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Abstract

Georgios GALANOS

Hardware Acceleration of Genome Assembly Algorithms

Η συστοιχία γονιδιωμάτων (genome assembly) είναι ένα πεδίο της βιοπληρο-
φορικής που αναφέρεται στη διαδικασία λήψης μικρών μερών γενετικού υλικού και

επανασύνδεσής τους, με διαφορετικές μεθόδους, προκειμένου να αναδημιουργη-

θεί η αρχική αλληλουχία από την οποία προήλθε το DNA. Δεδομένου ότι τα
σύνολα δεδομένων εισόδου των DNA έχουν πολυάριθμο μέγεθος και στις περισ-
σότερες περιπτώσεις αποτελούν πολύ μεγάλο όγκο δεδομένων, είναι σημαντικό να

εφαρμοστούν λειτουργίες και αλγόριθμοι προκειμένου να επιτευχθούν σημαντικές

μειώσεις χρόνου και χώρου όσον αφορά την πολυπλοκότητά τους. Το φίλτρο

ανάγνωσης (Read Matching Filter - RMF), το οποίο υλοποίησα και παρουσιάζω
σε αυτή τη διπλωματική εργασία, είναι ένα είδος αυτών των διαδικασιών και έχει τον

ρόλο της προεπεξεργασίας (φιλτράρισμα) των δεδομένων εισόδου στην διαδικασία

του genome assembly.

Το RMF παίρνει το σύνολο δεδομένων εισόδου που περιέχει το γενετικό υλικό
διαχωρισμένο σε μέρη που ονομάζονται reads, ένα ανά γραμμή και εφαρμόζει
μια διαδικασία αντιστοίχισης μεταξύ τους προκειμένου να βρεθεί αχρησιμοποίη-

τος πλεονασμός. ΄Οταν η διαδικασία εκτελεσθεί επιτυχώς, ο αχρησιμοποίητος

πλεονασμός εξαλείφεται από το σύνολο δεδομένων και στην έξοδο παράγονται τα

τελικά reads τα οποία ονομάζονται ενδιάμεσα (intermediate) contigs. Το τελικό
αρχείο εξόδου έχει λιγότερα σε αριθμό και μεγαλύτερα ή ίσα σε μήκος reads σε
σχέση με αυτά του συνόλου δεδομένων εισόδου, αλλά χωρίς τον αχρησιμοποίητο

πλεονασμό και με αυτόν τον τρόπο το συνολικό μέγεθος του συνόλου δεδομένων

γίνεται μικρότερο. Αξιοποιώντας αυτό το αποτέλεσμα, η διαδικασία του genome
assembly λαμβάνει ένα μικρότερο σύνολο δεδομένων ως είσοδο και ως αποτέλεσμα
κερδίζει ένα όφελος χρόνου στην διαδικασία εκτέλεσης.

Ο παραπάνω αλγόριθμος εφαρμόστηκε τόσο σε λογισμικό όσο και σε σχεδι-

ασμό λογισμικού-υλικού σε Field Programmable Gate Array (FPGA) προκειμέ-
νου να επιταχυνθεί ο χρόνος εκτέλεσης. Οι έξοδοι του RMF και το αρχικό
σύνολο δεδομένων εισόδου δίνονται ως είσοδος στο Velvet genome assembler το
οποίο βασίζεται στον χειρισμό των γραφημάτων de Bruijn, μέσω της αφαίρεσης
σφαλμάτων και της απλοποίησης επαναλαμβανόμενων περιοχών, προκειμένου να

επεξεργαστεί τη συναρμολόγηση και να δώσει τις ακολουθίες εξόδου. Συμπεριλ-

αμβανομένου του RMF η διαδικασία του genome assembly κέρδισε μια ταχύτητα
εκτέλεσης της τάξης του 2x-6x, με καλή ποιότητα στα αποτελέσματα μεταξύ των
δύο μεθόδων.
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Abstract

Georgios GALANOS

Hardware Acceleration of Genome Assembly Algorithms

Genome assembly is a field of bioinformatics that refers to the process of tak-
ing small fragments of genetic material and putting them back together by
different methods in order to reconstruct the original sequence from which
the DNA originated. As the DNA input datasets has numerous data size and
in most cases has a very large amount of data, it is important to implement
functions and algorithms in order to speedup these processes and gain sig-
nificant time and space reductions in complexity. The Reads Matching Filter
(RMF), which i implemented and present in this diploma thesis, is a kind of
these processes and it has a preprocessing role in the whole genome assembly
process.

The RMF takes the input dataset which contains the genetic material sepa-
rated in reads, one per line and implement a matching process between each
other in order to find unused redundancy. As the matching process executed
successfully, the unused redundancy thrown out of the dataset and remain
the output reads from the algorithm which they called intermediate contigs.
The final output file that contains these intermediate contigs has less reads
in number and bigger or equal than the input dataset’s reads in length but
without the unused redundancy and in this way the overall dataset size gets
smaller. Exploited this result, the genome assembly process take a smaller
dataset as input and as a result gain a time benefit in execution procedure.

The above algorithm implemented both in a software only and in a software-
hardware design in Field Programmable Gate Array (FPGA) in order to gain
an acceleration in execution time. The outputs of my design and the original
input dataset are given as input in Velvet genome assembler which based
on the manipulation of de Bruijn graphs, via the removal of errors and the
simplication of repeated regions, in order to process the assembly and give
the output sequences. The overall design included the genome assembly
processing gained a speedup of the order of 2x-6x ratio, with good quality in
the results between the two methods.
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Chapter 1

Introduction

Bioinformatics is an interdisciplinary field that develops methods and al-
gorithms in order to compute and execute biological data and tasks. As an
interdisciplinary field of science, bioinformatics combines biology, computer
science, information engineering, mathematics and statistics to analyze and
interpret the biological data. Biological computation combines bioengineer-
ing and biology to build biological computers and algorithms, whereas bioin-
formatics uses to better understand biology. It is a fact that nowadays we
have large amount of data to deal with for research propose, studies and in-
novations and we want useful tools to implement our job faster and better.
In bioinformatics we have jobs such as genome processing, genome assembly
and many others biological tasks, presuppose a very good space exploitation
and a reduction in execution time as much as possible, to have a functional
operational level and a good execution time. The primary goal of bioinfor-
matics is to increase the understanding of biological processes. We have ma-
chine learning algorithms, pattern recognition, data mining, sequence align-
ment, protein structure prediction and clustering in families, visualization
and so on, tasks which can be implemented with the contribution of the sci-
ence of maths, software and hardware engineering and IT (Information tech-
nology) in general [18].

Biologists and more especially molecular ones, in the wide range of their
work, use DNA, RNA, protein and other sequences, which in many cases are
very large quantitative data. They have to deal with many bytes of sequenc-
ing data which need processing on computing clusters. Even if we assume
the unusable redundancy this sequences may have, we can understand the
increment of the time and space complexity of algorithms could have. Here
is where genome sequencing take place and help by reconstructing the large
sequences, by assembling the contigs into new one without any redundancy,
by keeping the quality of the genome unanalyzed, as much as possible (e.g.
error may occurred while reconstruction, repeats may exists). In this work
we implemented a genome preprocessing filter which the main approach is
presented in [39] and we make some changes to make it functional in a new
FPGA to obtain a better time benefit, which is analyzed below. After that,
a genome assembler can take the output contigs of our filtering stage and
can construct new individual genomes. The processing time of the tasks of
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a genome assembler can be considered exponentially increasing with the in-
put file size and thus have been implemented methods which reduce the data
size without missing valuable information.

1.1 My Thesis Contribution

In this section i will present the contribution of my diploma thesis theme
among the above needs of increasing the efficiency and the effectiveness of
the bioinformatics algorithms and programs. The design i implemented is
a preprocessing technique and i present the implementation and the differ-
ences that we done among the various similar implementations. There are
many techniques that can be implement in order to speedup the genome
assembly processing and the genome sequencing in general. As DNA as-
sembly technology cannot read whole genomes in one go, but rather reads
smaller pieces, genome sequencing is a necessary task. The processing of
genome assembly is a very time consuming, and as a result, expensive job.
So, it is important to implement tools that assist the processing of genome re-
construction by filtering the data, which reduce the space complexity (RAM
usage, hard drive space) as well as the processing time. In this paper we pro-
pose the use of reconfigurable hardware (FPGAs) in order to accelerate the
execution of a pre-filtering process that removes the redundancy in a genome
dataset. The Reads Matching Filter (RMF) executes a matching process be-
tween the reads of a DNA dataset in order to combine them and remove
the redundant reads. As a result we have reducing on the assembly input
dataset’s size and the complexity of the assembly at all.

The implemented filter which acts as preprocessor generates an output that
can be as input in Velvet genome assembler [34]. The basic logic about this
RMF preprocessor is to takes the input reads, find for matches between the
reads and generating the output contigs in order to give it as input in Vel-
vet assembler to generate the final contigs. In contrast we pass the input
reads as it is in Velvet assembler and taking the output contigs to check the
similarity between the two outputs to examine the efficiency of the imple-
mentation. We found numerous speedups between the two methods and the
general processing time of the assembly by Velvet reduced. The quality of
the outputs seems to be satisfactorily in terms of targeting a state of the art
FPGA platform that lead to a different architectural implementation in order
to take advantage of the characteristics of the new platform, with respect to
both I/O capabilities and hardware resources.

1.2 Thesis Outline

In this section we outline the organization of this thesis.

• Chapter 2: We describe in detail the theoretical background of the Geno-
me Sequencing and Genome Assembly and we present the related work
that exists in this field.
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• Chapter 3: We intend to describe our implementation of the preprocess-
ing genome sequencing program, both in software and hardware im-
plementation and describe the differences between our’s and paper’s
approach.

• Chapter 4: We present the results of our implementation.

• Chapter 5: We conclude this thesis and we provide directions for future
work and possible extensions to our work.
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Chapter 2

Theoretical Background and
Related Work

In this Chapter, we will describe in detail the theoretical background of
Genome Assembly and Genome Sequencing and we present the related work
which has already been done both in research and the already existing bioin-
formating field.

As DNA sequencing technology works with big amount of data using bigger
genomes and sequences, it needs algorithmic ways to implement aligning
and merging techniques to the sequences in order to reduce the size of the
read used or reconstruct genomes without loosing the quality of the output.
This techniques follow algorithms of specific steps which are based on the
match between consecutively reads in order to cover the unused redundancy
between them. This can be done by many different ways which are listed
below. The final result is a DNA sequence that it is in most cases unique or
needing further processing in order to be unique (became a whole genome
sequence). The result may contains faults or unwanted redundancy and in
that case we can use other algorithms to prevent or fix these issues or we
further processing it in order to reconstructed. These techniques cover the
overall genome sequencing processing and all these approaches can help the
genome assembly and many other biology tasks.

2.1 Genome

In the fields of molecular biology and genetics, a genome is the genetic
material of an organism that present in the cells or in atoms. It provides all
of the information the organism requires to function. It consist of Deoxyri-
bonucleic acid (DNA), a chain that is a molecule composed of two poly nu-
cleotide chains that coil around each other to form a double helix. This two
DNA strands are known as polynucleotides as they are composed of simpler
monomeric units called nucleotides. Each nucleotide is composed of one of
four nitrogen-containing nucleobases (cytosine [C], guanine [G], adenine
[A] or thymine [T]).
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FIGURE 2.1: The DNA double helix with the nucleobases
https://www.yourgenome.org/sites/default/files/illustrations/diagram/

dna_double_helix_yourgenome.png

The genomes can be extended, reconstructed and concatenate between each
other in biological processes and create a very large sequence that needs as-
sembly to reworked and deciphering the sequence composition of the genetic
material (DNA), in order to exported new genome material for a new organ-
ism or a different version of the already existed organism.

2.2 Genome Processing

As we mention above, genome processing combined with genome assembly
are the computational job of reconstruct genomes and assemble reads in or-
der to generate new or make a deeper research about genome sequences of
organism, bacteria, chromosomes and all the other genome stages that de-
tailed described below. Genome processing started many years ago and here
we present the general chronology.

2.2.1 Genome Processing Chronology

Genome Processing is a very old research field for the need of humanity
to learn more about his health and for survival purpose. Besides of this, hu-
manity want to learn more about the life, the creatures, the material and the
whole world around. For that humanity’s thirst of learning, the chronology
of genome processing begins before 1900.

The very early 1871 Friedrich Miescher first publishes his paper where found
the appearance of ’nuclein’ (now known as DNA) and associated proteins, in

https://www.yourgenome.org/sites/default/files/illustrations/diagram/dna_double_helix_yourgenome.png
https://www.yourgenome.org/sites/default/files/illustrations/diagram/dna_double_helix_yourgenome.png
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the cell nucleus [11]. In 1910, the first big step in genome processing hap-
pened, when Albrecht Kossel is awarded the first Nobel Prize in Physiology
or Medicine for his discovery of the five nucleotide bases, adenine, cytosine,
guanine, thymine and uracil.

Computers became essential in molecular biology when protein sequences
first became available in the early 1950s. Then was the time when Frederick
Sanger determined the sequence of insulin. Starting of this, comparing multi-
ple sequences manually turned out to be impractical, so scientist try to figure
out how to work on computer. After that, in 1953, James Watson and Fran-
cis Crick, with contributions from Rosalind Franklin and Maurice Wilkins,
discover the double helix structure of DNA. In 1977, Frederick Sanger devel-
ops a DNA sequencing technique which he and his team use to sequence full
genomes and invented the very first genome - that of a virus called phiX174
[14].

The need of software implementation, sequencing and assembling on com-
puter, became more imperative decade-by-decade as in 1980 Frederic Sanger
shares the Nobel Prize for Chemistry with Wally Gilbert and Paul Berg, for
pioneering DNA sequencing methods which help on determination of the
amino acid sequence of insulin, RNA and DNA sequencing [25]. In 1990,
Human Genome Project is launched [31] (figure 2.2). The project aims to
sequence all 3 billion letters of a human genome in 15 years. In 1999, Chro-
mosome 22 is the first human chromosome to be sequenced as part of this
project. The first try of determination of the human genome sequence re-
leased in 2001 and 2003 Human Genome Project is completed and confirms
humans have approximately 20,000–25,000 genes. The human genome is se-
quenced to 99.99 per cent accuracy, 2 years ahead of schedule, in a very his-
toric moment for biology. Additionally a recent update in this impressive
project, on May 27 2021, the complete human genome sequence is close. Sci-
entists from University of California, report that they have sequenced the
remainder, in the process discovering about 115 new genes that code for pro-
teins, for a total of 19,969. Researchers added 200 million DNA base pairs
and 115 protein-coding genes — but they have yet to entirely sequence the Y
chromosome, mentions Nature Portfolio [24].

The chronological development and the requirements of genome sequenc-
ing is constantly increasing and nowadays we have big amount of data for
bioinformatics researches. As DNA assembly technology cannot read whole
genomes in one go, but rather reads smaller pieces, genome sequencing is a
necessary task. The DNA chains may consist of many bases and the process-
ing in computers may be very difficult and expensive job. So, it is important
to implement algorithms and tools that reconstruct the genomes (by throws
the unused redundancy or errors) and reduce the space complexity (RAM
usage, hard drive space) of biological processes.
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FIGURE 2.2: The Human Genome Project launched in 1990
https://www.slideshare.net/vinithasekar/human-genome-project-72272927

2.3 Genome Processing Programs and Tools

Many databases, dataset files, techniques and algorithm are used by sci-
entists in genome processing processes. Many file types describes DNA se-
quences with different details and information level between them. These
file types form datasets that include DNA material and can be used as input
in genome assembly programs or output from them. Depending the read’s
length, the number of reads or the information that each dataset consist of,
there are many assembly programs in order to reconstruct genomes. After
the assembly stage further genome processing might happen. The output of
the genome assemblers can be further processed and analyzed by sequence
analyzers such as BLAST [3], tools that can calculate the similarity between
multiple output sequences to define the measure of correctness of the result.

2.3.1 The shotgun sequencing technique

Most DNA sequencing techniques produce short fragments of sequence that
need to be assembled to obtain complete genome sequences. The so-called
shotgun sequencing technique and it is named by analogy with the rapidly
expanding, quasi-random firing pattern of a shotgun [23]. The ends of these
fragments overlap and, when aligned properly by a genome assembly pro-
gram (such as Velvet), can be used to construct the complete genome. Shot-
gun sequencing yields sequence data quickly, but the task of assembling the
fragments can be quite complicated for larger genomes. For a genome as
large as the human genome, it may take large time frames of CPU time on
large-memory, multiprocessor computers to assemble the fragments, and the
resulting assembly usually contains numerous gaps that must be filled in

https://www.slideshare.net/vinithasekar/human-genome-project-72272927
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later. All the assembling methods that exist have big temporal and spatial
complexity because the size of input data. The task must take all the reads,
one by one and compare between each other for possible matches. Here is
the hardware based acceleration that can be useful. Shotgun sequencing is
the method of choice for virtually all genomes sequenced today, and genome
assembly algorithms are a critical area of bioinformatics research to take shot-
gun sequences as input in order to implement the assembly. The majority of
the input files which we used is a result of this shotgun technique.

2.3.2 Datasets and File Types

Especially in dataset and file formats we have different formats concern-
ing the details we want to include in the specific file. There are many file
types that contains and describes DNA sequences [29] [13] and the most
widespread one is the FASTA (and FASTQ) file format in case we do not
want to include additional information about the genome. This type of file is
the simplest one and has a first line begin with the symbol ’>’ and can con-
tains the title of the genome and some of the description, such as the type of
data this file contains (e.g. shotgun generated reads or complete genomes).
After that details line we have the genome reads, one per line with a various
line length per dataset, most commonly of 60 or 70 bases per line and in some
cases bigger line length (e.g. 80,90), but it is a fact that all the reads contained
in a FASTA file has the same length per line. FASTQ is a similar file type to
FASTA, but is has other information, nucleotide base calls, a second defini-
tion line, and per-base quality scores, all in text form. In our approach we
use FASTA file format both as input and output of our algorithm.

2.4 Genome Assembly

One of the main task in genome processing is the genome assembly. In
bioinformatics, genome assembly refers to aligning and merging fragments
from a longer DNA sequence in order to reconstruct the original sequence.
Is the computational step that follows sequencing with the objective of re-
constructing the genome from its reads. There are two major categories of
genome assembly, the reference-based mapping assembly and the simple de
novo assembly.

2.4.1 Reference-Based Mapping Assembly

The first category assembling reads against an existing "template" sequence,
build-in a sequence that is similar but not necessarily identical to the "tem-
plate" sequence. If the genome has been sequenced before and a reference
genome sequence already exists, then the newly obtained re-sequence reads
are first mapped to the reference genome through alignment and then assem-
bled in proper order. A revolutionary technique is the one mentioned above
of Polymerase Chain Reaction (PCR)[22] which developed by Kary Mullis in
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the 1980s. It is about a reference-based mapping sequence technique which
is based on using the ability of DNA polymerase to synthesize new strand of
DNA complementary to the offered template strand. In 2007 a new DNA se-
quencing technology is introduced [22] that increases DNA sequencing effec-
tiveness. The new DNA sequencing process is simpler, more accurate and ef-
ficient than the multiplex PCR that was previously used. A microarray-based
technique of genome sequencing machines which quickly determine the ex-
act genetic code of the material, come to replace the previous PCR technique
[28]. Another one aligner is Bowtie, an ultra fast memory-efficient short read
aligner which aligns short DNA sequences to a reference genome at a rate of
over 25 million 35-bp reads per hour [4].

2.4.2 De Novo Genome Assembly

The second category of genome assembly is the De novo sequence assem-
blers. De novo sequence assemblers are a type of program that assembles
short nucleotide sequences into longer ones without the use of a reference
genome. We got involved with a de novo genome assembly which has two
common types of assemble programs; greedy algorithm assemblers and as-
semblers that construct a De Bruijn graph to represent their intermediate con-
tigs. This assembler is Velvet [34] that we used it assembly our intermediate
output contigs of our design. The input of the assembler is the intermediate
contigs that our kernel generates. The main idea of our algorithm is that the
pairwise alignment of all reads is done and the reads with the largest overlap
is merged. This process is repeated till a single lengthy sequence is obtained.
In this way we can give, as input in assembler, a smaller input file without
loosing any significant information and so speeds up the processing time of
the tool.

2.4.3 Genome assembler’s implementations

Genome assembly from sequence reads is an algorithm-driven automated
process. It is a computational expensive problem and for that reason there
are many different techniques and methods in order to implement it. To date
genome assembly can be done using one of the below three approaches:(1)
greedy, (2) overlap-layout-consensus (OLC) and Hamiltonian path, and (3)
de Bruijn graph and Eulerian path [17].

Greedy approach is the simplest, most intuitive, solution to the assembly
problem. Individual reads are joined together into contigs in an iterative
fashion, starting with the reads that overlap best, and ending once no more
reads or contigs can be joined. This technique may failed under specific con-
ditions that the contigs do not have any significant base coherence in com-
mon. In this situation the output contigs includes gaps. Paired-end sequenc-
ing is used to close these gaps. This technique allows the sequencing both of
the ends of a fragment and generate high-quality, alignable data.
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The second approach is the overlap-layout-consensus approach, which has 3
basic steps. The first step is using the greedy algorithm that described above,
generating an output with the intermediate contigs that had been joined. In
the second step it uses this output to construct an overlap graph; a graph
containing each read as a node and an edge connects two nodes if an overlap
was identified between the corresponding reads. The third and final step is
the solution of the Hamiltonian path of this graph. Assembler try to find a
single path that traverses each node in the overlap graph exactly once and
generate and output which is a complete genome.

The third approach is that which uses the reads to construct a de Bruijn graph
[6]. It can be recommended used in cases that the reads are short (<100bp).
The main idea is that reads broken down to smaller sequences called k-mers.
These k-mers are aligned using (k-1) sequence overlaps. The actual size of k
depends on sequence coverage, read length, etc., but usually is not less than
half of the actual read length. The final genome constructed by the Eule-
rian cycle method that visits every edge exactly once (allowing for revisiting
vertices).

2.4.4 The hierarchical stages of the genome assembly and the
N50 metric

Generally speaking the genome assembly is a multiprocessing job that in-
cludes different stages. Therefore, genome assembly is a hierarchical process;
it is performed in steps beginning from the assembly of the sequence reads
into contigs, assembly of the contigs into scaffolds (supercontigs) and assem-
bly of the scaffolds into chromosomes. The most difficult assembly process
is the assembly from the scaffolds into chromosomes because the gaps can
not be easily sequenced. For that reason we have many assemblies remain
restricted to scaffold level.

The quality review of the assembly is not so clear predefined. On the other
hand, one very usual and useful metric in order to quantify the quality of
the assembly is the N50 value. The N50 contig value can be determined by
first sorting all contigs in decreasing order of size, then adding the contigs
until the total added size reaches at least half of the total size of all assembled
contigs. The size of the smallest contig used in this addition process repre-
sents the N50. The assembly processing can be executed multiple times until
we reach a maximum N50 value. The larger the N50 value, the better is the
assembly. Using the same concept, higher values of N are also used, such
as N60 (until reach the 60% of the assembled contigs) and N80 (until reach
the 80% of the assembled contigs). If the N50 scaffold length is too short,
additional rounds of shotgun sequencing are recommended.
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2.4.5 Genome assembler programs

Occasionally there were many software programs and tools that imple-
ment genome assembly processes and nowadays there is a very big occupa-
tion from the researchers and programmers to make faster and better pro-
grams and tools for this tasks. We have many assemblers that can make the
reconstruction of the genome from its fragments. Our approach takes ei-
ther the shotgun sequencing dataset or any other datasets, with the scattered
parts of the genome (input reads), make the match between similar reads
and throws the presented redundancy. The output intermediate contigs of
our filtering stage, given as input in a genome assembler program in order
to match the contigs to construct the whole genome (or new assembled con-
tigs). We had a wide variety of these programs to use as well as most of them
are open to use.

As we mention above, there are three main ways to implement a genome
assembler and in that three ways we have the grouping of them, having as
criterion and the intermediate contig’s length. According to article [42] we
have the figure 2.3 of genome assembly programs and its features. We have
in column ’Algorithm’ the way each assembler implemented and some oth-
ers information such as the programming language they are implemented,
the required read length and if they works with single-end, paired-end or
both, reads. In our case we had single-end reads with numerous read length
in FASTA input formats and so we try to use Velvet, SOAPdenovo [33] or
SPAdes[2] (which is not included in the figure) and finally we keep the Velvet
which compiled faster, it was easiest to use and easiest to pass the arguments
we want. Apart from this, we wanted to use the same assembler with the
motivated paper’s one in order to compare the results between them.

2.4.6 Software Tools

After the genome assembler gives an output of complete genome from our
intermediate contigs as inputs, we have a big variety of sequence alignment
tools, such as BLAST [3] to farther analyze the results. These tools takes
multiple sequences and try to find the biggest matching rate between them
by shift the sequences. This task can be very useful if we take the output
from genome assembler (as they generating by genome assembler) and put
it in sequence analyzer, alongside with the output of the genome assembler
by using the intermediate contigs of our design as input. This match rate
can be a satisfying criteria of similarity, in order to decide if our intermediate
contigs where right. The match rate is calculated in a reward/penalty ratio
and depending on this we can assume a percent of similarity. An average
percent of similarity above 95% is a very good result.
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FIGURE 2.3: Features of selected short reads assembly pro-
grams.

https://doi.org/10.1371/journal.pone.0017915.g011

2.5 Related Work

In related work we can find numerous bibliography about the innovations
and the additional study that has been done in bioinformatics field. These
works helped and continue to help the ever-increasing technology in biology
and medical science, revealing and improving techniques and algorithms. In
these many researches, our institution, the Technical University of Crete, has
involved with many interesting works.

First of all there is the work in [8] where Grigorios Chrysos et. al. presents
an in-depth look of how FPGA computing can offer substantial speedups in
the execution of bioinformatics algorithms, with specific results achieved to
date for a broad range of algorithms. The main conclusion is that FPGAs
with the programmable logic they have, can be a significant tool to make
bioinformatics algorithms works faster. Examples and case studies are pre-
sented for sequence comparison (BLAST, CAST), multiple sequence align-
ment (MAFFT, T-Coffee), RNA and protein secondary structure prediction
(Zuker, Predator), gene prediction (Glimmer/GlimmerHMM) and phyloge-
netic tree computation (RAxML), running on mainstream FPGA technologies
as well as high-end FPGA-based systems (Convey HC1, BeeCube).

In [16], Matina Lakka et al., presents the implementation on FPGA of two
of the best known Multiple Sequence Alignment (MSA) algorithms, which
offer high accuracy and great performance, T-Coffee and MAFFT. This pa-
per presents the implementation of these algorithms on present-day FPGAs.

https://doi.org/10.1371/journal.pone.0017915.g011
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They conclude that for “large” datasets their design is 4 to 5 times faster. For
”small” datasets they did not take good results but they assumed that for a
large modern FPGA device they can have up to 15 parallel their designs, thus
achievings peedup from 10 to 55 times faster.

In advance we can mention the PhD dissertation on Reconfigurable Archi-
tecture Structures for the BLAST DNA Sequencing Algorithm, which pre-
sented in 2011 from Dr. E. Sotiriades in [27]. In a few words as he mentions
Dr. Sotiriades, presents a system based on reconfigurable logic to implement
the BLAST algorithm, regardless of data size or algorithm variation [3]. His
design consists of software and hardware parts and achieves a speedup of
several times up to thousands of times vs general purpose computers. We
use the Blast sequence alignment in our study to check the efficiency of our
algorithm.

In May of 2014 in [5], Chuming Chen et. al. developed ngsShoRT (next-
generation sequencing (NGS) Short Reads Trimmer), a flexible and compre-
hensive open-source software package written in Perl that provides a set of
algorithms commonly used for pre-processing NGS short read sequences.
They compared the features and performance of ngsShoRT with existing
tools: CutAdapt, NGS QC Toolkit and Trimmomatic. They also compared the
effects of using pre-processed short read sequences generated by different al-
gorithms on De-novo and reference-based assembly. Their results show that
across three organisms and three sequencing platforms, trimming improved
the mean quality scores of trimmed sequences. Using trimmed sequences for
De-novo and reference-based assembly improved assembly quality as well
as assembler performance.

Nathaniel McVicar et al., in [20], present a flexible and fast FPGA-based short
read alignment tool. Their aligner provides a speedup of 5.6x over BWA-SW
with energy savings of 21%,while also reducing incorrect short read classifi-
cation by 29%.They also offer optimizations with which the speedup can be
increased to 71.3x, while still enjoying a 28% incorrect classification improve-
ment and 52% improvement in unaligned reads.

Another one task that we may take into account is the error correction that
must done after the sequence’s generation. In April of 2010 we have a Par-
allel Algorithm for Error Correction in High-Throughput Short-Read Data
on CUDA-Enabled Graphics Hardware where they present a scalable paral-
lel algorithm for correcting sequencing errors in high-throughput short-read
data with numerous speedups in their results [26]. They proesent that by
using a CUDA-enabled mass-produced GPU, their results are in speedups of
12-84 times for the parallelized error correction, and speedups of 3-63 times
for both sequential preprocessing and parallelized error correction compared
to the publicly available Euler-SR program.

Finally, we can mention the growing involving of Microprocessors & Hard-
ware Laboratory of TUC [21] which has present a numerous work on Genome
Assembly and on Genome processing with many diploma thesis implemented
of its students.



2.6. Scientific Contributions 29

2.6 Scientific Contributions

During the 1950s, when the birth of modern molecular genetics happened,
started the need of exploration of genes, heredity and the structure of DNA,
the genetic information of all matter. In 1952, Alfred Hershey and Martha
Chase proved that DNA was the molecule of heredity and James Watson,
Francis Crick, Maurice Wilkins and Rosalind Franklin solved the three-dimen-
sional structure of DNA with the double helix shape. From that point and till
today, many scientific contributions have solve a big amount of the life ques-
tions, about what the genetic information of matter is and from what specific
terms the life is configured and dependent.

Passing the years, one big problem was the inability to read genome se-
quences, because the large amount of the bases involved. Then, during the
late 1960s and early 1970s, the combined work of several groups of researchers
(Meselson & Yuan, 1968; Jackson et al., 1972; Cohen et al., 1973), helped in
this problem by using DNA cut techniques at specific sites and spliced with
DNA from other species. In that way started the mapping of genes where Mr.
Francis Collins was the leader one, in 1980s, discovering the location of three
important disease genes. After that, by the late 1980s, multiple approaches
for sequencing DNA were in use and this all began to change with the work
of National Institutes of Health (NIH) scientist J. Craig Venter. He started in
his laboratory the genome sequencing by combine multiple sequencing tech-
niques and he managed to sequence a big amount of genomes, with some
missmatches, about 2000 whole genomes, which was as many as had been
sequenced in the entire world to that point. Combine techniques seemed to
work and was the start of what if follows [1]. Over the years, scientific discov-
eries that resulted from the application of next-generation DNA sequencing
technologies, had their impact on the genome processing. Parallel platforms
and new methods appear which works in a genome-wide scale with base
precision and in this way these technologies brought enormous change in
genetic and biological research. We have sequencing of RNA, serial analy-
sis of gene expression (SAGE) and sequencing of ancient DNA samples as
remarkable points in this point [19].

2.6.1 Acceleration of Algorithms

Many researchers has try to implement and accelerate algorithms and tasks
of bioinformatic field. These implementations have much of them a hard-
ware implementation and more specifically an FPGA implementation. A
Field-programmable gate array board (FPGA) is an integrated circuit de-
signed to be configured by a customer or a designer after manufacturing
and give the benefit to the programmer to make his own spatial allocation
and try to accelerate an algorithm with much of optimizations in the design.
Many of the design techniques and more information about these works can
be found on the "Architecture Exploration of FPGA Based Accelerators for
BioInformatics Applications" book from Springer Singapore [38].
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An FPGA based acceleration work done from Steven Derrien and Patrice
Quinton [10]. They implemented a new parallelization scheme for the hmm-
search function of the HMMER software, which is used for searching se-
quence databases for sequence homologs and for making sequence align-
ments [15]. In advance, we have the publish of Parallel accelerators for
GlimmerHMM bioinformatics algorithm from Nafsika Chrysanthou et.al. re-
searchers of our institute, the Technical University of Crete [7]. They man-
aged to take speedups up to 200x for the FPGA-based system and up to
34x for the GPU-based system for the most compute intensive part of the
algorithm. In conclusion we can present the paper of Reconfiguring the
Bioinformatics Computational Spectrum: Challenges and Opportunities of
FPGA-Based Bioinformatics Acceleration Platforms from a group of authors,
including my diploma thesis supervisor Pr. A. Dollas, where they conducts
a detailed survey on the use of FPGA-based reconfigurable computing plat-
forms for a wide range of sequence and structural bioinformatics applica-
tions, with emphasis on performance and energy savings of the underlying
architectures [9].

2.7 Motivation and our approach

In my diploma thesis we studied many different techniques and ended up to
the paper of FAssem : FPGA based Acceleration of De Novo Genome Assem-
bly [39]. This general study refers to a FPGA based Acceleration of De Novo
Genome Assembly and in this particular part refers to achieved speedups
over software implementations using FPGA-based accelerators. They imple-
mented an application that use a parallel hardware implementation to make
a redundancy job in the reads in the input data and they build the consensus
sequences from the outputs of this design by using the de Bruijn graph-based
Velvet software. So they implemented a Redundancy Remover Unit (RRU) in
FPGA which acts as preprocessor and generating the input of Velvet genome
assembler. The basic logic about this RRU preprocessor is to takes the input
reads, find for matches between the reads and generating the output in order
to give it as input in Velvet software to generate the final contigs. In contrast
they pass the input reads as it is in Velvet software and taking the output
contigs to check the similarity between these two outputs to examine the ef-
ficiency of the implementation. This processes appear in figure 2.4 with the
two data-paths generating the two outputs.

They implemented and ran their design in an Alpha-Data board having Xil-
inx Virtex-6 (XC6VSX475T) FPGA with speed-grade 1 [40]. They implemented
a kernel of this accelerator and named it Process Element (PE). In order to
take speedup they implemented a multi-instance of PEs. As they present
they managed to fit a multi-instace of 15 PEs in this specific FPGA board and
they present an estimation of the speedups up to 13x faster in terms of 300
PEs. They present generally estimated speedups with different multi-PEs
instances with 30,300,1000 and 3000 PEs.
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FIGURE 2.4: Generation of two outputs sequences.

The main differences with their approach has to do with the hardware imple-
mentation. The first main difference is that we implemented a single kernel
design, on the contrary of their multi-PEs design, so lower level of paral-
lelism but in conclusion we saw average similar speedups and output’s simi-
larity rates thanks to next generation FPGA board. The second difference has
to do with the internal hardware logic where we eliminated a stage that we
ended up that it does not give any advantage in the process. In order to eval-
uate the results, with respect to performance and results’ quality, of our work
we utilized Velvet as well. About these differences we speak more specific in
Chapter 3 and 4.

2.7.1 Amdahl’s law and theoretical parallel speedup

The theory of doing computational work in parallel has some fundamen-
tal laws that place limits on the benefits one can derive from parallelizing
a computation work. To understand these laws, we have to first define the
objective. In general, the goal in large scale computation is to get as much
work done as possible in the shortest possible time within our budget. Ac-
cording to the Amdahl’s law there is a upper limit about the gained speedup
for each computational work. This is in almost all cases the best speedup one
can achieve by doing work in parallel.

In our results that will be detailed presented in Chapter 4, we have the soft-
ware execution times for our RMF design. For the processing stage of the
RMF, which is the one that take the most execution time, we can compute
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an upper limit of possible speedup. This stage is an independent stage from
the I/O operations, throw the RMF datapath, does not include dependencies
between variables and we can have more than one (1) instances of this for
parallel processing. In this point of view we can assume that this processing
stage is a parallelizable stage.

Assuming the execution time of the processing stage as Tp and the overall
RMF execution time (including I/O operations) as To we can calculate the
percent of the overall RMF’s execution time, which the processing stage oc-
cupies and we have the following table 2.1 for our datasets:

Dataset Size Execution time in sec Percent of
in Kb Tp To processing stage

Pyruvatibacter 3291 86,71 87,27 99,3%
Pseudomonas 6689 174,8 175,96 99,3%

Aythya 11749 312,72 314,78 99,3%
Melopsittacus 22887 625,41 629,65 99,3%

Photinus Piralis 70234 1985,71 1997,87 99,4%

TABLE 2.1: The percentage of the overall RMF’s execution time,
which the processing stage occupies.

As we observe the percentage of the execution time of the most computa-
tional expensive part, the processing stage of the RMF, is about 99,3-99,4%.
This means that there is no I/O bottleneck in RMF, as the processing stage
is an independent stage from read and write stages. According to Amdahl’s
law if we assume the percentage of the processing stage as f the possible up-
per speedup that we can gain is:

1÷ (1− f )

So, we have the below maximum theoretical possible speedups concerning
these percentages:

Dataset Size Percent of Maximum possible
in Kb processing stage speedup

Pyruvatibacter 3291 99,3% 142,8x
Pseudomonas 6689 99,3% 142,8x

Aythya 11749 99,3% 142,8x
Melopsittacus 22887 99,3% 142,8x

Photinus Piralis 70234 99,4% 166,6x

TABLE 2.2: Maximum theoretical possible speedups.

This implementation can achieve significant speedups according to the pre-
vious profiling and as it can easily be configured to run in a modern FPGA,
we concluded to implement this design in order to get the results using a
next generation FPGA. As we see in Chapter 4, we finally achieve speedups
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up to 45x for our initial implementation. The differences between the maxi-
mum theoretical speedup and the gained speedup lead to the conclusion that
the RMF has room for improvement. On the other hand we gain significant
speedups and both for RMF design and for the whole assembly processing.

After that first theoretical speedup calculation and as we take our first soft-
ware only execution time measurements from the whole assembly process-
ing (including Velvet), we calculate, in the same way with above, the overall
maximum theoretical speedup that the process can achieve. First, assuming
again as Tp’ the execution time of the processing stage of the RMF and as To’
the overall execution time of the whole process including RMF and Velvet,
we have the following table 2.3:

Dataset Size Execution time in sec Percentage of
in Kb Tp’ To’ processing stage

Pyruvatibacter 3291 86,71 125,94 68,8%
Pseudomonas 6689 174,8 232,81 75%

Aythya 11749 312,72 516,96 60%
Melopsittacus 22887 625,41 1065,13 58%

Photinus Piralis 70234 1985,71 6354,03 31,2%

TABLE 2.3: The percentage of the entire assembly process’ exe-
cution time if we do not account for the RMF.

As we observe the percent of the execution time of the processing stage throw
the whole assembly process (RMF+Velvet), is different depending the file
size. Like the previous calculations if we assume as f’ these percentages
and by taking the Amdahl’s law we can calculate the maximum theoretical
speedup that we can gain in the entire assembly process if we manage to im-
plement the processing stage of the RMF in parallel implementation. These
speedups are tabulated in the table, below 2.4:

Dataset Size Percentage of Maximum possible
in Kb processing stage speedup

Pyruvatibacter 3291 68,8% 3,2x
Pseudomonas 6689 75% 4x

Aythya 11749 60% 2,5x
Melopsittacus 22887 58% 2,38x

Photinus Piralis 70234 31,2% 1,45x

TABLE 2.4: Maximum theoretical possible speedups of the en-
tire process.

So we can gain a possible maximum speedup up to 4x if we manage to par-
allelize the execution of the processing stage of the RMF. In our initial im-
plementation, we finally managed to gain a maximum speedup up to 3,61x
and by making further improvements in the design we manage to increase
this speedup as we will see in Chapter 4. In these speedups we have include
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all the I/O operations and the results are very encouraging in order to make
sense to implement the RMF.

This speedup is a significant speedup in the whole assembly process and this
drove us to implement RMF. Apart from this, the software implementations
of these preprocessing stages like RMF, are very slow and not useful in the
whole assembly process (and are not used from genome assemblers). For that
reason the hardware implementation of them becomes necessary in order to
executed in parallelism and by that way to reduce the execution time at all.

We are targeting a state of the art FPGA platform that lead to a different ar-
chitectural implementation in order to take advantage of the characteristics
of the new platform, with respect to both I/O capabilities and hardware re-
sources. Apart of these, this is a design that can easy get optimizations and
parallelism and we continue in the logical design implementation of this. The
hardware implementation, which consist of subsystems easy to implemented
in hardware, can easily synthesized and designed.
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Chapter 3

Reads Matching Filter

In this chapter we intend to describe the implementation of the Reads
Matching Filter (RMF) of our approach and the differences it have with the
paper’s one which we motivated. In section 3.1 we have the software im-
plementation with the algorithm and the processes we made and in section
3.2 we have the hardware implementation of the most computing expen-
sive stage of our filtering and all the optimizations that we made in order
to speedup the process. In hardware implementation we used the Vitis uni-
fied software platform [36] from Xilinx [41], where we build our project, with
the functions that reads the input file and writes in output file runs in soft-
ware mode in the host and all the matching job between the reads done in
hardware kernel on the FPGA. The general filtering divided into three main
stages which they presented in detail below.

3.1 Software initial implementation

The Reads Matching Filter (RMF) is divided into three main stages. The
first one is the preprocessing stage, where we read and store the input dataset
in RAM, the second one is the process of the matching between all the reads
and the last stage where the intermediate contigs generated. Here we can
mention that because the length of the reads (60,70 bases per read), to have
variables to store and process them, we can not use typical variables to store
our data. We use Arbitrary Precision Data Types (ap_int.h) library and in
this way we can manage the bit-width of the integer numbers within the
boundaries of the specified width [37].

In the first stage we have to read the input file (FASTA format), line by line
as reads, converting the DNA bases into binary form and store them in RAM
in 128bits entries (ap_uint<128> type, where an 60-bases read stored in 120
MSBs (Most Significant Bits)), to take advantage of the access speed. It is
more useful and much more faster to work on the RAM despite the hard
drive and this helps us in this stage, on execution time. The conversion in
binary form done according to the conversion formula of the bellow table
3.1.

This conversion is useful because considering of a DNA base (A,T,C,G), which
is a 8 bit character variable, after conversion in 2 bits we reduce the space that
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DNA base Binary form

A 00

T 11

C 01

G 10

TABLE 3.1: The conversion formula of DNA bases

dataset occupies in RAM to 25 percent of the original space, because in this
8 bits variable can be stored 4 different bases. In this way an 60 bases read
can be stored in 120 bits by this conversion against of 60× 8 = 480 bits in
character variables. Each read stored in RAM in 120 bits variables until no
read remained in dataset.

The time this process done, we continued to the next stage, the matching
stage. We take all the dataset’s reads that had been stored in RAM and try
to find matches between them in order to remove the presented redundancy.
This stage returns 3 vectors of data for each dataset, 1 for left extensions, 1
for right extensions and 1 for the starters that took part in each comparison,
included the number of bases that done the extensions. This process and the
returned values of it will be further described below.

This part is the most expensive part in terms of CPU and RAM usage and
for that reason it takes the most time of execution. If we suppose a dataset
of N lines, we take N reads as starters and each of this starters matched with
other N-1 (≈ N) reads in order to throw the redundancy process of the reads.
This iterations phase, which consist of N2 matching combinations in worst
case (O(N2)), can be accelerating from a FPGA implementation in order to
redeem significant space and time reductions in complexity.

In the last stage we have the concatenation of the intermediate contigs from
the returned values of the second stage above. From the second stage we
take 3 banks of data, as we describe below, 1 for left extensions parts, 1 for
right extensions parts and 1 for the starters that took place in the matching.
The concatenation process take first the left extensions, afterward takes the
starter of the matching and finally the right extensions to create the final in-
termediate contig that is written in output file. The left and right extensions
of the each index of this output banks correspond a specific read-starter and
comes from the comparison with this specific starter. The logic is that in left
extension’s bank of data, we have all the extensions of the comparisons of
each time’s starter and before we take the next available starter for the next
iteration’s matches, we write a ’0’ value in the last available index of the out-
put in order to separate the current’s starter left extensions from the next’s
one. The same logic follow the right extensions data bank. In this way we
clarify which starter’s is which extensions. The generated intermediate con-
tigs written in output FASTA file. The starters that did not extended written
as it is in the output file.
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The ’contigs.fasta’ file is the file that contains the created output intermediate
contigs from our design. This file has contigs with similar material informa-
tion with the input reads with the difference that they are less in quantity
and greater or equal in (bases) length, but definitely less or equal overall file
size from the input file. Reads that contains redundancy between them will
have been eliminated and remained unique. This output file can be sent to
assembler (like Velvet) in order to create new unique sequences considering
error corrections and mismatches from input reads.

3.1.1 Using different HBM banks to store the data

One big problem was the fact that if the input dataset was big (e.g. more
than 100MB - 100million bases), our design does not work and these sizes of
input files is very common situation in genomes. This problem exists because
the limitations of the high bandwidth memory (HBM) interface the FPGA
has. The acceleration card that we used (and detailed described in Chapter
4) has 32 HBM banks of 256MB each, in order to store our data and in our
first implementation, all the data (in/out) goes in the same bank (HBM[0])
by default. This bank after a number of iterations filled up, so we implement
a different bank data save technique. As we will mention below we use 2
read-sets buffers in order to make a double buffering dataset technique (to
manually reduce the number of iterations), 1 output buffer for left extensions,
1 output buffer for right extensions and 1 output buffer for the starters that
extended (or not). This 5 ports assigned in 5 different HBM banks (HBM[0]
to HBM[4], 256MB each) and so we overtook the space limitation problem
of big datasets winning a small increase in speedup because of the different
port’s accesses. All these connections shows below in figure 3.1.

3.2 Hardware initial implementation

After the first stage of reading the input dataset in the host, follows the
hardware implementation, the main design of our approach. We implement
it in Vitis and synthesize it with the Vitis HLS to take information about run
time, number of iterations per loop and space allocation. The top level func-
tion is the krnl_iterativeStage which consist of three different parts. The first
one is a prefilter design which was implemented and removed finally for the
reasons that we will describe them below. The second part is an extender de-
sign to search for coverages between starters and reads. The third stage is the
write back stage where we store the information of left and right extensions
and the number of bases that took part in the extensions, which they are the
outputs of the hardware kernel, in order to construct the output intermedi-
ate contigs in host. The concatenation of the contigs done in host in software
because the dynamic allocation of memory that is necessary.

As we mention above, the top level of our kernel is the krnl_iterativeStage.
The main design, as showed in figure 3.1, combines retrieving data from
HBM[0] which is the reads_input data stream, a prefilter stage where a read
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FIGURE 3.1: Our first design in general (host and kernel).

vector generation technique is implemented, a bitwise NOT operation of the
read in order to take the read complementary strand (read_comp), the ex-
tender module (krnl_extender) in order to find the matches and the write
back stage in the end, where the possible extension’s data written in RAM
via HBM[3]-5. The remaining reads that did not extend the each time starter,
written in HBM[2] which is the reads_output stream for a double buffering
technique that implemented for the dataset. All the ports of FPGA that com-
municates with the DDR are configured as m_axi interface which implements
an AXi4-Lite interface. This interface defines a point to point communication
between master and slave ends. The reads_input stream, in HBM[0] bank,
has DDR as master and FPGA as slave in order to read the dataset’s reads.
The other 4 HBM banks used as outputs from FPGA so the top level of the
kernel is the master and DDR is the slave.

3.2.1 The top level implementation

The steps we implemented in order to reach the functionality of the algorithm
in the top level function of the kernel, described in the follow Algorithm 1
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and further details presented below:

Algorithm 1: Iterations stage algorithm
Procedure krnl_iterativeStage(input read set R in binary format)
coverage_factor = 0.1;

for each read s ε R as starter do
number_of_shifts_1=0;
number_of_shifts_2=0;
for each read r ε R as read do

prefilter_design(starter_left,read_left);
prefilter_design(starter_right,read_right);
if prefilter pass then

number_of_shifts_1=extender(read, starter_left, starter_right,
coverage_factor);

number_of_shifts_2=extender(read_comp, starter_left,
starter_right, coverage_factor);

end
if number_of_shifts_1!=0 or number_of_shifts_2!=0 then

if left_extension then
starter_left = read;
update output_L stream with extension parts of read;

else if right_extension then
starter_right = read;
update output_R stream with extension parts of read;

end
else

write read in output read set for next iterations;
end

end
if number_of_shifts_1 != 0 or number_of_shifts_2 != 0 then

write s in output_ST stream as intermediate contig;
end
double buffering output read set in input read set R;

end
End Procedure

First of all we take every single line-read as a starter from the HBM[0]
bank of data and the next available as a read. For each starter and read
we implemented a vector construction in prefiltering stage. As we mention
above, by represent each read in binary form with 2 bits for each base, in
one byte we can store 4 bases which is 8 bits. This 8 bits represent a number
between 20 and 28 − 1 (0 and 255). We can keep information about all of the
octaves (4 bases) that read or starter consist of by set an ’1’ in a 256-bits vec-
tor (ap_uint<256>) of each read. For example, as we can see in figure 3.2, if
a read has the four bases ’ATAG’ which in binary form (according with the
conversion formula of table 3.1) is the ’00110010’, this octave of bits repre-
sent the decimal number 50, so we can store an ’1’ at index 50 of this read’s
vector to keep the information that this read has this octave of bits, so the
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FIGURE 3.2: Read vector construction.

read has the four bases ’ATAG’. In the same way the four of bases ’GTCG’
which represented by bits ’10110110’, is the decimal 182, so we mark as ’1’ in
the corresponding position of the read_vector. After each 8 bits (4 bases) we
shift the read by 2 bits and we take the next 8 bits and by taking the decimal
number of the octave of bits we represent them as ’1’ in the vector of this read
or starter. This vectors used in the prefilter stage which described below.

Before calling the extender we have the prefilter design where we define if
the starter and the read have at least some group of bases in common, hence
there is not any chance to find any coverage. This is the main idea of this
prefilter module. More specifically, a logic bitwise AND between starter’s
vector and each read’s vector defines the common ’1’, so the common octaves
of bits, so the common four of bases, that starter and reads can have. If this
result has not any ’1’ in common means that the starter and read do not have
bases in succession so they can not have any important coverage and they are
not sent to the extender. In this way we theoretically can overtake a starter-
read matching process that it will not offer any significant matching and we
can reduce the processing time.

3.2.2 Removing read vector construction and prefilter stage

This prefilter stage of creating the read’s and starter’s vectors and the com-
parison between them in order to find the possible common fours of bases,
we came up after a lot of experimentation that we can skip it. Removing
it, we measured 2x-3x speedup on hardware execution time and the same
outputs compared with the design which includes this prefilter stage. The
technique that we follow to decide whether keep this stage or skip it, has to
do with the possible fours of bases threshold we had set, which is the num-
ber of bases that the starter and the read must have in common in order to
send them in extender. We noticed that changing this threshold in multiple
values, the outputs did not change even if we set it 0 (0 threshold in this
stage means that prefiltering stage is disabled). Taking into account all of the
above we skip the vector prefiltering stage and exploiting this we took better
processing time in FPGA as it seems in below table 3.2.
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Datasheet Size Kernel execution time Kernel execution time
(in bytes) with prefiltering without prefiltering

stage (in sec) stage (in sec)
Staphylococcus 4751KB 6,72 sec 2,18 sec

Streptosporangium 19305KB 27,68 sec 9,02 sec
Drosophila melanogaster 40021KB 57,52 sec 18,67 sec

TABLE 3.2: Changes in kernel execution time in FPGA with or
without prefiltering stage

We used many of datasets in order to measure execution time both in-
cluded and not the prefilter stage and some of these datasets are a Stapfy-
lococcus strain, a Streptosporangium strain and a Drosophila melanogaster
strain. We can draw the conclusion that the execution time takes an average
3x speedup between the first implementation including the prefiltering stage
and the next implementation which this stage eliminated. The outputs of the
two designs has a 100% of similarity and we decided to skip this prefiltering
process at all.

3.2.3 The complementary DNA strand

Alongside with the read we calculate the twin DNA strand (read_comp)
of this read to see if this can extend the starter. The twin DNA strand is the
abreast nucleotide of the DNA chain and this is the complementary read with
the first one. The base at a given position in one strand is related to the base at
the corresponding position in the other strand of the double helix of the DNA
by the following base-pairing rule (referred to as “base complementary”):
A⇔T, C⇔G as it shows in figure 3.3. Any of the two nucleotide can extends
the starter in the same way.

We generated the read_comp with a reverting bitwise NOT of the read, the
time before calling the extenders and we call the two extenders pipelined.
The first extender instance take the read and the starter and the second ex-
tender instance take the complementary read with the starter and they try
to find matches. This execution implemented in this point by declare dif-
ferent registers for the arguments of the two extenders to retrieve the data
of each one from different location, in order to work the two functions calls
pipelined. Starter controlled for matches with the read and the read_comp
in the same time (pipelined) and at the end of this two extender function
runs, we take two return values about the coverage of each extender, the
number_of_shifts_1 and the number_of_shifts_2.

The read_comp generated by inverting the bits of the read. We done the
assignment of bits statements by keeping into account this specific conver-
sion. As we mention the base A (00) converted in base T (11) and the base C
(01) converted in base G (10) and vice versa. So a bitwise NOT of the read
is the read_comp as it seems in figure 3.1. Because of the read length of 60
bases, the bases are in the 120 MSBs of the read (128 bits variable), so the 8
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FIGURE 3.3: The double helix of the DNA: the two twin DNA
strands.

https://commons.wikimedia.org/wiki/File:
DNA_structure_and_bases_color_FR.svg

LSBs that was ’0’ converted in ’1’ from the NOT operation and they do not
represent any valuable information. As we will see in the write back stage be-
low we want these 8 bits to be ’0’. To overtake this problem we make a logic
bitwise AND between the read_comp and a mask of ’1’s in the 120 MSBs and
’0’ in the 8 LSBs.

3.2.4 Extender implementation

The next step is the extender stage where the starter and each read (or
read_comp as we described above) checked for possible matches between
them. Before describe the functionality of this module we must describe the
registers that we used and the data that they contain. First of all the starter
can be extended by the read from both of his sides, left or right. If a read
extends the starter from a side, this read must be the next starter in this side.
For example as we can see in figure (edw) if the starter left extended by the
read from the left, the read that done the extension must be the next round’s
left starter as this is the most left part of the intermediate contig. For that
reason we have to declare two registers for each side so we have a starter_left
and a starter_right, which in the first round they both take, the value of the
starter. After an extension occurred on some side, this side’s starter register
will be replaced by the read that done the extension.

https://commons.wikimedia.org/wiki/File:DNA_structure_and_bases_color_FR.svg
https://commons.wikimedia.org/wiki/File:DNA_structure_and_bases_color_FR.svg
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As we mention above, the read can extend the starter from both of its sides.
For that reason we have the shifted read_left and the shifted read_right reg-
isters. The starter_left checked with the shifted read_left for matches in order
to define if we have an extension from the left side of the starter. The same
operation done between the starter_right and the shifted read_right for the
right side respectively. We named the read_left and the read_right as shifted
registers because in case of no extension, we shift these register left or right
by 2 bits respectively. By that way we shift the read by one base from each
side and in the next iteration we check if the read can be extends the starter.

All the datapath of the extender can be visually separated in left and right
side and further details described below. The extender described in Algo-
rithm 2 and the hardware block diagram is showed in figure 3.4.

Algorithm 2: Extender algorithm
Procedure extender(read,starter_left,starter_right, threshold)
max_shifts= read_length - threshold x read_length;

for shifts=0; shifts<max_shifts; shifts+=2 do
match_L=read_left XNOR (starter_left AND mask_L);
match_R=read_right XNOR (starter_right AND mask_R);
scoreL=krnl_modifiedCounter(match_L);
scoreR=krnl_modifiedCounter(match_R);
if scoreL > (threshold x read_length) then

// left extend
return (0-shifts);

else if scoreR > (threshold x read_length) then
// right extend
return shifts;

else
shift read_left « 2;
shift mask_L « 2;
shift read_right » 2;
shift mask_R » 2;

end
end
// no extensions
return 0;
end Procedure

At the beginning we take the starters left and right and the read (or read
complementary strand) and assign to local registers starter_left, starter_right
and the read to local shift registers shifted read_left and shifted read_right
that will take place in the comparison. Starter left will be compared with
the read left and the starter right with the read right respectively. In the end
of the iteration read left shifts left by 2 bits and read right shifts right by 2
bits if the comparison failed. By these shifts we want 2 masks in order to
correspond the bits of the starters that take place in the comparison in each
iteration. These masks initialized, by the starter’s length, with ones (’1’) and
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FIGURE 3.4: The extender design.

shift as the reads shifts. A bitwise logic XNOR between read and the output
of the bitwise AND of the starter and the mask, gives a result of common ’0’
and ’1’ starter and read have in each round. XNOR gives ’1’ in each index
where the 2 bits are the same. The results of these comparisons stored in 2
registers matchL and matchR for the next step. So the logic equations that
take place in order to find the matches are the following:

matchL = read_le f tXNOR(starter_le f tANDmaskL)

matchR = read_rightXNOR(starter_rightANDmaskR)
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After that a counter (krnl_modifiedCounter) counts the recurring ’1’s start-
ing from the left side of the matchL and from the right side of the matchR and
returns in variables score_L and score_R the decimal number of recurring
’1’s. This counter counts up by one if a double ’1’ occurs as this means that
starter and read have one base (2-bits) in common. In order to have a cover-
age between starter and read we must have a recurring matching of bases in
the matchL and matchR from each side.

Subsequently, we check the scoreL and scoreR values that the previous
counter returns. The scoreL correspond the number of bases that matched
from the comparison between starter_left and read_left and the scoreR from
the comparison between starter_right and read_right. We check either scoreL
or the scoreR if is greater than possible bases extension threshold which is
has been set and we describe it below. These comparisons done in the Com-
pare Control module. If scoreL is greater that this threshold and greater than
scoreR, we have a left extension and respectively if scoreR is greater that this
threshold and greater than scoreL, we have a right extension. The match is
accepted only with a 10% of coverage factor between starter and read. This
threshold means that if we have a 60 bases starter, we accept a coverage big-
ger than 6 bases.

In case we do not have any coverage, so scores equal to 0 or less than
threshold, we shift the reads, right or left, according to each side. We shift
left the read_left and shift right the read_right by two because we have a
binary form of the bases that means 2bit representation. These shifts and
matches are done simultaneously and the loop ends after max_shifts itera-
tions. Max_shifts is the upper bound of the loop and it is the max possible
coverage that we can have between starter and read. It is equal with the max
starter’s length minus the threshold of possible extension bases. For exam-
ple, if we suppose starter_length=120 bits (60 bases) and a threshold of 10%
bases coverage, we have max_shi f ts = 120− (120× 0.1) = 108. So as we
shift by 2 we have maximum of 108 iterations(shifts). The equation is pre-
sented below:

max_shi f ts = starter_length− (starter_length× base_threshold)

After max_shifts if we do not have any extends, the extender returns 0. If
any of the extension is accepted (either left or right), extender returns the
number_of_shifts that is calculated by the current shifts counter and gives
as output 0 − shi f ts for left extension or shi f ts for right extension to have
the information that we have left extension -negative return- or right exten-
sion -positive return- and how many bases done the extension, which is the
number of shifts.

3.2.5 Write back stage

Finally in the last stage of our hardware kernel we have the decoding of
the outputs of the extenders and the write back process of writing the outputs
in output HBM banks as we can see in figure 3.5. First of all we take the two
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returned values from extenders, one from the comparison between the starter
and the read (number_of_shifts_1) and one from the comparison between the
starter and the twin strand of the read, the read_comp (number_of_shifts_2).
As we mention, these values can be negative integers for left extensions, pos-
itive integer for right extensions or zero in case of no extension and they
correspond the number of shifts that extender did, until it finds a math. If
these two values are both 0 means that neither read or read_comp extends
the starter, because extender reach the maximum of shifts bound (which de-
scribed above) without coverage found and returns 0. In this case the output
register written with the read that did not extend the starter, via MUX (se-
lect_1 to ’00’ by the control) and the control select to send the output via 00
of the DEMUX to HBM[1] (reads_output) to be a part of double buffering of
the dataset for further processing in the next rounds.

FIGURE 3.5: The write back stage of our kernel.

If either read or read_comp extend the starter we have to write back to
DDR the data of the extension via HBM[2]-4 ports. With the data ready to
be written, the control decide if there was a left extension or a right exten-
sion by checking the positive or the negative sign of the shifts corresponding
values. First, the control find the (absolute) smallest, but non zero, number
of shifts from the two extenders, as the smallest value means the smallest
number of shifts, so bigger coverage between starter and read or read_comp
respectively. If the smallest return value is the return value from extender
with the read control keep the read to write in output register, via MUX and
select_1 to ’00’ or if the smallest return value is from the extender with the
read_comp, control keep the read_comp to write in the output register, via
MUX and select_1 to ’01’.

The return value of the extender as we mention above is the number of shifts
that done, so is an information that we must to know in the host in order to
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FIGURE 3.6: The output register of the write back stage. Read
or read_comp concatenated with the number of shifts.

keep the right bases from the read, the bases that are the extended part of the
match. For that reason a concatenation take place between the output regis-
ter and the number of shifts and written in the output register as it showed
in figure 3.6, in order to know in the host, how many bases to keep on the
intermediate contig’s concatenation stage. The output register is an 128bit
register whose the 120 MSBs is the read (for a 60 bases read) and the 8 LSBs
(Last Significant Bits) is unexploited and we can store a number between 0
and 255 (maximum number representing in 8 bits). We store in this 8 bits the
(absolute) return value (the corresponding number of shifts) of the extender
and all this 128bits output sent to the host via HBM[2] if it is a left extension
or via HBM[3] if it is a right extension. The selection done from the control
and by the DEMUX where the select_2 signal is "01" for left extension or "10"
for right extension and decided from the control. All the starters that did
not extended by any read written as it is in the output stream of starters in
HBM[4] bank of data by choosing the ’10’ select_1 of the MUX (to pass the
starter into output register) and the ’11’ select_2 of the DEMUX by the control
to send it to the wright HBM bank.

Then we must to replace the current starter with the most left of right edge
of the current’s round intermediate contig in order to continue the matching
process. If a left extend done, we replace the left starter with the read (or
read_comp) that done the extension and in right extend we replace the right
starter with this read respectively. The new starter now is the read that done
the extend of each side and checked for matching with the new reads for
further extensions. After this read done the extension we can ensure that this
read is the new most left or right part of intermediate contig and by keeping
this read as the new starter, we continue the matching process normally.

Every read that extends the starter and every starter that extended by
reads, after written in the outputs HBM banks, are not written in reads_output
bank (HBM[1]) since they do not need further processing. At the end of the
matching process of the starter has been implemented a double buffering
technique where the reads_output (HBM[1]) bank of data become the input
dataset for the next round and the reads that will be not extend the next
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round’s starter, will be written in the HBM[0] bank. In this way if in an itera-
tion the HBM[0] is the input dataset’s reads and the HBM[1] is the bank that
we store the reads that not extend the starter, in the next iteration the HBM[1]
will be the input dataset read’s and the HBM[0] will be the bank to store the
reads that not extend the starter. Only the reads that does not extends the
starters written in the output HBM and in this way we implement a dynamic
reduce in dataset entries and as a result in the number of iterations. This dou-
ble buffering process done after the write back stage where the reads_input
and the reads_output pointers exchanged between the HBM[0] and HBM[1]
banks of data.

3.3 Final design implementation

The previous overall design, which is the initial implementation that we
created, presupposes datasets with 60 bases read length, as the conversion
of the reads in binary form generating 120 bits values and with the maxi-
mum input/output interface implementation of 128 bits width values on the
board, the design cannot transfer bigger length’s reads. Searching the NCBI
database and general datasets that we found, the most used read length is 70
bases, so we must design a different implementation in order to work with
these datasets. The differences of the implementation are not so many as is
showed in figure 3.7 and presented below in details.

3.3.1 Host reconfiguration

First of all the in/out interface of the board can transfer or receive values
of 128 bits, 256 bits and 512 bits max width. Assuming a read length of 70
bases, in binary form we have 140 bits to transfer so we must to configure
the in/out interface of the board to 256 bits width. In software part of the
design had to be done some changes in storing the input dataset in DDR for
the first stage and in generating and writing the output contigs in output
file in the final stage. In the first stage we had to store the input reads in
256 bits (ap_uint<256>) entries in RAM, in order to agree with the board’s
interface. So for 70 bases reads we commit the 140 most left bits of a 256
bits value and storing the binary representation of the read, according to the
conversion formula we have presented above. The overall space allocation is
bigger than the first 128 bits implementation but we can work with datasets
with bigger read length.

In the final stage of generating the intermediate contigs from the processing
stage outputs, we had to done the changes in order to decode 256 bit val-
ues which has retrieved from the processing stage. As we mention above, as
output of the processing stage we encode the read that took part in the exten-
sion concatenated in the 8 LSB with the number of bits that matched with the
starter in order to keep the appropriate bits of the read in the output contig.
So we decode the output 256 bits values with the 140 MSB as the read and
the 8 LSB as the number of bases and concatenate the reads to construct the
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FIGURE 3.7: Our final design in general (host and kernel). We
have the 256-bits width board interface and the removal of the

prefilter stage of read vector’s construction.

intermediate contigs. These intermediate contigs written in the output file of
our design.

3.3.2 Kernel reconfiguration

In the second stage of our design, the processing stage of matching the reads
between them in order to find redundancy, we had to do some changes to
work for 70 bases reads. As we mentioned above the interface of the board
now transfer 256 bit values and for that reason we must to change our kernel
top level’s arguments. We used 256 bits (ap_uint<256>) for each of the 5 HBM
and assign each in different bank to store the data as we did in the previous
implementation.

In the top level function (krnl_iterativeStage) we start by taking each read
from HBM 1 from the DDR. Each read is a 256 bits variable where the read
is the 140 MSB of the variable, so we initialize a 256 bits mask with ’1’ in 140
MSB of it and by taking a bitwise AND between the input variable and the
mask, we taking the read. After testing , to make a better spatial allocation
in the FPGA, we decide to store the reads in 140 bits registers instead of 256
bits that we take from DDR so the result of the above AND operation shifting
right by 256− 140 = 116 bits in order to stored in a 140 bits register. In this
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way we keep only the beneficial information of the read and occupy exactly
the needed space in FPGA.

The next operations of generating the read complementary strand remain
as it is with the difference of storing the data in 140 bits registers instead
of 120 bits of the previous first implementation. After that in the extender
stage, we change the arguments of the extender kernel function, using 140
bits and the overall design of this module remained the same. In the final step
of the kernel design, the write back process of generating the output of the
kernel, we mentioned that in case of extension, the output is a vector where
we store the read in the MSBs and the number of shifts this read done until
the extension pass stored in the 8 LSBs of this vector. In this implementation
the output must be a 256 bits value, so we store the read in the output vector,
shifting it left by 116 bits to saved in the 140 MSBs of the vector and with a
bitwise OR we store the number of shifts that extender returns, in the 8 LSBs
of the output. This output returned from the kernel to host by HBM[2] bank
if we have a left extension or by HBM[3] bank if we have a right extension.
The starter that took part in the last matching process stored in the output
vector, shifting it left by 116 bits to saved in the 140 MSBs of the vector and
returned from the kernel to host by the HBM[4] bank.

3.3.3 The reconfiguration in the software only implementa-
tion

This implementation works for 70 bases reads length and we do some con-
figurations to make it an overall design to work for any kind of read length.
As we read the input dataset in the host from the input file, we keep the
information of the line length and passing it to the kernel to give a vari-
able dimension in the kernel operations in order to work for numerous read
lengths. The masks, the shifts and the loop bounds of all the operations of
the kernel became a function of line length to work for every dataset. The
design became an overall design for every read length’s dataset and we keep
this in final measures that we will see in chapter 4.

In order to check the efficiency of the design’s results and to measure the
execution time of the whole process both in software only and software-
hardware implementation, we make some changes in the software only im-
plementation in order to work for numerous read’s length dataset. The main
problem is that for a software only implementation we have a data type’s
limitation that we cannot work with bigger than 128 bits variables. In order
to store in DDR the reads, if the dataset contain bigger than 60 bases per read,
we want double entries of 128 bits each to store the read in RAM. So in the
first stage of reading and storing the reads in the DDR, for bigger than 60
bases reads, we store the first 64 bases of the read, which is 128 bits in the
first entry and the remaining 6 bases in the second entry. Note that by that
implementation we can work with bigger than 70 bases reads.
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All the next operations of matching the reads between them, generating and
writing the final intermediate contigs in the output file, works in terms of
double entry of each read in DDR and follow the same configurations. This
software only implementation generated the same output intermediate con-
tigs with the software-hardware implementation one, but because the men-
tioned above limitation was more slow in execution time and this difference
of the variable’s width can be considered as a hardware implementation’s ad-
vantage. The time measures and the speedup between these two executions
presented in chapter 4.

3.4 Time and space reports for both of the imple-
mentations

Afterwards we want to reveal the libraries, functions and programs we
use in order to measure function’s execution time, space complexity and time
reports in hardware. As for the execution time measures, we used many li-
braries and functions in order to calculate the right measures, but we con-
cluded to the below one. As for the frequency that our design ran and the
spatial complexity of our design we used the measures of vivado log after
the synthesize and place and route jobs done.

In order to calculate our speedups we must to calculate function’s execu-
tion time and for that task we use the library of c++, <chrono>, which is a
flexible collection of types that track time with varying degrees of precision.
Using the function "high_resolution_time" one before call function and one
after it returns, we calculate the execution time. This function was the best
of what we try to measure time. The time measures with all the results pre-
sented below in chapter 4.

As for the hardware part of our design we run the top level function
"krnl_iterativeStage" in Vitis HLS [35] to synthesize our kernel and generate
reports about clock cycles each data want to be created, latency and intervals
and other information about our kernel functions such as pipeline status for
each routine or loop and the overall space complexity of our design in this
specific ALVEO U50 acceleration card. The kernel took all of the available
optimizations, both in time and space, such us pipelining methods which re-
duces the initiation interval for a function or loop by allowing the concurrent
execution of operations and unrolling loops that create multiple independent
operations rather than a single collection of operations. In general terms Vi-
tis HLS report calculates the preliminary results of the design based on RTL
description of the kernel. The design in phase of synthesize and routing by
Vivado can take multiple optimizations both is space and time complexity,
such as mapped LUTs logic in Block RAMs for better space occupation or
merge logic modules for time speedup, so the Vivado log includes the final
report values of space and time complexity. We informed by the Vivado log
that contains the real values after synthesize.
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Because of the variable upper bound of loops we limit the upper bound with
the directive #pragma TRIP COUNT, in order the HLS report give us mea-
sures. The program want to know the maximum number of iterations each
loop will perform to give time and space measures. Loops and routines is
pipelined by using the system #pragma HLS PIPELINE directive. In addi-
tion, in order to make the in-kernel functions to work pipelined, we had to
store their arguments in different registers for each function call. For example
in case of extender (which detailed described in chapter 3), if we want to run
the extender with the read and the read complementary strand pipelined, we
must store the arguments of each function in different registers in FPGA in
order the two function calls retrieve each data from different registers.

The extender design which described above included the modified counter
that it contains, pipelined with a pipeline level II=1 which means that exten-
der takes new data each clock cycle and with an interval of 1 cycle, it generate
output the next cycle. The latency of the extender found to be 121 clock cy-
cles. The outer loop that takes each read and checking it with the starter, did
not manage to take any pipeline level because of the variables dependencies.
It has an iteration latency of 272 clock cycles which means that we take every
read from the input dataset each 272 cycles, number of loop execution’s time
in clock cycles. From place and route tools, the maximum clock frequency
for the accelerator was found to be 300,3 MHz for our initial implementation
and 298,8 MHz for our final implementation. These measures appeared in
below table:

Kernel top function krnl_iterativeStage
Scaled Frequency (MHz) 300,3 MHz

BRAMs (%) 14,29%
DSPs (%) 0,12%

Registers (%) 14,26%
LUTs as Logic (%) 18,1%

LUTs as Distributed RAM (%) 1,72%
LUTs as Shift Registers (%) 1,14%

TABLE 3.3: The Vivado log measures for the first implementa-
tion pf the RMF (128 bits data transferring).

Kernel top function krnl_iterativeStage
Scaled Frequency (MHz) 298,8 MHz

BRAMs (%) 15,18%
DSPs (%) 0,12%

Registers (%) 16,24%
LUTs as Logic (%) 19,87%

LUTs as Distributed RAM (%) 1,7%
LUTs as Shift Registers (%) 1,22%

TABLE 3.4: The Vivado log measures for the final implementa-
tion of RMF (256 bits data transferring).
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From the measures of the table 3.3, the overall space occupation of our
initial implementation’s kernel is sufficiently small of the order of 14,29%
LUTs as Logic and as presented in the table 3.4, for the final implementation
of 256 bits interface, we have similar values of the occupation of the design in
the FPGA (LUTs as logic = 15,18%). The resources utilization reported above
indicates that multiple accelerators can be placed inside the specific FPGA
and so we can try to run our kernel with two or three instances in the same
FPGA fabric, in parallel. In that way, theoretically speaking, the input dataset
can divided in two or three parts and the processing can be done faster. In
our final implementation as we observe in the tables 3.3 and 3.4, the measures
of the registers, shift registers, LUTs, BRAMs raised a bit as we have to work
with bigger read length.

3.5 Extended implementation

As we saw above, the kernel occupies in FPGA about ≈ 20% maximum of
the overall space. That theoretically means that we can implement a bigger
parallel design in order to improve the efficiency and the speed of the algo-
rithm. Theoretically speaking we can combine 2 or 3 extenders in the kernel
(in the same FPGA) and try for matching between starter and multiple reads
at the same time. An implementation that utilizes two such RMF accelera-
tors is already implemented but the bitstream creation was not yet possible
(at the time that this diploma thesis is written) due to routing congestion, as
reported by Vitis.

The ALVEO U50 FPGA that we used has 512-bits wide memory-mapped
AXI4 interface and that means that for each iteration we can retrieve a max-
imum of 512-bits per port. In this way we can take more that one read from
the reads input HBM, in the same time and make a parallel matching process.
If we assume a read length of 70 bases, we have 140-bits read’s representa-
tion and in 512 bits we can concatenate 3 reads per iteration to retrieve. In
this way we can implement a kernel that checks for matching the starter with
these 3 reads in parallel. We implemented this kernel, in terms of 70 bases
read length and with some of reconfigurations the design implemented with
60 bases read length as well. The overall design follows the same HBM banks
connections with the first basic design and we have HBM[0] and HBM[1] for
the dataset’s double buffering, the HBM[2] for the left extensions output, the
HBM[3] for the right extensions output and the HBM[4] for the starters out-
put of the kernel. The main differences are in the bits width in the board’s
interface and we have 512-bits for double buffering HBMs and 256-bits each
of other 3 output HBMs.

3.5.1 Host reconfigurations

We start from the host and the first stage of reading the input dataset and
storing it in RAM. The basic design that implemented first, used 128-bits
values and works fine for 60-bases reads. The storing of the reads in RAM
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done in 128-bits (ap_uint<128>) values and we have one index-address for
each read. In this extended implementation, we have to store 3 reads in the
same index-address, using 512-bits length value (ap_uint<512>). In this way,
we make a realloc of 512-bits for each triad of reads that we read from in-
put file and storing them concatenated in the same memory address. As we
mention above in this implementation, we want to works for 70-bases reads
as well with the 60-bases reads. Concatenation and storing of each triad of
reads done sequentially starting from index 511 (MSB of ap_uint<512> value
- most left bit), until index 511− 3× 140 = 91 for 70-bases reads and until
511− 3× 120 = 151 for 60-bases reads. By that way each triad of reads saved
in the same memory address and HBM[0] and HBM[1] of double buffering
of the dataset now receive and transfer 512-bits values as it seems in figure
3.8.

In the kernel of the design we needed to do multiple changes and different
reconfigurations in order to work for trinities of reads. First of all we recon-
figured the input/outputs of the kernel as we mention above. The HBM[0]
and HBM[1] of the double buffering of the dataset became 512-bits width
from 128-bits width in order to transfer the triads of the reads. The HBM[2]-4
that they are for the output data, now transfer 256-bits of data from 128-bits
that they transferred before in order to match with the 70 bases read length.
Further detailed reconfigurations about the kernel presented below.

In the third stage of our design, the concatenation and writing of the interme-
diate contigs in the output file, the differences from the previous first design
were fewer. The output HBM[2]-4 (as we see in figure 3.8) of the kernel of left
and right extensions and for starters received, now contain 256-bits values of
data, as we will see in the next kernel configurations section and the main
reconfiguration of this third stage of concatenation is to works with 256-bits
values in contrast of the previous design of 128-bits returned values. So we
change the ap_uint<128> to ap_uint<256> values and my shifting methods
and masking in order to retrieve the 8 LSBs of the returned values of the ker-
nel, which is the number of matched bases, we concatenated and wrote the
intermediate contigs in the output file.

3.5.2 Kernel reconfigurations

As we retrieve 3 reads from the input HBM in each clock cycle, we must im-
plement a trinity of extender processing modules with different arguments
values for each one, in order to implement a pipelined execution. Each one
of the three reads checked for extension with the starter in the same time
with the other reads. As we mention above, alongside with the read we
check for extension the complementary strand of the read with the starter,
pipelined. So if we assume three reads, by taking the three complementary
strands of them, we must implement six extender executions pipelined, as
it seems in the figure 3.8. In order to implement this design we must de-
fine all the extender’s arguments separated to have individual access of each
argument per extender, essential feature for pipelining. From HBM[0] we
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take the first 512 bits from reads_input and with mask_input we take the
140 MSBs (511 to 371) as the starter and assign this value to six different 140
bits registers starter_x_y where x represent the comparison per read (1 to 3)
and y represent either read or read complementary comparison (1 to 2). Af-
terward from HBM[0] we take the next entry of the reads_input and by the
mask_reads we split this 512 bits to three 140 bits registers that represent the
three reads that will take part in the comparisons. From the 512 bits, the 140
MSBs (511 to 371) assigned to read_1 register, the next 140 bits (370 to 231) as-
signed to read_2 register and the next 140 bits (230 to 91) assigned to read_3
register. From these three registers by a bitwise NOT for each, we take the
three complementary strands in registers read_comp_1, read_comp_2 and
read_comp_3. These registers passed as arguments in the extenders and the
six comparisons done pipelined so in the next cycle we take the six outputs
of number_of_shifts where in the write back stage the control decide which
comparison of six gave the best match between the starter and the reads and
the biggest matching read (or read_comp) returned to host via HBM[2] if we
had a left extension or HBM[3] if we had a right extension and via HBM[4]
the starter that extended. If no one of the comparisons give a result, the
starter did not extend from any read so it written in reads_output stream via
HBM[1] for double buffering.

FIGURE 3.8: The extended Kernel with the triad of reads.

Each iteration we retrieve three reads from DDR. That means that for the first
iteration, the first read of the triad is going to be the starter and the other two
reads will be the reads to checked for extensions with the starter. Another
specific situation is when the overall number of the dataset’s reads is not a
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multiple of 3 so the last index has less than three reads. In this particular
cases, we have less than three reads and complementary strands of them
to checked with the starter so we can limit the extenders runs less than six
times that we mention above. To satisfy this functionality we assign to each
extender a enable signal. If we have three different reads, we have all the
extender’s enable to ’1’ else if we have two different reads we have the four
of the six enabled to ’1’ and if we have one read only we have the two of
the six enabled to ’1’. In that way we save unused runtime. Apart from this
we manage to save execution time by decide if we want to calculate or not
the read complementary. Obviously for read that has zero value (that means
that we do not have a read), we did not calculate the read complementary
strand and the particular extender is disabled. After that stage we continue to
the extender executions (pipelined) as they mentioned in the corresponding
subsection of extender stage above. The returned values of the extenders
now are six different values (return value of extender that did not ran is 0
-enable=’0’-) and we moved on the write back stage.

In the write back stage, we have 3 HBM[2]-4 of 256-bits width in order to
write the outputs in DDR for further processing by the host (concatenate and
write the intermediate contigs in output file). The first implementation that
described above, used 128-bits values to return the outputs to host. In 120
from 128 bits, stored the read and in the most right 8 bits stored the number
of matched bases by the extender, in order to know in the host the number of
bases from the read to keep. Now we return 256 bits values because this de-
sign works for 70 bases as well and we want at least 140 bits to store the read.
The LSB 8 bits of the 256, used in the same way with the previous imple-
mentation, by storing the number of the bases that matched in the extender’s
matching process. This return type used to return the left and write extended
reads via HBM[2] and HBM[3] respectively. The starters that took part in the
matching process each round, returned as it is in 140 most left bits of the 256
bits variable via HBM[4] port. As a final step here we implement the double
buffering from HBM[1] to HBM[0] to ready the input dataset stream for the
next iteration. All the triads of reads that remained unused by the extender
process, were written in output stream via HBM[1] and now they will be the
next iteration’s new triads of reads.

3.5.3 Extended design exceeded the limit of FPGA resources

After all the previous extended implementation, we start with the synthesize
phase of our design in order to make a assessment of the kernel space occu-
pation. The synthesize in the Vitis HLS report, give us very large measures
concerning the number of LUTs that the design will occupy in the board.
This is expected as a point because as we take three different reads in each
iteration, we must define triples of registers to store each read, triples of reg-
isters to store the read complementary strands, six instances of the extender
stage in order to execute each read or read complementary matching with the
starter and a write back stage that execute three times more operations and
comparisons in order to define the correct returned value. Except of these, all



3.6. The software implementation with score table 57

the variables and the arguments of the in-kernel functions, declared six dif-
ferent times in order to make the six extenders that reported above to work
pipelined.

As a result of the above, the Vitis HLS report calculated a maximum LUTs
usage over the 100% of the available resources of the ALVEO U50 card. As
a following step we try to build the hardware on Vitis to rule out any possi-
bility of successful design build, due to optimizations or design merges from
the Vivado. The build of the hardware, first passed the block synthesis stage,
executed a first logic optimization but in phase of logic placement of the LUTs
in the FPGA space the build failed inform us that LUT as Logic over-utilized
in Top Level Design and as a result this design requires more LUT as Logic
cells than are available in the target device ALVEO U50. After that, we tried
to merge some of the logic, processes or routines in the code but we did not
manage to reduce the LUTs usage of the design as much as to fit the target
device’s available resources.

3.5.4 A different extended implementation design

The above implementation did not fit the FPGA resources and failed in plac-
ing the logic phase of the build. The following step that which failed again
for the same reason, is to implement a two reads matching process per itera-
tion. The previous design take three reads and with the three complementary
strands we wanted six different extenders in order to execute the pipelined
matching process. Now the idea is to take two reads, find the two comple-
mentary strands and design a four of extenders in the same way with the
previous extended implementation. The declaration of the variables and the
arguments of the in-kernel functions and the operations and comparisons of
the write back stage now made for two reads.

Despite the reduction of the LUTs usage of this implementation, the design
neither now fits in the target device. The HLS report calculated above 100%
LUTs usage and the build of the hardware failed in the same phase with the
above design. The placing of the logic in LUTs failed to implemented and the
merging of the logic in the code did not help the outcome.

3.6 The software implementation with score table

Another one implementation that has theoretically fine results is the score ta-
ble implementation. The main idea is to generate a score table that keeps the
matching score for each read from the comparison with the starter and start
the extender after find the read with the best matching score with starter.
Starting by taking the first read as starter and after that, passing all the dataset
read by read, we make the comparison between this starter and all the other
reads as we described above using the extender design. If a successful extend
done, we do not return the results immediately but we store this matching
score in the corresponding index of each read in the score table. After passing
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all the dataset, we have the information on how many bases has in common
the starter with all the other reads. By searching this score table we find the
biggest score, which is the read with the best matching rate with the starter.
So we keep this read as the best read and continue the basic algorithm that
we described in our main design implementation to find all the the remain-
ing extensions to generate the intermediate contig.

In this way we starting the matching process with guaranteed the read that
has the best matching rate with the starter and by this way we can improve
the quality of the results. We implemented this design in software only and
we realize that it could have very good output results but it was very slow
process in execution time. This makes sense if we observe that before start-
ing the matching process between the starters and the reads by passing all
the dataset multiple times, the algorithm passing all the dataset in order to
calculate all the score rates. The speedup that we took from our final design
above was the order of 2x-4x faster so we decide not to implement the hard-
ware of this design because the spatial and time complexity is already big
and the benefits of the design of better output results are not bigger than the
implementation procedure.
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Chapter 4

Results and Discussion

In this chapter we will present the results both in software and hardware
and we will submit the partial and the overall speedups that we measured
both in subsystems and in the whole design (included Velvet processing).
We used a total of 5 dataset in order to run the design and the Velvet soft-
ware. All the datasets are downloaded from NCBI database [32] and they
are whole genome shotgun sequences. This method involves breaking the
genome into a collection of small DNA fragments that are sequenced indi-
vidually. Each dataset has a coverage factor that refers to how many times
we have the genome of the organism in the sequence. The datasets refer-
ring to a Pyruvatibacter mobilis bacterium (3291 Kb) with a 100x coverage,
a Pseudomonas bacterium (6689 Kb) with 114x coverage factor, an Aythya
fuligula-tufted duck (11749 Kb) with a 64x coverage factor, a Melopsitta-
cus undulatus-parrot bird (23291 Kb) with 61x coverage factor and a Phot-
inus Piralis-common eastern firefly (70234 Kb) with 40x coverage factor. We
choose different type of datasets and numerous size in order to quantify our
results in depth.

These datasets consist of 70 bases length per read and used for the final exper-
iments while we ran and checked our final implementation of 256-bits width
interface on the board. In the initial implementation of 128-bits width inter-
face, as we mention above, we can transfer 120-bits reads maximum which
means a maximum of 60-bases reads. The most usual read-length of genome
datasets is the 70 bases per read and for that reason we used the original
datasets in the final implementation and in the initial implementation we
used synthesized datasets based on the original one in order to have 60 bases
length reads.

The FPGA we used to run our kernel is an ALVEO U50 Data Center Ac-
celerator Card [30] which provide optimized acceleration for workloads in
financial computing, machine learning, computational storage, data search
and analytics, which is presented in figure 4.1. It is a single slot, built on Xil-
inx UltraScale+ architecture, low profile form factor passively-cooled card.
It supports PCI Express (PCIe) Gen3 x16 or dual Gen4 x8, is equipped with
8 GB of high-bandwidth memory (HBM2-316 GB/s) and Ethernet network-
ing capability. The overall board specifications showed in table 4.1. Our re-
sults are compared with an optimized single threaded software, executed on
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FIGURE 4.1: The ALVEO U50 Acceleration Card
www.xilinx.com/content/dam/xilinx/imgs/kits/U50_Hero_1_Bracket.png

a workstation which contains an Intel R© Xeon R© Processor E5-2630 v4 (25M
Cache, 2.20 GHz) with 256 GB of RAM.

Board ALVEO U50
Specifications Accelerator Card

Look-up Tables (LUTs) 872K
Registers 1,743K

DSP Slices 5,952
HBM Memory Capacity 8GB
HBM Total Bandwidth 316 GB/s

Internal SRAM Capacity 28 MB
Internal SRAM Total Bandwidth 24 TB/s

Clock Precision IEEE 1588
Vitis Platform Gen3x16 XDMA, Gen3x4 XDMA3

Maximum Total Power 75W

TABLE 4.1: The ALVEO U50 acceleration card specifications.
www.xilinx.com/products/boards-and-kits/alveo/u50.html#specifications

4.1 Quality results

The main job of our design is to reduce the dataset’s size without losing
any valuable information. In order to have a similarity measurement to en-
sure that the filtering process does not corrupt the output data, we used a
sequence alignment tool to check the similarity of the two outputs, the out-
put of the velvet run with the original dataset and the output of the velvet run

www.xilinx.com/content/dam/xilinx/imgs/kits/U50_Hero_1_Bracket.png
www.xilinx.com/products/boards-and-kits/alveo/u50.html#specifications
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with our Hardware’s intermediate contigs. Manually comparing the outputs
was not feasible. BLAST is a Basic Local Alignment Search Tool [3] which it
has two main features. First you can attach a dataset and the tool can search
the biological databases to find the biggest match and inform you about the
genome. The second feature is the sequence aligner. We can attach two or
more files with genomes and BLAST can check them, by shifting them in
specific position, to calculate a best matching rate between them by giving
the comparison a reward/penalty ratio. It calculate a similarity rate which
can inform us about the quality of output of our design. As we mention in
chapter 2, a similarity bigger than 95% between the two outputs is a very
good result. We downloaded the NCBI BLAST software [12] and we com-
pared the 2 outputs of the Velvet assemblies (Velvet only/Velvet+Hardware)
from each dataset to check for similarity.

4.1.1 The N50 values of the contigs

Generally speaking there are many factors that affect the quality of assembly.
It depending to the assembler, the parameters that it takes to execute the as-
sembly and other factors that can differentiate the outputs. In this particular
situation for the velvet genome assembler, the input parameters like k-mer
length, which is the length of fragments of the reads in order to build the de
Bruijn graph and number of mismatches allowed can significantly affect the
quality of the output and after many experiments we set them in auto. Only
the k-mer length took numerous values during the runs and we keep the
values where the assembly generates the biggest contigs and less in number.
The most popular metric to measure quality are the maximum length of the
contigs and the “N50”. As we mention in Chapter 2, N50 is the minimum
length of the contig such that summing up the length of only those contigs
whose length is more than N50 cover 50% of the genome. In the below table
4.2 we present the quality of the assembly included these two basic factors
in each of 5 datasets of 70 bases per read, which we used them in order to
calculate the final implementation’s results that will be presented below.

Dataset N-50 Max Contig
in bases in bases

Pyruvatibacter mobilis 429918 429918
Pseudomonas 897500 897500

Aythya fuligula 5261723 5261723
Melopsittacus undulatus 6794489 6794489

Photinus pyralis 6789577 6789577

TABLE 4.2: The N50 metrics of the assembly from the outputs
of the velvet genome assembler.

From multiple experiments and runs of velvet between our intermediate con-
tigs as input and the original dataset as input, the number of N50 and max
contigs found to be in similar lengths and the maximum assembled contig’s



62 Chapter 4. Results and Discussion

length found to be the same with the N50 value. As we mention above, the
assembly depends on the factors of the velvet make and run stages such as
the max k-mer length, the hash length, the coverage cut-off and the expected
coverage. We general used the default values of these factors and the out-
puts appeared to be similar included the BLAST’s outputs. In evaluating
our results beyond the N50 metric, using BLAST, we have better than 95%
similarity with Velvet results without RMF, the minor difference being an
occasional base difference (e.g. A or C instead of T).

4.2 Initial implementation results

As we mention above, we used synthesized datasets based on the original
one in order to have 60 bases length reads in datasets. This synthesize make
the dataset size bigger than the original one because we want to keep the
DNA information in smaller reads length, so we have more reads in quantity.
In this point of view the datasets size almost doubled as we present in the
following results.

4.2.1 Speedup without I/O operations

The time measures and the speedup of the kernel can be quantified both in-
cluded I/O operations of read the input dataset and write the final contigs
in hard drive and without these operations. In table 4.3 we will present the
time measures of running the processing stage both in software function and
hardware kernel, without these I/O operations, to quantify first the process-
ing stage of the RMF only.

Dataset Size Execution time in sec Speedup
in Kb Software Hardware

Pyruvatibacter 5655 86,71 1,93 44,92x
Pseudomonas 11494 174,8 3,9 44,82x

Aythya 20188 312,72 6,96 44,93x
Melopsittacus 39326 625,41 13,51 46,29x

Photinus Piralis 120683 1985,71 44,29 44,83x

TABLE 4.3: Processing module’s measured execution times
both in software and hardware and the speedups (without I/O

operations from host/software).

As we can see, the optimizations of the hardware speeds up the processing
time up to 44x-46x faster. The pipelining, unrolling and other hardware op-
timization options, help the most expensive in terms of calculation process
of our design. Below we will present the general speedups for our design
in total, included files I/O operations which implemented in software and
about the overall speedup included the velvet genome assembly processing.
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4.2.2 Speedup including I/O operations

Generally, in the host, we have two main tasks. In the first stage we have
the reading of the input dataset file and the storing of the reads in RAM in
binary form and in the third stage a second task which is the concatenation
of the intermediate contigs and the writing of them into the output file ’con-
tigs.fasta’. We implement a basic time calculation of this tasks to measure the
efficiency of our software part. Obviously the bigger the input dataset file,
the most time it takes to read it, store it in DDR and at the end to write in
output file the intermediate contigs, because there are more.

We measured the overall time execution of our both implementations (Soft-
ware only and Software+Hardware) included the I/O operations of the first
and the third stage. The software compiled with -O3 optimizer and has ex-
actly the same calculate operations with the hardware. We ran all of the 5
datasets and we take 100% match between the outputs of the two methods,
as expected, but we take numerous speedups as we present in the table 4.4.

Dataset Size Execution time in sec Speedup
in Kb Software Hardware

Pyruvatibacter 5655 87,27 3,28 26,6x
Pseudomonas 11494 175,96 6,67 26,38x

Aythya 20188 314,78 11,6 27,13x
Melopsittacus 39326 629,65 21,77 28,92x

Photinus Piralis 120683 1997,87 71,47 27,95x

TABLE 4.4: My design runs both in software and hardware and
the speedups (included I/O operations).

As we can see the overall speedup fails a little from above only processing
stage speedup and this is explained by the I/O file operations. We have an
average 26x-28x speedup in hardware for our filter. As we see, a general
conclusion, observing the dataset’s speedup measures is that the speedup
first rises as the input dataset’s size rises, reach a peak point and after that
start to fails. This downhill course is not so important as the speedup fails
a little as we will see in the following results. Next step is to measure the
overall execution times included Velvet operations and examine the overall
speedup that the genome assembler can take by included our design as an
preprocessing add-on.

4.2.3 Overall speedups included Velvet

As we mention in Chapter 2, we generate the output contigs via two
main data paths. One path is where the input dataset pass through the Vel-
vet genome assembler and the second one is where the input dataset pass
through our hardware design and the intermediate contigs that our design
generates, pass into Velvet genome assembler. In order to measure possible
speedups between the two ways, we measure Hardware and Velvet execu-
tion times each and compare them.



64 Chapter 4. Results and Discussion

The measured values of the execution time with our hardware kernel in-
volved seems in the below table 4.5 and the measure times of the Velvet run
without our filtering processes seems in table 4.6.

Dataset Execution time of Execution time of Total execution
hardware in sec the assembly in sec time in sec

Pyruvatibacter 3,75 38,67 42,42
Pseudomonas 7,57 56,85 64,42

Aythya 13,39 202,18 215,57
Melopsittacus 26,1 435,48 461,58

Photinus Piralis 82,98 4356,16 4439,14

TABLE 4.5: The measured execution times of the assembly with
our preprocessing stage involved.

Dataset Execution time of the
assembly in sec

Pyruvatibacter 90,53
Pseudomonas 284,19

Aythya 862,99
Melopsittacus 3337,83

Photinus Piralis 32580,5

TABLE 4.6: The measured execution times of data path without
our hardware design involved (only Velvet run).

We can notice that proportional the input dataset size, we have different
execution times. As the dataset’s size is growing, the time measures is grow-
ing, reach a peak point and then it shrinks. After that measures we can cal-
culate the overall speedup of our design. In general we noticed a numerous
speedup between the two ways and the Velvet genome assembler runs faster
with our intermediate contigs as input. The overall speedups of the task is
presented in the following table 4.7.

Dataset Overall assembly time Overall assembly time Overall
without our RMF in sec with our RMF in sec speedup

Pyruvatibacter 90,53 42,42 2,13x
Pseudomonas 284,19 64,42 4,41x

Aythya 862,99 215,57 4,01x
Melopsittacus 3337,83 461,58 7,23x

Photinus Piralis 32580,5 4439,14 7,33x

TABLE 4.7: Overall speedup between the two methods.

The overall speedup has numerous values where the most significant is for
bigger datasets such as Melopsittacus and Photinus Piralis. The biggest the
dataset’s size, the higher the overall speedup of the process including filter-
ing from RMF and assembly from Velvet. In that point of view the Velvet
took a significant overall speedup with our filter’s outputs as input.
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4.3 Final design results

As we mention above the previous initial design results was in testing imple-
mentation of the 128-bits input/output interface of the board and referred to
60 bases reads datasets. The final design implemented a 256-bits width inter-
face in order to work with 70 bases (140 bits) reads length. The optimizations
of the kernel was the same as the initial’s implementation, included pipelin-
ing, loop unrolling, data flow optimization and multiple register’s stores for
the function’s arguments.

In this implementation, as the initial one, the interval of the extender held
in factor II=1 which means that in each clock cycle, the extender take a new
read and a starter and in the next cycle, produce the results of the matching
process. The latency of the extender found to be 141 clock cycles. An interval
II=1 calculated from the write back stage and the double buffering process
which is the best pipeline level. The iteration latency of the loop which take
every read from the dataset in order to matching it with the starter found to
be 292 clock cycles and that means that every read from the dataset retrieved
every 292 clock cycles (from 272 that was in the initial implementation).

We did the same experiments and we took the same time measures as the
initial design. The datasets we used are the original ones, as we downloaded
them from NCBI database.

4.3.1 Speedup without I/O operations

As a first measurement, we calculated the execution times both for the soft-
ware and the hardware part of the main processing stage of the filter. In these
values we did not take the I/O operations of reading and writing in files. The
software built by using the -O3 optimizer of gcc compiler. The below table
4.8 present these measures.

Dataset Size Execution time in sec Speedup
in Kb Software Hardware

Pyruvatibacter 3291 365,37 3,28 111,39x
Pseudomonas 6689 720,66 6,48 111,21x

Aythya 11749 1263,66 11,37 111,13x
Melopsittacus 22887 2437,59 21,92 111,2x

Photinus Piralis 70234 7595,37 68,39 111,05x

TABLE 4.8: The measured execution times for the processing
module of the RMF in final implementation.

The speedups between the two options are enormous and reach a 111x faster
in hardware implementation. This can be explained by the method that the
dataset’s reads has been saved in the memory in the software implementa-
tion. As we mention in Chapter 3, in order to store a read of 140 bits (70
bases) in software we used two entries of 128 bits integers, because the limi-
tation of the data types in software. That means that for each read we occupy
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double memory to save it and in order to work the processing stage, for each
read we retrieve and save double entries of data from the RAM and the op-
erations done double. As a result the execution time increased drastically, in
contrast with the hardware implementation which using arbitrary precision
data types and can handle the 140 bits reads better in space allocation.

4.3.2 Speedup including I/O operations

As a second step, we included the I/O operations in our measurements and
as expected the results remained fine in execution time between the two
methods (Software/Hardware). In this point we mention that the output
files with the intermediate contigs which generated by the two methods, had
a 100% percent of match. The execution times between the methods showed
in the following table 4.9.

Dataset Size Execution time in sec Speedup
in Kb Software Hardware

Pyruvatibacter 3291 365,79 3,96 92,37x
Pseudomonas 6689 721,52 7,82 92,26x

Aythya 11749 1265,18 13,7 92,34x
Melopsittacus 22887 2440,58 26,4 92,44x

Photinus Piralis 70234 7604,38 82 92,73x

TABLE 4.9: The measured execution times for the RMF in-
cluded the I/O operations in final implementation.

As we can observe, the speedup decreased slightly included the I/O opera-
tions but it still has advantageous values. The optimizations and the overall
pipeline level of the design in the hardware, speedup the filtering by an over-
all ratio of 92x faster.

4.3.3 Overall speedups including Velvet

The above speedups referring to the reduction of the execution time from the
software to the hardware of our final design. The main idea is to speedup the
genome assembler’s execution time. We took the same measurements as the
initial implementaton’s for both assembly data paths, included Velvet (Vel-
vet, RMF+Velvet). In all of the measurements we used the default parameter
values for the assembly as we mentioned above.

We present in table 4.10 the execution time of the velvet genome assembly
processing by taking as input the original datasets (70 bases read length).

As we can observe the execution time of the assembly increasing depending
the file size. The assembler first reads the input dataset and by a hash factor,
stores in RAM the k-mers, little fragments of the input reads in order to build
a de Bruijn graph, which used in the second part of the process, the assembly
stage. The larger the file size, the larger the number of reads and therefore
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Dataset Execution time of the
assembly from Velvet in sec

Pyruvatibacter 65,11
Pseudomonas 220,67

Aythya 604,78
Melopsittacus 1932,39

Photinus Piralis 12922,43

TABLE 4.10: The measured execution times of Velvet with the
original datasets.

the build time of the graph. By throw away the unused repeats of the reads
these times reduced, as it presented in table 4.11.

Dataset Execution time of Execution time of Total execution
RMF in sec Velvet run in sec time in sec

Pyruvatibacter 3,96 31,14 35,1
Pseudomonas 7,82 28,57 36,39

Aythya 13,7 162,05 175,75
Melopsittacus 26,4 345,66 372,06

Photinus Piralis 82 3234,37 3316,37

TABLE 4.11: The measured execution times of the assembly
with our RMF involved.

As we see the overall execution time of the assembly reduced as the velvet
has to deal with smaller datasets. The reduction of the dataset size, presented
in table 4.12 .

Dataset File size in Kb
Original Final

Pyruvatibacter 3291 1454
Pseudomonas 6689 2957

Aythya 11749 5190
Melopsittacus 22887 10095

Photinus Piralis 70234 30937

TABLE 4.12: The reduction of the dataset’s size from our RMF.

Observing all of the measurements we conclude in the following table 4.13,
where we present the overall speedup of the process included the velvet
genome assembler and our final design.

As we can see in the results, the overall speedup of the final design increased
as the dataset file’s size increased. The speedups in each case first increases,
reaches a peak and then tapers off. This is a common conclusion with the
work that done in [39], which the approach we followed in order to build
our kernel. We have an overall speedup between 2x to 6x faster in the whole
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Dataset Velvet execution Velvet+RMF execution Overall
time in sec time in sec speedup

Pyruvatibacter 65,11 35,1 1,85x
Pseudomonas 220,67 36,39 6,06x

Aythya 604,78 175,75 3,44x
Melopsittacus 1932,32 372,06 5,18x

Photinus Piralis 12922,43 3316,37 3,89x

TABLE 4.13: The measured execution times and the overall
speedup with our final implementation filter involved.

process with the final outputs of the assembly between the initial and the
final datasets, having 95% similarity as the BLAST informed us in the quality
section above. In [39] they concluded in an overall estimated speedup that
reached the 13x ratio, but they estimate it with multiprocessing elements in
the FPGA, in the same design, while our implementation consist of a single
kernel design.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

According to the results, we managed to speedup the Velvet assembly pro-
cess by design a pre-assembly filtering implementation. This implementa-
tion consist of checking the input dataset for unused redundancy between
the reads and by that way we reduce the size of the input file that Velvet use
to generate the output assembled sequences. Our design managed to gain
significant speedups. The differences between the execution times between
the software and the hardware implementation of our both designs (initial
and final), found to be very large. We measure speedups up to 27x-28x ratio
for our initial design and up to 92x ratio for our final implementation.

As we can see in table 4.13, the overall speedup of the whole process, for the
smaller datasets such as Pyruvatibacter remains in < 2x ratio. This means
that for small datasets (sizes smaller than 5mb), we concluded, after several
experimentation, that the whole process did not take any significant speedup
and the execution time of the assembly processes remained the same. We
managed to gain an ≈ 2x speedup using our filter but it refers in differences
of the order of seconds. After that with a bigger size of the input dataset
and as this size increased, we have bigger speedups. This speedup ratio
increased until it finds a peak value which found to be approximately in 7x
speedup for the initial implementation and in 5x-6x speedup for our final
implementation.

These final results differ a little in relation to the work of [39]. As we mention
above, this can be explained by the fact that they used multiple instances of
the same kernel into different Processing Elements (PEs). This design can
reduce even more the execution time of the preprocessing stage and con-
sequently the whole assembly’s execution time because the dataset’s reads
divided in different PEs. In our implementation we tried to implement a
similar extended implementation (as we described in Chapter 3), but it failed
to fit in the FPGA due to the resources limitation.

Our results presented in Chapter 4 and at this point following the visualizing
of the results. We executed our implementation many times on Alveo U50
and further visualization with data graphs presented below.
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5.1.1 Visualize our results

As we mentioned in Chapter 4 we used 5 synthesized datasets of numerous
size in order to fit for our initial implementation’s limitations of 60 bases read
length and the original datasets for our final implementation that works for
bigger read’s length (70 bases per read), in order to check the functionality
and the efficiency of our designs.

First of all in tables 4.3 and 4.4, we saw the exponential increase of the execu-
tion time in terms of dataset’s file size in initial implementation and we calcu-
lated the speedup that the design conquered between the software only im-
plementation and the hardware one which tabulated in table 4.7. We present
these results in below 2 graphs (5.1, 5.2) in order to visualize the exponential
increase of time execution compared with the input file’s size.

FIGURE 5.1: RMF measured execution times both in software
and hardware (without I/O operations from host/software)

As we see in graphs 5.1 and 5.2 the overall execution time increased as the
file size increased. The reduction of the execution time in hardware is large
for each dataset’s size and as the file size increased, this reduction increased.
This is because the O(N2) time complexity of the algorithm that compare
each read with all the other reads of the dataset to find the matches. As
the dataset’s size increased we have more reads to compared between them
and the hardware pipelining execution method help the process to run more
faster than software.

The corresponding time measurements about the final implementation showed
in below graphs 5.3 and 5.4. The first graph 5.3 presents the execution times
about our final implementation’s processing module, without I/O operations
and the second graph 5.4 presents the final measures about the whole final
implementation’s execution. We can observe similar results both in initial



5.1. Conclusion 71

FIGURE 5.2: RMF’s measured execution times both in software
and hardware (with I/O operations from host/software)

and final implementation of the design. The execution times increased ex-
ponentially as the file size increased and the overall difference increased the
same for larger dataset’s size because the O(N2) time complexity of the algo-
rithm.

FIGURE 5.3: RMF’s measured execution times both in software
and hardware (with I/O operations from host/software)
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FIGURE 5.4: RMF’s measured execution times both in software
and hardware (with I/O operations from host/software)

In bar charts 5.5 and 5.6 we present the overall speedup that the whole pro-
cess gain, included the velvet genome assembler processing that do the as-
sembly, both in initial and final implementation of our RMF.

FIGURE 5.5: The overall speedup of the whole process included
the Velvet assembly stage and our initial filtering implementa-

tion.

As we can see the overall speedup increased as the input dataset’s size in-
creased until it reached a peak point and then tapers down, except some
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FIGURE 5.6: The overall speedups of the whole process in-
cluded the Velvet assembly stage and our final filtering imple-

mentation.

of cases such as Pseudomonas original dataset in our final implementation
which gain a significant x6,06 speedup in assembly with our filtering in-
volved. The speedup ratio of big datasets found from experiments that it
is not a very bad result as we saw that for a big dataset such as the Photi-
nus Piralis (Chapter 4), the assembly process gain a speedup of the order of
hours (≈ 4x faster), which is very useful by reducing the processing time of
the Velvet run.

5.2 Future Work

Further development about our work may include other optimizations or dif-
ferent hardware design. The main functionality of our algorithm is to make
a preprocessing in the input dataset to improve the execution time of the as-
sembly stage. In our case we used the Velvet genome assembler and a future
work may can deal with the implementation of an add-on feature to the as-
sembler. The reads matching filtering of our design may implemented as an
add-on to attached in the input phase of the Velvet and make the redundancy
job of the input dataset (cover and throw the repeats). This design has the ad-
vantage that it is independent of the kind of assembly or the assembler. So
another use of our design may includes another genome assemblers such as
Spades [2] or others.

Another approach, may include a work with a multi-instantiation of our ker-
nel into the FPGA (or in multi-FPGAs system). As we saw in the Chapter
3 our kernel occupies approximately ≈ 17% of total space of the Alveo U50
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for the initial implementation and approximately ≈ 17% for our final im-
plementation. A nice approach is to implement a double or triple instance
of the same kernel in order to share the processing job of the one kernel.
Every kernel could run the process pipelined with the others (in the same
datapath connecting the instances each other) and we could have increased
speedups. This design implemented in this work but it did not manage to
fit in the Alveo U50 in terms of limitations in card’s resources. The further
implementation on this could be a bigger FPGA included more resources or a
multi-FPGAs system in order to combine multitudinous kernel instantiation.

Concerning the scores table’s implementation that we managed to imple-
ment, there are many different approaches and implementation to follow in
order to make it functionally and quality. We made a software only imple-
mentation with bad time execution results and following the plan we had
in order to implement it, we saw that it was not worth the design. On the
other hand a more detailed implementation plan can give nice results and
can under certain conditions give a better quality concerning the outputs.
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