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Abstract

The rapid dissemination of the COVID-19 pandemic in recent times has
turned the focus upon developing strategies for eradicating the COVID-19 disease.
As development of vaccinations against SARS-CoV-2 virus has proven to be useful
for the immunization and prevention of severe cases, it is important to employ
optimal control policies regarding inoculation of a population while taking into
consideration factors such as the available vaccine resources, the death counts and
attaining herd immunity.

In this work, an age-structured compartmental epidemiological model is
proposed in order to model the dynamics of COVID-19. The model is then used to
describe the dissemination of the disease in Greece based on available data using
system identi�cation techniques and a-priori knowledge of the disease behavior.
The available data are processed to estimate the true number of infections and to
best suit the model. The results are then presented for the data processing, the
speci�cation of the system parameters and the �tting of the system outputs to the
data. Finally, preliminary work on the optimal vaccination control strategy based
on Pontryagin's Minimum Principle is presented for a controller which drives the
system to herd immunity while minimizing the vaccine resource utilization and the
number of deaths in the population.
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Chapter 1

Epidemiological Models

1.1 Introduction

N
ovel coronavirus disease (COVID-19) has imposed an intractable
challenge upon communities because of its highly contagious nature and its

characteristics regarding transmission which are not yet fully understood.
This has given rise to questions regarding the prediction of the dynamics of this
disease in a population, as well as the employment of control policies either
through non-pharmaceutical interventions or vaccination.

Several models have been proposed for modeling disease dynamics and
developing optimal control policies. The oldest reference to an epidemic model in
the literature dates back to the 16th century. The model was proposed by
Bernoulli, D. as an attempt to model the spread of smallpox. The following types
of epidemiological models have prevailed up to present time:

� Compartmental Models

� Stochastic Models

� Deterministic Models

� Epidemiological Agent-Based Models

Agent-Based Models (ABMs) model the behavior of individuals in a
population by utilizing autonomous decision-making entities called `agents' [1].
The agents' decisions are probabilistic, therefore ABMs are inherently stochastic
models. ABMs are not governed by mathematical equations, such as Ordinary or

1



[Chapter 1. Epidemiological Models]

Partial Di�erential Equations (ODEs/PDEs). This renders ABMs unsuitable for
use in the �eld of Control Systems. [2, 3]

In the following paragraph, Compartmental Models are discussed.

1.1.1 Compartmental Models

Compartmental models comprise the dominant type of epidemiological
models. These include well-celebrated models such as SIR, SEIR, etc., and some
variations of these models adapted to speci�c aspects regarding our knowledge of
the characteristics of the disease (eg. latent period) or aspects that inherently
a�ect social interactions and thus a�ecting spread (such as isolation through
hospitalization). The concept of dividing the population in groups (termed
`compartments') of speci�c interest in the dissemination of a disease was
introduced in 1926 by Kermack, W.O. and McKendrick, A.G., who developed the
SIR model [4]. Among the works that were published in the early 20th-century,
the SIR model proposed by Kermack, W.O. and McKendrick, A.G. was able to
adequately describe various disease outbreaks at that time.

Compartmental models are further divided into deterministic and stochastic
models. Stochastic Epidemic Models involve the use of stochastic processes in
order to account for uncertainty in the parameters. The SIR model proposed by
Kermack, W.O. and McKendrick, A.G. is an example of a deterministic
compartmental model, since it does not model any uncertainty in the parameters.
Common processes used in compartmental epidemiological systems are Markov
chains (in the discrete-time case) and Markov processes (in the continuous-time
case). Markov chains/processes can easily be applied to compartmental modeling
due to the inherent characteristic of transitions among compartments in
compartmental models. [5, 6]

Various models have been proposed for modelling the epidemic dynamics of
COVID-19 disease and control of such epidemiological systems [Table 1.1]. These
models generally do not rely upon precise biological laws, but often on
observations on the e�ects of the disease in a given population.

A summary of the SIR [4] compartmental model is given in [Table 1.1].
Variants of the SIR include the SIRD [7] model, which takes into consideration the
mortality of the disease, the SIHRD [8][9] model, which also describes the disease
dynamics upon the hospitalized population.

2/70



[Chapter 1. Epidemiological Models]

Moreover, SEIR model accounts for the e�ect of the disease dynamics on the
early stages of the infection. The Exposed (E) compartment is typically used for
integrating the e�ects of the disease latency period for diseases that are not
contagious immediately after infection. However, for diseases where this is not the
case, the exposed (E) compartment can also be used for describing the incubation
period.

The SIR model accounts for permanent immunity once an infected individual
recovers from the disease. This can be a reasonable assumption for diseases like
measles, rubella, etc. However, for many diseases, the acquired immunity may be
short-term, lasting for several months (such as the �u, the novel coronavirus
disease, etc.), or several decades (such as the smallpox). The SIRS and SEIRS [10]
models consider short-term immunity, therefore are suitable for modelling the
dynamics of such diseases.

The SLIAR/SEIAR [11] model describe the e�ects of the symptomatic and
asymptomatic population. This can be particularly useful, for example, when the
asymptomatic population can spread the disease with a di�erent rate the
symptomatic (who may practice self-isolation or be hospitalized).

Furthermore, the disease dynamics may vary depending on certain
characteristics of each individual. For example, it has been observed that the novel
coronavirus disease has a higher mortality rate among male individuals [12],
individuals with comorbidity and underlying diseases [13] or elderly individuals
[14]. Moreover, studying how the disease spread evolves among individuals based
on social factors is of substantial signi�cance in order to acquire a more solid
understanding of the social and economic impact of the disease upon the
population.

Compartmental models, despite their simple and intuitive structure, impose an
unrealistic assumption of homogeneity of susceptible and infectious individuals in
the population. This assumption might be acceptable in small populations, however
in larger populations (e.g. considering the population of a country) it can lead to
wrong dynamical evolution of the disease in the model.

3/70



[Chapter 1. Epidemiological Models]

Network-based Compartmental Models

The oversimplifying assumption of homogeneity in the population can be dealt
with (for �nite-dimensional state vectors) by introducing groups of the population
in the model based on a speci�c attribute of the individuals and by modeling the
interactions among these groups. Individuals can be di�erentiated by attributes
such as:

� geolocation,

� age,

� gender,

� underlying medical conditions, e.g. heart disease, obesity, etc.

Depending on the number of groups that the population is divided into, homogeneity
becomes less e�ective on the dynamics.

1.2 Model Design for COVID-19 Disease Dynamics

Choosing and designing an appropriate model for forecasting the epidemic
behavior of COVID-19 in a given population should satisfy the following criteria:

� concisely describe the di�erent groups of the population which are of
substantial importance when studying the disease in�uence upon these
groups,

� adequately take into consideration social interactions among the population.

� a control strategy can e�ectively be applied and its e�ect can be re�ected on
the system equations, and

� the model should �exibly adapt to given data sets when parameter
identi�cation is considered.

In this work, two-dose vaccination is considered as most of the vaccines approved
so far for COVID-19 require a two-dose administration.

4/70



[Chapter 1. Epidemiological Models]

Model Equation

Count

Description of the System States Application References

Sir 3 The SIR model comprises three (3) state variables: the susceptible
(S) population, indicating the population which is vulnerable to the
disease, the infectious (I) population which have contracted the
disease and can further transmit it, and the removed (R) population,
which has either recovered from the disease (acquiring permanent
immunity) or have been removed from the population (due to migration
or death).

[4], [15], [16],
[17], [8]

Sird 4 The SIRD model additionally takes into consideration the deceased
(D) in an explicit manner, either because of demography or due to the
disease.

[7], [18]

Siqr 4 In addition to the SIR model, SIQR takes into consideration the
quarantined (Q) population, e�ectively describing the number of the
diagnosed cases.

[19], [20]

Sihrd 5 Similar to SIQR, the SIHRD takes into consideration the hospitalized
(H) population, which does not transmit the disease (eg. due to
hospital protocol). Moreover, SIHRD considers the fraction of the
population that is deceased (D).

[8], [9]

Seir 4 In addition to the SIR model, SEIR also accounts for the latent or
incubation period of the population that is exposed (E) to the disease.
Alternatively, the E compartment can be considered to describe the pre-
symptomatic population.

[21], [22],
[23]

Seirs 4 The SEIRS model is a slight modi�cation the SEIR model, in that the
acquired immunity is temporary.

[10], [24],
[25]

Seihrd 6 Similar to SIHRD, SEIHRD also includes the exposed (E) population. [26]

Mseir 5 In addition to the SEIR model, the MSEIR model also takes into
account the maternal (M) immunity of the newborn population, eg.
as maternal antibodies are transmitted during pregnancy.

[27]

Suqc 4 The SUQC model comprises the susceptible (S) population, the
unquarantined (U) infectious population, the quarantined (Q)
infectious population either through self-isolation or hospitalization, as
well as the o�cially con�rmed (C) cases.

[28], [29]

Sliar

(Seiar)

5 Similar to SEIR, the SLIAR (SEIAR) model considers the population
that is exposed (S) to the disease. Moreover, this model
makes a distinction between symptomatic infectious (I) and
asymptomatic infectious (A) population.

[11]

Sidarthe 8 The SIDARTHE model is essentially an expansion of the infectious
(I) and removed (R) compartments of the SIR model. Speci�cally,
it comprises the susceptible (S) population, the infectious (I)
asymptomatic and undiagnosed population, the diagnosed
(D) symptomatic population, the ailing (A) undiagnosed
but symptomatic infected population, the recognized (R)
symptomatic and diagnosed population, the threatened (T)
population in deteriorating condition, the healed (H) from the
disease population and, lastly, the extinct (E) from the disease
population.

[30], [31]

Table 1.1: Brief overview of commonly used compartmental models in epidemiological systems

modelling and control. The circular indication with the upper half part �lled denotes a model

that has been used for modelling COVID-19 dynamics, the circular indication with the lower

left half part �lled denotes a model that has been used for control using non-pharmaceutical

interventions, while the circular indication with the lower right half part �lled indicates a model

that has been used for vaccination control.
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1.2.1 Proposed Model without Control

In this study, an age-structured model is proposed which describes the spread
of the disease among individuals of di�erent age groups. This enables us to study
the following aspects of the disease spread:

� study the evolution of the disease on each age group, based on the disease
dynamics, and

� how each age-group in�uences all others through social factors, such as social
contacts.

Taking the above into consideration, de�ne the state vector of the system as

x(t) =
[
S(t) E(t) I(t) R(t) V l

+(t) V l
� (t) D(t)

]>
. Then, following model is

proposed:

ẋ(t,x(t)) := f(t,x(t)) =
d

dt



S(t,x(t))
E(t,x(t))
I(t,x(t))
R(t,x(t))
V l
+(t,x(t))
V l
- (t,x(t))
D(t,x(t))


=



fS(t,x(t))
fE(t,x(t))
fI(t,x(t))
fR(t,x(t))
f lV+(t,x(t))

f lV-(t,x(t))
fD(t,x(t))


, (1.1)

where

S(t,x(t)) = [S1(t,x(t)) S2(t,x(t)) S3(t,x(t)) S4(t,x(t))],

E(t,x(t)) = [E1(t,x(t)) E2(t,x(t)) E3(t,x(t)) E4(t,x(t))],

I(t,x(t)) = [I1(t,x(t)) I2(t,x(t)) I3(t,x(t)) I4(t,x(t))],

R(t,x(t)) = [R1(t,x(t)) R2(t,x(t)) R3(t,x(t)) R4(t,x(t))],

V l
+(t,x(t)) = [V l,1

+ (t,x(t)) V l,2
+ (t,x(t)) V l,3

+ (t,x(t)) V l,4
+ (t,x(t))],

V l
- (t,x(t)) = [V l,1

- (t,x(t)) V l,2
- (t,x(t)) V l,3

- (t,x(t)) V l,4
- (t,x(t))],

D(t,x(t)) = [D1(t,x(t)) D2(t,x(t)) D3(t,x(t)) D4(t,x(t))]

(1.2)

are vectors describing the compartments which comprise the population:
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[Chapter 1. Epidemiological Models]

� the population that is susceptible (S) to the disease,

� the population that has been exposed (E) to the disease and is not yet
infectious,

� the population that is infectious (I) with a possible ailing outcome,

� the population that has recovered (R) from the disease,

� the population that is vaccinated (V�) but is not yet protected,

� the population that is vaccinated (V+) and is protected, and

� the population which is deceased (D),

for each age group. These age groups are indicated by the superscripts 1, 2, 3, 4
corresponding to the age groups 0 − 17, 18 − 39, 40 − 64, and 65+ respectively.
Moreover, superscript l indicates the vaccines that are deployed in the population.

Moreover, the system functions

fk(t,x(t)) =


f 1
k (t,x(t))

f 2
k (t,x(t))

f 3
k (t,x(t))

f 4
k (t,x(t))

 , (1.3)

where k ∈ {S,E, I, R, V l
+, V

l
−, D}, are de�ned and for each age group i ∈ {1, 2, 3, 4}

we de�ne:

Ṡi(t,x(t)) = f iS(t,x(t)) = −λi(t, I(t))
Si(t)

Ni

+ ξiR
i(t) + ψiV

l,i
+ (t) (1.4a)

Ėi(t,x(t)) = f iE(t,x(t)) = λi(t, I(t))
Sitotal(t)

Ni

− σiEi(t) (1.4b)

İ i(t,x(t)) = f iI(t,x(t)) = σiE
i(t)− γi(t)I i(t)− ηi(t)I i(t) (1.4c)

Ṙi(t,x(t)) = f iR(t,x(t)) = γi(t)I
i(t)− ξiRi(t) (1.4d)

V̇ l,i
− (t,x(t)) = f l,iV�(t,x(t)) = −λi(t, I(t))

V l,i
� (t)

Ni

− ρl
wi,lb
τl
V l,i
� (t) (1.4e)

V̇ l,i
+ (t,x(t)) = f l,iV+(t,x(t)) = ρl

wi,lb
τl
V l,i
� (t)− ψiV l,i

+ (t) (1.4f)

Ḋi(t,x(t)) = f iD(t,x(t)) = ηi(t)I
i(t) (1.4g)
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where

λi(t, I(t)) =
∑

j∈{1,2,3,4}

aj,i(t)[1− vj,i(t)]Ij(t), (1.5)

V i
� (t) =

∑
l∈{1,..,kv}

V l,i
� (t), V i

+(t) =
∑

l∈{1,..,kv}

V l,i
+ (t), (1.6)

Sitotal(t) = Si(t) + V i
� (t) (1.7)

Ni denotes the number of individuals at age-group i and is de�ned as

Ni = Si(t) + Ei(t) + I i(t) +Ri(t) + V i
+(t) + V i

- (t) +Di(t) (1.8)

for all t ≥ 0, since neither vital dynamics nor aging are considered in this model.
For the total population N , it is

N =
4∑
i=1

Ni (1.9)

Throughout this work, only the dependency of the system states (de�ned in
Paragraphs 1.2.1 and 1.2.2) from variable t is denoted for simplicity. The dependency
from the state and input vectors will be denoted whenever it needs to be emphasized.

Description of the Modelled Characteristics of COVID-19

COVID-19 disease is observed to a�ect people regardless of age di�erently,
with older individuals exhibiting higher mortality rates [14, 32, 33] and longer
recovery time [34]. Moreover, the incubation period of COVID-19 is higher for
older individuals (aged 65 or older) [35, 36] and transmissibility begins 1-3 days
prior to symptom onset [37]. Research suggests that immunity that is acquired by
exposure to the SARS-CoV-2 virus is temporary [38, 39] as seroprevalence among
individuals drops depending on the age of the individual [40]. Parameters aj,i(t)
and ηi(t) are generally chosen to be time-varying. A variety of factors may
in�uence the values of these parameters. For example, aj,i(t) is expected to drop
during the warm seasons as people tend to move outdoors and/or indoor spaces
are better ventilated. Viral transmutations can also cause variability in these
parameters. Furthermore, there may be a relation among the NPI measures and
the fatality rates, as investigated in Section 4.

Age-varying system parameters are indicated by their corresponding subscripts
and are presented in Table 1.2.

8/70
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Parameter Description

aj,i(t) number of e�ective contacts among infectious individuals at age-

group j and susceptible people at age-group i

σi rate in which an infected person becomes infectious

γi recovery rate for an infected individual

ηi(t) fatality rate of an infected individual

ξi rate of loss of naturally acquired immunity at age group i

ψi rate of loss of vaccination-induced immunity at age group i

vj,i(t) non-pharmaceutical interventions among susceptibles at age group

i and infectious at age group j

wl,ib e�cacy rate of vaccine l for age-group i at second dose

ρl rate of attendance for 2nd dose for vaccine l

τl time interval between 1st dose and immunization for vaccine l

Table 1.2: Brief overview of system parameters.

1.2.2 Proposed Model with Control

In addition to the disease dynamics described by (Eq. 1.4), we introduce the
system with control input vector u, de�ned as:

u(t) =
[
u1(t) u2(t) u3(t) u4(t)

]> ∈ Rm

where ui(t) =
[
u1,i ... ukv ,i

]
describes the vaccination strategy employed upon

age-group i. kv denotes the total number of vaccines used.
By augmenting the initial system functions of (Syst. 1.4) with the control variables,
we receive:

Ṡi(t,x(t),u(t)) = f iS(t,x(t),u(t)) = f iS(t,x(t))−
kv∑
l=1

ul,i(t) (1.10a)

Ėi(t,x(t)) = f iE(t,x(t)) = f iE(t,x(t)) (1.10b)

İ i(t,x(t)) = f iI(t,x(t)) = f iI(t,x(t)) (1.10c)

Ṙi(t,x(t)) = f iR(t,x(t)) = f iR(t,x(t)) (1.10d)

V̇ l,i
− (t,x(t),u(t)) = f l,iV- (x(t),u(t)) = f l,iV- (x(t)) + ul,i(t) (1.10e)

V̇ l,i
+ (t,x(t)) = f l,iV+(x(t)) = f l,iV+(x(t)) (1.10f)

Ḋi(t,x(t)) = f iD(t,x(t)) = f iD(t,x(t)) (1.10g)

It is now evident that the model with control Eq. (1.10) is in the a�ne in the

9/70
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control form, which can prove useful when applying Pontryagin's Principle:

ẋ(t,x(t),u(t)) = f(t,x(t)) +Bu(t) (1.11)

Si Ei Ii
Ri

Di

V-
l,i V+

l,i

λi(aji(t),vji(t),I(t)) σi

γi

ηi(t)

ξi

ρl wb
l,i / τl

ul,i ψi λi(aji(t),vji(t),I(t))

Figure 1.1: Schematic representation of the compartment transitions for the
proposed model with control.
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Chapter 2

System Output and Measurements

2.1 Introduction

T
his chapter focuses on de�ning the system outputs and presenting
the methodology for collecting the data (measurements) that can describe the

system outputs. The system states cannot always be directly inferred; for example,
it is not possible to keep measurements of the number of infected individuals who
are exposed in each age group (system states Ei(t)) and do not transmit the
disease. However, based on the data of the total number of cases for each age
group, these states can be made observable in the output of system.

Of course, the preceding discussion makes clear that there is a close relation
between the system outputs and the measurements. The system outputs, given as
a linear combination of the system states, should be de�ned so as to match the
available measurements.

For the system with control de�ned in Paragraph 1.2.2, the system outputs
y ∈ Rny are de�ned in the following manner:

ẋ(t) = f(x(t)) +Bu(t)

y(t) = Cx(t)
(2.1)

In Section 2.2, the available data from the disease spreading in Greece are
assesed and in Section 2.4.1, the system outputs are de�ned so as to match the
data.

11
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2.2 Collection of Data

In this study, national data from Greece are collected, processed and utilized
as a study case. The collection of data satis�es the following criteria:

� the collected data must adequately contain information corresponding to our
model's characteristics as much as possible, for example data per age-group,
and

� the collected data must originate from reliable sources

Taking all of the above into consideration, the measurement data originate from
the publicly available data from the Greek National Public Health Organization
(EODY) [41], the Johns Hopkins University [42] [43] and the Hellenic Government
[44]. The following measurements were collected from these sources:

� daily con�rmed cases per age-group and as a total since the beginning of the
pandemic [41, 45],

� daily registered deaths per age-group and as a total over the same period [41,
45],

� cumulative recovered cases of the population as a total [43],

� cumulative vaccinations as a total for all age groups [44].

2.3 System Outputs

In this section the system outputs described in (2.1) are formulated. Given the
available data mentioned in Section 2.2, it is now evident that from the system with
controls the following outputs should be provided:

� the cumulative daily cases for each age group, yicases(t)

� the cumulative daily deaths for each age group, yideaths(t)

� the cumulative daily number of vaccinated individuals for each age group,
yivaccinated(t)

� the number of recovered cases, yrecovered(t)
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The cumulative cases per age group i at a day t consist of all cases of group i up
to day t. Each of these cases can be found either in states Ei(t), I i(t), Ri(t) or Di(t),
or in the Si(t) compartment since immunity is impermanent. De�ne the vector for
total cumulative cases ycases(t):

ycases(t) :=


y1cases(t)
y2cases(t)
y3cases(t)
y4cases(t)

 =


E1(t) + I1(t) +R1(t) +D1(t)
E2(t) + I2(t) +R2(t) +D2(t)
E3(t) + I3(t) +R3(t) +D3(t)
E4(t) + I4(t) +R4(t) +D4(t)

 (2.2)

Due to the de�nition of the state equations in Sections 1.2.1 and 1.2.2, the number of
individuals that have lost naturally acquired immunity over time cannot be deduced
using a linear combination of the system states. This introduces a systematic error
between the system outputs and the measurements.

Similarly, the deaths per age group i are found in state Di(t). De�ne the vector
for total cumulative deaths ydeaths(t):

ydeaths(t) :=


y1deaths(t)
y2deaths(t)
y3deaths(t)
y4deaths(t)

 =


D1(t)
D2(t)
D3(t)
D4(t)

 (2.3)

The total number of vaccinated individuals at age group i using vaccine l,
yl,ivaccinated(t), are found in states V l,i

− (t) or V l,i
+ (t). De�ne the vector for the number

of vaccinated individuals yvaccinated(t):

yvaccinated(t) :=



y1,1vaccinated(t)

y2,1vaccinated(t)

...

ykn,1vaccinated(t)

...

y1,4vaccinated(t)

y2,4vaccinated(t)

...

ykn,4vaccinated(t)



=



V 1,1
− (t) + V 1,1

+ (t)

V 2,1
− (t) + V 2,1

+ (t)

...

V kn,1
− (t) + V kn,1

+ (t)

...

V 1,4
− (t) + V 1,4

+ (t)

V 2,4
− (t) + V 2,4

+ (t)

...

V kn,4
− (t) + V kn,4

+ (t)



(2.4)

The number of recovered individuals for all age groups is given by:
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yrecovered(t) :=
4∑
i=1

Ri(t) (2.5)

The system output vector y(t) becomes:

y(t) =


ycases(t)
ydeaths(t)
yrecovered(t)
yvaccinated(t)

 (2.6)

Observing the number of the recovered individuals, yrecovered(t), as well as the
number of deaths for each group ydeaths(t) and the number of vaccinated
individuals (yivaccinated(t)) is speci�cally important for the control strategy in order
to minimize death counts and achieve herd immunity.

2.4 Data Proccessing

The collected data for the con�rmed cases can only describe the detected
cases of COVID-19. Misreporting of the COVID-19 cases can lead to a false
epidemiological pro�le of the disease in the population. Therefore we need to make
a prediction of the true number of cases by estimating the IFR of COVID-19.

The system outputs yivaccinated(t) describe the individuals who have received the
�rst dose from the vaccine. These individuals reside in the state V i,l

− (t) for a mean
time equivalent to the time period between the two doses and the time required to
acquire immunity before transitioning to state V l,i

+ (t). Moreover, the available data
on the vaccinations do not pertain to each age group, but rather as a total for all
age groups.

In this section, the estimation methodology for the true number of COVID-
19 cases is proposed and the methodology used to process the data available on
vaccinations is presented.
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2.4.1 Estimation of the True Number of COVID-19 Cases

As COVID-19 disease can spread asymptomatically in the population,
discrepancy between the true number of cases and the reported number of cases
can be expected. Therefore, the reported number of cases may not be able to
capture the true extend of the pandemic. In order to infer an estimation for the
true cases, we turn our focus on the reported number of deaths, as these
measurements are considered accurate.

The IFR (Infection Fatality Rate) is a key parameter for the estimation of
the true scale of COVID-19. This parameter expresses the ratio of deaths due to
COVID-19 to the true number of COVID-19 infections and is di�erent from CFR
(Case Fatality Rate), which is simply the ratio of COVID-19 deaths to reported
number of COVID-19 infections. As the IFR cannot be fully determined amidst the
pandemic, it has to be estimated.

As IFR is typically lower than the CFR, the IFR can be estimated by the
lowest CFR among di�erent countries. Two countries with consistently low
reported CFR are Germany and South Korea. [46, 47] We choose Germany as the
benchmark country in order to estimate IFR, as the disease dynamics may be
more cohesive between Greece and Germany (for example, because of the
circulation of viral mutations throughout Europe, etc.).

The estimated true number of cases is given by:

Ci
est.(t) =

Di(t+ τd)

IFRi
est.

(2.7)

where τd indicates the delay from exposure to death.

Due to the low fatality in the age group 1, however, we may not be able to
infer a prediction for this age group. Research suggests that most COVID-19
infections originate from the 2nd and 3rd age groups [48] and that individuals in
age group 1 are overally less susceptible to the disease [49]. Therefore, we do not
propose a prediction for age group 1.

The prediction for the true number of cases is used from the 4th week since the
beginning of the pandemic. The data for reported cases (eg. the data for the 1st
age group) have been shifted to account for the delay from exposure to reporting
(τr).
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2.4.2 Processing of the Vaccination Data

Since the data for vaccinations for each age group and for each vaccine is not
available, we must also estimate the number of vaccinations for each group.
As of early-April 2021[50]:

� 67% of vaccinations were done using the BNT162b2 vaccine,

� 25% of vaccinations were done using the AZD1222 vaccine, and

� 8% of vaccinations were done using mRNA-1273 vaccine.

Up to that time, the vaccination of healthcare professionals (H.P.) was
initiated. The number of healthcare professionals in 2020 is estimated to be
approx. 95,000 [51]. No further information has been presented regarding the
percentage of healthcare professionals having been vaccinated as of April 2021 and
their age distribution. We assume that 70% of H.P. have been vaccinated and that
they are evenly distributed in age-groups 2 and 3.
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Chapter 3

Parameter Speci�cation

3.1 Introduction

I
n order for the model to describe the dynamics of the disease in Greece, the
parameters of the system must be suitably chosen. The model's parameters will

be speci�ed from system identi�cation, bibliography and by manual selection.

Some of the system parameters' values can be inferred from the bibliography,
given that these parameters have been su�ciently studied in the bibliography.
Parameters whose values are not known in advance are found using system
identi�cation techniques. Since the solution of the minimization problem of the
functional, de�ned in Section 3.2.2, is not unique, the a-priori knowledge of the
values of some parameters (e.g., from the bibliography) can help lead the
minimization problem to converge to the solution closer to the actual one.

Table 3.1 presents the methods used to de�ne the system parameters. In the
following section, the system identi�cation problem is presented and formulated.

3.2 System Identi�cation

In order to identify the system's parameters, functions idnlgrey and nlgreyest
from MATLAB's System Identi�cation Toolbox. A brief overview of these functions
is given below:

idnlgrey: this function serves as a wrapper for the non-linear grey-box model for
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Parameter Speci�cation Method

aj,i(t) system identi�cation
σi bibliography
γi system identi�cation
ηi(t) system identi�cation / manual �tting
ξi bibliography

vj,i(t) system identi�cation / manual �tting
uj,i(t) system identi�cation

wl,ib bibliography
ρl bibliography
τl bibliography

Table 3.1: Brief overview of the methods used to specify the parameter values.

use in nlgreyest. The system functions (written in an .m �le), along with the
system's initial conditions and the initial parameter values, are given as input
in the function.

nlgreyest: this function performs the system identi�cation. It receives the
identi�cation data, the model speci�cation from idnlgrey and optionally an
object of class nlgreyestOptions as function inputs. nlgreyestOptions

allows us to declare the speci�cations for the parameter estimation.

Data Speci�cation for System Identi�cation

In order for the system to be identi�ed, the system outputs must be related
to the data. Based on the preceding discussion in Chapter 2, one can infer the
following relation between the measurements for the cumulative cases for the age
group i, casesi(t), and the system outputs:

casesi(t) ≡ yicases(t) (3.1)

Similarly, the measurements for the number of recovered individuals
recoveredi(t) are related to the system outputs in this way:

recovered(t) ≡ yrecovered(t) (3.2)

and the relation between the measurements for vaccinations performed in age group
i with the vaccine l de�ned as vaccinatedl,i(t) and the system outputs is given by:

vaccinatedl,i(t) ≡ yl,ivaccinated(t) (3.3)
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Last, the relation between the cumulative deaths for the age-group i, de�ned
as deathsi(t) and the system outputs are given by:

deathsi(t) ≡ yideaths(t) (3.4)

Data since the outbreak of the epidemic up to mid August 2020 was used for the
system identi�cation of the parameter values during 1st wave. In order to identify
the system properly, it is important to provide initial parameter values based on
a-priori knowledge wherever applicable. Having identi�ed the system parameters
for the 1st wave, providing suitable initial parameters for the 2nd wave is possible.
The problem of identifying the system parameters pertains to Grey-Box System
Modelling, since the functions of the system dynamics are determined in advance.

3.2.1 De�ning the Initial System States

As the delays from exposure to reporting and from exposure to death have been
accounted for in the data, the system initial system states are given by:

x0 =
[
S0 E0 I0 R0 V l

�0
V l
+0

D0

]>
where

S0 =
[
N(1) N(2)− 1 N(3) N(4)

]
,

E0 =
[
0 1 0 0

]
,

I0 =
[
0 0 0 0

]
,

R0 =
[
0 0 0 0

]
,

V l
�0

=
[
0 0 0 0

]
,

V l
+0

=
[
0 0 0 0

]
,

D0 =
[
0 0 0 0

]
(3.5)

3.2.2 Estimating the System Parameters

System identi�cation involves the minimization of the cost function

C(p) =
N∑
t=1

e>(t,p)W e(t,p) +
1

N
λ(p− p∗)>R(p− p∗) (3.6)

where e(t,p) ∈ Rny is a vector containing the error between estimated output and
measured data for some t ≤ N , t ∈ N,W ∈ Rny×ny is a positive semi-de�nite matrix
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containing the weights corresponding to each output for identi�cation, p ∈ Rnp and
p∗ ∈ Rnp are vectors containing the estimated values of the system parameters at
each iteration of the cost function optimization and the initial parameter values,
respectively. λ and R are referred to as the regularization value and weighting
vector, respectively. The second term is referred to as the regularization term of the
minimization problem and will be explained later in this section.

The output weighting matrix W allows us to de�ne the relative importance
of each output to be identi�ed. Throughout the scope of this work, W will be
considered as a diagonal matrix, with each of the diagonal elements wi,j, i = j,
corresponding to the weighting factor of each output. Thus, the �rst term of the
cost function becomes a weighted sum of the squared errors of the outputs ei(t,p)
for all t ≤ N . The second term also becomes a weighted sum of the square error
between the estimated parameter values and their initial values:

C(p) =
N∑
t=1

ny∑
i=1

wi,i e
2
i (t,p) +

λ

N

np∑
i=1

ri(pi − p∗i )2 (3.7)

It was observed that identifying the system using the identity matrix as W
results in poor �tting for the outputs related to the deceased individuals yideaths(t).
By trial and error, it is found that the selection of much larger weights for these
compartments resulted in better �tting for the deceased compartments. This,
however, comes with the price of less accurate �tting of the outputs related to the
total cases.

Regularization allows us to overcome this limitation by inserting a term in
the cost function which penalizes large deviations of some of the estimated
parameters from their initial values. This is of signi�cant importance as we can
allow the system identi�cation to focus on the outputs for the total cases and the
recovered cases as long as we can provide relatively accurate initial values for ηi. R
is a vector of non-negative elements for de�ning the regularization weights for each
parameter and λ > 0 is a constant value for determining the penalty the deviation
from the initial parameter values, often referred to as the bias versus variance
tradeo�.

As the data for the recovered cases originate from a model prediction, we choose
low weight value for identifying the recovered individuals. Moreover, the values for
γi were constrained to a maximum value according to [52] and larger initial values
were assigned to the younger age groups. A small regularization weight on γi was
also applied in order to prevent them from getting unreasonably large deviations
from the initial estimations.
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Chapter 4

Results And Discussion

4.1 Estimation of the True Number of COVID-19

Cases

Using τd = 18 days [53] and τr = 6 days [36], we obtain the estimation presented
in Fig. 4.1 in comparison to other prediction models such as the ICL and IHME
model [54, 55].

Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021
0
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1

1.5
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104 Estimations for Daily New Cases

Est. Daily Cases

Est. Daily Cases (ICL)

Est. Daily Cases (IHME)

Reported Cases

Figure 4.1: Estimated daily incidence data.

21



[Chapter 4. Results And Discussion]

As can be noticed from Fig. 4.1, large deviations can occur among di�erent
approaches to estimating the true number of infections. A major factor that causes
this deviation is the di�erent estimation of the IFR parameter among these models.
For example, the ICL model uses estimations of IFR from data in China [56].
The estimation of true infections projected in this work falls between the estimations
of these models.

4.1.1 Basic Reproduction Number (R0) and Rt

One substantial parameter characteristic of a pandemic is the basic reproduction
number R0. Using the EpiEstim package in R, we examine the evolution of Rt and
obtain R0 in the beginning of the pandemic. Assuming a serial interval with mean
µ = 5.2 days [ 95% C.I.: (3.6 days, 6.8 days) ] [57], we compute the Rt on a 10-day
sliding window.

Figure 4.2: Evolution of Rt computed on a 10-day sliding window.

The results are presented in Fig. 4.2. Rt exhibits a spike early in the pandemic,
which can be attributed to the estimation of the true number of cases that we
adopted after the 21st day since the beginning of the pandemic. It can be seen that
Rt remains slightly above 1.00 in mid-April 2021. The estimated Rt was announced
by governmental authorities to be 1.02, presenting a small drop since March of 2021
[58]. Furthermore, R0 is estimated to be 2.217. R0 in Greece was estimated to be
slightly below 2.50 [52].
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4.2 Parameter Speci�cation

The �nal parameter values are presented in Table 4.1 and Table 4.2. Table 3.1
presents the methods used for specifying each parameter.

Parameter Value Parameter Value Parameter Value

a1,1(t) Fig. 4.4 η1(t) Fig. 4.5 vj,1(t) Fig. 4.3

a2,1(t) Fig. 4.4 η2(t) Fig. 4.5 vj,2(t) Fig. 4.3

a3,1(t) Fig. 4.4 η3(t) Fig. 4.5 vj,3(t) Fig. 4.3

a4,1(t) Fig. 4.4 η4(t) Fig. 4.5 vj,4(t) Fig. 4.3

a1,2(t) Fig. 4.4 γ1 0.0879 wi,l
b Table 4.2

a2,2(t) Fig. 4.4 γ2 0.1024 τl Table 4.2

a3,2(t) Fig. 4.4 γ3 0.0976 ρl Table 4.2

a4,2(t) Fig. 4.4 γ4 0.0507

a1,3(t) Fig. 4.4 ξ1, ψ1 0.0056

a2,3(t) Fig. 4.4 ξ2, ψ2 0.0056

a3,3(t) Fig. 4.4 ξ3, ψ3 0.0056

a4,3(t) Fig. 4.4 ξ4, ψ4 0.0056

a1,4(t) Fig. 4.4 σ1 0.1670

a2,4(t) Fig. 4.4 σ2 0.1670

a3,4(t) Fig. 4.4 σ3 0.1670

a4,4(t) Fig. 4.4 σ4 0.1000

Table 4.1: Final system parameter values.

The values for ξi were chosen in accordance with [39]. The σi values were chosen
according to [35, 37]. The e�cacy rates of the vaccination varies depending on the vaccine
used [54].

4.2.1 Vaccination Parameters

As of April 2021, three vaccines have been approved for administration to the
general population: BNT162b2 (P�zer-BioNTech), AZD1222 (AstraZeneca) and
mRNA-1273 (Moderna).

The e�cacy rates for the BNT162b2 were obtained from [59, 60]. The e�cacy rates
for the AZD1222 were obtained from [61].

Lastly, the probabilities of attendance for the second dose of the vaccine for each
vaccine are approximated from the probability of attendance to the vaccination
appointment for each vaccine obtained from [50].
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Parameter
BNT162b2 Vaccine (l = 1)

Age Group 1 Age Group 2 Age Group 3 Age Group 4

w1,i
b 0.950 0.950 0.950 0.950

τ1 21+15 d. 21+15 d. 21+15 d. 21+15 d.

ρ1 0.970 0.970 0.970 0.970

Parameter
AZD1222 Vaccine (l = 2)

Age Group 1 Age Group 2 Age Group 3 Age Group 4

w2,i
b 0.705 0.705 0.705 0.705

τ2 84+15 d. 84+15 d. 84+15 d. 84+15 d.

ρ2 0.940 0.940 0.940 0.940

Parameter
mRNA-1273 Vaccine (l = 3)

Age Group 1 Age Group 2 Age Group 3 Age Group 4

w3,i
b 0.940 0.940 0.940 0.864

τ3 28+15 d. 28+15 d. 28+15 d. 28+15 d.

ρ3 0.970 0.970 0.970 0.970

Table 4.2: Final system parameter values for the vaccines.

4.2.2 Time-Varying System Parameters

Non-Pharmaceutical Interventions vj,i(t)

In order to simplify the complexity of the model, we consider that the
Non-Pharmaceutical Interventions (NPIs) applied to a susceptible person at group i
reduces the number of e�ective contact rates evenly for each age group j of the infected
individuals (v1,i(t) = ... = v4,i(t)). During system identi�cation, initial values for these
parameters were chosen based on a qualitative timeline of the NPI in e�ect and a small
regularization weight was applied. For the second wave onwards, these values were chosen
manually in order to best �t the data.

As can be seen from the diagram, the e�ect of the NPI measurements typically follow
the similar trends. Following the halt of the 1st lockdown order, a signi�cant drop in uj,1
can be observed in the following weeks. Parameters uj,i, 2 ≤ i ≤ 4, exhibit a drop at a
latter time point. This can be attributed to the estimation of the true cases for age-groups
2, 3 and 4.

The values for the parameters vj,i(t) are given in Fig. 4.3.
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Figure 4.3: time-varying e�ects of NPI measures applied in population for each
age group

Number of E�ective Contacts aj,i(t)

During system identi�cation, initial values for these parameters were chosen based
on observation of the trend of the casesi(t) measurements. On the second wave onwards,
the values were chosen in such a way as to avoid large deviations of the parameters vj,i(t)
from the identi�ed values on the �rst wave.

Indicative values for the parameters aj,i(t) are given in Fig. 4.4. As can be seen, the
numbers of e�ective contacts aj,i(t) are higher from the second wave onwards. This rise
can be attributed to the seasonal changes which might have led to indoor gatherings and
the appearance of viral variants in early 2021.
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Figure 4.4: E�ective contact rates for each pair (j,i) (a) during 1st wave (b) during
2nd wave onwards
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Fatality Rates ηi(t)

Similarly, for the parameters ηi(t), the values were identi�ed during the �rst wave
and were manually chosen to �t the day from the second wave onwards.

The values for the parameters ηi(t) are presented in Fig. 4.5. As can be seen, the
fatality rates for i = 2, 3, 4 tend to be almost equal at the peak of each wave. This might
stand in contrast with the high rise of deaths observed in deathsi(t) during the 2nd wave,
however this can be attributed to the fact that the number of individuals in states Ii(t)
might be higher from the second wave onwards in comparison to the �rst wave.
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(a) Fatality rates ηi(t), 1 ≤ i ≤ 3 in linear scale
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Figure 4.5: Time-varying fatality rates for each age-group
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Control Inputs ul,i(t)

The values for the control inputs ul,i(t) until mid-April were chosen based on
system identi�cation.

The values for the parameters ul,i(t) are presented in Fig. 4.6, Fig. 4.7 and Fig. 4.9.
No vaccination has been performed on the youngest age group, i = 1.
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Figure 4.6: Values of control variables ul,1(t)
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Figure 4.7: Values of control variables ul,2(t)
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Figure 4.9: Values of control variables ul,4(t)

It can be seen that there is an increase in the number of new vaccinated individuals
per day ul,i(t). This can be explained due to the more vigorous inoculation policy that is
adopted by the government.
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4.3 Fitting the System Outputs to the

Measurements

In this section the �tting of the system outputs to the measurements is presented,
given the selected values of the parameters of the system, presented in Section 4.2.

4.3.1 System Outputs for Cases

In Figure 4.10, the system outputs yicases(t) are compared to the data casesi(t).
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Figure 4.10: (a) Fitted curve for new cases at age group 1 (b) �tted curve for new
cases at age group 2 (c) �tted curve for new cases at age group 3 (d) �tted curve
for new cases at age group 4

The �tness of the system outputs yicases(t) to the data is presented below:

Fitness Value
Age Groups

Age Group 1 Age Group 2 Age Group 3 Age Group 4

NRMSE 97.83% 98.62% 98.30% 98.47%

Table 4.3: NRMSE percentages for yicases(t).

Given the values of the NRMSE measure for yicases(t), a good �tting has been attained
for these system outputs.

4.3.2 System Outputs for Deaths

In Fig. 4.11, the system outputs yideaths(t) are compared to the data deathsi(t).
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Figure 4.11: (a) Fitted curve for deaths at age group 1 (b) �tted curve for deaths
at age group 2 (c) �tted curve for deaths at age group 3 (d) �tted curve for deaths
at age group 4
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The �tness of the system outputs yideaths(t) to the data is presented below:

Fitness Value
Age Groups

Age Group 1 Age Group 2 Age Group 3 Age Group 4

NRMSE 70.50% 96.12% 98.45% 98.67%

Table 4.4: NRMSE percentages for yideaths(t).

Given the values of the NRMSE measure for yideaths(t), a good �tting has been attained
for i = 2, 3, 4. The �tness for i = 1 is substantially worse which can be attributed to the
fact that the system outputs are not quantized.

4.3.3 System Outputs for Recovered Individuals

In Fig. 4.12, the system outputs yirecovered(t) are compared to the data recoveredi(t).
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Figure 4.12: Fitted curve for recovered individuals

The �tness of the system outputs yrecovered(t) to the data is 54.42%. As can be
seen from Fig. 4.12, the �tting of the output yrecovered(t) is poor, however this is a desired
behavior of the system since the data is merely a prediction of the true number of recovered
individuals and not measurements taken from the population.
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4.3.4 System Outputs for Vaccinated Individuals

In this paragraph, the �tting of the system outputs yl,ivaccinated(t) to their corresponding
data is presented.

System Outputs y1,ivaccinated(t)

In Fig. 4.13, the system outputs yicases(t) are compared to the data casesi(t).
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The �tness percentage of the system outputs yi(t) to the data is presented below:

Given the values of the NRMSE measure for y1,ivaccinated(t), a good �tting has been
attained for all age groups participating in the inoculation strategy.
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Figure 4.13: Fitted curve for vaccinated individuals with vaccine l = 1 at age
group: (a) i = 1, (b) i = 2, (c) i = 3, (d) i = 4

Fitness Value
Age Groups

Age Group 1 Age Group 2 Age Group 3 Age Group 4

NRMSE 100% 97.09% 96.21% 96.34%

Table 4.5: NRMSE percentages for y1,ivaccinated(t).

System Outputs y2,ivaccinated(t)

In Fig. 4.14, the system outputs y2,ivaccinated(t) are compared to the data
vaccinated2,i(t).
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The �tness of the system outputs y2,ivaccinated(t) to the data is presented below:

Given the values of the NRMSE measure for y2,ivaccinated(t), a good �tting has been
attained for all age groups participating in the inoculation strategy.
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Figure 4.14: Fitted curve for vaccinated individuals with vaccine l = 2 at age
group: (a) i = 1, (b) i = 2, (c) i = 3, (d) i = 4
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Fitness Value
Age Groups

Age Group 1 Age Group 2 Age Group 3 Age Group 4

NRMSE 100% 96.21% 96.95% 97.46%

Table 4.6: NRMSE percentages for y2,ivaccinated(t).

System Outputs y3,ivaccinated(t)

In Fig. 4.15, the system outputs y3,ivaccinated(t) are compared to the data
vaccinated3,i(t).
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The �tness of the system outputs y3,ivaccinated(t) to the data is presented below:

Given the values of the NRMSE measure for y3,ivaccinated(t), a good �tting has been
attained for all age groups participating in the inoculation strategy.
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Figure 4.15: Fitted curve for vaccinated individuals with vaccine l = 3 at age
group: (a) i = 1, (b) i = 2, (c) i = 3, (d) i = 4

Fitness Value
Age Groups

Age Group 1 Age Group 2 Age Group 3 Age Group 4

NRMSE 100% 96.34% 96.8% 97.34%

Table 4.7: Final system parameter values for the vaccines.

4.4 Investigating the Relation between NPI and

fatality rates

In order to employ di�erent senarios for the NPI (e.g. considering a gradual lifting
of measures) for future predictions of the pandemic, it may be useful to examine the
relation between the NPI measures and the fatality rates. We perform linear regression
on data points from the last 4 months. This allows us to estimate the tendencies of the
fatality rates under varying NPI measures. It should be noted that, due to the constant
values of aj,i(t) during the second wave, it was not possible to explore how fatality rates
are a�ected by the parameters aj,i(t) in addition to the NPI measures vji(t).
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The results are presented in Fig. 4.16. It can be seen that the NPI measures have a
positive e�ect in the fatality rates.
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Figure 4.16: (a) Linear regression on η2 and vj,2 (b) Linear regression on η3 and
vj,3 (c) Linear regression on η4 and vj,4
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Chapter 5

Pontryagin's Minimum Principle

5.1 Introduction

P
ontryagin's Minimum Principle provides the system designer with
su�cient conditions for an optimal control policy. A controller designed using

Pontryagin's Principle is an open-loop controller, that is, no feedback of the
system states is presented in the system. This is a logical assumption given the
actual inoculation measures taken in a population.

Although originally Pontryagin's Principle seeks to maximize a cost function,
in which case the method is called Pontryagin's Maximum Principle, it has been
also been extended to solve the problem of minimizing the cost function. In the
following Section, Pontryagin's Minimum Principle (which may also be called
�Pontryagin's Principle� in this work for simplicity) is presented. Then,
Pontryagin's Method is applied on the model and the su�ciency of the conditions
imposed is proven.

This work presents the mathematical background for Pontryagin's and the
characterization of the optimal controller imposed by the principle. Generally,
�nding the optimal controller pertains to a Boundary Value Problem (BVP). For
systems of high complexity, �nding a closed form of the solutions can be an
intractable problem due to the boundary constraints. In such cases, the optimal
controllers are found by solving the BVP numerically. The results of the
application of the optimal inoculation strategy are left as future work for this
thesis.
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5.2 Theoretical Background for Pontryagin's

Minimum Principle

Given the nonlinear system

ẋ = f(x, u), x(0) = x0, u(t) ∈ Ũ , (5.1)

where Ũ denotes the set of admissible control policies. De�ne the cost function

J(x, u) =

∫ tf

t0

L
(
x(t), u(t)

)
dt+ Ψ(x(T )) (5.2)

where Ψ(x(T )) denotes the transversality (or terminal) conditions. [62]

At this point, it is important to introduce the Hamiltonian of the control
problem:

H(x, u,m) := L(x, u,m) +m>f(x, u) (5.3)

where m is a vector which contains the adjoint variables for the optimization
problem.

Given an optimal control policy, u∗(t), one can deduce that J(x∗, u∗) ≤ J(xδ, uδ)
for any admissible control uδ(t) arbitrarily close to the optimal u∗(t):∫ tf

t0

∣∣uδ(t)− u∗(t)∣∣ < ε (5.4)

for small ε. However, since the determination of the value of J(xδ, uδ) may not always
be easy, therefore an alternative (modi�ed) form of the cost function is considered:

J̃(x, u) := J(x, u)−
∫ tf

t0

m>
(
ẋ− f(x, u)

)
dt = J(x, u) (5.5)

Note that the integrand in 5.5 is always zero. The value of the modi�ed cost function
is now:

J̃(x, u) := Ψ(x(tf )) +

∫ tf

t0

L
(
x(t), u(t),m(t)

)
+m>f(x(t), u(t))dt−

∫ tf

t0

m(t)>ẋ(t)dt

= Ψ(x(tf )) +

∫ tf

t0

H
(
x(t), u(t),m(t)

)
dt−

∫ tf

t0

m(t)>ẋ(t)dt

= Ψ(x(tf )) +

∫ tf

t0

H
(
x(t), u(t),m(t)

)
−m(t)>ẋ(t)dt

(5.6)
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Let the optimal control drive the system to the optimal trajectory x∗(t). The control
uδ(t), then, drives the system to the �perturbed� optimal trajectory x∗(t) + δx∗(t).
Also, let δJ̃ be the corresponding change in the modi�ed cost function. Then, one
can deduct:

δJ̃ =Ψ
(
x∗(tf ) + δx∗(tf )

)
−Ψ(x∗(tf ))

+

∫ tf

t0

H(x∗(t) + δx∗(t), uδ(t),m(t))−H(x∗(t), u∗(t),m(t))−m(t)>δxdt

(5.7)

Integrating m(t)>δx by parts, we receive:

δJ̃ =Ψ
(
x∗(tf ) + δx∗(tf )

)
−Ψ(x∗(tf )) +m(0)>δx(0)−m(tf )

>δx(tf )

+

∫ tf

t0

H(x∗(t) + δx∗(t), uδ(t),m(t))−H(x∗(t), u∗(t),m(t))dt−
∫ tf

t0

ṁ>δxdt

(5.8)

By adding and subtracting H
(
x∗(t), uδ(t),m(t)

)
, the integral term

∫ tf
t0
H
(
x∗(t) +

δx∗(t), uδ(t),m(t)
)
−H

(
x∗(t), u∗(t),m(t)

)
dt can be written as:∫ tf

t0

H
(
x∗(t) + δx∗(t), uδ(t),m(t)

)
−H

(
x∗(t), u∗(t),m(t)

)
dt

=

∫ tf

t0

H
(
x∗(t) + δx∗(t), uδ(t),m(t)

)
−H

(
x∗(t), uδ(t),m(t)

)
+H

(
x∗(t), uδ(t),m(t)

)
−H

(
x∗(t), u∗(t),m(t)

)
dt

(5.9)

By applying the Taylor series forH
(
x∗(t)+δx∗(t), uδ(t),m(t)

)
−H

(
x∗(t), uδ(t),m(t)

)
we receive:∫ tf

t0

H
(
x∗(t) + δx∗(t), uδ(t),m(t)

)
−H

(
x∗(t), u∗(t),m(t)

)
dt

=

∫ tf

t0

Hx

(
x∗(t), uδ(t),m(t)

)
δx(t) +H

(
x∗(t), uδ(t),m(t)

)
−H

(
x∗(t), u∗(t),m(t)

)
dt+O(ε)

(5.10)
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Adding and subtracting Hx

(
x∗(t), u∗(t),m(t)

)
δx in 5.10, we receive:∫ tf

t0

H
(
x∗(t) + δx∗(t), uδ(t),m(t)

)
−H

(
x∗(t), u∗(t),m(t)

)
dt

=

∫ tf

t0

Hx

(
x∗(t), u∗(t),m(t)

)
δx(t) +

[
Hx

(
x∗(t), uδ(t),m(t)

)
−Hx

(
x∗(t), u∗(t),m(t)

)]
δx(t)

+H
(
x∗(t), uδ(t),m(t)

)
−H

(
x∗(t), u∗(t),m(t)

)
dt+O(ε)

(5.11)

The integral
∫ tf
t0

[
Hx

(
x∗(t), uδ(t),m(t)

)
− Hx

(
x∗(t), u∗(t),m(t)

)]
δx(t)dt is of order

ε2, therefore 5.11 becomes:∫ tf

t0

H
(
x∗(t) + δx∗(t), uδ(t),m(t)

)
−H

(
x∗(t), u∗(t),m(t)

)
dt

=

∫ tf

t0

Hx

(
x∗(t), u∗(t),m(t)

)
δx(t) +H

(
x∗(t), uδ(t),m(t)

)
−H

(
x∗(t), u∗(t),m(t)

)
dt

+O(ε) +O(ε2)

(5.12)

By denoting O′(ε) all the terms of order ε or lower, 5.12 becomes:∫ tf

t0

H
(
x∗(t) + δx∗(t), uδ(t),m(t)

)
−H

(
x∗(t), u∗(t),m(t)

)
dt

=

∫ tf

t0

Hx

(
x∗(t), u∗(t),m(t)

)
δx(t) +H

(
x∗(t), uδ(t),m(t)

)
−H

(
x∗(t), u∗(t),m(t)

)
dt

+O′(ε)

(5.13)

Substituting Eq. (5.13) in Eq. (5.8) and applying the Taylor expansion for
Ψ
(
x∗(tf ) + δx∗(tf )

)
− Ψ(x∗(tf )), we obtain the following expression for the change

in the modi�ed cost function:

δJ̃ =
[
Ψx

(
x∗(tf )

)
−m>(tf )

]
δx(tf )−m(0)>δx(0)

+

∫ tf

t0

[
Hx

(
x∗(t), u∗(t),m(t)

)
− ṁ>(tf )

]
δx(t)dt

+

∫ tf

t0

H(x∗(t), uδ(t),m(t))−H(x∗(t), u∗(t),m(t))dt+O′(ε)

(5.14)
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Moreover, considering O′(ε)→ 0, we can approximate δJ̃ as:

δJ̃ ≈
[
Ψx

(
x∗(tf )

)
−m>(tf )

]
δx(tf )−m(0)>δx(0)

+

∫ tf

t0

[
Hx

(
x∗(t), u∗(t),m(t)

)
− ṁ>(tf )

]
δx(t)dt

+

∫ tf

t0

H(x∗(t), uδ(t),m(t))−H(x∗(t), u∗(t),m(t))dt

(5.15)

The expression from Eq. (5.18) can be further simpli�ed, given that δx(0) = 0 since
the control does not a�ect the system states at t = 0 and by assuming:

m>(tf ) = Ψx

(
x∗(tf )

)
(5.16)

−ṁ>(t) = Hx

(
x∗(t), u∗(t),m(t)

)
(5.17)

Thus, Eq. (5.18) becomes:

δJ̃ ≈
∫ tf

t0

H(x∗(t), uδ(t),m(t))−H(x∗(t), u∗(t),m(t))dt (5.18)

In order for u∗(t) to be optimal, δ(̃J) needs to be positive, that is, δ(̃J) > 0. This
can be achieved by demanding the following condition:

H(x∗(t), u∗(t),m(t)) ≤ H(x∗(t), uδ,m(t)), for all t ∈ [t0, tf ] and uδ ∈ Ũ (5.19)

Eq. (5.16), Eq. (5.17), Eq. (5.19) de�ne the necessary conditions for Pontryagin's
Minimum Principle.

In this work, the case of �xed �nal time tf and free terminal states x(tf ) have
been considered. These assumptions may naturally hold true for an inoculation
strategy. For example, it might be more important to achieve a speci�c threshold
of immunizations in the population, either as a total or per each age-group, than
demanding the system states to attain a speci�c value at t = tf . Moreover, as will
be explained later in more detail, it might be needed that a vaccination strategy run
on a speci�c time frame (for example, attain a percentage of 75% of individuals by
the beginning of September).
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5.3 Application of Pontryagin's Principle in the

System with Control

5.3.1 Formulation of the Optimal Control Problem

Given the system with controls de�ned in Section 1.2.2, we de�ne the following
cost function:

J
(
x(t),u(t)

)
= Ψ

(
x(tf )

)
+

∫ tf

t0

4∑
i=1

Di(t) + u>(t)Ru(t) dt (5.20)

where R is a positive de�nite diagonal matrix denoting the weights for the control
variables and the terminal function Ψ

(
x(T )

)
are de�ned as:

Ψ
(
x(tf )

)
=
{
N∗ −

∑
i

[
Ri(tf ) + V i

+(tf )
]}2

(5.21)

where N∗ is the target number of individuals to be immune to the virus. In this

work, N∗ is considered equal to
(

1 − 1
R0

)
N , for which herd immunity can be

achieved. We de�ne the set of all admissible control policies
Ũ = {u(t) ∈ Rm : 0 ≤ ul,i(t) ≤ ul,imax}. The optimal control policy is denoted by
u∗(t) and minimizes the cost function presented in Eq. (5.41).

5.3.2 Existence of Optimal Control

The following Lemma and its proof are given for the problem of minimization
of Eq. (5.41):

Lemma 5.3.1. The optimal solution exists for the optimal control problem de�ned
in Section 5.3.1.

Proof. From Theorem 4.1 of [63], the following conditions must hold for the existence
of the optimal control:

1. the set of solutions for the system, F , is non-empty,

2. the set Ũ is closed,

3. the set of end-conditions, S, is compact and Ψ(·) is continuous in S,
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4. the set Ũ is convex, the system is given in the control-a�ne form and the
objective function L(x(t),u(t)) is convex on Ũ ,

5. L(x(t),u(t)) ≥ c1
∣∣∣∣u(t)

∣∣∣∣n − c2, c1 > 0, n > 1.

Condition 1. can easily be proven. From [64], since f(x(t),u(t)) is continuous
(or piece-wise continuous), then there exists a solution x(t) for the system.

Conditions 2. and 4. can also be easily proven. Given that Ũ = {u(t) : 0 ≤
ul,i(t) ≤ ul,imax} = [0, u1,1max] × ... × [0, ukv ,1max] × ... × [0, u1,4max] × ... × [0, ukv ,4max], it is easy
to see that it is closed and convex. From Section 1.2.2 it has been shown that the
system with control is in the a�ne in the control form.

Condition 3. can be proven by inferring boundedness of the system states for
the system with control. The system states in Eq. (1.2.2) are bounded from below
and from above, since no demographics have been considered in the model, that is,
0 ≤ ki(t) ≤ Ni for k = {S,E, I, R,D} and 0 ≤ kl,i(t) ≤ Ni for k = {V−, V+}.
The set of end-conditions S is de�ned as

S =
{
x(tf ) : 0 ≤ ki(t) ≤ Ni for k = {S,E, I, R,D} and

0 ≤ kl,i(t) ≤ Ni for k = {V−, V+}
} (5.22)

for which one can see that it is compact and that Ψ
(
x(tf )

)
is continuous with

respect to x(tf ).

Condition 5. can be proven by using an upper bound on the quadratic form of
u(t):

L(x(t),u(t)) = Di(t) + u>(t)Ru(t) ≥ λmin(R)
∣∣∣∣u(t)

∣∣∣∣2 (5.23)

where λmin(R) > 0 denotes the smallest eigenvalue of R.
This completes the proof of the Lemma.

Having proven the existence of the optimal controller, we may now turn our
focus on characterizing the optimal controller u∗(t).

5.3.3 Characterizing the Optimal Controller

Let us propose the following Theorem for the optimal control problem:
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Theorem 5.3.2. Consider the optimal control problem in Section 5.3.1. Let the
vector of costate equationsm(t) and u(t) ∈ Ũ with components ul,i(t) which satis�es:

ul,i(t) =


0 φl,i(t) ≤ 0

φl,i(t) 0 ≤ φl,i(t) < ul,imax
ul,imax ul,imax ≤ φl,i(t)

where φl,i(t) := 1
2
r−1
idx,idx

[
ml,i
V−

(t) − mi
S(t)

]
with idx = 4(i − 1) + l, and m(t) is the

vector of adjoint variables (costates) which satis�es the adjoint equations and the
adjoint �nal conditions imposed by Pontryagin's Minimum Principle. Given that
the system states are bounded, the control policy u(t) is optimal for tf su�ciently
small.

Proof. The cost function J
(
x(t),u(t)

)
and the optimal control problem are de�ned

in Section 5.3. From Lemma 5.3.1, it is inferred that the system has an optimal
controller in the set of admissible controllers Ũ .

Also, de�ne the costate variables m(t), each component of which pertains to a
system state. Let us denote each component of m(t) as mi

k(t), for
k ∈ {S,E, I, R,D} and ml,i

k (t), for k ∈ {V−, V+}.

It should be noted that direct application of Pontryagin's Minimum Principle
can lead to the violation of the constraints Si(t) ≥ 0. Therefore, in addition to
the system's dynamical equations considered in the Hamiltonian, the constraints
Si(t) ≥ 0 will have to be accounted for. Thus, we de�ne the augmented system
states x̄(t) and costates m̄(t).

x̄(t) =
[
x>(t) xsc(t)

]> (5.24)

m̄(t) =
[
m>(t) msc(t)

]> (5.25)

where xsc(t) satis�es:

ẋsc(t) = fsc(t,x(t),u(t)) =
∑
i

[
Si(t)

]2
1
(
− Si(t)

)
,

xsc(t0) = xsc(tf ) = 0

(5.26)

The Hamiltonian function of the optimization problem is de�ned as:

H(x(t),u(t),m(t)) =
4∑
i=1

Di(t) + u>(t)Ru(t) + m̄>(t)f(t,x(t),u(t)) (5.27)
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where

m̄>(t)f(t,x,u) =
∑
i

[∑
n

mi
n(t)f in(t,x,u) +

∑
n̂

∑
l

ml,i
n̂ (t)f l,in̂

(
t,x,u

)]
+msc(t)fsc(t,x,u), n ∈ {S,E, I, R,D}, n̂ ∈ {V−, V+}

(5.28)

Let us now examine the Hessian matrix of the Hamiltonian function H(x,u,m(t)):

∂2H

∂u2
(x(t),u(t),m(t)) = 2


r1,1 0 . . . 0
0 r2,2 . . . 0
...

...
. . . 0

0 0 . . . rm,m

 = 2R > 0 (5.29)

as can be seen from Eq. (5.52), the Hessian matrix ∂2H
∂u2 (x(t),u(t),m(t)) is positive

de�nite, meaning that the Hamiltonian function H(x(t),u(t),m(t)) is strictly
convex for all control variables ul,i(t).

From the adjoint �nal time conditions in Eq. (5.16), we have:

mi
S(tf ) = mi

E(tf ) = mi
I(tf ) = mi

D(tf ) = ml,i
V−

(tf ) = 0,

mi
R(tf ) = ml,i

V+
(tf ) = −2

[
N∗ −

∑
i

(
Ri(tf ) + V i

+(tf )
)] (5.30)

From the necessary condition in Eq. (5.17), we have:

−ṁi
S(t) = −λi(t, I(t))mi

S(t) + λi(t, I(t))mi
E(t) +

∂f isc
∂Si

(t,x(t),u(t))msc(t)

−ṁi
E(t) = −σimi

E(t) + σim
i
I(t)

−ṁi
I(t) = −

[
γi + ηi(t)−

ai,i(t)

Ni

(1− vi,i(t))Si(t)
]
mi
I(t) + γim

i
R(t) + ηi(t)m

i
D(t)

−ṁi
R(t) = −ξimi

R(t) + ξim
i
S(t)

−ṁl,i
V−

(t) = −
[
λi(t, I(t)) + ρl

wl,ib
τl

]
ml,i
V−

(t) + λi(t, I(t))mi
E(t) + ρl

wl,ib
τl
ml,i
S (t)

−ṁl,i
V+

(t) = −ψiml,i
V+

(t) + ψim
i
S(t)

−ṁi
D(t) = 1

−ṁsc(t) = 0 =⇒ msc(t) = c 6= 0
(5.31)

From the necessary condition in Eq. (5.19), the optimal control u(t) with
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elements ul,i(t) must satisfy:

u∗(t) = arg min
u(t)∈Ũ

H(x(t),u(t),m(t)) (5.32)

We can �nd the u(t) which minimizes the Hamiltonian by solving:

∂H

∂ul,i
(x(t),u(t),m(t)) = 0 (5.33)

Let us now de�ne the indicator functions φl,i(t) [65] for each component ul,i(t)
of u(t) as the solution to Eq. (5.33):

φl,i(t) :=
1

2
r−1idx,idx

[
ml,i
V−

(t)−mi
S(t)

]
(5.34)

where idx denotes the row and column index of R for the element that is the
optimization weight of the control variable ul,i(t) and is de�ned as:

idx(l, i) := 4(i− 1) + l (5.35)

Given that the optimal solution exists and that it satis�es Eq. (5.51), we notice
that the �rst derivative of the Hamiltonian is a linear function with respect to the
control variable ul,i(t). Thus, the stationary point of the Hamiltonian is unique
and therefore is a global minimum for the Hamiltonian.

The value for each control variable in u(t) is then given by:

ul,i(t) = max
{

0,min{ul,imax, φ
l,i(t)}

}
⇐⇒ ul,i(t) =


0 φl,i(t) ≤ 0

φl,i(t) 0 ≤ φl,i(t) ≤ ul,imax
ul,imax ul,imax ≤ φl,i(t)

(5.36)

Generally, the su�ciency of Pontryagin's Minimum principle cannot be
established if certain conditions do not hold true. This is explored later in
Theorem 5.3.3. For bounded system states x(t), however, it can be proven that for
su�ciently small tf , the optimality system

[
x̄(t) m̄(t)

]
has a unique solution.

The proof is analogous to the ones presented in [66, 67]. Uniqueness of the solution
of the optimality system implies in turn uniqueness of the admissible controller
u(t) that satis�es Pontryagin's Minimum Principle Conditions.

Then, for tf su�ciently small, the control u(t), with components given by Eq.
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(5.55), is the optimal control policy u∗(t):

ul,i∗ (t) ≡ max
{

0,min{ul,imax, φ
l,i(t)}

}
⇐⇒ ul,i∗ (t) =


0 φl,i(t) ≤ 0

φl,i(t) 0 ≤ φl,i(t) ≤ ul,imax
ul,imax ul,imax ≤ φl,i(t)

(5.37)

where

φl,i(t) :=
1

2
r−1idx,idx

[
ml,i
V−

(t)−mi
S(t)

]
(5.38)

This completes the proof of the Theorem.

In the following theorem, an optimal controller will be provided for the
optimization problem in Section 5.3.1 expressed in the Mayer form. Under
convexity conditions of the functional u 7→ Ψ(x(tf ,u)), the necessary conditions
imposed by Pontryagin's Minimum Principle become su�cient.

Theorem 5.3.3. Consider the optimal control problem in Section 5.3.1. Assume
that the mapping u 7→ Ψ(x(tf ,u)) is convex in the control u. Let the vector of
costate equations m(t) and u(t) ∈ Ũ with components ul,i(t) which satis�es:

ul,i(t) =


0 φl,i(t) ≤ 0

φl,i(t) 0 ≤ φl,i(t) < ul,imax
ul,imax ul,imax ≤ φl,i(t)

where φl,i(t) := 1
2
r−1
idx,idx

[
ml,i
V−

(t) − mi
S(t)

]
with idx = 4(i − 1) + l, and m(t) is the

vector of adjoint variables (costates) which satis�es the adjoint equations and the
adjoint �nal conditions imposed by Pontryagin's Minimum Principle. The control
policy u(t), which satis�es Pontryagin's Minimum Principle, is optimal.

Proof. Let the cost function to be minimized from Section 5.3.1:

J
(
x(t),u(t)

)
= Ψ

(
x(tf )

)
+

∫ tf

t0

4∑
i=1

Di(t) + u>(t)Ru(t) dt (5.39)

where

Ψ
(
x(tf )

)
=
{
N∗ −

∑
i

[
Ri(tf ) + V i

+(tf )
]}2

(5.40)

An equivalent form of the Bolza minimization problem can be formulated in

58/70



[Chapter 5. Pontryagin's Minimum Principle]

the Mayer form:

Ĵ
(
x(t),u(t)

)
= Ψ̂

(
x(tf )

)
(5.41)

where

Ψ̂
(
x(tf ),u

)
=
{
N∗ −

∑
i

[
Ri(tf ) + V i

+(tf )
]}2

+ xeq(tf ), (5.42)

ẋeq(t) = feq(t,x(t),u(t)) =
4∑
i=1

Di(t) + u>(t)Ru(t) (5.43)

From Lemma 5.3.1, it is inferred that the optimization problem has an optimal
controller in the set of admissible controllers Ũ ⊂ Rnp .

Also, de�ne the adjoint variables or the costates, m(t), each component of
which pertains to a system state. Let us denote each component of m(t) as mi

k(t),
for k ∈ {S,E, I, R,D} and ml,i

k (t), for k ∈ {V−, V+}.

As to ensure that Si(t) ≥ 0, the system state xsc(t) must also be taken into
account.

x̄(t) =
[
x>(t) xeq(t) xsc(t)

]> (5.44)

m̄(t) =
[
m>(t) meq(t) msc(t)

]> (5.45)

where xsc(t) satis�es:

ẋsc(t) = fsc(t,x(t),u(t)) =
∑
i

[
Si(t)

]2
1
(
− Si(t)

)
,

xsc(t0) = xsc(tf ) = 0

(5.46)

The Hamiltonian function of the optimization problem is de�ned as:

Ĥ(x(t),u(t),m(t)) = m̄>(t)f(t,x(t),u(t)) (5.47)

where

m̄>(t)f(t,x,u) =
∑
i

[∑
n

mi
n(t)f in(t,x,u) +

∑
n̂

∑
l

ml,i
n̂ (t)f l,in̂

(
t,x,u

)]
+msc(t)fsc(t,x,u) +meq(t)feq(t,x,u),

(5.48)

for n ∈ {S,E, I, R,D}, n̂ ∈ {V−, V+}.
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From the adjoint �nal time conditions in Eq. (5.16), we have:

mi
S(tf ) = mi

E(tf ) = mi
I(tf ) = mi

D(tf ) = ml,i
V−

(tf ) = 0,

mi
R(tf ) = ml,i

V+
(tf ) = −2

[
N∗ −

∑
i

(
Ri(tf ) + V i

+(tf )
)]
,

meq(tf ) = 1

(5.49)

From the necessary condition in Eq. (5.17), we have:

−ṁi
S(t) = −λi(t, I(t))mi

S(t) + λi(t, I(t))mi
E(t) +

∂f isc
∂Si

(t,x(t),u(t))msc(t)

−ṁi
E(t) = −σimi

E(t) + σim
i
I(t)

−ṁi
I(t) = −

[
γi + ηi(t)−

ai,i(t)

Ni

(1− vi,i(t))Si(t)
]
mi
I(t) + γim

i
R(t) + ηi(t)m

i
D(t)

−ṁi
R(t) = −ξimi

R(t) + ξim
i
S(t)

−ṁl,i
V−

(t) = −
[
λi(t, I(t)) + ρl

wl,ib
τl

]
ml,i
V−

(t) + λi(t, I(t))mi
E(t) + ρl

wl,ib
τl
ml,i
S (t)

−ṁl,i
V+

(t) = −ψiml,i
V+

(t) + ψim
i
S(t)

−ṁi
D(t) = meq(t)

−ṁsc(t) = 0

−ṁeq(t) = 0
(5.50)

It is important to notice that −ṁeq(t) = 0 implies that meq(t) = c and since
meq(tf ) = 1, then meq(t) = meq = 1. The time derivatives of costates remain the
same as with the Bolza formulation of the minimization problem.

From the necessary condition in Eq. (5.19), the optimal control u(t) with
elements ul,i(t) must satisfy:

u∗(t) = arg min
u(t)∈Ũ

H(x(t),u(t),m(t)) (5.51)

Let us now examine the Hessian matrix of the Hamiltonian function
Ĥ(x,u,m(t)):

∂2Ĥ

∂u2
(x(t),u(t),m(t)) = 2meq


r1,1 0 . . . 0
0 r2,2 . . . 0
...

...
. . . 0

0 0 . . . rm,m

 = 2meqR = 2R > 0 (5.52)
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This indicates that Ĥ(x,u,m(t)) is a strictly convex function.

Let us now de�ne the indicator functions φl,i(t) as before:

φl,i(t) :=
1

2
r−1idx,idx

[
ml,i
V−

(t)−mi
S(t)

]
(5.53)

where idx denotes the row and column index of R for the element that is the
optimization weight of the control variable ul,i(t) and is de�ned as:

idx(l, i) := 4(i− 1) + l (5.54)

Given that the optimal solution exists and that it satis�es Eq. (5.51), we notice
that the �rst derivative of the Hamiltonian is a linear function with respect to the
control variable ul,i(t). Thus, the stationary point of the Hamiltonian is unique
and therefore is a global minimum for the Hamiltonian.

The value for each control variable in u(t) is then given by:

ul,i(t) = max
{

0,min{ul,imax, φ
l,i(t)}

}
⇐⇒ ul,i(t) =


0 φl,i(t) ≤ 0

φl,i(t) 0 ≤ φl,i(t) ≤ ul,imax
ul,imax ul,imax ≤ φl,i(t)

(5.55)

For the minimization problem given in the Mayer form, one can easily conclude
that the controller which satis�es Pontryagin's conditions is the optimal controller
under the assumption of convexity of the functional u 7→ Ψ̂(x(tf ,u)) in the control
u. The proof is given in Chapter 7 of [68]. This is indeed the case in our problem,
since:

∂2Ψ̂

∂u2
= 2(tf − t0)


r1,1 0 . . . 0
0 r2,2 . . . 0
...

...
. . . 0

0 0 . . . rm,m

 = 2(tf − t0)R > 0 (5.56)

Then, the elements ul,i(t) of the optimal controller u∗(t) are given by:

ul,i∗ (t) = max
{

0,min{ul,imax, φ
l,i(t)}

}
⇐⇒ ul,i∗ (t) =


0 φl,i(t) ≤ 0

φl,i(t) 0 ≤ φl,i(t) ≤ ul,imax
ul,imax ul,imax ≤ φl,i(t)

(5.57)
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This completes the proof of the Theorem.

Expressing the Bolza problem in the equivalent Mayer problem allows us to
obtain the optimal controller given that Ψ̂(x(tf ,u)) is convex in the controls u. In
fact, any problem in the Bolza form can be expressed in the Mayer form using the
methodology above. Therefore, the su�ciency of the convexity condition can be
generalized to optimization problems in the Lagrange and the Bolza form.
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Chapter 6

Conclusions And Future Work

6.1 Summary

T
he work presented in this thesis exhibits the preliminary steps required in
order to develop the optimal control strategy upon a population in a pandemic.

First, an epidemic model needs to be chosen in accordance with the various
particularities of the disease in the population. Such particularities could include
the latency from the exposure and the variability of the disease dynamics
throughout the pandemic. This idea has been explored mainly in Chapter 1.

The system designer who wishes to model the outbreak of a disease might also
have to consider what measurements can be taken from the system and how these
could be expressed in terms of the system states. For the COVID-19 outbreak in
Greece which has been considered throughout this work, this idea is elaborated in
Chapter 2.

Chapter 3 discusses the main ways the designer can take into account in order
to adequately identify the values of the system parameters.

In Chapter 4, the main results are presented for the COVID-19 outbreak in
Greece. It can be seen that the model developed in this work in Chapter 1 can
describe the progression of the pandemic e�ectively. An estimation for the true
number of COVID-19 cases in Greece has also been proposed and the results were
compared to other models. Using a-priori knowledge for the values of some of the
system parameters and by utilizing it in the system identi�cation, the values of the
parameters were adequately described. Moreover, the relation between the fatality
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rates and the NPI measures has been explored.

Chapter 5 provides the necessary background for Pontryagin's Minimum
Principle. Existence of the optimal control policy for a vaccination strategy is
proven and the necessary conditions for an optimal controller are given.

6.2 Future Work

Future expansions for the work presented here may include:

� Further di�erentiate the population by geolocation in order to model spatial
heterogeneity of e�ective contacts.

� Further explore the idea of the application of Pontryagin's Principle for the
outbreak of COVID-19 in Greece.
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