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Abstract

Person indexing in video streams requires first to recognize a person’s identity and secondly finding

the time slot in which a person appears. In this diploma thesis, we develop a method for identifying

exposed speakers within a video stream using machine learning techniques. More specifically, with the

help of Neural Networks, after we exploit the structure of a video as a sequence of images and sounds, we

use these data for the identification of a speaker at each video frame. The above problem is divided into

two sub-problems, Face Recognition and Speaker Recognition, where we use a top-down design to split

them into smaller ones. Each sub-problem is solved individually, but the combination of their output

probabilities per class leads to an improved final decision regarding classification. The method has been

implemented in the Python programming language using the Tensorflow framework and the Keras API.

The suggested approach is based on Convolutional Neural Network architectures for both Face and

Speaker Recognition. As a result, the combination of image and sound leads to a better decision for the

identity of a person who appears in a specific time slot of the video. In addition, the main advantage of

the proposed method is that it can be utilized for many different use cases, such as search for missing

persons, recognition of celebrities, or even promotion of public figures. It is also worth mentioning that

with some minor changes it can be used for identifying any other entity in a video stream.



Περίληψη

Η εύρεση ενός προσώπου σε μία ροή βίντεο απαιτεί πρώτα να αναγνωριστεί η ταυτότητα του εικονιζόμενου

και δεύτερον το χρονικό εκείνο διάστημα στο οποίο εμφανίζεται. Στην παρούσα διπλωματική εργασία,

αναπτύσσουμε μία μέθοδο αναγνώρισης εμφανιζόμενων ομιλητών εντός μιας ροής βίντεο χρησιμοποιώντας

τεχνικές μηχανικής μάθησης. Πιο συγκεκριμένα, αφού αξιοποιήσουμε την δομή ενός βίντεο ως μια ακολουθία

εικόνων και ήχων, χρησιμοποιούμε αρχιτεκτονικές νευρωνικών δικτύων, για την ταυτοποίηση ομιλητών

σε κάθε πλαίσιο εικόνας. Το παραπάνω πρόβλημα χωρίζεται σε δύο υπο-προβλήματα, την Αναγνώριση

Προσώπου και την Αναγνώριση Ομιλητή, όπου με μία top-down σχεδίαση καταλήγουμε σε ακόμη μικρότερα

προβλήματα προς επίλυση. Το κάθε υπο-πρόβλημα επιλύεται ξεχωριστά, ωστόσο συνδυάζοντας τις λύσεις

τους με την χρήση των πιθανοτήτων εξόδου ανά κατηγορία, πετυχαίνουμε βελτίωση στην τελική μας απόφαση

για κατηγοριοποίηση στη σωστή κλάση. Η εργασία έχει υλοποιηθεί στη γλώσσα προγραμματισμού Python

με την χρήση του Tensorflow και του Keras. Η προτεινόμενη προσέγγιση έχει στηριχθεί σε Συνελικτικά

Νευρωνικά Δίκτυα (Convolutional Neural Networks), τόσο για την αναγνώριση προσώπου, όσο και ομιλητή.

Ως αποτέλεσμα, ο συνδυασμός εικόνας και ήχου οδηγεί σε ορθότερη απόφαση για την ταυτότητα ενός

ατόμου που εμφανίζεται σε κάποιο χρονικό διάστημα του βίντεο. Επιπλέον το βασικό πλεονέκτημα της

προτεινόμενης μεθόδου είναι ότι μπορεί να αξιοποιηθεί σε πολλές διαφορετικές εφαρμογές, όπως εύρεση

αγνοουμένων, αναγνώριση διασημοτήτων, ή ακόμη και προώθηση δημοσίων προσώπων. Αξίζει να σημειωθεί

ότι με κάποιες μικρές αλλαγές μπορεί να χρησιμοποιηθεί για ταυτοποίηση οποιασδήποτε άλλης οντότητας

σε ροή βίντεο.
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Chapter 1

Introduction

Audiovisual data consists of photos, sound, and videos. They are part of the synchronous everyday

lifestyle, which demands better experiences mostly by the ease of use. For example, when we need to

edit some photos or videos, we are trying to find out how to do it without spending too much time on

the task and concurrently seeking the best results. As technology improves and as people produce more

content of these kinds of data, quality has increased, but also their size at the same time. A single photo

nowadays can have a size of a few hundred MegaBytes, while videos are reaching sizes of hundreds of

GigaBytes. So, researchers and software engineers are putting efforts to discover new paths in order

to handle these data. With this huge increase of information and with personal data flowing around

the internet, needs like safety, faster and more reliable search across data, classification, and tagging of

entities, have emerged.

A problem that combines all the above aspects in one piece is the problem of Person Indexing in video

streams. Person indexing in video streams requires first to recognize a person’s identity and secondly

finding the time slot in which a person appears. This is the problem we are dealing with in this diploma

thesis. This statement becomes clearer, if we view a video as a sequence of photos and sounds. Thus,

we have different kinds of data to process in a fast and reliable way in order to identify and classify a

person.

1.1 Thesis Contribution

In this diploma thesis, we develop a method for identifying exposed speakers within a video stream

using machine learning techniques. More specifically, after we exploit the structure of a video as a

sequence of images and sounds, we use these data for the identification of a speaker at each video frame.
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1. INTRODUCTION

To deal with the complexity of this problem, we propose a top-down approach to split it into two smaller

ones: Face Recognition and Speaker Recognition.

The proposed approach is based on Neural Networks and specifically Convolutional Neural Networks

in order to solve both the Face and the Speaker Recognition tasks. We try to provide better results by

combining different kinds of features (facial and voice) in such a way that we can easily deploy the final

system and extract information about persons appearing in videos, adjusting appropriately the desired

level of accuracy. For this purpose, we are filtering our final decision with appropriate thresholds, but

we also keep the face and speaker recognition details separately, in case we need a more detailed analysis

for the identities in a video frame. We try to take advantage of modern, state-of-the-art techniques that

are already used for each sub-problem and, by adding our ideas and personal experience, to create a new

solution.

Our solution uses two similar convolutional neural networks to solve the face and speaker recognition

problems and the same pipeline to extract image and sound data from videos both during the training

phase and during the testing phase. First, we are using a variety of pre-trained models for extracting

image features and classifying person identities based on facial characteristics and then a set of algorith-

mic steps to extract auditory features and accomplish person identity classification based on sound. In

the end, we combine the results of each classification to provide higher confidence as to the final result.

Recognition experiments have been conducted with three person identities (classes), specifically the

actors Stan Lee, Jack Black, and Samuel L. Jackson, on a variety of free video clips from YouTube. The

results from the combined recognition were more than promising for this small set of target identities.

Interestingly, the training set for these identities was not formed video streams, but from independent

set of images and sounds.

The proposed method has been implemented in the Python programming language using the Ten-

sorflow framework and the Keras API. The main advantage of the proposed method is that it can be

utilized for many different use cases, such as search for missing persons, recognition of celebrities, or

even promotion of public figures. It is also worth mentioning that with some minor changes it can be

used for identifying any other entity in a video stream, besides humans, with the only assumption that

the target entity can be identified through images and sounds, for example, some species of animals.

1.2 Thesis Outline

In Chapter 2 we present all the background information needed for this thesis. We give an overview

of Pattern Recognition algorithms, the evolution of the Face Recognition problem through the years,
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1.2 Thesis Outline

the Speaker Recognition task, and the basic idea for Person Indexing in video streams. In Chapter 3

we state our Person Indexing problem and we refer to different approaches that have been used by

others in the previous years. In Chapter 4 we describe our top-down design approach splitting the main

problem to two smaller ones and emphasize on our implementation. In Chapter 5 the performance of

the proposed approach is evaluated and compared to the individual performance of each sub problem.

Finally, Chapter 6 acts as an epilogue for this thesis, presenting our conclusions along with future

improvements and all the lessons learned throughout this process.
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Chapter 2

Background

2.1 Face Recognition

The face recognition problem has become a trend in our days, mainly for security reasons, but also as

an extra level of authentication present on the latest smartphones in the past couple of years. This is

just one example where face recognition is required for solving an everyday problem. Nevertheless face

recognition didn’t show up just now, it has been around, as a research problem, for many decades.

For us humans, face recognition problem is already solved, as we can easily use our visual system to

recognize different faces. From the computer perspective however, it’s not that easy. A machine has a

lot of work to do in order to reach the recognition. In general, it is important to split the whole problem

into two smaller tasks to be solved, namely Face Detection and then Face Recognition.

2.1.1 Face Geometry

The first approach [6, 7] to the problem relying geometric points of a face, such as eyes’, (nose,

mouth,ears, ...) position, which were used to build a feature vector; then by calculating the Euclidean

distances between the extracted feature vector and that of reference image and by using a simple thresh-

old you could decide how much two faces look alike. That was a great idea to start from, interestingly

that the basic concept is still used. Even though this method is robust against illumination changes,

there are some important drawbacks; first, is the difficulty of specifying the positions of those geometrical

characteristics (maker points) on a face and, secondly, that this kind of information is not enough for

efficient and reliable recognition.
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2. BACKGROUND

2.1.2 Eigen Face - PCA

The next step was to extend this idea; this is where the Eigen Faces [8, 9] method was introduced.

The Eigen Face method is based on linear algebra and pattern recognition theory; it uses the Principal

Component Analysis technique to reduce the face-images’ space size. Each component of the reduced

space are the eigenvectors of the covariance matrix, also every component, in turn, has the highest

variance possible under the constraint that it is orthogonal to the preceding components. With this

method, we achieve to represent the distribution of face data in a very efficient way. After we have

created the eigenface vectors of all face images in the training set, we use the Euclidean distance as a

measurement of the difference between an eigenface-image (known face) and a test image –how much

the two images look alike–. Let’s review the Eigen face method step by step.

First, we assume that Γ1,Γ2 · · ·Γm are the images of the training set with each image denoted as

I(x, y). Then, we convert each image into a set of vectors and a new matrix of size m × p is formed,

where m is the number of training images and p is equal to x × y. So, we find the mean face by the

following equation:

� Mean Face offset:

Ψ =
1

m

m∑
n=1

Γn (2.1)

where Γn is the Face image,

Next we calculate the mean-subtracted face,

� Face distance from average:

Φi = Γi −Ψ (2.2)

where i = 1, 2 · · ·m, and A = [Φ1,Φ2, · · ·Φm] is the mean-subtracted matrix vector with size m× p.

Then, we implement the matrix transformations, and matrix A is reduced to

Cm×m = Am×p ×ATp×m (2.3)

where C is the convariance matrix. If we view C in more detail we have :
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2.1 Face Recognition

� Convariance Matrix:

C =
1

m

m∑
n=1

ΦnΦTn = AAT (2.4)

where C is N2 ×N2, and detemining the N2 eigenvectors and eigenvalues. This is an intractable task

for typical image sizes; but with this analysis, the calculations are greatly reduced to M ×M . N2 is the

order of the number of pixels in the images, and M is the order of the number of images in the training

set. So, the actually training set will be relatively small M � N2.

Afterwards, we have to calculate the eigenvectors Vmm and the eigenvalues λm from the C matrix

using Jacobi method and we have to order the eigenvectors by the highest eigenvalues. Jacobi’s method

is chosen because of its accuracy and reliability. We also apply the eigenvectors matrix Vmm and the

adjusted matrices Φm; these vectors determine linear combinations of the training set images to form

the eigenfaces Uk.

� Eigenfaces Uk:

Uk =

m∑
n=1

ΦnVkn (2.5)

where k = 1, 2, ...m′

Instead of using all m eigenfaces, m′ < m we assume that the images provided for training are more

than 1 for each individuals or class.

� Each Image Face Vector:

Wk = UTk (Γ−Ψ) (2.6)

each image have its face vector Wk and mean substracted vector of size p × 1 and eigenfaces is Upm′ .

The weights form a feature vector: ΩT = [w1, w2, · · · , wm′ ]

It is worth metnioning that a face can be reconstructed by using its feature, ΩT vector and the previous

eigenfaces Um′ as follows:

Γ′ = Ψ + Φf (2.7)

where Φf =
∑m′

i=1 wiUi.

The Eigen Faces method has its drawbacks such as the fact that no class labels are taken into ac-

count; it’s only about comparing a pair of face-images, and because of the variance dependence, it’s very

sensitive to external light conditions. The only positive point about Eigen Faces, they are optimal for

face reconstruction tasks.
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2.1.3 Fisher Face - LDA

The next level approach, is Fisher Faces [10] a Linear Discriminant Analysis (LDA) method also well

known in the Pattern Recognition field. Fisher Faces have the ability to take into account class labels;

this is very helpful for face recognition, because we want to create a class per face id and separate it from

the other. Here comes the main property of the Fisher method, which is that it tries to minimize the

variance within a class, while trying to maximize the variance between the classes. Fisher Face extends

and improves the Eigen Face method by dealing better with illumination variation in an image, while

at the same time can handle face expression quite well.

Fisher Faces Equations:

� Between-class scatter matrix:

SB =

c∑
i=1

Ni(µi − µ)(µi − µ)T (2.8)

� Within-class scatter matrix:

SW =

c∑
i=1

∑
xk∈Xi

(xk − µi)(xk − µi)T (2.9)

where i = 1, 2 · · · c, c is the total number of classes, µi is the mean image of class Xi, µ is the overall

mean of images, xk ∈ Xi, xk is the kth image inside the class Xi, and Ni is the number of samples in

this class.

� Optimal projection matrix:

Wopt = arg max
W

|WTSBW |
|WTSWW |

= [w1w2 · · ·wm]

(2.10)

where wi|i = 1, 2, ...,m is the set of generalized eigen-vectors of SB and SW corresponding to the m

largest generalized eigenvalues λi|i = 1, 2, ...,m, i.e.,

SBwi = λiSWwi

i = 1, 2, · · · ,m. It is also important to say that there are at most c− 1 nonzero generalized eigenvalues,

and so an upper bound is the c− 1 for m.
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2.1.4 Nowadays

Nowadays, there are so many different solutions for robust Face Recognition to choose from, depending

on how much accurate we want it to be and how fast it can be deployed. Just to reference some of them,

mostly for feature extraction,these are Haar -like features [11], Local Binary Transformation [12, 13], and

Histogram of Oriented Gradients [14, 15] which are implemented by libraries like OpenCV and Dlib,

followed by a type of binary classifier, in order to separate faces from non-face regions in an image. And

then, there are Neural Networks, like CNNs, which can solve both the Detection and Recognition part

of the problem. We can also use a combination of classical Pattern Recognition algorithms along with

Neural Networks to solve the whole aspect of the problem, with a more elegant way1.

1See also OpenCV Face Recognition [6]
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2.2 Speech/Speaker Recognition

The speech recognition includes all the methodologies and technologies that enable the recognition

and translation of a spoken language into text by computers. It is known more, like, automatic speech

recognition (ASR). We are already enjoying this technology as the basic feature of chatbots or as voice

assistants helping our everyday life, by executing many kinds of tasks in an easier way. For instance, we

can make a call by using voice commands while driving.

On the other end, we have a related recognition task referred to as speaker recognition. Speaker (or

voice) recognition [16] is the ability of a computer to know the voice of a person speaking into it, in

such a way that only the voices that the computer knows can be identified. This process can simplify

the task of translating speech in systems that can deal with a specific person’s voice in order to use

them for authentication or verification as part of a security process. Speaker recognition can be split

into two cases; the first is the text-dependent case, where a speaker is recognized by some predefined

set of words or phrases, and the other is the text-independent case, which is based on identifying the

speaker by his/her actual voice characteristics and can be used for a variety of applications of speaker

recognition.

2.2.1 Feature Extraction

Filter banks [1] along with the MFCCs [17, 18] (Mel-Frequency Cepstral Coefficients) are two similar

and widely known techniques for voice features extraction. MFCCs are also computing filter banks, but

they add some more extra steps up to the final feature map of a voice or sound signal. Let’s now take a

look at the algorithm behind the filter banks technique and compare it with the MFCCs one.

Pre-emphasis filter:

First, we have to amplify the high frequencies of our signal because higher frequencies have smaller

magnitudes. In order to do this, we use a pre-emphasis filter. The pre-emphasis filter applied to a signal

x using the first-order filter is shown in the following equation:

y(t) = x(t)− αx(t− 1) (2.11)

where α is the filter coefficient, with typical values to be 0.95 or 0.97.
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2.2 Speech/Speaker Recognition

Split signal into frames:

Then we split our audio file into small overlapped frames due to frequency changes over time, and for

that reason, it’s not a good idea to apply FFT to the whole signal. So we assume that in a short period

of time our frequencies are stationary and we can apply FFT to these short frames, without losing any

frequencies contours of a signal over time. In general, frame sizes in speech processing range from 20

msec up to 40 msec with a 50% overlap between consecutive frames of our signal.

Window filtering:

The next step is to apply a kind of window filter as proposed by the initial theory of MFCCs. For

example, in this step we use a Hamming window filter, which is more like a Gaussian filter. The Ham-

ming window is given by this equation:

w[n] = 0.54− 0.46cos

(
2πn

N − 1

)
(2.12)

where n = 0, 1, ..., N − 1, with N being the length of the window or otherwise N is the total number

of samples. Both n,N ∈ Z.

In Figure 2.1 we have a hamming window of size N = 200, for each sample n we get a value

(amplitude) 0 ≤ w[n] ≤ 1. The main reason why we apply a Hamming window is to counterbalance the

assumption of FFT that the data are infinite and also to reduce the spectral leakage.
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Figure 2.1: Hamming window [1]
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2.2 Speech/Speaker Recognition

FFT and Power Spectrum:

For this step we do a N -points FFT on each of the above frames to calculate the frequency spectrum.

This method is referred to as Short-Time Fourier-Transform (STFT) and we are using a N = 2048.

Afterwards we compute the power spectrum using the following type:

P =
|FFT (xi)|2

2N
(2.13)

where xi is the i-th frame of a signal x.

Mel-Coefficients:

In the end, we have to apply some triangular filters, shown in Figure 2.2, with 64 filters on a Mel-

scale to the power spectrum, to extract the frequency bands of the voice signal. The Mel-scale is closer

to simulating the non-linear human ear perception of a sound. Mel-scale is more discriminative at the

lower frequencies and less at the higher ones. Converting Hertz to Mel is given by these equations:

m = 2595 ∗ log

(
1 +

f

700

)
(2.14)

f = 700 ∗
(

10
m/2595 − 1

)
(2.15)

Figure 2.2: Mel filters [1]

Hm(x) =


0, x < f(m− 1)
x−f(m−1)

f(m)−f(m−1) , f(m− 1) ≤ x < f(m)
(m+1)−k

f(m+1)−f(m) , f(m) ≤ x < f(m+ 1)

0, x ≥ f(m+ 1)
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After we have applied the filter bank to the power spectrum (periodogram) of the our signal, we

obtain the spectogram shown in Figure 2.3.

Figure 2.3: Spectogram [1]

With these steps above, we have described how filter banks extract the required information from a

voice signal. These steps are the same for MFCC technique also, but here comes the next step, which

makes MFCC different from filter banks. Because of the high correlation between frames, sometimes this

can cause problematic behavior in some machine learning algorithms. So, we have to remove the frames’

correlation. There comes the MFCC technique by applying a DCT (Discrete Cosine Transformation)

to de-correlate the filter banks coefficients. Also by this method, we manage to compress the size of the

representation of filter banks.

Mean Normalization:

If we have to balance the spectrum and improve the Signal-to-Noise Ratio (SNR), we can simply

subtract the mean of each coefficient from all frames. In case that Mel-scaled filter banks are the desired

features, then we can skip to mean normalization.

2.2.2 Hidden Markov Models

The Hidden Markov Model [19, 20] is an extension of the Markov Model, which uses Markov’s chain

rule to describe the dependency between the different states of a stohastic process. A Markov chain

contains all the possible states of a system and the probabilities of transitioning from one state to the

other. The most important feature of this approach is the assumption of Markov’s rule that the next

state depends only on the current state, which simplifies the description and the calculations of finding

the probability of the next state.
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But there are some cases, within a Markov model, where not all the states are observable by an

external observer. We call these states hidden states, and the model is referred to as HMM. In order to

describe and define these states, we need some indirect information about them. For example, let’s say

we have two states of a person’s emotions {A: Angry or C: Calm}, which we cannot directly observe. In

addition, we have the information that if A:True, person’s voice volume is high with probability 0.8, but

when C:True that probability is 0.1. So, we can observe the voice’s volume and figure out something

about the emotional state of a person. The probability of observing an observation given a hidden state

is called the emission probability, and then there is the probability of transitions between different

states, which is referred to as transition probability (Section 2.4). In order to learn our HMM model

and define its parameters (emission and transition probabilities) we use the Baum-Weltch algorithm

which is a form of the Expectation Maximization algorithm (E.M.) (Section 2.2.3);

Now, on the speech recognition field, the observation is the context in each audio frame; an audio

frame is represented by using MFCC parameters (Section 2.2.1) and with a HMM we represent the

sequence of these audio frames. The HMM approach though, is used mostly for text-dependent speech

recognition, like when we need to recognize specific phrases or words. If we move one step forward, a

state in a HMM model can be thought to have a mixture of distributions (e.g. Gaussian mixture) with

the probability of belonging to a distribution being represented by the emission probability; each state

in the HMM can have a unique set of emission probabilities; or in other words, that each state in a

HMM can be thought of as a GMM (Gaussian Mixture Model, Section 2.2.3)1. But when it comes to

text-independent speech recognition HMM fails (or at least it is too complicated) to approach every kind

of words’ combination and phrases, due to the size of the whole set.

P (x) =
∑
s

P (x, s) =
∑
s

P (x|s)P (s) (2.16)

1emission probabilities representing the probability of association to a distribution
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Figure 2.4: HMM model
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2.2.3 Gaussian Mixture Models

A GMM or Gaussian Mixture Model [21] is a probabilistic model for representing normally distributed

sub-populations within an overall population. Also as we mentioned before, it can be thought of as a

single state HMM. In general, mixture models don’t require knowing in which sub-population a data

point belongs to, allowing that way, to learn automatically each class. In the case of Speaker Recognition

by using a mixture of Gaussian distributions we try to model speakers identity by weighting each part

of the Gaussian mixture with a specific probability in such a way that every speaker has his own model

as a linear combination of Gaussian distributions. So, a GMM is parameterized by two types of values,

the mixture component weights and the component means and variances/covariances. In a

Gaussian mixture model with J components, the jth component has a mean of µj and variance of σj

for the univariate case and a mean of −→µ j and covariance matrix of Σj for the multivariate case. The

mixture component weights are defined as Pj for component Cj , with the constraint that
∑J
j=1 Pj = 1,

so that the total probability distribution normalizes to 1.

A multi-dimensional Gaussian distribution is given by the following type:

N(x|µj ,
∑
j

) =
1√

(2π)J |
∑
j |

exp

−1

2
(x− µj)

T
∑
j

−1
(x− µj)


=

J∑
j

N(x|µj)

=

J∑
j

p(x|j)

(2.17)

where p(x|µj) ∼ N(µN ,
∑
N ),

An alternative way to model an unknown p(x) is through a linear combination of p.d.f (probability

density function) of,

p(x) =

J∑
j=1

p(x|j)Pj (2.18)

where
∑J

j=1Pj = 1,
∫
x
p(x|j)dx = 1 and J distributions contribute in the p(x).

To learn the parameters of a Gaussian Mixture Model we use the Expectation Maximization (E.M)

algorithm,

Expectation Maximization Algorithm (EM):
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In our case the entire set of data consists of the common events xk, jk ,k = 1, 2, ..., N where jk ∈

[1, J ] ⊂ Z and defines the mixture that was produced from xk. By applying the Maximum-Likelihood

(ML) rule :

p(xk, jk;θ) = p(xk|jk;θ)Pjk (2.19)

Let’s assume mutual exclusion between samples of the set, the log-likelihood probability function is:

L(θ) =

N∑
k=1

ln(p(xk|jk;θ)Pjk) (2.20)

If P = [P1, P2, · · · , PJ ]T and the vector of unknown parameters is ΘT = [θT ,PT ]T .

� Step E:

Q(Θ; Θ(t)) = E

[
N∑
k=1

ln(p(xkk;θ)Pjk)

]

=

N∑
k=1

E
[
ln(p(xk|jk;θPjk)

]
=

N∑
k=1

J∑
jk=1

P (jk|xk;θ(t))ln(p(xk|jk;θ)Pjk)

(2.21)

Now we can simplify our symbols in the above equation by removing the index k from jk because

∀k we sum all possible J values of jk which are the same for each k. We can now show the algorithm of

Gaussian mixture components with diagonal covariance,
∑
j = σ2

j I.

p(xk|j;θ) =
1

(2πσ2
j )l/2

exp

(
−
‖xk − µj‖2

2σ2
j

)
(2.22)

Suppose that the a-priori probabilities Pj , the mean values µj and the variances σ2
j ,j = 1, 2, · · · J of

Gaussian mixture components are also unknown. So θ is a vector of dimension J(l + 1) and from the

above equations by removing constant term we have:

� Step E:

Q(Θ; Θ(t)) =

N∑
k=1

J∑
j=1

P (j|xk; Θ(t))

(
− 1

2
lnσ2

j −
1

2σ2
j

‖xk − µj‖2 + lnPj

)
(2.23)
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� Step M:

In this step we have to maximize the above function as to µj ,σ
2
j and Pj .

µj(t+ 1) =

∑N
k=1 P (j|xk; Θ(t))xk∑N
k=1 P (j|xk; Θ(t))

(2.24)

σ2
j (t+ 1) =

∑N
k=1 P (j|xk; Θ(t))‖xk − µj(t+ 1)‖2

l
∑N
k=1 P (j|xk; Θ(t))

(2.25)

Pj(t+ 1) =
1

N

N∑
k=1

P (j|xk; Θ(t)) (2.26)

Figure 2.5: Gaussian Mixture Model example
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2.2.4 Nowadays

Speech and Speaker recognition have a long history with many major innovations. In our days from the

perspective of technology, the machine learning research, mostly by the use of neural networks and with

the big data, both speaker and speech recognition have benefited and they have significantly improved.

As a result, we have faster and more accurate systems that deal with both tasks; we can easily use neural

networks for speech/speaker recognition. For instance [21], if we think of HMM’s states as classes we

can use a multilevel perceptron model (MLP [22]) as a non-linear classifier. The observations are given

to the input nodes and the network will have as output the states; the number of outputs is equal to

the number of HMM’s states. The outputs of this network will be close to the a-posterior probabilities

P (i|x)1. From Bayes rule we can get,

p(x|i) =
P (i|x)p(x)

P (i)
(2.27)

where the a-priori probabilities of the states P (i), are defined from the relative frequencies of appearance

and p(x) is the same for all the states during the recognition process. But this method cannot always

split the audio frames in an accurate way, as the original HMM method; in other words, the boundaries

between the frames may not be defined that well and an overlay among them might appear.

An alternative is Convolutional Neural networks, a trending solution for speech/speaker research [23,

24] problems like those above, as they manage to use the speech spectrogram as an input image. Further-

more, many big companies like Google have launched a few software tools helping developers to build

their own applications based on speech/speaker recognition tasks relying on AI and machine learning

field (Google cloud platform).

1See example [21] page-472
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2.3 Neural Networks

2.3.1 Introduction to Neural Networks

The first idea of a mathematical model close to the Neural Network (NN) (Figure 2.6) was introduced

back in 1943 by Warren McCulloch and Walter Pitts. They used some threshold technique to simulate

the way a real neuron works, on the humans’ brain (Figure 2.8). It was a few years later when Frank

Rosenblatt in 1958 created the Perceptron [25] Model, the simplest model that is used in neural networks

till our days. For example, Iris classification problem is actually solved with a Perceptron model and

it constitutes an introduction to Neural Networks for beginners. But then, it was Marvin Minsky and

Seymour Papert [26] who showed the limitations and problems of this model, many of which were solved

by Paul Werbos [27] around 1975 by creating the Back Propagation technique to solve the XOR problem.

Back Propagation is the way of a neural network to understand its ”mistakes” and learn from them by

feeding its output back to its inputs and by calculating the error from a set point (real data), as shown

in Figure 2.7. This was a fundamental step on the evolution of Neural Networks as it is being used from

that day to all the Neural Network algorithms we have come up with.

For the following decades, there wasn’t any improvement in the field, except, maybe, from the Max-

Pooling method, introduced back in 1992 [28] for 3D object recognition. This method helped to the least

shift invariance and the tolerance to deformation. Things kept going on for Neural Network models with

small improving steps through the following years.

It was around 2009, when research interest was renewed, mostly because the big data and the Internet

of things evolved very fast. Progress continues till nowadays, where NN are considered to be the state of

the art mathematical model for solving almost every difficult and complex problem in Computer science,

and especially in the Artificial Intelligence field. Many models were created in the past ten years, like

Recurrent Neural Network (RNN, LSTM) [29], Convolutional Neural Network [30] (CNN) or Residual

Neural Networks [31] (ResNet).
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It is also good to mention that nothing would have ever happened, if there wasn’t the evolution of

the hardware technology, like GPU acceleration techniques. Big Data was one ingredient, but without

the hardware improvements that helped the processing of data, by making it faster and more efficient,

possibly Neural Networks would have stayed in the closet. Companies, like Nvidia, have contributed so

much to the field and they still do it with an awesome pace that does not leave you indifferent and also

makes you curious for the future.

Figure 2.6: Neural Network
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Figure 2.7: Single Neuron Back Propagation

Figure 2.8: Real Neuron Humans’ Brain[2]
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2.3.2 Transfer Learning

Observing the way we humans try to deal with tasks, an interesting behavior emerges; the behavior

of seeking previous similar experiences or any kind of useful knowledge from the past, that will help to

find solutions to new tasks (or problems). This behavior, if we see it as an idea, is the cornerstone of

the transfer learning [32] technique, used in machine learning.

So, in transfer learning, the knowledge learned in one or more source tasks is transferred and used

to improve learning of a related target task. How is this applied to neural networks? As we know, the

neural networks training phase requires a lot of time and it is not very efficient to create models from

scratch each time we have a different use-case for neural networks. For that purpose, we demand to

reuse some NN models that have been trained, for solving similar problems. Let’s take as an example

a convolutional neural network that is used for classifying objects through images (e.g. tables, chairs,

etc), after we create this model and we train it for some object-classes. If then we need to recognize

a different kind of object, like cars, creating a new model from scratch to recognize cars in images is

not the best approach. Instead, we try to use the base model’s knowledge for object classification in

order to recognize cars too. This approach at least will save us time and effort. In convolutional neural

networks, the early layers extract mostly generic features from images –color, illumination, etc – while

the later layers extract mostly features specific to the original-dataset . Applying transfer learning to our

example, we will keep the weights of the first few layers of the object classifier and we will re-train the

last layers in order to recognize car-like features. The idea of transfer learning is visualized in Figure 2.9.
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Figure 2.9: Transfer Learning method -pipeline[3]
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2.3.3 Convolutional Neural Networks

Convolutional Neural Network [30] (CNN) is a type of Artificial Neural Network (ANN) mostly used

for image recognition and classification tasks. In general, a CNN model can be seen as a regularization

of multi-layer Perceptrons, which actually are a kind of fully connected networks. By fully connected we

mean that each layer’s node is linked with every node of the neighbor layer. This property attributed to

multi-layer Perceptron is prone to overfitting data. So, by taking advantage of hierarchical patterns in

data, CNN tries to assemble the most complex patterns into simpler and smaller ones, achieving with

that, reduction of complexity and connectedness of the model.

From the aspect of image classification tasks, CNNs demand, relatively, less pre-processing on data,

compared to classic pattern recognition algorithms, because they manage to learn the filters that fit to

the extraction of feature sets that otherwise would need to be hand-crafted. This is a huge plus for the

engineers, since it requires slighter human effort for the design and development of complicated solutions

for such kind of problems.

By the time this text is written, CNNs are the main architecture (Figure 2.10) that is used for a

wide range of problems, besides image classification. For example, CNNs are used now for Speech and

Speaker Recognition, also gradually replacing Recurrent Neural Networks, which are used for input data

that are based on time-sequence, an example of this kind of data being sound (or voice). Also we should

not forget to mention that convolutional networks inspired and are fundamental for some of the state of

the art models, like ResNets [31].
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Figure 2.10: Convolutional Neural Network example [4]
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2.3.3.1 Convolution Layer

A convolutional layer [30, 4] is the main part of a Convolutional Neural Network. The purpose of this

layer is to be applied to the input in such a way that filters the whole input across every dimension in

order to extract features (Figure 2.11). The convolution layer’s parameters consist of a set of learnable

filters, which have a small receptive field, but extend through the full depth of the input volume. During

the forward pass, each filter is convoluted across the width and height of the input volume for each

channel. For example, an RGB image volume is an N-dim-array and has a size of shape (height, width,

3), so convolution filters each sub-array with respect to channel size. This layer computes the dot product

between the entries of the filter and the input and produces a 2-dimensional activation map of that filter.

As a result, the network learns filters that activate, when it detects some specific type of feature at some

spatial position in the input. In each machine learning framework, there are two types of Convolutional

Layers implemented; one is for 2-D and the other is for 3-D input volumes.

The Convolution layer is specified by the kernel and the stride size which actually set the shape of

the filter mask that we want to pass through an input matrix. Kernel refers to the actual filter size;

usually a kernel of 3× 3 is used on most CNN model implementations. The Stride option determines if

there will or will not be an overlap between masks that filter the input matrix.

G[m,n] = (f ∗ h)[m,n] =
∑
j

∑
k

h[j, k]f [m− j, n− k] (2.28)

where h is the filter( kernel), f is the image-vector, and m, n is number of rows and columns or image

vector of size m× n.

Anastasios Karageorgiadis 28 November 2019



2.3 Neural Networks

Figure 2.11: Convolution filtering
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2.3.3.2 Max Pooling

Max pooling [33, 28, 30] is a standard way of down-sampling the outputs of a layer in a Neural

Network. It is most commonly used in Convolutional Neural Networks after each convolution layer. Its

main purpose is reducing the dimensionality of data and allowing for assumptions to be made about

features contained in the sub-regions binned, for example, in an image to keep some specific Regions of

Interest. The way it is done is by applying a max filter to (usually) non-overlapping subregions of the

initial representation, it also helps as to avoid the overfitting of our model.

For example, in Figure 2.12 suppose that we have a 4×4 sized input; we apply some 2×2 convolution

filters and we also have a stride of 2. This example shows that our max-pooling layer will only keep

the highest values for each region, and as you can see it reduces the size back to 2 × 2 from 4 × 4. In

Figure 2.13 there is a max pooling example in a real image.

Figure 2.12: Max Pooling example

Anastasios Karageorgiadis 30 November 2019



2.3 Neural Networks

Figure 2.13: Max Pooling image example
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2.3.3.3 Batch Normalization

Batch normalization [34] is a technique for finding and normalizing the output data from a layer in

Neural Networks. More precisely, we apply batch normalization after a convolutional layer, in our case

of a CNN model. This technique helps our network to define the appropriate distribution of the layer’s

output, which may differ from the standard Gaussian distribution with zero mean and variance equal

to one. This problem is also called covariate shifting and our goal is to reduce it by applying batch

normalization. Defining the distribution of input/output data on each layer helps our model to learn

faster and be more robust to different initialization schemes. In our case, we used batch normalization

during the development of the first model approach for speaker recognition in order to be able to use

higher learning rates without vanishing or exploding gradients and we could also remove dropout layers

to mitigate overfitting. Thus, we were more flexible to test and improve our model’s training process by

observing how it responds to different learning rates, dropout factors, etc. But, how batch normalization

algorithm work? It starts from the point, where we have zero mean and one variance, and tries to

specify the mean and the variance of data in each layer by learning some extra variables, which will be

trained along with all the other variables (weight, biases, etc). With this process, we manage to learn a

distribution closer to the actual output data. Actually, these extra variables are linear equation scaling

factors.

yi = γx̄i + β (2.29)

Algorithm 1 Batch Normalization algorithm

INPUT: Values of x over a mini-batch: B = {x1··· ,m}
Parameters to be learned γ, β

OUTPUT: {yi = BNγ,β(xi)}

µB ←
1

m

m∑
i=1

xi (2.30)

σ2
B ←

1

m

m∑
i=1

(xi − µB)2 (2.31)

x̂i ←
xi − µB√
σ2
B + ε

(2.32)

yi = γx̄i + β ≡ BNγ,β(xi) (2.33)
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There are many questions about what the right place in a model to apply batch normalization whether

it is necessary, while a lot of research through out the last years is made in order to find out the positives

and consequences of every possible scenario.
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2.3.3.4 Activation Functions

Activation functions [35, 30, 36] are used to obtain the output of a neural network layer’s node. It

actually maps the node’s result values in [0, 1] or [-1, +1] depending on the function. There are two types

of activation functions, Linear and Non-Linear ones. For example, a linear function would be something

like y = x. A non-linear example is an exponential or logarithmic function.

In neural networks, we mostly use non-linear functions, one of this type is the Sigmoid(Figure 2.14).

But we mostly use a variant of the Sigmoid , the ReLU –Rectify Linear Unit(Figure 2.15)–, which is

half rectified in x ∈ [−∞, 0]. The function and its directive are both monotonic (increasing).

�The Sigmoid function:

σ(x) =
1

1 + exp−x
(2.34)

Figure 2.14: Sigmoid plot

�The ReLU function:

R(z) = max(0, x) (2.35)

or otherwise we can say:

f(x) =

{
0, if x < 0 (2.36)

x, if x ≥ 0 (2.37)
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Figure 2.15: ReLU plot

The ReLU ’s drawback is that all negative values become zero immediately, which decreases the

model’s ability to fit or train from the data properly. That means any negative input given to the ReLU

activation function turns the value into zero immediately in the graph, which in turn affects the resulting

graph by not mapping the negative values appropriately. It is also known as zero-stacked neurons problem

and its more likely to occur when we have a high learning rate or there is a large negative bias. This

problem means that many neurons will not add useful information to our network, so a solution to that is

adding a dropout parameter, where neurons are disabled with a random probability in order to retrieve

information from different neurons each time and improve the fitting of the model.

Engineers have come up with some other activation functions to avoid this problem, like LReLU ,

PReLU , and ELU . Which are shown in Figures 2.16, 2.17 along with their equations:

� Leaky–ReLU equation:

f(x) =

{
0.01× x, if x < 0 (2.38)

x, if x ≥ 0 (2.39)

if we generalize the equation of LReLU it comes to PReLU,

� Parametric–PReLU equation:

f(x, a) =

{
a× x, if x < 0 (2.40)

x, if x ≥ 0 (2.41)

where a is added to set of the trainable variables of the model.
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Figure 2.16: Leaky and Parametric–ReLU plot

� Exponential Linear Unit (ELU) equation:

f(x, a) =

{
a× (expx−1), if x ≤ 0 (2.42)

x, if x > 0 (2.43)

Figure 2.17: ElU plot
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An other well known activation function is the Softmax . Softmax is a function that takes as

argmunent a vector of N real numbers and convertes it into a probability distribution consisting of N

probabilities proportional to the exponentials of the input numbers (Figure 2.18). This method actually

normalizes the input between [0,1] by respecting the main rule of probability theory that
∑N
i P (Ni) = 1.

In neural networks Softmax is used in the most cases after the last layer –logits– to map the non–

normalized otuput to a probability distribution over the predicted logits or classes. Also Softmax is used

into calculation of the loss in such cases by using softmax–cross-entropy loss.

� Softmax Equation :

σ(xi) =
expxi∑N
j=1 expxi

(2.44)

this is the standard softmax function σ: RN → RN, where i = 1, · · ·N and x = (x1 · · · , xN ) ∈ RN .

Figure 2.18: Softmax example
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2.3.3.5 Loss Function

The most used and reliable loss function used in Neural Networks is Cross entropy loss [37, 38]. Cross

entropy loss has its root based on information theory, where cross entropy is the average number of

bits needed to state that two probability distributions (p,q) are different from each other. In machine

learning this idea refers to the distance between the predicted output (labels) of our network and the

true labels of the data-set.

� Cross Entropy Definition:

H(p, q) = Ep[− log(q)] (2.45)

which can be formatted using the Kullback–Leibler divergence ( known as the relative entropy of p

with respect to q).

H(p, q) = H(p) +DKL(p||q) (2.46)

� Cross entropy Equation:

H(p, q) = −
∑
x∈X

p(x) log q(x) (2.47)

where p, q are the two discrete probability distributions for the same support X.

So, in neural networks qi are the predicted labels and pi Re the true labels (pi and qi referred to the

labels of a trianing sample i). The purpose of a machine learning algorithm – like Neural Net – is to

minimize the cross entropy until its optimal point. That’s the reason we need a kind of optimizer, so

that cross entropy converges faster and avoid local minimal points – (see Section 2.3.3.6).

Then, there is the softmax-cross entropy loss (see Section 2.3.3.4) to calculate the cross-entropy loss

of the logits layer when we need to apply softmax as the final layer of our network’s output.

� Softmax-Cross Entropy Loss:

Li = −
C∑
c=1

yc log(pc) (2.48)

or otherwise

Li = −
C∑
c=1

yc log(pc) + (1− yc) log(1− pc) (2.49)

where pc is the output probability for the class c, of a single training sample i
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if we have M training samples it can be generalized to:

L = −
M∑
i=1

C∑
c=1

yci log(pc) (2.50)

Figure 2.19: Softmax Cross Entropy Loss example

There are also some other methods to calculate loss (or regression) of a model, like mean square

error, but cross entropy seems to be a better approach for most of the cases.
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2.3.3.6 Adam Optimizer

Adam [39] is an acronym that derives from Adaptive Moment estimation. It is a widely common

optimization algorithm that extends Stochastic Gradient Descent and RMSprop [40] and its goal is to

update the network weights iteratively based on the training data. In a nutshell, it is an adaptive learning

rate method, which means, it computes individual learning rates for different parameters and it uses the

estimations of first and second moments of gradient in order to adapt the learning rate for each weight

of the neural network.

By the term moment we mean the N -th value of a random variable which is defined as the value of

that variable to the power of N . This random variable in a neural network is represents the gradient of

the loss function.

mn = E[Xn] (2.51)

Let’s see how the Adam algorithm works and what math is behind each step. In the very first stage,

all the vectors of moving averages are initialized with zeros so m0 = 0. Then we have the first moment,

which is simply the mean of the gradient, and after there is the second moment, that is, the uncentered

variance of it. So, Adam optimizer tries to estimate moments by utilizing exponentially the moving

averages, which are computed on the gradient evaluated on the current mini-batch.

� Moving averages equations:

mt = β1mt−1 + (1− β1)gt (2.52)

vt = β2vt−1 + (1− β2)g2t (2.53)

where β’s are the hyper-parameters of the algorithm and also are defined as β1 = 0.9, β2 = 0.999.

Then, we have the expected values of the estimators, which are described by the following equations:

E[mt] = E[gt] (2.54)
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E[vt] = E[g2t ] (2.55)

If these expected values are equal to the parameter we are trying to estimate, then our estimator

is unbiased, but in our case, since we initialize the average with zeros, the estimator becomes biased

towards zero.

� Unroll step by step equations:

m0 = 0 (2.56)

m1 = β1m0 + (1− β1)g1 = (1− β1)g1 (2.57)

m2 = β1m1 + (1− β1)g2 = β1(1− β1)g1 + (1− β1)g2 (2.58)

m3 = β1m2 + (1− β1)g3 = β2
1 + (1− β1)g1 + β1(1− β1)g2 + (1− β1)g3 (2.59)

As is shown from the above steps, we can understand that as further we go expanding the value of m

the less the first values of the gradient contribute, to the overall value as they get multiplied by smaller

β in each step. In general, we can transform the previous equation to this form:

mt = (1− β1)

t∑
i=0

βt−i1 gi (2.60)

But, still we have to correct our estimation and this step is called bias correction

m̂t =
mt

1− βt1
(2.61)

v̂t =
vt

1− βt2
(2.62)

The last step is to scale the learning rate for each parameter individually:

Wt = Wt−1 − η
m̂t√
v̂t + ε

(2.63)
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The are also some variants of Adam, like Adamax which uses the L2 norm of the current gradient

but is a little bit unstable and then there is Nadam, that uses Nesterov momentum. At the end Adam

is one of the trend optimizers in Neural Networks in the last couple of years.
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Problem Statement

3.1 Person Indexing in Video Streams

Person indexing in video streams is the problem of recognizing a person’s identity and finding the

time slot in which that person appears in a video. This is the problem we are dealing with in this

diploma thesis and it is among the trend problems in the Artificial Intelligence (AI) field, mostly for

human identification and verification. As our needs for more efficient systems of this kind are increasing,

several hybrid recognition methods are proposed, in our case a combination of image and voice data.

This statement becomes clearer, if we view a video as a sequence of photos and sounds. Thus, we have

different kinds of data to process in a fast and reliable way in order to identify and classify a person.

Image and Voice data in a video stream seem to be uncorrelated at first sight. If we step back for

a moment and think, we will find out that they share a common feature within the video, namely the

time. The time refers to the actual time-stamp of a set of frames where images and sound coexist. This

simple observation implies that time will have to play a critical role in helping us to solve the problem.

Another obvious observation is that image data will be used to address the problem of face recognition

(when the face of the target person appears). Likewise, sound data will be used to address the problem

of speaker recognition (when the target person speaks). As a result, to obtain an effective solution to

the problem we are dealing with in this thesis, these two sub-problems, Face Recognition and Speaker

Recognition, have to be studied separately first and finally be fused.

Our goal is to build a system that can be easily deployed and is also as fast and accurate as it can

be. Furthermore, we would like our work to be future-proof, in a way that we can maintain and expand

it with little effort. For example, we would like to be able to add new persons’ identities or even more

other types of identities, if we intend to use the system, for recognizing different kinds of entities besides
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humans.

3.2 Related Work

Our work was inspired by a previous approach for Person Indexing based on audio-visual data, titled

”A fully automatic face recognition system using a combined audio-visual approach” and authored by

Albiol, Torres, and Delp [41]. In that paper, audio and visual information is used independently, so as

to obtain confidence values that indicate the likelihood of a known person to appear in a video stream.

Then, a post-classifier (a kind of late integration) is used in order to achieve the fusion between visual

and audio confidence values. As a result of this hybrid system, a better recognition rate is achieved. In

this section we will discuss the above-referenced paper in order to explain the techniques it uses. We

will also point out aspects of this work, which can be improved and will be used as starting points in

our approach.

The PCA method (Section 2.1.2) is one of the most successful approaches used for face recognition.

In the above work, the face recognition problem is solved with the help of the self-eigenfaces, which is

a variant of the PCA algorithm. In self-eigenfaces, the PCA is executed for each person using her/his

subset of training faces (images); their training set includes multiple training faces per person. In a

nutshell, the PCA is performed independently for every single person-class, while in the original PCA

algorithm it is only performed once across all the faces (one face image per person). The outcome of

this analysis is a set of eigenfaces for every identity (person). These types of eigenfaces are referred to

as self-eigenfaces. To model each person they use a set of parameters,

Fm =
{
xmµ ,Vm

}
(3.1)

where xmµ is the average face of person m and Vm is a matrix whose columns are the Km principal self-

eigenfaces xmµ of person m. For the purpose of dimensionality reduction, Km is chosen to be much smaller

than the number of pixels of the face patterns. The location of the eyes is taken as the normalization

parameter for the size of each training face.

For the test stage, with the self-eigenfaces method, each face candidate is projected and then recon-

structed utilizing each Fm (self-eigenfaces). At the end, the metric of confidence for the possibility the

identity of the face candidate to be person m is the reconstruction error. More specifically, if x is a test

face, represented as a column vector, the equation

ym = VT
m

(
x− xmµ

)
(3.2)
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gives the projection coefficients of a person m. Then, the original test pattern xm can be calculated

approximately by the following reconstruction:

x̃m ≈ Vm · ym + xmµ (3.3)

After reconstruction of the test image, the reconstruction error of person m is given by:

ε =
1

255

√√√√ 1

RC

RC∑
j=1

|x(j)− x̃m(j)|2 (3.4)

where j is the vector index and R, C are the number of image rows and columns respectively. When this

error is the smallest, the identity of self-eigenfaces is the same (or close enough) to the test face. The

global confidence measurement is obtained by taking the median value of that error; if εi is the minimum

error of reconstruction for all the faces appearing in a frame i, then

FCm = median
{
ε0, ε1, · · · , εN−1

}
(3.5)

represents the frame-based confidence of a person (Face Candidate) m to appear in a particular frame.

Inside the face recognition part, there is also a simple face detection method. For the purpose of

face recognition, the location of facial features must match those of the training faces. Therefore, the

location of facial features is compatible to the distance of the face model inside the detection phase. Facial

features are extracted by applying a zero-mean Laplacian filter1 to enhance facial features, followed by

a morphological erosion of size 3 × 3 to remove the white areas from teeth and eyes. Moreover, to

remove some non-useful features, an intensity thresholding is applied (20% of dark pixels are below the

threshold). If Wp are the pixels of the 3× 3 window at a pixel location p, after intensity normalization

and thresholding, then the distance to the face model is given by:

D(Fav,Wp) = ||Fav −Wp|| (3.6)

The above distance is only computed when skin color can be used to reduce the search of face

candidates to skin-colored areas, so as to reduce the computational burden, when flat skin-colored areas

can be discarded. The Fav is the average face model, which was obtained by averaging 280 patterns.

Moreover, this face detection method is used to extract faces from head and shoulders sequences (frontal

view in an upright position for a person) and it does not take into account face rotations or pose

variations. Because of the above, it leads to some missing faces with these circumstances.

The drawbacks of above approach are that (a) it uses only front-facial images and videos, like in-

terviews at a TV show, (b) it is very sensitive to illumination changes, and (c) the selected region of

1Laplacian filtering
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interest (ROI) contains a lot of useless information (e.g. neck, shoulders, etc) during the face detection.

In our approach we try to deal with these drawbacks.

To perform speaker recognition, features must be extracted from the audio signal with respect to the

speaker. Once again, the MFCC method (Section 2.2.1) is applied to define the features per speaker across

all the train voice data. In particular, the first 12 cepstral vector coefficients and their corresponding

deltas are extracted every 17ms and a Hamming window of size 34ms is used. Then classification is

formulated, as a classical hypothesis test using the log-likelihood ratio:

ACm = log
{ p(S/m)

p(s/BM)

}
(3.7)

where S is the set of speaker-dependent features and p(S/m), p(S/BM) are the conditional p.d.f. of

the person m and the background BM respectively. The ACm is the confidence that a person m speaks

in a speech segment. Speaker recognition demands for text-independence is fulfilled by modeling the

p.d.f. with GMMs (Section 2.2.3). During the training phase, GMMs are built from 2 − 3min of clear

speech. The drawback of the above approach is that the small number (12) of cepstral coefficients leads

to relatively lower accuracy. This is another point we try to improve with our approach.

In the last step of the work of Albiol, Torres, and Delp, a Bayesian post-classifier is applied to

make the final confidence decision from the two independent modalities (face and speaker recognition).

A Bayesian classifier is based on the likelihood ratio of the conditional probability density functions

(p.d.f), p(Cm|tc) and p(Cm|im) (tc: true claimant, im: impostor classes). The p.d.f can be modeled by

GMMs, because they can deal with arbitrary densities.

Anastasios Karageorgiadis 46 November 2019



Chapter 4

Our Approach

In this diploma thesis, we develop a method for identifying exposed speakers within a video stream

using machine learning techniques. More specifically, after we exploit the structure of a video as a

sequence of images and sounds, we use these data for the identification of a speaker at each video frame.

To deal with the complexity of this problem, we propose a top-down approach to split it into two smaller

ones: Face Recognition and Speaker Recognition.

The proposed approach is based on Neural Networks and specifically Convolutional Neural Networks

in order to solve both the Face and the Speaker Recognition tasks. We try to provide better results by

combining different kinds of features (facial and voice) in such a way that we can easily deploy the final

system and extract information about persons appearing in videos, adjusting appropriately the desired

level of accuracy. For this purpose, we are filtering our final decision with appropriate thresholds, but

we also keep the face and speaker recognition details separately, in case we need a more detailed analysis

for the identities in a video frame. We try to take advantage of modern, state-of-the-art techniques that

are already used for each sub-problem and, by adding our ideas and personal experience, to create a new

solution.

Another crucial step for our implementation is to define our data and what our system’s input will

be. Video streams can be analyzed as sequences of images combined with sequences of sound. So,

splitting a video into frames and saving these images, generates the data set we need, to test on our

Face Recognition module. Then, we extract sound windows from the same video in order to create the

sound data for the Speaker Recognition module. In order to recognize a face identity, we need a training

data-set with all the possible classes (ids) and for each class, we must have a large enough variety of face

images. By variety we mean images that contain face poses of a person with different angles, expressions,

and resolution.
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The Face Recognition problem has two stages; the one of face detection and the other of recognition

of the detected face in an image (or video frame). The purpose of the face detection module (or stage)

is to detect faces into images and classify them into those which contain face and those with no faces.

Then, we keep the images where a face was detected and we crop each image around the face-ROI1.

Afterwards, we use them as input images to feed our face-recognizer, which will tell the id of that face

–if it is a known person’s face–. After that we resize our images to a specific size, common for all of

them, let’s say 256 × 256 and feed them in our model during the training phase. In the first phase, we

train our networks for Face Recognition by picking up Google images from persons that are contained

also in the speech data [42] set. Then we restore our trained models and run predictions by using a test

data-set, to check the real accuracy of the model on new unknown data.

The Speaker Recognition on the other hand tries to match the voice characteristics of a person with

the already known voices in the data set. For this task, we used a similar older project, which also has

the same feature size (image size of 64× 17), but was developed for Anti-spoofing verification on speech

utterances (source data). Our goal was to re-train it, by relying on the Transfer Learning (Section 2.3.2)

idea, in order to fine-tune it over new target data taken from the VoxCeleb dataset [42]. That was only

the first approach we took but we will see later on what the final speaker recognition model was. As

for the data pre-process we used the filter banks technique (see Sections 2.2.1, 4.2.1), to extract voice

features from all speech data.

Our solution uses two similar convolutional neural networks to solve the face and speaker recognition

problems and the same pipeline to extract image and sound data from videos both during the training

phase and during the testing phase. First, we are using a variety of pre-trained models for extracting

image features and classifying person identities based on facial characteristics and then a set of algorith-

mic steps to extract auditory features and accomplish person identity classification based on sound. In

the end, we combine the results of each classification to provide higher confidence as to the final result.

The proposed method has been implemented in the Python programming language using the Ten-

sorflow [43] framework and the Keras API [44]. The main advantage of the proposed method is that it

can be utilized for many different use cases, such as search for missing persons, recognition of celebrities,

or even promotion of public figures. It is also worth mentioning that with some minor changes it can be

used for identifying any other entity in a video stream, besides humans, with the only assumption that

the target entity can be identified through images and sounds, for example, some species of animals.

1ROI: Region of Interest
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4.1 Face Recognition(FR)

In the Face Recognition problem we have to recognize a person from an image input. The face of

that person must be learned before and must be added to our known faces base. Known face base is

created during the training phase of our models by specifying the size of it, –how many images per class

we need– the quality and the dimensions of each image as well. As to the actual recognition process the

standard approach is first to detect if there is a face in this image and then try to recognize it. That is

the way we divide the main problem into Detection and Recognition.

4.1.1 Face Detection

4.1.1.1 First Approach on face detection

The first attempt for Face Detection was done using the Dlib [45] library’s module –face landmark

detection.py– which uses a pre-trained data file of 68 face landmarks as input along with the input

face-image to be detected. These 68-face landmarks were extracted from million face-images and they

are representing points on faces like eyes’ shape and position, nose and mouth positions of a human face.

In other words, they are facial features.

Inside the module we have HoG–Histogram of Oriented Gradients [15, 14] (Figures 4.1, 4.2) filter

which is applied to the input image in order to extract face features and to remove the color and the

background, because they are not useful information for the detection. Then we compare this HoG

filtered image with the landmarks (Figure 4.3) file. In order to achieve this comparison and to decide

whether a face exists, a SVM –Support Vector Machine [46]– classifier is used. With the SVM method,

the detection module manages to classify image’s regions to those which contain faces and those which

don’t. This is a pretty straight forward approach for accurate and reliable face detection.

The advantage of this method its invariance to light conditions, face expressions and face accessories

like glasses. In addition its deployment speed is quite fast and it consumes a small number of system

resources.

The only drawback of the above module is the need for a front-view (portrait) images, namely it does

not perform well when there is a side-view (profile) image .
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Figure 4.1: A face image
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Figure 4.2: HoG filtered face image
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Figure 4.3: Landmarks face image
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4.1.1.2 Second Approach on face detection

We tried a second approach to resolve the drawback of the previous one. In general, in video streams

a person does not always stand in front of the camera looking straight at it, but there is a motion of the

head.

The method used employed this time is based on CNN model implemented in Dlib’s module –

face detection cnn.py– . More specifically, the CNN detection (Figure 4.4) module takes a pre-

trained file as input –mmod humman face detector.dat– alongside with the image and detects the faces

appearing inside. In this way, we have a more generalized purpose detector which manages to find faces

with different angles. By using the convolutional neural network method we need larger execution time

but we have better detection accuracy.

Figure 4.4: Detection with CNN, side-view (profile)image
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In conclusion, there is a minor disadvantage of both Dlib’s detection modules and that is they fail to

detect faces that are smaller than 80×80 pixels and also they cannot handle very large size images. This

case appears in a video stream when a person moves far away from the camera and that causes the face

region of a frame to shrink. On the other hand, OpenCV detection algorithms recognize almost any size

of the face in a frame but they lack accuracy as the detection bounding box is less related to the actual

face region. So, in our case we made the assumption that there is no a person who walks away from the

camera in a video stream and by filtering or resizing the images which are greater than 640 × 480, we

deliver a reliable and robust face detection approach.
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4.1.1.3 Crop and Resize Image

The common step after detection of faces for each class –independently from the detection method– is to

crop the detected face sub-region of the actual image and store it in the training set images (Figure 4.5).

Then –in the training phase– because in an image there is a chance to find additional faces that are

irrelevant to the class id of a person, we have to remove them manually from the data-set. If we want

to avoid this process we have to use images with only one person appearing in them, but in our case, we

use random images of a person from Google so this is almost impossible to happen.

After we have cleared our classes’ training data there is one more step to perform before we feed

them in our model. By cropping the detected face there is no guarantee that the output faces’ images

will all have the same dimensions! Feeding a Neural Network requires to specify the input matrix size,

which is the same for all input data. So, we resize every face image to have a size of 256 × 256. The

choice of that image width and height was made by testing different numbers, and having as goal to

minimize the input size while keeping as much quality information. At this point, it is good to mention

that these steps are repeated following the detection on the test set also, except for the step of removing

the unknown faces from the set.

The cropping is made inside the face detection script. When we detect a face we use the detection box

margins and we save the ROI of the image where a face is. Then we use a resize module –resize img.py–

that we developed using OpenCV library to resize –to the specified height and width– all the images of

a folder.

Figure 4.5: Detection Landmarks Crop
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4.1.2 Face Classification

Here comes the last step for the face recognition problem. Since we have created our training set from

detected faces per class, now we have to develop a model which will be fitted to the data and will make

predictions for the identity of the class. Before describing the implementation of our model we have to

organize our data into a .csv file where we keep the file path, the name of the class and a label for it

starting from ’0’. This action makes our data-handling easier and faster by using the pandas library to

read the actual class label and to load each image file. Last but not least, we have to encode our labels

with the one hot encoding method. In a nutshell, a label is an integer number from 0 till K − 1, where

K is the number of different classes.

One hot encoding (Figure 4.6) is a process by which categorical variables like labels, are converted

into a form that could be provided to Machine Learning algorithms to do a better job in prediction. In

short, this method produces a vector with length equal to the number of categories in the data set and

the predicted class has the value ’1’ while all the others have ’0’. This makes the result of our classifier

more understandable for the model.

Figure 4.6: One Hot Encoding Example

Let’s now talk about the Convolutional Neural Network model (Figures 4.7, 4.8) 1 which plays the

role of the classifier. After we made the necessary pre-processing of the data we load images to a large

Numpy array of shape

#images, 256, 256, 3

. Since our images are represented in RGB scale our input has 3 color channels– the array of data is

called Xinput and the one hot encoded labels are stored Yinput Numpy array. The first block of our

1Model developed with Keras
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model will have a convolution layer with kernel shape 3 × 3, and a number of output channels of 32.

After that we have a Rectified linear Unit –ReLU as the activation method of our layers neurons. At

last we have a Max Pool layer with strides and kernel shape [1, 1, 1, 1]. The second block is the same as

the first one with the only change being the stride size, which here is [1, 2, 2, 1].

The third and the fourth blocks are identical, they are composed of a convolutional layer with kernel

3 × 3 and output channels number 64, followed by a ReLU activation function and then the Max Pool

with [1, 2, 2, 1] shape for strides and kernel shape as the second block. Next we flatten out our fourth of

Max Pool’s output by reshaping to a 2−D array from a 4−D. The reshaped array is moved forward to

the pipeline as input to the first Dense layer which has 64 for output channels and a ReLU activation.

One more step is to add the next Dense Layer which has K channels as outcome, in our test case K = 2

–number of classes to predict–. Between the Dense layers we have a dropout layer with a factor of

dropped neurons equals to 0.4. The last layer of our model is the Softmax layer, which converts the

prediction result to normalized probabilities per class.

As for the back-propagation method of the model where loss between the predicted and the true

classes (labels) is computed, we use categorical-cross entropy loss with Adam as optimization method

and a learning rate of 0.001 –the default of Adam optimizer. While training with our data we use a

validation set which is actually 25% of train data size, which improves the model fit and reduces the

changes of over-fitting.
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Figure 4.7: CNN architecture of classifier [5]

More Detailed Model Description:

Figure 4.8: Detailed FR CNN layers
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Figure 4.9: FR Model’s parameters summary

In Figure 4.9 we view the number of model’s parameters per layer, and the total number of parameters

to be trained.
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4.2 Speaker Recognition (SR)

In this section we describe the methods followed all the way down to the actual Speaker classification

module. We analyze the steps that went wrong in order to explain how through this process we managed

to gain experience to finally solve the problem. At first, it is good to mention that for our speech data

we use some speaker classes that are included in the VoxCeleb [42] data-set.

4.2.1 Voice Features Extraction

The generic method used for voice features extraction is described in the Section 2.2.1. Here we would

like to view the differences in detail, for the settings we used in filter banks for speaker recognition. The

first difference is that the size of each frame is 0.025 sec, with a frame stride of 0.05 sec, which is referred

in the filter banks algorithm (split signal step) in Section 2.2.1.

In practice for our design we use the Filter banks method with 64 filters to split a sound file in

windows with sampling time 5ms. Then in order to represent the correlation between those windows

–as sound is a sequence of current, past and future windows–, we stacked these sampled windows of 5ms

into 8 past plus 1 current plus 8 future windows. So, we form small groups of total size 17 windows.

For the first utterance the past frames are repetitions to the left of the first frame, while for the last

utterance we repeat it to the right to complete the number of future-stacked windows. Due to all this

process each group of 17 forms a 2−D image of size 64.

As a result from all the above steps we get the features of a sound file .wav and convert it to an

Numpy array with shape

#windows in wav, 64, 17, 1

(sound files, are represented as ”spectral-image”-vectors that have one channel) and store them as binary

.cmp files. All these binary files will be the input data for the Speech Recognizer models. Also, it is

important to normalize our data with the mean and standard deviation of the training set, before we

actually feed them to our models. This is crucial both for the training, validation and for the prediction

phase in Machine Learning with Neural Networks.
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4.2.2 First Approach Model for Speech Recognition

An initial thought for Speech Recognition was to use a previous project’s model developed for Anti-

Spoofing Verification (ASV). This model was an approach for the ASV contest where we tried to use a

Convolutional Neural Network (Figures 4.10, 4.11) to predict if a sound utterance is genuine speaker or

a spoof attack. The main concept was to modify the model based on the Transfer Learning approach to

fine tune the fully connected layers to a new data set –speakers– and predict the identity of them.

We were inspired to choose a model architecture similar to paper [47] which suggests to use CNN for

robust speech recognition instead of a Recurrent Neural Network. We kept the number of layers proposed

in this publication but we changed the output channels per layer according to the project requirements.

Our development of the CNN architecture was customized at each step by us, so we used native

Tensorflow framework and not some high level API like Keras. The architecture its self has 10 convolution

layers namely it is a Deep Neural Network and that could add complexity to the model. In general, a

Tensorflow model is split to the code that defines the graph of the Neural Network and to the session part

which is the execution of that code. We will focus on the graph design analysis in the next paragraph.

We start by saying that the graph is divided in two parts; to the part used for training and the

part is used for validation. The only difference is that in the part used for validation there is no any

parameter update, it is strictly used to get along with the training process and check if we dealing with

under-fitting or over-fitting problems. Both parts of the graph include the model architecture.

Within the model architecture we have 10 convolution layers with kernel size 3× 3 and we gradually

increase output channels from 1 up to 64. A convolution layer is followed by a batch normalization layer

and then we group each convolution–batch normalization pair of layer to a block with a ReLU activation

method. A Max Pool layer succeeds each block. We have 5 blocks of this type, so there are 5 max pool

layers. The first two max pool layers have a stride and kernel shape of [1, 2, 1, 1] and the remaining

three have a [1, 2, 2, 1] shape for both attributes. When our pipeline reaches the last max pool layer we

reshape its output –Flatten Out– to reduce dimensionality to 2−D.

Afterwards we have two Fully Connected layers one with 128 and the other with 256 output channels.

Between those layers there is a dropout factor of 0.4 and ReLU is used in each one for neurons activation.

Before reaching the final layer we add a Dense layer with 2 output channels. The final step once again

is to take the Softmax of predicted labels –logits– .

Regarding the loss function we used the softmax cross entropy loss and took as input the output

of the logit layer, which is the penultimate layer of our CNN model (the last one is the softmax layer,
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which converts the predicted labels into probabilities per class). We also used the Adam optimizer with

a learning rate of 0.0001.

Figure 4.10: Tensorflow Graph of the model

Figure 4.11: CNN architecture layers [5]
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4.2.3 Speaker Recognition Classifier

According to the previous section the model we already have trained did not manage solving the

recognition problem as expected and that is why we designed a new model (Figures 4.12, 4.13, 4.14).

This model is exactly the same architecture as the Face Classifier but we removed the last convolution

layer and reduced the layers from 4 to 3. As mentioned in speech feature extraction (Section 2.2.1) a

frame has a size of 64×17 which is much smaller than the 256×256 of the face model and for that reason

we have to use fewer layers to our model. From this module we get as result a class –the class with the

higher probability value– and the probabilities per class in which later a threshold will be applied to

make the final decision.

Figure 4.12: CNN architecture of SR classifier [5]
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More Detailed Model Description:

Figure 4.13: Detailed SR CNN layers
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Figure 4.14: SR Model’s parameters summary
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The Figure 4.14 is the speaker recognition’s model parameters to be trained (per layer and the total

number of parameters).

4.3 FR & SR for Person Indexing in video

The last part of this project was to combine the two subsystems Face and Speaker Recognition on

a video stream for identifying a person in a specific time slot of the video. Hence, we use the late

integration for our two modes of features instead of the early integration at the feature level. On one

hand early integration is not straightforward and is quite complex to fuse facial and speech features in

general; in our use case, the two feature types are very different and independent and also might cause

some interference if we try to fuse them. In the contrary, with late integration we managed to combine

the features at the hypothesis level, as a kind of system combination. Each component system generates

a hypothesis based on one feature type and then we combine the results of both subsystems to generate

a better decision. Furthermore, if one of the two subsystems fails to recognize efficiently a person we can

still use the second, to obtain an accurate result. We basically, concatenate the outputs of the two higher-

level modules to make the predictions for classes per time slot –from the sound utterances– correlated

with the time stamp of an image-frame for which also a class is predicted. In order to separate the

decision into known and unknown identity, we take a threshold value chosen accordingly to the predict

probabilities of the FR or SR module. The output of our system is a .txt file with the information of

indexing and class identification per video’s time slot. The output example is shown into the flow chart

in Figure 4.15.
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Figure 4.15: Flow Chart of FACESIR system
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Chapter 5

Results

In this chapter, we present the results of our work according to each part of the entire project. First,

we need to clarify that our approach gives accurate predictions both on Facial and Voice data, however

it is tested only on a small number of classes (2 or 3). Our work has not been optimized for online

processing (recognition) of videos. Instead, it provides a promising proof-of-concept, but it is not the

final solution to the problem.

Recognition experiments have been conducted with three person identities (classes), specifically the

actors Stan Lee, Jack Black, and Samuel L. Jackson, on a variety of free video clips from YouTube.

The results from the combined recognition were more than promising for this small set of target iden-

tities. Interestingly, the training set for these identities was not formed using video streams, but from

independent set of images and sounds.

When it comes to hardware specifications to solve these kind of problems, the answer is GPUs.

Because of the complexity of the project, a high-end GPU was necessary. Nvidia Titan Xp (11 GB)(Grant

Program) was used to reach our goal and solve the problem, saving significant time.

The Face classifier module was trained for a number of 60 epochs and with a batch size equal to 32.

As for the Speaker classifier due to the smaller size of input a batch size of 256 was used for 15 epochs.
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Face Classifier Plots:

Figure 5.1: Face classification Loss plot

In Figures 5.1, 5.2 we view the performance of the classifier which is about 97% on the validation set

feed (see ”Test” line in the plot). We also evaluated the model after training and we kept the accuracy

percent of the classifier, showing a value of 94% , as a measure.
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Figure 5.2: Face classification Accuracy plot

Failed Speech ASV Model Plots:

Figure 5.3: First Speaker Recognition model Loss plot
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Figure 5.4: First Speaker Recognition model Accuracy plot

The first approach for speaker recognition is shown in Figures 5.3, 5.4. If we check carefully the

validation loss and accuracy, the model seems to respond well; actually, the loss value was around 0.45

in Figure 5.3. The best loss value we managed to get was 0.25 (after few runs) and it was achieved after

fine tuning the last layers. Before the transfer learning step (fine tuning) the best loss accuracy was

around 60%. The main cause of these poor performance after hours of testing and development seemed

to be the complexity of the model (too many parameters to be learned). So, for all these reasons we

moved to the next approach which proved to be much better.
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Speaker Recognition Model Plots:

Figure 5.5: Speaker Recognition model Loss plot

As we see in Figures 5.5, 5.6 the validation accuracy of the speaker model is reaching 99% , while

the evaluation accuracy after training, was found to be 98%. For both the FR and the SR subsystems

the accuracy value –after training– is calculated as the mean accuracy from 10 independent runs.
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Figure 5.6: Speaker Recognition model Accuracy plot

Example depth-complexity reduces perfomance:

In Figure 5.7 we try to show how the increase of depth or size of output channel in a layer of the model

can reduce its performance. In this example, we used the Face classifier to show this info because it is

larger, referring to the total number of parameters it has. Figure 5.7 must be compared to Figure 4.9.
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In Figure 5.7 we can see which layer has a slightly change by increasing the output channels from

64 to 128 in comparison to Figure 4.9. We also see that this change increases the parameters to be

learned up to 7, 446, 882 from 3, 752, 162; they are almost doubled. Then the loss and accuracy plots

(Figures 5.8, 5.9) are included to spot out the difference in performance.

Figure 5.8: Increased FR parameters Loss plot
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Figure 5.9: Increased FR parameters Accuracy plot
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How predictions are made

In this case, we used the SR module as example, to display how predictions are made and how we

obtain the final decision; a similar process is used with the FR module. With the red circle we highlight

the sum of prediction probabilities –cause a sound file is composed of many frames with the same label,

we take with the sum probabilities per column–. Alternatively, we could use one frame from each sound

file to make the prediction instead of the whole file but this way the difference between known and

unknown identity is clearer. As for the green circle, this is the predicted class label.

Figure 5.10: Non Normalized input example
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Figure 5.10 shows that in case we have not normalized our input data before inserting them to the

system for prediction we get a miss-classification result.

Figure 5.11: Normalized input example

Figure 5.11 shows the right classification result after normalizing the input data. These examples

were added to point out the importance of input normalization (use of the same mean E
(
Xtrain

)
and

variation Var
(
Xtrain

)
values) both at the training and the testing phase.
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Figure 5.12: Unknown class input example
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Comparing the sum of probabilities between Figure 5.11 with the one in Figure 5.12 helps to un-

derstand how we find the threshold we need to apply. Actually the way we suggest to define a global

threshold is by using only one frame per sound file to make the prediction because each file has a differ-

ent number of frames and that gives a variation to the sum of the predicted probabilities. In addition,

our work demonstrates that we need a class number larger than or equal to 3 (K ≥ 3) (each class is a

person’s identity) if we want to detect also the case of unknown identity. This is true, because in the

binary classification case where K = 2 an unknown class will be matched to one of the known with a

high probability and we can’t define a threshold. In the end by keeping the information for persons

appearing or speaking in a specific time slot of the video helps us to make better decisions. In more

detail with this hybrid system we are able to overcome the drawback of each subsystem when standing

alone. Take as an example the case of a small (less than 70 × 70) face ROI which our face detection

module fails to detect; in such a case the speaker recognition is called to give an answer.
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Chapter 6

Conclusion

6.1 Conclusion

This thesis describes a new person indexing approach for the video streams implemented in Tensorflow

framework and Keras API based on Convolutional Neural Networks. The person indexing application

takes as input a video stream and splits it into image frames and then into sound windows, which are

correlated with the images using timestamps. The software is divided into two smaller applications the

Face Recognition and the Speaker Recognition. The Face Recognition part of the code gives a confidence

value (%) for each frame while the Speaker Recognition gives confidence for more than one frames (a

possibility of a speaker to be in more than two continuous image frames – a sound window). After that,

the two outputs of each sub-system are combined using a post classifier. Finally, we have as an outcome a

probability value for each known identity and recognized inside the video. The proposed person indexing

approach gives more accurate results than previous implementation methods based only on facial fea-

tures and tries to improve confidence when there is a lack of efficient data for one of the two sub-systems.
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6.2 Future Work

6.2.1 Multi Person Detection and Classification

The next idea to be added as a feature in our implementation is to detect and recognize more than one

face in a frame of a video stream. From the side of the face detection task, this feature already exists,

in the framework that is used by Dlib or OpenCV ; but, from the side of simultaneously multi-face and

multi-speaker recognition, it is quite a tricky task and demands extra time of processing, testing and

mostly it adds complexity to our problem.

Another must-do improvement of our work would be to use another CNN, or some other type of

Artificial Neural Network, as a post-classifier for the final decision in this hybrid system. That was a

goal from the start of the project, but, we keep it in progress for the upcoming versions of our software.

Also, a much needed feature for improvement would be to find out a more elegant way to combine

and present the FACESiR module’s results instead of saving them into a .txt file or even further, to

develop a Graphical User Interface (GUI) application.

6.2.2 More Testing and Evaluation

The main concern for future work and improvements in this project, will be the further testing on

new data sets with a bigger variety and complexity. At the same time, we would like to test some more

cases in our models’ architecture, like trying different kinds of optimizers, loss functions, and activation

functions. This will give us results for comparison to mark how good our implementation is and of course

to provide more robust and accurate confidence values.

6.2.3 Outcome

If we view beyond the implementation of this project, the next goal to chase is to create a software

application or a platform, as a long-term product from this diploma thesis. An actual software product

that will be useful to people, like content creators, who would like to search for a person in video streams

and they demand to reduce editing time, or a tool to to be used for promotion tasks by advertising and

marketing companies.

6.3 Lessons Learned

Throughout the last year spent on my diploma thesis, I have learned how important it is to have a

clear mindset and be patient, in order to overcome difficulties that will come in your way when you have
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a goal. In addition, I learned that you have to move one step at a time, solving a smaller problem first

and then moving to the next one. But, the biggest lesson that I got from it, was not to over-think about

the design and analysis of the solution; you have to act as soon as you think something. Then, spend

the rest of the time to prove if your approach is either right or wrong. This is what will keep you moving

forward and make progress.
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