
TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

U-NET Neural Network Analysis and

Implementation using

Reconfigurable Logic

Author:

Charalampos SKOUFIS

Thesis Committee:

Prof. Apostolos DOLLAS

Assoc. Prof. Michail LAGOUDAKIS

Prof. Michail ZERVAKIS

A thesis submitted in fulfillment of the requirements

for the diploma of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering

Microprocessor and Hardware Laboratory

February 22, 2021

https://www.tuc.gr/
https://www.linkedin.com/in/labis-skoufis-43ba709b/
https://www.ece.tuc.gr/index.php?id=4531&tx_tuclabspersonnel_list%5Bperson%5D=289&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/index.php?id=4531&tx_tuclabspersonnel_list%5Bperson%5D=313&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/index.php?id=4109&tx_tuclabspersonnel_list%5Bperson%5D=294&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/
https://www.mhl.tuc.gr/




iii

Abstract
Diploma Thesis

U-NET Neural Network Analysis and Implementation using Reconfigurable

Logic

by Charalampos SKOUFIS

In recent years, neural networks are increasingly the primary tool for image analy-

sis, providing exceptional accuracy vs. human perception. In the field of biomedicine,

in particular, the misdiagnosis of magnetic resonance imaging or computed to-

mography (MRI / CT) scans is a significant problem in preventing and treating

various health problems which are impossible to detect by the human eye. In the

field of terrain pattern recognition performed by power-limited mini-satellites,

a more efficient approach for both architecture and hardware equipment is re-

quired. A recent U-shaped architecture offers impressive results and methods for

detecting patterns and anomalies using semantic image segmentation. This thesis

work is based on this U-NET architecture and aims to analyze, model, and build

the network on multiple programming levels of abstraction, including hardware.

At present, there exist more mature architectures such as Convolutional Neural

Networks (CNN) that have substantial support toolsets. On the other hand, U-

NET architecture does not have a great level of support tools; this work will try

to address this issue. The main structure and learning process (training) of this

neural network will also be presented in detail, along with all the additional tools

to assist this process. The code pack starts with a user-friendly Python language,

where user-customizable functions and training techniques will be introduced.

The Python language level is intended mostly to aid the learning process. One

step further,researchers can proceed by utilizing the C language, where the pre-

diction step has been constructed to be further analyzed and eventually reach a

specific application platform. Finally, three building blocks of this network have

been implemented on Field Programmable Gate Array (FPGA) and Graphics Pro-

cessor Unit (GPU) platforms (on par with the entire NN), offering the acceleration

of specific processes with substantial energy savings for the computation. Last,

but not least, the ecosystem developed in this thesis was not available until now -

with its use more researchers can efficiently employ U-NETs.
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Chapter 1

Introduction

In 1950 machine learning [1] started its first steps when the baseline was dis-

covered, and today’s backbone of Artificial Intelligence (AI) [2] was built. Many

years later, around 1980, the term ’back-propagation’ [3] emerged, giving the re-

markable ability of ’learning’ to an ordinary machine. In the last twenty years,

machine learning is developing quite conspicuously. AI is continuously learn-

ing and evolving, predicting pandemics or even synthesizing advanced medicines

from the ground up. The recent years’ technological leaps are impressive, mark-

ing down a massive leap towards the last century. Big data [4] is a rising prob-

lem that needs to be restrained using state-of-art techniques and, of course, with

AI running efficiently on perfectly designed hardware solutions. Another critical

technology field is the hardware equipment, including CPUs, electric vehicles, and

the chasing of unlimited ’clean’ energy using fusion reactors. Central Processing

Units(CPU) [5] are becoming smaller and smaller, fighting against physics’s clas-

sic laws trying to enter the quantum era. The Atom-thick transistors are a fact,

using super-materials like graphene or germanium, fighting to keep Moore’s law

alive. This kind of architecture(×86) development is already saturated, and it is

abandoned by some worlds leading companies like IBM, who are looking at the

quantum field. Today’s CPUs have minuscule new features keeping the same size

(in nanometers), thus adding more cores to ’buy’ some time. Because of these rea-

sons mentioned above, Windows and macOS, which are widely known, are shift-

ing to the arm architectures, a mobile-based processing unit providing outstand-

ing performance while keeping the power consumption at a minimum. Some

other hot technologies include self-driving cars powered by clean energy with ze-

ros C02 emissions and foldable phones that can be folded and put in our pock-

ets like a notebook with an edge-to-edge screen. Machine learning accelerates all

these modern advancements even more, providing valuable information on the

education system, helping business planning, and generally making our everyday
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lives more comfortable with the built in AI tools our gadgets boast. Image recog-

nition, image to text, and speech to text come with some demanding needs in per-

formance, mostly when built on a mobile platform. The algorithms used to run

on mobile devices simulating a small neural network need to be parallelized, op-

timized, and implemented on a specific embedded system that aims to solve this

kind of problem as a distinct unit. Our generation must integrate such embedded

systems capable of handling massive data throughputs and algorithm complexi-

ties while retaining high efficiency levels.

1.1 Motivation

AlexNet [6], VGGNet [7], or GoogleNet [8] are the most famous deep neural net-

work image classifiers which can read an image (or multiple images) and produce

an output that includes a set of probabilities regarding the subjects of the entire

input image. Semantic segmentation [9] is a whole different type of image anal-

ysis when the main goal is to break down the input image into multiple classes

and then reconstruct the same image by putting back all the extracted features in-

cluded in the subject of interest. Color overlays/masks are also added on top of

the final result, so each subject’s class can be visually differentiated from the rest.

Before 2015, CNN [10] based neural networks were used in order to handle these

mammoth semantic segmentation tasks. The conversion from a simple vector to

an image wasn’t the standout characteristic of CNNs. In 2015, the paper "U-Net

: Convolutional Networks for Biomedical Image Segmentation" [11] proposed a

state-of-art architecture of a U shaped neural network boasting some revolution-

ary improvements on training, mapping, and predicting large biomedical images

outperforming the classic fully connected technique of the standard CNN based

neural networks. Such an analysis can take up to 1 second for the top-rated GPUs

of the market in modern days.
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FIGURE 1.1: NVIDIA Quadro RTX A6000 - www.nvidia.com

For example, Nvidia’s latest release specialized for workstations is the Quadro RTX

A6000 [12] (Figure 1.1) featuring 48GB GDDR6 (ECC) of VRAM running at 768.0

GB/s, 10752 CUDA core, 336 texture mapping units, 84 ray tracing acceleration

cores, 40 TFLOPS of single floating point (FP32) computations, and 300W TDP

priced at $5,500.

FIGURE 1.2: Intel Xeon Platinum 9200 Series Size comparison -
ark.intel.com

https://www.nvidia.com/en-us/design-visualization/quadro/rtx-a6000/
https://ark.intel.com/content/www/us/en/ark/products/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz.html
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Of course, to support this kind of raw acceleration power of the graphic / process-

ing unit, the central processing unit must also be an advanced piece of technol-

ogy. The latest Intel Xeon Platinum 9282 (Figure 1.2) takes advantage of the server

/ workstation space with its 56 cores, 112 threads with clock boost up to whopping

3.8 GHz, 400Watts of thermal design power, supporting AVX-512 [13], 77MB smart

cache, and 14nm lithography. It retails for up to $50,000.

1.2 Scientific Contributions

What Problems will be addressed

• Lower level UNET and specific UNET functions implementation. A com-

plete package of functions is provided as open-source for Python, C, and

embedded systems.

• Organized framework equipped with multiple tools that assist its nominal

functionality.

• Better power consumption/efficiency than the higher-level environments

such as Matlab(CPU & GPU), and Keras (CPU).

• Basic blocks and structures which are not available as open-source knowl-

edge at the moment.

• Publication of all the assets needed to build, model and analyze a UNET

similarly with other famous architectures that already provide the ‘know-

how’ and the functions at a lower level of abstraction that give the ability for

further research and expansion.

• The proposed architecture(Version 2) can be used for any satellite running

UNET for semantic segmentation, minimizing power consumption while

offering similar performance with a optimized CPU/GPU.

Thesis Contribution

The scientific contribution of this work aims to provide a lower-level framework

for UNET architecture, which is now available as open-source information. Ten-

sorflow [14], [15], Parallel Computation Toolbox [16] by Matlab, MXNet [17], and

other scientific teams, already have implemented all the required functions and
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tools a U-shaped neural network needs to operate. In normal conditions, a new-

comer/student can access a massive amount of information regarding simple neu-

ral network architectures, source code infrastructure, and training methods sup-

plemented with all the necessary tools from High-level abstraction down to more

hardware-specific programming/designing languages. The same applies for CNNs

where nearly everything is available, from answered architecture based questions

to already written functions for every kind of CNN’s block. U-NET open-source

material is limited to the high-level interfaces like Keras [18], Pytorch [19], while

the source code of this architecture from the raw-python level and below is non-

existent, since it is a fresh architecture that first appeared in 2015. Generally,

U-NET is heavily analyzed in the mathematics field, but this kind of informa-

tion is not enough for someone who wants to model and redefine architecture.

Firstly, this work will make a thorough walkthrough of this architecture, providing

many easy-image pre-processing, analyzing, and fine-tuning tools. Additionally,

the network’s training part is also built, featuring a user-friendly python environ-

ment so anyone can edit and tune the parameters adjusting it into a more specific-

task network as the user desiderates. The analysis continues into C programming

language where every algorithm is fully unwrapped, exposing its internals so the

users can scrutinize its iterations, measure complexity, and optimize. On top of

that modeling, robustness analysis, and FPGA implementation will follow. During

this part, three core functions of the U-shaped architecture are being optimized

and accelerated into hardware, achieving the most efficient way of U-net predic-

tion/evaluation. FPGA’s BRAM [20] is a severe restriction on that platform since it

offers just a few MB of temporary(cached) fast storage. The final product consists

of three IPs, the convolution, transposed convolution, and max pool IP. They are

built based on the most famous U-NET architecture, as mentioned above, with

the support up to 256×256 (2n form) input image resolution. The overall BRAM

usage reaches 74% of utilization, which means that these IPs can also be used in

different platforms with significantly less BRAM resources. Each accelerator’s core

techniques have an extended presentation featuring custom line buffers, loop un-

rolling, and tree-structure computations for parallel computing. This thesis is a

fundamental block that will provide the basic structure / ecosystem that can be

used for deeper UNET development and research.

Some useful examples include the installation of the final product(embedded sys-

tem) into technologies that operate with limited power source(such as mini-satellite)

replacing a common CPU/GPU and reaching their performance / power efficiency

with just a fraction of their total on-chip power.
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1.3 Thesis Outline

• Chapter 2 - Theoretical Background: Machine Learning, Convolution Neu-

ral Networks, Residual/U-NET Neural Networks, basic functions, and other

essential theoretical backgrounds are represented in this chapter.

• Chapter 3 - Related Work: Some other approaches of Semantic segmenta-

tion are being described.

• Chapter 4 - In-Depth Theoretical Modeling & Robustness Analysis: Clas-

sical U-NET architecture break down, prototype training part analysis with

mathematics and multiple algorithm presentations.

• Chapter 5 - FPGA Implementation: Using ZCU102 [21], U-NET can be loaded

into a large FPGA family. Illustration of the three IPs architecture.

• Chapter 6 - Results: Custom training function results are being posted, with

visual examples plus some indicative performance results are being com-

pared between multiple platforms and environments.

• Chapter 7 - Conclusions and Future Work: This chapter outlines and eval-

uates the work of this study. Moreover, headings forfuture work, potential

expansions, and enhancements are being given.
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Chapter 2

Theoretical Background

Machine Learning, Convolution Neural Networks, Residual [22]/U-NET Neural

Networks, basic functions, and other essential theoretical backgrounds are rep-

resented below.

2.1 Artificial Intelligence, Machine Learning & Deep

Learning

FIGURE 2.1: Artificial Intelligence, Machine Learning &
Deep Learning - Western Science(UWO computer science -

www.csd.uwo.ca)

Firstly, Artificial intelligence refers to a ’virtual’ human-made processing system

that can learn, plan, and process different kinds of data like as a physical organic

brain would do. This artificial creation’s primary goal is to exceed the human brain

https://www.csd.uwo.ca/research/index-new.html
https://www.csd.uwo.ca/research/index-new.html
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possibilities and get specialized in specific tasks and data genres with enhanced

performance and accuracy compared to any other existing system. The static and

predetermined way of coding does not apply in this field of machine learning(a

subset of Artificial Intelligence) where everything is dynamic and unexpectable.

On the other hand, deep learning is a sub-set of Machine learning, analyzing dis-

tinct factors by mimicking the human neural system. It uses a multi-layer neural

network with a gradually increasing abstraction as the non-linearity of input data

transformations increases.

Creating such a system is a complex task that needs a lot of expertise and spe-

cialized technique to be a successful final product with all the abilities mentioned

earlier. In recent years, engineers have focused on developing such technologies

that can help in any aspect of our lives, from solving drug complex algorithms for

pharmacy companies to finding patterns in important data gathered for analysis.

Prediction is the main characteristic of the machine learning that is assumed to

be trained on related data-set of samples to recognize patterns and features on

the subject. The word training means that the system can learn via a massive data

pool that is provided as input and then, according to its output, the system must

be able to compare the expected outcome with its prediction and update accord-

ingly the specific sectors of its structure, which are responsible for any possible

output errors. That is why the brain is being used as the base model for artificial

intelligence, utilizing the same neuron to neuron data transfer technique and the

same supervised learning procedure.

Supervised learning means that someone needs to repeat -many times- "This is

an apple" in order to this artificial creation, empower its corresponding neurons

and finally increase the output probability to specific values that mean "It is an

apple." Like a baby that learns the shape, color, and feel of an apple for the first

time, parents need to repeat many times, "That is an apple," approximately a sys-

tem like that can do the same.

Unsupervised learning means that there is no so-called ’teacher’ user/person who

instructs or provides any information to the program. The neural network needs

to search and discover patterns of interest by splitting data into multiple classes

by shape/type similarities. Some useful case of unsupervised learning is sales
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forecasting, special discounts on customers by analyzing that person’s historical

habits or even spotting potential risks and warnings on many different sectors.

Reinforcement Learning includes trial learning. It works by providing a positive or

negative signal to learn by avoiding patterns that drive it to a disaster. Humans

can also be effective in reinforcement learning. For example, a small kid can learn

that the stove is dangerous by touching it for the first time and receiving the feel-

ing of pain, which is a negative reinforcement feedback signal. Games, robots,

self-driving can also work and learn effectively with the reinforcement learning

technique.

2.2 Simple Neural Network

Neural Network is the function that mimics the process of how the brain works,

and it is the heart of deep learning, which is useful everywhere since the hard-

ware can learn. Therefore it can be used from self-driving cars, air-based models,

AI navigation, and mapping to playing video games and all that by achieving the

highest possible results. For example, having a data-set of zeros and ones dis-

persed on a 2-D X-Y axis(Figure 2.2), a neural network can effectively find bound-

aries, separate and make up some groups for these two different classes of data.

FIGURE 2.2: Classification into two different groups - Udacity
Course 188

https://classroom.udacity.com/courses/ud188
https://classroom.udacity.com/courses/ud188
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Linear Boundary Line: The drawn line above has equation:

a ∗X 1+b ∗X 2+C = 0. (2.1)

With that equation is the method grouping or prediction since is able to divide into

groups of data by using the equation: Pr = Pr edi ct i on(X 1, X 2) = aX 1+bX 2+C ,

then it is possible to group each element just by following the simple rule:

C l ass =
1 Pr > 0

0 Pr ≤ 0
(2.2)

The equation described above can also expressed as a linear equation:

W x +b = 0, wher e W = (a,b) = (w1, w2) and X = (X 1, X 2). (2.3)

To sum up, the main goal is to find an optimal linear boundary line that keeps

most of the ones(green) above it and most of the zeros(red) below it. It can also

be extended to 3-D space or even higher in order to express a more complex data

system.

2.2.1 Perceptron

This algorithm, aforementioned before, can be described as a perceptron called a

small neural network unit that does certain computations to detect patterns and

features in the input data.
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FIGURE 2.3: Scheme of a Perceptron - www.researchgate.net

There are many kinds of activation functions (or step functions) that can ’wrap’

and ’fix’ the result into something more rigid and desirable.

Non - Linear Regions

These regions are some areas that cannot be grouped or described from a simple

linear function and need a more complex algorithm that is more generalized to

other types of curves.

Given that every time the algorithm is initiated, a random line is generated on the

axis system, this ’complex’ line needs to be controllable from the points according

to their position in axis-system space. A more "flexible" line can be possible only

by defining a new type of function, which is called the error function that can tell

us how far is the real solution from the target or just an excellent approximation of

the solution(The most of the times it is impossible to improve the outcomes more

than a specific value). So this error function can ’feel’ the distance of its target and

the direction it must turn/move in order to minimize the error/distance just by

correcting itself (Changing W = (w1, w2, ..., wn) field) so its angle and shape can

change to a more proper step that has lower error than the previous one.

Summarized algorithm of a Perceptron

If point i is in wrong group, then update:

wi = wi ± (a ∗Xi ), b = b ±a (2.4)

https://www.researchgate.net/figure/Scheme-of-a-perceptron-A-nonlinear-activation-function-BULLET-is-applied-to-the_fig3_315788933
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where a is the rate of the whole changes that affect the final grouping ‘line’ known

as learning rate.

It is also a crucial step for us to move to continuous error functions (hence from

discrete predictions to continuous prediction), and that is the point where the ac-

tivation functions are essential because an activation function ( e.g., sigmoid that

will be analyzed later), can ’break’ and normalize the results into many possible

groups/classes.

Gradient Descent

The only difference with the perceptron algorithm is that here in gradient descent

[23], all axis system points contribute to the final angle and shape of the ’line’ even

after they are included in the final ’right’ class. To be more precise, an example can

show the exact algorithm that gradient descent utilizes: Consider a 3-dimensional

graph of a ’mountain,’ and the main goal is to move to the lowest area(with the

lowest error) starting from the top of the mountains(high error-cost). So, the main

priority is to find the path that gives the steepest descent(negative gradient) that

also points the right direction, and then after some steps, decreases the cost func-

tion as quickly as possible.

Learning Rate

The learning rate is the number responsible for the descent course or simply the

size of the steps that are going to be made to succeed by reaching the lowest pos-

sible value. Generally, it is recommended for the learning rate to be a tiny number

since smaller and more stable steps are always a safer way to success.

Over-fitting

The over-fitting problem is a common obstacle in neural networks training, and

it happens when we try to improve and push the training even more. As a result

of that pushing for excellence, a phenomenon called over-fitting emerges, which

means that the results of these specific predictions look great and close to zero-

error outputs at first. However, it is crucial to understand that there was a mistake

by training the network for some specific types of input and not generalizing the

’knowledge’ of the network.
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Dropout

Dropout is a very effective way to prevent over-fitting. When a network manifests

such a behavior(over-fitting), some of the neurons are very strong, meaning that

they have relatively large values (w1, w2, .. . . , wn) in comparison with some others

that have close to zero weight values. As a result, the larger weights will dominate

during the training procedure while other parts with much weaker neurons do

not play much of a role. By adding the dropout feature to the network, the ’strong’

parts of the network are deactivated, so the other sectors can also affect the results

and eventually get trained. If that technique is generalized, a new system is made

that can randomly deactivate (making zero) some different parts of the network

for each epoch. Assuming there is a 20% chance for each node to get deactivated, it

means that each node will get the same treatment after a large number of training

epochs.

2.3 Convolutional Neural Networks

Convolutional neural networks make up a category of Neural Networks that have

proven very effective in classification and image recognition problems. The pri-

mary purpose of a convolution is to extract essential features from a given input

image. This is possible by reducing the images into a more manageable form to

process without losing the spatial and temporal dependencies after many relevant

filters are applied to the input image. That crucial difference that makes convolu-

tional neural networks more powerful and efficient than dense layers is that dense

layers are fully connected, meaning that every single node of one layer is con-

nected to every node in the previous and next layer. Convolutional layers’ nodes,

in contrast, are connected only to a small subset of the previous/next layer. This

network type also works with learnable weights and biases exactly like dense lay-

ers (that also need a random parameter initialization as a first step). A more intu-

itive explanation is that convolutions disassemble an image, gather all the ’useful’

patterns, and then use all these features to reform the result into something fa-

miliar and known to them. A simple example is the face recognition [24], where

an input image-face go through many layers that disjoint into horizontal, vertical,

diagonal lines and other patterns which are pushed even deeper in the network,

applying on them more and more convolutions so they can eventually form the

eyes, mouth, nose. After applying the last convolutional layers, they reach a final,

more recognizable shape to the network.
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2.3.1 Convolutional Layer

Every layer consists of many possible kernels(filters) that will apply the algorithm 1

to the input image. Someone must understand that each convolution layer takes

as input the previous convolution layer output; thus, it can discover even more

patterns within the patterns.

∗Note :Convolution and Maxpool use the following equations for calculating the

output size(OH ,OW ) given the input size(H ,W ), stride(S) and kernel size(K H ,K W )

OH = H −K H

S
+1 (2.5)

OW = W −K W

S
+1 (2.6)

The equation below shows the simplest and most straightforward version of a con-

volution.

f (t )∗ g (t ),
∫ + 8

− 8

f (τ)∗ g (t −τ)dτ, (2.7)

where g (τ) at first step must be reflected to g (−τ).

In the case of multiple input channels, there is addition through all the results (of

dot products procedures) per input channel(which must be equal with the kernel

input channels dimension).

Convolution - Algorithm

The Algorithm 1 bellow performs a 2-D Convolution on 3-D array inputs. The

parameter stride has a fixed value to 1 since every type of convolutions has been

used from the neural network has a stride of 1. As described before, input has

3 dimensions. The first one is the number of image channels followed by height

and width. The first input image is black and white, so it has only one channel.

After the first convolution block, the channel dimension increases as the features

are extracted and saved in each separate channel. The kernelSize and padding

are the hyper-parameters of convolution layers given each time as setting up keys

before the actual computation begins. And finally, weights and bias make up the

network’s parameters. This algorithm’s output has the shape of the input image(3

dimensions) with the actual sizes per dimension calculated, as shown below.
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Algorithm 1 Convolution Algorithm

1: procedure CONVOLUTION(input, weights, bias, kernelSize, padding)

2: str i de ← 1 . Fixed Stride

3: OH ← ((i nput .hei g ht +2∗paddi ng −ker nelSi ze)/str i de)+1

4: OW ← ((i nput .wi d th +2∗paddi ng −ker nelSi ze)/str i de)+1

5: for k:=0 to (input.channels-1) do . Zero padding input

6: for i:=0 to (padding-1) do . If padding==0, It doesn’t enter here

7: for j:=0 to (input.width + 2*padding-1) do

8: ar r ay(k, i , j ) ← 0

9: ar r ay(k, j , i ) ← 0

10: ar r ay(k, i nput .wi d th +2∗paddi ng −1− i , j ) ← 0

11: ar r ay(k, j , i nput .wi d th +2∗paddi ng −1− i ) ← 0
. Fill the center of the padded array

12: for i:=padding to ((input.width+2*padding-1)-padding) do

13: for j:=padding to ((input.width+2*padding-1)-padding) do

14: ar r ay(k, i , j ) ← i nput (k, i −paddi ng , j −paddi ng )

15: for oc:=0 to (weights.filters -1) do . #Filters = #Output channels

16: for oh:=0 to hOut-1 do

17: for ow:=0 to wOut-1 do

18: sum ← 0

19: for ic:=0 to input.channels-1 do

20: for i:=oh to (oh-1+kernelSize) do

21: for j:=ow to (ow-1+kernelSize) do

22: sum ← sum +ar r ay(i c, i , j )∗wei g ht s(oc, i c, i , j )

23: out put (oc,oh,ow) ← pi xel +bi as(oc)

24: return out put

∗Note: Flipping the kernel is not necessary because the CNNs can adapt accord-

ingly having learn-able weights, so technically, a flipped kernel does not change

anything. In machine learning, all the applications that make use of the convolu-

tion are doing a cross-correlation. Convolution in the image processing & mathe-

matics field means

More options and hyper-parameters for even more in-depth customization of a

convolution layer:

Strides is the number of pixels-slots the kernel sliding-windows [25] will skip. So

with a value greater than one, the final result will be a reduced matrix.
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Zero Padding

• Valid:That is the easiest and most straightforward way to convolve because

there is no pre-processing on the input image. It is assumed that all dimen-

sions are valid so that the input image fully gets covered by the filter and

strides specified.

• Same: According to the stride setting and the input image’s size, the appro-

priate zero paddings will be applied to produce an output precisely the same

size as the input.

• Kernel Size: There is a heavy preference on odd(3×3, 5×5, ...) kernel size over

even(2×2, 4×4, ...) kernel size. That is because if we choose an even kernel,

the output result will suffer from aliasing problems. By choosing a kernel

size to be 2n+1 for both dimensions, we create a symmetrically shaped ker-

nel with each anchor’s side plus the center anchor pixel.

∗Note: 1× 1 kernel size is often used for channel shape corrections at the end of

image processing so it can match an expected result. It is generally not considered

an optimal filter size for a typical convolution layer since the result will have no in-

formation from the adjacent pixels as the features extracted would be fine-grained

and local.
∗Note: Strides & padding are assumed that work in the same way for both X-Y di-

mensions of the input in which the convolution is applied.

2.4 Max-pooling

Max Pooling is a simple down-sampling [26] strategy by choosing the maximum

or average value(Average Pooling) within a matrix. A typical example of max pool-

ing size is the 2× 2 non-learn-able kernel with strides of 2(for each dimension).

Pooling is a beneficial step after each convolutional layer since it can keep the im-

portant information per stride and reduce the size of the next layer input image to

half(or greater, depending on kernel size) so the processing will be less complex

thus faster.



2.4. Max-pooling 17

FIGURE 2.4: Max/Average Pooling - www.semanticscholar.org, Im-
age By Hijazi Kumar

According to the 2.5,2.6, the equation for calculating maxpool, given the input,

stride and kernel size, is defined as:

M axPool (c, i , j ) = max
0≤kh≤(K H−1),0≤kw≤(K W −1)

Input (c, i ∗ str i de +kh, j ∗ str i de +kw),

for c = 1, 2, ..., Channels,

for i = 1, 2, ..., OH,

for j = 1, 2, ..., OW

(2.8)

The main Algorithm of Max-pooling is described below:

https://www.semanticscholar.org/paper/Using-Convolutional-Neural-Networks-for-Image-By-Hijazi-Kumar/bbf7b5bdc39f9b8849c639c11f4726e36915a0da/figure/6
https://www.semanticscholar.org/paper/Using-Convolutional-Neural-Networks-for-Image-By-Hijazi-Kumar/bbf7b5bdc39f9b8849c639c11f4726e36915a0da/figure/6
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Algorithm 2 MaxPool Layer

1: procedure MAXPOOL LAYER(input, kernelSize, stride)

2: hOut ← (i nput .hei g ht −ker nelSi ze)/str i de +1

3: wOut ← (i nput .wi d th −ker nelSi ze)/str i de +1

4: for i:=0 to (input.channels-1) do

5: for j:=0 to (hOut-1) do

6: for k:=0 to (wOut-1) do

7: max ←− 8
8: for l:=j*s to (j*s+kernelSize-1) do

9: for m:=k*s to (k*s+kernelSize-1) do

10: cur Pi xel ← i nput (i , l ,m)

11: if max < curPixel then

12: max ← cur Pi xel

13: out put (i , j ,k) ← max

14: return out put

2.5 Activation Functions

Activation Functions [27] are based on the biological neuron data firing to control

the output as ’ON’ or ’OFF’ depending on the input. The binary form is not the

only implementation of an activation function when it is possible to drive the re-

sult into the desired value window to make more clear the range of a prediction.

There are some hidden steps in each convolution layer, the activation function is

one of them, and it is applied after a convolution procedure is completed.

2.5.1 Sigmoid

It is used in a feedforward network, and it can drive the output between 0 to 1.

Therefore, it is specialized for models where the probability is the main goal for

the output prediction.

f (z) =σ(z) = 1
1+e−z
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FIGURE 2.5: Sigmoid Activation Function -
www.towardsdatascience.com

2.5.2 Softmax

Softmax is a more generalized logistic function [28] and it is often used for multi-

class problems. It works by scaling each output between 0 and 1 with respect to

the fundamental law of total probability. It is a quite popular activation function

and it is often used as an activation function of the output.

σ(z)i = ezi∑K
j=1 e

z j , for i = 1, ..., K and z = (z1, ..., zK ) ∈RK

FIGURE 2.6: Sigmoid Example - ljvmiranda921.github.io

2.5.3 TanH

Tanh is also a sigmoidal (s- shaped) and when it has a range of -1 to 1. It is used to

map negative inputs close to -1 zeros at zero and positive inputs around +1.

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/
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f (x) = t anh(x) = ex−e−x

ex−e−x

2.5.4 ReLu

ReLu is one of the most used activation functions especially in the middle/hidden

area[29] of a deep neural network.

f (x) =
0 x < 0

x x > 0

FIGURE 2.7: ReLu Function - www.towardsdatascience.com

It is a rectified linear unit that keeps as it has any positive value and makes ze-

ros values equal to zero or less(negative). Its advantages vary from better gradi-

ent propagation, scale-invariant to high efficiency in computations because of the

function’s simplicity.

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
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2.6 Transposed Convolution

Transposed Convolutions or fractionally strided convolutions or deconvolutions

[30] are used for upsampling the input image to the desired size. It attempts to re-

trieve the previously downsampled image with a simple technique by just revers-

ing the convolution’s effect. To be more specific, a convolution with str i de = 2(or

the combination of a convolution with stride one and a max pool 2×2) will reduce

the output size to half. The need for upsampling is coming from the fact that there

are architectures that can reconstruct input with some added masks-overlays to

emphasize the object of interest or even separate and categorize objects into dif-

ferent classes.

Many other resampling techniques like Nearest neighbors [31], bi-linear interpo-

lation [32], bed of nails, and max-unpooling [33], but this thesis’s main focus is

around transposed convolution. Of course, transposed convolution suffers from

chequered board effects with the main cause of these artifacts be the uneven over-

lap at some parts of the image. As described previously, the downsample convolu-

tions often have an odd size of kernels for that exact reason of asymmetrical kernel

problems. The minimum size of kernel 2×2 and a stride of 2 is recommended to

reduce these problems. Below, a table shows how to calculate the zeros insertions,

which are the empty slots between the input pixels and the padding around the

input pixels.

FIGURE 2.8: Downsampling - Upsampling Equations -
www.towardsdatascience.com

The following transposed convolution algorithm is based on the paper Optimiz-

ing CNN-based Segmentation with Deeply Customized Convolutional and De-

convolutional Architectures on FPGA [34] .This algorithm is FPGA-friendly utiliz-

ing many independent additions, especially when kernel size is the same as the

stride value.

https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11
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Algorithm 3 Transposed Convolution

1: procedure DECONVOLUTION(input, weights, bias, kernelSize, padding)

2: s ← 2 . Fixed Stride

3: OH ← 2∗ i nput .hei g ht

4: OW ← 2∗ i nput .wi d th

5: for oc:=0 to (weights.filters-1) do

6: for oh:=0 to (OH-1) do

7: for ow:=0 to (OW-1) do

8: out put (oc,oh,ow) ← bi as(oc)

9: for ic:=0 to (OH-1) do

10: for x:=0 to input.height do

11: for y:=0 to input.width do

12: for k:=0 to KernelSize do

13: for l:=0 to KernelSize do

14: out put (oc, x ∗ s+k, y ∗ s+ l ) ← out put (oc, x ∗ s+k, y ∗
s + l )+ i nput (i c, x, y)∗wei g ht s(oc,k, l )

15: if padding>0 then . Remove the elements in the border of size padding

16: for oc:=padding to output.channels-1 do

17: for oh:=padding to output.height-1-padding do

18: for ow:=padding to output.width-1-padding do

19: out putC (oc,oh,ow) ← out put (oc,oh,ow)

20: return out putC

21: else

22: return out put

The following Transposed Convolution Algorithm, which is using the upsampling

equations of the Figure 2.8, is not recommended because with this method (which

is also illustrated in Figure 4.8 in Chapter 4), there many ’empty’ areas(in white)

representing all the added zeros to the original input image. Recreating such an

algorithm, which is CPU-oriented and optimized, onto FPGA will jeopardize the

board’s parallel capabilities just by executing a computation that involves a con-

siderable amount of data dependencies between columns and rows of the output

image.
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Algorithm 4 Transposed Convolution 2(Not Recommended)

1: procedure DECONVOLUTION2(input, weights, bias, kernelSize, padding)

2: s ← 2 . Fixed Stride

3: OH ← s ∗ i nput .hei g ht

4: OW ← s ∗ i nput .wi d th

5: OHt emp ← i nput .hei g ht ∗ s −1+2∗paddi ng

6: OWt emp ← i nput .wi d th ∗ s −1+2∗paddi ng . Adding zeros between

elements + zero padding

7: for c:=0 to (input.channels-1) do

8: for h:=0to (input.height-1) do

9: for w:=0 to (input.width-1) do

10: tempm atr i x(c,h ∗ s + paddi ng , w ∗ s + paddi ng ) ←
i nput (c,h, w)

11: wei g ht s ← rotate180(weights, axis= (2,3)) . Rotate right 2 times for each

filter

12: output = Convolution(temp_matrix, weights, bias, kernelSize, padding= 0)

13: return out put

2.7 Loss Functions

A neural network via training determines what patterns need to detect based on

the loss function. The selection of a loss function between a large pool is a crucial

step since it must fit the application and meet our standards to give feedback with

a valuable and accurate representation of the neural network’s performance so we

can fairly evaluate it.

Since our main target is the reconstruction of the input image and the masking,

below there are some relevant loss functions that are made for that exact reason of

per-pixel comparison(label vs. prediction which both have the same dimensions)

finding the element-wise deviation.

Pixel accuracy is a straightforward metric for anyone to understand the intuition

behind the semantic segmentation accuracy. However, it gives poor metric results

since it can return a high accuracy score like 95% when the actual representation

to the human eye is wrong and possibly not even close the actual goal. For ex-

ample, in Figure 2.9, the ground truth is very close to the prediction for the pixel

values comparison with a score of more than 95%, but the actual prediction makes

no sense and its useless.
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FIGURE 2.9: Pixel Accuracy - High accuracy percentage with poor
real-world usage

Intersection over Union(IoU) - Balanced loss :

FIGURE 2.10: Intersection over Union calculation visualized - WIKI

This loss function, also known as the Jaccard Index [35], works by increasing the

gradient of values/samples with high Intersection over Union(IoU) while decreas-

ing these with lower IoU. As shown below in the figure, the amount of overlapping(A
⋂

B)

between prediction and the actual label(ground truth) over the Union of these two

(A
⋂

B) is measured. This metric is represented in percentage, with 0% be the zero

overlapping(failed prediction) and 100% the perfect match when we compare the

network prediction and the ground truth area.

J (A,B) = |A ⋂
B |

|A ⋃
B | =

|A ⋂
B |

|A|+ |B |− |A ⋂
B | (2.9)
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Dice coefficient(F1 Score) [36] is a very similar loss function with the IoU repre-

sented above. The only big difference is that the numerator (area of overlap be-

tween prediction and ground truth) is multiplied by 2. So we get :

DC = 2|A ⋂
B |

|A|+ |B | =
2T P

2T P +F P +F N
(2.10)

It can also be defined as a loss function(result is now an error value), by using

probabilities:

DC (p, p̂) = 2pp̂

p + p̂
, (2.11)

when for p = p̂ = 0 the appropriate handling is required. A simple fix for that

problem is the addition of ‘+1’ as shown below:

DL(p, p̂) = 1− 2pp̂ +1

p + p̂ +1
, wher e p ∈ {0,1} and 0 ≤ p̂ ≤ 1

(2.12)

The main effect of the ‘+1’ fix is the shift of the result value window from [0, 1] to [0,

0.5] Loss function often return tensors, but with the above implementation using

reducing sum over the matrix elements its possible to remove ‘+1’. So the scalar

result is :

DL(p, p̂) = 1− 2
∑

ph,w p̂h,w∑
ph,w +∑

p̂h,w
(2.13)

Example : Let P be the real Image, P̂ the prediction and L the result of the loss

function.

P =
[

1 1

0 0

]
, P̂ =

[
0.5 0.6

0.2 0.1

]

T hen L =
[

− log(0.5) − log(0.6)

− log(1−0.2) − log(1−0.1)

]

The result is :

L ≈
[

0.6931 0.5108

0.2231 0.1054

]

Binary Cross Entropy also known as Sigmoid Cross-Entropy loss because its a mix

of the classic logistic sigmoid plus the cross entropy loss.The loss is calculated by

computing the following average(between all the pixels) :
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Loss =− 1
Out putSi ze

∑Out putSi ze
i=1 yi log ŷi + (1− yi ) log(1− ŷi ),

where yi is the pre-calculated scalar i th (logarithm-softmax-logistic/sigmoid) out-

put value with range from 0 to 1. The classification problem must have two classes

where the binary cross entropy loss can be applied. This loss, is also equal to the

average value of the categorical cross entropy on many ‘binary’ tasks, by meaning

that each task/problem has only two possible classes.

2.8 Residual Neural Networks

This work is built on the main idea of Residual neural networks. This neural net-

work category has a unique architecture that utilizes shortcuts(or skip connec-

tions) to jump over some layers. The general idea is based on the biological brain

analog of having skip neurons where needed. This feature is beneficial, especially

in deep neural networks where the networks’ actual depth is quite large, so their

ability to push forward information while maintaining the impact/weight/importance

is almost impossible. The last one also applies to the back-propagation steps,

causing the known problem of the vanishing gradient.

FIGURE 2.11: Normal & Skip Connections/Neurons - Wiki

With that skip connection trick, it is possible to amplify the previous’ layer value

and make it ’visible’ to layers way more profound in the network, when for a sim-

ple deep neural network, only the weights of the closest neighbors can learn to

adapt. This technique seems useful during the training process by minimizing the
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training time and accumulated work because of the fewer layers during the back-

propagation process.

The block above shows that the y = F (x)+ x combines the information of the two

previous layers pushing it through as input to the next one. Some times, there is no

dimension match between the combined information, so the fix to that problem

is just a small reshaping/shrinking reformation.

2.9 Computer Vision Tasks

Computer vision problems can vary with multiple levels of difficulty and depth(Figure

2.12) or from a coarse-grained down to a more fine-grained understanding.

FIGURE 2.12: Computer Vision Tasks -
www.machinelearningmastery.com

https://machinelearningmastery.com/object-recognition-with-deep-learning/
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Image Classification is the core task in computer vision, where a simple input im-

age is expected from the computer to label it with a specific tag. This prediction

can output the type or class of the object in the input image by examining all the

available features it can extract from it.

Object Localization: Locates the object of interest anywhere in the image and in-

dicate it with a bounding box. This task includes the Image classification plus

the localization of the main target in the image. It is important to note that this

method can only mark and locate one object’s presence per image.

FIGURE 2.13: Classification with Localization - theaisummer.com

Object Detection extends the previous task by supporting multiple object classifi-

cation in an image and the ability to localize their exact position in the image. So

the output of this network is an image with more than one labeled bounding boxes

showing all the available objects of interest, which can be classified in a different

category/type/class.

https://theaisummer.com/Localization_and_Object_Detection/
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FIGURE 2.14: Object Detection - docs.nvidia.com

Semantic Segmentation is a further extension of the tasks mentioned above, and its

main goal is to classify each pixel in the image to a class, so this expected output

does not have any bounding boxes nor labels, just colored(classified) objects in

order to distinguish them from any other located feature.

FIGURE 2.15: Semantic Segmentation Example -
www.jeremyjordan.me

https://docs.nvidia.com/isaac/archive/2019.2/packages/yolo/doc/yolo.html
https://www.jeremyjordan.me/semantic-segmentation/
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This work aims to model and accelerate(on FPGA) this task supporting two differ-

ent classes with black and white representation. The subject contains bio-medical

images gathered from MRI-CT scans and ’examined’ from the neural networks for

possible anomalies and disease detection so it can help humans prevent and avoid

further clinical damage by this early stage pattern recognition.

In other words, semantic segmentation tasks include the support of multiple classes(more

than 2) where each class is saved in a separated exclusive channel(Figure 2.16)

FIGURE 2.16: Class per channel - www.jeremyjordan.me

Instance Semantic Segmentation(Figure 2.17) is not treats every object of the same

class as a single image entity(When simple semantic segmentation does). In-

stance, Segmentation treats multiple objects that belong in the same class as dif-

ferent/distinct instances.

https://www.jeremyjordan.me/semantic-segmentation/
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FIGURE 2.17: Instance Segmentation Example - www.arxiv-
vanity.com

To achieve such a categorization of the same class object, it uses multiple chan-

nel labels(Figure ) that drive and train the neural network. With more detail, for

each output channel is carried a piece of specific object information like shape

and locality. The output channel number must be the same as the total number

of entities supported. The final fusion of the channels generates the output with

multiple masked objects from different channel overlays.

https://www.arxiv-vanity.com/papers/1708.02551/
https://www.arxiv-vanity.com/papers/1708.02551/
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Chapter 3

Related Work

In the last five years, tremendous progress on machine learning and especially on

semantic segmentation has been made, using the main idea of residual networks

and the famous skip connection neurons. The state-of-art architecture using the

technique, as mentioned earlier, is called U-NET because of its ’U’ shape, which

in this thesis will be thoroughly analyzed. Some other approaches involve high-

throughput CNN accelerators adopting some unique functions and computations

such as deconvolution, which resemble the classic Transposed convolution suc-

cess. All these recent proposal works’ main goal is the image segmentation for

bio-medical purposes and image patterns that cannot be spotted from the human

eye or any other hardcoded techniques. In this field of image analysis, automa-

tion is the absolute objective and vision of the ’Artificial Intelligence’ technology.

Especially CNNs are the recent trend, providing a less complicated and mature

design, achieving great accuracy and performance in terms of training and pre-

diction. The dataset for this field of semantic segmentation is very common, in-

cluding some of Kaggle’s [37] famous datasets, or even smaller like CIFAR10 [38],

MNIST [39], [40] that help scientists to observe the possibilities and every defi-

ciency of the examined architecture.

3.1 Full-Resolution Residual Networks

Full-Resolution Residual Networks [41] work with a double processing stream for

a pixel-level accuracy combining multi-scale context.
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FIGURE 3.1: Full-resolution residual network & example output

The so-called residual stream (blue line) stores and transfers the image’s initial in-

put resolution through all the network to share its topological information where

it is required(pooling-unpooling junctions) when the red stream undergoes each

subsequent pooling and unpooling operation. The ‘pairing’ between blue and red

streams is achieved using the full-resolution residual Units (FRRUs). In figure 3.1,

each full resolution residual unit’s internals is shown, splitting the unit into two

boxes, the colors of which correspond to their streaming type. More specifically,

the incoming residual stream is reduced via a pooling function to eventually be

concatenated with the ’pooling stream’ (red). The previous concatenations result

is driven to a double convolution block, including batch normalization and ReLu

activation functions for the feature extraction. The result of the second convolu-

tional block has two output paths. In the first one, an un-pooling operation occurs,

forming the result back to its original ’residual streaming’ size (blue stream) so it

can be used in the next FRRU. The other path is the output of the FRRU that will

keep its destination through the network for further encoding or decoding accord-

ing to its stage. This approach possible is not that efficient like U-NET because,

with a first glance, the ’residual stream’ (blue line in figure ..) needs to be pooled
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multiple times to match the FRRU conditions while keeps the ’general idea’ of the

image through the end while using its features.

3.2 Fully Convolutional Networks for Semantic Segmen-

tation

Some of the latest successful Fully Convolutional Networks like AlexNet, the VGG

net, and GoogLeNet can work for Semantic Segmentation tasks by transferring

and fine-tuning their representations on that field. To produce accurate and de-

tailed segmentation of the input image, the paper’s proposed work [42] aims to

mix the semantic information of a deep coarse-grained layer with more general-

ized appearance features and a shallow fine-grained layer. Translating those men-

tioned above to a more straightforward form, this paper [42] can efficiently train a

fully convolutional network on how to make dense predictions with the only dif-

ference that each pixel output can be divided into multiple classes that eventually

can be confronted as pixel-wise tasks that overall make up the semantic segmen-

tation output.

FIGURE 3.2: Fully Convolutional Networks Structure (YouTube Ex-
planation Video)

The conversion from classification neural network into FCN that produces output

maps is a trick introduced by OverFeat. Following the basic idea that higher lay-

ers correspond to specific spatial locations of the input image on which they are

path-connected and called receptive fields, changing only the layer strides and fil-

ters a convolutional network can produce a result similar to the shift-and-stitch
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trick by OverFeat. As shown in figure 3.2, starting from the input image, many

layer downsampling for further feature extraction happens as a regular fully con-

volution neural NatureWorks would make. The part where the trick happens is

during the layer with the output of 7× 7× 4096. At that stage, the class predic-

tion layer uses a 1x1 convolution sliding across the 7×7×4096 dimension with 21

filters(for each output class for this example). The next process consists of a learn-

able (not fixed) deconvolution filter (e.g., learnable bilinear upsampling), putting

the results into a padded tensor of overall example size 224×224×21. The purple

tensor occurred by applying a standard convolution to the padded tensor. This

process simulated the fractionally strided convolution with zero insertion in the

input of the convolution image. As a result, the purple tensor has the final desired

dimension while still storing the 21 different classes, each of them representing the

confidence (in percentage) for each object. The last one can be easily converted

into color(according to the class) that maps each pixel to a colored semantic seg-

mentation output.

3.3 Mask R-CNN

FIGURE 3.3: Mask RCNN structure

The Mask R-CNN [43] method extends the existing work of Faster R-CNN [44] that

carries out the task of object detection in real-time. Faster R-CNN generates two

outputs, and that is why the R-CNN detector works in a two-stage mode. During

the first stage, called Region Proposal Network (RPN), the class label is produced,
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individualizing and classifying each object into a category. The second stage fol-

lows, assembling a bounding-box offset that is the coordinate values of the bound-

ing box’s center(simple object detection). As the Mask R-CNN adopts these func-

tions/stages, it also extends its basic object detection and classification function-

ality. Faster R-CNN does not support pixel-to-pixel alignment, having some de-

vious spatial aftereffect between network input and output images. First, during

the bounding-box structuring stage, a binary mask is generated for each region of

interest (RoI), while the first stage (RPN) stays intact. The mask branch encodes

m ×m masks (having K classes). It also essential to be noted that the traditional

practice of per-pixel softmax and multinomial function of cross-entropy loss is not

used(common for FCNs to semantic segmentation). In the Mask R-CNN case, a

per-pixel sigmoid and an average binary function of cross-entropy loss is applied,

avoiding the mask ‘competition’ across the K classes.

The prediction mentioned above (m ×m) of each RoI using FCN layers is encod-

ing the inputs object’s spatial information that can eventually be later addressed

by the pixel-to-pixel relation occurred by the convolutions. Executing RoI pooling

methods for small feature extraction, the results become misaligned when com-

pared with the spatial information of the input.

FIGURE 3.4: RoI Pooling visualization example

This alignment slip happens because the stride used by this technique is quan-

tized. The example figure 3.4 shows that the quantized value of 2.42 has a stride
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of 2 for both image’s height and width. Applying this RoIpool on a 17x17, the layer

only considers the upper left 14x14 pixels in the 17x17 region, translated into a loss

of data(of the remaining data) plus an unaligned output.

FIGURE 3.5: RoI Align visualization example (Video Explanation -
Custom Image)

However, the RoIAlign (figure 3.5) layer is used to countermeasure the problem

above by adequately replacing the RoIPool layer. The idea is to keep the original

stride value(2.42 for the example) and then divide the generated square regions

into four smaller squares. From this point, each subcell is pulled using bilinear

interpolation, so the final cell value is computed either by an average or the maxi-

mum over the four sub-values.
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3.4 Gated Shape CNNs for Semantic Segmentation (Gated-

SCNN)

FIGURE 3.6: Gated-SCNN (GSCNN) - A two-stream CNN architec-
ture for Semantic Segmentation

Today’s Deep CNN solutions for semantic segmentation problems are process-

ing color, texture, and shape information all at the same time inside the architec-

ture. The proposed work of the paper Gated Shape CNNs [45], suggests a two-

stream CNN path. The first path is the classic CNN for analyzing and classify-

ing the extracted features, and it can be any feedforward, fully-convolutional net-

work. The other path, called shape stream, works seamlessly and parallel with the

classic CNN stream while processing everything about relevant boundary objects

and shaping information to a specific shallow shape-stream” architecture. Results

coming out from the classic stream CNN branch and shape-stream are fused at

the end of processing so that the result can be accurately reconstructed according

to the training knowledge of the neural network.
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FIGURE 3.7: Example of each Gate Usage

In figure 3.7 a more detailed analysis is being presented the two-stream and fu-

sion modules. There are some so-called gated mechanisms, so the cooperation

between the regular stream and the newly added shape-stream branch can be fa-

cilitated. These gates keep the shape stream lightweight because they constantly

grasp many features by the ’regular’ branch.

FIGURE 3.8: Example of each Gate Usage

In figure 3.8 we can see more about the functionality of the gates. Gate 1 learned

to focus on specific features as the relatively low-level edges and textures, whereas

gate 2 highlights the high-level object boundaries. The dual-task loss module

comes into play so that the boundary outputs can be efficiently used for a bet-

ter segmentation guide. The exact processing inside the dual-task module is the

enforcement of consistency between these two-stream outputs. Afterward, the

resulted segmentation masks can be reviewed and evaluated, which is the two-

branches fusion output where dense feature representations(from the ’regular’
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branch) and boundary guides are combined while preserving the multi-scale con-

textual information.

3.5 DeepLab: Semantic Image Segmentation with Deep

Convolutional Nets, Atrous Convolution, and Fully

Connected CRFs

The following work [46] is focused on Image semantic segmentation using three

essential parts. The first one aims to reduce complexity providing a larger field

of view without the need for excess filter parameters(atrous/Dilated Convolution

[47]). A process supporting variable scales for segmenting objects of interest (atrous

spatial pyramid pooling (ASPP)) is also developed. Moreover, the object boundary

localization is greatly improved by combining techniques used in Deep Convolu-

tional Neural Networks (DCNNs) and probabilistic graphical models. An object’s

localization effectiveness can be degraded following a path that includes actions

like max-pooling or generally downsampling methods. The DeepLab paper has

beaten this kind of hardship by proposing a Conditional Random Field (CRF) [48]

that is fully connected.

FIGURE 3.9: 2-D illustration of atrous convolution
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3.5.1 Dilated/Atrous Convolution

The consecutive max-pooling and striding that occurs almost at every layer reduce

the output feature maps’ spatial resolution. This reduction has a factor around

x32(downsampling). Figure 3.9 illustrates the 2-D including the typical architec-

ture structure of Downsampling → Convolution → Upsampling. More specifi-

cally, the classic encoder-decoder architecture’s execution means that there is a

’sparse’ feature extraction. On the other hand, atrous convolution is an operation

that helps to perform a dense feature extraction using a rate of two(r = 2), which

is applied to the initial high-resolution image/feature map. Essentially, a rate of

two for a dilated convolution means that the kernel is used with some holes-zeros

between the actual learnable values making a larger kernel and not a dense one.

This sparse kernel is applied on the input image, resulting in a dense feature ex-

traction without increasing the operation’s computational expansiveness. Below,

a depiction of a dilated convolution is represented on a 1-D convolution exam-

ple for both sparse and dense extraction with the following respective settings:

r ate = 1, pad = 1, and pad = 2, r ate = 2. Conditional Random Fields are gen-

erally used for interactive segmentation or simply for a foreground/background

pixel classification.

FIGURE 3.10: 1st row(scope) and 2nd row(belief) result maps after
each mean field iteration

Figure 3.10 shows that applying this optimization problem, where the neural net-

work iterates the output, establishing that all pixels agree with each other, follow-

ing the smoothness assumption. At the same time, it keeps correcting(each iter-

ation - CRF correction) to a more accurate and refined solution as the iteration

depth advances.
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Chapter 4

In-Depth Theoretical Modeling &

Robustness Analysis

In this chapter, U-net architecture will be thoroughly analyzed with a very infor-

mative description via examples and visual representations of the connectivity

and functionality to every bit of the neural network. Furthermore, a mathemat-

ical approach will help discover some paths, techniques, and solutions to many

possible questions a newcomer has.

Every part of this work is made by combining a vast amount of different approaches,

examples, and raw neural network mathematics(especially for back-propagation),

creating a result that represents a tutorial that is currently unique since it is not

possible for someone, who wants to learn the construction of U-NET, to find a

guide that introduces the concept of (U-NET) forward and back-propagation in

a lower level of programming language like simple python(with/without using

Numpy) or C/C++.

Usually, terms like transposed convolution and skip neurons are only described

with images and simple maths, leaving a big part of the actual code and archi-

tecture implementation technique in the dark. Keras, PyTorch, mxNET have al-

ready built some high-level open-source U-NET tools and libraries, providing a

wide variety of architectural freedom with user-friendly functions giving the abil-

ity to construct any neural network just by following some simple steps.

Finally, a simple yet fully customizable training function will be shown side by

side with the mathematical background analyzing each step with examples and

figures. The list of supported settings and options will be explained so anyone

can adjust and tune it. The actual purpose of this training function is to test and

validate the correctness of the network. Having such a tool -which is very limited

in terms of performance since it is built on python using only Numpy- can be very
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useful for checking the network’s characteristics and mainly if the network can

learn, improve and generalize the problem.

4.1 U-NET Sub Part & Block Analysis

This thesis U-net architecture can be thought of as two base network parts:

Encoder is the first half of the architecture that consists of many convolutions, ac-

tivation functions, and max pooling in order to split features into many different

categories/dimensions and reduce the pixel count so it can alleviate the computa-

tion complexity for the upcoming layers by keeping only the critical information.

Decoder is the second half of the architecture, and its primary goal is to up-sample

using transposed convolution to re-construct the image by keeping only the fea-

tures of interest and positioning each of them at the exact spot from where they

have been extracted. Concatenation, followed by the regular convolutions (sim-

ilar to these used in the encoder part), can result in the image’s correct spatial

reconstruction. An in-depth walk-through will be presented in the following sub-

sections breaking down the network into multiple parts and blocks.

4.1.1 Analyzing U-NET Sub-Parts

Data Matrix Formats

- Input/Output(each layer): *(Channel Number, Height, Width)

- Filters: (Filter Number, Input Channel Number, Height, Width)

- Bias: (Filter Number, 1) ≈ (Filter Number)

*Assuming there is always a single input image

Encoder

The very first input image1 can be in any format with the recommended dimen-

sion to be a power of two. The last one will significantly help the computation

since the up-sampling procedure(later on) does not need any cropping to create

1" Important note so the pre-trained weights can match the input samples: The for-
mat/dimension, pixel range value, and pre-processing of the image files must be the same as the
dataset used for training. There is no additional image processing during the reading of each input.
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a result that matches the skipped connection pixel dimension so they eventually

can be concatenated with respect to channels dimension.

FIGURE 4.1: U-NET Analyzed Architecture - lmb.informatik.uni-
freiburg.de

Starting from the 3-dimensional input image, the first step of the process block

(Figure 4.2) is a convolution. The shape of the first filter is (16, 1, 3, 3). There are

16 different filters with one channel per filter and a 3x3 kernel size each. It has one

channel because this dimension of the filter must concur with the first dimension

of the input image, which is also 1 for the simple reason that the images are black

and white and not RGB(3 Channels - 1 for each color).

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
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FIGURE 4.2: U-NET Convolution Block

Moreover, the size of the input image is (1, 128, 128). Since the part, as mentioned

earlier, is clear, the actual convolution computation can begin. The number of dif-

ferent filters(16) is responsible for the output channel number, which will also be

16. More detailed, each of the 16 filters will be convoluted with the same input and

the same one (input) channel to produce the result where the 16 bias values will be

added, respectively. The convolution is set to ’SAME’ which means that the input

resolution will be the same as the output(128x128). Convolution with the ’Same’

option is possible by adding a zero padding of 1 around the input image, increas-

ing its resolution to 130x130. Then a simple convolution with the 3x3 filter and

a stride of 1 will be computed, resulting in the same as input 128x128 resolution,

following the equation:

Output_Size = i nput_pi x− f i l t_si ze+2∗pad
str i de +1 = 128−3+2∗1

1 +1 = 128 (The same hap-

pens for both dimensions H,W).

When the convolution is completed, the output shape will be (16, 128, 128), mean-

ing that 16 extracted features are saved in 16 unique channels, respectively, for

each filter that affects the image differently. Finally, the activation function ReLu

(which is zero for negative values while the positive go through) is crucial since it

can only activate a subset of neurons diminishing the computation complexity.

The same procedure will happen one more time but with different matrix mul-

tiplications(using another filter). The intuition behind the subsequent convolu-

tions(that also follow after max pooling) is that each extra convolution can syn-

thesize higher-level features than these of the previous layer.
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The concept ’Low-level’ features are that the basic geometric shapes are a group

of horizontal, vertical, diagonal lines, circles, edges, and corners. The previously

extracted features/shapes are combined to produce even more complex features

known as ’mid-level’. For example, if a human face is given as input, the mid-level

features consist of the nose, mouth, and eyes, so high level includes different faces,

as shown below.

FIGURE 4.3: Convolution Stages/Levels of extraction -
medium.com

The complexity is now increased since we have a filter of shape (16, 16, 3, 3), and

the new input image is a shape of (16, 128, 128). With more detail, the convolution

begins with the first filter, a group of 16 channels convoluted with the correspond-

ing channel of the input, then an addition between them is needed, followed by

one more addition of the first filter bias. Finally, having the first channel(out of 16)

calculated, the same must be done for the rest 15 filters.

There is a representation of a similar convolution below between an image with

shape

(3, 5, 5) and a filter with shape (2, 3, 3, 3)

https://medium.com/@pallawi.ds/ai-starter-build-your-first-convolution-neural-network-in-keras-from-scratch-to-perform-a059eaa6d4ff
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FIGURE 4.4: Convolution Visualization - www.freecodecamp.org

The convolution block concludes with an output shaped as 16×128×128 like be-

fore, followed by a ReLu. This part (like the end of the rest convolutional blocks)

is a vital key spot of the architecture because that is the root of where the first skip

connection begins(Figure 4.5), so the above result must be temporarily saved so

it can be used later on for the concatenation with the up-sampled output(of the

same resolution) on the decoder part.

https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
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FIGURE 4.5: Convolution block output → Skip neuron & Max-pool

The next major step is to reduce the resolution so the forthcoming layers can re-

ceive a lower resolution image; hence the complexity will be less. That job will

be executed from the max-pooling module, which has a sub-matrix range of 2×2

and stride of 2, meaning that can convert a 2× 2 sub-matrix to just one cell just

by choosing the maximum value between them, which practically is the most im-

portant one(the one that has the most severe impact). After max pooling is com-

pleted, the output image will shape 16×64×64. The next blocks also will follow

the same strategy as those mentioned earlier. The input/output dimension values

of the encoder are gathered and shown below(Figure 4.6).
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FIGURE 4.6: Encoder Part

The 5th block of convolutions is the last one of the first half(encoder), where the

output result has a shape of (256, 8, 8). As a result, there are 256 features, each

saved in a separate channel! Bear in mind that it is also possible for the initial

input to be 64× 64 resolution since the 5th block will result in a (256,4,4) image,

which is also feasible for a 4×4 resolution matrix to save a feature.

On the other side of the coin, choosing a resolution greater than 128×128 for the

initial image is not recommended for the current architecture since it would be

a waste for the 5th block not to be able to extract the additional information. So,

for a greater than 128×128 initial input image, it would be better if there was one

more block-reduction to 512 features that one may help to squeeze out some extra

features.
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Decoder

FIGURE 4.7: Decoder Part

Things get more tricky since the skip connection technique and transposed con-

volution are not everyday occupations for a machine learning scientist. As de-

scribed above, the ’input’ features to the decoder part are an image with shape

(256, 8, 8). That is precisely the input for the first transposed convolution that aims

to double the resolution(from 8× 8 to 16× 16) and to reduce to half the channel

number. Jumping into the actual computation, a (learnable)kernel of shape(128,

256, 2, 2) means that we apply the algorithm of transposed convolution on the in-

put features, so we get a 128 channel output of 16×16 resolution. The stride for
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the transposed convolution is always set to 2 for both axes.

FIGURE 4.8: Transposed Convolution Algorithm 2

According to the transposed algorithms that presented above, the first way(Algorithm

4, Figure 4.8, with the size equations of Figure 2.8) to complete such a computa-

tion is to zero pad(wrap around) the input features with ‘pad’ (where pad = 1)

plus (s−1 = 1) zero fill between each input element, and then apply a simple con-

volution with stride of 1 with the respective kernels. By using the aforementioned

algorithm we get:

Padded matrix size: 8∗2−1+2∗p = 17

where 8∗2−1 is the number of rows columns after the zero filling between ele-

ments and 2∗p the wrap around zero padding.

Then a simple Convolution is applied, with the flipped 2× 2 kernel, str i de = 1,

and using the known equation(Figure 2.8) for convolution we get:

(17− 2)/1+ 1 = 16 as a final result which is the double resolution in comparison

with the input.
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On the other hand, the main Transposed convolution algorithm(Algorithm 3) has

more FPGA-friendly properties by utilizing fewer data dependencies. It begins by

using each input feature element to multiply it with every kernel element, thus

creating a 2× 2 partial product stored on the result matrix at the corresponding

sub-array slots.

The first pixel(of the first channel) will be multiplied by each kernel element of

the respective channel, so this 2 × 2 matrix product will be saved on the result

sub-array (0 → 1,0 → 1). Having a stride of 2 for this algorithm is very helpful

since the jump of 2 does not include data dependencies from the previous 2× 2

sub-arrays computation, and the new result can be calculated immediately. The

output matrix where the addition between different channels happen, there are

data dependencies between these per-channel partial results but that cause no

problems because the time needed until whole columns are calculated is enough

for the data to be computed. The prerequisite calculations for the final result (for

the respective filter) include the same procedure for all the input channels.

FIGURE 4.9: Example [34] - Recommended Deconvolution Algo-
rithm - Left: Input Image(2×2), Right: Output Image(3×3), Kernel

Size = 3, Stride = 2

A simple convolution block, which is also used in the encoder part, will take this
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fused(Concatenated) input to reduce the channel number back to 128 while keep-

ing the resolution. At the end of this known convolution block(includes two sim-

ple convolutions with ReLu, same as the convolution block in the encoder part

Figure 4.2), the result (128, 16, 16) will be the input to the next transposed con-

volution so its resolution will be doubled using the knowledge saved to the 128

channels. So, the output of this transposed convolution will be (64, 32, 32). The

same fusing will happen at this point again(as shown in Figure) by sticking the 64

channels of the (encoder) skip connection coming out from the ’Maxpool 3’, thus

taking back a concatenated result of 128 channels and the same resolution 32×32.

The above procedure needs to be completed two more times until the last con-

catenation is completed between the first skip connection of the encoder part and

the last up-sampling result. The last one will return a result (32, 128, 128), the con-

catenated product. The last convolution block will decrease its channel number

down to 16, producing a result (16, 128, 128). Finally, a 1x1 convolution will drive

the result channel number down to 1 with the final result be (1, 128, 128), same as

the Input Image shape. The final activation function is quite different from the Re-

Lus we used earlier, after every convolution. This last activation function is called

sigmoid, which drives values to 0 –>1 space to translate it to pixel values(1 white,

0 black) and compare it with the input. The difference between input and output

images, as described before, is that the output includes features/information that

our neural network decided to keep and put them back in their place, discarding

everything else which is though to be out of the scope of our interest.

4.2 PyTorch, Keras and C/C++ implementations

Firstly, a vital step is the transposed convolution analysis, built entirely from the

start without any other type of official or open-source code at any language level.

Then, Pytorch tools like training (in-depth) analysis, image pre-processing, and

weight encoding-decoding for easy transfer between Keras and C will also be pre-

sented. Keras is the top-level programming language where the training capa-

bilities will be utilized, so a malleable parameter file is built and can be used for

real-time problems offering comprehensive coverage and generalization. C/C++,

including any supported tool built in this environment, constitutes nearly every-

thing needed further to expand the support for an embedded system like FPGA.
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4.2.1 Transposed Algorithm

The transposed algorithm 3, (including back-propagation) that developed during

this work will be analyzed during training analysis later on. The simple technique

was built from the ground up, with the source of mathematics, examples, and re-

sults of some already completed higher level transposed convolution functions

that essentially reverse-engineered to achieve the same outcome. The source code

between many languages and levels is now open source and available for anyone

who wants to build a U-NET architecture and implement it on an embedded sys-

tem. The availability before the release of this work was limited to excessively en-

hanced and obscure low-level CUDA [49] languages.

4.2.2 Python

The very first attempt of the U-NET neural network took part in a high-level python

environment. Having a simple CNN as the baseline, because the lack of informa-

tion around the U-net architecture was a big obstacle, every area of the architec-

ture explored and validated by using maths, experience, and other methods that

can ensure the functionality, thus the ability for the neural network to learn, im-

prove and produce a respectful result. The main idea behind the python imple-

mentation is a more in-depth understanding of the matrix multiplications such

as weight matrices multiplied with layer nodes, input/output size, how it is pro-

duced, and other more intuitive points that need to be entirely clear.

Python Code Walk-through

First of all, reading functions must be constructed in order to read the input im-

ages. These functions are built in a way that only ’read’ the .PGM (recommended)

format without any pre-processing or resizing. Everything is needed(like pre-processing,

resizing, reformatting) is already covered by some extra custom made tools that

will be presented later on.

By using OpenCV (CV2) [50], the pre-processed gray-scale image data are read for

all the categories such as test images, validate images, plus their respective la-

bels/masks. Training images and their corresponding labels can also be loaded in

case someone wants to test and verify the neural network capabilities or even test

and further improve some of its functions or the training itself.

As mentioned before, training is also implemented only in this high-level environ-

ment to validate its functionality.
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Training analysis

In this part, the custom training function will be analyzed with a thorough pre-

sentation for both forward and backward propagation and the optimizing tech-

niques used to speed up this process. Bear in mind that training running on one

core of the CPU is not a recommended training solution since the complexity and

the time will need, as the dataset increases, is countless. On the other hand, the

training presentation can help the newcomers learn how calculations are executed

and allow learning everything is needed to improve further, study, and implement

an even more optimized design to their environment. Simple NN, CNN can al-

ready provide such an open-source presentation accessible for anyone who wants

to learn and build a project. However, when it comes to semantic segmentation,

the knowledge of how to implement and get started building a neural network in

a lower environment (rather than Keras, Pytorch, and more) lacks supportive ma-

terial and general intuition.

Train function settings:

• Number of epochs : It is the overall number of iterations over the whole

dataset.

• Learning Rate : It is the actual setting that can control how fast the neural

network can learn and improve stability. (Recommended values: 0.008)

• Batch size : Every ’batch number’ of data (that completed forward and back-

propagation), update the filter & bias values according to the accumulated

deviations of the last batch.

• Dropout Enable : Enable dropout for a more robust and generalized neural

network.

• Group Normalization Enable : GN is a custom layer normalization that en-

sures the protection of gradient/value explosions or vanishing over the sam-

ples. Epoch execution time increases, but there is a huge improvement of

accuracy and stability that eventually decreases the maximum required epochs

Filters & Bias trimming: The variance around initialization of the filter val-

ues can be set in this setting. For example, trimming = 0.1 means that, on

average, values will range from -0.1 to +0.1 with greater possibility around

zero(Normal distribution around zero). Fluctuation recommended values :

filter_trim = 0.1 , bias_trim2 = 5*filter_trim.

2" By increasing beta multiplier, a more foggy(better handling with edge/like using high anti-
aliasing values) visual result will be appeared, when using bias_trim ¿ filter_trim will result in a
more austere and edgy(pixelated) visualization.
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• GN Learning rate(Alpha) : 20*Learning_rate

• GN Trim : Recommended : 0.05

• GN Beta1, Beta2 setting : Beta1 is the exponential decay rate from which is

dependent on the estimates of the first moment when beta2 is responsible

for the second-moment estimates. Beta2 is recommended to be approxi-

mately one in case of problems with sparse gradients, like the current one

that includes computer vision. Default Values: beta1 = 0.92, beta2 = 0.995.

• Smart Weight disk Saving : By enabling this utility, when a local maximum

accuracy value appears, automatically, the latest weights used to produce

this result will be saved in a disk location that is provided by the user. If it

is disabled, the weights will be saved temporarily in the local ram ’params’

for forwarding/validation steps. Any effort to re-train will erase the local

’params.’ There is also a tool that can read the disk saved weights and load

them back to ’params’ to be used from the validate function.

• Accuracy Recording : That option gives the ability to save every step/epoch

data progress and eventually print them or produce a Matlab accuracy dia-

gram related to epoch passage.

• Per epoch/batch accuracy printing : This is a simple ’verbose’ option that

gives analytical information after every iteration or epoch on how accuracy

behaves on every specific time frame.

The training starts with the initialization of weights and group Normalization val-

ues. Adam optimization special values(must be reset to zero every single iteration)

help calculating the new weights. More detailed, these values’ shape is the same

as the bias shape(Number_of_filters, 1).

Moreover, every filter has a specialized ’momentum’ value and ’RMSProp’ [51]

value(both learn-able), so they can be combined to perform the weight update

in the best possible way(Saving these values over the iteration is not supported).

Gamma and beta of GN(Group Normalization) [52] are also learn-able and can im-

prove huge deviations between layer values that can muzzle small numbers and

lose information(gradient diminishing).

Since the forward propagation is fully explained before, we jump at the end of

the forward step, where the actual re-constructed image appears.

*Each final value of the resulting image is made using sigmoid as the output acti-

vation function that helped populate our more abstract values to 0 → 1 space so we

can compare it with the label/mask.
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Having this product, let us call it Ŷ (Figure 4.12), of shape that is same as input

and each pixel values ranges from 0→1, we can easily subtract,Y which is the ac-

tual label(the ultimate goal/target), from Ŷ and take back the difference between

their pixel values. This difference includes both positive and negative numbers to

spot where we need to increase or decrease the result.

The objective is to back-propagate the difference via the nodes and edges that

caused them. This difference must be saved and used later(during weight update)

to countermeasure the problem per layer.

For better understanding, the diagram below(Figure 4.10), shows the last trans-

posed convolution followed by the double convolution block with their activation

functions plus group normalization and finally the 1x1 convolution followed by

the sigmoid. By analyzing this last segment of the neural network, its possible

for anyone to understand everything is needed because it includes every different

structural stone that used to build this network.

FIGURE 4.10: Training Architecture Part

*The only part that we did not breakdown its forward behavior is the GN, which

will be explained through back-propagation.

Starting from the end, we need a simple subtraction between Ŷ and Y . Since we

receive the table of differences, let us call it dŶ (Figure 4.12), we want to locate the

path that error went through. The last operation executed is the sigmoid activa-

tion function, precisely the first the back-propagation procedure’s operation.
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FIGURE 4.11: Back-propagation Chain Rule - kratzert.github.io

This is the baseline where all the backward propagation procedure is going to lean

on. It’s basically a multiplication between local gradient and the gradient that

cause the actual result.

FIGURE 4.12: Forward/Back Propagation Part

We want to know which way is ‘downhill’ or what is the rate of change of Y −
Ŷ =Cost= J with respect to filters(Weights) :

∂J

∂w
= (Y − Ŷ ), where Y is constant

with respect to filters(it won’t change, its just a label), so it can be assumed zero

(
∂J

∂w
= 0).

On the other hand, Ŷ does change as the filters change, so by using the chain rule

we get:
∂J

∂w
=−(Y − Ŷ )∗ ∂Ŷ

∂w
(1), it is also known that Ŷ is the activation function

sigmoid applied on the 1×1convolution output. Ŷ = f (z) = si g moi d(z) = 1
(1+e−z )) ,

by applying chain rule again on
∂Ŷ

∂w
of (1), the result is :

∂J

∂w
=−(Y − Ŷ )∗ ∂Ŷ

∂z
∗ ∂z

∂w

https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html
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Now, the rate of change of Ŷ can be found with respect to Z(where Z is the 1x1

convolution output), the sigmoid activation function must be differentiated as fol-

lows:

Ŷ = f (z) = si g moi d(z) = 1/(1+e−z) → ∂Ŷ

∂z
= f ′(z) = e−z

(1+e−z)2
(2)

(1), (2) → ∂J

∂w
=−(Y − Ŷ )∗ f ′(z)∗ ∂z

∂w

The term
∂z

∂w
represents the change of z with respect to the filter/weights w . Keep-

ing the eyes on a single cell of the output matrix z is possible to discern what con-

nects z with z−1(which is the state before 1x1 convolution) is just a mix of filters

that multiply the corresponding z−1 cell :

z[x, y] =∑16
channel=1(z−1[channel , x, y])∗ ( f 1[channel ]1x1).

Looking more precisely, there is a simple linear relationship between filter and

z, when z−1 is the slope.

Another way to think about how the error will get propagated is that the error Y −Ŷ

must be multiplied with each filter value, so the ’synapse’ that has the most signif-

icant values contributes more than the others.

Since we get the result of the function: ’sigmoid_backpropagation(Ŷ −Y , z)’ as de-

scribed above, resulting in the d z, which includes all the differences for the output

z of the same shape(1 error/diff per cell).

For the next step, the known data matrices of z, d z and filters need to be passed(in

the function’s parameter list) that used to produce z from A(where A is the result

after ReLu as shown in the figure 4.12):

d A, d f = convolutionBackward(dz, z, filters), this function will fill the d A, and d f

d A : each entry of dz will try to affect the elements from which were made of.

d f : is saved locally, so at the end of this iteration, the differences can be accumu-

lated for this specific layer output and eventually update its weights accordingly.

Convolution Back-Propagation Algorithm

Algorithm 5 is considered that Stride = 1. The output shape and size are the same

as the input so that algorithm can fill each cell with its respective error.

Before the algorithm begins, knowing that A is the input from the previous layer, Z

the output of the convolution, d Z the matrix corresponding to the error towards
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the output Z , W the filters/weights, and b the bias, the generic formulas for com-

puting d A, dW and db are given below:

d A+=∑nH
h=0

∑nW
w=0(W ∗d Zhw )

This happens for every channel each time we multiply the whole filter with a pixel

and then we add the result back to the output matrix. Some elements overlapped

in the case of a 3x3 filter (back-prop convolution) and a stride of 1.

Python : d A[:,h ∗ s : h ∗ s + f i l t_si ze, w ∗ s : w ∗ s + f i l t_si ze]+ = f i l ter [z]∗
d z[z,h, w]

dW +=∑nH
h=0

∑nW
w=0(A∗d Zhw ) , where A is a sub part of A.

Python: dW [z]+= d Z [z,h, w]∗A[:,h∗s : h∗s+ f i l t_si ze, w∗s : w∗s+ f i l t_si ze]

db =∑
h=0

∑
w=0(d Zhw ) , db is computed by summing d Z

Python: db[ch] = np.sum(d Z [ch])

Algorithm 5 Convolution Back-propagation

1: procedure CONV_BACKPROP(dZ, A_in, weights, bias, kernelSize, padding)

2: str i de ← 1 . Fixed Stride

3: for oc:=0 to weights.filters-1 do

4: for oh:=0 to dZ.height-1 do

5: for ow:=0 to dZ.width-1 do

6: for ch:0 to A.channels-1 do

7: for i:=oh to oh+KernelSize-1 do

8: for j:=ow to ow+KernelSize-1 do

9: d f (oc,ch, i − oh, j − ow) ← d f (oc,ch, i − oh, i − ow)+
A(ch, i , j )∗d Z (oc,oh,ow)

10: d A(ch, i , j ) ← d A(ch, i , j ) + d Z (oc,oh,ow) ∗
wei g ht s(oc,ch, i −oh, j −oh)

11: db(oc) ← SU M(d Z (oc)) . Sum of all the HxW values of the current

channel

12: return d A,d f ,db
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4.2.3 Group Normalization - Forward Step

FIGURE 4.13: Scaling & shifting according to the group mean and
variance Data Science - Normalization

The idea of this custom group normalization, which can also be called layer nor-

malization, is based on the standard technique for reducing training times while

increasing accuracy, Batch Normalization. Batch Normalization takes as a batch,

a small group of data samples(which can be multiple inputs per run), but in the

U-NET architecture where the general method is one image per neural network

run, the batch normalization must be transformed into the group normalization.

In the last method, the main idea is to group multiple channels(since there are not

multiple input examples) and normalize data with respect to their means and vari-

ances, the scale and shift around the zero so the values explosion can be avoided.

The g amma and bet a are the parameters to be learned.

Input: Values of x over a mini-batch: B = {x1...m}

Output: yi =GNγ,β(xi )

Mini-batch mean :

µB ← 1

m

m∑
i=1

xi (4.1)

Mini-batch Variance :

σ2
B ← 1

m

m∑
i=1

(xi −µB )2 (4.2)

https://python-data-science.readthedocs.io/en/latest/normalisation.html
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Normalization :

x̂i ← xi −µB√
σ2

B +ε
(4.3)

Scale and shift :

yi ← γx̂i +β≡GNγ,β(xi ) (4.4)

4.2.4 Group Normalization - Backward Step

FIGURE 4.14: Forward-Backward paths of GN broken into small dif-
ferentiable subfunctions kratzert.github.io

Now, the red path must be followed starting from the end dout by using the chain

rule:

dout = d(γx̂i +β), the last summation becomes:

• dγx̂ = 1∗dout

• dβ= 1∗∑N
i=1 dout

dγx̂ = 1∗dout :

• d x̂ = dγx̂ ∗γ

• dγ=∑N
i=1 dγx̂ ∗ x̂

continuing from d x̂:

https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html
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• d xµ1 = d x̂ ∗ i var

• di var =∑N
i=1 d x̂ ∗xµ

di var :

• d sqr t var = di var ∗ −1
sqr t var 2

• d var = 1
2 ∗ 1p

var+ε ∗ f sqr t var

• d sq = 1
N ∗


1 · · · 1
...

. . .
...

1 · · · 1


N×D

∗d var

• d xµ2 = 2xµ∗d sq

From d xµ1&d xµ2 where the subtraction happens, we get:

• d x1 = 1∗ (d xµ1 +d xµ2)

• dµ=−1∗∑N
i=1(d xµ1 +d xµ2)

dµ back to the mean per group:

• d x2 = 1
N ∗


1 · · · 1
...

. . .
...

1 · · · 1


N×D

∗dµ

From Last step is to sum up the gradients d x1 and d x2:

• d x = d x1 +d x2

dx contains the errors for the input of the GN, which is ready to back-propagate

even further to the previous process(which is convolution)

4.2.5 Transposed Convolution Back-Propagation

Given that the forward pass of the transposed convolution has the algorithm 3,

which has been used from the paper [34] it presents a quite FPGA-friendly way of

completing a high computational task utilizing many independent additions. In

our case, having a kernel of 2×2 with a stride of 2(because we want to double the

input’s resolution), there are no dependencies between iterations and additions.

Figure... shows exactly the current case, having a kernel resolution of 2×2 and a

stride of 2.

The upcoming information is critical and abstruse but, at the same time, an ef-

fortless way of solving the back-propagation step for transposed convolution. At
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a first glance it’s easy to understand that transposed convolution does exactly the

opposite computation than a convolution in combination with a Maxpool (or just

a convolution with a stride>1). So, it’s known that transposed convolution is ac-

tually the inverse way of convolution thus back-propagation of a convolution is

the same as transposed convolution. As a result back-propagation of transposed

convolutions is the same as the forward simple convolution.

FIGURE 4.15: Example: d A1 = 1∗F 1+2∗F 2+5∗F 3+6∗F 4

It is related because we want the dz (which is the error stored in a matrix with a

shape identical to the output shape of transposed convolution on this part) to be

multiplied with the filter so it can propagate the error accordingly to the ’input’ of

the Deconvolution(same dA shape as the input A).

Algorithm 6 Transposed Convolution Backpropagation

1: procedure TCONV_BACKPROP(dZ, A_in, weights, bias, kernelSize, padding)

2: s ← 2 . Fixed Stride

3: for fil:=0 to weights.filters-1 do

4: for oh:=0 to A_in.height-1 do

5: for ow:=0 to A_in.width-1 do

6: for ch:=0 to weight.channels-1 do

7: for i:=oh*s to oh*s+KernelSize-1 do

8: for j:=ow*s to ow*s+KernelSize-1 do

9: d f ( f i l ,ch, i −oh, j −ow) ← d f ( f i l ,ch, i −oh, i −ow)+
A(ch,oh,ow)∗d Z (oc, i , j )

10: d A(ch,oh,ow) ← d A(ch,oh,ow) + d Z ( f i l , i , j ) ∗
wei g ht s( f i l ,ch, i −oh ∗ s, j −ow ∗ s)

11: db( f i l ) ← SU M(d Z ( f i l )) . Sum of all the HxW values of the current

channel

12: return d A,d f ,db
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Maxpool Back-propagation

Max pool is the last operation to be understood on how to back-propagate, so

there is a clear view on every structural part, and eventually, by following the prin-

ciples above, it is possible to back-propagate the whole neural network and update

its filters. There is a more intuitive way of explaining how the back-propagation of

Maxpool works. Since the data before Maxpool are available, by doing a fast search

again(for the maximum value), with a window 2×2 and stride of 2, it is possible

to discover each maximum’s exact coordinates element in the 2×2 window. When

the above process is completed, having a dz matrix two times smaller (than the

one before Maxpool) that contains the errors, it is relatively easy to simply put

these errors back from the exact location they came from. The rest of the slots can

be filled with zeros, as their values were not the most important.

Algorithm 7 MaxPool Backward

1: procedure MAXPOOL_BACKPROP(dz, A_in, kernelSize, stride)

2: str i de ← 2 .Downsample image to half

3: hOut ← (i nput .hei g ht −ker nelSi ze)/str i de +1

4: wOut ← (i nput .wi d th −ker nelSi ze)/str i de +1

5: for i:=0 to (A_in.channels-1) do

6: for j:=0 to (hOut-1) do

7: for k:=0 to (wOut-1) do

8: (a,b) ← nanar g max(A_i n, j ,k, str i de,K er nelSi ze) .

It takes a sub-matrix of A_in → j ∗ s : j ∗ s + K er nelSi ze and i ∗ s : i ∗ s +
K er nelSi ze, finds the max value and returns its coordinates with respect to

K er nelSi zexK er nelSi ze window

9: d A(i , j ∗ str i de +a,k ∗ str i de +b) ← d Z (i , j ,k) . The rest of the

window values which are less than max become zeros

10: return d A

It is essential to remember that the minus sign is vital during the filter update since

the filter value must be driven in the opposite direction.

Example:

ŷ − y = 0.5−0.7 =−0.2 = d f → f i l ter = f i l ter −d f ∗ l ear ni ng _r ate, (4.5)
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where l ear ni ng _r ate = 0.1 → f i l ter ′ = 0.5+0.2∗0.1 = 0.52, which is improved

and provides a lower cost.

Validation Tool

The validation part includes functions like loading weights that can be produced

either from the implemented design or from Keras training procedure. Modes and

settings like ’smart forward step’ that can predict and drive some of the values to

their target point so the accuracy will be increased or even printing methods for

visualizing the results(output vs. input vs. label and some learning curves in case

the network is trained with the implemented solutions). Adam Optimization set-

ting is implemented only for the custom training function(not for Keras), and it is

recommended when using the ’Train’ function.

Python Tools for image pre-processing and other utilities:

1. Resizing Tool: This tool can receive a path where the data are located and

then resize them to the desired resolution, which must be in the form 2n

(example: 64 or 128), thus converting from RGB to gray-scale and then sav-

ing them back(replacing).

2. Easy Convert .png to .pgm and then move them into a new directory

Example: mogrify -format pgm /data/salt/images/.png mv /data/salt/images/.pgm

/data/salt/images/results

3. Keras → Python/C/FPGA weights byte file: It is used when the training is

completed in Keras, and the weights must be transferred into FPGA. This

procedure also produces python encoded weights that can be used from the

python validation function. Warning: the encoding is custom and can be

handled only by the current implementation of functions.

4. Python → C/FPGA weights byte file: When the training is being held in a

python environment, and it is needed to be transferred into hardware.

Keras

Keras is a high-level implementation tool that gives the user a friendly environ-

ment with many useful functions to re-create easy and fast neural networks. The

countless libraries written in python can help with any machine learning problem

while running on top of some other APIs and accelerators like Tensorflow.

Keras was used in order to:
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• Validate neural network functionality and the ability of learning by examin-

ing each layer output and comparing it with our thesis data.

• Train the U-Net with a faster way by reading the pre-processed image data

and building/export weights that are exclusively compatible with the for-

mat, resolution, and values of the inputs

• Visualize the results, adding some useful masks on top of the images, and

analyzing/converting them into any form and representation.

C/C++

Since the neural network is verified and validated, which prove its functionality,

the next major step includes the design transfer from these high-level environ-

ments(like Python, Keras) into a lower-level language, like C. The source code

written in C to be compatible with FPGA and hardware implementation can easily

be converted and used by the Xilinx tools(HLS, Vitis). Python computations and

advanced matrix multiplication or processing can be handled from the Numpy li-

brary, which eventually must be analyzed and re-written in a lower-level language

to reach the core looping system and calculation. Optimization and complexity re-

duction techniques are essential for designing, loading, storing, and transferring

data. Data types are also a significant problem because of the limited memory

space and the high throughput needs during hardware sub-part communication.

C/C++ structure analysis & other tools

All the structures that will follow are made accordingly from a pool of dynamic

space allocation functions. These functions make use of local memory allocation

and can be up to 4D dimensions. The actual path of the data is needed so the read-

ing can begin. The file Management segment can handle 8bit or 16bit .PMG pixel

depth images. It can also automatically detect the data, formats and match the

images with their respective labels. The image/labels data are saved into dynamic

arrays, so by having the pointer and the size, we can transfer and read them from

any function. Transfers utilize the structures supported by the C environment.

These structures include the resolution, pointer to data arrays, and the number of

data shown below.
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FIGURE 4.16: Structure example of Image data pack in C

On the other hand, unpacking weights is not that easy since there is a specific

encoding from the other higher-level tools and must be followed exactly to read

the binary file. Saving the filter/bias data required even more deep pointers since

we need a pointer to a 4D matrix so we can pass data by reference.

FIGURE 4.17: Structure example of Parameters data pack in C

With all these data been saved, the reading procedure is completed, and we can

proceed into the actual calculations and transfers. Structures are also selected for

this purpose, where we can save, filters, data_in, data_out, and other more specific

setting values like strides, padding, resolution in/out.

Some functions can assist the computation by returning essential values that have

to do with layers, shapes, and sizes, given the layer number. C/C++, Keras, and

Python can now work together, share weights, and produce the same results. Each

environment has its use, thus making up an essential step to a lower level anal-

ysis and implementation. Keras is the training environment since it uses GPU

performance to train and deliver the weights efficiently. Python is a more experi-

mental environment where every utility is implemented, from tools and convert-

ers to fully configurable training and validation methods. C/C++ is meant to help
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us approach hardware design, analyze the functions even further, and rebuilding

libraries more efficient and targeted to our purpose. The next level includes de-

signing and perfecting the data transfer, parallelizing computations, and config-

uring communication between an even lower level environment so we can achieve

those as mentioned earlier .
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Chapter 5

FPGA Implementation

5.1 Tools Used

The hardware implementation and optimization in this thesis work were feasi-

ble with the tool package Xilinx Vivado Design Suite - HL System Edition[53] sup-

ported and fully licensed from Technical University of Crete Microprocessors &

Hardware Lab (MHL). This Xilinx package includes some crucial components for

designing, simulating, and debugging any hardware-based creation allowing en-

gineers to validate and precisely monitor an IP(Intellectual Property) before the

actual prototype manufacturing. HL System Edition consists of the Vivado IDE,

Vivado HLS [54], and Vitis [55]. These tools can work independently, but most

importantly, each of these tools works as a complement for each other. The com-

pleted idea on which these professional softwares were built is to start with a high-

level design using C/C++ using the HLS, which can handle and optimize the final

design without a significant effort or knowledge from the creator in low-level hard-

ware design. Since the outputs, extracted in VHDL/Verilog, can be imported to the

Vivado IDE, connected with the central processing Unit (PS) of the target board.

Vivado IDE, as it will be described thoroughly in this section, provides the block

design making the process of connectivity between the central processing unit

and programmable logic (PL) an easy task. The last step includes the Vitis, where

the output design as a bitstream can be loaded into the Vitis environment where

the user can use any available hardware constructed in the previous tools/steps.

Controlled by C/C++, PS and PL can work together seamlessly, sharing data with

the main target of a specific task’s computational acceleration.
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5.1.1 Vivado High-Level Synthesis (HLS)

Vivado HL System Edition includes, for free, the HLS edition that enables Sys-

temC, C, and C++ specification to be directly targeted into any supported pro-

grammable device by Xilinx, without the need of manually creating a low-level

register transfer level(RTL) design. Moreover, abstraction during C/C++ script-

ing is one of the essential characteristics of this tool that helps the algorithmic

description and implementation that it would need countless hours for an Hard-

ware Description Language(HDL) to describe it. Simulation of the C/C++ source

code is also supported, extending the current design and adding any additional

blocks, protocols, and libraries required to replicate a functional hardware system

utilizing on-chip memories, DSP elements, and Flip-Flops. It can also help cal-

culate approximately clock speeds, possible violations, hardware resources used,

and provide a visual analysis of each compilation and its timing and data depen-

dencies in hardware representation, assisting users’ perception to ameliorate the

performance even further. This last visual analysis can significantly help engineers

improve the implementation by reducing latency, loop unrolling, and parallelizing

the design. Xilinx HLS produces the IP block that can be imported as an official

block in the Vivado IDE to be used as a part of a larger-scale implementation by

acquiring communication with the FPGA main CPU and having access to other

board hardware like DDR memory.

HLS Directives

The user-specified optimization directives are optional, and they can drive the

synthesis process to a specific behavior. An implementation can work without

these directives, but it is not recommended since they are crucial in assigning hi-

erarchy, roles, and structural optimizations that can significantly impact the per-

formance.

Below, various directive optimizations applied to the desired performance and

area goals can be satisfied. A large set of directives can be applied directly in the

source code by using pragmas readable by the pre-processor. The other method

for using directives is the TCL based method, where its possible to make multiple

solutions, then optimize by testing different directives for each one. The manage-

ment of the different solutions and their corresponding directives can be easily

configured within the GUI or even via the TCL based flow. Below, a set of impor-

tant directives is presented:

• Allocation: Reduces the number of operations, cores, and the more gen-

eral hardware resources with a possible negative impact on latency due to
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hardware sharing.

• Array Map:Fusing smaller arrays into larger with the main goal the resource

minimizing of the block ram (BRAM) [20].

• Array Partition: Reduces the read/write bottlenecks that appear on large ar-

rays by breaking them down into smaller ones, which can be accessed sepa-

rately. Below(Figure 5.8), the 3 modes are represented. For block and cyclic,

a ’factor’ parameter can define the size of chunks that will be created.

FIGURE 5.1: Array Partitions : UG902-HLS

• Array Reshape: Increases block ram access speed without using more block

ram, just by reshaping the data from multiple small(width) to fewer and

wider words.

• Data Pack: Creates a wider width word that packs many data fields of a

struct, which is preferred than many smaller transfers(Following the same

principle as Reshape).

• Dataflow: Allows for parallel execution of tasks, function, and loop with the

primary goal, the throughput/latency improvements.

• Dependence: HLS tools are very preservative, so they might avoid possible

risks by following safer but slower paths. According to some carrying de-

pendencies, these directives let users inform the compiler with more spe-

cific information to utilize and succeed better pipelining.

• Inline: Function boundaries are removed, so the source code can seem like

a united problem and removes hierarchies along with the functions’ calling

overheads.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
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• Interface: One of the most common directives that specifies the protocols

and communication between In/Out ports of the IP with the rest system.

• Loop Flatten: Flattens loops in order to succeed better dependency manage-

ment and apply tree calculations.

• Loop TripCount: It is used for a simple latency estimation when loop bound-

aries/iterations are unknown.

• Pipeline: Allows the overlapped execution while a given initiation interval(II)

can be set as a parameter that pinpoints the number of cycles needed before

new inputs can be accepted.

• Stream: During dataflow optimization, the selected array will be implemented

as FIFO or RAM. By default, every function’s arguments are not implemented

as FIFO, and in case of sequential transfers, streaming is preferable.

• Unroll: This directive assists the technique of loop unrolling by creating

multiple loop instances, so every operation can be placed in the right point

for maximizing the computational overlapping, without disrupting the data

dependencies.

5.1.2 Vivado IDE

Vivado Integrated Design Environment (IDE) was introduced in April 2012, while

it is the base environment where every Xilinx tool was developed. Using high-level

programming languages such as Verilog, VHDL, C/C++, and the ability to connect

many different parts of a system using an oversimplified block design offers a new

approach for designing, compiling, synthesizing, placing and routing and mon-

itoring any FPGA design. In other words, Vivado IDE is the GUI for the Vivado

Design Suite. Native Tcl interface is where all the Vivado design Suite tool were

written, making possible for the user to access and work with GUI or even directly

through Tcl commands via the provided Tcl Console or the Vivado Design Suite

Tcl shell. Everything starts by creating the block design, which can also be saved

as Tcl files, and it can be re-generated at any time, making easy its transfer from

computer to computer. Each design consists of basic modules like the central

processing unit (Zynq, MicroBlaze), the clocks, external DDR memory modules,

the custom IPs, and some other important interconnects, Direct Memory Access

Modules (DMAs) [56], and tools that are required for the successful communica-

tion between each different entity. The address manager pane provides the ability

to edit the base address, IP, and DDR/BRAM ports that can be assigned automat-

ically, like the I/O connectivity between the modules. Bear in mind that the IP
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can be further configured and programmed via the IP Integrator’s hardware man-

ager to edit the VHDL/Verilog generated files. The last step of the Vivado Design

Suite design process is the validation part, where the block design goes through

an inspection for possible errors and address violations. With the design vali-

dated, synthesis can take place where the RTL design can be converted into a logic

gate schematic. Then, place and route can be initiated, which eventually will con-

struct the final ’print’ plan that will be downloaded into the FPGA hardware as a

bitstream. Moreover, power analysis, design warnings, timings, overall hardware

utilization, and temperature analysis are some of the most valuable output logs.

Vivado IDE can also run the programmed FPGA with firmware currently running

in the ARM processors developed in Vitis. The FPGA runs as a standalone hard-

ware device is also available with the Vivado Design Suite.

5.1.3 Xilinx Vitis IDE

Vivado can use the Vitis Integrated Design Environment (Vitis IDE) for creating

applications based on the Zynq - 7000 series SoCs, Zynq UltraScale+ MPSoC [57],

and the MicroBlaze [58]. Vitis is an eclipse extension that supports C/C++ code

editors, libraries, compilers, and debugging tools. Directly after the bitstream pro-

duction in the Vivado Design Suite and since the exported hardware is generated

based on that bitstream, Vitis can load the .xsa files with all the required drivers.

In the C/C++ environment, both PS and PL can be configured, programmed, and

scheduled accordingly to the user’s purpose. The first thing that needs to occur is

the initialization of the PL modules like DMAs, IPs, and everything else different

from the ARM CPU(for example, timers, SD Mounting). When the C/C++ pro-

gramming procedure is completed, the FPGA must be connected with a PC via the

JTAG [59] port to program the hardware while the data sending/receiving can be

monitored and debugged via the UART [60] port. Every time a new change hap-

pens on the software side(how and what the ARM central processing unit runs),

then the ability to compile and program only the PS part is possible. The final

solution can reduce programming time since the PL part is not reset and does

not need to be reprogrammed from scratch. Another helpful feature is that Vitis

can program the hardware using remote access to a server PC that runs the Xilinx

Tools(with the respective Xilinx version).
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5.2 FPGA Platform

The targeted platform of this Thesis is the ZCU102. The size of the IPs in terms of

hardware resources is moderate, which means the usability of these modules can

be extended even further for a wider Xilinx family accelerator. This section will

present the primary hardware specifications of the targeted FPGA.

5.2.1 Xilinx Zynq UltraScale+ MPSoC ZCU102

FIGURE 5.2: Xilinx ZCU102 Evaluation Board overview:
www.xilinx.com - ZCU102

The Xilinx ZCU102, with the code name Zynq UltraScale+ XCZU9EG-2FFVB1156E

MPSoC, is an evaluation board with the following specifications:

• Quad-core 64bit ARM v8-A Cortex-A53 with L1/L2 cache.

• Dual-core 32bit ARM v7-R Cortex-R5 with L1 cache.

• ARM Mali-400 MP2 graphic processing unit with 64 KB L2 cache.

• 256KB on-chip ECC memory.

• 4GB 64bit ECC DDR4 SODIMM RAM, 260-pin(For PS)

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
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• 512MB DDR4(For PL)

• PCIe Gen 2x4 slots

• Supports: USB3.0, UART, JTAG, Display Port, HDMI(IN/OUT), Ethernet and

SATA

The specs of the Xilinx 16nm FinFet+ programmable logic fabric are shown below:

FIGURE 5.3: PL Fabric resources - ZCU102 User Guide

The top-level block diagram is presented below(Figure 5.4):

https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
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FIGURE 5.4: ZCU102 Top-Level Block Diagram - ZCU102 User
Guide

There are also many ways of data managing and linking CPU, DDR, BRAM, and PL.

AXI-4 full/Lite protocol [61] is used for streaming data(single data or burst of data)

between different devices. The capability of transferring large chunks of data is

possible by this protocol without repeating instructions and address mapping but

just the start address and size of the burst. Clock deviation between different mod-

ules can be handled using large FIFO for buffering the data, which are restricted

https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
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due to the low throughput a module possible has. A direct memory address mod-

ule can serve such a functionality; thus, the central ARM processor does not need

to ’feed’ the specific module with data to focus on certain and more essential tasks.

Axi-Lite is a lightweight interface built for small data transfers. Generally is used

for task scheduling instruction from ARM to DMAs or even small setup informa-

tion needed for an IP to begin computations.

On the other hand, being aware of the low throughput and latency of the main

memory, an ingenious strategy is to use the BRAM that can be configured in multi-

ple data structures, sizes, and setups, optimizing throughput and latency. BRAM’s

unfavorable characteristic limits the data can be stored because this kind of mem-

ory represents a cache like structure with cache like speeds. So BRAM can be a few

MBs in size, providing tremendous bandwidth. BRAM is located in the PL part,

and that is why the shape and size can be adjusted to be task-specific by having

multiple ports, banks, or even construct multiple different BRAMs that can even

split into multiple arrays as described above using the corresponding directives.

5.3 FPGA implemented Design Overview

In Figure 5.5, the overall FPGA design is presented, showing 4 Key parts. The first

and most important is the central processing unit that is the module from which

every instruction, initialization, and data transfer will be managed. The accelera-

tors make up the second group of modules focused on boosting computation per-

formance in task-specific sectors of the neural network, which cannot be handled

by CPU. Such tasks are the classic convolution, the Max-pooling, and finally, the

Transposed Convolution(or Deconvolution). The 3r d group consists of the DMAs

used for data transferring to/from IPs. Each IP channel stream got its own DMA

so the data transfers can be overlapped. The last group in this design is the Axi in-

terconnects, and more specific, the AXI interconnect(AXI-Lite) for programming

all the DMAs and IPs, but also the AXIsmartConnect built as an IP output(AXI-

Stream) driver to the High-performance slave of the Zynq that is connected to the

DDR module.
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FIGURE 5.5: Main Neural Network Block Design

5.3.1 Platform Accelerator Architectures

As presented above, each accelerator works independently having its own dma

channels and integrating techniques like pre-fetching, input line buffering, pipelin-

ing tasks and advanced BRAM data strategies in order to maximize throughput

avoiding read/write bottlenecks.
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FIGURE 5.6: Accelerator-System connectivity schematic

U-NET architecture was able to be implemented and accelerated in FPGA using

three custom IPs1 that accelerate certain computations giving a massive advan-

tage in performance compared with any other type of simple CPU running this

neural network in a more user-friendly, high-level programming language such as

python. A noticeable boost in performance also appears when even a lower-level

programming language such as C/C++ is compared with the FPGA’s low power and

efficient solution.

Convolution Accelerator

Computing the convolution is by far the most complex operation in the neural net-

work as its slowest routine takes up to 390 ms, handling a convolution between

an image of size:(256, 16, 16) and a filter with the size of (128, 256, 3, 3). From

Figure 5.6, the data flow starts from DDR directed by the specific DMA to the ac-

celerator’s input streams. When these data reach the custom module, a series of

activities start happening.

1" The maximum Input Image Resolution supported is 256×256
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FIGURE 5.7: Architecture of the Hardware used for Convolution

Figure 5.7 demonstrates the architecture of the classic convolution by breaking

down any necessary modules that are used to construct this accelerator.

First of all, this design’s data structures differ because each data type(image, filters,

bias) needs a special treatment according to the frequency, repeatability of data,

read/write patterns, and size. The BRAM utilization of this module it’s about 7% of

the overall Block RAM available to the ZCU102. Three separate buffers were used,

so three rows of the image can be stored. The input controller loads N elements

each time a new output row production is initiated, pushing these N elements into

the line buffer number 2, which always holds the newest input image row. Every

time that push happens to the LB2, two shift-up actions have receded, making

sure the old data of (Line Buffer 2)LB2 are shifted to the LB1 and respectively, the

LB1’s data are shifted up to the LB0.

There are 3 Line buffers because the kernel size is 3x3, so the intuition is that hav-

ing three lines of N elements each, it is possible to process a significant amount

of calculations (for each input channel) for these three lines, producing a part of

the output channel which has a shape of N elements. Each line buffer is also im-

plemented as block Ram, which only has a maximum number of 2 data ports. On
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top of that, each line buffer is divided into two smaller BRAM modules(the col-

ors/numbers at the top right side of each cell can show on which module is dis-

tributed 5.7). With banking, which is the partitioning in ’cyclic’ setup, each mem-

ory bank stores only a fraction of the total data. For example, each line buffer can

support two different actions: writing to an odd cell position(address) and writing

to an even cell position. To sum up, three different buffers, each with a native 2

data ports, are further split into two smaller ’arrays’ doubling the number of ports.

FIGURE 5.8: Cyclic Partition : UG902-HLS

Of course, the last actions result even more in the BRAM utilization burden. Af-

ter the shift-up (LB2 → LB1,LB1 → LB0), which happens every time the output

row changes, the DMA controller will fill the LN2 with a quick burst of N elements.

Starting with the bias data, each of the bias value covers one complete filter. Each

filter is going to create a different output channel. With that in mind, for each

filter, the first action needed is to initiate the output buffer ’Result’ with the bias

values for each cell. Thus, bias is already stored in the output by the initializa-

tion, which is more efficient than filling with zeros. For the bias, no local buffer is

used, just a register for the transfer to the output result, which means that it can be

loaded directly from the stream provided by the DMA. Simultaneously, a different

DMA channel is programmed by the central processing unit to transfer each input

line of the image in a local private BRAM storage handled by the IP. The IP accepts

and saves the image line as described before. The same happens for the filter in-

put stream, where each time the input channel changes, a new 3x3 filter is loaded

via stream. The local filter buffer is split into four different ’arrays,’ so the max-

imum throughput is achieved. Multiplications between the sub-matrix(window)

where the filter is sliding on and the actual filter are organized to a tree -structure

logic in order to utilize to the maximum the pipelining starting every single addi-

tion and multiplication the earliest possible. Having such large size floating-point

variables, ZCU102 is capable of producing output after four cycles of adding two

float variables and two cycles for the multiplication. This latency of 4 cycles for

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
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the addition between floating-point variables can be improved if the variable type

has been reduced to 16 bits or less. The ReLu module, which is embedded in the

convolution core, does not add any additional delays.

Below, a pseudo-code, thoroughly analyzed, represents all the backbones of the

altered/optimized algorithm and some crucial parts that improve the accelera-

tor’s performance, such as pre-fetching, pre-compile instruction swapping(which

works better than allowing the software to do this job), and loop unrolling.

///////////////////////// PSEUDO-CODE /////////////////////////
//Directives

1: #pragma HLS ARRAY_PARTITION variable=image_row_0 cyclic factor=2 dim=1
2: #pragma HLS ARRAY_PARTITION variable=image_row_1 cyclic factor=2 dim=1
3: #pragma HLS ARRAY_PARTITION variable=image_row_2 cyclic factor=2 dim=1
4: #pragma HLS ARRAY_PARTITION variable=filt cyclic factor=4 dim=1

//Streaming Interfaces
5: #pragma HLS INTERFACE axis register both port=image
6: #pragma HLS INTERFACE axis register both port=filter
7: #pragma HLS INTERFACE axis register both port=bias
8: #pragma HLS INTERFACE axis register both port=result

/*Starting by zero padding the ZB0, then fill the 1st and (N-1)th (last)
cell of the ZB1,2 with zero(between them the first data of the current
channel will be put).*/

9: for(int y = 0 ; y < (img_width) ; y++)
10: img_t0[y] = 0; /*Line buffer 0, all zeros every time the input

channel is changed*/
11: img_t1[0] = 0; // 1st element of LB1
12: img_t1[dim-1] = 0; // Last element of LB1
13: img_t2[0] = 0; // 1st element of LB2
14: img_t2[dim-1] = 0; // Last element of LB2

//Filter loop begins
15: for (int i = 0 ; i < filter_num ; i++)
16: {
17: float bias_t = bias.read(); /*Read the respective bias for the

current filter which*/
//Next up, output buffer will be initialized with the bias value.
/*
By doing this step here, it will be finished when
the main computation start
*/

19: for(int x = 0 ; x < output_dim ; x++)
20: {
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21: for(int y = 0 ; y < output_dim ; y++)
22: res[x][y] = bias_t;
23: }

//Channel Loop begins
24: for(int j=0; j < channels ; j++)
25: {

/*
Every time a new channel starts, a very first data read
intended for the LB1 must be executed. That means, when
a new channel begins, we need to put the 1st row of the input
image into the LB1(wrapped by padding) when the LB0 is zero.
The LB2 will be handled later.
*/

26: for(int z = 1 ; z < (dim-1) ; z++)
27: img_t1[z] = image.read();/*Assume, the stream sends

the data in the correct order*/
//Filter loading

28: for(int z = 0 ; z < KernelSize ; z++)
29: filt[z] = filter.read();

//Output row loop begin
30: for(int x=0; x<(output_dim-1); x++)

// The 1 less iteration will be explained later
31: {

//Reading the new data line from the input buffer
//directly to the LB2

32: for(int z = 1 ; z < (dim-1); z++)
33: img_t2[z] = image.read();

/*
pre-calculation of some important offsets, so the extra
computations for the addressing can be avoided during
the complex part.
*/

34: int offset1,offset2;
35: offset1 = 1;
36: offset2 = 2;

//Output column loop begins
37: for(int y = 0 ; y < output_dim ; y++)
38: {

//Loop filter has been fully unrolled
/*
Below, the element-wise multiplication takes place
between the line buffers current window and filter,
followed by summing the results each other in a
tree-like scheduling technique can take advantage
of the pipeline directive. Keep in mind that:
32bit float summation Latency: 4 cycles
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32bit float multiplication Latency: 2 cycles
*/

39: float reg0 = img_t0[y]*filt[0];
40: float reg1 = img_t0[offset1]*filt[1];
41: float reg01 = reg0+reg1;
42: float reg2 = img_t0[offset2]*filt[2];
43: float reg3 = img_t1[y]*filt[3];
44: float reg02= reg2+reg3;
45: float reg4 = img_t1[offset1]*filt[4];
46: float reg5 = img_t1[offset2]*filt[5];
47: reg01 = reg01 + reg02;
48: float reg03= reg4+reg5;
49: float reg6 = img_t2[y]*filt[6];
50: float reg7 = img_t2[offset1]*filt[7];
51: float reg04= reg6+reg7;

//offset pre-calculation for the next iteration
52: offset1 = y+2;
53: float reg8 = img_t2[offset2]*filt[8];

//offset pre-calculation for the next iteration
54: offset2 = y+ 3;
55: reg01 = reg01+reg03;
56: res[x][y] += reg04+reg8 + reg01;
57: }

/*
Shifting up one time, so the next iteration can
update/refresh the LB2, which shifted up its
data(like LB1 → LB0)
*/

58: for(int y = 1 ; y < (dim-1) ; y+=2) //unrolled 1 time
59: {
60: img_t0[y] = img_t1[y];
62: img_t1[y] = img_t2[y];
63: img_t0[y+1] = img_t1[y+1];
64: img_t1[y+1] = img_t2[y+1];
65: }
66: }//End of the output row loop

/*
Following the same way, the last iteration for the output
row will be completed. The reason of this split is that
an if statement is avoided. (Because the last row of the line
buffer, when the last row of input is reached,
needs to be filled with zeros)
*/

//////////////////////////////////////////////////////////////////
//Same procedure as above but for the last output row is omitted//
//////////////////////////////////////////////////////////////////

/*
pre-loading LB0 with zeros, because the next
iteration(Loop of input channels) needs to fresh
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start with that zero LB0 and the first input
row to the LB1.
*/

67: for(int y = 1 ; y< (dim-1) ; y++)
68: img_t0[y] = 0; //presetting LB0 to all zeros
69: }

/*End of input channels loop that means an input filter
with all of its channels has completed the convolutions
with the respective image channels.
*/
//Writing to stream the completed output (single)channel

70: for(int x=0; x<output_dim; x++)
71: for(int y=0; y<output_dim; y++)
72: result.write(res[x][y]);
73: }// End of filter loop
////////////////////// End of pseudo-code //////////////////////

∗Note: For the most of the loops the directive’ #pragma HLS pipeline’ was used

Transposed Convolution Accelerator

The transposed convolution accelerator uses the main algorithm idea from the pa-

per [34], when many parts have been altered and adapted to this U-NET architec-

ture with some standard required specifications like the power of 2 resolution of

the input/output image, a stride of 1 for the convolutions followed by the stride of

2 max-pooling(reducing size to half) and the standard ×2 up-sampling during the

deconvolution(transposed convolution). This work approach utilizes an average

to a low amount of BRAM resources, just 26% for ZCU102. That means the trans-

posed convolution IP is relatively lightweight, thus compatible with a wide range

of FPGAs. The fixed stride of 2 and the kernel size of two is a fixable constraint and

does not affect the main algorithm and speedup compared to a standard process-

ing unit.
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FIGURE 5.9: Architecture of the Hardware used for Transposed Con-
volution

Figure 5.9 describes the architecture, data structures, and information flow to/from

the IP via stream -that is handled from a dedicated for deconvolution DMA- and

some smaller modules like controllers, adder, and multiplier units that work in

parallel in most of the computations.

Starting from the data structures, the local buffer, which is the smallest one in

BRAM usage, is the so-called ’result buffers.’ As the figure represents, there are

two result buffers that, at first, hold a partial 2×out put_Columns, which as the

calculation proceeds to deeper channels, is completed and then pushed out via

streaming. This approach is way different from the simple convolution since ev-

ery output row is getting wholly calculated before streaming it out and carrying on

for the next output row. These buffers are used quite frequently so the above can

be feasible; hence the array split(banking) applied on these buffers has a factor of

4, meaning that Each of these two buffers is divided into four equally sized blocks

interleaving their corresponding main buffer elements.



5.3. FPGA implemented Design Overview 89

FIGURE 5.10: Transposed Convolution IP parallelism

Next up, according to its size, the filter occupies 1024(256×2×2) cells of the BRAM,

supporting up to 256 channels of filters that can be stored locally. This filter’s usage

frequency is low for the channels change, but huge concerning the running filter

since every element of the filter must be multiplied with the same input pixel. For

that reason, four extra registers were created that refreshed(pre-loaded) every in-

put channel with the new filter, and they are connected directly with the current

input pixel via fixed multipliers(center of the figure). The above can produce the

2×2 result in 2 cycles since everything works in parallel.

Most of the BRAM usage is spent on the local image buffer that holds up to 32×
128×128 = 524288 elements. That means the whole image can be store locally just

like convolution, but this time the largest image is only the ¼ of the largest con-

volution image. The size analogies are not proportional to the speedup because

transposed convolution can give up to ×250 in comparison with a standard CPU

running the deconvolution on a high-level user-friendly programming language

like python. This local image buffer also uses a factor 2 cyclic structure increas-

ing its read/write ports by dividing the primary buffers into smaller ones with the

same size. As the figure (pipeline HLS analysis) shows, the calculations taking two
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cycles involve multiplication, the one cycle load/stores, and the four cycles the

additions to the output result buffer. Everything works in parallel since there is

no data dependency between them. One important thing to be noted is that be-

cause of the loop unrolling, in the analysis figure, there are not just four(fully un-

rolled filter) calculations as expected, but eight because of the column loop it is

also unrolled(×2).

A brief description of how the IPs works starts with the input streaming of im-

age(which is the largest one) loaded with the programmed DMA’s help that trans-

fers the data in bursts from DDR4 directly to IP. The IP is the one who halts and

continuing the streaming flow according to its needs. That is why the BRAM is not

public and accessible by the DMA but private and configurable from IP. This strat-

egy also reduces data usage by storing only the upcoming required data and not

all the whole batch. The next step is to load bias that is only required one time per

output channel(on input filter). It is important to be mentioned that bias occupies

just a local register that initiates the output result buffers with its values exactly in

the same way as happened during the convolution part.

For each input channel running, a new filter(respectively to the input channel) is

loaded to the four registers that eventually multiplied with each input pixel. When

every input channel is completed, and the end of an input row is reached, it means

that the two result buffers carry the final 2× out put_Columns data, which are

eventually transferred back to the DDR4 with the help of the DMA controller(via

AXI4-Full stream). The same happens for the rest of the input pixels until the

transposed convolution computation has been finished.

Below, a pseudo-code is fully analyzed to make it easier for the algorithm affected

by some small tweaks and optimization techniques like loop unrolling, pre-fetching,

and the use of many different types of HLS directives.

///////////////////////// PSEUDO-CODE /////////////////////////

//AXI4-STREAM
1: #pragma HLS INTERFACE axis register both port=result
2: #pragma HLS INTERFACE axis register both port=bias
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3: #pragma HLS INTERFACE axis register both port=filter
4: #pragma HLS INTERFACE axis register both port=image

//Array Partitioning
5: #pragma HLS ARRAY_PARTITION variable=res_1 cyclic factor=4 dim=1
6: #pragma HLS ARRAY_PARTITION variable=res_0 cyclic factor=4 dim=1
7: #pragma HLS ARRAY_PARTITION variable=img cyclic factor=2 dim=1

//Starting with the whole image loading to the local BRAM buffer
8: for(int c = 0; c < ch ; c++)
9: for(int i = 0 ;i < dim ; i++)
10: for(int j = 0 ; j < dim ; j++)
11: image.read(img[c*dim*dim + i*dim + j]);

12: float bias_t; //just a register for bias
/*
Now we can start the transposed convolution(calculate every
the channel then add up to the result buffers to receive the
filt_num==out_channel respective result)
*/
//number of filters == output_channels

13: for (int i = 0; i < filt_num; i++)
14: {

/*
read bias and initialize result buffer with these values for
each filter==output_channel
*/

15: bias.read(bias_t);

//load all channel kernels for the current filter
16: int ch_offset=0;
17: for (int c = 0; c < filt_channels ; c++)
18: for(int x = 0; x < F_DIM ; x++)
19: for(int y = 0; y<F_DIM ; y++)
20: filter.read(filt[c*F_DIM*F_DIM + x*F_DIM + y]);

//Begin the input row loop
21: for(int x=0; x<height; x++)
22: {

//initialization of 2 first result rows with bias
23: for(int j = 0 ; j < o_dim ; j++)
24: res_0[j] = bias_t;
25: for(int j = 0 ; j < o_dim ; j++)
26: res_1[j] = bias_t;
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27: for(int j = 0; j < channels ; j++)
28: {

//preload some address offset useful for later use.
29: int filt_offset1 = j*F_DIM*F_DIM ;
30: int filt_offset2 = j*F_DIM*F_DIM + F_DIM;
31: int img_offset = j*height*width + x*width;

//Begin the input column loop
32: for(int y = 0; y < width; y += 2)
33: {

//mult 1 pixel of image with the whole kernel
//for each element in col calculate res.

34: res_0[y*s] += img[img_offset]*filt[filt_offset1];
35: res_1[y*s] += img[img_offset]*filt[ filt_offset2 ];
36: res_0[y*s+1] += img[img_offset]*filt[ filt_offset1 + 1 ];
37: res_1[y*s+1] += img[img_offset]*filt[ filt_offset2+ 1];
38: img_offset += 1; //preload for the next iteration
39: res_0[(y+1)*s] += img[img_offset ]*filt[filt_offset1];
40: res_1[(y+1)*s] += img[img_offset]*filt[ filt_offset2 ];
41: res_0[(y+1)*s+1]+= img[img_offset]*filt[ filt_offset1 + 1 ];
42: res_1[(y+1)*s+1]+= img[img_offset]*filt[ filt_offset2+ 1];
43: img_offset += 1; //preload for the next iteration
44: }
45: }//end of channels loop

//now 2 output lines are ready to stream them back
//the current output_channel is completed

46: for(int j=0;j<out_width;j++)
47: result.write(res_0[j]);
48: for(int j=0;j<out_width;j++)
49: result.write(res_1[j]);

50: }//end of input column loop

51: }//end of input row loop

////////////////////// End of pseudo-code //////////////////////

MaxPool Accelerator

The Maxpool accelerator IP is the most simple between the custom IPs since it can

downscale the image according to the kernel size and the stride. In this work, the

max pool IP’s settings are pre-defined. Given that the neural networks work only

with images with the same height and width size, this size must be a number of

the form 2n (where n is an integer) with a maximum resolution of 256×256. Max

pool accelerator IP is down-sampling the input to the half resolution to diminish
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the computation complexity while the image’s subject is preserved, and the out-

put size is maintained in the form of 2n .

The minuscule BRAM usage(less than 1% on ZCU102) makes this IP suitable for

any platform. The ability to support more massive inputs without any noticeable

BRAM increase(after some source code tweaks) makes this IP unique, flexible, and

fast at the same time.

The main idea of the line buffer is also applied for this module. More detailed,

the line buffer number/size is selected according to the Kernel size. Following the

same strategy as before, the N lines that will be saved locally in the IP must have

the same height size with the Kernel Height. In this thesis work, a kernel of size 2×2

is used(with a stride of 2), so the number of IP’s Line buffers is two. Having one

line buffer for the image inputs with ’width’ size includes many benefits from DDR

to BRAM transfer time overlapping with the previous computation times, to fast

cell access. Again, a window of Kernel size makes the comparisons between the

K er nel si ze ×K er nel si ze elements finding the one with the largest value mean-

ing that it has the greatest impact and actual weight significance for the image. So

the greatest value among the sub-matrix is selected and directly is streamed out.

FIGURE 5.11: Architecture of the hardware used, for MaxPool

In terms of the hardware architecture, the final IP consists of two main parts:
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the line buffers and the comparators connected with a multiplexer’s help. AXI4-

stream is the streaming solution used for the input/output. The input inserts the

module in batches of KernelSize rows and Image width columns. For this purpose,

the local buffer is the basic BRAM with two ports, one for reading and one for writ-

ing. Furthermore, each buffer is split into two smaller equal-sized arrays doubling

its ports and increasing the throughput. For this work, where the kernel size is two

and the stride is also 2, the main buffers’ division into two smaller is enough since

the actual computational core needs are four elements, two from each buffer. The

multiplier role, which is controlled from the current running column of the pro-

cess, chooses the respective sub-matrix from the buffer to drive it to the com-

parators section. The logic behind the selected sub-matrix follows the function

cur r _out put_column∗str i de → cur r _out put_column∗str i de+ker nel si ze

for both buffers.

The comparators work in a tree structure comparing two elements each time until

there is only one final value, the greatest of all.

////////////////////// PSEUDO-CODE //////////////////////

//AXI4-Stream
1: #pragma HLS INTERFACE axis register both port=image
2: #pragma HLS INTERFACE axis register both port=result

//Line buffers array partition
3: #pragma HLS ARRAY_PARTITION variable=img_t0 cyclic factor=2 dim=1
4: #pragma HLS ARRAY_PARTITION variable=img_t1 cyclic factor=2 dim=1

5: float max = -100000; //Initiate ‘max’ register with -inf

//Channel loop starts
6: for(int i = 0 ; i < in_channels ; i++)
7: {

//Output row loop start
8: for(int x = 0; x < output_dim ; x++)
9: {

/*
Filling up the 2 line buffers with width size
elements(2 new rows per fill)
*/

10: for (int z = 0 ; z < width; z++)
11: image.read(img_t0[z]);
12: for (int z = 0 ; z < width; z++)
13: image.read(img_t1[z]);

//comparators Part - Tree structure
14: for (int y = 0 ; y < output_dim; y++)
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15: {
16: if(img_t0[stride*y] > max)
17: max = img_t0[stride*y];
18: if(img_t0[stride*y+1] > max)
19: max = img_t0[stride*y + 1];
20: if(img_t1[stride*y] > max)
21: max = img_t1[stride*y];
22: if(img_t1[stride*y + 1] > max)
23: max = img_t1[s*y + 1];
24: result.write(max);
25: max = -100000; //reset max variable with the -inf
26: }

27: }\\End of row loop

28: }//End of Channel loop

////////////////////// End of pseudo-code //////////////////////

5.4 Improved Architecture Version 2.0

In this section, every key difference will be presented and analyzed compared

with the previous version. Version 2.0 of the UNET Implementation is based on

the original design described before and aims to reduce latency while increasing

power/energy efficiency by taking advantage of the parallelization achieved on

FPGA. Applying a slight tweak to the high customizable template provided as an

initiate design makes it possible to accomplish a 10-20x gain in performance.

5.4.1 Accelerators Design Updates - Analysis

The simplest and indicative form of the architecture is made for extreme tweak-

ing and adjusting as the user desires. The Convolution Accelerator carries the

most of the changes compared to the Transposed Convolution, while Maxpool IP

has undergone some minor changes to its data types. Some critical elements of

the design consist of the data stream of a big data-packed vector(using multiple

DMAs), line buffers, parallel multiplications, the computation ‘window,’ and the

BRAM fragmentation (break down into smaller arrays for less local read/store lim-

itations). This slightly altered version of the design includes changes in BRAM par-

titioning, data form, and the computation window. In the following two sections,

every single deviation from the original design will be presented and analyzed.
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A significant change from naive architecture and affects all the IPs has to do with

the data type. From the floating-point that was used initially, this version moves to

fixed-point data types. This dramatically helps loading / storing times and com-

putation complexity. The latency of the computations is sliced in half compared

with the initial data type. FPGA platforms are generally known for their advantage

on floating-point arithmetic using a specialized accelerator part for this purpose.

The fixed-point’s overall bit size is the same signed 32-bit long, providing a total

of 20 bits for the integer part(including the sign bit) and the rest 12 bits for the

fractional part.

Convolution Accelerator

FIGURE 5.12: Architecture(v2) of the Hardware used for Convolu-
tion
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Figure 5.12 demonstrates the improved convolution architecture by breaking down

any necessary modules that are used to construct this accelerator.

First of all, this design’s data structures differ because each data type(image, filters,

bias) needs a special treatment according to the frequency, repeatability of data,

read/write patterns, and size. This module’s BRAM utilization is about 10% of the

overall Block RAM available to the ZCU102.

The main extension from the basic version of this IP took place in the processing

window. In the new design, the line buffers increased from three to six. As a re-

sult, six rows of the image can be stored, and a total of four parallel calculations

can be executed. The same strategy followed for the row axis was also applied in

the column axis producing eight output results per row. More detailed, the input

controller loads 2×N (during initialization) to the Line Buffer(LB) zero and one.

Each time the algorithm proceeds to a new group of output rows(four), 4×N lines

are saved to the following LB2,3,4,5 buffers. LB4 and LB5 are connected(for shift

up) with the LB0 and LB1 respectively. The reason for that connection is that, in

this window of six-line buffers, only four convolutions can be executed per group

of three lines because the kernel has a size of three. These groups are:

(LB0,LB1,LB2), (LB1,LB2,LB3), (LB2,LB3,LB4) and (LB3,LB4,LB5).

Every time a push happens to the last four line buffers, two shift-up actions have

receded, making sure the old data of (Line Buffer 4)LB4 are shifted to the LB0 and

respectively, the LB5’s data are shifted up to the LB1, so they are ready for the next

iterations.

The intuition behind these big windows is to produce a 4×8 output per algorithm

iteration, reducing the loop overheads, increasing the parallelization while taking

advantage of the data bursts that work better with larger chunks of data. The pre-

vious design was requesting N elements (one Line) for every iteration compared

to the new design, which can read a four times larger size and produce even more

dense output results in a single iteration.

Each line buffer is implemented as block Ram, which only has a maximum num-

ber of 2 data ports. On top of that, each line buffer is divided into eight smaller

BRAM modules to support the eight parallel calculation for each line buffer(the

colors/numbers at the top right side of each cell can show on which module is

distributed 5.12). With banking, which is the partitioning in a ’cyclic’ setup, each

memory bank stores only a fraction of the total data. For example, each line buffer
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can support eight different actions. To sum up, six different buffers, each with a

native eight data ports, are further split into eight smaller ’arrays’.

Of course, the last actions result even more in the BRAM utilization burden. The

bias values are already stored in the output buffers by the initialization, which is

more efficient than filling with zeros(same as the original design). For the bias, no

local buffer is used, just a register for the transfer to the output result, which means

that it can be loaded directly from the stream provided by the DMA. The output

buffer is also doubled like the line buffers. The new design has two output buffers,

increasing the ports since the outputs are way more populated than before. The

partition strategy applied to these output buffers follows a partition of eight(for

each one).

Simultaneously, a different DMA channel is programmed by the central process-

ing unit to transfer one channel of the input image each time to a local private

BRAM storage handled by the IP. The IP accepts and saves the image before the

actual computation part even starts. The same happens for the filter input stream,

where each time the input channel changes, a new 3x3 filter is loaded via stream.

The local filter buffer is split into four different ’arrays,’ so the maximum through-

put is achieved. Multiplications between the sub-matrix(window), where the filter

is sliding on, and the actual filter are organized to a tree-structure logic to utilize

the pipelining capabilities starting every single addition and multiplication the

earliest possible.

Transposed Convolution Accelerator

Figure 5.13 describes the improved architecture, data structures, and information

flow to/from the IP via stream -that is handled from a dedicated for deconvolution

DMA- and some smaller modules like controllers, adder, and multiplier units that

work in parallel in most of the computations.
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FIGURE 5.13: Architecture(v2) of the Hardware used for Transposed
Convolution

Starting from the data structures, most of the local buffers are untouched in this

new architecture version. The output buffers, which are two separate blocks of lo-

cal Ram, are used quite frequently; hence the array split(banking) applied on these

buffers has a factor of 8, compared with the factor of 4 used in the initial design.

Each of these two buffers is divided into eight equally sized blocks interleaving

their corresponding main buffer elements.

According to its size, the filter occupies 1024(256×2×2) cells of the BRAM, sup-

porting up to 256 channels of filters that can be stored locally, at the same way

as before. Four extra registers were created that are being refreshed(pre-loaded)

every input channel with the new filter, and they are connected directly with a

group of 4 input pixels via fixed multipliers(center of the figure) that creates a four-

times more parallelized multiplication than the previous version(with just one in-

put pixel). Each of the input pixels will be multiplied precisely in the same way as

before(with all four filter registers, producing a 4×4 output). That also happens for

the rest three of the input pixels in parallel. The output for each iteration becomes

2x8 compared with the naive output of 2×2 per iteration. Again, most of the BRAM

usage is spent on the local image buffer that holds up to 32×128×128 = 524288

elements. That means the whole image can be stored locally. This local image

buffer also uses a factor 2 cyclic structure increasing its read/write ports by divid-

ing the primary buffers into smaller ones of the same size. As the figure (pipeline

HLS analysis) shows, the calculations are significantly reduced in latency, similar
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to the convolution accelerator due to the fixed-point data type. Everything works

in parallel since there is no data dependency between them.

A brief description of how the IPs works starts with the input streaming of an im-

age(which is the largest one) loaded with the programmed DMA’s help that trans-

fers the data in bursts from DDR4 directly to IP. The IP is the one who halts and

continuing the streaming flow according to its needs. That is why the BRAM is not

public and accessible by the DMA but private and configurable from IP. This strat-

egy also reduces data usage by storing only the upcoming required data and not

all the whole batch. The next step is to load bias that is only required one time per

output channel(on input filter). It is important to be mentioned that bias occupies

just a local register that initiates the output result buffers with its values exactly in

the same way as happened during the convolution part.

For each input channel running, a new filter(respectively to the input channel)

is loaded to the four registers that eventually multiplied with the group of four in-

put pixels saved in registers. The above has the same functionality compared to

the single input pixel (in the initial design. In this version, the amount of compu-

tation and output has been quadrupled. When every input channel is completed,

and the end of an input row is reached, it means that the two result buffers carry

the final 2×out put_Columns data, which are eventually transferred back to the

DDR4 with the help of the DMA controller(via AXI4-Full stream). The same hap-

pens for the rest of the input pixels until the transposed convolution computation

has been finished.

MaxPool Accelerator

Maxpool accelerator remains the same in terms of design, except that the data

type of input/output and local computation has been updated to the new type

variable of fixed-point. That significantly reduced the read/store, multiplication,

and addition activities to half the latency compared to the initial logic. As a result,

maxpool IP is now more powerful than GPU(Matlab PCT) in execution time and

more power/energy-efficient, producing more results per joule.
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Chapter 6

Results

The Results chapter focuses on providing details and benchmarks on many dif-

ferent aspects of performance and functionality outputs. Some simple experi-

ments executed on the custom training tools show the capabilities of this entry-

level mechanism. Furthermore, power analysis, throughput, latency, and energy

consumption are the key categories where the platforms will be later compared.

In the section (’training’), the training performance and accuracy will be described.

Considering that the neural network’s training part is developed to run on simple

python using the Numpy library only, it provides a profound and unique -inside

’open source’ world- demonstration on a fully customizable back-propagation

process that verifies the structure. In the section ‘ZCU platform’, the ZCU plat-

form is being described and then compared (section) with some alternative plat-

forms/processing units where the UNET neural network is implemented.

6.1 Training

The training session is tested in a limited data-set to inspect the neural network’s

learning capabilities and its rigid functionality. The tiny data-set consists of 4 dif-

ferent images from the TGS Salt identification challenge by Kaggle [62] that aims to

discover salt in the sea by analyzing images taken from a satellite orbiting the earth

at low altitude. Some sparse examples of brain tumors also included(Dataset of 4)

as well as some rat muscle cell on microscopy by Boston University - Biomedical

Image Library [63], showing the abstract capabilities, wide range, and robustness

of the training implementation. The train function is initialized with the following

recommended setup (which is the same for all the subjects and categories):

• Dropout: Disabled, Group Normalization: Enabled(batch= 2)

• Binary classifier: Dice Coefficient
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• Weight Initialization strategy: Normal distribution with weight scale: 0.1

• Learning rate: 0.008

• Adam Optimization: Enabled

• Image Resolution: 64x64

*Note = 64x64 is the maximum resolution recommended for the training part be-

cause of the low training speed running on a single CPU core while using only the

basic library Numpy.

The figure below illustrates some of the training results, which are interestingly

accurate, confirming the U-net functionality. The rough edges in some parts of

the predicted outputs can be smoothed over(according to application/subject) by

tweaking the bias trim value.

FIGURE 6.1: Training Results

Moreover, the average training(example: TGS Salt) accuracy on par with the train-

ing epochs is presented in figure 6.2. The time needed for the passage of one

forward/backward propagation, for the settings and image resolution mentioned
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earlier, is approximately 20 seconds, which means 50 epochs need about 17 min-

utes to complete. Again, these numbers are not the main focus of this work, but

the construction of this low-level training function, which for the moment is not

available as open-source knowledge. Eventually, this work can seem very use-

ful for the developers who want to implement such a process on any other plat-

form/device written in a specialized environment that provides optimizations and

colossal performance boost (like CUDA for GPU acceleration, VHDL for FPGA IP

accelerators).

FIGURE 6.2: Training Accuracy over epochs

6.2 Specifications of the Compared Platforms and ab-

straction Levels

The following observation, for the forward step, includes an abstract pool of de-

vices/environments -i5 3210M [64], NVIDIA GTX 750Ti [65], Python, C, Matlab

Parallel Computing Toolbox [16], Keras- since there are no other published results

regarding the standard UNET architecture running on FPGA or any other embed-

ded system/Custom Accelerator.
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6.2.1 ZCU102

ZC102 was selected for this work, providing enough BRAM resources for the test-

ing phase, where the whole U-NET architecture can be implemented, boosting

three processes: Maxpooling, Convolution, and Transposed Convolution with the

main focus to be on the less known Deconvolution(transposed Convolution). This

approach’s variable type is the default 32-bit floating-point, which can easily be

modified to 16 or even an 8-bit fixed point domain for the maximum Zynq Ultra-

Scale+ MPSoC utilization. There are multiple proposed strategies in chapter 7 that

can help the abrupt performance soaring.

FIGURE 6.3: Overall Zynq UltraScale+ MPSoC Utilization

6.2.2 Intel i5 3210M

TABLE 6.1: Intel i5 3210M - Specifications Table

Lithography 22nm

Cores/Threads 2/4

Clock Frequency (Max) 3.1GHz

Cache (L3) 3MB

TDP 35W

Max Memory Bandwidth 25.6GB/s
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6.2.3 NVIDIA GTX 750Ti

TABLE 6.2: GTX 750Ti Gold Sample(Palit) - Specifications Table

Lithography 22nm

Shading Units 640

Clock Frequency (Max) 1281MHz

TDP 60W

Memory Clock 1502 MHz

Max Memory Bandwidth 96.13GB/s

Compute Capability 5.0

FP32 Performance 1.640 TFLOPS

6.2.4 Parallel Computing Toolbox - Matlab

Parallel Computing Toolbox [16] utilizes many acceleration methods both for CPU

and GPU. Loop unrolling, creation of parallel loops, parameters sweeps, multi-

core distribution of the workload(with/without batch grouping), and other vital

functions are used to achieve the highest result for the given hardware. CUDA

support also enables the users to write the source code with a few specialized

functions which translate the arrays into useful GPU data(GPUarray). The perfor-

mance tuning is not an obstacle during programming since everything is handled

directly by the Matlab toolbox so that the end-user can be focused on real appli-

cation testing.

6.2.5 Software Prototype implementations:

Jupyter Notebook(Numpy) & Eclipse CDT

The use of Jupyter Notebook can be perceived as a friendly tool where anyone

can use, test, and tune a simple UNET architecture while involving some essential

parts that expose and depict the architecture’s inner side. There are no partic-

ular functions and libraries for deep-learning acceleration (such as TensorFlow).

Matrix-to-matrix calculations are held by NumPy that reduces the complexity of

the source code with the compact macros without the need for a detailed compu-

tation.

Eclipse CDT [66] is an Integrated Development Environment based on Eclipse

specialized for C/C++ development. Since the higher levels are functional, the

source code from the latest step(Python - Jupyter Notebook - NumPy) needs to
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be decomposed even further into smaller pieces. The libraries used in Python, in-

cluding matrix multiplications, rotations, n-dimension array creations, image pre-

processing, equations, image loading tools, data transferring, optimized struct

types, and initialization methods, must be reproduced into C level. For imple-

menting an embedded system, the libraries mentioned above and algorithms’ anal-

ysis is a vital step. This way, it is possible for the researcher to locate intense com-

putational sections and data-hungry functions that need to be elevated in perfor-

mance.

6.3 Overall/Sub-part Latency Comparisons

In this short section, some of the supported platforms will be used to demonstrate

some latency results per layer of the U-NET. Custom Python(Numpy), C, Matlab’s

Parallel Computing Toolbox(CPU/GPU), and ZCU102 are eligible for this per layer

measurement. This initial architecture is only the basic block -built for evaluation

and proof of concept- that can be further extended, tweaked and optimized to

reach the desired performance. The more advanced version 2 of the architecture

is presented in the following section(6.5).

6.3.1 Latency

Latency is the delay window between two points on the time axis. Often less la-

tency is preferred since a system’s performance can be measured in latency or time

of execution until a single result is generated.

Below (Figure 6.4), some layers of each category(max pool, convolution, trans-

posed convolution) are presented. The red values show a slower performance

compared to the reference platform(gray column) while green values indicate a

faster result.

The values are calculated after multiple simulations/executions representing the

average performance of each system. A batch of one was used for all the following

examples 6.4, 6.5.
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FIGURE 6.4: Latency measurements for 128×128 resolution in mil-
liseconds

*Note: The native resolution for the current architecture is 128×128

FIGURE 6.5: Latency measurements for 256×256 resolution in mil-
liseconds

The overall Latency of each platform for both 128×128 and 256×256 are shown

below:
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FIGURE 6.6: Overall Latency for: (128×128) & (256×256)

The prototypes’ (Pythoc, C) performance is not optimal and lacks behind the other

platforms. The prototype solutions do not exploit all the available hardware re-

sources resulting in a poor scaling pattern as the input images’ resolution increases.

The parallel computing toolbox gives greater latency values, resulting in higher

rates of throughput. ZCU102 with the current light optimization techniques, can-

not compete with any high-level environment or professional hardware (which is

not the purpose of this work but to provide a prototype ecosystem of UNET and

the assisting tools in every level of abstraction having in scope every researcher

aiming for an embedded approach/endeavor). Although, transposed convolution

IP offers some interesting results in terms of latency-power.
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6.4 Final Indicative Performance

6.4.1 Throughput

Throughput, in general terms, is the number of units that goes through a process

per unit time or more simple, the rate of production or flow rate at which a task is

completed. Generally, higher throughput values means better results in terms of

hardware performance.

R: Throughput: Number of tasks that go through a process per unit time

I : The number of tasks that are currently under a process. It is measured in num-

ber of units

T : This is the time that the tasks spend from the beginning to the end of a process

R = I

T
(6.1)

6.4.2 Power Consumption

Power consumption is the amount of a natural resource(or watt in this case) con-

sumption that is used for the functionality of a device per unit time. Energy effi-

ciency of a system can be improved by diminishing the average Power consump-

tion(Wh) by simplifying and using a smaller architecture for a design.

6.4.3 Energy Consumption

A task requires a specific amount of energy in a given time in order to completely

compute a task assignment, which called energy consumption. This metric values

are preferred to stay a the lowest levels for the accomplishment of a assigned task.

E: Energy, in Joules

P: Total power for the device to function

T : The time is needed for the task to be executed.

E = P ∗T (6.2)
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The following equation will be useful for the final results that will follow:

Ener g yConsumpti on

Imag e
= mi n

(
Power (Tot al )

T hr oug hput
,Power (Tot al )∗Latenc y

)
(6.3)

Imag es

Joule
= max

(
T hr oug hput

Power (Tot al )
,

1

Power (Tot al )∗Latenc y

)
(6.4)

Table 6.3 depicts the comparison results between the prototype software imple-

mentations running on single CPU core and the ZCU102 FPGA at the maximum

256x256 resolution. The efficiency and speedup values are calculated compared

to the C environment(Single CPU Core - no optimizations) for batch= 1.

TABLE 6.3: Performance Analysis - Prototypes & FPGA

Python(Numpy) C(Eclipse) ZCU102

Clock Frequency (MHz) 3100 3100 200

Latency (s) 199.78 25.85 6.44

Latency Speedup 0.129 1x 4.013x

Throughput (Images/s) 0.005 0.04 0.16

Throughput Speedup 0.125x 1x 4x

Total On-Chip Power (Watt) 8.75 8.75 4.68

Power Efficiency 1x 1x 1.87x

Energy Consumption (Joule) 1748.11 226.19 30.14

Energy Efficiency 0.129x 1x 7.504x

Images/Joule 0.0006 0.0044 0.03

A visualization of the table 6.3 is presented below:
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FIGURE 6.7: Latency Speedup & Energy Efficiency chart

The figure 6.7 above shows that ZCU102 is leading in every aspect of the tests, from

latency to power measurements with the given batch size of one. These tests are

built to provide a general visualization of the original UNET architecture running

on FPGA, so the classic and friendly environment served from Python that can be

used by anyone can also be significantly accelerated or even executed on a smaller

embedded device.

FIGURE 6.8: Matlab(PCT) CPU & GPU throughput per batch size
(I/O not Included)
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FIGURE 6.9: Keras CPU & GPU throughput per batch size (I/O not
Included)

Table 6.4 extends the comparison of table 6.3 to more advanced/powerful plat-

forms like Matlab’s Parallel Computing Toolbox(PCT) and Keras-Tensorflow run-

ning on both CPU and GPU. The efficiency and speedup values are calculated

compared to the CPU(Keras) environment(Multi-Core - Heavy optimizations). The

throughput values are selected optimally with respect to the previous throughput-

per-batch figures. 6.9,6.8.

TABLE 6.4: Performance analysis - High Level Environments &
FPGA for the maximum supported resolution of 256×256

CPU(PCT) GPU(PCT) CPU(Keras) GPU(Keras) ZCU102

Clock Frequency (MHz) 3110 1281 3100 3100 200

Latency (s) 0.66 0.17 0.2 0.0115 6.44

Latency Speedup 0.304x 1.16x 1x 17.39x 0.03

Throughput (Images/s) 4.97 10.49 6.76 144.64 0.16

Throughput Speedup 0.735x 1.55x 1x 21.39x 0.02x

Total On-Chip Power (Watt) 35 60 35 60 4.68

Power Efficiency 1x 0.583x 1x 0.583x 7.48x

Energy Consumption (Joule) 23.03 10.35 5.18 0.69 30.14

Energy Efficiency 0.225x 0.5x 1x 7.503x 0.17x

Images/Joule 0.043 0.097 0.19 1.449 0.03
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*The benchmarks above illustrate a indicative promo(proof of concept) of the ini-

tial ’template’ architecture which is build as a highly adjustable back bone. The

Version 2 of the architecture is presented in the next section providing a huge

boosted compared with the base design.

The latency between the High-level environments versus the FPGA is quite con-

siderable. GPU is the most powerful device among the rest, but at the same time,

it is the one with the highest power demand reaching 60 Watts. On the other

side of the coin, FPGA can be slower and less energy efficient, but the fact that

4.68 can compute such a heavy workload is quite impressive. Having 4.68 Watts

as the power consumption value means that the FPGA platform can be supplied

from just small batteries [67], which can provide 1.2-1.8 Volts at 50mA constant for

hours, producing about 3-5 Wh according to its chemical composition. The part

where FPGA has greatly improved is where transposed convolution takes place.

This work’s simple convolution IP is not optimal and can be optimized or even

replaced with other already published convolution IPs that are common and fa-

miliar to anyone.

FIGURE 6.10: On-Chip Power Report

The FPGA clock can also be increased with or without any architectural changes.

The medium BRAM utilization makes the architecture to be compatible with a

broader family of FPGA platforms. As mentioned earlier, the results and com-

parisons are just some indicative visualizations, with the main focus of this work

to be the ecosystem between all these environments from high-level training to
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FPGA implementation that was not available to everyone till today, so even more

researchers can step on some work to further accelerate the classic architecture of

U-NET.

6.5 Architecture Version 2.0

In this section, the results and comparisons between all the abstraction levels and

platforms will be presented. The indicative/initial design has been customized;

therefore, a refreshed version of the architecture is being made. This new design is

comparable with the existing systems in terms of Latency when the power sector

dominates most cases.

This approach’s variable type is 32-bit fixed-point, providing a total of 20 bits for

the integer part(including the sign bit) and the rest 12 bits for the fractional part.

Below 6.11 the total utilization of the ZCU102 is visualized.

FIGURE 6.11: Overall Zynq UltraScale+ MPSoC Utilization - V2

Since, the utilization of the PL fabric has been increased, the total power con-

sumption(fig: 6.12) subsequently reached a peak of approximately 7 Watt.
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FIGURE 6.12: Overall Zynq UltraScale+ MPSoC Power Consump-
tion - V2

Custom UNET implementations and FPGA comparison

The figure 6.13, describes the comparison between similar platforms versus the

FPGA implementation. Moreover, all the CPU based platforms are used showing

that FPGA can clearly compared with the fastest optimized version of CPU(Keras)

that makes use of all the available CPU features and acceleration techniques. Fur-

thermore, the zcu is compared to the GPU for Matlab(Parallel Computing Toolbox)

and Keras for both raw execution time and overall latency including I/O opera-

tions. Matlab latency measurements was not stable producing wide spread be-

tween each test. The actual recorded measurements were the values with the low-

est latency result(since a true cold-start matlab execution could lead to 10x worst

results).

The I/O for Keras is calculated as follows:

Test GPU Maximum transfer speed is 88GB/s (ideal transfers)

Keras needs the whole available VRAM during the UNET initialization and mod-

eling process before the inference part, so the time takes to fill up the 2GB on the

current test model is t = 1ms∗2GB
88GB = 22.72ms
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FIGURE 6.13: CPU & GPU setups vs FPGA

Below (Figure 6.14), all the layers of each category(max pool, convolution, trans-

posed convolution) are presented and compared.

The values are calculated after multiple simulations/executions representing the

average performance of each system including the I/O procedures in order each

platform to fully execute the inference. A batch of one was used for the following

example.
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FIGURE 6.14: Latency measurements for 256×256 resolution in mil-
liseconds - Architecture V2

The updated design provides lower latency comparable with the GPU implemen-

tation made by Matlab(written in CUDA). Having these minuscule latency differ-

ences is a huge first step for the UNET on embedded systems since this can be
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translated into a huge efficiency boost in the power sector. On the other hand,

when FPGA is compared to the prototype (custom) implementations, the gap is

massive.

Table 6.5 depicts the comparison results between the prototype software imple-

mentations running on single CPU core and the ZCU102 FPGA at the maximum

256×256 resolution. The efficiency and speedup values are calculated compared

to the C environment(Single CPU Core - no optimizations) for batch= 1.

TABLE 6.5: Performance Analysis - Prototypes & FPGA

Python(Numpy) C(Eclipse) ZCU102

Clock Frequency (MHz) 3100 3100 187

Latency (s) 199.78 25.85 0.36

Latency Speedup 0.129 1x 71.81x

Throughput (Images/s) 0.005 0.04 2.78

Throughput Speedup 0.125x 1x 71.81x

Total On-Chip Power (Watt) 8.75 8.75 6.985

Power Efficiency 1x 1x 1.25x

Energy Consumption (Joule) 1748.11 226.19 2.51

Energy Efficiency 0.129x 1x 89.95x

Images/Joule 0.0006 0.0044 0.4

A visualization of the table 6.5 is presented below:
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FIGURE 6.15: Latency Speedup & Energy Efficiency chart

High-Level UNET implementations and FPGA comparison

Table 6.6 extends the comparison of table 6.3 to more advanced/powerful plat-

forms like Matlab’s Parallel Computing Toolbox(PCT) and Keras-Tensorflow run-

ning on both CPU and GPU. The efficiency and speedup values are calculated

compared to the CPU(Keras) environment(Multi-Core - Heavy optimizations).Latency

values are calculated for batch of 1 while throughput values are selected optimally

with respect to the previous throughput-per-batch figures.6.9,6.8.

TABLE 6.6: Performance analysis - High Level Environments &
FPGA for the maximum supported resolution of 256×256

CPU(PCT) GPU(PCT) CPU(Keras) GPU(Keras) ZCU102

Clock Frequency (MHz) 3100 1281 3100 3100 187

Latency (s) 0.66 0.39 0.2 0.0342 0.36

Latency Speedup 0.304x 0.52x 1x 5.84x 0.56

Throughput (Images/s) 4.97 4.76 6.76 33.74 2.78

Throughput Speedup 0.735x 0.7x 1x 4.99x 0.41x

Total On-Chip Power (Watt) 35 60 35 60 6.985

Power Efficiency 1x 0.583x 1x 0.583x 5.01x

Energy Consumption (Joule) 23.03 23.28 5.18 2.05 2.51

Energy Efficiency 0.225x 0.22x 1x 2.5x 2.06x

Images/Joule 0.043 0.043 0.19 0.48 0.4
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The following benchmarks illustrate the above performance comparison with a

simple view, including some of the most important categories.

FIGURE 6.16: High level Environments & FPGA - Visualization

The latency between the High-level environments versus the FPGA is relatively

small. GPU(Keras) is the most powerful device among the rest, but at the same

time, it is the one with the highest power demand reaching 60 Watts. The differ-

ence between GPU(Keras) and FPGA on the latency favors GPU, which difference

is notably improved for the power section(in comparison with version 1 architec-

ture). On the other side of the coin, when comparing FPGA with any other plat-

forms, FPGA performs well on latency comparisons and is very impressive on the

power sector that dominates most of the cases for all the tests. The part where

FPGA has dramatically improved is where transposed convolution and MaxPool

takes place. With the current version, is possible to replace CPU/GPU setup on
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many machines that have limited power source running semantic segmentation.

Some useful examples include the installation of the final product(embedded sys-

tem) into technologies that operate with minimum power consumption(such as

mini-satellite) replacing a common CPU/GPU and reaching their performance /

power efficiency with just a fraction of their total on-chip power.
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Chapter 7

Conclusions and Future Work

This chapter outlines and evaluates the work of this study. Moreover, headings for

future work, potential expansions, and enhancements are being given.

7.1 Conclusions

In the most recent couple of years, ‘U’ Shaped architectural neural networks have

ended up being used for handling complex medical image analysis, thus assist-

ing doctors to a more accurate diagnosis process in favor of patients. This type

of neural network keeps astonishing the world with unparalleled and unique ef-

fectiveness in a short period since its first appearance. As the data, complexity,

and human demands are growing, high-performance computational equipment

is essential to countermeasure these demands while it follows an energy-effective

path. This thesis’ goal was to build a ‘bridge’ between the U-NET architecture and

the actual embedded world. Multiple level interfaces were constructed, offering

tools and utilities that are not available as open sources right now to assist many

engineering fields by accelerating the development of this fascinating category of

image semantic segmentation. On top of that, a more personal approach on hard-

ware is made by Ch. Skoufis, who designed three individual IP cores that acceler-

ate convolutions, transposed convolutions, and max-pooling processes that can

be used by multiple FPGA platforms or even customized to reach some specified

requirements. The current work supports up to 256x256 image analysis for all the

programming levels: Python, C, Embedded-C. In a Python environment, the cus-

tom training scenario fully customizable by the user for further knowledge shar-

ing, and the possibility for training implementation on a lower-level language is

also possible. FPGA huge performance benefits appear when zcu102 is compared

with Python (Prototype source code) and C (Single Core - Prototype Source code).

Simultaneously, optimized UNET made by higher-level interfaces like TensorFlow,
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and Parallel computational tool by Matlab was less effective towards image/sec

throughput measurements compared with the FPGA.

7.2 Future Work

The three IPs proposed by this thesis are easily expandable by design for potential

use and development, providing many opportunities for its expansion and opti-

mization by other similar U-net neural networks. The offered tools that work as

assists during the training process, weight conversion between multiple levels of

abstraction, and image pre-processing can also be tuned to meet the user’s re-

quirements. Some of these ideas are introduced underneath.

• The current hardware design involves using multiple DMA engines to dis-

tribute data to different IP channels so each IP can control and store the data

in its local private Block RAM. Some other techniques like ’memory map’ on

which every memory module, such as Block RAM or DDR, has its fixed map-

ping and address range boosting the burst mode data transfers. Another way

of fast but uncertain data transferring from DDR to IP is via the accelerator

coherency port(ACP), which is a 64-bit AXI slave port located on ARM. This

port is similar to HP(high performance) ports when the main difference is

that the ACP port is directly connected to the Snoop control unit. As a result,

whenever an action is initiated from the IP side( AXI Master), then the first

thing will happen is the L1, L2 cache check for the specific data(physical ad-

dress). If an instance of the data is available, they are immediately streamed

back, which is a speedy and energy efficient transaction without accessing

the DDR. In the case of ’miss,’ the transaction will be re-directed to the DDR

memory, introducing an additional latency that may degrade the system’s

performance. Using the ACP should be done with extreme caution.

• Layer pipeline is an excellent way of the overall latency reduction. The main

idea is the data forward to the next IP as soon as they get ready. With more

detail, this smart scheduling involves each IP that generates elements that

will be pushing them directly from their output to the next’s IP’s input so(the

next IP) can start processing on the way.

• Image inference is a similar pipelining trick that can improve the overall

throughput of images per second. When an image’s calculation is completed

for a specific stage-layer, then as this image proceeds to the next computa-

tional block, the previous one remains idle until the running image reaches

the end of the neural network. To avoid this kind of resource waste and to
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diminish such delays is to utilize each stage by pushing a new image in the

network each time the ’queue’-pipeline of the image(s) progress.

• The current work has not implemented any weight pruning; thus, it uses the

accurate 32-bit floating-point (Architecture Version 1) & 32-bit fixed-point

(Architecture Version 2) for a more precise evaluation that is required for

the medical sector. A sophisticated quantization is also possible, while the

accuracy can be preserved.

• A ’first-pass’ more abstract way of optimization is currently applied to the

three IPs making room for many other fine-grained tweaks and even deeper

loop unrolling.

• An HLS directive called data_pack can be used to ’concatenate’ multiple

smaller words into one bigger and passed through the stream one signifi-

cant transaction. For example, having many 8-bit word transactions that

can increase overhead due to transferring protocol, four 8-bit words can be

packed together, creating a 32-bit word that can be transferred at once while

the unpacking can be completed at the recipient’s side.

• There is a possible solution that enables Transposed convolution to function

without fully loading the input image in its local Block RAM. Optimizing HLS

code and mixing the algorithm with other streaming methods, the input im-

age can be read in smaller batches allowing enough space on the PL Fabric

for even larger image resolution support. The main idea is to load just the

’running’ input row, which is essential for calculating the two output rows.

This loading process’s scheduling must be carefully implemented to ensure

no additional obstruction or loading bottleneck during the intensive com-

putational part of the transposed convolution algorithm.

• A more friendly FPGA environment supporting the conversion of the out-

put result into multiple image formats (stored back to local disk) is also a

standout feature that needs to become a reality.

• One necessary imperfection of the current semantic segmentation archi-

tecture is the lack of dynamic image resolution and format support. More

specifically, a future architecture upgrade must have the ability to accept

any size of resolution images(not just in the form of 2n) that eventually will

be resized and cropped during processing as they go through the network.

The custom accelerators can also be upgraded into more dynamic modules

from any network to match and fit in almost any design.
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• The concatenation of the individual IPs is also a possible solution that can

decrease the data transfer latency while accelerating the execution by us-

ing feed-forward techniques in the same IP. Similarly, with the Relu imple-

mented in the convolution IP, the max pool IP can also be implemented in

the Convolution IP, calculating ’on-the-run’ the output.

• This work includes batch normalization optimization only for the Python

version and training for faster results. This approach can be extended even

further on Keras, including learnable weights from Keras to C and FPGA car-

rying the extra Batch normalization variables that can tremendously help

accuracy and training times.
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