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Abstract

Some of the most interesting questions one can ask about early societies are about people

and their relations, and the nature and scale of their organization. In this thesis, we

attempt to answer such questions using ideas mainly from multi-agent systems, game-

theory, and agent-based modeling (ABM).

Specifically, we provide a generic ABM system, AncientS-ABM, for simulating and

evaluating the potential social organization of an artificial ancient society, configured

by available archaeological data. Unlike most existing agent-based models used in ar-

chaeology, our ABM framework includes completely autonomous, utility-based agents.

It also incorporates different social organization paradigms, different decision-making

processes, and also different cultivation technologies used in ancient societies. Equipped

with such paradigms, the model allows us to explore the transition from a simple to a

more complex society by focusing on the historical social dynamics; and to assess the

influence of social organization on agents’ population growth, agent community num-

bers, sizes and distribution.

Our ABM also blends, for the first time, ideas from evolutionary game theory with

multi-agent systems’ self-organization. We model the evolution of social behaviours in

a population of strategically interacting agents in repeated games where they exchange

resources (utility) with others. The results of the games contribute to both the continuous

re-organization of the social structure, and the progressive adoption of the most success-

ful agent strategies. Agent population is not fixed, but fluctuates over time, while agents

in stage games also receive non-static payoffs, in contrast to most games studied in the

literature. To tackle this, we present a novel formulation of the evolutionary dynamics

via assessing agents’ rather than strategies’ fitness.
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In addition, AncientS-ABM is able to also simulate societies inter-community inter-

actions, by modeling the exchange and distribution across agent communities. In par-

ticular, we incorporate a trading sub-model by employing different spatial interaction

models for simulating trade across agent settlements, in order to explore the resulting

trading network’s efficiency and its evolution at different points in time. We further

utilize ideas from graph theory to analyze the trading network’s structure, seeking to

provide insights on the artificial society’s organization on a higher level. Finally, we

also extend our ABM by incorporating a natural disaster sub-model.

As a case study, we employ our ABM to evaluate the impact of the implemented so-

cial organization paradigms on an artificial Early Bronze Age “Minoan” society, located

at different geographical parts of the island of Crete, Greece. Model parameter choices

are based on archaeological evidence and studies, but are not biased towards any specific

assumption. Results over a number of different simulation scenarios demonstrate better

sustainability for settlements consisting of and adopting a socio-economic organiza-

tion model based on self-organization, where a “heterarchical” social structure emerges.

Results also demonstrate that successful agent societies adopt an evolutionary approach

where cooperation is an emergent strategic behaviour. In simulation scenarios where the

natural disaster module was enabled, we observe noticeable changes in the settlements’

distribution, relating to significantly higher migration rates immediately after the mod-

eled Theran eruption. In addition, the initially cooperative behaviour is transformed to a

non-cooperative one, thus providing support for archaeological theories suggesting that

the volcanic eruption led to a clear breakdown of the Minoan socio-economic system.

Moreover, we observe that modeling a trading network that favours settlements’ impor-

tance rather than distance between settlement locations, can produce settlement patterns

similar to the one that exist in archaeological record. The existence of some important

resource-distribution centers, with possibly a strong hierarchy during the Early and Mid-

dle Minoan period, as well as significant resource-aggregation centers during the Late

Minoan period, also arise as plausible possibilities via our agent-based model.
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Περίληψη

Μερικά από τα πιο ενδιαφέροντα ερωτήματα σχετικά με τις πρώτες ανθρώπινες κοι-

νωνίες, αφορούν την φύση και τον τρόπο οργάνωσής τους, καθώς και τις σχέσεις

μεταξύ των μελών τους. Σε αυτή τη διατριβή, προσπαθήσαμε να απαντήσουμε σε

τέτοια ερωτήματα χρησιμοποιώντας ιδέες προερχόμενες κυρίως από τρεις επιστημονι-

κούς κλάδους: τα πολυπρακτορικά συστήματα, την θεωρία παιγνίων, και την μοντελο-

ποίηση και προσομοίωση βασισμένη σε πράκτορες (Agent-Based Modeling, ΑΒΜ).

Συγκεκριμένα, αναπτύξαμε ένα σύστημα (πολυ)πρακτορο-κεντρικής μοντελοπο-

ίησης, το AncientS-ABM, για την προσομοίωση και την αξιολόγηση της δυνητικής

κοινωνικής οργάνωσης μιας (τεχνητής) αρχαίας κοινωνίας, το οποίο μπορεί να παρα-

μετροποιηθεί από διαθέσιμα αρχαιολογικά δεδομένα. Σε αντίθεση με τα περισσότερα

υπάρχοντα μοντέλα βασισμένα σε πράκτορες που χρησιμοποιούνται στην αρχαιολο-

γία, το πρακτορο-κεντρικό σύστημά μας περιλαμβάνει πλήρως αυτόνομους πράκτορες,

που είναι βασισμένοι στην αρχιτεκτονική πρακτόρων με βάση τη χρησιμότητα. Επίσης

ενσωματώνει διαφορετικά παραδείγματα κοινωνικής οργάνωσης, διαφορετικές διαδικα-

σίες λήψης αποφάσεων, καθώς και διαφορετικές γεωργικές τεχνολογίες (πρακτικές)

που πιθανότατα χρησιμοποιούνταν στις αρχαίες κοινωνίες. Εφοδιασμένο με τέτοια

παραδείγματα, το μοντέλο μας επιτρέπει να διερευνήσουμε τη μετάβαση από μια απλή

σε μια πιο περίπλοκη κοινωνία εστιάζοντας στην ιστορική κοινωνική δυναμική· στο-

χεύοντας στην εκτίμηση της επίδρασης της κοινωνικής οργάνωσης στην ανάπτυξη

του πληθυσμού των πρακτόρων, του αριθμού των κοινοτήτων-οικισμών, αλλά και του

μεγέθους και της κατανομής αυτών των κοινοτήτων.

Επίσης, το μοντέλο μας συνδυάζει, για πρώτη φορά, ιδέες από την εξελικτική

θεωρία παιγνίων μαζί με αυτή της αυτο-οργάνωσης πολυ-πρακτορικών συστημάτων.

Μοντελοποιούμε την εξέλιξη των κοινωνικών συμπεριφορών σε έναν πληθυσμό στρα-

τηγικά αλληλεπιδρούντων πρακτόρων που συμμετέχουν σε επαναλαμβανόμενα παίγνια
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με τα οποία ανταλλάσσουν πόρους (χρησιμότητα) με άλλους παίκτες. Η έκβαση των

παιγνίων συμβάλλει τόσο στη συνεχή αναδιοργάνωση της κοινωνικής δομής των πρα-

κτόρων, και στην προοδευτική υιοθέτηση των πιο επιτυχημένων στρατηγικών από

τους πράκτορες. Ο αριθμός των πρακτόρων στο μοντέλο μας δεν είναι σταθερός,

αλλά αλλάζει με την πάροδο του χρόνου, ενώ οι πράκτορες λαμβάνουν επίσης μη

στατικές αποδόσεις, σε αντίθεση με τα περισσότερα παίγνια που μελετώνται στην βι-

βλιογραφία. Αυτό μας οδήγησε στην ανάγκη να παράσχουμε μια νέα διατύπωση της

εξελικτικής δυναμικής των παιγνίων μέσω της εκτίμησης της (συνάρτησης) ωφέλειας

των πρακτόρων και όχι των στρατηγικών.

Επιπλέον, το AncientS-ABM μπορεί να προσομοιώσει και διακοινοτικές αλληλεπι-

δράσεις, μοντελοποιώντας την ανταλλαγή και τη διανομή πόρων μεταξύ των διαφόρων

κοινοτήτων πρακτόρων. Συγκεκριμένα, ενσωματώνουμε ένα υπο-μοντέλο εμπορικών

συναλλαγών, χρησιμοποιώντας γνωστά μοντέλα χωρικής αλληλεπίδρασης για την

προσομοίωση του εμπορίου μεταξύ των οικισμών, προκειμένου να εξεταστεί η αποτε-

λεσματικότητα του εμπορικού δικτύου και της εξέλιξής του σε διαφορετικά χρονικά

σημεία. Επίσης, χρησιμοποιώντας ιδέες από την θεωρία γραφών, αναλύουμε τη δομή

του δικτύου εμπορικών συναλλαγών, επιδιώκοντας να κατανοήσουμε την κοινωνι-

κή οργάνωση της τεχνητής κοινωνίας σε υψηλότερο επίπεδο. Τέλος, επεκτείνουμε

περαιτέρω το μοντέλο μας, ενσωματώνοντας ένα υπο-μοντέλο φυσικής καταστροφής.

Ως μελέτη περίπτωσης, χρησιμοποιούμε το μοντέλο μας για να αξιολογήσουμε τον

αντίκτυπο συγκεκριμένων κοινωνικών οργανωτικών δομών σε μια τεχνητή ‘Μινωική’

κοινωνία της Πρώιμης Εποχής του Χαλκού στην Κρήτη. Η παραμετροποίηση του μο-

ντέλου βασίζεται σε αρχαιολογικά στοιχεία και μελέτες, αλλά δεν προκαταλαμβάνει

οποιαδήποτε συγκεκριμένη αρχαιολογική θεωρία ή παραδοχή. Αποτελέσματα από αρ-

κετά διαφορετικά σενάρια προσομοίωσης καταδεικνύουν καλύτερη βιωσιμότητα για

τους οικισμούς πρακτόρων που υιοθετούν ένα μοντέλο κοινωνικο-οικονομικής ορ-

γάνωσης που βασίζεται στην ‘αυτο-οργάνωση’, και όπου μια ‘ετεραρχική’ κοινωνική

δομή αναδύεται. Τα αποτελέσματα δείχνουν επίσης ότι οι επιτυχημένες κοινωνίες πρα-
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κτόρων υιοθετούν μια εξελικτική προσέγγιση όπου η συνεργασία εμφανίζεται ως ανα-

δυόμενη στρατηγική συμπεριφορά. Στα σενάρια προσομοίωσης όπου λήφθηκε υπόψη

το υπο-μοντέλο φυσικής καταστροφής, παρατηρούμε αισθητές αλλαγές στην κατανο-

μή των οικισμών, που σχετίζονται με σημαντικά υψηλότερα ποσοστά μετανάστευσης,

αμέσως μετά την έκρηξη του ηφαιστείου της Θήρας. Επιπλέον, η αρχικά συνεργα-

τική συμπεριφορά των πρακτόρων μετατρέπεται σε μια μη συνεργατική, παρέχοντας

έτσι υποστήριξη σε αρχαιολογικές θεωρίες που υποδηλώνουν ότι η έκρηξη του ηφαι-

στείου της Θήρας οδήγησε στην κατάρρευση του Μινωικού κοινωνικο-οικονομικού

συστήματος. Επίσης, φαίνεται πως η μοντελοποίηση ενός δικτύου εμπορικών συναλ-

λαγών όπου ευνοείται περισσότερο η σημασία των οικισμών παρά η απόσταση μεταξύ

τους, μπορεί να παράγει μοτίβα ανάπτυξης οικισμών παρόμοια με αυτά που υπάρχουν

στο αρχαιολογικό αρχείο. Η ύπαρξη μερικών σημαντικών κέντρων διανομής πόρων,

με ενδεχομένως ισχυρή ιεραρχία κατά την Πρώιμη και Μεσομινωική περίοδο, αλλά και

σημαντικών κέντρων συγκέντρωσης πόρων κατά την διάρκεια της ΄Υστερομινωικής

περιόδου, προκύπτουν επίσης ως εύλογες υποθέσεις μέσω της χρήσης του πρακτορο-

κεντρικού μας μοντέλου.
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Chapter 1

Introduction

Archaeologists seek to interpret human (pre-)history by providing theories about the

interactions between societies and their natural environment, grounded on archaeolog-

ical evidence. This is accomplished via the use of formalisms and via the constant

re-definition of objectives to be attained, questions to be asked and methods and tech-

niques for answering them. Archaeological theories, however, are generally incomplete,

in the sense that they are based on data that is static: it might reflect the results of the

dynamic interactions among people, materials, monuments, landscapes, and the inhab-

ited environment in general, but not these dynamics themselves. Thus, archaeology has

a difficulty linking cause and effect in the past [127]. Apart from natural language, an

alternative way to reason about historical and past actions and events from observed

data, is to transform theoretical questions and hypotheses into computational terms; the

aim is to find the means to explore possible answers. Towards this end, computational

modeling and simulation can assist archaeologists on expressing individual or collec-

tive entities, relationships between them or phenomena, allowing them to explore and

test theories against observed data, to conduct plausibility (or improbability) tests, and

experiment with different sets of initial conditions and scenarios to explain particular

sequences of cause and effect [45].

1
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One of the pillars of computational modeling, essential for any simulation process, is

of course mathematics, based on variables and their relationships. Equation-based mod-

eling [10] is about defining a recurrence relation of given variables, once one or more

initial values are given (difference/partial difference equations), or about relating some

process or function with its derivative, i.e., its rate of change (differential equations).

For example, logistic or exponential growth equations describe population dynamics,

while predator-prey equation models describe the dynamics in which two populations

interact, one as a predator and the other as prey. Reaction-diffusion equations can de-

scribe the spread of populations in space, when two populations compete for a common

food source (“competition”), or benefit from each other (“symbiosis”). Furthermore,

agent-based modeling (ABM)1 [140] is a field research methodology originally devel-

oped as part of computational modeling, but widely used by other disciplines, from life

and physical sciences (biology, genetics, physics, chemistry) to environmental and so-

cial sciences (ecology, geosciences, demography, economics, sociology, archaeology).

ABM is quite effective in representing the interactions among acting entities (agents),

that may represent individuals, groups, societies or even nations, since these individual

entities can be represented directly and can possess internal state(s), and a set of be-

haviours or rules that determine how the agent’s state is updated from one time step to

the next. Now, an equation-based modeling system is in general able to report similar

behaviour in the results as an equivalent ABM [18]. Why then not use solely equation-

based models rather than ABMs?

The major difference between these approaches is that the accuracy assessment of

(real) observational data can be much better determined by an ABM, as it can ade-

quately represent situations where small fluctuations in the input data can drive a system

to a completely different state [18]. By contrast, equation-based systems would usually

smooth out such effects, not allowing such out-of-the-norm situations to emerge. More-

over, though equation-based modeling variables allows saving and reusing data while

1We will be using the acronym ABM to refer to both “agent-based modeling” and “agent-based
model(s)”.
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the model runs, ABM can incorporate complex agent variables which include both data

and functionality at the same time. This results in an increased descriptive power that

facilitates interdisciplinary research, as it allows the incorporation of concepts used in

various disciplines (regardless of the discipline-specific “language” they were originally

stated in). Such computational realization of conceptual processes can assist researchers

in social sciences to model and simulate real world phenomena. It has to be understood,

however, that ABMs must be run to test whether agents are behaving as their originators

intended, and this has little or nothing to do with how well they might reproduce ob-

servable data [9]. This is not necessarily a drawback: ABM models are not usually built

for prediction per se, but (to a large extent) to feed structured debate and dialogue, and

to provide a tool for apprehending and explaining certain underlying properties (cause

and effect) of the world [46]. Thus, in our view, the key objective of ABM is enriching

our understanding of fundamental processes that appear in a variety of archaeological

applications.

Scholars argue, however, that most agent-based simulation models used in archaeol-

ogy and beyond simply do not define truly autonomous agents [43, 135], and ideas and

notions from the Mutli-agent Systems (MAS) community and related principles that

study the strategic behaviour of agents, such as game theory, should be followed in the

design of the respective ABMs. This is something we attempted to do in this thesis, as

will become apparent later.

The remainder of this introductory chapter underscores the motivations and ques-

tions which led us to explore research at the borderline of (computational) archaeology

and ABM. It further outlines theoretical and methodological dimensions of the ABM in

archaeological research and briefly outlines our novel model and tool, namely AncientS-

ABM, that we provide for archaeological inquiry and in particular for the study of past

human societies’ organization. Finally, it concludes by highlighting the main research

contributions of our work and gives an overview of the structure of this thesis.
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1.1 The ABM and MAS approaches in Archaeology and

Beyond

The study of social and environmental change is key to improving our current under-

standing of human behaviour and history. Nowadays, computer science and current in-

formation systems provide us with the opportunity to build virtual laboratories in which

we can address various questions and hypotheses about such transitions. At the same

time, knowledge of historic events that have actually occurred provides the possibility

of interpreting the results, and evaluating the accuracy of specific computational models

or simulations. Thus, it is only natural that, computational archaeology has emerged

as the discipline that focuses on the study of ancient societies via the use of computer

models and simulations [47]. Archaeology is a data-oriented discipline, with a strong

focus on the collection of material information for the study of past human societies.

Computational archaeology builds on this information in order to enhance our under-

standing of the long-term human behaviour and behavioural evolution, via modeling

and simulating the socio-environmental processes at play. It utilizes mathematics, logic,

or even cognition as the means for converting observations and knowledge about nature

into quantalitative research; and scientific inquiry is used in order to produce, test, and

confirm quantitative data and theories.

The concept of ABM has become very popular within (computational) archaeology

over the last two decades [85]. Nowadays, ABMs can incorporate ideas from Artifi-

cial Intelligence (AI) [111] and Multi-agent Systems (MAS) [142], and define a social

system as a collection of agents, which represent individual entities within a wider popu-

lation. In MAS research, these entities are assumed to be acting autonomously, and may

be able to learn and adapt in their environment. Agent actions occur in time and space,

affecting the wider environment while individuals cooperate and/or compete with each

other. ABMs can model systems that are either highly diverse or heterogeneous in terms

of both agent abilities and underlying environment, and allow the study of interactions
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and (potentially emerging) behaviours that would be difficult to examine by using sim-

ple aggregate styles of representation [9]. ABM is particularly appealing as it promotes

a style of modeling that reflects the characteristics of our real world, in a way that ap-

pears to fit well with existing explanations of how spatial structures such as settlements,

cities, states, our global system and all its natural components evolve. The emerging

popularity of ABM in social sciences, and in particular in (computational) archaeology,

is largely due to its ability to represent individuals and societies, and to encompass the

uncertainties inherent in archaeological theories or findings.

The major trends in recent archaeological simulation are mostly abstract ABMs in-

tended to assist with hypothesis-generation and (to a lesser extent with) hypothesis-

testing. Archaeology-related ABMs are mostly used to understand how certain pro-

cesses work and what sort of changes could plausibly have occurred, rather than com-

paring the output of a simulated process against the archaeological evidence or record;

however, the distinction between hypothesis-testing and theory-building simulation is

not always so clear-cut in practice [85]. In addition, there are many formal systems

competing or combining to provide their elements as theoretical and methodological di-

mensions for structuring ABM. Their relative value is determined by the questions that

need to be answered in each particular situation [99]. In the remainder of this section,

we describe the most important of such formal systems.

In most cases in archaeological research, scholars explore past processes that oc-

curred in a given geographical landscape. An effective means for modeling is the cou-

pling or integration of Geographical Information Systems (GIS) with ABMs when spa-

tial and temporal design and analysis is required [31]. When one or more agent actions

involves movement, when an agent’s location within the environment influences its de-

cision making, or when spatial arrangement of features on the landscape can be altered

by the agents, then a geospatial ABM can better support the research requirements of

the modeler. Moreover, in geospatial ABMs the importance of the spatial resolution

is equally as important as the temporal resolution, where duration and frequency de-
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scriptive characteristics of events and phenomena are essential for temporal and spatial

(pattern) analysis. Thus, when geographic context constitutes an important aspect of the

conceptual model, the translated computational ABM needs to be coupled or linked with

a GIS computational library, e.g. GeoTools (a Java GIS software library), Java Topology

Suite (JTS), OpenMap, ESRI ArcObjects SDK, and others. Thereby several important

functions of the ABM can be assisted, such as data acquisition, pre-processing or trans-

formation, as well as determining and assessing various inputs and outputs when needed

through spatial analysis tools (e.g., density map, cost distance, least cost path, etc.).

ABMs can also be enhanced via the use of cellular automata (CA) to model complex

systems. Von Neumann and Ulam introduced the concept of cellular automata in the

1940s [96]. CA is an insightful approach for building a system of many agents that

have varying states over time. However, now agents are cells existing on a grid (a

tessellation of n-dimensional Euclidean space), where each cell has a number of states

and a neighbourhood which is a list of adjacent cells. Cell states evolve over a series

of computational time steps; a cell’s new state is a function of all the states in the cells

neighbourhood at the previous time step, along with a set of simple rules for the cell to

follow. Depending on the complexity, patterns may appear from simple specific rules, or

the rules themselves can be classified as ones that evolve quickly into a stable state, into

oscillating structures or into structures that interact in complex ways, and can be relevant

to the study of biology, physics, social sciences and all fields of science [141]. Using

CA within an ABM allows the conceptualization of a variety of real-world phenomena,

where behavioural patterns are emerging out of the interactions among simple agents.

In a parallel direction, Von Neumann and Morgenstern invented the mathematical

theory of games [131]. Since the 1970s, game theory (GT) became the main instru-

ment for the analysis of the strategic interactions among rational agents, i.e., entities

that encompass preferences or goals and act upon them [95]. Agents can be also de-

scribed by means of an abstract concept called utility, referring to some ranking or scale

of the subjective welfare an agent derives from other agents in the game; while the aim
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of the rational agent is to maximize its expected utility payoff. GT aims to provide an

explanatory account of strategic reasoning based on “rational” actions of agents, and

thus to prescribe “optimal” strategic behaviour for use by agents in games. In situations

where this is not the case, i.e., when actions are not necessarily the results of rational

deliberations by individual agents, but are rather “biologically” attached to particular

strategies used by entire populations, then evolutionary game theory (EGT) can be of

use [122]. EGT originated as an application of GT to biological contexts, arising from

the realization that frequency-dependent “fitness” introduces a strategic aspect to evo-

lution. Although EGT has been mostly applied in the context of evolutionary biology,

it has also recently attracted the interest of social scientists, as “evolution” need not be

strictly biological, but can be also understood as “cultural or social evolution”. Since be-

liefs and norms change over time, EGT can help answer questions about the conditions

under which language, concepts of justice, altruism, and other non-designed general

social phenomena are likely to arise [121].

The above methodological dimensions can effectively structure an ABM, depending

on the theories and hypotheses that need to be modeled. Nevertheless, MAS research

has always been advocating that ABMs should be providing a higher level of abstraction

than the one offered by object-oriented systems [75]. Modeled agents should be capable

of autonomous action, and of maintaining high-level interactions and organizational

relationships with other agents, while being potentially “selfish” [143]. However, most

mutiagent-based simulation models used in archaeology, simply do not define agents in

the way these are defined in AI or MAS research. Unfortunately, “agents nowadays

constitute a convenient model for representing autonomous entities, but they are not

themselves autonomous in the resulting implementation of these models” [43]. Most

existing ABMs used in archaeology do not incorporate truly autonomous, nor utility-

maximizing agents in their models. This is regrettable, as ABM can clearly benefit

from the progress achieved in modeling (and employing) strategic decision-making in

multi-agent worlds, which is the focus of MAS research in the past decades [135].
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In this thesis, we present a functional ABM system prototype that we developed,

called AncientS-ABM, consisting of agents that are completely autonomous, and can

build and maintain complex social structures. Instead of a simple reactive agent ar-

chitecture observed in most ABMs used in archaeology, a utility-based one is actually

applied in our ABM.2 AncientS-ABM is inspired by existing models and specific case

studies, however, it is quite generic, can incorporate a number of different modules (sub-

models) regarding agent organization, their actions and interactions at both the agent and

agent community level, and does not aim to prove or disprove a specific theory. We ar-

gue that, using agent-based models that were built on MAS principles and knowledge

derived from archaeological research—but do not attempt to fit their results to a specific

material culture—allows for the emergence of dynamics for different types of societies

in different types of landscapes, and can help derive knowledge of socio-economic and

socio-ecological systems that are applicable beyond a specific case study.

1.2 Contributions

In this thesis, we examine how methods and techniques from multiple computer science

fields can be combined to deliver an augmented ABM to be effectively utilized in the

archaeological domain. In order to establish an ABM that would actually simulate an

artificial past society in a realistic landscape environment, one should examine many

aspects, and most probably be called to utilize solutions from various fields of computer

science or even other scientific fields. To the best of our knowledge, this is the first

time that a formal agent-based modeling framework for simulating various social or-

ganization paradigms, pondered by available archaeological information, is provided in

the literature. Specifically, we put forward AncientS-ABM, a fully-functional, generic,

and modular ABM system that is easy-to-use by archaeologists, in the sense that it can

2Note that we do not mean to argue that utility is the main factor driving human behaviour or the
advance of human societies. Nevertheless, utility theory have long been adopted as useful tool in the AI
domain [111].
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be employed for the study of practically any society of choice, can easily incorporate

archaeological evidence or estimates, and can help test proposed archaeological theories

or hypotheses regarding their social organization.

The core of our approach is to formally describe and improve agent-model design,

as a means for developing simulations which can lead us to better understand emer-

gent phenomena associated with the evolution of complex systems, such as artificial

past societies organization. This is achieved by properly introducing and incorporating

MAS ideas and techniques towards enhancing agent sophistication in organizational de-

sign. Importantly in this thesis we adopt and adapt a “self-organized” agent organization

paradigm, where utility-based agents are autonomously organized into a “stratified” so-

cial structure, and continuously re-adapt the emergent structure, if required. In addition,

we incorporate in our ABM a number of different social organization paradigms and

subsistence regimes, along with an alternative evolutionary self-organization paradigm,

inspired by EGT, where agents strategically interact with other agents in their commu-

nity, with a view to study the evolution and adaptation of strategic behaviours of agents,

and the effect these have on the artificial society as a whole. We further embody ap-

proaches and techniques from GIS, in order to properly capture spatial aspects of the

realistic agent environment, agent-agent and agent-environment interactions. Last but

not least, we also adopt methods from graph theory in order to adequately analyze these

interactions at a network representation level. Thus, in this thesis we develop and present

the AncientS-ABM framework, that is able to simulate agency and assess simulation re-

sults towards studying specific properties and patterns of archaeological information.

In Figure 1.1 we provide an overview of the scientific fields that we engaged in this

research, highlighting the main contributions of this thesis towards utilizing agent-based

modeling in archaeology with respect to these fields.
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Figure 1.1: Overview of involved scientific fields and contributions of this thesis.

The main contributions of this thesis can thus be summarized as follows:

1. We showcase how MAS-originating concepts, techniques, and algorithms can be

incorporated in an ABM, as such providing a stepping stone towards the afore-

mentioned [135] ABM-MAS integration vision (Chapters 3– 6).

2. We provide a modeling approach that employs autonomous, utility-based agents

(rational utility-maximizers) for modeling their intra-community interactions, un-

like most existing ABMs in archaeology, which employ a simple reactive agent

architecture. Our agents act autonomously towards utility maximization, and can

build and maintain complex social structures (Chapter 3).

3. We incorporate in our ABM a social organization paradigm of agents self-organizing

into a “stratified” social structure, and continuously re-adapting the emergent

structure, if required. The self-organizing social paradigm builds on MAS work [81,

82] for problem-solving and task execution in modern self-organizing agent or-

ganizations. We note that this is the first time a self-organization approach is

incorporated in an ABM system used in archaeology (Chapter 3).
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4. We incorporate a number of additional social organization paradigms and different

subsistence regimes (e.g., cultivation systems) in our modeling approach, aiming

to assess the influence of social organization on agents population growth, agent

community numbers, sizes and distribution (Chapters 3 and 4).

5. We define a (somewhat sophisticated) agent decision-making process, which uses

an Markov Decision Process (MDP) to decide on migration (or settlement) poli-

cies, and compare the viability in terms of population growth of the resulting agent

societies against that of myopic agent action selection (Chapter 3).

6. We blend for the first time evolutionary game theory with multi-agent systems’

self-organization for modeling the evolution of social behaviours in a population

of strategically interacting agents. Specifically, we provide a novel evolutionary

self-organization algorithm by simulating repeated “stage games” played by pairs

of strategic agents, by means of which they exchange utility (corresponding to

resources) with others. The results of the games contribute to both the continuous

re-organization of the social structure, and the progressive adoption of the most

successful agent strategies (Chapter 4).

7. We provide a novel model for our evolutionary self-organization approach, where

strategy review and adoption, agent fitness, and the relative success of agents strat-

egy are assessed and performed in various ways. In contrast to most (matrix)

games studied in the game theory and MAS literature, our agents receive non-

static payoffs, depending on their current utility, while the agent population is

not constant, but fluctuates dynamically over time, due to utility-influenced births

and deaths. These facts led us to provide a novel, alternative take on the classic

fitness-based evolution strategy selection process (Chapter 4).

8. We conduct a systematic evaluation of the performance of various agent strategies,

assuming several variations in the way agent fitness and agent organization fitness

are defined, as well as in the way agents adopt new strategies, for studying the evo-
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lution and adaptation of strategic behaviours of agents operating in the artificial

communities, and the effect these have on the society as a whole (Chapter 4).

9. We incorporate a natural disaster sub-model (module) in our ABM, in order to

assess the anticipated social crisis in terms of agents social structure adaptation,

agent community numbers and sizes, migration behaviour and agents strategic be-

haviour evolution, before and after a natural catastrophe event; as well as to pro-

vide insights on how a natural disaster scenario could affect the trading network

behaviour and further the agent communities organization structure (Chapters 5

and 6).

10. We provide a novel trading sub-model (module) that readily incorporates spa-

tial interaction models to simulate agent inter-communities trading interactions.

Moreover, we conduct a systematic evaluation of the agent communities trading

network, aiming to explore the sustainability of agents and agent communities so-

cial organization by evaluating the effects of agent inter-community interactions.

Moreover, we utilize graph theory to further interpret simulation results in terms

of the network’s potential centralization, clustering behaviour, or potential settle-

ment hierarchy during the whole simulation period (Chapter 6).

11. As a case study, we employ our ABM to assess the intra-settlement and inter-

settlement organization of “Minoan” agents affected by their interactions on agent

and agent community levels, based on actual archaeological data and evidence (or

estimates) on the Minoan civilization (Chapters 3 – 6).

12. We obtain intuitions, suggestions, and potentially provide support for existing ar-

chaeological theories. In particular, when agents adopt an “egalitarian” social

organization behaviour, a settlement pattern of many “small-size” settlements is

emerged, while when the self-organization social paradigm is adopted, a “het-

erarchical” social structure emerges, giving rise to fewer but larger settlements

during the Middle – Late Minoan period. In addition, simulation results on inter-
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settlement trading interactions suggest that a small number of influential centres

could have existed during the end of the Early Minoan period, where resources

are distributed by these centres to others in the network, with no clearly prominent

settlement sites to which resources are directed. By contrast, the trading network

connections are becoming much denser, and resources are being distributed to-

wards only a few settlements in the network during the Late Minoan period and

after the catastrophic event of the volcanic eruption of Thera, which appears to

have led to a clear breakdown of the Minoan socio-economic system (Chapters 3

– 6).

AncientS-ABM is developed using the NetLogo multi-agent programmable model-

ing environment [139], and it is quite modular and generic and is easy-to-use by archae-

ology scientists. In fact, we followed a common design principle extensively adopted

in the agent-based modeling community [4], known as K.I.S.S (“Keep it simple...and

short”), including variables, constraints and mechanisms required to add to the qual-

ity of the model, while being also able to keep the system theoretically coherent and

tractable in terms of results analysis and interpretation (cause and effect), as well as

computation. Specifically, AncientS-ABM is currently supporting several modules and

methods for its various modeling components, such as:

• migration and cultivation agent actions, with two different cultivation practices

• intra-community and inter-community agent interactions, with several social or-

ganization methods and spatial interaction methods respectively

• several topographical and archaeological spatial data layers, as well as a natu-

ral disaster module, currently supporting a volcanic eruption catastrophe, for the

environment model

In Figure 1.2, we illustrate our ABM framework modularity, by providing a simple

diagram of the various independent components and methods of the agent and environ-

ment models currently developed.
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Figure 1.2: AncientS-ABM modularity diagram of the various modeling components and meth-
ods currently supported.

1.3 Thesis Outline

The structure of the rest of this thesis is as follows.

Chapter 2 discusses agency and organizational design through the prism of archae-

ology and computer science, along with an overview of ABM design methodology and

existing examples of archaeology-related ABMs.

Chapter 3 presents our ABM, by describing the agent model, the model’s envi-

ronmental representation, agent intra-community interactions, and their various social

organization-related characteristics. Most importantly, it describes the self-organization

framework incorporated in this thesis; and presents an appropriate evaluation mecha-

nism that measures the utility for agent re-organization decisions. We also present our

specific case study of early Minoan societies, and record the empirical evaluation of our

approach, by first detailing the comparison methods and the simulation parameters for

the various scenarios considered, and then analysing the obtained results.
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Chapter 4 extends our ABM framework by blending evolutionary game theory with

multi-agent systems’ self-organization. Our approach models the evolution of social

behaviours in a population of strategically interacting agents (corresponding to house-

holds in the Minoan era). To this end, agents participate in repeated games by means of

which they exchange utility (resources) with others. The games’ outcomes contribute

to both the continuous re-organization of the social structure, and the progressive adop-

tion of the most successful strategies. We also present a systematic evaluation of the

performance of the various strategies, assuming several variations in the way agent and

organization fitness are defined, as well as in the way agents adopt new strategies. We

note, that results demonstrate that strategic cooperation is in fact an emergent behaviour

in contrast to the stage game equilibrium, and one that can better sustain and advance

the agents’ society (e.g., higher population sizes are observed when agents cooperate).

Chapter 5 describes an additional module for out ABM system, incorporating a nat-

ural disaster sub-model. In particular, we enable the natural disaster sub-model dur-

ing our simulations in order to evaluate the extent by which the cataclysmic volcanic

eruption of Thera (Santorini) impacted the Minoan social evolution. To conceptualize

the model, we considered simple processes based on archaeological estimates to model

tsunami and volcanic ash impact on the artificial society and their effects on agriculture

and human life. We also present an evaluation of the performance of different agent

social organization paradigms, in terms of household agents sustainability, agent strate-

gic behaviour, settlements’ numbers and sizes, and migration rates during and after the

volcanic eruption.

Chapter 6 presents a novel agent-based trading module in our ABM framework, for

simulating the exchange and distribution of resources across (agent) settlements in past

societies, that can employ any spatial interaction model of choice. We enable the trading

sub-model to study the settlements’ trading ability and power, given their geolocation

and their position within the trading network, and the structural properties of the network

itself, using as a case study the Minoan society during the Bronze Age, in the wider area
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of “Knossos” at the island of Crete, Greece. Two well-known spatial interaction models,

XTENT and Gravity, are described, adapted and employed for conducting a systematic

evaluation of the dynamic trading network that is formed over time. We also present

and interpret our simulation results, assessing the sustainability of the artificial Minoan

society in terms of population size, number and distribution of agent communities, with

respect to the available archaeological data and spatial interaction model employed. We

further evaluate the resulting trading network’s structure (centrality, clustering, etc.) and

show how it affects inter-settlement organization, providing in the process insights and

support for archaeological hypotheses on the settlement organization in place at the time.

Finally, Chapter 7 concludes this thesis and discusses future research directions.



Chapter 2

Background

In this chapter we provide some background on important concepts and approaches rel-

evant to our research. Specifically, we discuss notions linked to the understanding of the

social organization of a given society, as appear in archaeology and MAS research. We

also provide an overview of agent-based modeling and its design methodology. More-

over, we brief review existing ABMs used in archaeology research; and present a very

basic background on the Minoan civilization and its social organization, as this is our

case study in this thesis.

2.1 Archaeology and Social Organization

Social Archaelogy [107] seeks to understand the social organization of past societies at

many different points in time. To this purpose, it has strived to define the right questions

to ask, and to devise the means of answering them. It is only natural that different kinds

of society raise different kinds of meaningful questions. For instance, a mobile group

of hunter-gatherers is unlikely to have exhibited a complex centralized organization.

Thus, in order to determine the way many aspects of a societal organization behaves in

practice, one needs a frame of reference, a plausible classification of societies against

17
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which to test hypotheses and ideas.

A society classification system that has found much support in archaeology was the

one proposed by E. R. Service [118, 107]: Bands, small-scale societies of hunters and

gatherers, fewer than 100 people, who move seasonally to exploit resources, and lack

of formal leadership so that there are no marked economic differences in status among

their members. Segmentary societies are larger than bands, but rarely number more

than a few thousand. Their subsistence is based on cultivation and livestock, and are

typically settled farmers or nomad pastoralists with a mobile economy (which exploits

resources in an “intensive” manner). Chiefdoms, on the other hand, operate on the

principle of ranking and difference in social status between their members. There are

lineages, graded on a scale of prestige, and the society be governed by a chief; there

is no true stratification into classes, however. A chiefdom generally has a center of

power and may vary in size. Early states, finally, preserve many of the features of

chiefdoms but the ruler has the explicit authority to establish laws and enforce them

by the use of a standing army. The society is stratified into different classes and is

viewed as a territory owned by the ruling lineage, and populated by tenants who have

the obligation of paying taxes and tolls, developing a complex re-distributive system.

Such societies show a characteristic urban settlement pattern, and often a pronounced

settlement hierarchy exists—with a capital city as a major center, and several regional

centers and villages that were peripheral to that city.

There are sufficiently marked differences between simple and more complex soci-

eties, as increased specialization and intensification takes place among different aspects

of their culture. Nevertheless, the classification system above can admit a given society

into more than one categories. It is far from clear, however, that one should assume

societies evolve from bands to segmentary societies, or from chiefdoms to states [107].

Social archaeology asks a great number of additional questions regarding the nature

and internal organization of the society under study. For instance, are the main social

units, individuals or groups, forming it on a more-or-less equal base, or do prominent
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differences in status, rank, prestige within the society, or perhaps even different social

classes exist? A number of important characteristic features that different kind of so-

cieties exhibit have been described by existing research, but many more are yet to be

discovered [118, 107]. There are many methods for acquiring information regarding the

internal social organization of an early society. Beyond field survey—which aims to dis-

cover mainly a presumed hierarchy of a settlement—making use of settlement pattern

information, written records, oral tradition and approaches from ethno-archaeology are

included as well [107]. Clearly, the variety of methods used and the inherent uncertainty

of the domain gives rise to a rich space of hypotheses for any given question regarding

the social organization of early societies. This is where multi-agent systems research

can potentially offer a helping hand.

2.2 Multi-agent Systems and Agent Organization

Multi-agent system approaches towards organizational design can be considered to be

either agent-centric or organization-centric [86]. In organization-centric approaches,

the focus of design is the organization which has some rules or norms which the agents

must follow. Thus, the organizational characteristics are imposed on the agents. The

former focus on the social characteristics of agents like joint intentions, social com-

mitment, collective goals and so on. Therefore, the organization is a result of the

social behaviour of the agents and is not created explicitly by the designer. While a

lot of re-organization framework models have been proposed in the MAS community

(Opera [37], OMNI [129], Norms based [88], ODML [68], KB-OR [120]), such reorga-

nization methods need to be provided with a particular set of requirements to produce

an agent organization suitable for the respective problem solving process; agents are

not permitted to modify their organizational characteristics that have been pre-designed,

or do not allow flexibility in the interactions. In [36] re-organization issues in agent

societies are discussed, such as how and why organizations change, and how can reor-
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ganization be done dynamically, with minimal interference from the system designer.

They argue that one of the main reasons for having organizations, is to achieve sta-

bility. However, environmental changes and natural system evolution (e.g. population

changes), require the adaptation of organizational structures. Thus, re-organization may

be the answer to changes in an artificial environment of agent societies, if it leads to

increased capacity for survival (vitality) or power to live and grow (energy or utility);

the reorganized instance should perform better in some sense than the original situation,

not only for the organization but for the agent itself, given the assumption and essential

characteristic of agent autonomy in multi-agent systems or models.

The concept of self-organization can be considered as a specific instance of the

agent systems re-organization notion. It is inspired by the spontaneous re-organization

observed in natural systems functioning without any external control, and has subse-

quently successfully been applied in MAS research [35]. Such mechanisms function

without any external control and adapt to changes in the environment through sponta-

neous reorganization. This self-organizing ability makes these natural systems robust to

changing environmental conditions, thus enhancing their survivability. In the context of

computing systems, self-organization refers to the process of the system autonomously

changing its internal organization to handle changing requirements and environmental

conditions. Several approaches have been explored by researchers for developing self-

organizing MAS. Intuitively, in social self-organization methods like the one in [81, 82],

adaptation targets organization-wide characteristics, such as structure, rather than the

individual agent ones. Moreover, in dynamic environments modeling real human soci-

eties, continuous structural self-adaptation is, predictably, almost a necessity in the face

of uncertainty and ever-present change [36]. Therefore, a structural adaptation method

is preferable to methods modifying particular agent properties, and enables the agents

to choose when and how to adapt—especially when placed in real world, ever-changing

environments. In Section 3.2 we present in detail a self-organization method developed

in this thesis, one which adopts aspects of and builds on the approach of [81, 82] men-

tioned above.
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2.3 ABM Design Methodology

Agent-based computational experiments simulate the simultaneous (synchronous or asyn-

chronous) operations and interactions of multiple agents, where complex phenomena

may emerge, combining ideas and approaches from formal systems discussed previ-

ously in Section 1.1. The entire process of building an ABM begins with a conceptual

model, where the main questions or hypotheses of the researcher solidify model ele-

ments (i.e. agent entities), with their attribute characteristics, behavioural and interac-

tion mechanisms among themselves, and the model environment. In this section, we

discuss the design methodology and available architecture for these elements, as well

as a way of making model descriptions more understandable and complete. Moreover,

for a beginner or non-expert in computer programing, there are several modeling sys-

tem tools available to assist the development of an ABM. The subsequent subsections

identify several ABM toolkits widely available and key model design considerations.

2.3.1 Modeling toolkits

Any ABM can be implemented with any object-oriented programing (OOP) language,

since it is developed as a computer program. The concept of “object” in the computer

programming paradigm, is used to describe (perhaps inadequately) data structures that

contain data (fields or attributes) and functions (procedures or methods) that can access

and modify their own data. Thus, the most suitable way to develop ABMs is if we

consider objects as agents. An experienced modeler in OOP can build an ABM from

scratch; however, there are several advantages to utilizing existing modeling tools for

ABM development. Such benefits include reduced time for programming non-specific

parts, e.g. data import/export, graphical user interface (GUI), etc., or the inbuilt imple-

mentation of various procedures, routines or methods needed. Although there are many

toolkits for developing ABMs, we present here just a few of them, selected because

they have up to date active maintenance and development, are widely used with a large
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user community, model libraries, tutorials and documentation, and being also able to be

integrated with GIS extension libraries for geospatial ABM development. However, it

is important for the modeler to always select software based on their purpose, design

objectives and modeling capabilities.

NetLogo1 [125] is highly recommended for modelers with beginner-level program-

ming skills. It is a multi-agent modeling environment for simulating natural and social

phenomena, has been in continuous development since 1999, and is capable of modeling

relatively complex systems. NetLogo is simple enough for both students and teachers,

yet advanced enough to serve as a powerful tool for researchers in many fields. It has an

extensive documentation, many online tutorials, with a large model library of collected

pre-written ABM simulations, addressing research areas for almost every discipline,

as well as several useful extensions, such as GIS and Networks. NetLogo is an open

source software library and runs on the Java virtual machine, thus it also constitutes a

cross-platform modeling toolkit, while its computer programming language is the Logo

dialect, a programming language designed specifically for ABM.

The Repast Suite2 [100] is a family of advanced, free, and open source ABM and

simulation platforms that have collectively been under continuous development for more

than a decade. It is perhaps the most actively maintained solution for ABM with a large

user community. Repast comes in two editions; the Repast Symphony edition, which

can be used when the modelers’ programming background is limited or when the mod-

eler needs to use rapid prototyping to quickly develop an ABM (using ReLogo or Java);

and the Repast HPC (Repast for high-performance computing), when the modeler needs

to develop a model of a complex system with a large number of agent interactions and

is also familiar with the C++. The Repast suite provides visual and easy to use capabili-

ties for agent design, behaviour specification, model execution, and results examination.

The modeler may also specify spatial elements of the model (e.g., geographic maps or

networks) and different types of agents with specified behaviours.

1See http://ccl.northwestern.edu/netlogo.
2See https://repast.github.io.

http://ccl.northwestern.edu/netlogo
https://repast.github.io
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MASON3 [87] is a multi-agent simulation modeling tool designed to support a large

numbers of agents relatively efficiently on a single machine; it has no capabilities for dis-

tributing models over multiple computers, although an extension for this (D-MASON)

is available. MASON has no domain-specific features unlike the previous toolkits and it

is highly modular and consistent, allowing the modeler to use and recombine different

parts of the system. Moreover, it has a large set of utilities to support model design as

well as several valuable extension packages for geospatial support, for social network

systems analysis, as well as a high performance evolutionary computation system to

discover design solutions for complex ABMs. Thus, a working knowledge of Java is a

requirement for the modeler in order to use MASON.

GAMA4 [123] is a modeling and simulation development environment for building

spatially explicit agent-based simulations. It is also an open source application soft-

ware based on the architecture provided by Eclipse5, where users can undertake most of

the activities related to modeling and simulation, such as editing models and simulat-

ing, visualizing and exploring them using dedicated tools. GAMA is a cross-platform

modeling toolkit, while its computer programming language is GAML, a programming

language designed specifically for the platform. There is also an extensive documenta-

tion and tutorials designed to ease the first contact with it, by identifying tasks of interest

to modelers and how they can be accomplished within GAMA. Currently, GAMA of-

fers advanced visualization features (i.e., different displays composed of several layers,

enhanced 3D visualization) [55] and also has several new features that enables the plat-

form to simplify the work in participatory modeling and simulation, allowing human

participants to interact with a simulated environment [124].

3See https://cs.gmu.edu/ eclab/projects/mason.
4See http://gama-platform.org.
5See https://www.eclipse.org.

https://cs.gmu.edu/~eclab/projects/mason
http://gama-platform.org
https://www.eclipse.org
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2.3.2 Agents, environment and interaction topologies

A typical agent-based model has the following essential features: a set of agents with

their attributes and behaviours, a framework for simulating agents in which they interact

with their environment in addition to other agents and a set of agent relationships, and

methods of interaction in which an underlying topology of connectedness defines how

and with whom agents interact, as shown in Figure 2.1.

Figure 2.1: Virtual structural framework of a typical ABM (adapted from Jennings 2000)

While ABM originates from computer science as a computational modeling ap-

proach, the interdisciplinary nature of ABM may not allow a universally accepted defi-

nition of the term agent. Nonetheless, one of the most widely accepted definitions of an

agent is provided by Jennings [75]; an agent is a software-based computer system, situ-

ated in some environment, and which is capable of autonomous action in order to meet

its design objectives. Several agenthood properties that come from the above definition,

such as the following:
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autonomy agents are actual problem-solving entities, and have (at least some kind of)

control over their choice of actions and behaviours—i.e., they rely on their own

percepts and deliberations for decision making, and are capable of processing (and

exchanging) information in order to make independent decisions,

heterogeneity agents can be heterogeneous with different attributes and characteristics

which may differ in several ways (e.g. preferences or behaviours), and over time,

pro-activeness an agent can exhibit goal-directed behaviour,

re-activeness an agent is able to perceive and respond (act) within its environment,

social ability an agent can be interactive or communicative, being able to share or ex-

change information with others, and act within a given social environment.

However, agents can possess other properties and depending on the application,

some of their features will be more important than others. Thus, the above list is not

exhaustive or exclusive. Along with agent behavioural characteristics, the structural de-

sign of the agent needs to be described. The appropriate structure of the agent depends

on the nature of the environment modeled. An agent can operate in an environment that

has various properties that influence its behaviour as well as its structural design. Thus,

before designing an agent, the first step is to always specify the environment in which

agents will act, as fully as possible.

According to Russel and Norvig [111], agent structures and environments vary along

several significant dimensions. Agent environments can be organized according to their

properties like:

fully or partially observable where the agent is either able or unable to gather com-

plete information about the environment,

deterministic or stochastic when only agent actions, along with the current state of the

environment, are able or not to determine the environment’s next state,
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static or dynamic when the agent is the only entity that brings changes on the environ-

ment or when changes in the environment happen while the agent is acting,

discrete or continuous when possible environmental states are finite or not.

Finally, an environment can be obviously single-agent or multi-agent; the later can

be also seen as a competitive or cooperative one, depending on the situation. A simple

case scenario of an ABM environment would be a fully observable, deterministic, static

single agent environment. Perhaps in such an occasion designing the simplest agent

structure could be sufficient, a reactive (or simple reflex) agent. These agents select

actions based on their current perception of the environment, ignoring previous per-

ceptions history. They are based on simple condition-action or if-then-else rules—i.e.,

providing immediate (reflexive) responses to perceptions. Although such an agent de-

sign has a low demand on computational power, the resulting agents are of very limited

sophistication or intelligence. For complex settings, however, a deliberative or rational

(or intelligent) agent needs to be designed. Such an agent is able to store previous per-

ception history, use an internal model, employ some goal information for its decision

making or use a utility function to evaluate how close to its goal the agent is, rather than

simply perceive whether a goal has been achieved or not—and then choose an action.

Now, agent perception (within a sphere of visibility and influence) and action capa-

bilities determine its nature of interaction with the environment and other agents. What

is more, when agents interact there is typically some underlying organizational context,

representing the nature of the relationships among the agents. Thus, the possibility of

specific agent interaction topologies might need to be taken into account prior to model

design [89], as show in Figure 2.2.

The choice of an agent interaction topology very much depends on the modeler’s

needs. For instance, a grid or lattice interaction topology can be used when an agent

need to be represented either as a grid’s cell (cellular automata) or as an entity situated

in a grid cell, where Von Neumann or Moore neighborhoods can be further taken into
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Figure 2.2: Potential agent interaction topologies for a computational ABM (adapted from Macal
and North 2009)

account (Figure 2.2a).6 Likewise, a polygonal tilling scheme (employing polylines as

well) can be used when a realistic GIS map need to represent the environmental frame-

work of the model (Figure 2.2b). When the modeler needs the agents to be able to move

and interact within a simple representation of physical space, then the environment can

be represented as an Euclidean 2D (or even (3D) continuous space (Figure 2.2c). Fi-

nally, a network interaction topology can be used for representing (weighted) connec-

tions between the agents (nodes) where both directed and undirected relationships (links

or edges) may exist.

There are several other common structural conventions that may also exist in most

ABM implementations [99]: a logging mechanism, used to record different parameter

values during model simulation runs for later analysis; a scheduler, responsible for rep-

resenting the temporal aspect of a simulation, i.e., it can be a “time stepped” scheduler,

where agent actions or events (procedure calls) occur in each time (period) increment,

or a “discrete event” scheduler, where several actions or events need to be executed at

a specific time (duration). An optional Graphical User Interface (GUI) is also always

included to facilitate the modeler during the ABM implementation, initialization and

simulation stage. Apart from these elements, it may also be necessary to provide a for-

mal description for an ABM, both for assessing the model design and the dissemination

of the researcher’s work, as explained in the next section.

6We note that, a triangular, hexagonal, etc. tessellation can be of use instead of a rectangular one.
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2.3.3 Formalizing model design

Building a computational model from an informal theory is not a trivial matter, while

formal theories are often too wide-ranging to put into computational terms. Therefore,

it is necessary to reduce them to a few selected features which contain the essence of

what is being described. To this end, the ODD (Overview, Design concepts, Details)

protocol was developed as a standard format for describing ABMs [56]. ODD provides

a general structure for formulating ABMs by describing models using a three-part ap-

proach involving: (i) an overview of the model, (ii) important design concepts, and (iii)

specific details. Model overview includes a statement of the model’s purpose, a descrip-

tion of the main entities, variables or attributes, temporal and spatial resolution of the

model, and a discussion of the agent activities. Model design concepts include a de-

tailed description on how abstract notions of the model, such as objectives, interaction,

adaptation, stochasticity, observation, a.o have been taken into account and represented

in computational terms. Finally, model details include specific elements regarding the

initial setup configuration, input value definitions, and descriptions of the ABM.

Other modeling aspects, such as calibration (or sensitivity analysis), verification, and

validation can be part of the ABM methodology. Indeed, depending on the case study, a

modeler may calibrate an ABM to specific historical cases, if there is enough supporting

data (deductive reasoning), or sweep a range of parameters over several possible scenar-

ios to identify important thresholds or reveal tradeoffs and inherent uncertainties. ABM

simulations must be reproducible (defining random seeds for the incorporated pseudo

random number sequence generator); but even if they are not, a modeler needs to run a

high number of simulations and examine aggregated parameter values, rather than being

satisfied using just one single run of the model. The true power of the ABM approach

is that one can rigorously incorporate in the model specific research findings within any

given domain, e.g. biology, physics, geography, archaeology, sociology, etc. This ability

brings out the true interdisciplinary nature of ABMs. Thus, it is essential to understand

that ABMs are meant to test whether they are behaving as their modelers intended, and
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not to prove or disprove any specific theory or hypothesis; however, certain simulation

results can potentially provide support or gain new insights to existing theories.

2.4 Related Work: Archaeology-related ABMs

In recent decades, archaeologists have used agent-based models to test possible expla-

nations for the rise and fall of ancient societies. One example of such a system is the

study conducted for the region of the Long House Valley in Arizona, on the reasons

why there have been periods when the Pueblo people lived in compact villages, while in

other times they lived in dispersed hamlets [79]. The model results show the importance

of environmental factors related to water availability for these settlement changes. How-

ever, results for 30 different (parametarisation) scenarios of just one run are presented.

Moreover, as in most of the existing models, agents actions in the model are mainly

cultivation/farming and migration, not based upon utility maximisation but rather on

threshold rules. Finally, agents do not interact with each other but act independently.7

A similar (quite well-known) ABM study involved the cause of the collapse of the

Anasazi, around 1,300 CE in Arizona, USA [34, 6]. Scholars have argued for both a

social and an environmental cause (drought) for the collapse of this society. Simulat-

ing individual decisions of household agents on a very detailed landscape of physical

conditions of the local environment, the authors of [34] refute the hypothesis that envi-

ronmental factors alone account for the collapse. Agents in the Anasazi model (of the

same environmental area with the work of [79]), however, once again do not interact

with each other. Agents are simple reactive (i.e., incorporate simple condition-action

rules [111]), and their actions mirror a rather “nomadic” style of social organization,

instead of the more complex one that the Anasazi actually evolved until they abandoned

the region around 1,300 BC [57]. A further cause of concern regarding the model’s

accuracy and fairness is that in [6] the authors apparently calibrated the model by mini-

7Mortality and fertility rates in [79] depend on the agents’ “age”, rather than on production.
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mizing the difference of the simulated and historical data, using only 15 simulations, and

published the best fit, notwithstanding the apparent great variation in their results [73].

As a result, neither are the agents in the ABM truly autonomous, nor the hypothesis

being studied was appropriately evaluated in that line of work.

The study of the long-term dynamics of human society and in particular the spon-

taneous transition from a relatively simple hunter - gatherer society to one with a more

complex structure has been also tried in the past [38]. The aim of this social simulation

system – Evolution of organized Society (EOS) project – was to investigate the causes

of the emergence of social complexity in Upper Palaeolithic France. Each agent is en-

dowed with a symbolic representation of its environment, its beliefs, about other agents

(the social model) or about resources in the environment (the resource model). An agent

also has a set of (cognitive) rules, which map old beliefs to new ones. To decide what

action to perform, agents have action rules which map beliefs to actions. Agents inhabit

a simulated two-dimensional environment (grid of cells) and have associated skills. The

idea is that an agent will attempt to obtain resources situated in the environment that

come in different types, and only agents of certain types are able to obtain certain re-

sources. The basic form of social structure that emerges, does so because certain re-

sources have a skill profile associated with them. This profile defines, for every type

of capability that agents may possess, how many agents with this skill are required to

obtain the resource. A number of social phenomena were observed in running the EOS

model, as for example “overcrowding” or “clobbering”, when too many agents attempt

to obtain resources in the same locale. However, agents in the model are autonomous

only in the sense of simple reactive agents. Neither learning/adaptation nor a “utility”

function of the agent’s state or actions is introduced. Agents in the EOS model are rather

forced by rules to change their independent state in favour of a recursive development

of a hierarchical structuring of agent groups. Moreover, the authors mention that there

are more than 60 rules including both cognitive and action rules, while none of them

is described; at least for the cognitive part of the agents, there is no reference on the

internal information processing of the agent, including tasks like reasoning, planning
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or problem solving. In order to study the transition from a simple societal organization

to a more complex structure (without adding any bias), simulations should exhibit the

emergence of such a phenomenon, rather than introducing it to the model a priori. In

addition, while population dynamics is an important consideration for the accuracy and

fairness of any ABM simulating a given society [30], this is not mentioned at all in [38].

Archaeologists are now beginning to make use of spatial information in their models,

through data provided by Geographical Information Systems (GIS). Models like the

CybErosion framework overcomes the limitation of existing landform evolution models

which use an agent-based approach to simulate the dynamic interactions of people with

their landscapes but have typically failed to include human actions, or have done so only

in a static, scenario-based way [132]. The interactions it simulates relate to a few main

processes of food acquisition (hunting, gathering and basic agriculture) in prehistoric

communities. Simulations demonstrate the value of this approach in supporting the

vulnerability of landform evolution to anthropic pressure, and the limitations of existing

models that ignore human and animal agency, and which are likely to produce results

that are both quantitatively and qualitatively different. Although the ABM’s goal-based

agents do not interact with each other they can decide at each time step what action to

select (hunt, forage, collect firewood, other activities) based on their stored energy and

the remaining daylight length.

The Mason-Smithsonian Joint Project on Inner Asia [28] is a complex social sim-

ulation project aimed at developing a better interdisciplinary scientific understanding

of the rise and fall of polities—national territorial societies with their own system of

government—over a very long time period, in order to examine the social effects of cli-

mate and environmental change. A next model of this project is the Mason Hierarchies

model, developed by adding social and natural features to the simulation. Hierarchies

rather than “households” agents are now present for modeling the explicit emergence

of political entities in the socio-natural landscape. The model-building is based on the

“canonical theory of social complexity” which is formally derived from the authors
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general theory of political uncertainty rather than on a representative MAS or ABM

architectural framework.

MayaSim [65] is a recent example of a simulation model integrating an agent-based,

cellular automata, and network model of the ancient Maya social-ecological system. The

purpose of the model is to better understand the complex dynamics of the Maya social-

ecological system, and to test quantitative indicators of resilience as predictors of the

system’s sustainability or decline. The model examines the relationship between popula-

tion growth, agricultural production, pressure on ecosystem services, forest succession,

value of trade, and the stability of trade networks. These combine to allow utility-based

agents, representing Maya settlements, to develop and expand within a landscape that

changes under climate variation and responds to anthropogenic pressure . Settlement

agents may migrate when population levels decrease below a certain threshold required

to maintain subsistence agriculture. Agent utility function combines weighted functions

for agriculture, ecosystem services, and trade benefit, affected by resource exchange that

occur between settlement agents, that are connected via a network of links that repre-

sent trade routes. It is assumed that when an agent reaches (or drops below) a certain

size, it will add routes (or allow routes to degrade) to nearby agents within a “Moore

neighbourhood” cells (spatial ties). However, agent decisions are hard-coded in the

model e.g., migration or adding new and degrading existing trade route links between

the agents are based on threshold rules, thus compromising agent autonomy. Model

results suggest that the demise of a globally significant settlement node could result in

cascading failure in the whole trading network, while the model itself requires refine-

ment and further calibration in order to be able to reproduce spatial patterns somewhat

analogous to that of the ancient Maya.

The above model essentially constitutes one of the two models we are aware of that

include utility-based agents. The second model we are aware of and can be considered

utility-based, is an ABM aiming to understand the possible mechanisms underlying pe-

riods of aggregation and disaggregation of prehistoric societies in arid environments, not
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aiming to represent a specific case study [74]. Agents in the ABM represent households

making decisions about resource use and migration. Moreover, one or more agents in an

environmental cell represents a settlement, which may exchange resources with other

settlements based on conditional rules. The ABM could explore to some extent how

various assumptions concerning social processes, such as migration, storage, and ex-

change affect the population aggregation and size, and the dispersion of settlements in

a spatially explicit landscape with rainfall variability. Agent interactions in that simple

model, however, are largely determined by rules that are built in the system. Our ABM

presented in this thesis shares several basic features with that of [74], but is also in many

ways distinct to that model, as we will be detailing in Section 3.1.5.

In summary, ABMs nowdays can integrate geospatial information along with archae-

ological evidence, and help researchers gain a better understanding of ancient societies

evolution and environmental processes. However, as it is already understood, most of

existing models do not define agents in the way these are defined in the MAS commu-

nity, perhaps because domain experts in social sciences have a rather vague idea about

what is really allowed or not for defining such models in computational terms [43].

Thus, essential agent features such as autonomy or interaction ability are considered

as “metaphors” in the design level only, and do not appear in the actual system imple-

mentation. Social scientists and archaeologists are interested in understanding human

societies, in particular the mechanisms that allow these systems to self-regulate, and in

the processes that shape and modify rules of behaviour. To aid them in this endeavour,

computer scientists need to build ABMs that are flexible and open; agent behaviours

should be allowed to evolve over time, rather than being pre-determined at design-time.

Moreover, there is an apparent need to develop and study system regulating mechanisms

that are actually emergent from some form of evolution and self-organization of the un-

derlying agent society. Our ABM system presented in this thesis is such an open one,

and can incorporate self-organization mechanisms that allow for flexible agent interac-

tions and the dynamic modification of organizational characteristics.
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2.5 The Minoans and their Social Organization

Several ancient civilizations existed in the Aegean Sea during the Bronze Age, with

the Crete island being associated with the “Minoan” civilization, which came to domi-

nate the islands and the shorelines of the Aegean Sea.8 A significant shift in the early

Minoans human existence and lifestyle was brought when crop farming was first devel-

oped. Previous reliance on a nomadic hunter-gatherer way of subsistence, was in time

replaced by reliance on the produce of cultivated lands [63]. These developments are

assumed to have had great impact on the growth of settlements, encouraging the con-

centration of local population. As a result, population density may have been relatively

high, and agricultural activities more intense in the vicinity of settlements, while at the

same time more remote regions were probably losing population, with land that was

potentially quite productive going out of use [30].

From the sociological point of view, however, we do not have enough information

about what kind of relationships existed between the Minoans or how this ancient civi-

lization was organized before the Post-palatial (Late Minoan) period.9 Unlike what was

the case in the Mellars model of the EOS project [38] (see Section 2.4), the wealth of

environmental resources sustaining the Minoan civilization is not our focus of attention

here. Archaeological evidence strongly suggests that the Minoans were agriculturalists

and pastoralists [66], as well as traders, and their cultural contacts reached far beyond

the island of Crete—from Greece to Egypt to Anatolia [70]. Moreover, it is gener-

ally believed that there was little internal armed conflict in Minoan Crete itself, until

the following Mycenaean period. Starting from these points of departure, there are

several alternatives (originating in various traditional sociological approaches—social

8The “Eteocretans”, as they were called by Homer long time before the “Minoan” term, that was
coined by Arthur Evans after the mythic “king Minos”, were farmers as well as traders in the whole
Aegean [138], who had survived a natural catastrophe, possibly an earthquake and an eruption of the
Thera volcano (such an eruption is often identified as a catastrophic natural event leading to the Minoans’
rapid collapse [92].

9cf. Table A.1 in Appendix A for the conventional chronology dates (BCE) of the Minoan period used
in our ABM simulation scenarios.
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conflict, functionalism, interactionism, etc.) that may be suggested for the Minoans’

social organization and subsistence [29]. Archaeologists still struggle to find if there

are any signs of a settlement hierarchy in the Pre-palatial (early Middle Minoan) period,

based on the variation of settlement sizes within a region, or by the number of “tholos”

graves in use in each cemetery (which serve as an indirect way of estimating settlement

population) [116]. In [106, 108], the authors argue that interactions between different

socio-political entities are of a particular importance in the emergence of complexity

within a society, while some archaeologists argue that a strongly stratified society can

be assumed to have existed well before the end of the Neolithic period [15].

Moreover, a series of changes in the Aegean, in particular in the Minoan society,

were triggered by the LM (Late Minoan) IA or ca. 16th c. BCE Santorini eruption [42].

These changes would have caused the breakdown of the Minoan system over the course

of a few generations, during LM IB (15th c. BCE). Archaeologists hypothesize that

the eruption would have initially caused major problems in food production and distri-

bution, undermining central authority and leading to a process of decentralization; this

fragmentation would then have led incrementally to internal conflict. However, despite

the many destructions and abandonments documented, Minoan culture survived.

There is still no agreement on the absolute date of the eruption. Quite a few earth

scientists take the late 17th c. BCE date (between 1630 and 1600 BCE) for granted,

whereas many archaeologists remain to the traditional late 16th c. BCE date, roughly

around 1530-1520 BCE [40]. Despite the absolute date of the eruption, there is little

doubt that the eruption was preceded and probably even triggered by one or more earth-

quakes. However, considering the archaeological record of Bronze Age Crete, careful

analysis of old and new archaeological data suggest that earthquake evidence is patchy,

frequently ambiguous, and generally less spectacular than what popular accounts of Mi-

noan society would expect [78]. Regardless, the Theran eruption continues to trouble

scientists, especially on questions surrounding the volcanic eruption absolute date and

its impact on the ecosystem of the Ancient Mediterranean.



Chapter 3

AncientS-ABM: Simulating Ancient

Societies

In this chapter we describe in detail the core of a functional ABM system prototype for

simulating an artificial ancient society of agents. We focus on using autonomous utility-

maximizing agents for studying historical social dynamics and evaluating the impact of

different social organization paradigms on the artificial past society, in terms of popula-

tion sustainability and agent community sizes for various simulation scenarios. Impor-

tantly, the model incorporates a social organization paradigm of agents self-organizing

into a “stratified” social structure, and continuously re-adapting the emergent structure,

if required. As a case study, we consider an artificial Early Bronze Age “Minoan” so-

ciety residing at the wider area of Malia at the island of Crete during the Bronze Age;

model parameter choices are based on archaeological evidence and studies, but are not

biased towards any specific assumption.

Simulation results demonstrate that self-organized agent populations are the most

successful, growing larger than agents employing different social organization paradigms.

Specifically, self-organization is compared to egalitarian-like and static hierarchical or-

ganization models. The success of this social organization paradigm that gives rise to

36
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“stratified” societies, provides support for so-called “managerial” archaeological the-

ories which assume the existence of different social strata in Early Bronze Age Crete;

and consider this early stratification a pre-requisite for the emergence of the Minoan

Palaces, and the hierarchical social structure evident in later periods [19, 52].

Our work here provides several contributions, also illustrated in Figure 3.1 below:

• We present a complete ABM framework that incorporates MAS-originating con-

cepts, techniques, and algorithms. In particular, we employ autonomous, utility-

based agents (rational utility-maximizers) for modeling their intra-community in-

teractions, unlike most existing ABMs in archaeology, which employ a simple

reactive agent architecture.

• We incorporate a number of different social organization paradigms and subsis-

tence regimes (e.g., cultivation systems) in our modeling approach.

• We conduct a systematic evaluation of the influence of the various social organi-

zation paradigms on agents population growth, agent community numbers, sizes

and distribution.

• We specifically incorporate a social organization paradigm of agents self-organizing

into a “stratified” social structure, and continuously re-adapting the emergent

structure, if required. We note that, this is the first time that a self-organization

approach is incorporated in an ABM system used in archaeology.

• We also define an (intelligent) agent decision-making process, which uses an

MDP to decide on migration (or settlement) policies, and compare the viability

in terms of population growth of the resulting agent societies against that of my-

opic agent action selection.

• As a case study, we employ our ABM to assess the intra-settlement organization

of Minoan agents affected by their interactions, based on actual archaeological

data and evidence on the area and period under study.
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As such, in this chapter we put forward AncientS-ABM, a modular and generic

ABM system, that is easy-to-use by archaeologists, and can easily incorporate

archaeological evidence or estimates to help them test proposed archaeological

theories or hypotheses regarding their social organization.

Figure 3.1: Overview of involved scientific fields and contributions in Chapter 3.

The remainder of this chapter is structured as follows. Section 3.1 presents our

model, by describing its environmental representation, its agents, their actions and in-

teractions. Section 3.2 describes various social organization paradigms and related char-

acteristics. Specifically, it presents the self-organization algorithm incorporated in this

work and an appropriate evaluation mechanism that measures the utility for agent re-

organization decisions. Following that, Section 3.3 presents our specific case study of

early Minoan societies, and records the empirical evaluation of our approach, by first

detailing the comparison methods and the simulation parameters for the various scenar-

ios considered, and then analysing the obtained results. Finally, Section 3.5 provides an

interpretation overview of our simulations and concludes this work. Parts of the research

described in this chapter appeared originally in [114], [20], [21], [26] and [22].
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3.1 A Utility-Based Multi-agent Model

Agents in our ABM correspond to households, which are considered to be the main

social unit of production for the area and period under study [137], each containing up

to a maximum number of individuals (household inhabitants). Each household agent

resides in a cell within the environmental grid, with the cell potentially shared by a

number of agents. Adjacent cells occupied by agents make up a settlement—and there is

at least one occupied cell in a settlement. Each agent cultivates a number of cells located

next to the settlement. The number of those “fields” depends on the agent household

size, as we explain further below.

The model then determines how the agent society evolves as follows. At every time

step corresponding to a period of one year, household agent first harvest resources lo-

cated in nearby cells (corresponding to the fields they are cultivating). They then check

whether their harvest (added to any stored resource quantities) satisfies their minimum

perceived needs. If not, they might ask others for help (depending on the social orga-

nization behaviour in effect), or they might even eventually consider moving to another

location or settlement. When the self-organization social paradigm is in use, agents

within a settlement continuously re-assess their relations with others, and this affects

the way resources are ultimately distributed among the community members, leading to

“social mobility” in their relations.

Population size affects the land productivity in two ways: positively, since the con-

tinuous occupation or cultivation of an area by a large populace leads to experience and

subsequent higher crop yield; and negatively, since it also leads to overexploitation of

resources, or to less nearby area available for cultivation, or higher transportation cost

to further away areas cultivation, and thus, (implicitly) induce a lower crop yield. Pop-

ulation levels at a given area are affected by migration, as well as natural population

change by birth and death of agents. Lower amount of resources reduces birth rate and

thus leads to a reduced population size and threatens the agents with extinction. An

abstract overview scheme of the main processes is presented in Figure 3.2. The arrows
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in the figure show how one process affect another in the MAS simulation model.

Figure 3.2: The ABM main processes interaction

The ABM allows us to explore the use of different cultivation systems that could be

used by the agents, and thus test their impact on population size and dispersion and soci-

ety’s viability. At its current implementation, it allows the use of two agricultural prac-

tices: intensive farming (“garden” cultivation with hand tillage, manuring, weeding, and

watering) and extensive agriculture (large-scale tillage by ox-drawn ards)1 Additionally,

our ABM attempts to assess the influence of different social organization paradigms on

population growth and settlement societies distribution. Importantly, the model allows

us to evaluate the social paradigm of agents self-organizing into an implicit stratified

social structure, and continuously re-adapting the emergent structure, if required.

1These are the agricultural practices in use at the period of interest for our case study here [60, 71].
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3.1.1 Model environment and resources

Agents and resources in the multiagent model are located within a three dimensional

space, specified in terms of coordinates and cells. The spatial resolution is 20 × 25km

area with a 100 × 100 m cell size for the grid space. Thus, the landscape consists 50K

cells, while the time slot investigated is ≈ 2,000 years (ca. 3,100 to 1,100 BCE), with

annual time steps.

Figure 3.3: Environmental data layers of the ABM

The ABM environment can be classified as accessible, non-deterministic, since there

is uncertainty about the outcome of a particular action (cultivating, migrating), dynamic

and discrete (as discussed in Section 2.3.2). The environment has also various data lay-

ers (see Figure 3.3) representing various aspects of the model landscape contributing

indirectly in agent’s decision-making process, like where to settle and/or cultivate. The

input spatial information are derived from current data and are concerning the topogra-

phy, which is today’s Digital Elevation Model (DEM), slope and aquifer locations, such
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as rivers and springs.

Resources exist in cells at fixed locations, and they may vary with respect to the

amount of energy they embody, and their availability through time. The productivity of

an environmental cell (in kg) is a function of the cell’s geo-morphological characteristics

(in particular, land slope) given its location on the map, and the soil fertility, which

depends on the amount of labour applied on the cell by the agents. With more labour

applied on a given cell, there is an increase in cell farming output (as agents get better in

working the land and harvesting their crops). On the other hand, the more a cell is used,

the more its yield is reduced, due to overharvesting (overexploitation).

To model these dependencies, we devised a function Qi to describe the agricultural

production quantity or reward of a cell i:

Qi (P )= αi

(
2µ−4µmax
Pmax

2 P 2+
4µmax−3µ
Pmax

P+µ

)
(3.1)

where P is the current population size of the corresponding settlement (i.e., number of

individuals residing in the settlement, not the number of household agents)2, µ is the

initial amount of resources of the cell, µmax is the maximum resource level per cell,

Pmax is the maximum possible population size per cell, and αi is a real valued weight

in [0, 1] characterizing the agricultural production of cell i. Intuitively, αi represents

the land suitability of a cell for agriculture. We assume that there are no agricultural

activities in areas with slope more than 45o (this is actually a generous assumption,

especially considering the era being modeled). Thus, αi is used to represent the decay

2In Equation 3.1 we use the agents organization population per cell P influence the amount of labour
applied on a cultivating cell, even though any given cell contributes to the utility of a single agent only (cf.
Equation 3.3), since field cultivation was in many respects communal in those times [126]. Regardless
of that assumption’s validity, this value is essentially “normalized” by the maximum possible population
per cell; thus the Qi function’s desired behaviour would have been entirely similar had we used the
household size instead of the settlement population. Moreover, this function is used by all competing
social organization paradigms in our experiments, thus granting none of them an unfair advantage.
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of agricultural land suitability with increasing slope.3

Equation 3.1 captures the fact that labour applied on a field increases crop yield up to

a point, but at the same time a household cannot productively use a location forever (due

to overexploitation). It was inspired by the logistic map equation, the discrete version

of the logistic differential equation, widely used to model population growth [130]. In

our simulations, a cell’s initial production output Qi at a given run (corresponding to

period of 2,000 years) is multiplied with a sample from a standard normal distribution,

and thus varies across runs.

3.1.2 Agents and their actions

Households are utility-based autonomous agents who they can settle (or occasionally

re-settle) and cultivate the land in a specific environmental location. They also possess

an explicit representation of the environmental grid (perception radius), and use this to

choose the best available migration location they can move to, in order to improve their

utility. Thus, the actual agents architecture is a hybrid one, combining properties from

a reactive and a deliberative agent architecture, but they can eventually be classified as

utility-based agents, since their actions (e.g., choosing a migration location, or asking

others for help) seek to maximise the expected value of a given utility function—even

though, at its current implementation, this utility function is rather myopic.

The main preoccupation of the agents is to stay alive by acquiring and consuming

resources harvested from the land. If an agent household fails to acquire enough energy

it will eventually die out, since it will stop procreating, as explained in Sec. 3.1.3 below.

Acquiring energy is the only inbuilt goal of the agents. Thus, at every time step, the

agents seek to pick the action b′ that appears to be most rewarding in terms of producing

3We do not take into account “terracing”, a type of farming at sloped planes that have been cut into a
series of successively receding flat surface, which resemble steps.
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resources at a given time step:

b′ = argmaxb∈ExUx(b) (3.2)

where Ex is the set of all energy-generating actions for agent x in the model.

In the case study considered here, agents acquire energy only via harvesting the

lands. Therefore, the (expected) utility Ux of the agent x is simply described as follows:

Ux=max{
n∑

k=1

Qk, U
′
x} (3.3)

Equation 3.3 thus determines that the utility of agent x depends on the expected

agricultural production of the cells it cultivates (its total harvested resource amount),

as well as the expected utility U ′x of a new candidate migrate location (which in turn

depends on the agricultural production quality of the new position). The number of

cells n, that a given agent x is able to cultivate at a given position, depends on its size

and the cultivation system in use, as we detail below.

An agent x needs to be receiving some minimum utility from its cultivated cells,

in order to be fit enough to procreate (see Sec. 3.1.3). The minimum utility (minimum

level of resources) for household agent x containing j individuals is calculated as:

U thres
x =j×resmin (3.4)

with resmin being the minimum amount of resources (in kg) required by an individual

per year. The value of the resmin can be set based on archaeological research estimating

the average yearly food consumption per person during the era in question.

As mentioned, agents employ actions by which they may interact with the environ-

ment. We term these agent – environment actions, to distinguish them from the actions

that agents may use to interact with other agents in the environment. The currently im-
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plemented primary (agent – environment) actions include land cultivation and migration

to another location, if an agent’s current location does not fulfil the agent demands:

Action: Cultivation. An agent may cultivate the land within a specified range from

its settled location, and is able to store any surplus resources in its storage, for up to

y years. The agents are assumed to be “settled farmers” who, however, do not aim to

expand their farming territory more than what they require it to be in order to be able to

sustain themselves. This is because during that era farming activities relied mainly or

entirely on human labour, thus entailing a high cost, and ease of access to the cultivated

lands had to be taken into account [71]. Therefore, agents in our current implementation,

decide, on a yearly basis, to cultivate only the number of cells deemed necessary in order

to sustain themselves for another year. The number of cells n that a household agent x

is able to cultivate are thus calculated by dividing the minimum level of resources U thres
x

with the (maximum) harvest amount per cell, provided by the agricultural regime in use

(cf. Section 3.1.4 below). Moreover, if Ux > U thres
x that year, then the surplus resource

amount of Ux − U thres
x is kept in the agent’s storage for future use.

Action: Migration. If agent x does not receive the minimum level of resources it

requires, U thres
x , for y years in a row (and its storage is empty), it considers migrating

to another location or settlement. At time step t, agent x calculates its expected utility

U ′x for the new location at time step t+1, as the average reward of the neighbouring

cells which is defined by Equation 3.1, considering the agent moved to the respective

unused cell (i.e., a cell that does not correspond to cultivated land from any other agent).

The unused cell might lie within another established settlement; in that case, agent x

first considers the average expected utility of agents in the settlement in question. In

both occasions, if the agent’s expected utility U ′x for the new location is higher than its

current utility Ux, the location is considered to be an option for migration. If there are

many such locations, the agent migrates to the one perceived to be the most favourable;

considering the small modeling “landscape” area, agent’s migration radius rmax was set

to full environmental view with negligible resettlement cost (see Section 3.3.1).
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Apart from the aforementioned implemented actions, yet another “agent – environ-

ment action” that is not, however, under the direct control of the agent, is that of hatch-

ing, i.e., generating offsprings. Hatching does have an impact on the agent utility (since

this is affected by the overall population, via Equation 3.1), but the agent can only affect

its probability of generating offspring by making sure that he is accumulating enough

utility via the rest of his actions. This will become clear in Section 3.1.3 below.

Action: Hatching. A household agent may generate an offspring with some prob-

ability (cf. Section 3.1.3). When an agent generates an offspring, a newborn individual

is added. If the new size of the household is higher than the defined maximum num-

ber of individuals per household, a new agent is created (agent offspring) by splitting

the old household in two random sizes in the same environmental cell. If, by doing

so, the maximum number of agents per cell is reached, the newly created household

(agent) is located in any adjacent cell that has fewer agents than the maximum possible.

The maximum number of agents per cell is derived by dividing the maximum number

of individuals per cell with the maximum number of individuals per household. These

parameters are user-defined and can be set using existing archaeological estimates.

3.1.3 Population dynamics

The total number of agents in the system changes over time, as individuals (inhabitants)

belonging to households are born or die. The death rate 4 for an individual belonging to

a household is given by a variable rdeath, whose value in our “case study” simulations

was set to 0.002; while the agent procreation ability (determining the annual levels of

births) is based on the amount of energy consumed by the household agent during the

year. Specifically, the birth rate is defined to be:

rbirth ∗ Ûx/U thres
x

4Certainly though, when agent’s utility and storage reach to zero, an agent’s individual inevitable
“dies”, thus, is removed by the system (and organization).
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with rbirth equal to 0.003 for our simulations, where Ûx is defined as follows:

Ûx = min{Ux, U thres
x }

However, whenever Ux < U thres
x , the agent attempts to “replenish” Ux by acquiring

energy by its storage (or, when the self-organization social behaviour is in use, maybe

by acquiring energy from other agents). These rates, given the specific rdeath and rbirth

values used in our simulations, produce a population growth rate (equals to birth rate −
death rate) of 0.001 (0.1%), when households consume adequate resources (i.e., when

they acquire utility equal to U thres
x or more). This corresponds to estimated world-wide

population growth rates during the Bronze Age according to [30].5

3.1.4 Cultivation systems

Our ABM framework can readily incorporate any ancient technologies that the agents

might have had access to, depending on the era and location being modeled. Cur-

rently, the technologies implemented correspond to two distinct Bronze Age agricultural

regimes [60, 77]:

Intensive agriculture, where agents cultivate intensively the neighbouring land area,

leading to greater production per hectare, and

Extensive agriculture, where agents can “expand” their cultivated areas, using more

land, but producing less per hectare when compared to the intensive agricultural practice.

The output associated with intensive agriculture in our model is 1, 500kg/ha, while

the production associated with extensive agriculture is 1, 000kg/ha. These values are

appropriate estimates for these two cultivation systems, given the period modeled [71].

Intuitively, the number of candidate cultivation cells (or fields) and the expected maxi-

mum energy stored for any agent in the model, depending on the agricultural regime in

5Others estimate growth rates in mainland Greece and the Aegean to be between 0.1% to 0.4% per
year, for long periods during the Neolithic Era and the Bronze Age [2, 76].
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use, is shown in Figure 3.4, assuming a grid (cell) resolution of one hectare (ha). An

example of how these two different agricultural practices are actually used by the agents

is the following: a household agent x with five individuals (j = 5), needs to accumulate

U thres
x = 5 × 250 = 1, 250kg of resources for the year, assuming resmin = 250kg

(cf. Equation. 3.4). If agent x adopts an intensive agricultural strategy (producing

µmax = 1, 500 kg/ha), it chooses one (unoccupied) nearby cell (1 × 1, 500 = 1, 500kg)

from its settled location for cultivation, since that much is enough for sustaining its in-

dividuals for the current year (U thres
x < 1, 500). On the other hand, if agent x adopts an

extensive agricultural strategy (assuming that produces µmax = 1, 000kg/ha), it chooses

two (unoccupied) nearby cells (2× 1, 000 = 2, 000kg) from its settled location for cul-

tivation, since one cell (ha) is not enough for sustaining its individuals for the current

year (< U thres
x ), thus expanding its farming land area.

Figure 3.4: Number of cultivating cells (left) and maximum expected resources stored (right) for
a household agent with respect to intensive and extensive agricultural practice.

3.1.5 Relation to existing models

Our ABM was originally inspired by the work of Janssen [74], and thus shares several

basic features with that model. For example, we also model population dynamics, as a

model should do—but via an entirely different population growth function. Our agents

also correspond to households, and they use a similar decision-making process. In par-

ticular, agents in [74] appear to be utility-based to some extent—even though the author

does not use the term “utility” explicitly, and even though interactions in his model (like
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the sharing of resources among the agents, or the exchange of resources among their

settlements) are to a large extent (if not entirely) pre-specified in the system. Apart from

these similarities, the models are distinct to all other aspects.

To begin with, individual members of household agents introduced in that model are

static, not affecting the agent or the ABM in any way. By contrast, individual household

members are present and key in our model, since (a) their number affects the estimated

agricultural production quantity (via Equation 3.1), and (b) for certain social organi-

zation models, they play a crucial role in determining how the accumulated resources

are to be distributed among the agents (cf. the “egalitarian” organization model de-

scribed in Section 3.2). Second, the modeling area in [74] is not an actual landscape,

but a flat 20 × 20 grid (an arrangement which, of course, speeds up the simulations);

while agents cultivate just one cell, the one the agent is currently settling, or the one

the agent is migrating to where renewable resources can be found (after the agents have

consumed/exhausted harvested). Another notable difference between the two models, is

that ours can (and does) incorporate different cultivation systems—our agents use either

intensive or extensive farming, instead of cultivating just one cell.

Moreover, in [74] the production yield (harvest) is exactly the same for each agent

within a settlement (cell), thus potentially violating maximum resource levels of the oc-

cupied cell. Production and thus agent utility is essentially affected by resource regener-

ation rates defined, and the agents make no attempt for actual utility maximization, apart

from considering migration when resources at the current cell are exhausted. Indeed, the

main agents action appears to be migration rather than cultivation, as the reported agent

migrations number is proportional to population size, notwithstanding the fact that a

settled farmers society is being actually modeled. By contrast, agents in our model take

utility-based decisions, at every time step, regarding the appropriate number of cells to

cultivate, given the number of their individuals and the agricultural practice employed,

or by migrating to another location or settlement for farming purposes, if such an option

is deemed beneficial in terms of expected utility. In addition, in [74] the expected agri-
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cultural production is affected by estimated rainfall, reconstructed using modern-day

annual data obtained via the Palmer Drought Severity Index (PDSI). By contrast, there

is no climatic reconstruction in our model, and thus the annual resource production (cf.

Section 3.1.1) does not depend on the accuracy of any such method.

As a final note, the viability of an “independent” and an “egalitarian-like” social or-

ganization model was examined in [74]. Interestingly, there was no observed statistically

significant difference among them, as the author notes. Our results, by contrast, indi-

cate that there is in fact a visible difference among these social organization paradigms.

Of course, as outlined in the text, many components and component parameters in our

model are entirely different to those of [74], and they are also instantiated on different

modeling areas and time periods, thus this discrepancy might not be surprising.

3.2 Modeling Social Organization

Agents in our ABM have also actions by which they interact with each other. These

agent – agent actions correspond to distinct social 6 organization paradigms, determin-

ing the way by which distribution of resources takes place among the population. In

our work here, we examine five different social organization paradigms: independent,

sharing, egalitarian, hierarchical and self-organized; by so doing, we shed some light

on crucial aspects of the ancient societal organization, and the relation between crop

yield, resource allocation patterns, and the reproduction and legitimization of author-

ity. Specifically, our ABM can employ the following behavioural modes or resource

distribution schemes:

Independent. Agents acquire (harvest) and consume resources independently. Al-

though their is no distribution of harvest among the agents, the actions (e.g., cultivation

or migration) of the various agents have an impact to the welfare of others and the overall

welfare of the settlement (cf. Equations 3.1 and 3.3).

6More accurately: socio-economic.
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Sharing. Agents distribute energy amounts (produce) within a settlement based

on reciprocity. All stored and newly harvested resources are pooled each year, and

distributed equally among the agents—that is, resources are distributed equally among

household agents in the community. This social paradigm is quite interesting, as it

effectively allows the creation of “poorer” or “wealthier” households, since agents with

fewer individuals gain a survival advantage, albeit a temporary one: they end up getting

comparatively more resources due to the distribution scheme, and can thus better sustain

themselves throughout the next year—but this is an “advantage” they will lose if their

household size increases.

Egalitarian. In this scheme, storage and harvest is pooled each year and distributed

among the agents, but now resource distribution is proportional to their household size–

i.e., it is proportional to the number of the actual individuals in each household. There-

fore, this paradigm mirrors a truly egalitarian society, and no agent gains an advantage

because of the resource distribution scheme.

Self-organized. Agents autonomously re-arrange their relations, and hence the un-

derlying “social network structure” describing these relations, without any external con-

trol. They do so in order to adapt to changes in requirements and environmental condi-

tions. In other words, they constantly re-evaluate and possibly alter their relations with

other agents. These relations determine the way resources are ultimately distributed

among the agents. In the following sub-sections, we provide a detailed description of

the internal process of this social organization paradigm.

Hierarchical (Static). Agents distribute resources based on a fixed hierarchical so-

cial structure. The agents are linked to each other via “static” social relations, which

determine the amount of produce each agent acquires via the distribution scheme. In

our model’s current implementation, the determination of the original relations, and the

actual resource distribution takes place following the same rules as those governing the

self-organized social organization paradigm (described in the subsections below).

Now, the rise of complex societies presents itself as an evolutionary advance. Com-
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plex societies have larger populations than their egalitarian predecessors, and deploy

more powerful productive forces. For example, the emergence of palaces in the Mid-

dle Minoan (MM) period marks a transition from an egalitarian to a more complex,

state-like society with a clear hierarchical structure crowned by a central, administrative

authority [19]. There is also a belief that stratification in Minoan Crete precedes the

appearance of the palaces by several centuries [52, 14]. In our work here, we exam-

ine whether the adoption of a self-organized agent organization (settlement) will indeed

give rise to a dynamically stratified social structure which will be able to sustain itself

through time.

As mentioned in Section 2.2, the work of Kota in [81] on “self-organizing agent or-

ganizations” is an example of a recent decentralized structural adaptation mechanism

originating in the multi-agent systems community. In that work, an abstract agent or-

ganization framework for depicting distributed computing systems is introduced, along

with a task environment representation model and a suitable performance evaluation

system. The organization consists of agents providing services and having computa-

tional capacities. The structure of the organization manifests the relations between the

agents, and regulates their interactions. Crucially, the proposed self-organization (struc-

tural adaptation) process is applied individually and locally by all the agents, in order to

improve the organization’s performance.

Our self-organization model here is inspired by the work of Kota. However, we

modify that model in several important ways, as described in detail in Section 3.2.2

below. In effect, and in distinction to Kota’s approach, the self-organization technique

presented here is one that results to the continuous targeted redistribution of wealth (i.e.,

energy resources), so that resources flow from the more wealthy agents to those more

in need within the organization, maintaining a dynamically “stratified” social structure.

This will become clear in the subsections below.
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3.2.1 Relations and interactions

Agents may improve their performance as a “group” (vitality of the settlement) by mod-

ifying the social structure through changes to their relations (re-organization) contin-

uously over time. They need to interact with one another for the proper allocation of

resources. We assume that a shortage in resource where U thres
x − Ux > 0, gives rise to

a task for agent x: the agent needs to accumulate produce equal to the perceived deficit

(task’s resource amount). Agents perform three types of self-organization actions: (i)

execution, (ii) allocation, and (iii) adaptation.

As mentioned, task execution involves the accumulation of produce to cover a per-

ceived deficit. An agent x may execute a task (by consuming energy from its storage),

or re-allocate the task (if its storage = 0) to another capable agent y; and executes it

otherwise. Task execution then means that agent y delivers to x some resource by taking

that amount out of its own storage. If agent y is only able to replenish a portion of the

requested produce allocation task, this is considered a subtask execution. Note that ca-

pable agents in our model (i.e., those with storage> 0) related to agent x, always accept

produce allocation or execution tasks. This is due to an assumption of high degree of

cooperation (sharing) among households for the area and era under study (specifically,

in Greece before the Middle Bronze Age [62]). Thereafter, agents reorganize and adapt

their relations, maintaining a dynamic stratified social structure. We elaborate on the

adaptation process in the next subsection.

Interactions between agents are therefore regulated by the settlement’s social struc-

ture. Relations among agents are classified into three types (i) acquaintance (aware of

the presence, but having no interaction), (ii) peer (low frequency of interaction); and

(iii) authority (a superior – subordinate relation, where agents have a higher frequency

of interaction). The authority relation depicts “superior status” of an agent over the

subordinate agent in the context of their social organization, i.e. higher produce trans-

fer amounts are possible than the subordinate agent. The peer relation will be present

between agents who are considered more-or-less equal in status (i.e., energy transfer
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amounts) with respect to each other and is useful to expand vertically the assumed strat-

ified social graph. When no relation exists among two agents, they are considered to be

strangers to each other (belong to another organization or settlement). Note that when

the hierarchical social organization paradigm is in use, the same relation types exist, but

they are “static”—that is, they do not change over time.

Whenever either the hierarchical and self-organized social organization model is

in use, agents are able to create relations with other agents within a community based

on the following process: (i) when an agent migrates to another settlement creates an

authority relation as a “subordinate” to the “superiors” of the settlement, and a ac-

quaintance relation with the rest (however, when the hierarchical social behaviour is

employed, due to the agents relations being “static”, a peer relation is formed with

non-superior agents rather an acquaintance relation); and (ii) when an agent creates an

“offspring” within the settlement , the new agent creates an authority relation in which

he takes up the role of a “subordinate” to its “superior” parent agent, a peer relation with

all its parent “subordinate” agents, and an acquaintance relation with the rest.

Moreover, the relations are mutual between the agents; that is, an existing rela-

tion between any two agents is respected by both. Therefore, during the social re-

organization (adaptation) process we describe below, both concerned agents will have

to agree on changing their relation.

3.2.2 Task execution and allocation, and social re-organization

Mirroring the work of Kota [81, 82], our self-organization algorithm has two main

stages: the task execution and re-allocation mechanism, by which agents deliberate on

how they can allocate produce (energy resources) to other agents to cover their needs7,

based on their relations; and the re-organization (decentralized structural adaptation)

7We note that the notion of “lineages” for agent organization evolution has been implicitly introduced
in the way agents in need are given priority for asking for help. Specifically, the “older” an agent (in need)
is within the community, the higher in the energy distribution priority queue is placed. This is a social
norm mirroring an indirect “kinship” or “tradition” system, in use within the artificial families.
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one, used by the agents for re-evaluating and potentially altering their relations at every

time step. Let us start by describing the task execution and task allocation stage. The

steps of this mechanism are as follows:

(i) When agent x needs to execute a task, i.e., when U thres
x − Ux > 0, it will allocate

the task (or subtask) to self if possible (storage > 0).

(ii) Otherwise, agent x will try to allocate the task to one of its capable superiors,

choosing among such superiors randomly. The intuition here is that agents in need

will be asking for help based on the related agent’s status within the community.

(iii) If neither agent x nor its superiors are capable of executing the task, then x tries to

reallocate it (the whole task or the remaining subtask) to one of its peers.

(iv) If none of its peers is capable of executing the task either, agent x will try to

allocate it to one of its subordinates, who must in turn find other superiors or peers

to allocate the task to.

(v) On the occasions when agent x does not have any superiors, and neither peers

nor subordinates are capable of the task, it checks among its acquaintances for a

capable agent, and tries to form a subordinate relation with an acquaintance agent.

In every assignment of a task to a capable agent, execution (offering of stored en-

ergy amount) takes place, and the storage and utility values of the corresponding agents

are updated. An agent assigns tasks initially to its superiors. In this way, agents with

U = U thres and storage > 0 shall always be on the top of the settlement structure

(elite / authority), and will help support subordinate (poorer) agents (i.e., agents with

U < U thres and storage = 0). Therefore, an agent in need mostly assigns tasks to its

superiors and seldom to its peers or subordinates. Thus, the structure of a settlement

organization influences resource exchanges among the agents, and these exchanges in

turn lead to the formation of a dynamic “stratified” social structure—through the social

re-organization process we describe next.
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To begin, every produce allocation task to a capable agent, i.e., every task execution

action, has an associated load; this load intuitively represents the amount of resources

expected to be returned in the future by the community. The total load lx,tot added onto

agent x by all other agents within the organization, is the sum of its resources that were

given out to others in that time step:

lx,tot=
∑
t∈Tx

rest (3.5)

where rest is the resource amount expended by agent x for executing task t, and Tx is the

set of the total tasks executed by x in that time step within the settlement organization. In

what follows, we denote by lx,y the load added onto agent x solely by assignments from

y. Loads on the various agents are assumed to be known to everyone in the community.

Agents use the information about all their past and current year allocations to re-

evaluate their relations with their subordinates, superiors, peers and acquaintances. This

evaluation is performed during the reorganization stage, and is based on the overall load

between a pair of agents, in case the relation had been different than the current one.

An authority relation means that there is a relative difference in the amount of load

per assigned tasks between them; a superior agent has more tasks assigned, while the

subordinate agent (in need) has less. A peer relation instead implies a relatively equal

amount of load per agent.

It is, therefore, easy to draw a connection between an agent’s load and its perceived

social status. An agent that is able to serve tasks with a high load value, that is, has

enough stored resources to help others in need, should clearly be ranked higher in the

social hierarchy. Intuitively, a high load difference between two agents indicate a differ-

ence in social status.

To sum up, the relation between every pair of agents x and y has to be in one of the

following relation states: acquaintance, peer and authority. For each of these states, the

possible re-organization actions available to an agent y are as follows:
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1. when agent y is an acquaintance of agent x:

(i) form peerx,y, denoting the formation of a peer relation between the agents,

(ii) form authx,y, denoting the formation of an authority relation, where y is

subordinate of x; and

(iii) no action.

2. when agent y is a subordinate of agent x:

(i) rmv authx,y, denoting the removal of their authority relation and the formation

of an acquaintance relation,

(ii) rmv authx,y+form peerx,y, denoting the removal of their authority relation

and the formation of a peer relation between the agents; and

(iii) no action.

3. when agent y is a peer of agent x:

(i) rmv peerx,y, denoting the removal of their peer relation and the formation of

an acquaintance relation,

(ii) rmv peerx,y + form authx,y, denoting the removal of their peer relation and

the formation of an authority relation between them, where y is subordinate of x;

and

(iii) no action.

4. when agent y is a superior of agent x:

(i) rmv authy,x, denoting the removal of their authority relation and the formation

of an acquaintance relation,

(ii) rmv authy,x+form peerx,y, denoting the removal of their authority relation

and the formation of a peer relation between the agents; and

(iii) no action.

The above re-organization actions are either “atomic”, e.g., form authx,y or “compos-

ite”, involving the removal of a relation and its replacement by another, e.g., rmv authy,x

+form peerx,y. Composite actions are necessary as a pair of agents cannot have more
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than one relation (state) with each other. The choice of a re-organization action is

utility-based: actions are selected by the agents according to their utility—that is, the re-

organization action with the higher utility value is executed. The utility of re-organization

action a that modifies the relation between agents x and y at a given state, is evaluated

by agent y via the use of an action evaluation function V with the general form:

V (a, x, y) = ±rdLoad(x, y)±L (3.6)

where rdLoadx,y is the relative difference between the load on x and y; and L is an ade-

quate limit ratio (%) for this difference to be evaluated in order to estimate the expected

utility for changing an existing relation. Intuitively, combined with L, the relative differ-

ence is used as a quantitative indicator of quality assurance and control, for the repeated

evaluation of agent relations over time. The effects of the re-organization actions are

deterministic, and result to state transitions, depicted in Figure 3.5.

Figure 3.5: Relations state transition.
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Table 3.1 lists the evaluation functions for the five atomic actions. In the case of

the composite actions, the value is simply the sum of the individual evaluations of the

comprising actions. As already mentioned, from all the possible re-organization actions

available to agent y, the one chosen for execution is that with the higher utility value.

We note that the re-organization action evaluation functions we use here are entirely

distinct to those used in the work of Kota [81].

Action Action Evaluation Function Used
a = form authx,y V (a) = (lx,tot − ly,tot)/max{lx,tot, ly,tot} − L
a = rmv authx,y V (a) = −(lx,y − ly,x)/max{lx,y, ly,x}+ L
a = form peerx,y V (a) = −|lx,tot − ly,tot|/max{lx,tot, ly,tot}+ L
a = rmv peerx,y V (a) = |lx,y − ly,x|/max{lx,y, ly,x} − L
a = no action V (a) = 0

Table 3.1: Atomic reorganization actions, and their action evaluation functions.

To elaborate further on how the action evaluation functions work, let us consider

the following examples of their use, assuming L = 60%. Agents x and y may form an

authority relation as long as their relative “total” load difference is> 60%, thus allowing

a positive output value V > 0 for re-organization action form authx,y. That is, lx,tot

is much larger than ly,tot. They may form a peer relation (action form peerx,y) when

their relative “total” load difference is < 60%—i.e., they are of an approximately equal

social status as lx,tot is approximately equal to ly,tot, thus allowing a small output value be

subtracted fromL. In a similar manner, agents x and y may dissolve an authority relation

as long as their relative current load difference for re-organization action rmv authx,y

allows an output value V > 0—i.e. lx,y is approximately equal to ly,x or ly,x is greater

to lx,y, and thus there is no reason to believe that agent x is superior to y. Finally, the

agents may dissolve a peer relation (action rmv peerx,y) when their relative current load

difference is > 60%, i.e., lx,y is larger than ly,x, allowing an output value V > 0. We

need to note here that no action has a default output value V = 0, thus, a positive output

value V > 0 is necessary for an action to be executed.

Notice that the numerator of the relative load difference, between agents that are
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about to form an authority relation (superior – subordinate), does not have an abso-

lute value, as their relation expresses inequality, unlike a peer relation which expresses

equality. Moreover, when agents are considering the formation of another relation, the

total lx,tot and ly,tot loads are used in the calculation, while the pair’s lx,y and ly,x loads

are used, when agent x considers dissolving a relation with agent y. Intuitively, this is

because dissolving an existing relation is entirely up to the pair of agents that joined the

relation in question. On the other hand, when two agents consider establishing a rela-

tion, the aggregated load from all other agents they are related to within the settlement

has to be taken into account, since such a matter involves the “status” of both agents

within the organization—which is associated with the overall to-date load of the agents.

Notice also that, in reality, both agents x and y would agree on their deliberation on

V for any action; for instance, they would agree on the value of action form authx,y,

i.e., on the utility of agent x being superior to agent y, as they would agree on their eval-

uation for form authy,x. However, these values need not be calculated twice. Instead,

to avoid redundancy, we ensure that agent y is the one calculating form authx,y (and,

similarly, rmv authx,y, form peerx,y, and rmv peerx,y), while agent x is the one eval-

uating form authy,x (and, similarly, rmv authy,x, form peery,x, and rmv peery,x).

Now, given the central role of the limit ratio L used in the social re-organization

decisions above, this model parameter can be actually better understood as being asso-

ciated with a key social organization-related concept. Specifically, it can be easily linked

to a “social barrier” that agents need to overcome in order to achieve social mobility:

the value of any potential changes in social relations, is clearly linked to overcoming

such a barrier (cf. Table 3.1). Thus, the value of L represents the “height” of such a

“social barrier”. To put it otherwise, L can be viewed as a metric of the power distance

characterizing a given society. According to [1], the power distance concept represents

the extent to which the less powerful members of a society expect and accept that power

and rights are distributed “unequally”, i.e., the extent to which stratification exists within

a given social group.
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The aforementioned re-organization process is continuous and employable by any

agent on every time step. Moreover, it is key to sustaining the settlement and improving

its viability, as also verified in our simulations.8

3.2.3 Self-organization algorithm modifications

The main modifications9 with respect to the self-organization algorithm in [81] are the

following: First, during decision making, an agent assigns tasks initially to its superiors

rather than its subordinates. This is because superiors correspond to the emerging elite

which possesses surplus resources that it could potentially distribute to the poorer strata.

Second, we use a simple, distinct reorganization actions evaluation function V . Our

self-organization method aims to facilitate a targeted redistribution of wealth. Given

this, V employs the notion of a relative load difference among agents (this is not done

in [81, 82]). Finally, the load associated with a task here is equal only to the resources

amount offered. In particular, there is no “reorganization” load when agents reason

about changing a single relation with all the agents in the settlement, neither a “man-

agement” load. In addition, agents in our model do not have “limited computational

capacities”, neither “communication costs”. This is natural, since agents forge relations

only with neighbours within their settlement organization.

3.3 A Case Study: Simulating the Minoan Society

In this section, we describe the employment of our ABM described above for the sim-

ulation of household agents, residing at the Malia area at the eastern part of the island

of Crete, during the Bronze Age. The exact modeling area is depicted in Figure 3.6. It

includes the Malia-Sissi-Mochos area, and also the Lassithi Plateau (near its center).

8We note that dissolving “improper” existing relations, improves the efficiency of the agents’ decision-
making process, since there are fewer relations to consider when allocating tasks.

9There are other minor differences with the work of Kota [81, 82]. For instance, in our model we
replace the notion of the number of time steps that an agent has waiting tasks, with that of an agent having
U < U thres (and storage = 0). We do not list these minor differences here.
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Figure 3.6: Modeling environment of the wider area of Malia, Sissi and the Lassithi Plateau,
including known archaeological sites and aquifer locations.

As mentioned in Section 2.5, it is conceivable that interactions between different

socio-political entities are of a particular importance in the emergence of complexity

within a society, while some archaeologists argue that a strongly stratified society can

be assumed to have existed well before the end of the Neolithic period. Although any

such specific hypothesis can of course be the subject of modeling, our main concern

here is to keep our model as generic as possible, in order to obtain clues about the un-

derlying organization of the society and its evolution. In the simulations below, the

simulated time interval (of 2,000 years) spans essentially the entire Minoan period (ca.

3,100-1,100 BCE). Therefore, we are interested in exploring societal organization from

the Early Minoan (EM) period, for which no clear evidence of social stratification ex-

ists [59], up to the Middle Minoan (MM) and Late Minoan (LM) periods, during which

several localities on the island developed into centers of commerce and handwork, such
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as the Minoan Palaces.10 Thus, at this stage, we try to explore the social organization

in the micro-level of the artificial society, i.e. the organization evolution through inter-

actions of “household” agents, about which little or no evidence can be obtained, rather

than interactions between “settlement” agents in the macro-level.

Now, an ABM applied in social sciences and in particular in archaeological research,

cannot be easily validated via simulation results—especially in situations where little or

no evidence is available (e.g., the social organization of Late Neolithic or Early Bronze

Age societies). Simply put, it is impossible to compare the model input-output transfor-

mations to the corresponding ones of “a real system”, since only assumptions and theo-

ries actually exist. Thus, one should always be very careful with parameter initialisation,

so that these are based on archaeological research respectful to cultural and material ev-

idence. Moreover, special attention should be taken so that parameter calibration does

not bias the results towards confirming a pre-adopted theory or hypothesis. Given the

above, and based on archaeological evidence on the Minoan society, our ABM simula-

tion scenarios and results, that are able to sustain a high number of household agents

and settlement sizes during the MM - LM period rather than the EM period, are also

able to provide proper insights and suggestions on the social dynamics that might have

occurred, during the area and era under study.

Nevertheless, the validation of the structural assumptions of the model itself is an

easier (and almost straightforward) task. For example, we have already seen (cf. Fig-

ure 3.4) that employing extensive instead of intensive agriculture leads to lower amounts

of resources in storage, regardless of the social organization paradigm used. Thus, one

would expect the simulation results to confirm that employing an extensive agricultural

technology will lead to lower crop yield for the agents, compared to that of the intensive

agricultural regime. We now proceed to describe the parameter choices made for our

case study.

10Archaeologists’ minimal definition of the Minoan palaces describes them as regional centers or set-
tlements that mobilized resources through secondary rural centers i.e. redistribution centers or perhaps
exchange markets [105, 61, 11].
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3.3.1 Model instantiation

Model parameters were initialized to values set so that they correspond to estimates

found in archaeological studies relevant to the period of concern, as follows:

Number of agents: The number of agents in a given settlement is initialized to a ran-

dom number between 1 and 10. This choice originates to the fact that the estimated

population per cell (ha) in an agricultural settlement during the modeled era was from

100 up to 300 [71]. The user-defined variable of maximum number of individuals per

cell was set to 100; thus, the maximum number of agents per settlement’s cell is 10,11

i.e., 100 divided by the maximum number of inhabitants per household (default: 10).

Settlement size: A settlement initially occupies one cell. The number of cells that a

settlement occupies is the smallest integer greater than or equal to its current population

size divided by the maximum number of individuals per cell. Thus, a settlement extends

to a number of cells proportional to that of its agents. Note that the settlement area is

not the same as the farming area corresponding to the settlement (cf. Section 3.1.4).

Resource amount stored and level of resources: The agent can store some resource

amount for a (user defined) number of yrs years. This yrs also corresponds to a set-

tlement period at a specific location after which the agent might consider migration to

another location (if during this period Ux is constantly less than U thres
x ). In our experi-

ments here we use yrs = 5. The figure of 250kg was also used as the minimum amount

of resources required per individual per year (resmin), based on [71]. The amount of

resources is defined as the agricultural production Ri of an environmental cell i (cf.

Equation 3.1); however, a cell’s initial resources amount at a given run is multiplied

with a sample from a standard normal distribution, and thus varies across runs.

Agent locations: Household and settlement locations are (pseudo) randomly initialized.

Number of settlements per scenario: This parameter is user-defined. Its default value

11The NetLogo programming environment can support thousands of agents, though RAM limitations
are inherent in the underlying Java VM and/or operating system.
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was set, somewhat arbitrarily, to 2, since so many are known to exist in the archaeolog-

ical record for the area in the beginning of the EM period.12

Agents migration radius: This is the distance agents can migrate to in one time step.

It is also user-defined. In our simulation experiments here we set it to 25km (i.e., the

entire modeling area), roughly the distance covered when traveling on foot within a

day [12]. Thus, the resettling cost rc for an agent was considered negligible—there is

no requirement for extra time for rest, stops, overnight stays, etc.13

Agents agricultural practice: As mentioned in Section 3.1.4, intensive agriculture

produces 1, 500kg/ha, while extensive farming leads to a production of 1, 000kg/ha [71].

Social organization paradigms: An agent can make decisions based on one of the

following social organization paradigms: independent, sharing, egalitarian, hierarchical,

and self-organized; for the later, the ratio limit L is user-defined (default: 60%).

3.4 Simulation Scenarios and Results

Various scenarios were taken into account for the experimental setup, with different pa-

rameterisation for: 5 different behavioural modes (i.e., the social organization paradigms

used); 2 different agricultural regimes; and, since spring locations in current days still

bear some relationship to the location of springs during the Minoan times, the proximity

of a new location to an aquifer (spring, river or coast) was also taken into account in

certain simulations [48]. When this is the case, the initial production µ of a cell receives

a penalty up to a percent of its value, with cells located outside a 1,250m radius from the

aquifer receiving a 100% initial production penalty. The exact penalty value for cells

within the aforementioned radius, is provided by performing a density analysis of those

locations, a spatial analysis tool that can calculate the density of input features (springs,

12Known archaeological sites information was provided by the GeoSat ReSeArch laboratory, available
from the “Digital Crete” project.

13The resettling cost rc is defined and presented in Chapter 6, which was considered in the simulations.
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rivers, sea/coastline) within a radius around each environmental cell. By calculating

density, in a sense one spreads out the input values over a surface. The magnitude at

each aquifer location is distributed throughout the modeled area, and a density value is

calculated for each cell in the environment.14 As already mentioned, at the beginning of

each scenario resources are spread randomly over the land, but with resource amounts

at a particular cell depending on its slope (as discussed in Section 3.1.1).

Each scenario was simulated for 30 runs, generating a total of 30 × 5 (behavioural

modes) ×2 (agricultural practices) ×2 (settling near an aquifer requirement or not) =

600 simulation runs. In addition, we experimented further with the “self-organization”

social behaviour, testing 4 different values (10%, 40%, 60% and 90%) of the ratio limit

L for each cultivation system considered, and for 30 simulation runs each, under the

assumption that residing next to an aquifer is a requirement. We run many more simula-

tions for validation and sensitivity analysis purposes of the model that will be discussed

later on. Simulation results were averaged for each time step. In terms of time, the

process can be quite expensive, since a single run (composed of 2,000 yearly time steps)

takes approximately 90 minutes on a single-core 2.6GHz computer. However, by em-

ploying additional computational power, the simulation process can be sped up signifi-

cantly; we utilized the Grid Computer of TUC and by allocating a dedicated dual-core

node of to a run, all 600 runs mentioned above were completed in less than a day.

All output data processing and statistical analysis tasks were performed with the

Model Exploration Module (MEME) of MASS.15 Results visualization (curve and bar

diagrams or histograms) was done in MATLAB’s (R2014b) environment. Moreover,

the random number generators introduced in parts of the model are obviously “pseudo-

random”. Thus, via using the same random “seeds”, one may introduce the same oppor-

tunities for agents in the model simulations—i.e., same “random” initial agent locations

of the various runs for each different scenario. In this way, our simulations can be

14Density value is computed using Kernel Density Estimation, based on the quartic kernel func-
tion [119].

15http://mass.aitia.ai/intro/meme
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reproducible by any interested party. In addition, as a post-processing step for better

visualization and reporting purposes, the Savitzky–Golay filter [115] was applied for

smoothing only the curves of simulated data results.16 The filter increases the precision

of the data without distorting their tendency, by fitting successive sub-sets of adjacent

data points with a low-degree polynomial with the method of linear least squares.

We now proceed to discuss our findings with respect to agents social organization

behaviour and the agricultural schemes examined, and try to assess their impact on pop-

ulation sustainability, settlement numbers and sizes for the various scenarios in account.

3.4.1 Civilization sustainability

We begin with presenting our simulation results regarding the effect of the different

social organization paradigms on the agent population as shown in Figure 3.7 for both

agricultural practices. There was no requirement for settling near an aquifer for these

simulations—i.e., there was no penalty for not settling near an aquifer location. Given

the low population growth rates of the period, and the fact that the geomorphological

characteristics of the area make resources scarce and energy production poor, it is clear

that the population viability and growth observed in the simulations depends solely on

the social organization paradigm in effect, and the agricultural regime used.

Simulation results of Figure 3.7 indicate that, during the end of the simulation (MM -

LM period), population sizes in societies adopting the self-organization paradigm thrive,

certainly under the intensive agricultural practice. Since self-organization results to a

dynamic hierarchy governing the agents’ relations, this result appears to support the case

for archaeological theories assuming the existence of a “hierarchy-based” economy and

a “stratified” social model; and the belief that stratification in Minoan Crete precedes

the development of centers for higher-order regulation by several centuries [52, 14].

Error bars corresponding to 95% confidence intervals regarding agent population
16We used MATLAB’s sgolayfilt function with a 3rd order polynomial and a frame length of 30 time

steps for all simulation averaged data results.
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Figure 3.7: Agents population (number of households) over 2,000 yearly time steps, wrt. inten-
sive and extensive agricultural practice, without a requirement for settling near an aquifer. Error
bars indicate 95% confidence intervals.

averages are also shown in that figure. In addition, we report that, for essentially any

given simulation run corresponding to a specific pseudo-random seed, at each of which

agents are operating in the same environment with the same opportunities, the ranking

of the various social organization paradigms observed in Figure 3.7 is maintained. That

is, at almost every specific run, the self-organization social paradigm is better than the

other social paradigms, egalitarian ranks second, and so on.

Figure 3.8a shows that the number of settlements increases over time in proportion to

agent population sizes; and that the number of agents per settlement seems to be higher

when the self-organization social behaviour is adopted, as shown in Figure 3.8b.17 Dis-

tribution of energy resources based on self-organization of agent relations, gives rise

to dynamically emerging “stratified” social organization, and appears to be better in

sustaining higher population sizes per settlement, especially when the extensive agri-

cultural strategy (leading to less expected production) is employed. By contrast, when

agents adopt the “egalitarian” social organization paradigm, the emerging development

of many “small-size” settlements seems to be the way for survival over time. This fact is

17We do not show error bars for Figure 3.8 and Figures 3.9b and 3.9c (depicting settlements and
agents/settlements). This is to avoid overloading these figures, and because of the apparent overlaps.
We can report however that the standard error observed in those results is at most 1.
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Figure 3.8: (a) Number of settlements and (b) agents per settlement—over 2,000 (yearly) time
steps wrt. intensive and extensive agricultural practice, without a requirement for settling near
an aquifer.

in contrast to archaeological evidence for larger settlements (towns and palaces) eventu-

ally coming to existence during the MM - LM period (ca. 2,000 - 1,100 BCE) [126].18

Thus, though the simulation results of Figure 3.7 seem to not deny the possibility of

viability for an egalitarian societal model, it is highly unlikely that such a model would

have been able to sustain itself for 2,000 years, given its observed “requirement” for

being developed primarily within small settlements.

18During the EM period (ca. 3,100 - 2,000 BCE), however, reviews of archaeological evidence for
the Pre-palatial society visualize a “wholy undifferentiated” landscape, comprising very “small-scale
autonomous local units” of a “small-scale intensive farming model”, with no convincing evidence for
“wealthy elites” [59]. This society later gave its place to the Minoan Palaces of the MM - LM periods.
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The independent and the sharing social behaviours also achieve numbers of agents

per settlement that are equally high to those achieved by the self-organization one. The

fact, however, is rendered meaningless, since they exhibit much lower numbers of agents

and settlements, and they are not able to follow the population growth estimated for that

period (see Section 3.1.3). Indeed, this is confirmed in our results of Table 3.2, consid-

ering an average initial population size of N0 = 50 inhabitants over 30 simulation runs

for any given scenario, and a steady growth rate of r = 0.1%. 19

Aquifer requirement False True
Agricultural practice Intensive Extensive Intensive Extensive
Independent 238 (64%) 208 (57%) 183 (50%) 139 (39%)
Sharing 173 (48%) 111 (32%) 120 (34%) 75 (23%)
Egalitarian 262 (71%) 252 (68%) 220 (60%) 176 (49%)
Self-organized 278 (75%) 243 (66%) 233 (63%) 172 (48%)

Table 3.2: Individuals population size (and corresponding achieved percentage of estimated ex-
pected population size at the end of the modeled period) per social organization model, wrt. the
cultivation system employed and the requirement for settling near an aquifer being false or true.

As a final note, the overall agent population is growing much larger when the in-

tensive agricultural practice is used rather than the extensive one; this is expected, since

resources harvested each year by agents utilizing extensive farming are generally lower

in quantity (cf. Figure 3.4).

19The steady population growth rate r is achieved assuming agents are consuming adequate resources
(cf. Section 3.1.3). In that case, the expected population size N after t (yearly) time steps is given by the
equation N = N0 · (1 + r)t (where N0 is the initial population).
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3.4.2 The Importance of aquifers

Landscapes near aquifers are particularly valuable to archaeology, because these en-

vironments were frequently the focus of human occupation and crucial to the rise of

irrigation, agriculture and urban civilisation [107]. In fact, archaeologists consider it

very unlikely that human settlements in the Minoan times were established far from

aquifers [3, 48]. To this end, agents in our model might need to consider the proximity

of an aquifer, when settling to a new location. From this point onwards, all our simu-

lation results will involve scenarios where agents are required to settle near an aquifer,

unless stated otherwise.

Simulation results of Figure 3.9 are entirely similar to the results obtained in Fig-

ures 3.7 and 3.8, thereby corroborating the conclusions drawn above. There is, of course,

one difference. As described earlier, when an agent is required to settle near an aquifer

location, there is a penalty value introduced in the expected production for cells distant

from aquifer locations. Thus, there are limited choices for cells to settle in. Therefore,

it is expected that regardless of the social organization model adopted or agricultural

strategy employed, agents and settlements numbers will drop in this scenario. Results

in Figure 3.9 confirm this intuition.

We also report our findings regarding the agent utility in this scenario (Figure 3.10a).

Although it is slightly decreasing over time,20 it is sustained in approximately stable

and equal levels for both the self-organized and egalitarian social behaviours, while it

is considerably lower for the “independent” and “sharing” one—hence explaining the

lower agent population and settlement organization sizes in Figure 3.9.

Moreover, the produce stored by the agents in order to distribute and/or use when

necessity arises, seems to be considerably higher for the self-organized rather than the

egalitarian social organization paradigm for both agricultural strategies employed by the

agents, as presented in Figure 3.10b. Higher storage values that are seen when agents

20This is not unexpected, since, as the individuals’ population increases, overexploitation leads to a
slow production decrease (cf. Equation 3.1), and thus to a decay in utility.
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Figure 3.9: Number of (a) agents, (b) settlements, and (c) agents per settlement—over 2,000
(yearly) time steps wrt. intensive and extensive agricultural strategy with a requirement for
settling near an aquifer. Error bars indicate 95% confidence intervals.
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Figure 3.10: (a) Utility and (b) storage values of agents over 2,000 (yearly) time steps wrt.
intensive and extensive agricultural strategy with a requirement for settling near an aquifer.

employ an “independent” social organization are due to their essentially “selfish”, non-

distributive behaviour. Even when the “sharing” social organization paradigm is in use,

higher storage values observed are due to unexploited resources stored by “wealthier”

agents exploiting their limited household sizes.

We close this section by noting that, regardless of aquifer proximity or agricultural

strategy employed, settlements are concentrated near known (depicted) archaeological

sites at the coastal Malia regions, or at the Lassithi plateau (black coloured region in the

middle of the modeling area) presented in Figure 3.11. This is a phenomenon imposed

by the modeling area’s geomorphological characteristics (see Equation 3.1).
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Figure 3.11: Settlement locations proportional to agent population size after 2,000 years; (a)
with and (b) without a requirement for settling near an aquifer, employing a self-organization
behaviour.

3.4.3 Self-organization: validation and insights

We now focus more on the self-organization social organization paradigm. The egal-

itarian and sharing social behaviours, do not actually add any real complexity in the

system’s working process, since agents are essentially offered the same opportunities to

survive. The re-organization of the agents’ relations on the other hand, based on their

past and current experience on the relative difference of exchanged energy and, hence,

their “social status”, generates a complexity that needs to be appropriately validated.

As such, it is only appropriate that the behaviour of the self-organization paradigm

needs to be studied and validated with respect to the “power distance” concept, which

is central to the essence of stratified societies. In our model, the parameter that is best

associated with the power distance concept is the limit ratio L employed in the re-

organization actions’ evaluation process (cf. Section 3.2.2 above). Therefore, in this

section we will try to explore the agents organization’s response to different degrees of

power distance imposed upon the society.

Intuitively, we expect more peer relations to be formed among agents in the orga-

nization, as the power distance grows between superior and subordinate agents in an

authority relation, expanding the (social) organization’s “stratified” structure both hori-
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zontally and vertically. This is due to utility maximization considerations in the individ-

ual and organizational level, and due to the produce redistribution process. Simulation

results show exactly this phenomenon, as we increase the society’s power distance (the

L action evaluation parameter).

Specifically, relation changes to a peer relation within an organization increase pro-

portionally to the power distance rate considered, as shown in Figure 3.12b. When

agents distribute produce with respect to their (type) relations, higher power distance

rates seem to promote the development of additional peer relations among agents, ex-

panding agents in the emerging hierarchy “horizontally”, rather than “vertically” (as

observed for lower power distance rates), a phenomenon that is intuitively correct.

Figure 3.12: Average number of agent rela-
tion changes to (a) authority, (b) peer, and (c)
acquaintance relation per century for various
power distance rates wrt. intensive and exten-
sive agricultural strategy.

The number of relation changes to an

authority relation (Figure 3.12a) are at

about equal level, regardless of variation

in power distance. On the other hand,

relation changes to an acquaintance re-

lation (Figure 3.12c) are observed for

higher power distance rates, especially

when the extensive agricultural strategy is

employed by the agents, where less re-

source production occurs. Moreover, the

number of peer agents, as well as their
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corresponding overall load of exchanges (which is linked to social status), increase pro-

portionally to the power distance, as presented in Figure 3.13.

Now, although the agents may “expand” their cultivation areas under the extensive

agricultural strategy, they actually “gain” less energy amount harvested and stored (see

Figure 3.4). Thus, the agents are “forced” to reorganize and change their relations

among them even more frequently than under the intensive agricultural regime, in order

to stabilise their produce exchange network, and promote viability both in the individual

and the organizational level (cf. Figure 3.12).

Overall, the range of power distance in the artificial society, appears to have an

impact on an the number of agents’ relation changes, the type of relations the agents

create, and the volume of resources agents exchange with others. We note, however,

that there is a remarkably low average number of relation changes over time—i.e., less

than 3, as seen in Figure 3.12.

By contrast, the range of power distance seems to have a minor impact on the overall

welfare of the agents. As seen in Figure 3.14a, agent utility remains almost invariable to

lower or higher power distance among agent relations. Similarly, the produce stored by

the agents (Figure 3.14a), as well as the agents population size, shown in Figure 3.14b,

do not appear to be influenced by the underlying societal power distance.

Further observations

Certainly, from the social sciences perspective, and in particular that of archaeology,

there can be several (subjective) explanations or interpretations arising from any given

simulations result. For example, our simulation results on population growth for the

period under examination, show that both the “egalitarian” and “self-organized” social

models are able to follow the underlying growth rate values (cf. Table 3.2. However,

while the number of agent organizations (settlements) grows with an approximately

equal rate for both the egalitarian and self-organized social organization paradigms, the
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Figure 3.13: (a) Load and (b) number of peer agents for various power distance rates over 2,000
(yearly) time steps wrt. an extensive agricultural practice.

Figure 3.14: (a) Agents utility, storage and (b) population size for various power distance rates
over 2,000 (yearly) time steps wrt. an extensive agricultural practice.
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number of household agents per settlement does not. This is in line with social, and es-

pecially, archaeological theories presuming that complex communities have larger pop-

ulation sizes than their egalitarian predecessors [107].

In addition, considering that the Minoan Palaces and larger towns are unlikely to

have arisen under an egalitarian social organization of small-size settlements (see Fig-

ure 3.8 and Figure 3.9c), one could infer that a distributive social organization model

which gave rise to a dynamic social hierarchy, such as the self-organized one studied

here, is more probable to have existed for the 2,000 year period under study. Further-

more, the resource energy stored by the agents in order to distribute and/or use when

necessity comes, seems to be considerably higher for the self-organized rather than for

the egalitarian social organization paradigm in both agricultural practices employed by

the agents (cf. Figure 3.10b).

Figure 3.15: Percentage of agents with non-
composite (a) superior, (b) peer, and (c) sub-
ordinate relation per century, for various power
distance rates wrt. both cultivation systems.

Now, from a socio-political point of

view, it is interesting that a class of agents

that are exclusively “peers” does not ac-

tually exist among the agents, while an

“authority” relation does uniformly exist,

representing a “genuine” agent type. The

term “genuine” or “non-composite” agent

type signifies that the agent is joined with

other agents in the settlement with the

corresponding relation type only. For ex-
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ample, a “genuinely superior” agent is one that has subordinate agents only, a “genuinely

subordinate” agent is the one that has only superior agents, and a “genuine peer” agent

is the one that has only peer relations with other agents.) That is, the society is divided

among superiors and subordinates. This is obvious in Figure 3.15, where “genuine”

peer agent types do not exist. Rather, forming a peer relation seems to be the intermedi-

ate step in a social status redistribution process within the settlement.

Thus, with self-organization determining the social relations network, a heterarchi-

cal social structure actually emerges, rather than a clear hierarchical structure evident

in later periods. A heterarchy is a system of organization where its elements are “un-

ranked” (non-hierarchical) or where they possess the potential to be ranked by a number

of different ways [32], e.g., in our case, by the exchanged load among agents through-

out the organization’s lifetime. Socially, a heterarchy distributes privilege and decision-

making among the agents, while a hierarchy assigns more power and privilege to the

members higher in the structure. In a heterarchical organization, domination and subor-

dinate relations can be reversed, and privileges or status can be “redistributed” in each

time step, following the needs of the organization.

3.4.4 Self-organization vs static hierarchical structures

As archaeologists assume a hierarchical social structure in later periods of the Cretan

civilisation [19, 52], we now focus on a direct comparison of a social organization with

“static” hierarchical relations among agents and a “heterarchical” social structure dy-

namically emerging through the underlying self-organization behaviour.

Agent and settlement population sizes are presented in Figure 3.16. Although the

growth rate and final population numbers are in general similar, we observe a great

advantage for the self-organization behaviour with respect to population growth, when

settling near an aquifer is not a required behaviour, and an intensive agricultural practice

is used (Figure 3.16a). Settlement numbers are at about the same levels for both social

organization paradigms (Figure 3.16(b)).
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Figure 3.16: Number of household (a) agents, (b) settlements and (c) agents per settlement over
2,000 (yearly) time steps wrt. intensive and extensive agricultural strategy, and with settling near
an aquifer being a requirement or not.
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Moreover, in Figure 3.16c we observe that the self-organization social paradigm

appears to have a slight advantage against the static hierarchical one, wrt. settlement

population sizes—regardless of agricultural strategy employed, or of whether settling

near aquifers is a required behaviour. Self-organized agent societies appear, on average,

to be giving rise to larger settlements during their evolution. Note that both the static

hierarchical and the self-organization paradigms, maintain larger settlement population

sizes than the “egalitarian” distributive one (cf. Figure 3.8b and Figure 3.9c). How-

ever, agents utility as well as the produce stored by the agents, is at approximately the

same levels per scenario for both the self-organization and the static hierarchical social

organization paradigm as seen in Figure 3.17.

Overall, it seems that a static hierarchical structure exhibits a similar viability po-

tential with that of the heterarchical social structure emerging through self-organization

behaviour; however, the later appears to have an advantage in certain scenarios. More-

over, from an archaeological and historical point of view, it is rather improbable that a

static hierarchical structure would have existed in Crete for the entire Bronze Age (the

2,000 years period in question), especially for the geographic area modeled [117].

3.4.5 Agent migrations

Besides agent population numbers and organization sizes, we also examined the patterns

of agent migrations related to the social organization paradigms under study. Overall,

the average number of agent migrations per (yearly) time step is less than 0.05; specif-

ically, it is less than 0.01 for most of the simulation’s time duration, with higher values

recorded at the end of the simulations where more agents are observed (Figure 3.18).

Although the number of agent migrations seems to be increasing over time along

with population sizes, mainly for the self-organized behaviour and especially when an

extensive agricultural practice is used, agents migration activity can be considered triv-

ial, since an agent considers migrating on average only once in a millennium. Thus, the

migration ability modeled, appears to truly serve as the ultimate workaround for agents,
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Figure 3.17: Agents (a) utility and (b) storage over 2,000 (yearly) time steps wrt. intensive and
extensive agricultural strategy, and with settling near an aquifer being a requirement or not.

Figure 3.18: Histogram of number of agent migrations per time step for (left) egalitarian and
(right) self-organized social organization paradigms wrt. both agricultural strategies.
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when no other sustainability option is provided by their (social) organization (i.e., not

enough resources are provided/distributed, or “overcrowding” is observed when orga-

nization is at maximum carrying capacity). It is definitely not a major agent activity.

Thus, the population indeed corresponds better to “settled agriculturalists”, rather than

to agents with temporary settlements only.

3.4.6 Non-myopic agent decision-making

In this section, we illustrate the fact that our model can readily support non-myopic agent

action selection. Specifically, we define a simple example for a (sophisticated) agent

decision-making process, which uses a Markov Decision Process (MDP) [104] to decide

on migration (or settlement) policies, and compare the viability (in terms of population

growth over 2,000 years) of the resulting agent societies against that of myopic ones.

At each time step of the agent decision-making problem, an agent once again needs

to decide on (a) whether it should stay, wait and thus, settle to its current location for at

least yrs years in a row, while cultivating the surrounding area, or (b) migrate to another,

more promising settlement location (and settling there for yrs years). However, the

agent decisions now take the long-term effects of agent actions into account, and arise

as the results of solving finite-horizon MDPs that determine their long-term value —

assuming a specific planning horizon of h decision time steps, or “stages”. Agent actions

result to transitions to specific locations, corresponding to MDP states (and which are

potentially different than the current one). As before, agents can only migrate to states

that correspond to unused cells. The long-term value of being at state s where one

can choose to take some action a (i.e., to settle at s or migrate to one of a number of

candidate locations), can then be determined via the solution of a system of Bellman

optimality equations:

V (s)=max
a
{
∑
s′

Pa(s, s
′)(Ra(s, s

′) + V (s′))} (3.7)
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where transitions from s to s′ range over the planning horizon h,Ra(s, s
′) is the immedi-

ate reward resulting from transition to state s′—i.e., the value of cultivating the lands for

yrs years at s′, given the expected agricultural production of the corresponding “field”

cells associated with s′, as described in Section 3.1.2), and Pa(s, s
′) is the transition

probability to s′ when taking action a at s. The state value V (s) essentially replaces an

agent’s x myopic estimate of Equation 3.3; thus, its utility at a given location s is now:

Ux = V (s) (3.8)

In our implementation, the MDP solution determining the optimal V (s) values and mi-

gration policies is provided by the well-known value iteration algorithm [104]. To keep

things as tractable as possible, state transitions are assumed to be deterministic—i.e.,

Pa(s, s
′) = 1. Further, we assume that the decision problem is only occurring (and,

subsequently, an MDP needs to be solved) if the agent storage = 0, and his utility from

cultivating the lands at the current location has been dangerously low, i.e., Ux < U thres
x ,

for at least yrs in a row (in our experiments in this subsection, we set yrs = 10).

Once an MDP solution has been provided for an agent, the agent then follows the re-

sulting policy for h decision steps (each occurring every yrs simulation years); then, if

the conditions above call for a re-evaluation of a settlement policy, yet another MDP is

formulated and solved.

We have made several additional assumptions in order to ensure tractability while

making the decision problem as realistic as possible. An agent’s migration options are

assumed to be restricted by both migration distance and terrain’s elevation. Thus, the

states reachable from a specific state s correspond to locations within a given migration

radius (rmax = 5km). Even with this restriction, an agent is still able to cover almost

the entire environmental area within 3 migration “hops” (see Figure 3.19). Thus, we

assumed a finite horizon of 3 stages.
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Figure 3.19: An example of states (red dots)
and transition actions (grey lines) for an agent’s
MDP. States of the optimal policy are shown
(white dots).

Moreover, we further classify the

states according to environmental eleva-

tion as low, medium, and high elevation

states, and we assume that agent move-

ment is restricted given its current eleva-

tion state, as shown in Figure 3.20. For

instance, if the current (state) location of

the agent is at low elevation level, it can

only transition to a low elevation state or

to a medium elevation state (within its mi-

gration radius), and not to high elevation

ones. These restrictions reflect difficulty

of movement and transport between less

or more mountainous areas. Finally, we

assume that the agent is allowed to transi-

tion to m states per elevation level at each time step. In our experiments reported below,

m was set to 1 for computational efficiency purposes.

Figure 3.20: States (circles), collections of states (multiple circles) and transition actions (ar-
rows) for an agent’s MDP considering a 3-stage planning horizon.
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Figure 3.21: Numbers of dynamically created
MDPs in an average simulation run, along with
corresponding average numbers of their states,
over 30 simulation runs.

Despite these restrictions, it takes up

to 3 minutes to formulate an MDP and

solve the decision problem of just a sin-

gle agent at one time step, on a 2.6GHz

single-core computer. However, solving

the MDP via value iteration is not the

main computational bottleneck: execut-

ing the value iteration algorithm takes

only a few seconds—i.e., just a tiny frac-

tion of the aforementioned time. Rather,

the delays are linked to building the MDP,

that is, mainly determining the cells’ immediate rewards, due to speed limitations of the

programmable modeling environment.21 Further problems arise from the fact that (a)

multiple MDPs (corresponding to various agents planning problems) have to be dynam-

ically built at any time step, since the rewards related to a given environmental step are

not static, but fluctuate over time, as the result of the various agents settlement and cul-

tivation actions (Figure 3.21); and (b) the fact that our ABM employs a fine resolution

actual digital elevation model of the 50K cells modeling area. As a result, an entire

2,000 years simulation run takes on average 7 hours on a 2.6GHz single-core computer,

when using the aforementioned parameter values.22

Even with these restrictions in place, our simulation results confirm the intuition that

an ability to “plan-ahead” is beneficial to the agents. Specifically, Figure 3.22 shows

that, when compared to “myopic” agent decisions, societies of agents that use MDPs

for planning migration policies achieve population numbers that are on average higher

across the entire modeling period.

21See, e.g., https://github.com/NetLogo/NetLogo/issues/402.
22Of course, several efforts could have been undertaken to speed-up the process of dynamically defining

and solving the MDPs—e.g., via re-using MDPs already solved for agents operating in nearby regions
and nearby time steps. However, this is not the focus of our work here: our experiments in this section
simply intended to demonstrate that our model can readily incorporate non-myopic agent deliberations.

https://github.com/NetLogo/NetLogo/issues/402
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Figure 3.22: Number of household agents over 2,000 yearly time steps, using an intensive agri-
cultural strategy, with a requirement for settling near an aquifer, using an MDP for decision-
making or not. Error shading areas indicate 95% confidence intervals.

3.5 Conclusions

In this chapter, we attempted to showcase how to incorporate MAS-originating con-

cepts and algorithms in archaeology-related ABMs. To that end, we designed and im-

plemented a generic ABM system for archaeology research, adopting a utility-based

agent architecture. Moreover, we incorporated into our ABM an appropriately modi-

fied self-organization method originally proposed for current agent organizations. Self-

organization mechanisms have been observed in nature and biology and subsequently

successfully applied in MAS research. Equipping ABM with such mechanisms can

address problems that concern the emergence of system dynamics describing how the

individual components interact with and respond to each other and their environment.

However, such mechanisms had not been applied and tested in an archaeology simula-

tions system before.

We employed our system in order to gain new insights into the social organization

and agricultural activities of Minoan households residing at the wider area of Malia in

Crete during the Bronze Age. Indeed, simulation results show that agent societies that
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adopt self-organization exhibit an increased viability over the entire 2,000 years of this

period. Now, self-organization gives rise, naturally, to implicit agent hierarchies. As

explained in Section 3.2, however, the wealthy are assumed to be helping out agents in

need. Thus, our results here should by no means be interpreted as providing evidence for

the sustainability of exploitative hierarchical societies. Rather, they could be interpreted

as an indication that targeted wealth redistribution works better than a blind one.

Simulation results demonstrate that when agents adopt an “egalitarian” social orga-

nization paradigm, the emerging development of many “small-size” settlements seems

to be the way for survival over time, while “self-organized” agent societies appear to

be giving rise to larger settlements during their evolution. Moreover, simulation re-

sults indicate that a heterarchical social structure, having emerged by the continuous

re-adaptation of social relations among Minoan households, might well have existed in

the area of study. This fact is in line with archaeological evidence for larger settlements

(towns and palaces) eventually coming to existence during the MM - LM period, where

a more varied and dynamic social structure is now suggested [41].



Chapter 4

An Evolutionary Game-theoretic

Extension

As understood in the previous chapter, the various social organization paradigms ex-

plored assume a cooperative attitude on behalf of the agents. Specifically, agents were

assumed to be willing to provide resources out of their stock in order to help agents in

need, and such transfers drive the evolution of the social structure. In reality though,

people are often driven by more individualistic instincts and exhibit more egotistic so-

cietal behaviour. Indeed, the evolution of civilisation and state appears to be driven

by opposing, both competitive and cooperative, processes, which regulate behavioural

relationships in a society [58, 118]. Therefore, if one is to model societal transfor-

mation accurately, agent behaviour has to be analysed from a strategic perspective as

well. Assuming that agent interactions are based on rational decision-making, but are

also influenced by their very effect on the society as a whole, then the evolution of the

social dynamics can be studied via a game-theoretic approach [51]. It is anticipated

that incorporating ideas from game theory and MAS research in ABMs can enhance

agent sophistication, and contribute on the application of strategic principles for select-

ing among agent behaviours [135]. In this chapter, we adopt such an approach and

provide an alternative agent self-organization social paradigm. Agent self-organization

89
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is driven by the interactions of strategic agents operating within a given social organiza-

tion group, and the effects these interactions have on agent utility. As such, the evolution

of the social hierarchies is driven by the interaction of agent strategies in an evolutionary

game-theoretic (EGT) sense [122, 134]. This allows us to study the evolution and adap-

tation of strategic behaviours of agents operating in the artificial ancient community, and

the effect these have on the society as a whole.

In more detail, we simulate repeated “stage games” played by pairs of agents, cor-

responding to “households” residing in Minoan settlements located at the wider area of

Malia, in the island of Crete, same as in the case study of the previous chapter. Intu-

itively, the games model “resource exchanges” (utility transfers) among the households.

The results of each game played contribute to the continuous alteration of the social

structure, given the evolution of the differences in relative “wealth” among the agents.

In contrast to most matrix games studied in the literature [103], our agents receive non-

static payoffs (depending on their current utility, largely acquired via working the lands).

Moreover, agent population is not constant, but fluctuates dynamically over time, due

to utility-influenced births and deaths. Therefore, a strategy’s reproductive success de-

pends on dynamic payoffs, and thus agents using the same strategy do not necessarily

receive the same payoff when interacting with others. This in effect lead us to an al-

ternative model to the classic fitness-based evolution strategy selection: formulate the

evolutionary dynamics based on evaluating agents’, rather than strategies’ fitness.

An agent employs a specific strategy when playing in the stage games and after a

series of (yearly) time steps, agents assess and possibly modify their strategies (strategy

review stage); strategy review and adoption is performed in various ways. Specifically,

agent fitness can be evaluated with respect to solely the reward achieved in the games

or the overall utility of the strategic agent (derived from game-playing and land cultiva-

tion), thus exploring the potential differentiation on the strategic behaviours adopted by

the agents in the long-term. The relative success of the agent’s current strategy (agent

fitness) can be assessed at either the community (settlement) or the societal level, with
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respect to the average fitness of all strategic agents at that level, or the average fitness

of agents adopting this particular strategy; while the adoption of an alternative strategy

can be deterministic or stochastic.

We conduct a systematic evaluation of the performance of the various strategies and

their adaptation methods. Our simulation results show that strategic agent populations

are better sustained when agents base their strategy review decisions on the relative

success of their current strategy with respect to the success of agents employing the same

strategy; when the success of strategies is assessed at the community, rather than the

entire societal level; and when strategy adoption is stochastic, rather than deterministic.

Moreover, it is interesting to see that in the corresponding scenarios, agent populations

converge to adopting cooperative strategies, despite this behaviour being in contrast to

that prescribed by the stage game equilibrium.

Our work in this chapter provides several contributions, also illustrated in Figure 4.1

below:

• We extend our ABM framework that employs autonomous, utility-based agents,

that are also able to self-organize, based on the interaction of agent strategic be-

haviours, in an evolutionary game-theoretic (EGT) sense.

• We blend for the first time evolutionary game theory with multi-agent systems’

self-organization for modeling the evolution of strategic behaviours in a popula-

tion of self-organized agents; specifically, we provide a novel evolutionary self-

organization algorithm by simulating repeated “stage games” played by pairs of

strategic agents, by means of which they exchange utility (corresponding to re-

sources) with others.

• We provide an novel model for the evolutionary self-organization approach, where

strategy review and adoption, agent fitness and the relative success of agents strat-

egy are assessed and performed in various ways, which also differ considerably

to those used in usual EGT approaches. This is because agents receive non-static
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payoffs and their population is not constant, in contrast to most matrix games

studied in the literature.

• We conduct a systematic evaluation of the performance of various agent strategies,

assuming several scenarios, for studying the evolution and adaptation of strategic

behaviours of household agents operating in Minoan artificial communities, and

the effect these have on the sustainability of the Minoan society as a whole.

Figure 4.1: Overview of involved scientific fields and contributions in Chapter 4.

The remainder of this chapter is structured as follows. Section 4.1 provides a brief

overview on the application of evolutionary game theory in social sciences, and in partic-

ular archaeology, as well as a summarized review of related examples in archaeological

ABMs. Sections 4.2 and 4.3 present our ABM’s evolutionary game-theoretic extension,

coining an alternative self-organization framework: one that is driven by the interactions

of strategic agents operating within a social organization group. Section 4.4 then records

the empirical evaluation of our new approach—by first detailing the simulation parame-

ters for the various scenarios considered, and then analysing the obtained results for our

specific case study for an artificial society in a part of Minoan Crete. Finally, Section 4.5
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concludes this work by providing main outcomes of our work presented here. Parts of

the research described in this chapter appeared originally in [23], [24] and [25].

4.1 Related Work

There have been calls for the application of “evolutionary” concepts in the study of

sociocultural phenomena, and the development of archaeological theories in that direc-

tion [44]. The “mathematics” of evolution are the subject of evolutionary game theory

(EGT) [51, 134]. EGT originated as an application of the mathematical theory of games

to biological contexts, arising from the realization that frequency-dependent fitness in-

troduces a strategic aspect to evolution [94]. The interest among social scientists in a

theory with explicit biological roots derives from the fact that the “evolution” treated

by EGT is understood as cultural evolution, where this refers to changes in beliefs, be-

haviours and norms over time. Moreover, the rationality assumptions underlying EGT

are, in many cases, more appropriate for the modeling of social systems than those as-

sumptions underlying the traditional theory of games [94]. Thus, EGT imagines that the

game is played over and over again by socially conditioned players (agents), each “pre-

programmed” to some behaviour—formally a strategy in the game—and one assumes

some evolutionary selection process operates over time on the population distribution of

behaviours [134]. As such, EGT takes an interest in the replicator dynamics by which

strategies evolve. Such dynamics typically assume that the share of the population us-

ing each strategy grows at a rate proportional to its current payoff, so that strategies

providing the greatest utility against an aggregate previous period statistic grow most

rapidly [51]. It is conceivable that taking evolutionary concepts into account in an ar-

chaeological theory in a principled manner, would require dealing with the “mathemat-

ics” of evolution.

The only archaeological related ABM that we are aware of implicitly adopting an

evolutionary game-theoretic approach is that of [80]. The ABM is based on a mathe-
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matical model of a repeated “public goods game” put forward by [67], implementing

a “birth-death” (Moran) process for studying selection dynamics in a finite population.

The model simulates a voluntaristic process in which members of a society would pre-

fer to live in hierarchically structured group, if “leaders” can reduce the likelihood of

failures in cooperation due to free-riding or lack of coordination. The ABM in [80]

adopts and adapt this game-theoretic model into an agent-based simulation, consider-

ing a simple reflex agent architecture, where “household” agents can exist in 3 states:

thriving, just getting by, and perishing, depending on current resources stored. Agents

reproduce according to a growth rate that provides for an approximately stable global

population. Moreover, all payoffs (costs and benefits) from the game are statically ex-

pressed in resources (calories), representing punishment and tax payment costs, from

and to the group “leader”, for household agents that refuse or are unable to pay a full

contribution, or for monitoring other group members to make sure that they contribute to

the public good [80]. The authors examine the game-theoretic model’s empirical plau-

sibility by mapping it into a specific place and time, that is, in southwestern Colorado,

known as the central Mesa Verde Region of the US Southwest, between about AD 600

and AD 1200. Simulation results of average number of strategic agents, groups and

agents per group, from 36 different simulation scenarios (setup) are interpreted against

archaeological evidence, suggesting that the early appearance of leadership in the mod-

eling area could be explained by voluntaristic processes; however, the authors argue that

larger group sizes and greater evidence for hierarchy observed, may require a model that

explicitly incorporates inter-group competition.

Although there are numerous related works on “standard” EGT approaches applied

on MAS and ABM, such as models to determine suitable “fairness” utility functions [33]

or introducing behavioural diversity to study the co-evolution of a social network struc-

ture [128], we are not aware of any archaeological ABM that explicitly adopts an evo-

lutionary game-theoretic approach.
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4.2 Agent Strategies and the Resources Distribution Game

In this chapter, we explore an artificial society’s evolutionary dynamics with respect to

various cooperative or not agent behaviours. Thus, we need to introduce the ABM’s

main characteristics in terms of (evolutionary) game theory. Agents are considered as

“players” in “stage games” that take place every time step corresponding to one year.

In any such game, agents exchange (harvested) resources among them as follows. An

agent’s decisions regarding transferring resources to others correspond to its strategic

“actions” in the games, and similarly, agent rewards (resource amounts transferred) are

considered as “payoffs”. Each game is between two agents, with agents belonging to

the same settlement. At any given time step, however, a single player may be interacting

at a one-on-one basis with many other agents within the settlement simultaneously. As

such, multiple stage games are taking place simultaneously within each settlement. A

player remembers its interaction history with every other agent, allowing this history to

be taken into account by a player’s (long-term) strategy. We assume a finite, but not

fixed, population size, since new agents are created or old ones cease to exist.

In many domains, replication by way of simple biological reproduction is not a com-

pelling parable for how behaviours spread in a population. In social sciences in general,

replication by way of imitation and enforcement of successful behaviours is more ap-

propriate [134]. In our work also, payoffs correspond to the decision makers’ utility

from interactions, and the replication mechanism is based on imitation and reinforce-

ment of successful behaviours. In particular, each agent is “genetically” programmed

to play originally some pure strategy k, and agent offsprings inherit the strategy the

agent currently plays. An agent playing repeated stage games with opponents, sticks to

some pure strategy for some time period consisting of several years, and then reviews

its strategy, which sometimes results in a change of strategy. In our approach, we as-

sume three simple player strategic behaviours: a cooperative one, C, willing to share

resources with another player; a defective one, D, refusing to share resources; and one

which starts with cooperation and then behaves as the other player did in the previous
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game round, namely Tit-for-Tat, TFT [5]. Considering these different strategic agent

types as playing games against each other, we explore the evolutionary dynamics which

arise. Agents payoff is interpreted as fitness, depending on the relative proportions of

the different strategies in the population. Success in game playing improves utility, and

is translated into reproductive success; strategic agents that do well over time reproduce

more, while the ones that do poorly are outcompeted. This is straightforward natural

selection [102]. As such, household agents’ effective strategies continue to be used, and

ineffective ones are dropped. We now describe the games setting in more detail.

The set of pure strategies K consists of {C,D, TFT}, and an agent that uses pure

strategy k ∈ K is a k-strategist. A TFT -strategist adopts C when playing for the first

time, and in every further interaction adopts C if the opponent used C; and D if the

opponent used D in the previous interaction. Therefore, agent actions can be condensed

to C and D. Furthermore, we assume that a stage game takes place (among household

agents in a settlement) as follows: any pair of agents contract to exchange a “share” of

their utility. Suppose a pair of agents x and y exchange εx and εy respectively. Assuming

that each fulfills their end of the deal, thus, “cooperating”, then each receives a payoff

calculated as the exchange received minus the one offered, e.g. εy − εx for agent x.

Suppose that agent y “defects” and does not deliver as promised, then the defector will

receive the respective payoff of the opponent’s exchange, εx, while the cooperator, agent

x, will lose as much as the exchange offered, −εx. If both defect, then no one gains or

loses anything. If we assume agent x and y payoffs as rx and ry respectively, the generic

normal-form representation of a game between the agents is shown below in Table 4.1;

the arrows imply that defection is the dominant strategy for any agent (agents have

incentives to “move” towards defection), and mutual defection is the only strong Nash

equilibrium. Note, however, that each stage game is one with “dynamic” payoffs (since

rewards depend on the current agents utility).

Considering that there are ν players in a settlement, an agent interacts pairwise with

all other ν − 1 agents in the settlement. An agent is assumed to be willing to offer to
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Table 4.1: Equilibria of the distribution game

opponents a portion of its total payoff, depending on the number of its individuals, κ,

that “live” in the household. Thus, the exchange εx offered from a household agent x, is

a function of the agent’s current utility Ux and κ, and has the following form:

εx =
Ux

(ν − 1)(κ+ 1)
(4.1)

For example, a household agent with 5 individuals, is willing to contribute to its ν−1
“opponents”, Ux/6 of its utility, offering to each of its opponents (Ux/6)/(ν−1) reward

during a game interaction. Note that Equation 4.1 depends on agent utility Ux, which

depends on resources harvested, and not just on resources received through games. At

the end of each year, agents update their utility and reorganize their relations, based

on their accumulated rewards via the games. The total payoff rt(x) from games for a

k-strategist x at time t is:

rt(x) =
∑
∀y∈O

rx(i, j) (4.2)

where O is the set of x’s opponents at t and i, j are the actions prescribed by x’s and y’s

strategies during an interaction. The updated utility Ũx, of an agent x is calculated as:

Ũx = Ux + rt(x) (4.3)

Note that for aD-strategic agent x, it is Ũx ≥ Ux always, as such a player is unwilling to

make any exchange, but may receive some reward from a cooperative contracted agent.
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4.3 Replicator Dynamics

Now, the classic evolutionary model of replicator dynamics, assumes that a homoge-

neous population playing a particular strategy grows in proportion to how well that

strategy is doing relative to the mean strategy population performance [51]. Since the

agent population in our ABM is not constant, but fluctuates depending on agent utility,

and since agents do not “identify” with strategies (but may adopt other strategies over

time), we formulate the evolutionary dynamics based on evaluating agents’, rather than

strategies’ fitness. Therefore, at any given time step t, the current fitness ft(x) of an

agent x , is calculated as:

ft(x) = Ũx (4.4)

Although we believe it is more natural for an agent to evaluate its fitness based on its

utility, since population growth is utility-dependent in our ABM, in order to be in line

with classic EGT approaches, in some simulation scenarios we also considered agent

fitness to be based solely on its total reward from games it participated in. In those

scenarios, agent x calculates its fitness at time t as:

ft(x) = rt(x) (4.5)

At the end of some time period T , during which the agent plays games using strategy

k, agent x evaluates its current fitness with respect to the average fitness of the organi-

zation, before (possibly) switching to any other strategy. The average fitness F of the

organization over the period T , is calculated as:

F =
1

n

∑
∀x∈S,∀t∈T

ft(x)

|T |
(4.6)

where S = {x1, x2, ...xn} is the set of all household agents in the organization, consid-

ering each agent’s lifetime during period T . The term “organization” may actually refer

to either the settlement in which x belongs, or the entire society of agents (across all
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settlements). Although agents always play games only with other agents in their settle-

ment, in some simulation scenarios the set S in Equation 4.6 above refers to the entire

society. This attempts to capture the fact that the views of the entire society regarding

the value of the various behaviours (strategies), could weigh on an agent ’s deliberations

regarding the adoption of a specific “attitude” towards others. Moreover, assuming that

agent x reviewing its strategy is currently a k-strategist, in some simulation scenarios we

also calculate F with respect to the set Sk of k-strategists in the organization (settlement

or society). That is, in Equation 4.6, we replace S (the set of agents in the organization)

with Sk (the set of agents in the organization that share x’s strategy). This attempts

to evaluate how well x is doing with respect to agents exhibiting the same “attitude”

towards others.

Agent xwill consider switching to some other strategy, only if ft(x)−F < 0, i.e., its

fitness is less than the average fitness of the organization under examination (settlement

or entire society) during the previous period T . If that condition holds, x can choose to

deterministically switch to some other pure strategy l with max{Fl}, l ∈ K, where Fl

is the average fitness of the l-strategic agents in the organization; or it can stochastically

switch to strategy l with probability pkl (k, l ∈ K), based on the percentage of l-strategic

agents (or l-strategists) in the organization, calculated as follows:

pkl(x) =
|Sl|
n

(4.7)

Note that, in that case, pkk is considered to be the probability that a reviewing k-strategist

does not change strategy.

Regardless of the strategy review scenario used, self-organization is now driven by

the interactions of strategic agents operating within a given social organization group.

However, the re-organization (decentralized structural adaptation) stage, used for re-

evaluating and potentially altering agent relations, is the same as described in the previ-

ous chapter (cf. Section 3.2).
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4.4 Simulation Scenarios and Results

In this section, we describe the employment of our extended ABM presented above for

the simulation of the evolution of “household” agent societies, considering the same

modeling environment as in the simulation scenarios of the previous section, i.e., the

wider area of Malia region at the island of Crete during the Minoan period. Model

parameters were initialized to values set so that they correspond to estimates found in

archaeological studies relevant to the period of study. The ABM’s initial settings are the

same as in the simulations in the previous chapter for evaluation purposes; specifically,

strategic agents are assumed to cultivate the landscape by employing an “intensive”

agricultural practice, with a requirement for settling near an aquifer location.

We conduct a systematic evaluation on the impact of the evolutionary self-organization

social paradigm to population viability. Specifically, agents play games and (i) never

review their strategy (cf. Sec. 4.4.1); (ii) review their strategy and perhaps determin-

istically switch to another (cf. Sec. 4.4.2); or (iii) review their strategy and perhaps

stochastically switch to another (cf. Sec. 4.4.3). Furthermore, we consider strategy re-

view time periods of either T = 8 or T = 16 years. Each scenario was simulated for

thirty (30) runs, for a total of 990 simulation runs =30 (no review) + 30 × 2 (strategy

review options) × 2 (fitness function evaluated wrt. U or rt) × 2 (time periods T = 8

or T = 16) × 2 (organization considered at the settlement or the societal level) × 2

(agents considered in the organization, all or only “same”-strategists). In terms of time,

the process can be quite expensive, since a single run (composed of 2,000 time steps)

takes approximately 40min on a single core 2,6GHz computer; by employing, however,

additional computational power, i.e., via allocating a dedicated dual-core node of TUC

Grid computer to a run, all 990 runs mentioned above were completed in less than a

day. Results visualization was done in MATLAB (R2014b) environment. In all figures,

results are averages over 30 simulation runs across a period of 2, 000 years. Moreover,

one may reproduce our simulation results via using the same random “seeds” that we

used for the random number generators introduced in parts of our model.
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In our simulations, we compare the performance (in terms of population growth

achieved) of strategic agents that play games and use self-organization, which we term

“SO evolutionary” agents, against those that (i) are benevolent and self-organize, simply

termed “SO” agents; or (ii) adopt the “independent” social behaviour, trying to maxi-

mize their utility without interacting with others (cf. 3.2). Moreover, we report on the

fraction of the population that adopts a cooperative attitude at each scenario. In order to

not to clutter our results’ figures below, we will depict shaded areas that correspond to

95% confidence intervals around lines corresponding to agent populations adopting an

evolutionary approach (the “SO evolutionary” D-, C-, and TFT -strategic agents), and

their aggregate line (marked “SO evolutionary”), and not for the SO or “independent”

agents. Moreover, in order to assist the reader, in all figures the legends are ranked in

accordance to the relative performance of their corresponding behavioural methods.

4.4.1 No strategy review

In our first scenario, there is no strategy review for the “SO evolutionary” agents. Results

of this scenario are shown in Figure 4.2. We can observe that as time passes agent popu-

(a) (b)

Figure 4.2: (a) Agent population, and (b) percentage of agent behaviours, for the no strategy
review scenario.
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lation increases, with a rate that ranges between those of the extremes in the model—i.e.,

benevolent “SO” agents that always help each other, and “independent” (Figure 4.2a),

while their social behaviour remains proportionally stable, i.e. ≈ 50% of the agents co-

operate or defect (Figure 4.2b). Note that, in that figure the percentage of cooperative or

defective behaviour depicted, includes the currentC orD actions of the TFT -strategists

(since they adopt C orD depending on their past opponent action). Moreover, we report

that TFT -strategists actually exhibit ≈ 60% cooperative behaviour here.

Let us now discuss our findings for the rest of the scenarios in turn. In all the fol-

lowing corresponding scenarios (sub) figures, we adopt the following notation: F ∼ U ,

where agents fitness function is calculated by their updated utility (Equation 4.4); F ∼
R, where agents fitness function is calculated by their total accumulated reward (Equa-

tion 4.5); T = 8 and T = 16 for strategy review periods of 8 or 16 years respectively.

4.4.2 Deterministic strategy review

In this section we simulate agents which review their strategy k and, deterministically

switch to strategy l with max{Fl}, l ∈ K, where Fl is the average fitness of the l-

strategic agents in the organization, where the organization is either the agents settlement

to or the entire society.

Strategy review wrt. settlement performance

Here, the average total fitness (Equation 4.6) is calculated with respect to all household

agents within the settlement (S in Equation 4.6 is the set of all agents in the settlement).

Simulation results are shown in Figure 4.3. We observe an overall decline of the average

population of “SO evolutionary” agents, with respect to the scenario of Figure 4.2, for

most of the scenarios in this category (except for the scenario of Figure 4.3c). Moreover,

the average number of D-strategic agents increases significantly, irrespective of agent’s

strategy review time period and fitness function.
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(a) F ∼ U, T = 8 (b) F ∼ R, T = 8

(c) F ∼ U, T = 16 (d) F ∼ R, T = 16

Figure 4.3: Agent population for scenarios with deterministic strategy review and F calculated
across all agents in the settlement.

Results for the two scenarios where F ∼ R (Figures 4.3b and 4.3d), are as antici-

pated by the game equilibrium (Table 4.1). When F ∼ U (Figures 4.3a and 4.3c), we

observe that cooperative behaviour is not completely extinct. However, agents adopt, on

average, a defective behaviour; ≈ 60% of the agents defect, irrespective of T values, as

shown in Figure 4.4. In general, all scenarios in this category exhibit an overall defective

behaviour with low average number of agents, similar to the “independent” behaviour

mean population size.
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(a) F ∼ U, T = 8 (b) F ∼ U, T = 16

Figure 4.4: Percentage of average cooperative and defective behaviour of strategic agents (in-
cluding that of TFT agents), for scenarios with deterministic strategy review and F calculated
across all agents in the settlement.

We have also simulated scenarios where any k-strategist evaluates its strategy’s per-

formance with respect to the average fitness of the rest of k-strategists in the settlement.

We do not present the corresponding figures here (cf. Figure B.1 in the Appendix B),

since we observe a similar behaviour with the results in this category (Figure 4.3).

Strategy review wrt. society performance

In this subsection, the average organizational fitness (Equation 4.6) is evaluated by any

k-strategist with respect to either the set S of all agents in the entire society, or the set

Sk of agents in the society that adopt the same strategy as k.

When the average organizational fitness is calculated with respect to all household

agents within the society and F ∼ U (Figure 4.5) , percentages of average defective

behaviour, are slightly higher than the value observed for the corresponding scenarios

of Figure 4.3, up to ≈ 65%, irrespective of T values. On the other hand, when F ∼ R

(Figure 4.6) , the average “SO evolutionary” agents population is lower than the base

“no strategy review” scenario (cf. Figure 4.2), and at most equal with the “independent”

behaviour, when T = 16 years (Figure 4.6b). Moreover, the “SO evolutionary” agents
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(a) F ∼ U, T = 8 (b) F ∼ U, T = 8

(c) F ∼ U, T = 16 (d) F ∼ U, T = 16

Figure 4.5: Agent population (right) and percentage of average cooperative and defective be-
haviour of strategic agents (left, including that of TFT agents), for scenarios with deterministic
strategy review and F ∼ U calculated across all agents in the society.

are mostlyD-strategists or TFT -strategists that adopt defective actions. However, when

agents review their strategy more frequently, i.e., T = 8 years (cf. Figure 4.6a), we

report that a small fraction (≈ 5%) of TFT -strategists adopt, on average, a cooperative

behaviour rather than a totally defective one observed in the corresponding scenarios of

Figures 4.6b, 4.3b and 4.3d, where F ∼ R.

Moreover, percentages of average cooperative behaviour of strategic agents appear

to be slightly higher when agents evaluate their fitness with respect to the average fitness

of household agents in the settlement rather than the entire society and F ∼ U (cf.
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(a) F ∼ R, T = 8 (b) F ∼ R, T = 16

Figure 4.6: Agent population for scenarios with deterministic strategy review and F ∼ R calcu-
lated across all agents in the society.

Figures 4.4 and 4.5). This is interesting, and somewhat reassuring, since it does not seem

realistic that agents would have had information about the strategic views of household

agents in other settlements, for the period under study.

Simulation results where a k-strategist considers the set Sk of k strategic agents

within the organization for fitness evaluation are presented in Figure 4.7.

We observe that average population of “SO evolutionary” agents are similar to the

previous scenarios category (cf. Figure 4.5). When F ∼ U , the percentage of average

defective behaviour (including that of the TFT -strategists) is similar with the previous

scenarios of Figure 4.5, ranging from ≈ 65% up to ≈ 70%. Specifically, we observe

a significantly lower average numbers of C-strategists in comparison with the previous

corresponding scenario (Figure 4.5), and even lower when T = 16 (Figure 4.7c).

By contrast, when F ∼ R, although average population of “SO evolutionary” agents

is similar to the previous scenarios category (cf. Figure 4.7b), when T = 16 years (cf.

Figure 4.7d), corresponding average number of agents is noticeably higher than before

(and where all strategic agents defect).



4.4. SIMULATION SCENARIOS AND RESULTS 107

(a) F ∼ U, T = 8 (b) F ∼ R, T = 8

(c) F ∼ U, T = 16 (d) F ∼ R, T = 16

Figure 4.7: Agent population for scenarios with deterministic strategy review and F calculated
across agents in the society that share the same strategy.

As a final note, we report that “SO evolutionary” agents are able to sustain higher

average population size with respect to the previous scenarios category (cf. Figure 4.3),

and even higher than the first scenario (cf. Figure 4.2), when T = 8 years and F ∼ U

(cf. Figures 4.5a and 4.7a).
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4.4.3 Stochastic strategy review

From this point onwards, we simulate scenarios as before, with the difference that now

agents review their strategy k and stochastically switch to strategy l with a probability

pkl, k, l ∈ K, based on the percentage of l-strategic agents in the organization (cf.

Equation 4.7).

Strategy review wrt. settlement performance

In Figure 4.8, we present simulation results for scenarios where the agents review their

strategy stochastically, while evaluating the average fitness of all strategic agents in the

settlement organization.

When F ∼ U , we observe an slight increase in the average number of agents adopt-

ing a cooperative strategy with respect to the corresponding scenarios of Figure 4.3,

where agents review their strategy deterministically. Specifically, when T = 16 years,

the average numbers ofD-strategists decrease contrariwise (Figure 4.8c). Moreover, the

average numbers of TFT -strategic agents is observed to have declined.

We also report that agents in the model adopt, on average, a cooperative behaviour

(including that of the TFT -strategic agents) of ≈ 35% and ≈ 50% per time step, for

review time periods T = 8 and T = 16 years respectively, when F ∼ U , rather than

a totally defective behaviour when F ∼ R. In general though, the average population

of “SO evolutionary” agents is again lower than in the first scenario (cf. Figure 4.2a),

except when agent review their strategy more often and F ∼ U (cf. Figure 4.8a).

Simulation results for the scenarios where k-strategists evaluate their current perfor-

mance considering the set of Sk agents within the settlement are shown in Figure 4.9.

We observe a dramatic decline on the average numbers of D-strategists, irrespective of

review time periods and agent fitness function calculation method.
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(a) F ∼ U, T = 8 (b) F ∼ R, T = 8

(c) F ∼ U, T = 16 (d) F ∼ R, T = 16

Figure 4.8: Agent population for scenarios with stochastic strategy review and F calculated
across all agents in the settlement.

Interestingly, agents in these scenarios present the highest rates of cooperative be-

haviour observed, ≈ 55− 70% and ≈ 40− 60% when F ∼ U and F ∼ R respectively.

When F ∼ U , we observe a dramatic increase on the average number of C-strategists,

especially when T = 8 years (cf. Figure 4.9a). Likewise, when F ∼ R, a remarkable

increase on the average number of TFT -strategists is observed, especially when T = 16

years (cf. Figure 4.9g); although TFT -strategists constitute ≈ 25% and ≈ 50% of the

overall agent population when F ∼ R and T = 8 and T = 16 years respectively, they

adopt on average a cooperative behaviour by ≈ 95− 100%.
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(a) F ∼ U, T = 8 (b) F ∼ U, T = 8

(c) F ∼ R, T = 8 (d) F ∼ R, T = 8

(e) F ∼ U, T = 16 (f) F ∼ U, T = 16

(g) F ∼ R, T = 16 (h) F ∼ R, T = 16

Figure 4.9: Agent population (right) and percentage of average cooperative and defective be-
haviour of strategic agents (left, including that of TFT agents), for scenarios with stochastic
strategy review and F calculated across agents in the settlement that share the same strategy.
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We note that the highest average population of “SO evolutionary” households and

rates of cooperation behaviour among the agents, across all simulated scenarios, appears

in this case—and in particular in the scenario of Figure 4.9a.

Strategy review wrt. society performance

Here agents again switch their strategy stochastically, but first evaluate their perfor-

mance with respect to the average performance of the society; they initially consider all

agents instead of the ones only within their settlement. Results are shown in Figure 4.10.

(a) F ∼ U, T = 8 (b) F ∼ R, T = 8

(c) F ∼ U, T = 16 (d) F ∼ R, T = 16

Figure 4.10: Agent population for scenarios with stochastic strategy review and F calculated
across all agents in the society.
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We observe that average number of “SO evolutionary” agents for scenarios where

F ∼ U is similar to the one of the “no strategy review” scenario (Figure 4.2), especially

when T = 8 years; in this case, we also observe the lowest percentages of average

cooperative behaviour, that is ≈ 25% (cf. Figure 4.10a).

By contrast, the average population size of strategic agents for scenarios where F ∼
R is much lower and similar to the “independent” social paradigm’s, and even lower

when T = 8 (cf. Figure 4.10b). Interestingly, while a totally defective behaviour is

observed to be adopted for scenarios when F ∼ R and agents review their strategy

with respect to the settlement performance (cf. Figure 4.8), here emergent cooperative

behaviour is observed and adopted on average by ≈ 5− 10% of the agents.

Results for scenarios where k-strategists consider the set of Sk agents within the

society for their fitness evaluation, are shown in Figure 4.11. We observe similar av-

erage population sizes with the corresponding scenarios of the previous category (Fig-

ure 4.10). Interestingly, when F ∼ U (Figure 4.11b and 4.11f), the percentages of

average cooperative behaviour (including that of the TFT -strategic agents) increase

(up to ≈ 35 − 45%) with respect to the scenarios of the Figure 4.10; in contrast with

scenarios when F ∼ R, corresponding percentages of average cooperative behaviour

are increased, from ≈ 5− 10% up to ≈ 15− 25% for review time periods T = 16 and

T = 8 years respectively.

4.4.4 Discussion

We can report that cooperative behaviour is emergent in 24 out of the 33 scenarios,

with highest average rates observed when agent interactions are local and updating is

stochastic, as shown in Table 4.2. Cooperation is more prevalent when F ∼ U rather

than F ∼ R. This is quite natural: one expects agents that evaluate fitness taking into

account their reward in games only, to tend to become more aggressive or opportunistic;

while taking into account their overall utility tends to smoothen such behaviours.
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(a) F ∼ U, T = 8 (b) F ∼ U, T = 8

(c) F ∼ R, T = 8 (d) F ∼ R, T = 8

(e) F ∼ U, T = 16 (f) F ∼ U, T = 16

(g) F ∼ R, T = 16 (h) F ∼ R, T = 16

Figure 4.11: Agent population (right) and percentage of average cooperative and defective be-
haviour of strategic agents (left, including that of TFT agents), for scenarios with stochastic
strategy review, and F calculated across agents in the entire society that share the same strategy.
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Cooperation
rates (%)

Deterministic Stochastic
Group Society Group Society
S Sk S Sk S Sk S Sk

F ∼ U , T = 8 38 37 35 37 34 70 24 34

F ∼ U , T = 16 44 25 37 27 49 56 42 46

F ∼ R, T = 8 0 0 7 0 0 37 10 23

F ∼ R, T = 16 0 2 0 0 0 60 7 14

Table 4.2: Average cooperative behaviour rates for all scenarios, where every k-strategist consid-
ers either the set Sk of k-strategists or the set S of all agents within the settlement organization
or the entire society, reviewing its strategy either deterministically or stochastically.

Moreover, since the non-strategic, cooperation-oriented “self-organizing” agents,

and the non-interacting, “independent” agents, can be viewed as constituting two near-

extremes in terms of strategic behaviour, it is expected that the average aggregate popu-

lation of the strategic agents will lie largely between their corresponding ones; indeed,

simulation results confirm this intuition. Furthermore, when F ∼ U , the error shad-

ing areas for the “SO evolutionary” lines overlap with 13 out of 16 of the “SO” ones

towards the end of the simulation (last 500 years), and with 9 out of 16 of the “SO”

lines, when F ∼ R. Therefore, in many cases strategic populations can do even better

than non-strategic ones. Moreover, we can report that average numbers for settlements

and agents per settlement for the “evolutionary self-organization” social paradigm are

approximately 5 and 12, respectively, which are similar to the ones of the “simple” self-

organization one, approximately 6 and 12, respectively (cf. Figure 3.9 in Section 3.4).

Overall, scenarios that sustain a higher average population of “SO evolutionary”

agents, are mainly those where agent fitness is evaluated with respect to their utility. This

choice of conditioning strategy evolution on overall utility rather than reward is justified

from the results, while it does make sense from a socio-economic perspective: you

choose how much to “exchange” based on your overall well-being. Better performance

is observed when agent fitness is evaluated to that of the settlement group, rather than

the entire society, with respect to the average fitness (corresponding to utility) of only
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agents adopting the agent’s current strategy; and the adoption of an alternative strategy

is stochastic. In addition, percentages of average cooperative behaviour of strategic

agents are higher when agents evaluate their fitness with respect to the average fitness of

household agents in the settlement rather than the entire society; as mentioned earlier,

this is reassuring in the sense that, agents would have had incomplete information about

the strategic views of other household agents in other settlements, for the period under

study. Notably, however, the scenario with high percentages of emergent cooperative

behaviour also appears better in sustaining higher agents population (cf. Figure 4.9a).

We also report that the resulting social structure is indeed correlated with the agents’

strategic behaviour. In Figure 4.12, we report that the number of peer related agents are

higher on average when F ∼ U , while the number of superior or subordinate agents are

higher on average when F ∼ R. This is quite expected, since when F ∼ U agents are

more cooperative, rendering the differences in utility among them less acute—and thus

the authority relations are fewer in that case.

(a) Peer relation (b) Authority relation

Figure 4.12: Average number of (a) peer and (b) authority related agents per settlement for
scenarios where F ∼ U and F ∼ R, over 2,000 (yearly) time steps.
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4.4.5 Sensitivity analysis

In this section we apply a sensitivity analysis process to determine how sensitive our

ABM is to the particular set of initial conditions that we used. Specifically, we examine

the impact of varying the model parameters on model results. Specifically, recall that

we considered an initial number of approximately 10 agents on average in the model

environment (cf. Section 3.3.1), and a uniform distribution of initial strategies. We

wish to investigate if a higher initial agent population and a different initial distribution

of strategies will affect the results. We also wish to examine whether adding some

randomness on agent behaviours affects simulation results. To this purpose, we re-

ran all experiments in Section 4.4, changing initial conditions or adding randomness.

However, we restrict our presentation to scenarios of Figure 4.9—i.e., scenarios with

stochastic strategy review and F calculated across agents in the settlement that share

the same strategy, since these were shown to sustain a higher agent population size and

higher percentage of emergent cooperative behaviour (cf. Table 4.2).

Number of agents

Our simulation experiments involve an initial average population of 100 agents. Simula-

tion results of agent population for the corresponding scenarios of Figure 4.9 are shown

in Figure 4.13.

We now observe that, when F ∼ U , agents adopt lower rates of average cooper-

ative behaviour, from ≈ 55 − 70% (cf. Figures 4.9b and 4.9f) down to ≈ 15 − 20%

(Figures 4.13b and 4.13f). In scenarios where F ∼ R, the adopted average coopera-

tive behaviour is further reduced down to ≈ 5 − 10% (Figures 4.13d and 4.13h) from

≈ 40 − 60% (cf. Figures 4.9d and 4.9h). Interestingly, we report that when F ∼ R,

TFT -strategists drop down to ≈ 5− 15% from ≈ 25− 50% (cf. Figures 4.9c and 4.9g)

of the overall agent population (for T = 8 and T = 16 years respectively). Additionally,

they also exhibit lower rates of cooperative behaviour (from ≈ 95% down to ≈ 65%).
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(a) F ∼ U, T = 8 (b) F ∼ U, T = 8

(c) F ∼ R, T = 8 (d) F ∼ R, T = 8

(e) F ∼ U, T = 16 (f) F ∼ U, T = 16

(g) F ∼ R, T = 16 (h) F ∼ R, T = 16

Figure 4.13: Agent population of initially 100 agents (right) and percentage of average coop-
erative and defective behaviour of agents (left, including that of TFT -strategists), for scenarios
with stochastic strategy review and F calculated across agents in the settlement that share the
same strategy.
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Notably, however, the highest average cooperation rates and average population of

“SO evolutionary” household agents, across all simulated scenarios appears in this case,

similarly to the corresponding scenarios of Figure 4.9. Although we observe lower levels

of corresponding average cooperative behaviour, that seem to be decreased with time,

we do not anticipate that a higher initial population of agents will substantially change

the conclusions drawn from our simulations here.

Distribution of strategies

In this section we shall assume an environment with initially 10 agents on average and

different initial distribution of strategies. We conduct three different sets of experiments,

each one with different initial distribution of strategies, giving higher rates to each one

of the assumed agent strategic behaviours.

For the first set of experiments we assume an initial distribution of 90%C-strategists,

10% D-strategists and 10% TFT -strategists. Intuitively, we expect higher rates of av-

erage cooperative behaviour, since agents in the corresponding scenarios of Figure 4.9

adopt the highest ones observed in our simulations. Indeed, we observe that agents in

these scenarios adopt higher rates of average cooperative behaviour; however, the av-

erage populations of “SO evolutionary” household agents are in the same range as the

ones in the corresponding simulation scenarios. Simulation results for the respective

scenarios are not shown here, but can be found in the Appendix B (Figure B.2)

For the second set of experiments we assume an initial distribution of 90% D-

strategists, 10%C-strategists and 10% TFT -strategists. Naturally, we now expect lower

rates of cooperative behaviour (and, accordingly, higher rates of defective behaviour).

Indeed, agents in these scenarios adopt lower cooperative behaviour than the corre-

sponding scenarios of Figure 4.9; simulation results for these scenarios can be found

in the Appendix B (Figure B.3). Again, we observe that the average populations of “SO

evolutionary” household agents for these scenarios are in the same range as the ones of

the corresponding scenarios.
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For the last set of experiments here, we assume an initial distribution of 90% TFT -

strategists, 10% D-strategists and 10% C-strategists. Now, TFT strategy is an effective

technique for reducing conflict within a population and can be successful, provided that

some necessary conditions apply; being nice, retaliating, forgiving and non-envious [5].

Since the optimal strategy for an agent depends on its initial popularity (and on the

length of the game), the specific experimental setting (favouring TFT ) establishes very

favourable conditions under which cooperation in the simulated society based on reci-

procity may emerge and evolve. Simulation results for these scenarios are shown in Fig-

ure 4.14. We report that agents now adopt a cooperative behaviour that is even higher

than the corresponding scenarios of Figure 4.9.

Interestingly, the average populations of “SO evolutionary” agents are remarkably

higher than the ones of the corresponding scenarios of Figure 4.9, irrespective of review

time periods and agent fitness function calculation method. We note that the population

growth rate achieved by the ‘SO evolutionary” household agents for the scenarios of

Figure 4.14 is on average 0.083%, a very high rate that is both higher than the one

achieved by the “SO” agents, which was 0.077%, and also closer to 0.1%, which is the

maximum growth rate considered in our simulations (cf. Section 3.1.3).

Randomness

In this section we again simulate agents with the same setup as in the scenarios of

Figure 4.9; however, while an agent, when facing another in a game, still selects an ex-

change behaviour that is in line with its strategy, there is now a possibility of randomly

selecting the opposite (cooperative or defective) behaviour than the one currently de-

fined by its strategy. This somewhat mirrors situations where agents “make mistakes”

or have “a trembling hand” [51]. We conduct two different sets of experiments, one

with lower (20%) and one with higher (40%) error rates, signifying the probability of

selecting the opposite action (of course, the strategy of the agent remains unaltered).
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(a) F ∼ U, T = 8 (b) F ∼ U, T = 8

(c) F ∼ R, T = 8 (d) F ∼ R, T = 8

(e) F ∼ U, T = 16 (f) F ∼ U, T = 16

(g) F ∼ R, T = 16 (h) F ∼ R, T = 16

Figure 4.14: Agent population (right) and percentage of average cooperative and defective be-
haviour of strategic agents (left, including that of TFT agents), for scenarios involving an initial
rate of 90% of TFT -strategists, with stochastic strategy review and F calculated across agents
in the settlement that share the same strategy.
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In simulation scenarios with 20% error rate, we observe that when F ∼ U , the “SO

evolutionary” household agents are able to achieve slightly higher population sizes on

average than the ones of the corresponding scenarios of Figure 4.9, and with somewhat

higher average rates of cooperation behaviour. By contrast, when F ∼ R, we observe

that agents adopt remarkably higher rates of defective behaviour than the correspond-

ing scenarios of Figure 4.9, and there is a lower average number of “SO evolutionary”

household agents, similar to the “independent” behaviour mean population size. Simu-

lation results for these scenarios can be found in the Appendix B (Figure B.4).

For the second set of experiments, we adopt a 40% error rate. Simulation results

for these scenarios are shown in Figure 4.15. When F ∼ U , we observe that the aver-

age population sizes of “SO evolutionary” household agents are somewhat in the same

range with the ones of the corresponding scenarios of Figure 4.9. We also report a

lower average number of TFT -strategists and a higher average number of C-strategists,

particularly when T = 8 years, thus, rendering higher average cooperation rates from

≈ 60% up to ≈ 80%. When F ∼ R, and particularly when T = 16 (Figure 4.15g),

we observe a low average number of “SO evolutionary” agents, even lower than the “in-

dependent” behaviour mean population size. In addition, while the average number of

C-strategists is the same as in the corresponding scenario (cf. Figure 4.9g), we observe a

lower average number of TFT -strategists and a higher average number ofD-strategists.

Overall, however, adding more or less randomness “uniformly” in agent actions does

not appear to significantly affect our simulation results, since rates of average cooper-

ative behaviour of strategic agents exhibit the same trend with the ones of the corre-

sponding scenarios of Figure 4.9, that is, lower when F ∼ R and higher when F ∼ U ,

respectively. However, there is a perceived difference of average agent population; we

observe a slightly higher average number of agents when F ∼ U , while when F ∼ R,

and in particular when T = 16 (cf. Figure 4.15g), the average population size of “SO

evolutionary” agents drops by ≈ 15% with respect to average agent population for the

corresponding scenario of Figure 4.9g.
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(a) F ∼ U, T = 8 (b) F ∼ U, T = 8

(c) F ∼ R, T = 8 (d) F ∼ R, T = 8

(e) F ∼ U, T = 16 (f) F ∼ U, T = 16

(g) F ∼ R, T = 16 (h) F ∼ R, T = 16

Figure 4.15: Agent population (right) and percentage of average cooperative and defective be-
haviour of strategic agents (left, including that of TFT agents), with 40% error rate on action
selection for scenarios with stochastic strategy review and F calculated across agents in the
settlement that share the same strategy.
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4.5 Conclusions

Building on key EGT concepts, in this chapter we simulated a series of repeated games

with non-static payoffs, played among a finite but not constant population of autonomous

strategic agents, representing Minoan “households”. In particular, we simulated the

households’ behavioural evolution when interacting by exchanging resources among

themselves by assuming that exchanges are modeled via two-player games, and consid-

ering various scenarios and initialization setups. The strategic agent interactions, and

their effects on agent utility, drive the continuous re-organization of the social structure,

and naturally lead to the survival of the most successful strategies. The focus on agent,

rather than strategy, fitness, is a departure from “standard” EGT, and allows us to deal

with problems like the one here.

Our results indicate that scenarios that are better in sustaining higher agents popu-

lation are those at which agents adopt new strategies in a stochastic manner and agent

performance is compared to that of their immediate community—especially to that of

agents in the group that adopt the same strategic behaviour—rather than the entire so-

ciety. In these scenarios, agent populations converge to adopting cooperative strategies,

despite this behaviour being in contrast to that prescribed by the stage game Nash equi-

librium. Furthermore, results are in line with the view that, though complex societies

emerge to a large extent due to conflict and competition, these social conditions sel-

dom exist without cooperative agreements, alliances and cooperation networks in soci-

eties [118, 58].



Chapter 5

Incorporating a Natural Disaster

component

In this chapter we further extent our ABM system by employing a natural disaster com-

ponent for simulating the effect of such a catastrophe on the social organization of an

artificial past society. In particular, we study the extent by which the cataclysmic vol-

canic eruption of Thera (Santorini) impacted the Minoan social evolution. Considering

agriculture as the main production activity sustaining the human population, we evalu-

ate the volcanic eruption impact on “household” agents social organization, focusing on

the wider area of Malia region at the island of Crete.

Results over a number of different simulation scenarios demonstrate that household

agents are able to sustain themselves after the natural catastrophe event. However, in

some scenarios we observe noticeable changes in the settlements’ distribution, relating

to significantly higher migration rates immediately after the eruption. Moreover, the

eruption appears to have had a strong impact on social behaviour, transforming the ini-

tially cooperative agents’ behaviour to a non-cooperative one. This provides support

for archaeological theories suggesting that the Theran eruption led to an apparent break-

down of the Minoan socio-economic system, partly due to inner community competition

124



125

and conflicts.

Our work in this chapter provides certain contributions, also illustrated in Figure 5.1

below:

• We incorporate spatial analysis techniques to our data model, towards the devel-

opment of a simple natural disaster module representing a volcanic eruption catas-

trophe, able to also capture associated sudden-onset and slow-onset disasters.

• We employ a natural disaster module into archaeological agent-based simulations

for assessing the imminent social crisis in terms of agents social structure adapta-

tion, agent community numbers and sizes, migration behaviour and agents strate-

gic behaviour evolution, before and after a natural catastrophe event.

• We conduct a systematic evaluation of several natural disaster scenarios on social

change, based on archaeologically traceable environmental and human impact of

the mid-2nd millennium BCE Santorini eruption to the Minoan civilization.

Figure 5.1: Overview of involved scientific fields and contributions in Chapter 5.



126 CHAPTER 5. INCORPORATING A NATURAL DISASTER COMPONENT

The remainder of this chapter is structured as follows. Section 5.1 provides an

overview on the archaeological background regarding the natural disaster modeled,

based on archaeological evidence about the volcanic eruption of Santorini island. In

section 5.2 presents associated characteristics of the respective natural disaster that were

taken into account for transforming the conceptual model to computational terms. Sec-

tion 5.3 then records our evaluation on the impact of the simulated natural disaster on

the artificial Minoan society—by first detailing the simulation parameters for the various

scenarios considered, and then analysing the obtained results for our case study. Finally,

Section 5.4 concludes this work by providing main outcomes of our work presented

here. Parts of the research described in this chapter appeared originally in [27].

5.1 Background

As already mentioned in Section 2.5, a series of changes in the Minoan society were

triggered by the LM (Late Minoan) IA or ca. 16th c. BCE Santorini eruption. These

changes would have caused the breakdown of the Minoan system over the course of

a few generations, during LM IB (15th c. BCE). Archaeologists hypothesize that the

eruption would have initially caused major problems in food production and distribu-

tion, undermining central authority and leading to a process of decentralization; this

fragmentation would then have led incrementally to internal conflict. However, despite

the many destructions and abandonments documented, Minoan culture survived.

Moreover, there is also no doubt that during the eruption large amounts of ash and

pumice were emitted. Deposits of tephra originating from the Minoan Santorini erup-

tion have been found dispersed in many Cretan sites. However, distinct volcanic ash

layers are not apparent in the open hilly landscape of Crete [17]. While ash veils from

a volcanic eruption normally clear up within a few years, dendrochronological work

suggests limited plant growth for up to a decade [7], rendering its impact detrimental to

farms, at least on the eastern half of island of Crete.
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It may further be assumed that the eruption was accompanied by one or more tsunamis

[112]. Tsunami generation and simulations suggest that the north coast of Crete was

struck by highly variable wave amplitudes, ranging from a few to almost 30m with

inundations of up to 300m inland, considering caldera collapse [101]. However, new

evidence suggests that tsunamis can only have been caused by pyroclastic flows, where

reasonable estimates reach up to a maximum of 10-12m height [98].

Based on the above, we may now form and describe the conceptual natural disaster

sub-model incorporated in our ABM system, in an attempt to provide insights to whether

the effects of the Santorini eruption set in motion the process that led to the breakdown

of Minoan society in ca. 1450 BCE.

5.2 Modeling the Volcanic Eruption of Thera

We assume that the natural disaster sub-model takes effect at 1630 BCE, that is, ap-

proximately the date of the eruption estimated by earth scientists [40]. In order to con-

ceptualize the model, we considered associated sudden-onset disasters, such as tsunami,

and slow-onset disasters, such as the volcanic ash, and their effects on agriculture and

human life. To that end, we assume and model the following simple processes based on

archaeological estimates (cf. previous Section 5.1):

Tsunami We assume slr meters sea-level rise (including 2m rise on today elevation),

with inundations of ind meters inland in order to define tsunami-affected areas on

the model’s environmental grid. The agricultural impact to the respective areas is

assumed to be rendering associated agricultural fields useless for up to 20 years.

Human (immediate) impact is also assumed to create 10-15% fatalities (mortal-

ity) at the tsunami affected areas, linearly decreasing with distance to coastline

(Figure 5.2a).

Volcanic ash Considering that the volcanic ash layer is smaller at higher elevations and
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clears up within 2-3 years, we assume the environmental impact of the eruption to

be a limited growth to all agricultural fields in the model area for up to 10 years.

The agricultural impact is considered to affect environmental cells inversely linear

to elevation (Figure 5.2b). For simplicity, no immediate human impact is assumed

by the volcanic ash emission process.

(a) (b)

Figure 5.2: (a) Human impact of tsunami (sudden-onset) and (b) agricultural impact of volcanic
ash (slow-onset) disasters in our modeling area, associated with the volcanic eruption process,
incorporated in the natural disaster module.

We apply simple spatial analysis to the various environmental feature data in order

to model the above processes as parts of our simple natural disaster module; results of

the analysis are shown in Figure 5.2. The respective component is incorporated in our

ABM system for studying and evaluating the impact of the volcanic eruption of Thera

on different social organization paradigms of Minoan household agents located in the

wider area of Malia at the island of Crete (see Figure 3.6).
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5.3 Simulation Experiments and Results

Model parameters are initialized to values that correspond to archaeological records

or estimates found in archaeological studies relevant to the period of concern etc. (cf.

Section 3.3.1). Thus, in our default case volcanic eruption scenarios category, we set

slr = 10m sea-level rise, with inundations of ind = 300m for the definition of the

tsunami affected areas, based on archaeological estimates. We also define another

2 volcanic eruption scenarios categories, the extreme and the realistic case, as will

be explained later on. In all simulation experiments below, an intensive agricultural

regime is employed by household agents, and it is also required that agent settlements

are built near aquifer locations. Mortality rates for the natural disaster sub-model—

that is, the probability of annual deaths among household individuals located at the

tsunami-affected area—were initialized to 10% and 15%. Moreover, we evaluate the

performance of agents that use a self-organized social behaviour against those that self-

organize but do not change their relations (hierarchical), in terms of population growth

achieved.

Overall, 12 experimental scenarios were simulated, and each scenario was simulated

for 30 runs, for a total of 360 simulation runs = 30 × 2 (agent organization paradigms)

× 3 (volcanic eruption scenarios) × 2 (mortality rates). In all figures below, we depict

shaded areas that correspond to 95% confidence intervals around lines corresponding to

average number of household agents, number of settlements and settlement sizes.

5.3.1 Default case scenarios

For the default case volcanic eruption scenarios, we report that average agent population

size (number of households) increases with time, regardless of mortality rates, exhibit-

ing similar viability potential for both the self-organization and hierarchical organization

structures, as shown in Figure 5.3. Additionally, we observe no human losses; during

simulation runs, no household agent was settled at tsunami-affected areas at the time of
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the eruption, where fatalities are introduced by the model.

Figure 5.3: Number of household agents over 2000 (yearly) time steps for the default case
scenario, considering 10% mortality rate.

We do observe, however, an increase of 60% on the average number of settlements

(Figure 5.4). This is due to higher migration rates observed immediately after the erup-

tion, as further stated in our observations.

Moreover, we report an overall decline of 30% on the average number of household

agents per settlement after the eruption (Figure 5.5). Therefore, changes in settlement

numbers and sizes are observed due to the agricultural impact of the eruption; more and

smaller size settlements continue to cultivate the land after the eruption. Intuitively, one

could assume that the layering of volcanic ash and the subsequent degradation of soil

quality led to increased migration.

We note that, in all simulation results we resented above, the performance of the

self-organized social organization paradigm appears to be (slightly) better in sustaining

higher agent population and settlement sizes than the (static) hierarchical one. More-

over, simulation scenarios considering 15% mortality rate exhibit a similar behaviour,
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Figure 5.4: Number of agent settlements over 2000 (yearly) time steps for the default case
scenario, considering 10% mortality rate.

thus, they are not presented here. Now, since no human losses are observed for the de-

fault case scenarios, we attempted to manually “move” (set) at the time of the eruption

existing agent settlements to tsunami affected areas, in order to evaluate the human im-

pact of the natural disaster on the artificial society. We assume the following two (2)

alternative scenario cases: (i) moving the closest existing settlement to the geographical

location of the archaeological site of Malia; and (ii) moving two (2) closest existing

settlements to randomly selected tsunami affected geographical locations.

In what follows, we refer to the former scenarios category (i) as extreme case sce-

narios, where the impact of the tsunami waves at the archaeological settlement of Malia

presupposes an unrealistic parameterization to the natural disaster sub-model; the site

is located in an elevation of slr = 18m (wave height) and a distance from the coast

ind = 670m (inundation). We also refer to scenarios category (ii) as realistic case sce-

narios, since the default setup of the natural disaster sub-model was used (slr = 10

and ind = 300). Moreover, we present simulation results where 15% mortality rate was
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Figure 5.5: Number of agents per settlement over 2000 (yearly) time steps for the default case
scenario, considering 10% mortality rate.

introduced and not for 10% mortality rate. In both cases, however, simulation results ex-

hibit similar effects; nevertheless, those are more intense and noticeable for the former

(15% mortality rate), and thus, discussed here.

5.3.2 Alternative scenarios

Simulation results on average household agents’ population size are illustrated in Fig-

ure 5.6. We observe that agent population size is now reduced for both the self-organization

and hierarchical social organization paradigms, reaching up to ≈ 8% death toll for the

extreme case scenario (Figure 5.6a) and up to≈ 16% for the realistic case scenario (Fig-

ure 5.6b), respectively. This is due the fact that 2 out of 3 settlements on average (over

30 runs) were struck by the tsunami waves.

By contrast, we observe an increase on the average number of settlements of ≈ 90%

for the extreme case scenario and of≈ 150% for the realistic case scenario, respectively,

as depicted in Figure 5.7. For the realistic case scenario, in particular, we observe more
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(a) (b)

Figure 5.6: Number of agents over 2000 (yearly) time steps for (a) the extreme case scenario and
(b) the realistic case scenario, considering 15% mortality rate.

settlements after the volcanic eruption for household agents adopting the self-organized

social behaviour, rather than the hierarchical (static) one.

(a) (b)

Figure 5.7: Number of settlements over 2000 (yearly) time steps for (a) the extreme case scenario
and (b) the realistic case scenario, considering 15% mortality rate.

In addition, we observe an even more abrupt decline on the average number of house-

hold agents per settlement (settlement size) after the eruption, of ≈ 40% for the extreme

case scenario (Figure 5.8a) and of ≈ 55% for the realistic case scenario (Figure 5.8b),
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(a) (b)

Figure 5.8: Settlement sizes over 2000 (yearly) time steps for (a) the extreme case scenario and
(b) the realistic case scenario, considering 15% mortality rate.

Therefore, we observe a totally changed landscape consisting of many “small-size”

settlements after the eruption rather than a few and higher in size communities before

the eruption. This major change is a result of the environmental impact by the volcanic

ash and pumice, as well as the human impact attributed to the tsunami waves that struck

settlements located near to the coast. As a result, we observe that household agents are

being “forced” to migrate to other (better) environmental areas due to impact of the nat-

ural hazard on agriculture and subsequent production damage and loss. We report that

before the eruption, migration rate for the agents—that is, average number of households

out of the total number of households that migrate annually to other locations—was ≈
1%; while immediately after the eruption, migration rates were increased to ≈ 15%, ≈
20% and ≈ 25% for the default, extreme, and realistic case scenarios, respectively.

Moreover, since household agents are able to store any surplus resources in their

storage, for up to several years (default: 5), we report on the average amount of re-

sources stored before and after the time of the eruption, in order to further examine the

high migration rates and percentage of household agents being potentially “undernour-

ished”. The average amount of resources stored by household agents during the sim-

ulation period is similar for all scenarios, however, agents adopting the self-organized



5.3. SIMULATION EXPERIMENTS AND RESULTS 135

social behaviour appear to have an advantage on the amounts they were able to store

after the volcanic eruption. In particular, storage average values drop to ≈ 95% imme-

diately after the time of the eruption; however, self-organized household agents succeed

to store even more than before the eruption, after a few decades from the time of the

eruption until the end of the Minoan period, while hierarchically organized agents also

manage to bounce back in terms of food stored (Figure 5.9). Moreover, we observe that

after the eruption, storage values are slightly higher for agents adopting a self-organized

social behaviour than agents employing a static hierarchical social paradigm.

Figure 5.9: Agent average storage over 2000 (yearly) time steps for the realistic case scenario,
considering 15% mortality rate.

Certainly, the impact of a natural disaster on a human society tends to affect also

aspects of its community life, since essential functions of the society (such as the allo-

cation of resources) are interrupted or destroyed. Therefore, in order to assess the social

crisis potentially caused by the volcanic eruption impact on the artificial society, we

also provide simulation results employing our alternative agent self-organization social

paradigm that is driven by the interactions of strategic agents operating within a given

social organization group, as described previously in Chapter 4.
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5.3.3 Social impact

We simulate additional scenarios, considering that the agents employ an “evolutionary”

self-organization social paradigm; however, the number of initial settlements are now

set to 20. In this way the evolution of strategic agents’ behaviour during the simulation

can be better observed. To this end, we evaluate the performance of agents that play

games and self-organize, in terms of population growth achieved.

In particular, we examine the evolutionary self-organization social behaviour setting

that was able to achieve the most cooperative behaviour observed. In the previous chap-

ter, we have shown that agent populations converge to adopting cooperative strategies,

despite this behaviour being in contrast to that prescribed by the stage game equilib-

rium. In particular, cooperative behaviour was more widespread when agent fitness was

evaluated among other strategic agent in their community with respect to their overall

utility rather than their immediate reward, and the adoption of alternative strategies was

stochastic (cf. Section4.4).

The viability results are similar with the previous ones presented here; the intuition

and conclusions drawn from the previous results do not change. Interestingly, however,

we observe that the average number of household agents adopting a defective behaviour

after the eruption is increased and exceeds those that adopt a cooperative one (Fig-

ure 5.10).1

This indicates that the eruption also had a strong impact on the social behaviour of

the household agent communities. This observation is in line with the fact that conflict

usually arises due to problems with the allocation of resources for rehabilitation after a

disaster, given its impact on natural resources [40].

1We assume the same strategic actions for the agents as the ones presented in Section 4.2, cooperation
(C), defection (D) and equivalent retaliation (TFT ).
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Figure 5.10: Strategic agent population over 2000 (yearly) time steps for the default case sce-
nario, considering 15% mortality rate.

5.4 Conclusions

In this chapter, we attempted to deepen our understanding of the Bronze Age Minoan

civilization’s decline by incorporating natural disaster module in our ABM system for

simulating various scenarios. Specifically, we explored whether the Minoan eruption of

the Thera volcano was a catalyst, through its environmental and human impact, which

triggered a disintegration process in early Minoan communities. Household agents were

assumed to be located in the wider area of the Malia region at the island of Crete, em-

ploying different social organization paradigms. We tried to assess the imminent social

crisis in terms of household and settlement sizes, migration behaviour, and evolution of

agent strategic behaviour, before and after the eruption.

Simulation results over a number of different scenarios show higher non-cooperative

household agent numbers after the eruption. This result potentially provides support to

archaeological hypotheses of decentralization, which led to political fragmentation and

internal conflict with increasing competition, largely related to the acquisition of re-
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sources [42]. Moreover, we observed a significant change in settlement distribution pat-

terns, an effect of high mobility and crop loss rates, rendering a landscape with higher

number of “small-size” settlements during the LM period. Archaeologists argue that

the number of settlements or households, of ritual sites and of funerary sites that were

abandoned during LM IA is considerable, however, they cannot yet distinguish archae-

ologically between a mature (i.e., prior the eruption) and final (i.e., contemporary to the

eruption) abandonment [40]. In addition, in our simulations increased storage amounts

were also observed after the eruption, suggesting collection of resources organized on

a greater scale. Surprisingly, recent excavations have brought evidence pinpointing to-

wards an increase in storage space in the mature LM IB phase, while the reduction in

population size, change in the distribution of human groups, including their mobility

patterns, and the conversion of food into direct and indirect storage, are all features evi-

denced during LM IB [42]. Overall, simulation results suggest that the Theran eruption

led to a gradual breakdown of the pre-eruption Minoan socio-economic system.



Chapter 6

Simulating Trade across Agent

Communities

In this chapter we put forward a novel agent-based trading module, for simulating the

exchange and distribution of resources across settlements in past societies. The mod-

ule is incorporated in our ABM system populated with autonomous, utility-maximizing

agents corresponding to households; and can employ any spatial interaction model of

choice. As such, it allows the study of the settlements’ trading ability and power, given

their geo-location and their position within the trading network, and the structural prop-

erties of the network itself. We use as a case study the Minoan society during the Bronze

Age, in the wider area of Knossos at the island of Crete, Greece. We instantiate two

well-known spatial interaction sub-models, XTENT and Gravity, and conduct a system-

atic evaluation of the dynamic trading network that is formed over time. Our simulations

assess the sustainability of the artificial Minoan society in terms of population size, num-

ber and distribution of agent communities, with respect to the available archaeological

data and spatial interaction model employed; and, further, evaluate the resulting trading

network’s structure (centrality, clustering, etc.) and how it affects inter-settlement orga-

nization, providing in the process insights and support for archaeological hypotheses on

the settlement organization in place at the time.

139
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Simulation results show that modeling a trading network that takes into account

mainly the settlements’ “importance” (e.g., in terms of population size or lifetime) rather

than solely the distance between settlement locations, can produce settlement patterns

similar to the one that exist in archaeological record. However, this is most appropriate

when the settlements’ importance is known or can be derived based on archaeological

evidence, thus allowing such a trading model to better capture the trend in settlement

numbers that exist in the archaeological record. By contrast, when settlements’ impor-

tance is not known, or cannot be properly modeled, then a trading network model should

favour the distance between settlements rather than their importance.

Overall, the evolution of the values of the graph-theoretic indices characterizing our

simulations’ network, (i.e., clustering coefficient, in-degree and out-degree centrality)

indicate that the Minoan’s trading network (at the modeling area) was affected by the

Theran volcanic eruption. Specifically, it appears that the trading network in the Late

Minoan (LM) period becomes clearly more dense, while it seems that there exist only

a few “important centres” at the time, which is in line with the archaeological record.

Moreover, it appears that the network’s structure and interaction patterns are to an extent

reversed after the Theran eruption, when compared to those in effect in earlier periods.

The main contributions of our work in this chapter can be summarized as follows,

also illustrated in Figure 6.1 below:

• We provide a novel trading model that readily incorporates spatial interaction

paradigms to simulate trade among self-organized communities of autonomous

utility-based agents.

• We incorporate a natural disaster sub-model into the ABM, to provide insights on

how a natural disaster scenario could have affected the trading network behaviour

and further the agent communities organization structure.

• We utilize graph theory to analyze the trading network, and thus interpret simula-

tion results in terms of the network’s potential centralization, clustering behaviour
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or potential settlement organization during the whole simulation period.

• Our systematic study of the dynamic trading network provides support to certain

archaeological hypotheses related to the period and modeling area of study.

• We exploit simulation results to derive intuitions regarding the appropriateness of

different spatial interaction models.

Figure 6.1: Overview of involved scientific fields and contributions in Chapter 6.

The remainder of this chapter is structured as follows. Section 6.1 provides a brief

overview of formal techniques available for the study of trade in archaeology, and of

existing examples of related archaeological ABMs in the literature. Section 6.2 presents

the theoretical background of the modeling process that was followed for developing

the trading network across settlements, based on both the XTENT and Gravity spa-

tial interaction models. There, we also introduce several concepts from network and

graph theory required for the analysis of the resulting trading network. Section 6.3 then

presents our specific case study of early Minoan societies located at the wider central

area of Knossos in the island of Crete. In addition, we record the empirical evaluation
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of the various trading models, in terms of potential settlement centralization and orga-

nization emerged during the Minoan period, by first detailing the simulation parameters

for the various scenarios considered, and then analysing the obtained results. Finally,

Section 6.5 concludes this work, and provides a brief discussion on simulation results.

6.1 Background

Certainly, in the absence of written records it is not easy to determine what were the

mechanisms of trade, or what was the nature of the exchange relationship. However,

several formal techniques are available for the study of trade, such as the development

of a distribution map for finds or materials, within a specific geographic area [107]. Con-

sidering such distribution maps, pondered by fall-off analysis, the quantity of a traded

material usually declines as the distance from the source increases.

For instance, let us consider a “down-the-line” trading system [107]. If one site, e.g.

village, receives its supplies of a raw material down a linear trading network from its

neighbour site up the line, it may retain a given proportion of the material for its own

use, and trade the remainder to its neighbour site down the line. If each village does the

same, an exponential fall-off curve will result, as illustrated in Figure 6.2. In some cases,

however, there are regularities in the way in which the decrease occurs, and this pattern

can inform us about the mechanism by which a material reached its destination. As an

example, a different distribution system, through major and minor sites, would produce

a different fall-off pattern, in particular, a multi-modal fall-off curve, since lower-order

settlements tend to exchange with higher-order centres, even if the latter lies further

from the source than an accessible lower-order settlement (Figure 6.2). We note at this

point that in the rest of this paper we shall use the term ”settlement” to refer to any site

category, such as village, town, or city.

Now, to the best of our knowledge, the only archaeology-related ABM that utilizes

a spatial interaction model, is that of [54]. The ABM simulates movement of trav-
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Figure 6.2: Relationship between settlement organization, type of exchange, and supply, for re-
sources traded on land. (Left) Down-the-line exchange of village site. (Right) Exchange between
lower-order with the higher-order sites. Adapted from [107].

ellers (agents) between settlement locations known through archaeological field survey

in specific regions of Central Greece during the Geometric period and Central Italy dur-

ing Protohistory. The author utilizes an entropy-maximizing model, that is, the Gravity

spatial interaction model, in order to ultimately rank the settlements by the number of

times they emerged as most “important” in the various metrics of the travellers network.

Agents in the ABM are only able to travel to settlements around their neighbourhood

and only to the most attractive site out of three potential destinations. Although the fac-

tual description of the ABM is missing, since the author argues that the mathematics in

the ABM are not the most important consideration, but rather the description of how the

agents interact, some indicative results are presented and discussed.1

1We could not conduct further analysis or validation of the specific ABM, since the URL of the ABM
source code no longer exists.
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6.2 Modeling the Trading Process

A possible solution to conceptualize exchange and distribution of resources (flows) be-

tween settlements, relies on using a spatial interaction model [107, 110]. The basic

assumption regarding spatial interaction models is that flows are a function of the at-

tributes Wi of the origin location i, and the attributes Wj of the destination location j

and the ”friction” of distance Di,j between the concerned origin and destination loca-

tions. The general formulation of the spatial interaction model is as follows [110]:

Ii,j = f(Wi,Wj, Di,j) (6.1)

In our work here, Ii,j represents a measure of “attractiveness” corresponding to the

probability of trade between settlements i and j. Di,j is the distance between the set-

tlement locations.2 Variables Wi or Wj are used to express a measure of ”importance”

for settlement i and j, respectively. Attributes often used to express such variables are

socio-economic in nature, such as population or gross domestic product in modern so-

cieties.

Since we are calculating settlements’ interaction probability at any given time step t

during the simulation, we consider the following attributes:

• Pj,t, defined as the ratio of the population (inhabitants) of settlement j with respect

to the total population at time t, and

• Kj,t, defined as the ratio of the number of time steps that settlement j has existed

so far up to t.

Then, at any given time step t, we define the importanceWj,t of a settlement location

j as follows:
2The distance factor Di,j is measured as the Euclidean (linear) distance for simplicity. This distance

can be alternatively measured as the Least Cost Path between two settlement locations, considering slope
and elevation as cost surfaces, however, with significantly higher computational cost.
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Wj,t =
√
Pj,t ·

√
Kj,t (6.2)

For example, if at time step t = 1000, Si settlements exist in the ABM environmental

area, where i = 1, 2 and the total population is 8000 inhabitants, assuming that S1 has

a population of 2880 inhabitants and a lifetime of 810 years and S2 has a population of

5120 inhabitants and a lifetime of 360 years up to current (annual) time step t, then Wi,t

is calculated as follows:

W1,1000 =
√
P1,1000 ·

√
K1,1000 =

√
2880

8000
·
√

810

1000
= 0.6 · 0.9 = 0.54

W2,1000 =
√
P2,1000 ·

√
K2,1000 =

√
5120

8000
·
√

360

1000
= 0.8 · 0.6 = 0.48

Thus, settlement S1 has a higher weight (importance) than settlement S2, even though

S2 has an almost double population size than S1, due to the higher lifetime of S1 during

the simulation.

Now, past societies of the first farmers in different parts of the world, may be gener-

ally described as independent sedentary and relatively egalitarian communities without

any strongly centralized organization [107]. Following the development of farming, in

many cases, the farming economy underwent a process of intensification, associated

with developing exchange. Given this, we make the following assumption: at any given

time step t, each (household) agent within a settlement i is socially contracted as a com-

munity member to give away a portion of its stored surplus ps (e.g., 20% or 80%) to be

communally pooled as the corresponding settlement trading resourcesNi,t and be traded

away by the settlement later on. We note that the percentage of surplus resources that

an agent is able to give away is user-defined in our ABM.

For instance, if at time t = 1400, settlement S53 has i = {1, 2, 3} household agents,

where each agent has sti surplus resources in its storage, e.g., st1 = 100, st2 = 200, st3
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= 50, while the user-defined percentage of stored surplus to be given away is ps = 20%,

then the settlement’s overall trading resources unit N53,1400 are calculated as follows:

N53,1400 = ps ·
3∑
i=1

sti = 0.2 · (100 + 200 + 50) = 70

Then, since the level of interaction or “attractiveness” Iij of settlement i corresponds

to the probability of trading with any other settlement j, settlement i can ultimately trade

and exchange resources Eij,t with settlement j at time step t, by distributing its trading

resources Ni,t based on its interaction probability Iij,t, as follows:

Ei,j,t =
Ii,j,t ·Ni,t∑n

j=1 Ii,j,t
(6.3)

To give some intuition on the calculation of Ei,j,t let us provide another example;

however, in order to not overload notation, we are dropping the t index, when this is not

required. Thus, if we consider a set of potentially interacting settlements Si where i =

{1, 2, 3, 4, 5} and Ii,j is provided by some spatial interaction model, e.g., the XTENT

or Gravity used in this work, so that I1,2 = 0.2, I1,3 = 0.6, I1,4 = 0.8, I1,5 = 0.4 then

settlement S1 will distribute a portion of its trading resources, e.g., N1 = 200 (in kg) to

settlement S2, as follows:

E1,2 =
I1,2 ·N1∑5
j=1 I1,j

=
0.2 · 200

0.2 + 0.6 + 0.8 + 0.4
= 20

As such, S1 will give away 10% of its overall trading resources to settlement S2,

30% to settlement S3, 40% to settlement S4 and 20% to settlement S5—in the event that

trade occurs with the corresponding probabilities. Similarly, when the trading process

is over, settlement i will proportionally distribute the “public good” payoff among its

household agents, based on their number of inhabitants. Let us now elaborate on the

XTENT and Gravity spatial interaction models, immediately below.
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6.2.1 The XTENT model

The XTENT model asserts some relationship of settlement size and distance, whereby

the larger dominates the smaller if the distance between them is sufficiently small,

whereas the smaller retains autonomy if that distance is large enough [109]. Thus, it

assumes that a large centre will dominate a small one if they are close together; in

political terms the smaller site has no independent or autonomous existence. This ap-

proach overcomes the limitation of the Thiessen polygons method, where territories are

assigned irrespective of the size of the settlement, and where there are no dominant or

subordinate settlements, allowing a simple approximation of the political reality and a

hypothetical political map to be constructed [107].

In our ABM, the “attractiveness” determining the level of trading interaction of set-

tlement i (origin location) with settlement j (destination location) that relies on the

XTENT formula, is proportional to the importance of the destination location and de-

clines linearly with their distance, as follows:

Ii,j = W β
j −m ·Di,j (6.4)

where β and m are constants used to adjust the required level of the effect that the

importance Wj of settlement j and the distance Di,j have on the overall “attraction” be-

tween settlements i and j, respectively. Of course, one has to experiment with specific

values for β and m to reflect the required attraction between settlements i and j. More-

over, in order to turn Ii,jinto a meaningful trading probability between settlements i and

j we choose to scale its value to [0;1] (min-max normalization).

Given the Ii,j’s, we are able to provide visualization intuitions about settlement terri-

tories by coloring each “cell” in the modeling area with the same color of the settlement

which is mostly attracted to (in this way the territory of some smaller settlement is sim-

ply absorbed to that of its adjacent larger one). For instance, if we assume thirty (30)

different settlements as destination locations j and that origin locations i are all other



148 CHAPTER 6. SIMULATING TRADE ACROSS AGENT COMMUNITIES

landscape cells in our modeling area in this paper, considering β = 1.5 and m = 0.005,

then the XTENT model provides a landscape partitioning (territories) for the trading

process as the one illustrated in Figure 6.3.

Figure 6.3: Visualization of “territories” of 30 different settlements (of type village, town or
city) within the modeling area, considering the XTENT spatial interaction model, considering
β = 1.5 and m = 0.005.

In the example of Figure 6.3, each settlement is depicted with a unique coloured

circle, where its size represent its importance with respect to its type (village, town or

city in this example), while its territory (landscape partitioning) is depicted with the

same color. In particular, settlement 8 (of type village), located near the centre of the

modeling area, will most probably trade with settlement 32 (city) or even settlement 10

(village), since it is attracted to settlements that are relatively close in range, undervalu-

ing the importance of settlements that are further away.
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6.2.2 The Gravity model

The Gravity model is the most common formulation of the spatial interaction method [72,

69]. It is named as such because it uses a similar formulation as the Newton’s law of

gravity. The ”attractiveness” between the locations of origin (of trade) i and destination

j that relies on the Gravity model is proportional to importance, and inversely propor-

tional to their respective distance [110]:

Iij = Wj/D
λ
ij (6.5)

In the above formula we do not take into account the importance of the origin set-

tlement Wi, since we need to model the trading probability and the “attraction” of the

destination settlement j, same as in the XTENT formula, thus the “attractiveness” be-

tween settlements i and j is not reciprocal. One would of course need to experiment

with λ in order to efficiently reflect the required (growing) effect that distance have to

the trading probability between settlements i and j. In our simulations experiments and

same as with the XTENT model, Ii,j is also scaled to [0;1] (min-max normalization).

Let as also provide visualization intuitions about settlement territories relaying on

the Gravity model, by assuming the same thirty (30) different settlements as in the pre-

vious example (cf. Figure 6.3) as destination locations, and origin locations to be any

landscape cell in the modeling area, considering λ = 0.2. Now, settlement 8 (village)

will most probably trade with settlement 32 (city) or even settlement 30 (town), since it

is attracted with settlements of high importance, that is of type city or town, despite its

distance from them.

6.2.3 Discussion on spatial interaction models used

In the simulation scenarios described later on, we consider two different views on the

trading probability between settlements; one favouring the distance between settlements
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Figure 6.4: Visualization of “territories” of 30 different settlements (of type village, town, city)
within the modeling area, considering the Gravity spatial model, considering λ = 0.2.

rather than its importance, relying on the XTENT model with β = 1.5 and m = 0.005

(Equation 6.4), and another favouring the importance of settlement locations rather than

the distance between them, enabled by the Gravity model with λ = 0.2 (Equation 6.5).

We will observe these models’ effect on settlement organization and distribution patterns

in our simulation results.

The aim of assigning the specific values of β and m for the XTENT model, and of

λ for the Gravity model, is to adequately model the required trade-off between settle-

ments distance and importance for the specific case study’s geographic area described

later on (maximum distance of about 40 km). To provide an intuition on the two different

views on the trading probability between settlements, let us assume that the probabil-

ity distribution of “importance” for a potential destination settlement is as illustrated in

Figure 6.5 (the blue dashed sinusoidal curve). The corresponding probability distribu-

tion of interaction of an origin settlement with the respective destination location is then

depicted with the red and yellow curve, considering the XTENT and Gravity models,
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respectively. As shown in Figure 6.5, the distance between the origin and destination

settlements has a greater role when the XTENT method is employed, while it has a

lesser impact when the Gravity model is in use.

Figure 6.5: Probability distribution of importance of a potential destination settlement location
and the corresponding distribution probability of interaction of an origin settlement location,
considering the XTENT model with β = 1.5, m = 0.005 and the Gravity model with λ = 0.2.

6.2.4 Graph theory for trading network analysis

In our ABM, settlements interact with several other settlements, formulating a different

trading network at every given time step during the simulation, based on the enabled

trading scheme (XTENT or Gravity model). What we need to explore in such a dynamic

trading network of settlements, is whether and to what degree some settlements are

more important or central than others, based on their trading interactions; and whether

settlements tend to create groups characterised by a relatively high density of trading
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interactions. Thus, in order to better understand and provide insights on the consequence

of patterns of interaction between settlements, we adopt in our work some of the main

approaches that network and graph theory has developed. We describe these below.

To begin with, a trading network can naturally be represented by a graph. A graph

consists of a set of points and a set of edges or ties connecting pairs of points. In our

case, each settlement in the trading network corresponds to a point in the graph and each

trading interaction corresponds to an edge that connects a pair of settlement locations.

A fundamental measurement concept for the analysis of network graphs is centrality,

that can highlight important information about the network organization and its struc-

ture [49]. Centrality index describe point locations in terms of how close they are to

the “centre” of the network activity. Thus, settlements who have more interaction ties

(edges) to other settlements may be in advantaged positions. Because they have many

interaction ties, they may have access to more of the exchanged resources over the net-

work as a whole, and hence are less dependent on other settlements [64].

Whenever two settlements trade, they are directly connected by an edge, and thus,

they are adjacent. The number of other settlements to which a given settlement is ad-

jacent is called the degree of that settlement. A simple and effective measure of a set-

tlement’s centrality is its degree. Since resources can be exchanged in a single edge

direction towards another settlement, the temporal trading network of the ABM is rep-

resented as a “directed” graph and it is important to distinguish centrality based on

in-degree, from centrality based on out-degree. If settlements receive many interaction

ties, they can be described as prominent, or having high prestige, since many other set-

tlements seek to direct resources to them, and this may indicate their importance [64].

Settlements with high out-degree centrality are able to distribute resources to many other

settlements, or make many other settlements aware of their resource exchange potential,

thus being more influential than settlements with low out-degree centrality; although it

might matter to which settlement they are distributing resources, this measure does not

take that into account [64].
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Let us now assume that a potential trading network is formulated with n number

of settlements Sj (network nodes), at a specific time step during the simulation in our

ABM. This snapshot of the trading network can be represented as a directed graph,

where numerous trading interactions occur between settlements. The in-degree or out-

degree centrality index CD(Sj) is the number of incoming or outgoing trading edges,

respectively, for a settlement Sj [49]:

CD(Sj) =
n∑
i=1

tr(Si, Sj) (6.6)

where, tr(Si, Sj) = 1 if and only if Si and Sj interact (trade resources) and thus,

connected by a tie or edge; and tr(Si, Sj) = 0, otherwise. The magnitude of CD(Sj) for

a settlement j partly depends of the size of the trading network on which it is calculated.

However, since our trading network is dynamic and constantly changes during its evo-

lution, it is desirable to have a measure that is independent of network size. Thus, we

calculate the relative degree centrality CD ′(Sj) for a settlement j, which is defined as:

CD
′(Sj) =

CD(Sj)

n− 1
(6.7)

The effect of network size has been removed by normalizing with maxCD(Sj) =

n− 1, since any given settlement Sj can at most be adjacent to n− 1 other settlements

in the trading network graph. Overall, the degree of a settlement point can be viewed as

an index of its potential trading activity.

Another view of settlement point centrality, within a “directed” network graph, is

based on the frequency with which a settlement Sk falls between pairs of other set-

tlements on the shortest or “geodesic” paths connecting them, defined as the relative

betweenness centrality index [136]:
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CB
′(Sk) =

∑n
i

∑n
j bij(Sk)

(nI − 1)(nO − 1)− (nS − 1)
, bij(Sk) =

gij(Sk)

gij
, i 6= j 6= k (6.8)

where gij is the number of geodesics linking Si and Sj , gij(Sk) is the number of

geodesics linking Si and Sj that contain Sk and, bij is the probability that point Sk falls

on a randomly selected geodesic linking Si with Sj . Similarly to the relative degree

centrality CD ′(Sk) of a settlement Sk, the measure is also independent of the dynamic

trading network size, since it is normalized by the maximum betweenness centrality of a

settlement Sk, that is (nI−1)(nO−1)−(nS−1), where nO is the number of settlements

with outgoing edges, nI the number of settlements with incoming trading links and nS

the number of settlements with reciprocated edges [136]. A settlement point in such a

position of high relative betweenness centrality can influence other nearby settlements

by holding resources in exchange, exhibiting a potential for control of their distribution.

It is this potential for control that defines the centrality of these settlements.

Now, when centrality is applied to the whole trading network graph, such a measure

should index the degree to which the centrality of the most central settlement exceeds

the centrality of all other settlements, and it is expressed as a ratio of that excess to

its maximum possible value for the network graph containing the observed number of

settlement points [49]. Thus, the relative degree graph centrality index varies between 0

and 1, and is defined as follows:

CD
′ =

∑n
i=1[CD

′(S∗)− CD ′(Si)]
max

∑n
i=1[CD

′(S∗)− CD ′(Si)]
(6.9)

where n is the number of settlement points, CD ′(Si) is the relative degree centrality

defined above for settlement Si, and CD
′(S∗) is the largest value of CD ′(Si) for any

settlement in the trading network graph. The maximum possible sum of differences

in settlement relative degree centrality, max
∑n

i=1[CD
′(S∗) − CD

′(Si)], is reduced to
n2−3n+2
n−1 = n− 2 for the relative degree graph centrality index [49].
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Similarly, the relative betweenness graph centrality index varies between 0 and 1,

and is defined as follows:

CB
′ =

∑n
i=1[CB

′(S∗)− CB ′(Si)]
max

∑n
i=1[CB

′(S∗)− CB ′(Si)]
(6.10)

where n is the number of settlement points, CB ′(Si) is the relative betweenness

centrality for settlement Si andCB ′(S∗) is the largest value ofCB ′(Si) for any settlement

in the trading network graph. The maximum possible sum of differences in settlement

relative betweenness centrality, that is, max
∑n

i=1[CB
′(S∗)−CB ′(Si)] is reduced to n−1

for the relative degree graph centrality index [136].

Then, high relative in-degree or out-degree graph centrality means that there are few

settlements of high importance, or highly influential settlements respectively, in the trad-

ing network (and thus the most prominent or influential settlement in the network really

“stands out”, making the value of the numerator in Equation 6.9 go up). On the other

hand, low relative in-degree or out-degree graph centrality means that there are many

settlements with a similar level of influence or importance. Accordingly, high relative

betweenness graph centrality means that there are few settlements with high potential for

control in the trading network, while low relative betweenness graph centrality means

that there are many settlements that exhibit a similar potential for control in the network.

To provide visualization intuitions on the relative network graph centrality [49] we

present a snapshot of the trading network developed during a random simulation run.

In the example of Figure 6.6, each settlement node in the trading network is depicted

with a circle, where its size and color represents its relative centrality value [0; 1], with

white color corresponding to the minimum value (0) and black color corresponding to

the maximum centrality value (1). Figure 6.6a illustrates a trading network of settle-

ments with high relative graph centrality, while the one in Figure 6.6b shows the same

network but with low relative graph centrality.
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(a) (b)

Figure 6.6: (a) High and (b) low relative graph centrality indices of a trading network of settle-
ment nodes, represented as circles and trading connections as links between them. Settlement
nodes size and color represent their centrality value, from minimum (white) to maximum (black).

Besides the above relative graph centrality indices that will be used to evaluate the

settlement trading network structural evolution, the degree to which settlements in the

network graph tend to cluster together is also examined in our work, by calculating the

network’s average clustering coefficient [133]:

C̃ =
1

n

n∑
i=1

Ci (6.11)

where n is the number of settlements in the trading network graph andCi is the num-

ber of ties between settlement Si’s neighbours, divided by the total number of possible

trading edges between its neighbours. Ci represents how connected settlement Si neigh-

bours’ are. Thus, the network’s average clustering coefficient C̃ measures the degree to

which settlements tend to cluster together within the trading network.
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6.3 Case study: the Minoan society in Central Crete

There is not enough information about what kind of relationships existed between the

Minoans or how this ancient civilization was organized before the ”Post-palatial” (Late

Minoan) period. The sophistication of the Minoan culture and its trading capacity is

evidenced by the presence of writing (mostly found on various types of administrative

clay tablets). The content of the Minoan texts that have been unearthed is predomi-

nantly economic (inventories of goods or resources) and religious. Scholars argue that

even if relations among (and possibly within) the various towns and cities continued

to be contentious and competitive, a common architectural language was beginning

to emerge [93]. This new architectural language marks the beginning of a specifi-

cally Minoan identity, which defines a clear indication that each household was not a

self-sufficient, totally independent economic unit, but that it was involved in exchange.

Moreover, for the later Neolithic and Early Bronze Age, stylistic and petrographic anal-

yses suggest a low-volume circulation of ceramic vessels, compatible with “gift ex-

change” economies, over short and long distances between different communities within

and occasionally beyond the island [126]. This evidence allows us to conceivably model

such relations as resource exchanges.

We note, however, that we do not intend to generally reduce human relations to ex-

change, as if human ties to society can be imagined in the same terms as a business

deal [53]. Nevertheless, even Aristotle was speculating along similar lines in his treatise

on Politics. At first, he suggested, families or households must have produced every-

thing they needed for themselves. Gradually, some would presumably have specialized,

some growing corn, others making wine, swapping or trading one for the other [8, 53].

Therefore, although we do not have a clear picture of how human relations (interac-

tions) were actually formed in prehistoric time periods, we need to have a conceivable

conceptual model in mind, and that is done with the simplest possible way: to model

trading among them as an exchange of resources—thus, giving us the ability to encode

the conceptual model as an ABM encompassing various spatial interaction models for
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the resource exchange process, enabling us to explore a range of the its corresponding

trading network structure in turn.

In addition, archaeologists argue that Minoan palaces are considered to be one of the

central factors in bringing about social transformation in the Minoan civilization [19].

In their view, the construction of Minoan palaces came about through a socio-political

“quantum leap” from Chiefdom to State. This leap involved also the introduction of

writing, the first centrally organized religion (the peak sanctuaries), and the develop-

ment of social hierarchy and interacting social networks. Moreover, the size of such

“grand” public structures at several sites requires both a considerable population and

a social cohesion, and it can reasonably be assumed that there were different levels of

importance, i.e. a hierarchy of sites [39].

Starting from the above archaeological information about the Minoan society sub-

sistence and assumptions during their evolution, and associated archaeological data, we

shall try to assess the resulting trading network structure over time and its effect on

the Minoan society social organization at the community level, providing insights on

settlement clustering and organization during the Bronze Age.

6.3.1 Model environment

The environment is considered to be the geographic area of the wider region of Knossos,

located approximately in central part of the island of Crete. As a result, known habitation

sites of the Minoan period where identified, categorized and geolocalized, acquired by

the “Digital Crete” project.3 Agents are located within a 40×30 km area with one (1)

hectare cell size for the grid space. Moreover, the environment has also associated data

layers representing topographical aspects of the model landscape, such as elevation,

slope and aquifer locations, contributing indirectly in agent’s decision-making process,

like where to settle and/or cultivate (Figure 6.7).

3See http://digitalcrete.ims.forth.gr

http://digitalcrete.ims.forth.gr
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Figure 6.7: Modeling area and its topographical features at central Crete, Greece

6.3.2 Model instantiation

The estimated per hectare population for an agricultural Minoan settlement during the

modeled era ranges from 100 up to 400 [71]. In our simulation experiments below, we

assume a density coefficient of 250 people per hectare, that is, the maximum number of

inhabitants per grid cell [39]. Moreover, the number of household inhabitants in a given

settlement cell is initialized to a random number between 1 and 10. As a consequence,

the maximum number of household agents per settlement’s cell is 25, i.e., 250 divided

by the maximum number of inhabitants per household, that is 10. Household and set-

tlements number and location are initialized based on archaeological record, i.e., the

number of settlements per scenario is set to 21, which are located at known habitation

site locations.
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Initial cell resources at a given simulation run are based on archaeological estimates

on production yield per hectare (ha) pondered by the agricultural regime employed by

the agents. As already noted, agents cultivation systems, can be either “intensive”, pro-

ducing 1500kg/ha or “extensive”, leading to a production of 1000kg/ha on an annual

basis (cf. Section 3.1.4). In our simulations below, we assume that household agents

employ an intensive agricultural practice.

Agent migration radius, that is, the distance that a household agent can migrate to

in one time step is set to the full environmental area (≈ 40 km). An agent may migrate

only to a cell where known habitation sites exist, based on the archaeological survey

conducted in the specific geographic area. However, we assume a resettlement cost rc

for an agent i, which intuitively reflects the decay of potential resources at destination

location with increasing distance:

rci = 1− e−0.005·δ (6.12)

where δ is the distance (in km) of the agent to the respective migrating settlement

location. The rate parameter of C function above is defined as 0.005 in order to achieve

a relatively gradual decay of destination resources for an agent, i.e., model a resettlement

cost of about 20% of agent resources at 40km away.

As a final note, we consider a dynamic population growth, based on the amount of

resources consumed by a household agent during the year. We consider a population

growth rate of about 0.1%, when households consume adequate resources, same as in

the simulations of previous chapters (cf. Section 3.1.3).

6.4 Simulation Scenarios and Results

We simulate trading across settlements of household agents that employ a “self-organization”

social behaviour, as described in Section 3.2. Various scenarios were taken into account



6.4. SIMULATION SCENARIOS AND RESULTS 161

for the experimental setup, with different parameterization. Specifically, the main sim-

ulation scenarios are for our:

• two spatial interaction models, the XTENT and Gravity ones, and

• two different ways to characterize the importance of settlements, one based on

Equation 6.2, and one based solely on available archaeological data (“site category

bias” below)

We note that the natural disaster module is also enabled in our simulations, in an

attempt to provide insights to whether the effects of the volcanic eruption of Thera (San-

torini) affected the trading network behaviour (cf. Section 5.2. However, human impact,

immediately after the Theran volcanic eruption, is assumed to achieve a mortality rate

of 15% at the whole environmental area, due to one or more earthquakes that the erup-

tion was preceded by (and probably even triggered by) and also due to large amounts of

ash and pumice that were emitted. Thus, at the time step of the catastrophic event, each

inhabitant in our modeling area has a 15% probability of dying. This is in contrast to the

simulation scenarios considered in Chapter 5, where such a mortality rate was assumed

only at the tsunami affected areas, linearly decreasing with distance to coastline.

Simulation results are averages for each time step over 30 simulation runs across a

period of 2,000 years (cf. Table A.1 in Appendix A, for the conventional chronology

dates (BCE) of the Minoan period used in our ABM simulation scenarios). Moreover,

in all figures below, we depict shaded areas that correspond to 95% confidence intervals

around lines corresponding to agent or network characteristics. In order to assist the

reader, in all figures the legends are also ranked in accordance to the relative perfor-

mance of the corresponding agent or trading network behavioural characteristic.

In terms of simulation time, the process can be quite expensive, since a single run

(composed of 2,000 yearly time steps) takes approximately 24 hours on a single core 2.6

GHz computer. However, by utilizing the Grid computer of the Technical University of

Crete (TUC), all the above 120 simulation runs were executed on thirty (30) dual-core
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(2.6GHz) nodes (with 4GB ram each) in just two (2) days (this would have required

otherwise four (4) months on a single-core computer).

We now proceed to discuss our findings regarding the trading network analysis per-

formed on our area and era of interest, based on the spatial interaction models enabled

and the available archaeological data.

6.4.1 Civilization sustainability and trading network evolution

We begin with presenting our findings regarding the effect of the different spatial in-

teraction models on household agent population, settlements number, and their size.

Simulation results are presented in Figure 6.8 for both the XTENT and Gravity models,

considering a low percentage of stored surplus trading scheme, i.e. ps = 20%, while

agents in the model can settle or migrate only to known archaeological site locations at

any specific time step. The 20% ps value is in our view a realistic assumption for the

age and subsistence regimes studied, given that no sea trade is modeled in this work.

(a) (b)

Figure 6.8: (a) Number of settlements and (b) settlements size over 2,000 yearly time steps
(Minoan period), considering the XTENT and Gravity spatial interaction models.

When the XTENT spatial interaction model is used, we observe that the number of

settlements remains almost constant until the end of the Early Minoan (EM) period, and

then gradually increases over time, especially during the Middle Minoan (MM) period
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and even more after the volcanic eruption and Late Minoan I (LM I) period (Figure 6.8a).

The number of agents (households) per settlement also appears to increase until the end

of the EM period, and then gradually drops in the MM period. Immediately after the

volcanic eruption, settlement sizes abruptly drop for a few decades, and start again to

gradually increase during LM II and LM III periods (Figure 6.8b).

Then, when the Gravity model is employed for the trading process across settle-

ments, we observe a similar behaviour with that of XTENT for settlement numbers and

sizes, although the number of settlements is slightly lower than the XTENT model dur-

ing the EM period, and then slowly increases over time, until the end of the MM period

(Figure 6.8a). For both spatial interaction models, however, we observe an increase on

settlements number and a gradual decline in settlement sizes during the MM period,

due to the availability of a lot more known site locations for migration (cf. Figure A.1

in Appendix A). We also observe a relatively constant number of settlements after the

volcanic eruption until the end of the LM period, with the XTENT model having higher

numbers at about 80 settlements and the Gravity model at about 40 settlements on aver-

age. On the other hand, the number of agents per settlement is slowly increasing after

the volcanic eruption until the end of the LM period, with the Gravity model achieving

higher numbers of household agents on average than the XTENT model (Figure 6.8b).

Overall, a higher number of settlements is observed after the EM period, with an

in-parallel decline on the number of households (agents) per settlement. The increasing

trend of settlement numbers is in line with the archaeological record, at least until the

LM I period, when actual settlement numbers abruptly decline until the beginning of

the LM II period (see Figure A.1 in Appendix A), and then settlement numbers start to

increase again until the LM III period.

We also report that the overall household agent population is constantly increasing at

a dynamic population growth rate from about 820 initial agents to about 3450 and 2950

agents for the XTENT and Gravity spatial interaction models, respectively, with only an

abrupt and short decline immediately after the volcanic eruption (Figure 6.9a). Further-
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more, the stored surplus of agents is gradually decreasing during the whole simulation

period, from about one ton to one half of a ton per household for both the XTENT and

Gravity spatial interaction models, with only an abrupt increase immediately after the

volcanic eruption of Thera and then again gradually decreasing until the end of the LM

period (Figure 6.9b). This “shock” on the average storage of households immediately

after the volcanic eruption, seems to ultimately affect the settlement trading network,

since changes in clustering and centralization rates are observed during the LM period,

as it will be explained later on.

(a) (b)

Figure 6.9: (a) Population and (b) average storage of household agents over 2,000 yearly time
steps (Minoan period), considering the XTENT and Gravity spatial interaction models.

Let us now proceed on the study of the structural behaviour of our settlement trad-

ing network. In Figure 6.10 we present the average relative in-degree and out-degree

network graph centralities during the 2,000 years simulation period. When the XTENT

model is employed, the relative in-degree graph centrality gradually drops from about

25% to 20% until the end of the EM period (see Figure 6.10a) while the relative out-

degree graph centrality gradually increases from about 20% up to 55% in the same time

period (see Figure 6.10b); thereafter the relative out-degree graph centrality gradually

declines to about 40% until the end of the MM period, abruptly declines4 immediately
4Short “jumps” observed in the figures immediately after the volcanic eruption are not real, but a

result of the Savitzky–Golay smoothing filter applied on the data [115]. The filter increases the precision
of the data without distorting their tendency, by fitting successive sub-sets of adjacent data points with a
low-degree polynomial with the method of linear least squares.
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after the volcanic eruption to about 20% and then again increases to up to 30% until the

end of the LM period. The relative in-degree graph centrality is kept almost constant to

about 20% until the end of the LM period, with an abrupt and short decline immediately

after the volcanic eruption.

(a) (b)

Figure 6.10: (a) Relative in-degree and (b) relative out-degree graph centrality indexes of the
trading network over 2,000 yearly time steps (Minoan period), considering the XTENT and
Gravity spatial interaction models.

Low relative in-degree graph centrality rates observed during the EM and MM peri-

ods (under XTENT) suggest that there are no clearly “prominent” settlements, meaning

that, there are no central attractors considering the other settlements in the trading net-

work. On the other hand, the in-parallel high relative out-degree graph centrality rates

during the same period, indicate that there are a few settlements that are considered in-

fluential in terms of resource distribution. Therefore, one could assume that a settlement

organization of distributing resources by these influencial settlements in the trading net-

work is implied, at least before the volcanic eruption of Thera or the LM period.

Using the Gravity model, the relative in-degree graph centrality gradually increases

from about 40% to 75% until the end of LM period, however, with an abrupt fall and

rise immediately after the volcanic eruption (Figure 6.10a). By contrast, the relative

out-degree graph centrality slowly decreases from about 30% to 15% during the whole

period, with an abrupt decline immediately after the volcanic eruption (Figure 6.10b).

These high relative in-degree graph centrality rates (under Gravity) suggest that there
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are only a few “prominent” settlements in the network, implying the possibility of a

settlement hierarchy where resources are traded towards these important settlements by

other settlements in the trading network. Notice however that this assumes an “attrac-

tiveness” of the sites given their Wi importance defined via Equation 6.2, and not the

known category of the archaeological sites. In the next section, we see that the “conclu-

sions” obtained with the Gravity model are quite different when the real sites’ category

is taken into account; and that in that case they are more in agreement with those of the

XTENT model.

Moreover, the relative graph centrality based on betweenness is considerably low

regarding both XTENT and Gravity models, as presented in Figure 6.11a. This means

that most of the trading connections can be made in the trading network without the aid

of an intermediary settlement. Thus, there do not appear to exist settlements with much

potential of controlling the inter-settlement trade. As such, there is a need to further

study if there are other group formation phenomena at work, which need to be captured.

Studying the average clustering coefficient of the trading network graph (Figure 6.11b),

we observe that when the Gravity model is employed, it is relatively low (below 40%)

until the beginning of LM period, while it is relatively high after the volcanic eruption

(more than 40%) until the end of the LM period. When the XTENT model is employed

for the trading process, we observe that the average clustering coefficient of the network

graph gradually declines from about 50% to 10% until the end of middle EM period;

however, it then gradually increases to about 40% until the end of the LM period, with

an abrupt and short fall immediately after the volcanic eruption.

Thus, for both the XTENT and Gravity models, the observed settlement trading

clustering behaviour after the volcanic eruption until the end of LM period, implies a

more dense trading activity between settlements at the time, raising the possibility of

more settlement clusters in the trading network. Assuming that such settlement clusters

were around large towns, cities, or palaces, this trading network clustering behaviour

has a correspondence to the archaeological record (Figure A.1, Appendix A), since just
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(a) (b)

Figure 6.11: (a) Relative betweenness graph centrality and (b) average clustering coefficient of
the trading network over 2,000 yearly time steps (Minoan period), considering the XTENT and
Gravity spatial interaction models.

two cities are known to have existed during the EM period (Archanes and Knossos),

while several large towns, cities and palaces were flourishing in the area during the MM

and LM periods (Knossos, Malia, Archanes and Galatas).

Finally, for interest, we also conducted additional experiments considering the same

simulation scenarios, however, with a higher percentage of stored surplus trading scheme,

i.e. ps =80%. Simulation results exhibit similar behaviour with no remarkable differ-

ences, besides the average storage per household agent, where even lower amounts of

resources stored are observed for the scenario of trading a higher portion of stored sur-

plus. Corresponding results figures are presented in Appendix C, since their behaviour

is entirely similar with simulation scenarios considering a lower percentage of stored

surplus trading scheme. This similarity in the trading behaviour observed in the results

where ps = 80% is justified, since the trading network structure naturally takes into ac-

count only the number and density of trading interactions between settlements, and not

the volume of resources exchanged within the trading network as well.

In all of the above simulation scenarios, we used attributes relating to settlement’s

population and lifetime during the simulation period for calculating the importance Wi

of a settlement i, given Equation 6.2. In the following simulation scenarios, we fix the
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Wi values with known archaeological site categories. This will enable us compare the

settlements trading network organization structure developed, based on archaeological

estimates on settlement types, with the one autonomously developed during the simula-

tions described above.

6.4.2 Site category bias

Let us first assume a simple, broad classification of settlement types rather than specific

site categories, which corresponds roughly to the site hierarchy put forward by [39],

based on archaeological estimates: village (or settlement or hamlet), corresponding to

less than 3.5 ha in size, hosting fewer than 88 households / 875 inhabitants on average;

city (or large town or town), corresponding to less than 25 ha in size, having fewer than

625 households / 6250 inhabitants on average; and palace (or capital town), correspond-

ing to greater than 25 ha in size, with more than 625 households / 6250 inhabitants on

average. Based on this classification of settlement types, instead of using Equation 6.2,

we express Wi of any settlement point location i as a weight in [0; 1], by mapping the

corresponding known archaeological site type 5 as follows:

• Wi = 0.5 when the corresponding archaeological site category is a village,

• Wi = 0.7 when the corresponding archaeological site category is a city, and

• Wi = 0.9 when the corresponding archaeological site category is a palace

As such, the “attractiveness” or the probability of trade for any settlement in the trad-

ing network, is biased by the corresponding known archaeological site category. Thus,

in the following simulation scenarios, settlement importance is based on archaeological

evidence on the settlement type at any any given time step and geographic location. The

rest of the experimental setup is exactly the same as the simulation scenarios discussed

in the previous section.
5We remind the reader that all potential settlement locations correspond to actual settlement sites.
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To begin with, simulation results on agent settlements number and size are presented

in Figure 6.12 for both the XTENT and Gravity models. We observe that the number

of settlements remains relatively constant until the end of the EM period, similarly to

the previous scenarios, where settlement importance was calculated by its own dynamic

characteristics, i.e., population.

(a) (b)

Figure 6.12: (a) Number of settlements and (b) settlements size over 2,000 yearly time steps
(Minoan period), considering known archaeological site categories for both the XTENT and
Gravity spatial interaction models.

Regarding the XTENT model, we observe a similar behaviour with scenarios not be-

ing biased by site categories, where a gradual increase of settlement numbers over time

is noticed, especially during the MM period and even more after the volcanic eruption

and LM I period (Figure 6.12a). Similarly, the number of agents per settlement increases

until the end of the EM period, and then declines during the MM period. This is due

to the high migration rates (because of population growth) observed to more (known)

settlement locations available during that period. Moreover, settlement sizes abruptly

drop immediately after the volcanic eruption, however, then gradually increase until the

end of LM period (Figure 6.12b).

When the Gravity model is employed, we observe a similar behaviour with the

XTENT model in settlement numbers and sizes, although the number of settlements

slightly declines at the end of the MM period, and drops further immediately after the

volcanic eruption; and then remains relatively constant until the end of the LM period
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(Figure 6.12a). Thus, in contrast to the previous scenarios, where no bias by known

archaeological site categories was introduced, an entirely different behaviour is now ob-

served. That is, a significant difference in settlement numbers is observed, growing up

to about 115 settlements during the end of the MM period, and holding up to about 90

settlements until the end of the LM period, while just a number of about 25 and 40 was

observed in the previous scenarios (cf. Figure 6.8a). We note that this trend in settle-

ment numbers is surprisingly very similar to the one that exists in the archaeological

record for the specific environmental area during the whole Minoan period, with the

only difference being a substantial decline reported at the end of LM I period in the ar-

chaeological record – and which was due to unknown “external” events.6 Higher values

in settlement numbers exist in the archaeological record, suggesting that a higher popu-

lation growth rate (> 0.1%) probably should have been used during our simulations (we

chose to follow [30]).

On the other hand, the numbers of agents per settlement tends to increase until the

end of the EM period, and then abruptly declines at the beginning of the MM period

from about 120 to 30 households and further decline during the MM III period down

to 25. The number of households per settlement, however, is slowly increasing after

the volcanic eruption until the end of the LM period, with the Gravity model not being

able to achieve higher numbers of household agents per settlement on average than the

XTENT model (Figure 6.12b).

We also report that the overall number of households (i.e., the agent population) is

constantly increasing during the whole time period, same as in the scenarios without

bias from known archaeological site categories, being able to even achieve higher pop-

ulation sizes, from about 820 initial households to about 3500 and 3700 agents for the

XTENT and Gravity spatial interaction models, respectively, with only an abrupt and

short decline immediately after the volcanic eruption, as shown in Figure 6.13.

6Archaeologists assume that a wave of fire destructions affected Cretan settlements during and at the
end of LM IB, that have variously been attributed to internal revolt, Mycenaean invasion, or to a major
natural disaster involving earthquakes [40].
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(a) (b)

Figure 6.13: (a) Household agents and (b) inhabitants population sizes over 2,000 yearly time
steps, considering known archaeological site categories for both the XTENT and Gravity spatial
interaction models.

We note that, when the Gravity model is employed for simulating a trading network,

where settlement importance is based on archaeological evidence, it appears to be better

in sustaining higher population sizes after the crisis of the volcanic eruption of Thera,

with respect to the XTENT model that favours the distance between settlements rather

than their importance. This is unlike to what was the case without the site category bias

(cf. Figure 6.9a).7

Regarding the structural behaviour of the settlement trading network, the relative

in-degree and out-degree graph centralities are presented in Figure 6.14. The XTENT

model exhibits a very similar behaviour to the one without known site types bias (cf.

Figure 6.10). Interestingly, the Gravity model is now showing a similar behaviour to the

XTENT model, that is, it exhibits lower rates of in-degree and higher rates of relative

out-degree centrality. The low relative in-degree graph centrality rates during the EM

and MM periods, imply that there are no “prominent” settlements. By contrast, the

high relative in-degree graph centrality rates observed in the trading network after the

volcanic eruption and during the LM period, suggest that there are certain “prominent”

settlements in the trading network. On the other hand, the low relative out-degree graph

7The corresponding individuals’ population size for the case without bias is shown in Figure C.1,
Appendix C.
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(a) (b)

Figure 6.14: (a) Relative in-degree and (b) relative out-degree graph centrality indexes of the
trading network over 2,000 yearly time steps (Minoan period), considering known archaeological
site categories for both the XTENT and Gravity spatial interaction models.

centrality rates during the LM period, indicate that there are many settlements with a

similar degree of “influence” in terms of resource distribution. Therefore, one could

assume that a settlement hierarchy where resources are traded towards the (few) most

important settlements in the trading network is implied during the LM period.

Moreover, the relative betweenness network centrality is low for both XTENT and

Gravity models, as presented in Figure 6.15a, even lower than scenarios without site

category bias (cf. Figure 6.11a), suggesting even less potential for control on the flow of

resources traded between settlements. However, there is a structural basis for assuming

that certain settlements with the highest relative betweenness centrality in the society

are “different” from the other settlements in the area, at least during the EM and MM

period. Indeed, in Figure 6.16, we show a snapshot of a simulation run during the end

of the EM period using the Gravity model, where settlements with the highest relative

betweenness centrality (Figure 6.14b) are among the ones with the highest relative out-

degree centrality (Figure 6.14a). In such a case, the trading network conceivably has a

structure that allows us to assume a settlement hierarchy where resources are distributed

by these most influential settlements to others in the network (during the EM period).
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(a) (b)

Figure 6.15: (a) Relative betweenness graph centrality and (b) average clustering coefficient of
the trading network over 2,000 yearly time steps (Minoan period), considering known archaeo-
logical site categories for both the XTENT and Gravity spatial interaction models.

Regarding the average clustering coefficient of the trading network graph (Figure 6.15b),

we observe that the Gravity model has again a similar behaviour to the XTENT model,

that is, it gradually declines from about 50% to 10% until the end of middle EM pe-

riod, and gradually increases to more than 50% until the end of the LM period, with

an abrupt and short fall immediately after the volcanic eruption. The low clusterization

thus observed in the trading network until the end of the EM period may suggest that

the trading network connections are losing density until the end of the EM period. The

network’s clusterization appears to be recovered in the MM period, and even more in

the LM period, indicating the possibility of more dense settlement clusters in the trading

network, where resources are traded towards the few most important settlements within

these clusters (those with high relative in-degree graph centrality). There seems to be

a correspondence with the archaeological record, enhancing such a possibility—since

several towns, cities or palaces are recorded during the MM and LM period, while just

a two towns exist during the EM period, as previously noted.

Concluding this section, we remind here the reader that the Gravity model is able

to better capture the trend in settlement numbers that exist in archaeological record.

This is a reason to believe that, in this case, Gravity allows us to better interpret the

structure and dynamics of the formed trading network. The “unchanged” behaviour of
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(a) (b)

Figure 6.16: (a) Relative out-degree and (b) relative betweenness graph centrality of the trading
network from a snapshot of a simulation run during the end of the EM period using the Gravity
model. Settlement nodes are represented as circles and trading connections as links between
them, where their size and color represents their centrality value, from minimum (white) to
maximum (black).

the XTENT model is justified, since it favours the distance between settlements rather

than their importance. Thus, it should be used in cases where settlements importance is

not known, or cannot be properly modeled.

6.5 Conclusions

In this chapter, we presented an artificial community trading module for modeling inter-

settlements interactions, incorporated to our developed ABM system that we provide for

archaeological simulations.8 In particular, we model inter-community trading interac-

tions by incorporating a trading sub-model, employing two well-known spatial interac-

tion models, XTENT and Gravity. The simulations’ aim was to assess the sustainability

of the artificial society in terms of population size, number and distribution of agent

communities with respect to both spatial interaction models, to analyse the resulting

trading network structure during its evolution over time, and to draw interesting conclu-

8The source code of the ABM and its associated data are available here.

http://www.intelligence.tuc.gr/~angelos/AncientS-ABM.zip
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sions (or, rather, sketch out interesting hypotheses) about the settlements’ hierarchy, via

annotating our results with the archaeological record. Although in this work we consider

the density of trading interactions between agent communities in the network, we intend

in the future to represent the dynamic trading network as a “weighted” directed network

graph, in order to also take into account the amount or volume of resources exchanged

during trade.

As a case study we considered the Bronze Age Minoan civilization and as the ABM’s

environmental area we considered the geographic area of the wider region around Knos-

sos, located in the central part of the island of Crete, Greece. Simulation results show

that when settlements’ importance is known or properly inferred (based on archaeolog-

ical data or evidence), modeling a trading network relying on the Gravity model can

produce settlement patterns similar to the one that exist in archaeological record for the

area under study (see Figure 6.12a), since it favours settlements importance rather than

the distance between settlements. Otherwise, if solely settlement locations are known,

then the XTENT model can produce acceptable results on simulating the trading activity

between them.

When the known sites’ importance is used in our simulations, the high relative out-

degree centrality rates observed in the trading network, along with the low clustering

coefficient observed during the end of the EM period, suggests that a small number of

influential centres could have existed, linked to a settlement hierarchy where resources

are distributed by these influential settlements to others in the network—but there are

no clearly prominent centres to which resources are directed. Interestingly, after the

catastrophic event of the volcanic eruption of Thera and during the LM period, the trad-

ing network connections are becoming much denser, and resources are now being dis-

tributed towards only a few settlements in the network. We note that these results are in

line with archaeological theories suggesting that already during the EM period regional

powers existed in the area, while after the MM period the actual settlements hierar-

chy was transformed, with subsequent radical changes in their trading network, affected
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by settlement numbers and sizes as well as natural disaster events (as also indicated by

Figures 6.14 and 6.15 in our work here). Specifically, archaeologists argue that indepen-

dent political units and centres of the EM and early MM period, were incorporated into a

”Knossian” state during late MM and early LM periods by being demoted to secondary

centres while others were promoted from tertiary to secondary centres in an attempt to

undermine local traditional power relations, rendering, thereafter, the system unstable

and hence vulnerable [40]. Thus, large and comparatively well integrated polities that

existed until the end of the MM period in Central Crete were incorporated into a larger

political framework and a territorial state headed by Knossos [39]. Given the above

simulation results, our ABM appears to be able to provide support for those theories to

some extent.



Chapter 7

Conclusions

In this thesis we presented a novel ABM system for delivering insights and “in silico”

interpretations for archaeological inquiry, regarding the social dynamics of artificial past

societies, and based on the archaeological record for the geographic space and era under

study. Building a computational model from an archaeological theory is not a trivial

matter, while formal theories are often too wide ranging to be put into computational

terms. One major issue with agent-based modeling in archaeology, is that the state-

of-the-art models oversimplify agency, and do not define agents in the way these are

defined in the MAS community; and thus, do not allow essential agent features, such as

autonomy or interaction ability, to appear in the actual system implementation. Social

scientists and archaeologists, however, are interested in understanding human societies,

in particular the mechanisms that allow these systems to self-regulate, and the processes

that shape and form their internal structure and organization. Thus, it is not the benefit of

such an endeavour to diminish the autonomy of the agents or to drop it from the model

altogether.

Accordingly, we equip social archaeologists with AncientS-ABM, an autonomous

agents-based simulation system that is flexible and open, enhanced by ideas and ap-

proaches from Computer Science and MAS. Agents in our ABM system are endowed

177
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with a utility-based architecture and can incorporate self-organization mechanisms and

game-theoretic approaches that allow for strategic agent interactions and the dynamic

modification of the organizational characteristics. Simulation results demonstrate that

it can be readily applied in large, real-world geographic environments and time peri-

ods, delivering “macroscopic” structures that can provide insights or suggestions for

the assumed theoretical ones, and help achieve better utilization of archaeological data

on various “microscopic” hypotheses, regarding the artificial past society organization.

Besides archaeology-related fields, our ABM can be used as the basis for application

systems to other (computational) social sciences fields that span from social networks,

to education, to epidemiology, and to environmental and human geography, as we elabo-

rate below. Indeed, the space for modifications, extensions and applications of this work

is very rich.

This final thesis chapter is organized as follows. Section 7.1 provides a summary

of our thesis, highlighting the most important points linked to each chapter. Then, in

Section 7.2 we discuss potential extensions of our research, as well as its application to

other computing or non-computing disciplines.

7.1 Thesis Summary

In the beginning of this thesis, we introduced the reader on the importance of under-

standing the evolutionary emergence of human social organization and the inherent un-

certainty that exist in archaeological theories regarding early and past societies. Specif-

ically, we set the theoretical background behind our research, and stress the weakness

of current agent-based simulation systems on modeling the internal structure towards

the formal design of agency. Most existing ABM frameworks in archaeology consider a

simple (reflex) agent design in order to avoid the aggregate problem becoming too diffi-

cult to be examined (mathematically). We present and provide an agent-based modeling

framework, rooted in MAS approaches towards agent organizational design, and pro-
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pose detailed solutions for each shortcoming encountered, by utilizing methodological

approaches from other computer science-related fields (such as graph theory), as well.

For each of the proposed solutions, we conducted extensive simulations of the respective

enhanced ABM to evaluate both the theoretical mechanisms themselves in terms of their

modeled behaviour accuracy, and their effect on the organization and evolution of the

artificial past society, based on the archaeological record of the simulated past society

and era. Simulation results indicate that the incorporation of our methods can lead to

“macroscopic” structures that are able to provide insights and deepen our understand-

ing on the processes leading to emergent organization patterns at different levels of the

artificial society. In particular, results demonstrated that when agents adopt an “egali-

tarian” social organization paradigm, the emerging development of many “small-size”

settlements appear to be the way for survival over time; when the “self-organization”

social paradigm is adopted, a “heterarchical” social structure emerges, giving rise to

larger settlements during their evolution.

In more detail, in Chapter 3, we presented in detail the core of a readily appli-

cable ABM framework for simulating the social dynamics of an artificial society of

agents. We implemented autonomous, utility-based agents (rational utility-maximizers)

for modeling their intra-community interactions, unlike most existing ABMs in archae-

ology. Although our ABM system is currently limited to cultivation and migration agent

actions only, we do incorporate a number of different social organization paradigms

and cultivation systems in our modeling approach. Most importantly, we presented an

agent organization paradigm of agents self-organizing into a “stratified” social structure,

and continuously re-adapting the emergent structure, if required. The proposed self-

organization algorithm comes with desirable theoretical properties, specifically agent

spontaneous re-organization, without any external control, and robustness to changing

conditions, thus enhancing agent survivability. We also note that, this is the first time

that a self-organization approach is incorporated in an ABM system used in archaeol-

ogy. We further defined an (intelligent) agent decision-making process, using an MDP

to decide on migration (or settlement) policies. We conducted a systematic evaluation
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of the influence of the various social organization paradigms on the artificial past soci-

ety, in terms of population sustainability and agent community sizes, aiming to study

the historical social dynamics. As a case study, we employed our ABM system to as-

sess intra-settlement organization of an artificial Minoan society residing at the wider

area of Malia at the island of Crete during the Bronze Age. Model parameters were

initialized based on available archaeological data on the area and period under study.

Simulation results demonstrate that self-organized agent populations were the most suc-

cessful, growing larger than agents employing different social organization paradigms,

indicating that a heterarchical social structure, having emerged by the continuous re-

adaptation of social relations among Minoan households, might well have existed in the

area of study. This fact is in line with archaeological evidence for larger settlements

(towns and palaces) eventually coming to existence during the MM–LM period, where

a more varied and dynamic social structure is now suggested [41].

Furthermore, in Chapter 4, we presented an alternative self-organization agent orga-

nization paradigm, by incorporating an evolutionary game-theoretic approach for mod-

eling the evolution of strategic behaviours in a population of self-organized agents. The

reason was a main drawback on the specification of the internal “microscopic” struc-

ture of agent organization, in which a cooperative attitude on behalf of the agents was

assumed, willing to always provide available resources out of their stock to help other

community members in need. In particular, we provided an novel evolutionary self-

organization algorithm by simulating repeated “stage games” played by pairs of strate-

gic agents, assuming cooperative, defective and equivalent retaliation strategies on be-

half of the agents, being also able to adopt other strategies over time. Agents in our

ABM system required to receive non-static payoffs and their population was not con-

stant during simulation, in contrast to most matrix games studied in the literature, thus

we formulated the evolutionary dynamics based on evaluating agents’, rather than strate-

gies’ fitness. We also assumed different variations for agent fitness function and strategy

review and adoption processes. We finally conducted a systematic evaluation of the per-

formance of strategic household agents operating in Minoan artificial communities, by
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studying the evolution and adaptation of strategic behaviours and the effect these have

on the sustainability of the Minoan society as a whole. Simulation results indicate that

agent populations are better sustained when agents base their strategy review decisions

on the relative success of their current strategy with respect to the success of agents em-

ploying the same strategy in their settlement community, and when strategy adoption is

stochastic, rather than deterministic. Interestingly, in those scenarios, agent populations

also converge to adopting cooperative strategies, despite this behaviour being in contrast

to their stage game equilibrium.

In Chapter 5, we incorporated a natural disaster module in our ABM system, for as-

sessing the imminent social crisis on the artificial agent society. Specifically, we utilized

spatial analysis techniques for the specification and development of the respective com-

ponent, implementing a volcanic eruption catastrophe, that captures associated sudden-

onset (tsunami) and slow-onset (volcanic ash) disasters. We employed our extended

ABM system to assess the impact of the natural disaster on different social organiza-

tion behaviours, along with population sustainability of Minoan household agents, in

terms of agent community numbers and sizes, migration behaviour and agents strate-

gic behaviour evolution, before and after the catastrophic event. We also conducted a

systematic evaluation of several natural disaster scenarios on social change, based on

archaeologically traceable environmental and human impact of the mid-2nd millennium

BCE Santorini eruption to the Minoan civilization. Simulation results demonstrate that

“self-organized” household agents are able to sustain themselves after the volcanic erup-

tion, however, with noticeable changes in the settlements’ distribution. A strong impact

on social behaviour is further observed, transforming the initially cooperative agents’

behaviour to a non-cooperative one, suggesting that the Theran eruption led to a gradual

breakdown of the Minoan socio-economic system.

Finally, in Chapter 6, we further extended our ABM system by incorporating a novel

“trading” module for simulating agent inter-communities trading interactions. We em-

ployed the trading module with two different spatial interaction models, the XTENT and
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Gravity, for studying household agent settlements’ trading network, considering as a

case study the Minoan society during the Bronze Age, in the wider area of Knossos

at the island of Crete, Greece. We conducted a systematic analysis of the trading net-

work formulated over time, given agent settlements geo-location and position within the

trading network, and the structural properties of the network itself, by utilizing graph

theory. We interpreted simulation results in terms of the network’s potential centraliza-

tion, clustering behaviour or potential settlement organization during the whole simula-

tion period, and intuitions were provided regarding the appropriateness of the different

spatial interaction models.

Simulation results demonstrated that modeling a trading network by employing the

Gravity model, thus, giving more weight to the “importance” of settlements than to

the distance between them, macroscopic settlement patterns appear to be similar to the

ones that exist in the archaeological record. However, this is most appropriate when

the importance of settlements is known or can be derived based on archaeological data,

otherwise, when settlement locations are only known, then the XTENT model is is prob-

ably adequate, favouring as it does the distance between settlements and not than their

importance. Results also indicated that the evolution of the values of the graph-theoretic

indices characterizing the settlements’ trading network was affected by the Theran vol-

canic eruption. In particular, it appears that the network’s structure and interaction pat-

terns are to an extent reversed after the Theran eruption, when compared to those in

effect in earlier periods.

As a note, we stress that all of our ABM simulation results do not aim to prove or

disprove any particular archaeological theory; the potential congruence between simu-

lated macroscopic structures and the ones assumed in certain archaeological hypothe-

ses proves, however, our ABM’s “generative sufficiency”, without of course excluding

the fact that (partially) alternative “microscopic” specifications could equally generate

similar macroscopic structures and dynamics [45]. Regardless, we believe we have ad-

equately shown that our work can provide researchers with useful intuitions, and can be
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used to test and provide support to alternative or competing archaeological hypotheses.

What is left is to further enhance our ABM and deploy it in different past societies and

eras, or even in other disciplines and fields, as we explain below.

7.2 Future Research Directions

Our work in this thesis opens up a host of possibilities for future work, and opens the

way for entirely novel research directions.

To begin, our framework allows one to run more simulation scenarios with a vari-

ety of initialization setups. This is useful due to the conditional nature of agent-based

simulation’s results, that is, their dependency to the input values. As such, one needs to

conduct “calibration” when sufficiently detailed empirical data available to “fix” the val-

ues of the parameters; or to conduct a sensitivity or “robustness” analysis, to determine

the results’ dependency on the internal structure of the ABM [91]. We have already con-

ducted and presented a basic sensitivity analysis for our ABM (cf. Section 4.4.5 and also

Section 3.4.2), but a more extensive one would be useful for evaluating how sensitive

our simulation results are when varying additional ABM parameters. Such parameters

may include more or fewer number of agents with different ranges of migration capa-

bilities, different cell output values per cultivation system or different aquifer proximity

radius and resettlement cost values, and so on.

An interesting extension of our work would be to equip our ABM with an additional

environmental module, able to incorporate environmental information such as vegeta-

tion data, geological information, or reconstructed climatic data, in case any such kind

of information is available for the case study under examination. This would allow one

to model additional agent–environment interaction processes.

Moreover, future extensions include modeling additional types of agent utility-generating

activities besides cultivation, such animal husbandry, hunting or even fishing in environ-

mental locations near coastline areas. It is also interesting to incorporate formal mech-
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anisms for modeling the use of advanced equipment, craft specialization, or variable

manpower. To this end, different types of agents with corresponding skills can also be

employed or even emerge during the simulation, such as administrators, craftsmen or

religious practitioners, depending on the overall agricultural surplus of an agent organi-

zation, parameterized based on available archaeological or historical records regarding

the political and economic relations of the respective case study under examination.

Furthermore, one could employ our ABM to examine additional (perhaps highly

complex) strategic behaviour used by agents during exchanges in the resource distri-

bution game (cf. Section 4.2), both at the household or settlement level. Moreover,

an agent can be modeled to play the resource distribution game with a specific num-

ber of other agents in the organization, based on some probability, in the occasion of

large-scale simulation experiments, lowering as such the computational time needed to

perform such extensive simulations.

Additional mechanisms for resource exchange and trade can be also incorporated

in our ABM framework. A more elaborate trading module could for instance include

trading processes from external sources. We already have a specific plan regarding how

to extend our trading model to include maritime/sea trade, and its effects in coastal

settlements; rendering potentially higher surplus resources, thus agent utility, in those

settlement locations than others in the mainland. It could also consider the proximity to

religious centres or peak sanctuaries, and based on a sample from a noise distribution

for specifying additional trading resources. In particular, the amount of resources U ext
i

that a settlement i receives by external trading can be formulated as:

U ext
i = Wi ·G(µ, σ)/Di

ρ (7.1)

where Wi is the importance of settlement i, G is the value of a sample from a Gaussian

noise distribution with mean µ and standard deviation σ, based on the overall amount of

surplus resources at the current time, Di is the (minimum) distance from settlement i to
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the coastline or to the religious center (peak sanctuary), and ρ is a constant used to adjust

the required level of the effect that the importanceWi of settlement i and the distanceDi

have on the overall trading interaction, that is on the acquisition of external additional

resource by settlement i (similarly to Equation 6.5). Of course, such a mechanism has

to also be parameterized based on available archaeological data for the artificial society

under study, and potentially to be affected or informed by the enabled instance of the

natural disaster module (i.e. the volcanic eruption of Thera, in this case study).

Moreover, we intend to run simulation scenarios on (artificial) past societies in dif-

ferent geographical space and time, where sufficient archaeological data is available for

testing and assessing ABM results with respect to related archaeological hypotheses

regarding their social organization. For example, it is of much interest the social organi-

zation during the Ottoman centuries in the island of Crete (ca. 17th–19th c. CE), where

a complete historical record exists, regarding multi-cultural habitation sites, census data,

inhabitants religion and numbers, and so on.1 Another case study is the “Neolithic Thes-

saly”, Greece, a significant region for the understanding of the development of the grad-

ual Neolithization of Europe around ca. 6000 BCE, where related habitation sites are

available—however, with scarce information regarding their intra- and inter-community

social organization.2 Moreover, a recent research project has been initiated aiming to

examine the social dynamics of early Egypt, based on an ABM approach.3

We also aspire to deploy our ABM as a fully modular archaeology agent-based sim-

ulation system on the web, that can be extensible and able to easily carry out simulations

for a given sort of archaeological hypothesis and theory, regarding the social organiza-

tion and trading behaviour in past societies—in small and wide exchange networks, and

in any geographical area of interest. However, since the entire process will need higher

performance than one could get out of a typical workstation, there is a need to employ

1The historical record is available by the GeoSat ReSearch laboratory from the Digital Crete project
(http://digitalcrete.ims.forth.gr).

2The archaeological record is available by the GeoSat ReSeArch laboratory form the IGEAN project
(https://igean.ims.forth.gr).

3For more information on the project visit http://www.nitschke-lab.uct.ac.za/nitschke/research.

http://digitalcrete.ims.forth.gr/tourkology_habitation_search.php?l=1
https://igean.ims.forth.gr/?q=en
http://www.nitschke-lab.uct.ac.za/nitschke/research
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additional computational power, by utilizing the power of high performance or Grid

computing, where specific instances of the ABM and corresponding simulation scenar-

ios can be allocated to dedicated cluster nodes, delivering aggregated ABM results in an

efficient and practical way to the end-user. Scholars using the system would be able to

add and manipulate components and agent and system-level parameters, in order to test

and obtain intuitions and insights about the implications of their own behavioural and

environmental assumptions.

On the other hand, our work can be also adopted in alternative application areas.

Our ABM approach is rooted in MAS and can be effectively used in (computational)

social sciences and sociology-related areas, that span from social networks, to educa-

tion, to epidemiology, and to environmental and human geography. Social networks and

their analysis can take advantage of our utility-based self-organized agent organization

paradigm, where agents can be represented as nodes in the social network graph. In

general, social networks are indeed self-organizing, emergent, and complex, and macro-

scopic patterns may appear from the local interaction of the agents (nodes) that make up

the network system [97]. Moreover, the “power distance” notion in our (evolutionary)

self-organizing algorithm (cf. Section 3.2) can also be utilized to study the evolution of

social norms, or the conditions under which social norms will be established eventually

in “dynamic” agent networks, thus, the convergence to certain social norms (see a pri-

mary example in [45]). In addition, the geospatial aspect of our ABM system, along with

the incorporated social organization paradigms and spatial interaction models can also

assist the demographic behaviour and analysis of a given existing or historical (agent)

population residing at a specific landscape: for instance, one could modify and employ

our ABM to study spatial or temporal changes in response to real quantifiable agent data

characteristics (such as birth, death, migration, aging, and so on) [13].

Furthermore, the ABM system can be also readily adapted and incorporated in

education-related systems. A learning framework can be developed based on our ap-

proach, one that will allow students in primary and secondary schools to explore the
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organization of past societies within a real geographic environment, and to study their

evolution in time and explain the dynamics that guide this evolution. Such a framework

can promote coding and computational thinking in schools via, for instance, “serious

gaming” in which students can explore an ancient civilization based on the available

archaeological evidence and historical records, promoting inquiry-based learning, and

offering the ground of rich explanations and insightful interpretations regarding existing

archaeological or historical theories.

Another research direction can be the use of our (adapted) ABM for epidemiology—

that is, for the study of epidemic dynamics, depicting at the same time the spatial spread

of a disease. The model can provide a systematic way to evaluate competing interven-

tion strategies, as well as to design an effective policy response, based on the different

agent types and relations provided by our self-organization algorithm, thus giving rise

to different susceptibility levels (for a recent example see [50]).

Another promising area for extending our research is geography and ecology. Our

geospatial ABM can provide the core of various agent-agent and agent-environment in-

teractions for studying the influence of an artificial agent society has on the space they

occupy, and also could be informed by a complete geostatistical analysis [83, 84]. More-

over, several aspects of our ABM approach, such as the utility-based agent architecture,

can also be adapted in order to assist in urban planning and growth, and in the general

modeling of processes related to residential development within an urban system (for

example see [16, 113]).

As a final note, we consider our work to be a stepping stone towards a greater vi-

sion with three axes or plans of action: (i) to pursue the study and formulation of ar-

chaeological theories and hypotheses on the organization of past human societies; (ii) to

provide intuitions, ideas, and algorithms for modeling agent organizations and the emer-

gence of agent collaboration in MAS; and (iii) to focus on devising novel algorithms for

adaptation and self-organization methods, with potential application on interdisciplinary

agent-based models.
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Case Study’s Archaeological Data

Figure A.1: (a) Settlement numbers that exist in the archaeological record for the modeling area
of Chapter 6, during the Minoan period. Data were provided by the GeoSat ReSeArch laboratory
from the “Digital Crete” project.
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Chronology
(Platon)

Relative
chronology

Manning
(1995) [90]

McEnroe
(2010) [93]

Simplified
date

Protominoan Age Early Minoan
Phase I EM I 3100 - 2700 3100 - 3100 - 2700
Phsae II EM II 2700 - 2200 - 2200 2700 - 2200
Phase III EM III 2200 - 2050 2200 - 2200 - 2000
Minoan Age
(Palace period)

Middle Minoan

Pre-palace MM IA 2050 - 1925 - 1900 2000 - 1900
Old-palace
Phase I

MM IB 1925 - 1900 1900 - 1900 - 1875

Old-palace
Phase II

MM IIA 1900 - - 1875 - 1800

Old-palace
Phase II

MM IIB -1750 - 1750 1800 - 1720

New-palace
Phase I

MM IIIA 1750 - 1700 1750 - 1720 - 1680

New-palace
Phase I

MM IIIB 1700 - 1675 - 1700 1680 - 1650

Late Minoan
New-palace
Phase II

LM IA 1675 - 1600 1700 - 1580 1650 - 1550

New-palace
Phase II

LM IB 1600 - 1490 1580 - 1490 1550 - 1470

New-palace
Phase III

LM II 1490 - 1435 1490 - 1360 1470 - 1405

Post-palace
Phase I

LM IIIA 1435 - 1360 1360 - 1405 - 1325

Post-palace
Phase II

LM IIIB 1360 - 1200 - 1200 1325 - 1190

Post-palace
Phase II

LM IIIC 1200 - 1100 1200 - 1100 1190 - 1100

Table A.1: Absolute and relative chronology and dates for the Minoan period (BCE) suggested
by archaeologists, along with the simplified (conventional) date used in our ABM simulation
scenarios.
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Additional Simulation Results for

Chapter 4
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(a) F ∼ U, T = 8 (b) F ∼ U, T = 8

(c) F ∼ R, T = 8 (d) F ∼ R, T = 8

(e) F ∼ U, T = 16 (f) F ∼ U, T = 16

(g) F ∼ R, T = 16 (h) F ∼ R, T = 16

Figure B.1: Agent population (right) and percentage of average cooperative and defective be-
haviour of strategic agents (left), including that of TFT agents), for scenarios with deterministic
strategy review and F calculated across agents in the settlement that share the same strategy.
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(a) F ∼ U, T = 8 (b) F ∼ U, T = 8

(c) F ∼ R, T = 8 (d) F ∼ R, T = 8

(e) F ∼ U, T = 16 (f) F ∼ U, T = 16

(g) F ∼ R, T = 16 (h) F ∼ R, T = 16

Figure B.2: Agent population (right) and percentage of average cooperative and defective be-
haviour of strategic agents (left), including that of TFT agents) for scenarios involving an initial
rate of 90% of C-strategists, with stochastic strategy review and F calculated across agents in
the settlement that share the same strategy.
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(a) F ∼ U, T = 8 (b) F ∼ U, T = 8

(c) F ∼ R, T = 8 (d) F ∼ R, T = 8

(e) F ∼ U, T = 16 (f) F ∼ U, T = 16

(g) F ∼ R, T = 16 (h) F ∼ R, T = 16

Figure B.3: Agent population (right) and percentage of average cooperative and defective be-
haviour of strategic agents (left, including that of TFT agents), for scenarios involving an initial
rate of 90% of D-strategists, with stochastic strategy review and F calculated across agents in
the settlement that share the same strategy.
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(a) F ∼ U, T = 8 (b) F ∼ U, T = 8

(c) F ∼ R, T = 8 (d) F ∼ R, T = 8

(e) F ∼ U, T = 16 (f) F ∼ U, T = 16

(g) F ∼ R, T = 16 (h) F ∼ R, T = 16

Figure B.4: Agent population (right) and percentage of average cooperative and defective be-
haviour of strategic agents (left, including that of TFT agents), with 20% error rate on action
selection for scenarios with stochastic strategy review and F calculated across agents in the
settlement that share the same strategy.
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Additional Simulation Results for

Chapter 6

Figure C.1: Population sizes over 2,000 yearly time steps (Minoan period), considering the
XTENT and Gravity spatial interaction models, with a lower percentage (20%) of stored surplus
trading scheme.
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(a) (b)

Figure C.2: (a) Population and (b) average storage of household agents over 2,000 yearly time
steps (Minoan period), considering the XTENT and Gravity spatial interaction models, with a
higher percentage (80%) of stored surplus trading scheme.

(a) (b)

Figure C.3: (a) Number of settlements and (b) settlements size over 2,000 yearly time steps
(Minoan period), considering the XTENT and Gravity spatial interaction models, with a higher
percentage (80%) of stored surplus trading scheme.
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(a) (b)

Figure C.4: (a) Relative in-degree and (b) relative out-degree graph centrality indices of the
trading network over 2,000 years (Minoan period), considering the XTENT and Gravity spatial
interaction models, with a higher percentage (80%) of stored surplus trading scheme.

(a) (b)

Figure C.5: (a) Relative betweenness graph centrality and (b) average clustering coefficient of
the trading network over 2,000 years (Minoan period), considering the XTENT and Gravity
spatial interaction models, with a higher percentage (80%) of stored surplus trading scheme.
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