel value and the exposure time, we can compute the real brightness of each point in

the scene. As seen in Table 4.2, the Exposure time for Nao robot, as a camera model’s

hardware parameters, is calculated as
(
exposure value

10

)
in ms.

Nektarios Sfyris 81 June 2019

4. OUR APPROACH

Parameter Min value Max value

Exposure 1 510

Exposure Time (ms) 0, 1 51

Gain 32 255

Table 4.2: Parameter values of localization algorithm

Nao in its default mode uses an auto exposure algorithm1 for its cameras, that auto-

matically changes the exposure and gain value. The algorithm subdivides every image

frame, into 25 windows, that scale their exposure value with the following weighting

matrix,

Mweights =









0, 25 0, 25 0, 25 0, 25 0, 25
0, 25 0, 75 0, 75 0, 75 0, 25
0, 25 0, 75 1 0, 75 0, 25
0, 25 0, 75 0, 75 0, 75 0, 25
0, 25 0, 25 0, 25 0, 25 0, 25









(4.6)

Dataset Generation

Before the calibration procedure would begin, we first needed to generate each unique

dataset based on our camera setup and the message material needed. For this reason, a

ROS package containing the dataset maker node was created to aid this task. The node

subscribes only to the image raw topic of Nao robot’s top camera, and aims to save the

incoming streaming images in a prefix name order, while also creating a times.txt file,

with image related information, that were extracted using the NAOqi-Python API2.

In total, after this package is used, and by considering the outcome camera parameters

we computed in Section 4.2.1, the standard dataset we create for the following calibrations

consists of:

• A camera.txt file, containing the camera pinhole model’s focal length (fx, fy) and

principal point (ox, oy), as well as the input image and output image width and

1http://doc.aldebaran.com/2-1/family/robots/video_robot.html#autoexposurealgoparam
2http://doc.aldebaran.com/2-4/dev/python/intro_python.html

Nektarios Sfyris 82 June 2019

http://doc.aldebaran.com/2-1/family/robots/video_robot.html#autoexposurealgoparam
http://doc.aldebaran.com/2-4/dev/python/intro_python.html

4.2 Robot Camera Calibration

height, which for us are the same, namely 640×480 pixel resolution. It is important

to note that the values used for the focal length and pincipal point are:

f =
(

fx
width

fy
height

)

, o =
(

ox
width

oy
height

)
(4.7)

as in the software side, these values are considered in relation to the image width

and height. Also, a value to specify the rectification mode for the image exists.

This parameter can crop the image to the biggest possible rectangular, keep the

full field of view but paint undefined image regions as black (this mode is usually

used for debugging), rectify the image based on the camera parameters that are

given, or do nothing.

• A compressed Images file, containing the dataset’s images that the calibration al-

gorithms will be applied to. The max number of images, their color code (RGB or

grayscale), and their file format(png or jpg), are all defined in the ROS launch file

of the package.

• A times.txt file, that has stored specific information about every image in the

dataset. In more detail, it contains information about the id, Unix timestamp, and

exposure time of every image frame.

Camera Response Function Estimation

Using the package we just discussed in 4.2.2, we create a standard dataset from a se-

quence of 1000 images by recording a static and rich in shades scene, while smoothly

changing the camera exposure from its min, to its max value as defined in Table 4.2. The

overall procedure is seen in Figure 4.5. Influenced by Engel and Cremers in [6], when

irradiance is unknown, the camera response function G and lens attenuation V , can only

be examined as scalar factors. The formula that can jointly model these parameters,

while still considering the exposure time t, and the image irradiance B is,

I(x) = G (tV (x)B(x)) (4.8)

Here, I is an image, and I(x) denotes a pixel’s, in the image coordinates, intensity.

In order to isolate the lens attenuation V from the above equation to focus on estimating

Nektarios Sfyris 83 June 2019

4. OUR APPROACH

Figure 4.5: A small portion of the dataset’s images used for calibration (in grayscale),

showing a static scene with increasing exposures from left to right and from top to

bottom

the camera response function G, we express it as a factor of the image irradiance, B′(x) ≡

V (x)B(x), and thus,

I(x) = G (tB′(x)) (4.9)

By taking into account all the images i in the dataset that have different and in-

creasing exposure time value, we can describe the total cost function E with a Maximum

Likelihood formulation as,

E =
∑

i

∑

x∈Ω

(U(Ii(x))− tiB
′(x))

2
(4.10)

To estimate E, we have assumed a Gaussian white noise U(Ii(x)), where U represents

the inverse response function G−1. The inverse U between two images, is basically based

on their gray values and their exposure ratio, and logarithms are used to generate a linear

algorithm that can determine it. In Figure 4.6 we can see examples of the estimated

logarithmic image irradiance log(B′). Also, if Ωk describes the family of pixels in the

Nektarios Sfyris 84 June 2019

4.2 Robot Camera Calibration

Figure 4.6: Estimation of the log image irradiance between an image with small

exposure value (left) and big exposure value (right)

whole dataset that have their intensity I(x) equal to k, then the minimization of U and

B′(x) becomes as,

U(k)∗ = argmin
U(k)

E(U,B′) =

∑

Ωk
tiB

′(x)

| Ωk |
(4.11)

B′(x)∗ = arg min
B′(x)

E(U,B′) =

∑

i tiU(Ii(x))∑

i t
2
i

(4.12)

The procedure of estimating the inverse camera response function U , is also called

radiometric calibration. It is notable that overexposed values, such as U(255), are re-

moved from the estimation, and are manually replaced as U(255) = 255 and U(0) = 0.

From the resulting inverse camera function U , we can return to computing the original

camera function G. In Figure 4.7 we can see in short how U ended to its last function

representation through the dataset. It is a 256 × 256 matrix, with its x-axis being the

intensity value of the pixel I(x), and y-axis the irradiance U(I(x)).

The outcome of this calibration, with the lowest mean re-projection error value of

around 11%, is the estimated inverse camera response function U , and is stored in a

pcalib.txt file containing a single row of 256 increasing distribution of values. Each value,

describes a map from the (0, . . . , 255) spectrum to the respective irradiance value, which

is proportionate to the discretized inverse response function.

Nektarios Sfyris 85 June 2019

4. OUR APPROACH

Figure 4.7: Evolution of the inverse camera response function estimation during the

dataset with enabled gamma correction from left to right. In the x-axis is the pixel

intensity value, and in the y-axis the irradiance

Vignetting Removal

To make the non-parametric vignette calibration on our camera setup, just like with

the camera response function calibration, we first need to create a dataset. For that

purpose, we create a standard dataset based on the ROS package discussed in 4.2.2,

with 600 images by recording a smooth in brightness Lambertian scene, meaning a scene

of diffusely reflecting background surface, with a planar pattern from different camera

perspectives. The exposure is also set to a static value of 333, meaning 33.3 ms that is

mentioned for all images in the times.txt file. In contrast with the camera.txt file of the

camera function calibration, the rectification mode we use now is crop instead of none.

Figure 4.8: Vignetting Removal pro-

cess

The planar pattern used for us, was an AR

Marker, as seen in Figure 4.9 from the work of

Jurado, Salinas, and more in [38]. In this paper

they presented a fiducial marker system, which can

provide the ability for various marker dictionaries

generation in size and number of bits, individual

marker detection with error correction, and occlu-

sion detection with a method for overcoming the

problem by using a color map to compute the oc-

clusion mask.

Nektarios Sfyris 86 June 2019

4.2 Robot Camera Calibration

In brief, to detect a marker in an image, the

image is first converted to grayscale and an image segmentation is then applied in search

for useful contours. The image contours are then extracted and filtered to external the

marker’s outer shape. The process that follows is the marker code detection, as every

marker represents a different id represented an integer value that is encoded into a grid of

black and white pixels. The inner region is thus analyzed by first computing the marker’s

homography to extract the contour information, which will be decoded in binary 0, 1.

Figure 4.9: The AR Marker used with

pose

Afterwards, the marker’s id needs to be

identified, as a lot of candidates have been

generated that can describe it. In case that

there was no match inside the dictionary, a

correction is needed to aid the task by cal-

culating the distance of each candidate to all

other markers in the dictionary. The Ham-

ming algorithm is used to calculate the dis-

tance between two markers mi,mj, as,

D(mi,mj) = min
k∈0,1,2,3

{H (mi, Rk(mj))}

(4.13)

where H defines the sum of hamming distances between each pair of markers, and Rk

is a function that can rotate clockwise the marker for 90◦. We can further represent the

distance of a marker to its closest one in a dictionary as,

D(mi,∆) = min
mj∈∆

{D(mi,mj)} (4.14)

Lastly, once the marker has been identified, a corner refinement is applied and then

a pose estimation is achieved by using the Levenberg-Marquardt nonlinear optimization

algorithm [13] to minimize the re-projection error. The main benefit of these markers is

that their detection is robust, simple and fast.

In our work, we are able to use these highly reliable markers for locating the marker,

decoding it, and estimating its 3D pose, namely position and orientation in space, through

the ArUco Library [39]. Each marker in the library is represented by a 2D grid of black

Nektarios Sfyris 87 June 2019

4. OUR APPROACH

Figure 4.10: A small portion of the dataset’s images used for vignette calibration,

overlaid with a 3D plane P in red

and white pixels, and thus holds binary information. The marker we used in Figure 4.9

consists of a 5 × 5 grid and has an id of 213. In the grid, the second with the fourth

column represent the data bits, while the first, third and fifth column the parity bits.

Because there are 5 values included in each column , the total number of markers that

could be encoded based on the data bits are 210 = 1024 markers.

In addition to the standard dataset created for this calibration, we have to provide the

generated pcalib.txt file containing the inverse camera response function, of Section 4.2.2.

We can see the procedure of recording the scene containing the AR Marker in Figure 4.10.

The camera pose, with respect to the marker pose, is estimated by using a planar surface

P that is seen in red in the referenced figures. By describing the projection of a point

from the planar surface P to a pixel in the image as π, and by again assuming Gaussian

Nektarios Sfyris 88 June 2019

4.2 Robot Camera Calibration

(a) Original Vignette map (b) Smoothed Vignette map

Figure 4.11: Estimated attenuation factors V as monochrome 16-bit image

white noise U(Ii(πi(x))), we are led to the Maximum Likelihood energy formulation,

E =
∑

i,x∈P

(U(Ii(πi(x)))− tiV (πi(x))C(x))
2 (4.15)

Here, C denotes the planar surface irradiance. The minimization of the energy func-

tion E leads to the minimization of irradiance C and attenuation factor V as,

C(x)∗ = argmin
C(x)

E(C, V) =

∑

i tiV (πi(x))U(Ii(πi(x)))
∑

i (tiV (πi(x)))
2 (4.16)

V (x)∗ = argmin
V (x)

E(C, V) =

∑

i tiC(x)U(Ii(πi(x)))
∑

i (tiC(x))
2 (4.17)

The resulting vignette map is normalized, so that its pixels’ max value is 1 and its min

value is 0. The outcome of this calibration process is a monochrome 16-bit png image

describing the calibrated vignette function as pixelwise attenuation factors and is seen in

Figure 4.11. A smoothed version of the vignette function, which is able to correct intense

pixel values fluctuations and black borders, is also provided. Also, in Figure 4.12 we can

see the estimated irradiance image C, depending on the plane P , from our dataset.

Nektarios Sfyris 89 June 2019

4. OUR APPROACH

Figure 4.12: The estimated irradiance image C given the 3D plane P

4.3 Inverse Depth Estimation

The monocular camera can provide no to less depth information of a point in the world

scene from a single view, and can only estimate it at a scale through subsequent mea-

surements. Altogether, the more viewpoints are used to observe an object, the more

information we can collect about its depth and location in space. We call the angle

created by two viewpoints on a point, that point’s parallax angle. As obvious, the far-

ther away a point is from the camera, the smaller the value of its parallax angle even

if we create a lot of translation with our robot’s camera, which leads to the problem of

initializing that point’s depth.

The parallax contributes directly to the point’s depth estimation, and enough parallax

needs to be created to compute it. Therefore, an assisting method is needed for a more

efficient depth approximation. The work of Civera, Davison, and Montiel in [40] is widely

used in our system, providing with an inverse depth parametrization of points. This work

is an extension of their previously published papers in [41], [42], and can now maintain

a large number of points represented in inverse depth while the needed computations

happen in real-time. As discussed in Section 4.2, a camera calibration is assumed, as it

will highly benefit the robustness of the whole procedure.

Nektarios Sfyris 90 June 2019

4.3 Inverse Depth Estimation

In contrast to other approaches, initialization is supported for scene points, both

close and far from the camera. The inverse depth value is initially assigned to each point

directly at the time it was first observed, and through tracking, it is corrected to reach

an approximately “optimal” value, within the standard extended Kalman filter (EKF)

framework.

The total state vector, containing the camera information xu and every point yi ob-

served at each frame, is,

x =
(
x⊤u , y

⊤
1 , y

⊤
2 , . . . , y

⊤
n

)⊤
(4.18)

We can briefly describe the camera state at each frame by its location rWC , its orien-

tation with a quaternion qWC , its velocity vM and angular velocity ωM in a vector,

xu =







rWC

qWC

vM

ωM







(4.19)

where C denotes the camera’s coordinate frame, andW the world’s coordinate frame.

Each point coded in inverse depth is described by 6 in total parameters, and is given by,

yi =
(
xi yi zi θi φi ρi

)⊤
(4.20)

The vector
(
xi yi zi

)⊤
contains the camera’s optical center position at the location

where the point was first observed, θi and φi are the azimuth and elevation angles based

on the world coordinate frame that define the vector m, and ρi the point’s inverse depth

which is inversely proportional to the semi-infinite ray di, and equals to 1
di
.

The main drawback of representing a point with its inverse depth, is the accumula-

tion of computations, as each point is represented with 6 parameters, making the state

vector grow a lot larger. As shown in Figure 4.13, we can jump from the inverse depth

representation to the standard Euclidean one xi =
(
Xi Yi Zi

)⊤
, as,





Xi

Yi
Zi



 =





xi
yi
zi



+
1

ρi
m(θi, φi) (4.21)

Nektarios Sfyris 91 June 2019

4. OUR APPROACH

Figure 4.13: Point inverse depth parametrization

where,

m = (cos(φi) sin(θi)− sin(φi), cos(φi) cos(θi))
⊤ (4.22)

The relation in Equation (4.21) transforms a 6D point into a 3D one. When the

geometric calibration parameters, namely the focal length, principal point, and pixel size

for image width and height are applied to the incoming camera measurement, a ray can

be accurately traced as a vector hC from the camera’s principal point to the Euclidean

represented or inverse depth parametrized point,

hCXY Z =





hx
hy
hz



 = RCW









Xi

Yi
Zi



− rWC



 (4.23)

Nektarios Sfyris 92 June 2019

4.3 Inverse Depth Estimation

Figure 4.14: New point observation

hCρ = RCW



ρi









xi
yi
zi



− rWC



+m(θi, φi)



 (4.24)

As seen from these two equations, the outcome vector hC is analogous to the camera

location, the point’s location, and the camera’s rotation matrix R. The parallax is cre-

ated by the
(

ρi

((
xi yi zi

)⊤
− rWC

))

. For distant from the camera points, where the

parallax and their inverse depth ρi is close to zero, the ray can be estimated by a shrink-

age of Equation (4.24), as hCρ ≈ RCW (m(θi, φi)). These points can’t offer any beneficial

information about the camera’s translation, but keeping them can still be useful, as they

can be used to estimate the camera’s rotation.

When a point is observed, all parameters of the vector (4.20) can be described except

its inverse depth ρi. The depth prior, modelled by a Gaussian distribution, covers a big

region because of the uncertainty as shown in Figure 4.14 with red. The covariance σρ and

ρ0 are also initialized and create the inverse parametrization interval, able to represent

depths to infinity but not at zero, of the point as shown in Figure 4.15.

Nektarios Sfyris 93 June 2019

4. OUR APPROACH

Figure 4.15: Point’s confidence region

When the depth estimation of a point

is satisfactory, the conversion from inverse

depth parametrization to the XY Z sys-

tem can happen with a linearity index,

that detects the appropriate time for the

conversion to happen, so that both effi-

ciency, as the computational issue of main-

taining a 6D point will no longer exist, and

robustness are achieved. The directinal ray from the camera to the point, as transformed

by the world coordinate frame, is given by,

hW = RCW
(
qWC

)





u
v
1



 (4.25)

where the matrix
(
u v 1

)⊤
represents the observed point’s location in pixel coordi-

nates after the calibration correction. The azimuth θi, and the elevation φi angles that

affect the ray’s direction can be computed as,

(
θi
φi

)

=

(
arctan(hWx , h

W
z)

arctan
(

−hWy ,
√

hW 2

x + hW 2

z

)

)

(4.26)

Summarizing, this work enables our monocular SLAM system to represent points at

all depths, with low or high parallax, with an inverse depth parametrization that can

dynamically change to the standard Euclidean when needed, while the computations can

happen in real-time. A total behavioral example is given, as provided by the paper, in

Figure 4.16.

4.4 Direct Monocular Visual Odometry

Building on what we discussed in Section 2.4.4 about Visual Odometry, the Direct ap-

proaches aim to estimate the camera motion, considered as a rigid body motion, by

sampling pixel intensities over a sequence of images. In our work, we used the Direct

Sparse Odometry (DSO) system of Engel, Cremers, and Koltun in [2]. As its name im-

plies, this system tries to approximate a monocular camera’s motion through direct visual

Nektarios Sfyris 94 June 2019

4.4 Direct Monocular Visual Odometry

Figure 4.16: Inverse depth parametrization example on close and far from the camera

points

odometry, and sparsly represent the environment with a point cloud map. Everything

that follows up, is by considering our camera’s model to be the simple pinhole model.

Because direct visual odometry is extremely sensitive to image deformations and

continuous intensities variation, besides the geometric calibration of the camera presented

in Section 4.2.1, that aims to repair the projection from a 3D point in the scene to a 2D

point in the image, a photometric calibration is also necessary as presented in Section

4.2.2, to correct the mapping from image irradiance to pixel intensity.

The photometric calibration brakes into two parts as modelled in Equation (4.8),

that of estimating the camera response function, which is a nonlinear function mapping

from IR → [0, 255], and that of extracting the lens attenuation factors that map from

Ω → [0, 1]. The combined correction of this calibration is applied at every image frame

of the real-time video taken by Nao as,

I(x)∗ =
G−1(I(x))

V (x)
(4.27)

Nektarios Sfyris 95 June 2019

4. OUR APPROACH

where I(x)∗ denotes the corrected image. The camera response function we used is

seen at the right of Figure 4.7, and the lens attenuation but in its smoothed version

in Figure 4.11b. To evaluate the correction of our photometric calibration over a point

p ∈ Ω that was first projected into the image plane and then had its 2D position adjusted,

we use,

Epj =
∑

p∈NP

wP

∥
∥
∥Ij[p

′]− bj −
tje

aj

tieai
(Ii[p]− bi)

∥
∥
∥
γ

(4.28)

Figure 4.17: Pattern of pixels used

over every point pi

Here, the photometric error Epj of the picked

point p in the image, is computed as the gaussian-

weighted sum of squared differences (SSD) of a

small neighboring area of pixels consisting the

point p, referred as NP . Figure 4.17 shows the

pattern of pixels that was used. This structure was

especially selected, because it allows for optimized

processing with each one of the 8 Streaming SIMD

Extension (SSE) registers, from xmm0 to xmm7,

taking care of each one of the 8 pixels of interest of

each point pattern, and thus greatly increase CPU performance. Also, there is no need to

compute every pixel in the point’s neighborhood and slow computations, as the pattern

selected provides satisfactory information of the total point’s intensity.

Continuing, ti and tj denote the exposure times, in the images Ii and Ij that the point

was observed in, while wP is a gradient weight that aims to give less influencing power

on values coming from pixels with high gradient. The point p′, as a point coming from

the calibrated image, contains information about the camera’s rigid body motion as seen

in Section 2.4.1, and the point’s estimated inverse depth value dp as discussed in Section

4.3. Its relation to these parameters can be represented by the following function,

p′ = Πc

(
RΠ−1

c (p, dp) + t
)

(4.29)

where Πc is the projection of the point from the 3D scene to the 2D image with c be-

ing the geometric calibration parameters, namely the focal length and the principal point

that we have already computed, and R with t are the camera’s rotation and translation.

In addition, the Huber norm ‖ ∗ ‖γ is applied in Equation (4.28). It was chosen because

Nektarios Sfyris 96 June 2019

4.4 Direct Monocular Visual Odometry

even with a small number of erroneous observations the analysis is not ruined, as only

a significant number of them can make a change on the outcome. The observations far

from the x-axis are given less weight, while those close to the center are more capable of

influencing the analysis. Huber loss is in total less sensitive to outliers than the mean

squared error loss (MSE).

We can further compute the total photometric error Ephotometric of the whole video

recorded by our robot’s camera, by considering the photometric error Epj in every frame

F , for every point extracted in that frame p, and for every corresponding frame that the

point p was seen in, as,

Ephotometric =
∑

i∈F

∑

p∈Pi

∑

j∈obs(p)

Epj (4.30)

Figure 4.18 provides a graphical representation of the discussed process of observing

the environment through a sequence of images. In this case as an example, we have

four keyframes, meaning four different camera poses in the 3D world, that observe five

different points. The blue lines from each camera’s pose, define the host frame that each

point belongs to, while the red line defines the observance of a point from a different pose

than that of the host’s. With green, we can see the camera’s trajectory. Each point,

after being examined from the different perspectives it was seen, will be allocated with

an inverse depth value dp depending on the last keyframe it was tracked from.

The new reprojection error then, is computed by also considering every frame’s, that

has observed the point and can provide information about its depth, pose. Moreover, as

the exposure time is known at each frame and a photometric calibration is available for

our model, a new prior can be added to minimize the affine brightness transfer function,

Eprior =
∑

i∈F

(λaa
2
i + λbb

2
i) (4.31)

Here, ai and bi are the parameters of the brightness transfer function, that every

keyframe in Figure 4.18 has. Overall, in this direct approach, each point is characterized

only by its inverse depth value and hence there is only a single unknown to be estimated.

Nektarios Sfyris 97 June 2019

4. OUR APPROACH

Figure 4.18: An example Factor Graph for our direct odometry model

System Variables Optimization

The total photometric error Ephotometric of Equation (4.30) is minimized by using the

Gauss-Newton optimization in a sliding window with,

H = J⊤WJ, b = −J⊤Wr (4.32)

Here, J is the Jacobian matrix of the stacked residual vector r, used to optimize the

system’s variables. Also, W is a diagonal matrix that contains the weights used for the

residuals, and H is the Hessian, organizing all second partial derivatives into its matrix,

and containing the correlations between depth values.

Now, Jk denotes the Jacobian of a single pixel pk contained in the 8 in total residual

pixels of point p and is given by,

Jk =
∂pk ((δ + x)⊞ ζ0)

∂δ
(4.33)

The state vector ζ ∈ SE(3) represents all the optimized variables of the system, which

consist of the camera poses, camera intinsic parameters, points’ inverse depth, and affine

Nektarios Sfyris 98 June 2019

4.4 Direct Monocular Visual Odometry

brightness parameters, and is given by ζ = x⊞ ζ0, where x belongs to the Lie algebra of

rigid body poses as discussed in Section 2.4.1. The symbol ⊞ describes a simple addition

for all system variables, except camera poses where it maps from se(3)×SE(3) 7→ SE(3).

The relation between Lie algebra and Lie group is seen in Figure 2.9. After analysis, the

Jacobian Jk can be broken down to,

Jk = [JI Jgeo Jphoto] (4.34)

Figure 4.19: Pyramid levels created in

our case

where JI concerns derivatives of the image

gradient, Jgeo of the geometric parameters, and

Jphoto of the photometric ones. The last two Ja-

cobians Jgeo and Jphoto are first estimated using

the First Estimate Jacobian method. Then Jgeo

is assumed to be constant for all of the point’s

residual pixels and thus is evaluated only for the

center pixel providing real-time computation en-

powerment. on the whole, for every keyframe

created, 6 Gauss-Newton iterations are done.

When a lot of old variables still exist and

new ones need to be estimated, a marginaliza-

tion is taking place using the Schur complement

in order to keep the structure of the Hessian

sparse.

Keyframe Selection

We can break the DSO system’s real-time visual odometry processing into two main

parts, the keyframes management and the points management of every keyframe. The

keyframes management can be broken down to the following steps:

1. Frame Initialization. Between all the incoming frames or images that Nao robot’s

camera generates and sends to the DSO system, which are around 25 frames per

second decreased from the starting value of 30 mostly due to network, only a small

number of them are considered keyframes. When a new keyframe is tracked, then

the points will be analyzed in the image and will produce a semi-dense depth

Nektarios Sfyris 99 June 2019

4. OUR APPROACH

Figure 4.20: Example depth maps coupled with their initial images. From red to blue

we denote the close to far points

map. Then, every next incoming frame from Nao, will be tracked in reference with

the previously chosen keyframe using a consequtive frame image alignment, and a

multi-scale pyramid applied on the new frame with the number of levels based on

the image resolution. In Figure 4.20 we provide some example depth maps taken

in real-time from our Nao robot. Red color refers to close points, while blue to far

ones.

For the down-scaled in the pyramid images, a pixel can be given a depth value only

if one of the pixels in the previous pyramid level that correspond to this pixel had

a depth value. Also, the root mean squared error (RMSE) is used to measure the

image alignment success until the last computed frame, and if its value is double

the RMSE until the previous frame then a retracking needs to be done to save the

whole process, by using a matrix that produces 27 different rotations on the top

pyramid level generated, and therefore with the smallest resolution. In our case the

pyramid that is created has three levels as shown in Figure 4.19, with the coarsest

resolution being 80× 60 and the initial, after downsizing, 320× 240.

2. Keyframe Extraction. From the approximately 25 frames received, around 10

of them are decided to be keyframes, while the others are discarded.

A new keyframe is in total created, first because of a significant camera pose

change, which is translated to an optical flow created from the selected points

between the last pack of keyframe-frame, and is measured by a mean square as

Nektarios Sfyris 100 June 2019

4.4 Direct Monocular Visual Odometry

(
1
n

∑n

i=0 ‖p− p′‖2
) 1

2 . A keyframe is also added because of great exposure time

changes, decided by a brightness factor computed from |log(eaj−aitjt
−1
i)|, or image

occlusions and disocclusions that can turn a point in the image to disapear when it

was visible and vice versa. The last is computed as in the case of the camera’s pose

change, but with the difference that the camera rotation is not taken into account

and is considered as the identity I, and thus
(
1
n

∑n

i=0 ‖p− p′
t‖

2
) 1

2 .

In addition to the previous reasons of creating a keyframe, an extra one that con-

siders all of them at the same time exists, that assigns a weight on each one, and if

their sum is greater than a prefix value, then a keyframe is produced.

3. Keyframe Marginalization. It is notable that we keep on real time 7 active

keyframes during our direct odometry process. From the set of all active keyframes

each second, a number of them will be marginalized in order to keep a trackable

camera trajectory.

In more detail, if less than 5% of the points in a keyframe KFi ∈ in the set of active

keyframes, are visible in the last keyframe, then the keyframe KFi is marginalized.

Also, if for some reason the number of active keyframes is more than 7, then the

surplus frame which maximizes a heuristic function’s distance score, from the latest

keyframe, is marginalized too. The marginalization process first is applied on the

keyframe’s points and then to itself, and can lead to almost half of the keyframe’s

points to be discarded. Even if it seems as not a very efficient method, it helps on

the energy function optimization.

Point Selection

In contrast with other direct approaches, this work mainly focuses on sub-sampling the

images to allow for real-time executions in a jointly non-linear optimized framework.

After analysing the keyframes management, we will further show the steps done for the

points management at each keyframe:

1. Candidate Point Extraction. At each keyframe, points are selected based on

their high image gradient in relation to their surrounding pixels, and their good

distribution on the image plane. In general, we try to keep a fixed number of 2000

active points between all existing active keyframes. A point’s gradient is measured

Nektarios Sfyris 101 June 2019

4. OUR APPROACH

Figure 4.21: Example candidate point selections (shown in green) taken from real-time

Nao images

by first splitting the image into 32× 32 pixel areas, and then computing a gradient

threshold gth for each block that is mostly based on the mean block’s gradient value.

To then beneficially distribute the points in the image, we split the image into d×d

blocks, and pick from each block, the pixel that has gradient value larger than its

block’s threshold gth, and the highest of that from every other pixel in the chosen

block.

Additionally, in case of low textured patterns such as white walls, where not many

gradient variations exist and thus it would be difficult with this method to extract

points from that surface, the gradient threshold gth is dynamically reduced and the

discussed procedure is repreated for new block sizes of 2d and 4d. The value of d is

also dynamically adjusted so that the overall value of 2000 active points between all

active keyframes to be valid. However, specifically for the initiallization, there are

chosen 2000 points in each keyframe but only as candidates. Figure 4.21 provides

some examples on candidate point selections taken in real-time by our Nao robot.

2. Point Tracking. The selected candidate points are not instantly used in the

framework process. From their set that belongs to a keyframe, a search is being

Nektarios Sfyris 102 June 2019

4.4 Direct Monocular Visual Odometry

Figure 4.22: Example maps created with DSO method. The top row and left bottom

maps come from Nao’s real-time video, while the one on the bottom right from a

sequence of TUM mono VO Dataset

done in the upcoming frame on the epipolar line for point matching, aiming to

minimize the photometric error as seen in Equation (4.28). Every point that is

matched is assigned with an initial coarse depth value, which can later change, and

an associated variance that describes the satisfaction of the choice’s outcome and

the need to continue the search to find the current point’s match.

3. Point Activation. As the direct odometry process evolves, and old keyframes are

marginalized, so do the points in them. The story continues with new candidate

points to activate, and then being also marginalized. The candidate points that

are activated have maximized distance between the already active points, because

a nice distribution in the image needs to be maintained. This will continue until

the overall system execution is over. It is important to note, that the number of the

generated candidate points in each keyframe, and the number of all active points

between all active keyframes is the same and equal to 2000, because of the need

to have extra points to activate, as we want to keep a balance in the number and

Nektarios Sfyris 103 June 2019

4. OUR APPROACH

distribution of points through the active keyframes.

In summary, DSO is not a SLAM system, but a visual odometry approach to estimate

the camera’s motion in space, while at the same time sparsly reconstructing the environ-

ment with a joint optimization of all model parameters, including the camera’s intrinsics,

extrinsics, and points’ inverse depth. Pixel intensities decide the creation of points that

synthesize the point cloud map and that’s why a precise measurement model is needed

that is provided through photometric calibrating the camera. Figure 4.22 provides two

maps created with DSO. The first three come from the Kouretes Robotics Laboratory1

and spaces inside the Technical University of Crete, while the right from a sequence of

the TUM mono VO Dataset [6].

4.5 Indirect Monocular Visual Odometry

Along with the Direct Sparse Odometry (DSO) system, we have also relied on the indirect

visual odometry and open-source system of Mur-Artal and Tardos [3], called ORB-SLAM.

This is an extension of their previously produced work in [43], containing the addition of

an initialization method, and the Essential Graph, and to today, it is proven to be the

most capable feature-based SLAM system.

To be more precise, the latter version ORB-SLAM2 [44] was used in our system,

which is an enhancement of the first version ORB-SLAM that was created exclusively for

monocular cameras. The ORB-SLAM2 system can support more camera models, such as

RGB-D and stereo cameras, but most importantly for us, has improvements over all the

building blocks of the system, offering greater computational efficiency and more robust

real-time performance.

In a few words, ORB-SLAM system depends on features to do the localization, the

mapping, and the loop closing, and these three tasks are executed in parallel on an

individual thread. An effective initialization process is used to create the initial map,

and a reduction of the whole problem is later done with a covisibility graph, that enables

tracking and mapping in a smaller interval than using the whole map. Also, loop closing

1http://www.intelligence.tuc.gr/kouretes/web/

Nektarios Sfyris 104 June 2019

http://www.intelligence.tuc.gr/kouretes/web/

4.5 Indirect Monocular Visual Odometry

is being done with the help of the Essential Graph while real-time relocalization of the

camera is supported.

ORB Features

Building on what we discussed in Section 2.4.4 about feature detection and represen-

tation, the feature decided to be used in this system is called ORB [25], from Oriented

FAST and Rotated BRIEF. This feature was developed in the OpenCV labs and can sup-

port real-time point matching while providing good invariance to brightness and camera

motion. To enable more efficient results than that of each method individually, for the

FAST [45] features, namely Features from Accelerated and Segments Test, an orientation

component was added to them. For the BRIEF [46] features, meaning Binary robust

independent elementary feature, a method was suggested from decorrelating them under

rotational invariance.

Figure 4.23: FAST keypoint detection

process example for a circular radius of 3

In more detail, the FAST points are de-

cided by comparing the brightness value of a

pixel p with that of pixels located in a circu-

lar area around it. Those pixels are first di-

vided into three cases based on their intensity

value in comparison to that of pixel p, and if

half of those pixels have darker or brighter

value than that of p, then it is selected as a

keypoint. A circular radius of 9 was selected

because it was seen that it provided better

results. In Figure 4.23 we can see an example of this process but with 16 pixels in the

circle around point p, as shown in [45].

Because FAST doesn’t support multi-scale features, an image pyramid is applied

representing the image at different resolutions. For every downsampled version of the

image, a detection of keypoints is activated, producing scale invariant points. When a

keypoint is located, an initial rotation is assigned to it based on the intensity change

around the keypoint described by the intensity centroid, which assumes that when the

Nektarios Sfyris 105 June 2019

4. OUR APPROACH

keypoint is a corner, its intensity is offset from the center and thus can reveal its direction.

The moments of a patch are defined as,

mpq =
∑

x,y

xpyqI(x, y) (4.35)

The moments then, can provide us with the centroid, or the center of mass of the

patch, as,

C =

(
m10

m00

,
m01

m00

)

(4.36)

Consequently, a vector can be created from the center of the corner to the centroid,

giving the orientation of the patch, also shown in Figure 4.24, in rads as,

θ = atan2 (m01,m10) (4.37)

The centroid gives a good orientation even with a lot of noise in the image. When

θ is computed, a descriptor can be created for the point. Because of the orientation

component addition, the detector is now reffered as oFAST.

Figure 4.24: Defining the atan2 angle

Once the FAST points are extracted,

BRIEF will convert them to binary strings

or vectors of 256 bits length, all together con-

tained in a binary feature descriptor, to then

jointly represent a scene object. A BRIEF

descriptor, over a smoothed with a Gaussian

distribution around the center patch p, is con-

structed of binary tests,

τ(p; x, y) =

{

0 if p(x) ≥ p(y)

1 if p(x) ≤ p(y)
(4.38)

where p(x) is the pixel x intensity in the patch p. Note that before the tests are

performed, the whole image is also smoothed by applying an integral image, when each

Nektarios Sfyris 106 June 2019

4.5 Indirect Monocular Visual Odometry

patch is a 31 × 31 pixel window that consists of 5 × 5 pixel test points. We can define

the feature then as a vector of n binary tests as,

f(n) =
∑

1<i<n

2i−1τ(p; xi, yi) (4.39)

In order to make BRIEF invariant to rotation, a method to steer it by considering

the keypoints orientation is used. Thus, for each binary feature descriptor at (xi, yi) of

n tests, we need a 2× n matrix,

S =

(
x1, . . . , xn
y1, . . . , yn

)

Then, with patch direction θ computed in Equation (4.37), a steered rotation matrix

from S can be defined as,

Sθ = RθS

The BRIEF operator is then,

gn(p, θ) = fn(p)|(xi, yi) ∈ Sθ (4.40)

Moreover, the angle is discretized to 12 degrees increments, and an offline computation

of BRIEF patterns is stored. Depending on the keypoint orientation θ, the best set of

points Sθ will be used.

Overall, the algorithm of the rotation aware BRIEF, or rBRIEF, which produces

better results than that of steered BRIEF in the variance and correlation, is as follows:

• Each test is executed against all selected patces.

• Create a vector T , holding the tests organized based on their ditance from the 0.5

mean value.

• With a greedy search,

1. The first test in vector T is used in the orientation vector R and then removed

from T .

Nektarios Sfyris 107 June 2019

4. OUR APPROACH

Figure 4.25: ORB feature extraction examples. From left to right, first the initial

image, the keypoints with no size, the keypoints with size and color, ORB feature

matching with the same image but rotated and blurred

2. Compare the upcoming test in T will all of those in R, and if its absolute

correlation is greater than a predefined value then remove it from the set, else

put it inside R.

3. We continue executing the previous step until the total number of tests in R

is 256.

Overall, ORB is an oriented descriptor, created by using the oFAST detector and

rBRIEF descriptor, which is mostly invariant to Gaussian image noise, photometric, and

geometric distortions, and is both computationally efficient and fast to match. We can

see some examples of ORB feature extraction in Figure 4.25.

It is notable, that for every point pi, we store its 3D Euclidean coordinates, the ray

ni from the camera optical center to the point, its ORB descriptor Di that minimizes

the Hamming distance in comparison to the other frames the point was viewed, and the

minimum dmin and maximum dmax distance that the point can be measured.

Covisibility Graph

The information between keyframes is maintained with a Covisibility Graph, that keeps

alive only a sub-set of the total keyframes created, in order to achieve real-time system

performance. The graph is operating as an undirected weighted graph, where each active

Nektarios Sfyris 108 June 2019

4.5 Indirect Monocular Visual Odometry

keyframe is represented by a node connected with other nodes though weighted edges.

The weight of an edge denotes the common number of observed points in the scene

between the two linked keyframes, with minimum value of 15 for an edge to be created.

For loop closing, a double windowed optimization is applied on the covisibility graph,

as proposed in [47], that adjusts and distributes the drift error created by the camera

motion to the whole part of the graph that links the loop. This optimization frame-

work is done in two windows, first the inner window containing the relation between the

camera pose and the points’ pose in the scene, modeling the local area, and then an

outer window describing the relation between the different camera poses, that aims to

balance the camera poses. This method can assist large-scale environment explorations

and still produce accurate results that can compare with that of local Bundle Adjustment.

Along with the covisibility graph, ORB-SLAM maintains another graph that is a

subgraph of this, called the Essential Graph. This graph aims to store only the crucial

or necessary information of its ancestor’s graph, meaning that all the nodes stay the

same but only the edges with weight higher than 100 are being kept. In total, the

Essential Graph is built from a spanning tree that is spreading from a starting keyframe,

and contains the loop closure links and the just mentioned strong weighted edges. A

covisibility graph example is shown in Figure 4.26.

Bag of Words

In addition, a bag of words representation, based on the work of Lopez and Tardos in [48]

is used for each feature, to help with efficient camera place recognition, relocalization,

and loop closing, by establishing trusted map point correspondences between keyframes.

A visual vocabulary is created offline by extracting ORB descriptors from a big set of

images that will be used to represent the real-time extracted points. The bag of words

uses this visual vocabulary, that contains discretized from the whole descriptor space

visual words, to convert the keyframe into a vector v allowing for greater points in the

image manipulation. Chiefly, a database is built by the system progressivelly, forming

an inverse index and a direct index. The inverse index contains for each visual word

the keyframes in which it was seen and allows for fast information retrieval about the

Nektarios Sfyris 109 June 2019

4. OUR APPROACH

Figure 4.26: A covisibility graph example. The camera poses are linked with covisibility

links (green lines)

keyframes, and the direct index provides quick bag of words matching between the initial

and the retrieved keyframe.

The descriptors in the visual ORB vocabulary are divided into clusters by using hi-

erarchical k-means clustering, producing the top level nodes of the vocabulary tree, with

the number of leaf nodes equal to the number of visual words in the vocabulary. Also,

each word is assigned a weight that denotes its rareness in the total collection and is

computed by using the term frequency and inverse document frequency, weights that are

used to show how important a word is in a corpus. The process of matching keyframes

though bag of words is shown in Figure 4.27.

In general, bag of words is a way to group descriptors. If two bag of words are

different, then the descriptors don’t match. The comparison between two bag of words

is fast and thus can help with the loop closing procedure, where a lot of bag of words

need to be compared. In fact, when two keyframes have a a lot of common bag of words,

they are considered loop closure candidates and will be next examined if they fullfil the

necessary consitions for a loop closing to take place, as we will se later on.

Nektarios Sfyris 110 June 2019

4.5 Indirect Monocular Visual Odometry

Figure 4.27: Place recognition by comparing bag of words vectors

Map Initialization

The whole system starts with the creation of an initial map, by estimating the camera pose

from the first two image frames, and projecting in the image the initial set of observed

points with their computed depth from triangulation. Two models are computed at

the same time because of the uncertainty of the scene geometry, a homography H, which

assumes a planar scene, and a fundamental matrix F , which considers the scene with more

complex geometry. From these two methods the needed one will be chosen depending on

the scene’s nature. We can analyze the process of map initialization as:

1. Initial point matching. As discussed in Section 4.5, ORB features are used in the

system. The features are extracted from the two initial and consequtive keyframes,

and a correspondence of the ones in the first keyframe are searched in the second.

In case that not many points match were found, this step is done again.

2. Models computation. The homography H, as explained in Equation (2.91), and

the fundamental matrix F in (2.93), are computed in parallel. For the homogra-

phy, the direct linear transformation (DLT) is used with the four point algorithm,

while for the fundamental matrix, the eight point algorithm as discussed in Section

2.5. These methods were operating inside the iterative random sample consensus

(RANSAC) scheme. For each model reffered as M (which can be either H or F)

at every iteration, a score SM is computed, as

SM =
∑

i

(
ρM
(
d2cr
(
xic, x

i
r,M

))
+ ρM

(
d2rc
(
xic, x

i
r,M

)))
(4.41)

Nektarios Sfyris 111 June 2019

4. OUR APPROACH

where,

ρM(d2) =

{

Γ− d2 if d2 < TM

0 otherwise
(4.42)

Here, the d2cr, d
2
rc denote the symmetric transfer errors from one frame to the next,

and TM is a threshold for outliers rejection, which is a different value for each

model.The Γ was selected as the outliers rejection threshold of the homography H

model to make the process more fair. In the end, the best score for each model

decides that model’s representative homography and fundamental matrix.

3. Model selection. Because of the many sub-cases that can explain the scene

planarity, a heuristic function is computed to decide the end model used as,

RH =
SH

SH + SF

(4.43)

In case RH > 0.45 the homography H will be chosen, that supposes low parallax

in points, or in any other case the fundamental matrix F is the suitable model.

4. Camera pose estimation. Now that the model is selected, the camera motion

needs to be defined between the two keyframes. For the homography case, the

eight motion hypotheses is used, by triangulating them and finding the one with

the minimum reprojection error of points, considering that the parallax is enough

to provide with the appropriate information.

In case of the fundamental matrix, the essential matrix is computed with the help

of the intrinsics camera matrix as,

Erc = K⊤FrcK (4.44)

Then, the four motion hypotheses are used and by a similar triangulation as done

for the homography case, the option with the less reprojection error is chosen.

5. Full Bundle Adjustment. Because of the low space of the initial mapping model,

a full Bundle Adjustment can be done without any significant delay on the system

to improve the reconstruction.

Nektarios Sfyris 112 June 2019

4.5 Indirect Monocular Visual Odometry

Camera Tracking

As already mentioned, tracking, mapping, and loop closing are operating in individual

and parallel threads. In the tracking thread, first an eight level pyramid is created from

each image frame with a scale of 1.2, to extract around 1000 FAST corners from our

640×480 image in a uniform distribution. An ORB descriptor is then computed for each

FAST corner generated that will be used later.

Assuming that the tracking until the last frame was successful, a velocity motion

model is used to approximate the current camera pose and try to find point correspon-

dences from the previous frame to refine it. In case the tracking was lost, the frame is

turned into bag of words, and a search is being done in the created database to find an

appropriate keyframe candidate for a global camera relocalization. The camera pose can

again be corrected depending on the number of inliers.

When a camera pose is approximated, the search for more points in the scene can

continue. The point correspondences is maintained inside a local map, which is a subspace

of the global map in order to minimize complexity, that consists of the keyframes K1 that

observe a good number of common map points with the current frame, the keyframes

K2 that are neighbors of the keyframes K1 in the covisibility graph, and the keyframe

Kref which belongs to the K1 set and has the biggest number of common points with the

current frame. For every map point in the local map the procedure we follow is,

• The point’s projection in the current frame is computed.

• We compute the relation in angles between the ray from the current frame to the

point, and the mean ray of the local map. If the angle between them is greater

than a predefined threshold we consider the point an outlier and remove it.

• We compute the distance d from the point to the camera optical center, and if that

distance doesn’t belong in the area of values between the minimum dmin and the

maximum dmax able point measured distance, we remove it.

• The scale of the current frame is then computed as d
dmin

.

Nektarios Sfyris 113 June 2019

4. OUR APPROACH

• The point tracking is done by comparing the point’s computed descriptor with the

ORB descriptor that needs to be matched in the neighbor area of that point at the

computed scale.

Once this process is done for all points in the local map, with the points observed by

the current frame, the camera pose can be estimated with a good confidence.

We must note, that for each keyframe we store the camera rigid body pose from world

to camera coordinates, the camera intrinsics matrix, and all of the ORB features that

were observed in that frame. The general policy for keyframes, is that they are added at

a fast pace so that we will always have spare to provide information. Overall, for a frame

to become a keyframe it must complete all of the following requirements:

• At minimum 50 map points can be tracked in the frame.

• In comparison to the keyframe Kref , it must have tracked fewer than 90% of com-

mon points.

• At least 20 frames have passed from the last global relocalization and the last

keyframe generation.

These requirements can ensure that the tracking procedure will be robust and the

computations will stay to the minimum while preserving efficiency. In the end, a mo-

tion only Bundle Adjustment is done to optimize the camera pose and minimize the

reprojection error as,

R, t = argmin
R,t

∑

i∈X

ρ

(∥
∥
∥xi − π(RX i + t)

∥
∥
∥

2

Σ

)

(4.45)

where R and t are the camera’s orientation and translation, ρ is the Huber cost

function and Σ the keypoint’s covariance matrix. It is mentionable that all optimizations

applied in this work follow a Levenberg-Marquardt algorithm implementation.

Local Mapping

The local mapping thread is responsible for maintaining a locally consistent map of points

and keyframes relation in the covisibility graph. Once a new keyframe is created, it is

Nektarios Sfyris 114 June 2019

4.5 Indirect Monocular Visual Odometry

added into the covisibility graph as a node, and thus updates its relation with the neigh-

boring nodes, and especially, the node with the most common field of view when it comes

to points. The keyframe is then converted into bag of words which will later be needed.

In a keyframe, a map point is created by triangulating ORB features though con-

stant camera motion recognized in neighbor keyframes in the covisibility graph, and thus

collecting more information about the point’s position in the scene which increases our

conficence about its computed depth. A match in another keyframe’s pixel coordinates

is not used if the epipolar constraint is not valid as seen in Equation (2.86).

Also, for each keyframe, not every map point belonging to it will be kept, as only the

ones that can really help with the structure from motion process are needed. To decide

which point in the keyframe is useful and can provide with trustworthy information about

its depth, it must be tracked in at least 25% of the keyframes that it would be logical

to be present, and in at least 3 keyframes in general. This way the outliers are removed

and errors in localization are reduced.

A Bundle Adjustment is applied in the local mapping model, influencing and refining

the measurements of the current keyframe Ki, every neighboring keyframe’s of Ki in

the covisibility graph, and all the points observed from these keyframes. Long-term

computational efficiency is maintained by removing the keyframes that contain, to a

significant extent, similar information on points as their close neighboring keyframes as

discussed at the end of camera tracking Section 4.5.

Loop Closing

The last of the three threads tries to find in the current frame the possibility that the

scene observed is a place that we have already been into, and hence consider closing a

loop, while also optimize the course taken by the robot if needed.

First we need to find the keyframe candidates to close a loop. We search the covisi-

bility graph for neighboring to the current keyframe nodes, and for those with matching

map points greater than 30, we compute the similarity in their bag of words represen-

tation, and keep the lowest score Smin produced, as seen in [49]. The score between the

Nektarios Sfyris 115 June 2019

4. OUR APPROACH

two bag of word vectors vi, vj is computed as,

S(vi, vj) = 1−
1

2

∥
∥
∥
vi
|vi|

−
vj
|vj|

∥
∥
∥ (4.46)

This is not the final score we use, as S(vi, vj) will be next normalized with the score

computed by a previous keyframe that shares mostly the same view as the initial one,

η(vi, vj) =
S(vi, vj)

S(vi, vi−1)
(4.47)

Any bag of words in the database with score lower than that of Smin is not taken into

account, and as obvious, the keyframes that are close to the current one in the covisibility

graph are not considered either. A candidate is selected, only if at least three successive

keyframes in the covisibility graph have a score higher than Smin.

The similarity transformation describes the accumulated error until the time we close

a loop in the 7 Degrees of Freedom (DoF), namely 3 for translation, 3 for rotation, and

1 more for scaling, that a camera can move. The idea is that first the ORB feature

correspondences are computed between the current and every candidate keyframe, and

then the bag of words of these keyframes are compared for loop closing.

In brief, the group of similarity transformations is the Sim(3) ⊂ IR4×4 Lie group and is

a combination of a rigid transformation, as discussed in Section 2.4.1, and scaling s ∈ IR+.

If the similarity transformation is found with a good amount of inliers between the

current keyframe Kc and the loop closing keyframe Kl, then we optimize it by minimizing

the reprojection error ec, el, representing the distance between every point’s projected into

the image plane pixel and the measured one, of each keyframe as,

ec = xc,i − πc(Scl, Xl,j) (4.48)

el = xl,j − πl(S
−1
cl , Xc,i) (4.49)

where x is a 2D projected keypoint, X is a 3D map point, and Scl is the similarity

transformation between the two keyframes. The following cost function is then to be

minimized,

C =
∑

n

(
ρh
(
e⊤c Ω

−1
c,i ec

)
+ ρh

(
e⊤l Ω

−1
l,j el

))
(4.50)

Nektarios Sfyris 116 June 2019

4.5 Indirect Monocular Visual Odometry

Figure 4.28: Example maps created with ORB-SLAM by using Nao’s real-time video

with ROS

Here, Ω denotes the covariance matrices connected with the scale the point was ob-

served in each image.

As we assume that the map is static, we expect the points in the keyframe Kl that

closes the loop to be for the most part the same. The covisibility graph is updated to

recognize this keyframe not as a new one, but as an already existing one Kc, and thus

the node stays the same, but the edges are adapted to obey this event. Next a chain

reaction of refinement in the keyframe and its neighbors is done, based on the similarity

transformation. At last, the loop is corrected with a pose graph optimization on the

Essential graph improving both the point correspondences and the camera pose at each

keyframe.

After a loop closure, a full Bundle Adjustment is applied to optimize all the keyframes

and points of the mapped environment. In Figure 4.28 we present two maps that were

created from the Nao robot’s real-time video by using ORB-SLAM in spaces of the

Technical University of Crete. With black we represent the already mapped features,

while with red the currently processed ones.

Overall, ORB-SLAM is a full simultaneous localization and mapping system that

can do tracking, mapping, and loop closing. Even if as a system, it is proven to be

very efficient and accurate through experiments, especially for indoor environments, and

the ORB features are highly robust to photometric variations and scaling, when the

monocular camera motion has a lot of rotations and there is little texture to the scene,

it can still fail the camera pose estimation. Like with the DSO system, all computations

are also happening in parallel in the CPU.

Nektarios Sfyris 117 June 2019

4. OUR APPROACH

4.6 Coupled Semi-Direct Monocular SLAM

Our total SLAM system for Nao robot consists of both the DSO system, as presented in

Section 4.4, and the ORB-SLAM system, in Section 4.5, which are coupled as proposed

by Hun Lee and Civera in [1]. A graphical representation of the total system is also

provided in Figure 4.29.

Because direct and indirect visual odometry methods have their own limitations and

benefits, we can create a combination of both to produce a better performing one. As

discussed by a recent work in [50], we can evaluate their performance on the basic aspects

of photometric calibration, motion bias, and rolling shutter effect,

• The photometric calibration, which we have already seen in Section 4.2.2, can be

done to a camera to correct a projected 2D in the image point’s intensity value which

may be distorted due to vignetting, exposure or gain. The direct methods seem to

remarkably improve their performance when a photometric calibration is available,

whereas the indirect ones are not always influenced, because it is based mostly on

the type of the features and the way they are extracted. However, knowledge over

the camera response function can still positively affect them.

• The motion bias, refers mostly on the way a visual odometry method behaves when

a dataset is examined not only in a forward way, but also backwards. In contrast

with the direct methods, the indirect have a big decrease in performance when it

comes to this issue. A reason to this for example is image artifacts. Therefore,

higher resolution images are needed.

• The rolling shutter effect, which is caused due to motion in the scene when a video

frame, which by a electronic device is scanned either vertically or horizontally,

hasn’t completed on taking a snapshot. Thus, distortions will be introduced in

the image which a geometric or photometric calibration will not be able to correct.

Both the visual odometry methods are sensitive to this effect, but the one that

suffers the most is the direct one. Indirect methos tend to be more robust in the

presence of rolling shutter.

To compensate for these aspects, DSO and ORB-SLAM are combined in a semi-direct

visual odometry system in which they share their advantages, while having greater perfor-

mance in comparison to when they operated as individual systems. In brief, we maintain

Nektarios Sfyris 118 June 2019

4.6 Coupled Semi-Direct Monocular SLAM

Figure 4.29: Coupled DSO and ORB-SLAM system overview

in real-time two seperate maps, a semi-dense for DSO and a sparse for ORB-SLAM, which

contribute online depending on the information needed. For the most part, DSO is used

for camera tracking in a local active keyframe neighborhood, as it has great precision and

small motion drift, and ORB-SLAM is used for jointly refining a larger scale of keyframe

poses, while also providing relocalization and loop closure capabilities.

Both ORB-SLAM and DSO are the best performing methods in their respective fields

until today, when it comes to published works. The combined optimization framework

of the total system can be broken down into 3 basic layers,

• The Local level, for which we adopt the joint optimization of all model parameters

of DSO, including the camera pose, intrinsic parameters and observed points’ in

the keyframe inverse depth, that is done in a sliding window where all old cam-

era extrinsics and points that share no information with the current keyframe are

marginalized. New keyframe extraction happens as discussed in Section 4.4.

• TheMid level, where after the camera pose and the points in the image are marginal-

ized from DSO, they are sent to ORB-SLAM. Then, ORB features are extracted

from the image frame and a motion only optimization on the camera pose that

Nektarios Sfyris 119 June 2019

4. OUR APPROACH

aims to minimize the reprojection error, as discussed in Section 4.5, takes place. A

number of these keyframes with their respective points are added to the map and a

local Bundle Adjustment is then applied to optimize the covisible keyframes with

their points.

• The Global level, which is the last optimization layer, and does first a pose graph,

or Essential graph, optimization over the similarity transformations correcting the

scale drift created specifically by the monocular SLAM, and then a full Bundle

Adjustment as discussed in Section 4.5.

Real-Time ROS Activation

The process begins with the real-time images from Nao’s top camera, which have VGA

resolution of 640 × 480 at 30 frames per second, being transferred to our computer

station through the ROS framework, as discussed in Section 4.1. The ROS Master is

executed on our laptop, to which is provided our local computer’s IP and Nao’s IP

with a predefined open port = 9559. Thus all computations are done on the computer

system’s central processing unit CPU, and are being maintained there by administering

all the needed running tasks inside a multi-threading architecture for system efficiency.

The graphics processing unit GPU, even though more powerful and productive with

its highly parallel structure compared to the CPU, did not contribute to the system’s

computations acceleration.

The naoqi-driver ROS package [36] links the robot with the computer, in which the

ROS middleware operates, continuously transporting, including others, sensor msgs/Image

messages, defined in Table 2.1, on the /image raw topic which the software receives.

Before starting operating the total system, we provide it with the appropriate files

based on the nao camera, coming from the geometric and photometric calibrations done

in Section 4.2. In more detail we use,

• A camera.txt file, that contains our camera’s focal lengths (fx, fy) and the optical

center (ox, oy) produced by a geometric calibration. The input and output image

width and height are also defined, with the mode to specify the rectification mode,

further discussed in Section 4.2.2. For our system we kept the same input and

output image resolution, thus no need to define a rectification mode existed.

Nektarios Sfyris 120 June 2019

4.6 Coupled Semi-Direct Monocular SLAM

• A pcalib.txt file, that contains the inverse camera response function U in a single

row of 256 increasing distribution of values, further discussed in Section 4.2.2 and

as shown in Figure 4.7.

• A vignette.png image file, that contains a monochrome 16-bit image describing the

smoothed and calibrated vignette function as pixelwise attenuation factors, further

discussed in Section 4.2.2 and as shown in Figure 4.11b. Both this image and the

pcalib.txt file are produced by a photometric calibration.

In total, all the information needed from the subsystems to operate are being pulled

and collected by specialized files for each, that will activate their execution. Namely, a

ROS launch file synchronizes the information that will activate DSO subsystem, while a

YAML file is used for ORB-SLAM. These filter applications will happen after the images

are turned to grayscale for quicker processing.

Direct Subsystem

As the images are in real-time transported through the network with ROS, they will next

be welcomed from the DSO system. In general, DSO is assisting the coupled system by

being responsible for map initialization, and providing with camera poses when needed

to reinforce tracking, and with already marginalized points when the local area mapping

requires it. Because we maintain both maps for DSO and ORB-SLAM, anything that

DSO contributes with to the end SLAM is basically taken from the map it creates online.

The incoming images are cloned and separated at each frame based on the system

they will be used from. Namely, a geometric and photometric correction is applied on

them in the case of DSO, else they will be sent directly to ORB-SLAM, and a geometric

correction will only be applied on them there. The images are also discriminated and

filtered by their timestamp value, which denotes the time the image was received by the

system. This is important, as for various reasons an image with older timestamp than

the one we currently process can be inserted in the system, and if by mistake is handled

at that time, it can cause serious damage to the visual odometry procedure.

DSO builds its map in a semi-dense fashion. There is no real advantage on inserting

more data to the system to create a denser map of the environment, as it was shown

Nektarios Sfyris 121 June 2019

4. OUR APPROACH

that increasing computations because of the addition of data may indeed make the map

denser, but it will not make the camera tracking accuracy more efficient, and thus can

be more costly than beneficial.

From what we discussed in Section 4.4 about the DSO system architecture, the pho-

tometric error of a point p observed in two frames, is computed as the gaussian weighted

sum of squared differences of an eight pixel neighborhood Np that describes that point,

and is given by the Equation (4.28). The projected point’s p′ position, can still be repre-

sented by the Equation (4.29), that depends on the intrinsic camera parameters and the

camera motion created between the two frames.

Because in our case a photometric calibration is available, a prior aiming to make the

affine brightness parameters close to zero can be added to the total cost function that

needs to be minimized. We can describe that function, with the addition of the total

photometric error between all keyframes and points as,

Ephotometric =
∑

i∈F

∑

p∈Pi

∑

j∈obs(p)

Epj +
∑

i∈F

(λaa
2
i + λbb

2
i) (4.51)

The system variables optimization is then done with the iterative Gauss-Newton al-

gorithm, with an update function as shown in Equation (4.32). Overall, the keyframes

initialization, extraction, and marginalization, as well as the point candidate selection,

tracking, and activation are as presented in DSO overview of Section 4.4. Additionally,

a point is marginalized when it is not observed in the next two keyframes from the last

time it was seen.

We must note, that the information extracted from DSO is first converted into ROS

messages with a wrapper, and then being communicated to ORB-SLAM through topics

inside the ROS framework. That information has to do with the marginalized keyframe

parameters, from which, the most important are the keyframe’s timestamp, pose, and

the points’ in the keyframe Euclidean position, and their inverse depth estimation as

presented in Section 4.3.

In the worst case that camera tracking is lost, DSO resets and tries to initialize the

map from the start.

Nektarios Sfyris 122 June 2019

4.6 Coupled Semi-Direct Monocular SLAM

Figure 4.30: Internal DSO and ORB-SLAM systems communication supported by the

ROS framework. The ellipsoids represent each system’s main node, while the rectangles

are the topics that transfer the information to these nodes

Indirect Subsystem and Total Coupled System

Even before the DSO system is executed and starts receiving the Nao images, the ORB-

SLAM has began operating to load the visual vocabulary of ORB descriptors. At the

time it is loaded, it waits until DSO is ready to transfer the marginalized keyframe data

and thus the coupled operation to begin. In general, ORB-SLAM contributes to the

whole procedure by complementing what DSO offers, meaning global level camera pose

consistency, loop closing, feature mapping, and relocalization. The end map is also be-

ing completed inside the ORB-SLAM system, and we will discuss its creation here. A

graphical view of the inner DSO and ORB-SLAM communication is provided by using

the rqt graph ROS tool in Figure 4.30. As shown, the DSO main node dso ros provides

the ORB-SLAM main node Mono with the data we discussed in the previous Section.

Nektarios Sfyris 123 June 2019

4. OUR APPROACH

Because in the runtime we keep alive both the DSO and ORB-SLAM map, different

scale estimations are computed from both based on the same scene due to the nature

of the monocular vision. However, our final map can have only a single estimation and

thus we use a scale factor s that denotes the relation between the scale estimates of the

two systems. This scale now is used for the final map’s similarity transformation Sim(3)

estimation between two keyframes, also discussed in Section 4.5, by being applied on the

DSO predicted camera motion, and then sent to the ORB-SLAM in an initial similarity

matrix as,

SF =

(
s RD tD
01×3 1

)

(4.52)

where D and F denote the Direct and Feature-based visual odometry systems. Con-

tinuing, because DSO is taking over to the total system’s initialization, the map points

produced will on that moment be needed and applied on the end map. Points from DSO

will also in real-time be inserted into the end map if needed, to create a more smooth

distribution of points over the mapped scene together with the features selected from

ORB-SLAM. Also, because ORB features can not be extracted from low textured areas,

but points must be mapped for consistency, DSO points will be added to dense up the

map.

Overall, the coupled decision over which points will be used for the end map, is done

by selecting each ORB feature point p from the ORB-SLAM map, assigning it with an

inverse depth value that comes from DSO based on that point, and then projecting it to

the end map as,

xw = S−1Π−1
c

(

p,
dp
s

)

, dp =

∑

k∈Pp

dk
σ2

k
∑

k
1
σ2

k

(4.53)

Here, dk is the inverse depth of a map point in DSO, that has the same projection

position to a point p in ORB-SLAM. A dynamic allocation of points is done to every

keyframe for the total system, that decides the number of points mapped in each, based

on the frequency the keyframes are added. Namely, if keyframes are added in a quick

manner, we use the least amount of points that describe a keyframe, which is 1500, while

if they are added slowly, we use the biggest amount of points, which is 2500. Depending

Nektarios Sfyris 124 June 2019

4.6 Coupled Semi-Direct Monocular SLAM

Figure 4.31: Coupled system’s point extraction from the real-time Nao video sequence.

Both ORB-SLAM features (red) and DSO map points (blue) are used in the SLAM

process

on the frequency of keyframes addition, the appropriate number of points is used between

those values to represent them. The added keypoints to the ORB-SLAM first system, are

also being manipulated by the bag of words ideology presented in Section 4.5. Figure 4.31

provides some examples on the coupled system’s point extraction taken by the real-time

Nao robot’s SLAM process. The red squares refer to the ORB-SLAM features, while the

blue dots to the DSO map points.

The policy followed for keyframes starts with the initialization from DSO that pro-

vides, among others, the marginalized camera pose estimation. By considering the local

area of keyframes in ORB-SLAM, we apply a Bundle Adjustment on the camera motion

and intrinsics to refine the pose with the points observed. Therefore, a reprojection error

needs to be minimized, between two keyframes i, j, with the following cost function,

Ereprojection =
∑

i∈Flocal

∑

x∈Pi

∑

j∈obs(x)

∥
∥
∥
pj,x − Πc(Sxw)

σ2
x

∥
∥
∥
γ

(4.54)

Nektarios Sfyris 125 June 2019

4. OUR APPROACH

Figure 4.32: Two examples of map generation for the coupled system. From left to

right, the DSO map, next to it the final system’s combined map, and on the left, images

with points extracted from the sequence

As shown, we also consider the variance σ of a keypoint x observed in frame i in the

estimation. The variance σ2
x of a keypoint can be given by λ

2Lpyrm
pyrm , thus depends on the

pyramid scale factor λpyrm and the level Lpyrm of the pyramid that the keypoint x was

extracted from.

The keypoints of Equation (4.53) and the refined keyframes we just talked about

will only be used in the end and coupled map that is an extension of the ORB-SLAM

map, if the total point correspondences for the last three keyframes has fallen lower than

150. Because of the unique way each subsystem extracts its points from the scene, we

can expect that we will be able to provide the end map with a standard number of

keypoints, considering that each subsystem can cover for its partner’s disadvantages, for

environments of many different nature.

The loop closing process of ORB-SLAM is also being exploited by the coupled system,

that uses the bag of words for keyframes representation to detect a loop and then with

a Bundle Adjustment over the local area of keyframes optimize it, that basically aims to

Nektarios Sfyris 126 June 2019

4.6 Coupled Semi-Direct Monocular SLAM

minimize the cost function of Equation (4.54).

The scale drift created by the monocular visual processing is being refined with a pose

graph optimization, or Essential Graph optimization, over the similarity transformations

as,

EEssGraph =
∑

i=SGedge,j=EGedge

∥
∥
∥logSim(3)(S0SjwS

−1
iw)
∥
∥
∥

2

2
(4.55)

where the SGedge, EGedge indicate the starting and ending edge in the Essential

Graph that each frame i, j represent. The S0 is the global reference similarity transfor-

mation, the only one with scale equal to 1, based on which the graph optimization is

applied. In the end, a full Bundle Adjustment is done as in 4.5.

Like with DSO in Section 4.6, if in the worst case the camera tracking fails, usually

due to low textured scenes, the initialization of the subsystem will need to be done again

until it tracks the current camera pose by using the marginalized data received from DSO.

We show two examples of the coupled system in Figure 4.32 by using the TUM mono

VO Dataset [6], where each row represents one sequence. In the combined map (middle

image of each row), the extracted in the map ORB-SLAM features are shown with red,

while the DSO map points with blue. Also, the green lines describe the covisibility graph

that link the keyframes we choose.

Map loops often exist in big environments. In case of small exploration worlds, loop

corrections don’t happen, so do the graph or global level optimizations, and thus the

camera motion drift and point scale drift increase. To prevent the accumulation of those

errors, the keyframe trajectory of both systems is available to provide with the needed

pose information if necessary. Between the two trajectories, if loops are detected and

the local bundle adjustment is applied, we expect the trajectory of ORB-SLAM to be

more efficient than that of DSO. In Figure 4.33 we provide two additional examples of

the coupled system by also using the TUM mono VO Dataset [6], where a loop has been

detected and then closed. Each of the two sequences occupies two rows.

To summarize, ORB-SLAM is a full simultaneous localization and mapping system

that can do tracking, mapping, and loop closing, in contrast with DSO, which is a direct

visual odometry system that can not close loops or do relocalization, but can efficiently

map points in inverse depth and do robust camera tracking. The coupled system described

Nektarios Sfyris 127 June 2019

4. OUR APPROACH

Figure 4.33: Loop closing from the coupled system. The second row of each sequence

shows on the left when the map has detected a loop, and on the right when the loop

connection is applied

here combines all these attributes in a more performative architecture that is applied to

our Nao humanoid robot, aiming to solve the SLAM problem in the full constraint, and

Nektarios Sfyris 128 June 2019

4.7 Humanoid Robot Teleoperation

cost efficient, case of only a single camera being available.

4.7 Humanoid Robot Teleoperation

In order to simulate an autonomous agent’s navigation, a teleoperation package was

created that operates inside the ROS framework as shown in Figure 4.34a. This node is

built to run in real-time and parallel to the whole coupled SLAM system, taking over the

Nao robot’s movements through the computer station’s keyboard. Briefly, the termios

C + + header was used to achieve that, which is a Unix API used by the terminal I/O

interfaces. Commands given by the keyboard can then asynchronously communicate with

the robot to make it move at will.

In total, we take control over both the 2 DoF of Nao’s head, which are the pitch and

yaw rotation, and over its whole lower body that allows for 2 dimensional robot motion

as represented in Figure 2.4. In Table 4.3, we can see the two different types of messages

that are used to communicate with the robot’s limbs.

Firstly, the teleoperation node sends velocity commands though geometry msgs/Twist

(a) Teleoperation node’s communication graph in-

side the ROS framework

(b) Nao robot 3D pose with head

rotation angles

Nektarios Sfyris 129 June 2019

4. OUR APPROACH

messages to the /cmd vel topic, that reach the robot’s torso and control its body’s mo-

tion direction. Commands to walk forward, left, right, while also sole clockwise and

anti-clockwise rotations are supported, with a spare command to stop the robot’s cur-

rent action in case something goes wrong. A velocity command is broken down into two

parts, the linear element, which is described by the Euclidean three parameter XYZ, and

the angular element, also described by the Euclidean three parameter XYZ rotation. To

activate the 2 dimensional robot motion, for the linear part we move only on the x and

y-axis, while for the angular part, we only use the z component.

A geometry msgs/Twist ROS Message

geometry msgs/Vector3 linear
geometry msgs/Vector3 angular

A /JointAnglesWithSpeed ROS Message

std msgs/Header header
string[] joint names
float32[] joint angles
float32 speed
uint8 relative

Table 4.3: ROS geometric messages needed to

control Nao robot’s head and body motion.

The default speed used for these

motions, is 30◦ a second for the

angular motion, and 5cm a sec-

ond for the linear motion, which

can further be changed in the pack-

age’s .launch file as provided for

user operation. As seen, the lin-

ear movement of Nao robot isn’t

very fast, first because of its weight,

which is 5 kilograms, and second be-

cause of the difficulty to stabilize

itself in two legs during that mo-

tion.

When the node wants to com-

municate with the robot to change the camera’s field of view, it sends

naoqi bridge msgs/JointAnglesWithSpeed messages to the /joint angles topic. To de-

cide what specific joint we want to control, from the total number of 82 referred coordi-

nate frames available, we must first declare it to every message sent. The total coordinate

frame tree of Nao robot is shown in Figure 4.35. As already mentioned, the joints we are

interested in are the ones managing the head’s pitch and yaw rotation. In every message

we also specify the max velocity that the head will be able to move, and if the difference

in angle between transmitted messages is relative or static. For the messages to be time

recognizable from the ROS framework, we set each message’s timestamp to the time it

was created.

Nektarios Sfyris 130 June 2019

4.7 Humanoid Robot Teleoperation

view_frames Result

Neck

Head

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

CameraBottom_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

CameraTop_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

HeadTouchFront_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

HeadTouchMiddle_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

HeadTouchRear_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LInfraRed_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RInfraRed_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

MicroFrontCenter_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

MicroSurroundLeft_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

MicroRearCenter_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

MicroSurroundRight_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

gaze

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

torso

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LShoulder

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LPelvis

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RShoulder

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RPelvis

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

ImuTorsoAccelerometer_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

ChestButton_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

ImuTorsoGyrometer_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LSonar_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RSonar_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

base_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

base_footprint

Broadcaster: /naoqi_driver
Average rate: 12.206 Hz

Most recent transform: 1549297641.363 (0.125 sec old)
Buffer length: 4.834 sec

LTibia

LAnklePitch

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

l_ankle

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LThigh

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LFootBumperLeft_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LFootBumperRight_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LFsrFL_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LFsrFR_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LFsrRL_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LFsrRR_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

l_sole

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LElbow

LForeArm

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

l_wrist

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LBicep

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LFinger11_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LFinger21_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

l_gripper

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LThumb1_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LHandTouchBack_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LHandTouchLeft_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LHandTouchRight_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LFinger12_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LFinger13_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LFinger22_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LFinger23_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LHip

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

LThumb2_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RTibia

RAnklePitch

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

r_ankle

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RThigh

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RFootBumperLeft_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RFootBumperRight_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RFsrFL_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RFsrFR_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RFsrRL_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RFsrRR_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

r_sole

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RElbow

RForeArm

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

r_wrist

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RBicep

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RFinger11_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RFinger21_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

r_gripper

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RThumb1_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RHandTouchBack_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RHandTouchLeft_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RHandTouchRight_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RFinger12_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RFinger13_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RFinger22_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RFinger23_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RHip

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

RThumb2_link

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

CameraBottom_optical_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

CameraTop_optical_frame

Broadcaster: /naoqi_driver
Average rate: 12.103 Hz

Most recent transform: 1549297641.430 (0.059 sec old)
Buffer length: 4.875 sec

odom

Broadcaster: /naoqi_driver
Average rate: 12.206 Hz

Most recent transform: 1549297641.463 (0.025 sec old)
Buffer length: 4.834 sec

Recorded at time: 1549297641.488

Figure 4.35: Total coordinate tree for the humanoid Nao robot

For the head rotation in the 2 degrees of freedom, we use a default value of 0.1◦ a

second, which like with the body motion, can be adjusted in the package’s .launch file.

We must note that there are limits in the head rotation over the two axis. For pitch, the

rotation can fluctuate from −38.5◦, front motion, to 29.5◦, while for the yaw, the rotation

fluctuates from −119.5◦, right direction, to 119.5◦.

We want the head’s rotation speed, created by a single message, to be pretty low, so

that a lot of them have to be combined to create a significant change in the head’s 3D

pose. This way, we support smooth head motions, without fearing that the visual SLAM

system will encounter image discontinuities, later lead to camera tracking lost, new map

initializations, and overall reduction of system’s efficiency and performance.

Nektarios Sfyris 131 June 2019

4. OUR APPROACH

Nektarios Sfyris 132 June 2019

Chapter 5

Results

In this chapter we present the results of our approach on some indoor and outdoor

environments explored by our Nao humanoid robot. The spaces we map come from the

Kouretes Robotics Lab1 and the facilities of the Technical University of Crete. We have

included environments with different texture, brightness variation and depth complexity

of objects in the scene, to showcase the method’s robustness and real-time performance.

The standard Figures provided in this Chapter will have on the top left the explored

environment’s DSO map, on the top right the coupled method’s map, and on the bottom

row some images during the point extraction process.

5.1 Indoor Environments

We started by testing the final coupled system in restricted spaces and by making small

camera motions. For cases like these, the scale s that was first introduced in Equation

(4.52), stays close to its initial value 1 and the camera can effectively track its pose during

the robot motion, as the trajectory isn’t too big.

Scenario no1: Nao robot keeps observing a scene from different viewpoints and

tries to map it. Figure 5.1 shows some of the Kourete’s Lab robots that are static in

the environment. The resulted scene reconstruction of our coupled method is more dense

than usual, as we are continuously adding keyframes and all the points assigned to each

1http://www.intelligence.tuc.gr/kouretes/web/

Nektarios Sfyris 133 June 2019

http://www.intelligence.tuc.gr/kouretes/web/

5. RESULTS

Figure 5.1: Small indoor reconstruction of Kouretes Lab robots

keyframe refer to the same scene. This way, the depth of the observed points is approxi-

mated in a greater degree and that is why we can see texture in resulting the map even

though our method is a sparse one.

Scenario no2: Nao robot tries to track its camera’s pose during a motion that in-

cludes a corner in the Electrical and Computer Engineering (ECE) department’s building.

This is a motion that can cause the camera tracking module to fail, as the robot does a

direct 90◦ turn with the extracted points in each frame changing quickly. Therefore, in

order for our robot to not lose its location estimation, quick and efficient point matching

must be done. As we can see in Figure 5.2, the camera tracking has succeded and the

environment has been sparsly mapped. In the DSO map (top left), we can see in green

the full camera trajectory on top of the red trackable camera trajectory, for which some

of the keyframes are marginalized.

As we move from smaller to bigger in size environments, the scale s starts to deviate

from its initial value depending on the camera tracking and the points matching during

the robot motion. The tracking procedure is also getting more difficult as the errors accu-

mulate during the exploration and can thus create a completely wrong representation of

Nektarios Sfyris 134 June 2019

5.1 Indoor Environments

Figure 5.2: Small indoor environment reconstruction through a 90 degrees turn at the

ECE department

the environment. However, our proposed system can still manage to operate under these

circumstances. We will now provide some results on bigger scale indoor environment

mapping.

Scenario no3: The robot will complete a cyclic course that contains a great bright-

ness variation in the middle of it, but will still keep tracking the camera and continue

exploring with minimum drift as shown in Figure 5.3. The full camera trajectory for the

DSO map is also provided. For this example, three 90◦ turns have been made to test our

method.

Scenario no4: This time, the environment’s brightness around the robot will be

mostly constant. This space represents the Kouretes Robotics Lab and Figure 5.4 shows

the attempt of Nao trying to map it. There is a big complexity in object depths in the

background and the camera trajectory is not very smooth, but we are still able to get for

the most part accurate results.

Nektarios Sfyris 135 June 2019

5. RESULTS

Figure 5.3: Big indoor environment reconstruction by making three turns of 90 degrees

at the ECE department

Figure 5.4: Big indoor environment reconstruction of the Kouretes Lab

5.2 Outdoor Environments

In this Section we will provide some ourdoor results on the presented in Chapter 4 monoc-

ular Visual SLAM method. In contrast with the indoor environments, the outdoor ones

Nektarios Sfyris 136 June 2019

5.2 Outdoor Environments

usually contain bigger brightness variations and more textured scenes. That means that

the camera tracking can become more difficult, but a lot of points can be extracted,

leading to richer scene representation with a smooth distriburion of points in the oucome

point cloud map.

Scenario no1: We test the coupled system as we are heading up a stairway at the

ECE department. This is a special case, as the keyframes must be quickly generated in

order to correctly represent the difference in elevation we create by moving upwards. As

shown in Figure 5.5, the camera trajectory can accurately describe this motion with the

mapped points providing a visual understanding of the explored scenes.

Scenario no2: Nao robot tries to map an outdoor amphitheater that has a lot of

texture, meaning that we can extract many points from the scenes that observe it. As

shown in Figure 5.6 at the middle image of the first row, the generated point cloud map

was initially corrupted as the drift during the exploration had accumulated, causing the

same part of the map being rewritten above itself. However, a loop was then detected at

that point as shown with the green covisibility links and a global Bundle Adjustment was

Figure 5.5: Big outdoor reconstruction of a stairway at the ECE department

Nektarios Sfyris 137 June 2019

5. RESULTS

Figure 5.6: Big outdoor reconstruction of the open amphitheater at the ECE

department

applied to refine the camera trajectory and the points mapped. Overall, the two edges

of the covisibility graph were united to a single camera pose and the mapping continued,

leading to the final map as shown at the right image of the first row.

Scenario no3: A route with many different textures was completed that also con-

tained a stairway. As shown in Figure 5.7, DSO was able to produce a very accurate map

of the environment, but the coupled system at the end of the course made some mistakes,

wrongly assigning the points at the generated map. Still, the camera trajectory describes

well the robot motion.

Scenario no4: The coupled method is tested at the parking of the ECE department.

The brightness in this space has low values and many occlusions happen that make the

Visual SLAM process difficult, as objects disappear and reappear in the scene. Figure

5.8 shows the results of this mapping that are in a high degree accurate with little drift

for the camera trajectory.

Nektarios Sfyris 138 June 2019

5.3 Difficulties in Monocular Visual SLAM

Figure 5.7: Big outdoor environment reconstruction of a complex course at the ECE

department

Figure 5.8: Big outdoor reconstruction of the closed parking at the ECE department

5.3 Difficulties in Monocular Visual SLAM

As we proved until now, the method presented in this thesis can provide accurate results

for many environments and scenarios that can make the SLAM process of Nao difficult.

However, we may still not always acquire the wanted outcomes due to the factors dis-

Nektarios Sfyris 139 June 2019

5. RESULTS

cussed in the beginning of this Chapter and many others, such as scene reflectance or a

system module’s bad estimation. In this Section we will describe some cases with cor-

rupted maps created through exploration.

Case no1: Nao robot tries to map a classroom of the ECE department as a big in-

door space. The brightness in this environment is mostly constant, but a lot of reflections

exist that played a big role to the mapping failure. As shown in Figure 5.9, the DSO

map has accurately mapped the classroom with very small drift for the camera trajectory.

However, the coupled system has completely failed at representing the environment even

though the camera trajectory seems accurate. A process that could correct this error is

the loop closure that would lead to a pose graph optimization, but it was not detected

in this case.

Case no2: Another case that can cause problems to the final map is the wrong scale

estimation. This is usually caused because of bad system initialization and exists exclu-

sively for monocular camera setups. In Figure 5.10 and 5.11 we can see two examples

of such a mapping, where the camera poses are correctly tracked through Nao’s video

sequence, but the scale that describes the relation in depth between the camera pose and

Figure 5.9: Bad map generation of a big indoor environment due to drift and light

reflections

Nektarios Sfyris 140 June 2019

5.3 Difficulties in Monocular Visual SLAM

the environment is completely off.

Figure 5.10: Bad map generation of a big indoor environment due to wrong scale

estimation at the ECE department

Figure 5.11: Bad map generation of the ECE building’s core due to wrong scale estimation

Nektarios Sfyris 141 June 2019

5. RESULTS

Nektarios Sfyris 142 June 2019

Chapter 6

Conclusion

6.1 Summary

This thesis describes a coupled semi-direct visual Simultaneous Localization and Map-

ping (SLAM) approach for the Nao humanoid robot. Both subsystems chosen are the

best performing choices from the respective group of methods up to this day, with the

Direct module used for local camera tracking and system initialization, and the Feature-

based module for local area consistency, loop closing, and global level map refinement.

Furthermore, we are exploiting the capabilities of the Robot Operating System (ROS),

which in the proposed approach supports not only the communication between the two

subsystems, but also the robot-to-computer message transmission. In total, all the com-

putational load is being managed by a remote computer station in a highly-parallel

architecture for greater efficiency and real-time system operation. The proposed method

is suitable for the monocular camera setup of Nao, where depth can only be estimated

up to a scale. Last but not least, a teleoperation node that works in parallel with the

overall system is built in order to simulate real-life autonomous robot exploration.

6.2 Future Work

6.2.1 Effective Semi-Direct Visual Odometry Coupling

The method used in this thesis can be described as a loose coupling of the chosen DSO and

ORB-SLAM systems. That is because both maps are updated asynchronously to each

Nektarios Sfyris 143 June 2019

6. CONCLUSION

other, and then the needed information is transmitted to the final system. To reduce the

total unnecessary computation load, a more effective approach than the current loosely-

coupled one can be introduced. The idea is that instead of maintaining each subsystem’s

map in real-time, we can directly use the modules of each subsystem we are interested in

on the final map, with all the computations and optimizations dealing with the camera

poses and extracted points, happening based on that map’s information.

6.2.2 Inertial Visual Odometry Measurements

The motion of Nao robot model is generally not smooth when it comes to camera mea-

surements and can lead to very different scene views even for close in time frames. Events

like that can cause the camera pose tracking procedure to fail as there are not enough

points between keyframes to be matched, meaning that the total system will then termi-

nate, making the robot unable to continue it’s SLAM process. A solution to this problem

is to also include the inertial measurements from the Nao robot’s IMU sensor unit, to

make the final camera pose estimation more accurate and robust with no great cost

in computations. The idea behind Visual Inertial Odometry is used by many published

robotic systems today showing good results and is briefly discussed by us in Section 2.4.4.

A significant amount of work has been put for such a system in this thesis but was not

combined with the total coupled Hybrid Visual SLAM approach we presented. Briefly,

we can describe the overall rotation that concerns the top camera frame, by combining

rotations between teams of coordinate frames inside the Nao robot model as shown in

Figure 4.35. The first distinct rotation is created between the world coordinate frame and

the Nao torso frame, the second between the Neck and the Head frame, while the third

between the Head and the camera top frame. All of these rotations are translated to the

top camera frame by using the tf ROS library [51]. The visualization is also possible by

using the Rviz ROS tool [52]. In Figure 6.1 we show how the problem is broken down to

using just the essential coordinate frames. We must also note that the information about

the robot motion, described by the relation between the world coordinate frame and the

torso frame, comes from the /naoqi driver/odom ROS topic.

This procedure will provide us in real-time with a camera pose that is mostly based on

raw data and can then be further estimated by taking into account measurements from

Nektarios Sfyris 144 June 2019

6.2 Future Work

Figure 6.1: From left to right, the total coordinate frames with the Nao robot model, in

the middle only the total coordinate frames and then just the essential for the top

camera frames

the Nao’s IMU. A package that is compatible with the ROS framework and can combine

different sensor information to approximate the robot pose inside an EKF framework is

[53]. At last, the final camera pose that is computed as discussed in this Section, can be

given to the coupled Hybrid Visual SLAM system to refine its own estimation in order

to make the camera tracking module more effective and robust.

6.2.3 Online Photometric Calibration

In our approach we include an offline photometric calibration for the monocular camera

setup of Nao robot. Overall, this calibration can describe the response camera function

and the vignette function of our camera. These estimations can be done as we have

access to the exposure times of Nao’s camera during the system’s execution. In case

the robot navigates between environments with very different brightness in them and

an auto-exposure algorithm is applied to the camera, an online photometric calibration

can be proposed to dynamically estimate the response, vignette, and exposure times.

This provides greater autonomy and can further generalize our approach for application

to other robot models too. A modern work that introduces such a method is [54] of

Nektarios Sfyris 145 June 2019

6. CONCLUSION

Figure 6.2: A 2.5 dimensional map generated by the Grid Map ROS package

Bergmann, Wang, and Cremers, which share the code as open-source1.

6.2.4 Grid Map Generation

In order for Nao to conduct a really autonomous navigation task, it needs to be provided

with an easily readable map. However, the Point Cloud map that we generate in this the-

sis may contain outliers or noisy gathered point locations that can not be well translated

to space allocation. A way to solve this problem is to convert the Point Cloud map into

an Occupancy Grid map that segmentates the 3D environment around the robot with

grids assigning them with a probability to be occupied. An example work that is also

compatible with the ROS message protocol is the Grid Map2 package that can develop a

2.5 dimensional grid map from a 3D Point Cloud map as discussed in [55]. A converted

map is provided in Figure 6.2 as shown in the package’s documentation. These kind of

maps are ideal for autonomous navigation, as the robot can in a simple way distinguish

different locations in the map and access them by using path-planning algorithms.

1https://github.com/tum-vision/online_photometric_calibration
2https://github.com/ANYbotics/grid_map

Nektarios Sfyris 146 June 2019

https://github.com/tum-vision/online_photometric_calibration
https://github.com/ANYbotics/grid_map

References

[1] Lee, S.H., Civera, J.: Loosely-coupled semi-direct monocular slam. IEEE Robotics

and Automation Letters 4(2) (2018) 399–406 2, 118

[2] Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE transactions on

pattern analysis and machine intelligence 40(3) (2017) 611–625 2, 20, 94

[3] Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate

monocular slam system. IEEE transactions on robotics 31(5) (2015) 1147–1163 2,

69, 104

[4] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng,

A.Y.: Ros: an open-source robot operating system. In: ICRA workshop on open

source software. Volume 3., Kobe, Japan (2009) 5 3, 8, 73

[5] Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT press (2005) 12

[6] Engel, J., Usenko, V., Cremers, D.: A photometrically calibrated benchmark for

monocular visual odometry. arXiv preprint arXiv:1607.02555 (2016) 20, 81, 83, 104,

127

[7] Cremers, D.: Lectures on multiple view geometry (July 2014) 23

[8] Devernay, F., Faugeras, O.D.: Automatic calibration and removal of distortion from

scenes of structured environments. In: Investigative and Trial Image Processing.

Volume 2567., International Society for Optics and Photonics (1995) 62–73 38

[9] Stein, G.P.: Lens distortion calibration using point correspondences. In: Proceedings

of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

IEEE (1997) 602–608 39

Nektarios Sfyris 147 June 2019

REFERENCES

[10] Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and

lens distortion. In: Proceedings of the 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. CVPR 2001. Volume 1., IEEE (2001)

I–I 39

[11] Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on

pattern analysis and machine intelligence 22 (2000) 41, 43, 76

[12] Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge

university press (2003) 41

[13] Gavin, H.: The levenberg-marquardt method for nonlinear least squares curve-fitting

problems. Department of Civil and Environmental Engineering, Duke University

(2011) 1–15 43, 80, 87

[14] Heikkila, J., Silven, O., et al.: A four-step camera calibration procedure with implicit

image correction. In: cvpr. Volume 97. (1997) 1106 44

[15] Grossberg, M.D., Nayar, S.K.: What is the space of camera response functions? In:

2003 IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition, 2003. Proceedings. Volume 2., Citeseer (2003) II–602 45

[16] Grossberg, M.D., Nayar, S.K.: Determining the camera response from images: What

is knowable? IEEE Transactions on pattern analysis and machine intelligence 25(11)

(2003) 1455–1467 47

[17] Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an

application to stereo vision. (1981) 51

[18] Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In:

European conference on computer vision, Springer (2006) 430–443 54, 70

[19] Harris, C.G., Stephens, M., et al.: A combined corner and edge detector. In: Alvey

vision conference. Volume 15., Citeseer (1988) 10–5244 55

[20] Shi, J., Tomasi, C.: Good features to track. Technical report, Cornell University

(1993) 55

Nektarios Sfyris 148 June 2019

REFERENCES

[21] Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In:

Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed

and Augmented Reality, IEEE Computer Society (2007) 1–10 69

[22] Pirker, K., Rüther, M., Bischof, H.: Cd slam-continuous localization and mapping

in a dynamic world. In: 2011 IEEE/RSJ International Conference on Intelligent

Robots and Systems, IEEE (2011) 3990–3997 69

[23] Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single

camera slam. IEEE Transactions on Pattern Analysis & Machine Intelligence (6)

(2007) 1052–1067 69

[24] Ranftl, R., Vineet, V., Chen, Q., Koltun, V.: Dense monocular depth estimation

in complex dynamic scenes. In: Proceedings of the IEEE conference on computer

vision and pattern recognition. (2016) 4058–4066 69

[25] Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: Orb: An efficient alternative

to sift or surf. In: ICCV. Volume 11., Citeseer (2011) 2 70, 105

[26] Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In:

European conference on computer vision, Springer (2006) 404–417 70

[27] Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: Dtam: Dense tracking and map-

ping in real-time. In: 2011 international conference on computer vision, IEEE (2011)

2320–2327 70

[28] Engel, J., Schöps, T., Cremers, D.: Lsd-slam: Large-scale direct monocular slam.

In: European conference on computer vision, Springer (2014) 834–849 70, 72

[29] Forster, C., Pizzoli, M., Scaramuzza, D.: Svo: Fast semi-direct monocular visual

odometry. In: 2014 IEEE international conference on robotics and automation

(ICRA), IEEE (2014) 15–22 71

[30] Li, S.p., Zhang, T., Gao, X., Wang, D., Xian, Y.: Semi-direct monocular visual and

visual-inertial slam with loop closure detection. Robotics and Autonomous Systems

112 (2019) 201–210 71

Nektarios Sfyris 149 June 2019

REFERENCES

[31] Mei, C., Sibley, G., Cummins, M., Newman, P., Reid, I.: Rslam: A system for large-

scale mapping in constant-time using stereo. International journal of computer vision

94(2) (2011) 198–214 71

[32] Pire, T., Fischer, T., Civera, J., De Cristóforis, P., Berlles, J.J.: Stereo parallel

tracking and mapping for robot localization. In: 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), IEEE (2015) 1373–1378 71,

72

[33] Engel, J., Stückler, J., Cremers, D.: Large-scale direct slam with stereo cameras.

In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), IEEE (2015) 1935–1942 71, 72

[34] Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J.,

Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.W.: Kinectfusion: Real-time dense

surface mapping and tracking. In: ISMAR. Volume 11. (2011) 127–136 72

[35] Whelan, T., Salas-Moreno, R.F., Glocker, B., Davison, A.J., Leutenegger, S.: Elas-

ticfusion: Real-time dense slam and light source estimation. The International Jour-

nal of Robotics Research 35(14) (2016) 1697–1716 72

[36] Knese, K.: Driver module between aldebaran’s naoqios and ros. (2010) 74, 120

[37] James Bowman, P.M.: A ros package for camera calibration using the opencv library.

(2014) 76

[38] Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Maŕın-Jiménez, M.J.:

Automatic generation and detection of highly reliable fiducial markers under occlu-

sion. Pattern Recognition 47(6) (2014) 2280–2292 86

[39] Munoz-Salinas, R., Garrido-Jurado, S.: Aruco library. URL: http://sourceforge.

net/projects/aruco (2013) 87

[40] Civera, J., Davison, A.J., Montiel, J.M.: Inverse depth parametrization for monoc-

ular slam. IEEE transactions on robotics 24(5) (2008) 932–945 90

Nektarios Sfyris 150 June 2019

REFERENCES

[41] Civera, J., Davison, A.J., Montiel, J.M.M.: Inverse depth to depth conversion for

monocular slam. In: Proceedings 2007 IEEE International Conference on Robotics

and Automation, IEEE (2007) 2778–2783 90

[42] Montiel, J.M., Civera, J., Davison, A.J.: Unified inverse depth parametrization for

monocular slam, Robotics: Science and Systems (2006) 90

[43] Mur-Artal, R., Tardós, J.D.: Orb-slam: Tracking and mapping recognizable. In:

Workshop on Multi View Geometry in Robotics (MVIGRO)-RSS. (2014) 104

[44] Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular,

stereo, and rgb-d cameras. IEEE Transactions on Robotics 33(5) (2017) 1255–1262

104

[45] Viswanathan, D.G.: Features from accelerated segment test (fast) (2009) 105

[46] Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: Binary robust independent

elementary features. In: European conference on computer vision, Springer (2010)

778–792 105

[47] Strasdat, H., Davison, A.J., Montiel, J.M., Konolige, K.: Double window optimisa-

tion for constant time visual slam. In: 2011 International Conference on Computer

Vision, IEEE (2011) 2352–2359 109

[48] Gálvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in

image sequences. IEEE Transactions on Robotics 28(5) (2012) 1188–1197 109

[49] Mur-Artal, R., Tardós, J.D.: Fast relocalisation and loop closing in keyframe-based

slam. In: 2014 IEEE International Conference on Robotics and Automation (ICRA),

IEEE (2014) 846–853 115

[50] Yang, N., Wang, R., Gao, X., Cremers, D.: Challenges in monocular visual odome-

try: Photometric calibration, motion bias, and rolling shutter effect. IEEE Robotics

and Automation Letters 3(4) (2018) 2878–2885 118

[51] Foote, T.: tf: The transform library. In: 2013 IEEE Conference on Technologies for

Practical Robot Applications (TePRA), IEEE (2013) 1–6 144

Nektarios Sfyris 151 June 2019

REFERENCES

[52] Kam, H.R., Lee, S.H., Park, T., Kim, C.H.: Rviz: a toolkit for real domain data

visualization. Telecommunication Systems 60(2) (2015) 337–345 144

[53] Meeussen, W.: A ros package for robot pose estimation by combining many sensor

measurements inside an ekf framework 145

[54] Bergmann, P., Wang, R., Cremers, D.: Online photometric calibration of auto expo-

sure video for realtime visual odometry and slam. IEEE Robotics and Automation

Letters 3(2) (2017) 627–634 145

[55] Fankhauser, P., Hutter, M.: A Universal Grid Map Library: Implementation and

Use Case for Rough Terrain Navigation. In Koubaa, A., ed.: Robot Operating

System (ROS) The Complete Reference (Volume 1). Springer (2016) 146

Nektarios Sfyris 152 June 2019

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Outline

	2 Background
	2.1 Aldebaran Nao Humanoid Robot
	2.2 Robot Operation System (ROS)
	2.3 Localization and Mapping
	2.3.1 Mobile Robot Localization
	2.3.2 Robotic Mapping
	2.3.3 Simultaneous Localization and Mapping

	2.4 Camera Measurement Model
	2.4.1 Rigid Body Motion
	2.4.2 Monocular Camera Measurement Model
	2.4.3 Camera Calibration
	2.4.4 Visual Odometry

	2.5 Multiple View Geometry
	2.6 Bundle Adjustment

	3 Problem Statement
	3.1 Monocular Visual SLAM for Autonomous Robot Explorations
	3.2 Related Work
	3.2.1 Indirect or Feature-based Monocular Visual SLAM
	3.2.2 Direct Monocular Visual Odometry
	3.2.3 Hybrid Monocular Visual SLAM
	3.2.4 Stereo and RGB-D Methods

	4 Our Approach
	4.1 Network and ROS Communication
	4.2 Robot Camera Calibration
	4.2.1 Geometric Intrinsic Calibration
	4.2.2 Monocular Photometric Calibration

	4.3 Inverse Depth Estimation
	4.4 Direct Monocular Visual Odometry
	4.5 Indirect Monocular Visual Odometry
	4.6 Coupled Semi-Direct Monocular SLAM
	4.7 Humanoid Robot Teleoperation

	5 Results
	5.1 Indoor Environments
	5.2 Outdoor Environments
	5.3 Difficulties in Monocular Visual SLAM

	6 Conclusion
	6.1 Summary
	6.2 Future Work
	6.2.1 Effective Semi-Direct Visual Odometry Coupling
	6.2.2 Inertial Visual Odometry Measurements
	6.2.3 Online Photometric Calibration
	6.2.4 Grid Map Generation

	References

