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Abstract

U nmanned aerial vehicles (UAVs) have been increasingly used for critical
and challenging applications, which often require a substantial level
of autonomy. Several approaches have been investigated to create

autonomous navigation systems such as Simultaneous Localization and Mapping
(SLAM) using real-time mapping and position estimation. Reinforcement leaning
(RL) is a promising alternative that focuses on learning to perform a task through
a trial-and-error procedure, in which an agent interacts with its environment and
receives continuous feedback based on the actions taken, with no access to any
information about the environment itself. Eventually, the agent’s objective is to
find the best possible sequence of actions that lead to the maximum total reward
in the long term. This thesis explores a mapless approach to UAV autonomous
navigation in completely unknown 3D environments using deep reinforcement
learning (DRL), a reinforcement learning approach that incorporates deep learning
techniques (deep neural networks) to overcome dimensionality limitations. The
goal of the agent is to safely navigate through this unknown environment, so as
to detect and approach a predefined set of ArUco markers (landmarks) placed
within the environment. The unknown environments are dynamically created
and contain a number of procedurally generated obstacles. We evaluate our agent
in five different environment profiles with increasing difficulty level and observe
how environment complexity affects training performance. Results show that
deep reinforcement learning can be effective and can be successfully used for
autonomous navigation missions. The entire project was implemented using the
Robot Operating System (ROS) platform within the Gazebo robot simulator
environment.



Περίληψη

Τ
α μη επανδρωμένα αεροσκάφη (Unmanned Aerial Vehicles, UAVs) χρησι-
μοποιούνται ολοένα και περισσότερο για κρίσιμες και απαιτητικές εφαρ-

μογές, οι οποίες συχνά απαιτούν ένα σημαντικό επίπεδο αυτονομίας. ‘΄Εχουν
διερευνηθεί διάφορες προσεγγίσεις για τη δημιουργία συστημάτων αυτόνομης πλοή-
γησης, όπως ο ταυτόχρονος εντοπισμός και χαρτογράφηση (SLAM) που υλοποιεί
σε πραγματικό χρόνο χαρτογράφηση και εκτίμηση θέσης. Η Ενισχυτική Μάθηση
(Reinforcement Learning, RL) θεωρείται μια πολλά υποσχόμενη εναλλακτική λύση
που επικεντρώνεται στη μάθηση κάποιου έργου μέσω μιας διαδικασίας δοκιμής και

σφάλματος, στην οποία ένας πράκτορας αλληλεπιδρά με το περιβάλλον του και
λαμβάνει συνεχή αξιολόγηση εξαρτώμενη από τις ενέργειες που επιλέγει, χωρίς
ωστόσο να έχει πρόσβαση σε πληροφορίες για το ίδιο το περιβάλλον. Εν τέλει,
ο στόχος του πράκτορα είναι να βρει την καλύτερη δυνατή ακολουθία ενεργειών

που θα εξασφαλίσουν τη μέγιστη συνολική ανταμοιβή μακροπρόθεσμα. Η παρούσα
διπλωματική εργασία διερευνά μια προσέγγιση αυτόνομης πλοήγησης αεροσκαφών

(χωρίς χάρτη) σε εντελώς άγνωστα τρισδιάστατα περιβάλλοντα χρησιμοποιώντας
βαθιά ενισχυτική μάθηση (Deep Reinforcement Learning, DRL), μια προσέγγιση
ενισχυτικής μάθησης που ενσωματώνει τεχνικές βαθιάς μάθησης (βαθιά νευρωνικά
δίκτυα) για να αντιμετωπιστούν οι περιορισμοί διαστατικότητας. Ο στόχος του
πράκτορα είναι να περιηγηθεί με ασφάλεια στο άγνωστο περιβάλλον, ώστε να εν-
τοπίσει και να προσεγγίσει έναν προκαθορισμένο αριθμό διακριτικών δεικτών ArUco
που είναι τοποθετημένοι μέσα στο περιβάλλον. Τα άγνωστα περιβάλλοντα δημιουρ-
γούνται δυναμικά και συμπεριλαμβάνουν έναν πλήθος από εμπόδια παραγόμενα με

αυτοματοποιημένο τρόπο. Αξιολογούμε τον πράκτορας μας σε πέντε διαφορετικά
προφίλ περιβαλλόντων με αυξανόμενο επίπεδο δυσκολίας και παρατηρούμε πως

η πολυπλοκότητα του περιβάλλοντος επηρεάζει την απόδοση της μάθησης. Τα
αποτελέσματα δείχνουν ότι η βαθιά ενισχυτική μάθηση μπορεί να είναι αποτελεσ-

ματική και μπορεί να χρησιμοποιηθεί επιτυχώς σε αποστολές αυτόνομης πλοήγησης.
Η εργασία στο σύνολό της έχει υλοποιηθεί μέσω της πλατφόρμας Robot Operating
System (ROS) στο περιβάλλον ρομποτικής προσομοίωσης Gazebo.
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1.2 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Introduction

O ver the past decade, the use of unmanned aerial vehicles (UAVs) has been

increasingly popular. They have shown promise in a variety of practi-

cal applications including construction sites, agricultural remote sensing,

landmark estimation, search and rescue (SAR), surveillance and offensive military

operations. Drones offer incredibly high flexibility with minimal operational costs,

which renders them ideal for exploration in unknown, normally inaccessible and

potentially hazardous-for-humans environments. In most scenarios, the UAV must

safely navigate among various locations to perform specific tasks. Therefore, an

effective and efficient navigation system is considered necessary in order to successfully

accomplish these missions.

When these devices were initially developed, navigation was performed manually

and remotely controlled by humans. In the following years, semi-autonomous safety

1



1. Introduction 2

features were developed to actively assist human pilots. Lately, huge advancements

in information technology and artificial intelligence (AI) lead to the development of

flight mechanisms which can completely take over and perform autonomous flights

in an environment. These mechanisms are able to collect important information

about the environment from the attached sensors and therefore enable the drone to

successfully avoid collisions and locate and track targets by processing this information

and creating observational patterns.

By observing the natural learning process of the animals (since nature is a con-

tinuously proven source for human inventions), researchers developed one of the

most emerging subfields of artificial intelligence, designed for solving control-related

challenges: Reinforcement learning (RL), a technique that focuses on training an

algorithm by attempting actions in an environment and carefully observing and

evaluating the feedback it receives after each step. Similar to every animal’s childhood,

positive feedback is a reward, while negative feedback is a punishment for making

a mistake. This continuous trial-and-error interaction ultimately allows the agent

to successfully learn from its past experiences.

1.2 Thesis Contribution

This thesis proposes a deep reinforcement learning approach to autonomous navigation.

According to this approach, an agent (UAV) randomly spawns inside a three-dimensional

(3D) environment with obstacles and targets and its objective is to proceed towards

every target in the environment. Specifically, the DQN algorithm is implemented,

which aims to discover the best sequence of actions in order to receive the most overall

positive feedback from the environment. DQN follows the traditional pipeline of

a reinforcement learning problem, but is influenced by recent advancements of the

deep learning subfield, particularly through the use of deep neural networks. DQN

is extensively analyzed in Section (2.1.8.2).

The entire project is implemented using Robot Operating System (ROS), a platform

that allows the design of functional and realistic robotic models with sensors and

motors. To visualize our UAV, the Gazebo robot simulator was used. Regarding the
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environment, configurable, lightweight and dynamic 3D worlds were constructed with

ranging difficulty to serve as a testbench for the reinforcement learning algorithm. This

thesis uniquely combines autonomous navigation control using reinforcement learning

on a ROS platform. The results show that deep reinforcement learning techniques can

be very effective. Since this is a ROS project and the model’s elements are identical

copies of already manufactured parts, these results can be easily reproduced in the

real world, with almost no coding modifications.

1.3 Thesis Structure

Moving forward, this thesis is categorized into five distinct chapters.

• Chapter 2 presents all the background information required, spanning from the

foundations of reinforcement learning to the tools and frameworks that were

utilized throughout this project.

• Chapter 3 explicitly states the problem that this thesis attempts to resolve and

compares our approach to other investigated solutions.

• Chapter 4 extensively analyzes the executed approach, including the environment

creation, UAV model design and algorithm implementation.

• Chapter 5 sets up experiment configurations and benchmarks our approach with

multiple difficulty levels to evaluate its performance.

• Chapter 6 underlines some limitations of our approach and indicates possible

extensions that could produce improved results.
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T his chapter introduces all the required background for this thesis. Initially,

an overview is presented about the traditional, mathematically formulated

approach of reinforcement learning. We explain the goal of any reinforcement

learning problem and analyze the equations of achieving this goal. Later, a brief

4



2. Background 5

discussion will be made about the categorization of reinforcement learning algorithms

with a particular focus on Q-Learning and DQN. Additionally, an outline will be

provided about the Robot Operating System platform, the Gazebo simulation software

and several frameworks used for this project.

2.1 Reinforcement Learning

2.1.1 Overview

Machine learning is a branch of artificial intelligence which studies computer algorithms

that improve over time through experience using large amounts of data. It is generally

broken down into three main categories: supervised learning (SL), unsupervised

Learning (UL) and reinforcement learning (RL).

In supervised learning, the learning algorithm attempts to learn the dependencies

between data points. The learning process is "supervised" by matching the calculated

results with the original output (ground truth) which is provided in advance. Supervised

algorithms often solve problem categories, such as regression and classification.

In unsupervised learning, ground truth labels are not provided with the data,

therefore the learning algorithm attempts to determine patterns dynamically with

unknown initial relationships between data. This approach needs larger amounts of

data in order to successfully create an accurate model. Clustering and dimensionality

reduction are the most typically used unsupervised learning algorithms.

In reinforcement learning, an agent tries to learn to behave in an unknown

environment through trial-and-error. Unlike supervised learning, it does not depend

on a supervisor (labeled data), instead, the agent learns from its own experience

created during the interaction with the environment. The objective of the agent is to

find an optimal sequence of actions that would lead to the maximum cumulative

reward in search for a goal.

The three main categories of machine learning are shown in Figure (2.1).
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Figure 2.1: Machine learning and its three main subfields.

2.1.2 General Terms

This subsection focuses on some basic definitions of RL.

• Step (time-step) - A time-step is the smallest possible unit of time in a

reinforcement learning problem. Every state corresponds to a specific time-step.

• Episode - An episode is a collection of time-steps starting from an initial state

all the way to a terminal state. After reaching a terminal state, a new episode

emerges.

• Agent - The agent is the algorithm itself, the learning part of the reinforcement

learning system. It has the power to act on an environment and receive a reward

from it.

• Environment - The environment is the world through which the agent acts. It

takes the current state of the agent as input and returns the reward and next

state to it. Environments follow a set of predefined laws. They may change over

time thus can be described as either static or dynamic.

• State (s) - A state is a collection of variables and conditions that describe a

situation of the environment at a specific point in time. Every action ever taken
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by the agent at each time step can be represented by a specific state. Terminal

states are states in which the agent is in a fatal condition and therefore the

environment needs to be reset.

• State Space (S) - A state space is the set of every possible state of the

environment such that s ∈ S. Depending on the application, it can be either

discrete (e.g. grid world) or continuous (e.g. robotic arm).

• Action (a) - An action is every possible move the agent is allowed to make. The

action can be represented as an output of the agent.

• Action Space (A) - An action space is the set of every possible action the agent

can make such that a ∈ A. Similarly to the state space, the action space can be

either discrete (e.g. left/right in a grid world) or continuous (e.g. 75% throttle in

a driving situation). In continuous action spaces, the agent must output some

real-valued number, possibly in multiple dimensions. Continuous action spaces

are used in rarer cases due to their increased complexity and poorer support by

reinforcement learning algorithms. In those scenarios, promising results can be

achieved by discretizing the action space into fewer, discrete actions.

• Reward (R) - The reward is a feedback returned to the agent by the environment,

functioning as an evaluation that indicates the success or failure of its previous

action. Rewards can be tricky to design, because they are tied up to a specific

environment.

• Policy (π) - In mathematical terms, the policy π(s) is a probability distribution

over actions given states.

π(s)→ a

In practice, it’s the strategy that the agent obeys and improves over time to

determine the next action based on the current state. RL algorithms are tasked

to learn an optimal policy that achieves a specific goal.
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Figure 2.2: A simple reinforcement learning model. The agent performs an action in
the current state, then receives from the environment the next state as well as a reward
(evaluating its previous action).

• Value (V ), Q-Value (Q) - Value Vπ(s) is the expected discounted reward for

an agent that obeys a policy π at the current state s. Q-Value Qπ(s, a) is similar

to Value, but it also takes into account the current action a. While reward is

an immediate score received in a given state, both Value and Q-Value represent

long-term expectations, which every RL algorithm tries to maximize.

Figure 2.2 shows the interaction cycle between an agent and the environment.

The next subsections will provide a detailed explanation of reinforcement learning,

mathematically modeled as a Markov Decision Process (MDP).

2.1.3 Markov Decision Process (MDP)

In order to mathematically represent a decision-making problem, researchers constructed

a framework that can fully describe environments using state-transition probabilities.

Therefore, at every time-step, given a state and an action, we can predict the reward and

the next state. The outcomes may or may not be stochastic (contain randomness). The

original configuration of an MDP consists of a tuple with the following five elements:

MDP : (S,A, P,R, γ) (2.1)

where S is the state space, A is the action space, P (s, a, s′) is the transition model

which defines the probabilities of transitioning from every state s to every successor

state s′ given the action a. R(s) (or alternatively R(s, a) or R(s, a, s′)) is the reward
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that the agent receives in its current state s, after performing an action a and leading

to the state s′. γ is the discount factor required in order to differentiate the importance

between short and long-term rewards.

MDPs contain an important property, the Markov Property, which indicates that

each current state is only dependent on its immediate previous state (previous time-step).

Essentially, this means that a single state contains all the information required, rendering

it memoryless. This convention is respected throughout our custom environment.

2.1.4 Environment

The environment is the world in which the agent learns and behaves. There are no

restrictions of how an environment can be designed. Depending on the requirements of

the problem, it can range from a simple grid world, to an ATARI game emulator, or

even complicated 3D highly realistic virtual worlds. Each environment has its own state

space (S) and action space (A). As already mentioned in subsection (2.1.2), both spaces

can be either discrete or continuous. Continuous state spaces are fairly common, since

most real-life problems are continuous by nature. They can be generally used in various

RL algorithms, but they can also be discretized with methods, such as tile coding.

A state is defined by an N -dimensional space vector, where N always depends on

the problem. Higher-dimensional states greatly increase the amount of information

that the agent can utilize, but at the same time, complexity rises exponentially, thus

affecting training time and convergence. Ideally, the minimum amount of information

is preferred (to decrease complexity), which is enough for the agent to learn efficiently.

Additionally, the type of information included needs to be relevant to the design of

the reward system in order for the agent to discover behavioral patterns. For example,

in an autonomous driving situation, where we penalize the agent for colliding with

obstacles, a state naturally needs to include information, such as velocity and distance

measurements from the vehicle’s sensors.
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2.1.5 Rewards

Rewards are an integral part of a reinforcement learning problem. Positive rewards

motivate the agent to repeat an action in a similar situation, while negative rewards

teach the agent to avoid a certain behavior. The general goal is to maximize the

expected cumulative reward, that is, the sum of rewards over each time-step:

Rt = rt+1 + rt+2 + rt+3 + . . . (2.2)

However, there are two problems with this approach. Firstly, the trajectory, that is,

the sequence of states starting from an initial state leading all the way to a terminal

state, may contain an infinite amount of states (without ever reaching a terminal

state), thus an infinite amount of rewards. This causes the expected cumulative reward

to “explode” to infinity. Secondly, future rewards are not as concrete as the present

ones, which instead hold more accurate reward information. This is due to uncertainty

introduced in the environment as time passes.

To force an infinite sum to converge to a finite number and to reduce the importance

of future states, a discount factor γ is introduced, in which each reward (state) is

multiplied by a factor of γ per time-step. The discount factor has a range of [0, 1).

Values close to one (1) render future rewards equally important as the reward in

the current state, while values close to zero (0) considers rewards near the present

state much more valuable. Thus, after tweaking our initial equation, our goal is to

maximize the expected discounted reward:

Gt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
i=1

γi−1rt+i (2.3)

Designing an efficient reward system

Typically, the hardest part of a reinforcement learning problem is the design of the

reward system, since there are no rules, no absolute restrictions and it is tied up with

how the state space is defined. Different reward systems for the same problem can

affect the agent’s behavior, training speed (therefore convergence), and the ability

to prevent local optima scenarios.
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It is basically an optimization problem, which is solved by trial and error. Nev-

ertheless, there are some known guidelines, which can be very useful. Firstly, it is

not recommended to build sparse reward functions, even though they are easier to

define (e.g return +1 if you win the game, else -1). This can dramatically slow down

the learning process, because the agent needs to explore much further and perform

many actions before getting any reward. Secondly, in continuous state spaces, where

it is rather inefficient to create a table representation for rewards, continuous and

differentiable reward functions, such as polynomial functions are desired, because they

produce a much more gradual reward path over states. Last, but not least, in real

world problems, where time is an important factor, rewarding the distance to the goal

is probably not the most efficient choice, instead, higher dimensional variables, such

as velocities, can be included to incorporate the sense of time.

2.1.6 Bellman’s Equations

As a reminder, the agent’s goal is to find an optimal policy π∗ that determines

the best sequence of actions for the agent and therefore maximizes the expected

discounted cumulative reward, as stated in Equation (2.3). We can rewrite this

equation with a recursive relationship:

Gt =
∞∑
i=1

γi−1rt+i

Gt = rt+1 + γrt+2 + γ2rt+3 + . . .

Gt = rt+1 + γ(rt+2 + γrt+3 + . . . )

Gt = rt+1 + γ(rt+1+1 + γrt+1+2 + . . . )

Gt = rt+1 + γGt+1 (2.4)

Now that the recursive property is apparent, we can proceed to the definition of the

value function. The value function Vπ(s) assigns values to states and is a measurement

for our states. Mathematically, the value is an expected (E) discounted total reward

starting from a particular state s when the agent is following a policy π:

Vπ(s) = Eπ [Gt | St = s] = Eπ
[ ∞∑
i=1

γi−1rt+i | St = s

]
(2.5)
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We can extend the definition of the state-value function to include state-action

pairs. This function is also known as quality function or action-value function Qπ(s, a).

Qπ(s, a) = Eπ [Gt | St = s, At = a] = Eπ
[ ∞∑
i=1

γi−1rt+i | St = s, At = a

]
(2.6)

We can relate the value function (2.5) with the quality function (2.6) in just a few

steps. The sum of probabilities of all possible actions a ∈ A from a state s ∈ S equals 1:∑
a

π(a | s) = 1

where π(a | s) is the transitional probability of the policy selecting the action a

given a state s. The value function, then, is essentially the sum of the transitional

probability multiplied by the Q-value function over each action a:

Vπ(s) =
∑
a

(π(a | s) ·Qπ(s, a)) (2.7)

We can now reach our initial goal by solving (2.5). But, instead of summing over

multiple time steps, we can break down our complex value function into two simpler

recursive subproblems to find the optimal solution using the recursive property of (2.4).

This is exactly what the famously known Bellman Equation achieves.

• Bellman’s Equation for Vπ:

Vπ(s) = Eπ [Gt | St = s]
(2.4)= Eπ [Rt+1 + γGt+1 | St = s]

=
∑
a

π(a | s)
∑
s′
P (s′ | s, a) (R (s, a) + γEπ [Gt+1 | St+1 = s′])

=
∑
a

π(a | s)
∑
s′
P (s′ | s, a) (R (s, a) + γVπ (s′)) (2.8)

• Bellman’s Equation for Qπ:

Qπ(s, a) = Eπ [Gt | St = s, At = a]
(2.4)= Eπ [Rt+1 + γGt+1 | St = s, At = a]

=
∑
s′
P (s′ | s, a) (R (s, a) + γEπ [Gt+1 | St+1 = s′])

=
∑
s′
P (s′ | s, a)

(
R (s, a) + γ

∑
a′

Eπ [Gt+1 | St+1 = s′, At+1 = a′]
)

=
∑
s′
P (s′ | s, a)

(
R (s, a) + γ

∑
a′
π (a′ | s′)Qπ (s′, a′)

)
(2.9)
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Although the above equations assume a reward function which depends on the

current state and action taken R (s, a), any simpler or general form of reward can

be used. Bellman’s equations are linear systems and can thus be expressed in a

matrix form. This is convenient, since both values can be estimated either directly

or recursively in a tabular form.

Optimal Policy

Although we learned how bellman’s equations are defined for a given MDP, the

estimation of the optimal policy is unknown and still our main objective.

A value function is optimal, if it yields the maximum value compared to any

other value functions, such that:

V ?
π (s) = max

π
Vπ(s)

Similarly, the optimal state-action value function (Q-function) denotes the maximum

reward received starting from a state s and taking action a:

Q?
π(s, a) = max

π
Qπ(s, a)

Between two policies π1 and π2, the better policy is the one whose value function

is greater throughout its states. Mathematically, this can be written as:

∀s, π1 ≥ π2 if Vπ1(s) ≥ Vπ2(s)

A policy however, can be optimal, only if it yields an optimal value function.

Multiple optimal policies can also exist, leading to the same optimal values.

In case of optimality, Bellman’s Equations (2.5) & (2.6) are slightly tweaked,

such that, instead of averaging over the agent’s action, we select the action with

the maximum value.

V ?(s) = max
a

(∑
s′
P (s′ | s, a) (R (s, a) + γVπ (s′))

)
(2.10)

Q?(s, a) =
∑
s′
P (s′ | s, a)

(
R (s, a) + γmax

a′
Qπ (s′, a′)

)
(2.11)

Equations (2.10) and (2.11) are also known as Bellman Optimality Equations.
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Lastly, the optimal policy is estimated through the value function by picking the

greediest action, since in every state there is at least one optimal action leading

to the maximum value.

π?(s) = arg max
a

(∑
s′
P (s′ | s, a) (R (s, a) + γV ? (s′))

)
= arg max

a
Q?(s, a) (2.12)

Unfortunately, the linearity of this system breaks down in Bellman optimality equa-

tions, due to the introduction of the max operator. As a consequence, both values can

only be estimated using iterative methods and techniques, such as linear programming.

2.1.7 Algorithms Taxonomy

There is currently a large variety of reinforcement learning algorithms in existence, each

with its own characteristics and approach to solving a RL problem. These algorithms

can be classified from different perspectives, such as model-based and model-free

methods, value-based and policy-based or on-policy and off-policy methods.

Figure (2.3) presents a structured map of the most popular reinforcement learning al-

gorithms.

2.1.7.1 Model-Based vs Model-Free Algorithms

MDP-based algorithms can be roughly divided into Model-free and Model-based

methods. Generally, maximizing the rewards for our actions, depends on the policy

and the model which needs to be known.

In model-free RL, we can ignore the model, since we depend on sampling and

simulation to estimate rewards. Essentially, this means the agent learns from experience,

performing actions directly in the real world (or simulation) and collecting reward

live from the environment in order to update its value function. Since the interaction

is performed live, these algorithms have irreversible access to the MDP. If an action

is performed in a given state, it permanently affects the environment. Model-free

algorithms are usually slower to learn, but also more reliable.
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Figure 2.3: Taxonomy of reinforcement learning algorithms. Q-Learning and DQN
algorithms will be analyzed and are highlighted in blue.

In model-based RL, we can calculate the optimal actions from the model directly,

using a custom-defined cost function. This family of algorithms uses a reduced number

of interactions with the real environment during the learning process in order to

construct an model. It then uses this model (either known or learned) in order to

internally simulate the subsequent episodes and not by applying them to the real

environment. This is often referred to as planning. Since planning is performed

internally, it has reversible access to the MDP, which allows the algorithm to repeatedly

plan forward from the same state (evaluating different future paths each time). Another

point worth noting, is that in this case we optimize the trajectory for the least cost

instead of the maximum rewards. Model-based algorithms generally have the advantage

of speeding up the learning, since no real interaction with the environment is required.

There is a risky trade-off though, if the model is not accurate, it might lead the agent to

learning undesired behavior. Popular model-based algorithm examples include Monte

Carlo Tree Search, I2A and state-of-the-art AlphaZero.
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2.1.7.2 Policy-Based vs Value-Based Algorithms

Model-free algorithms can be further categorized to value-based and policy-based,

depending on which optimal element we are trying to estimate.

In policy-based methods, a representation of a policy is explicitly built and kept

in memory during learning. The optimal policy is then computed by updating the

policy directly. These algorithms support high dimensional and continuous action

spaces and are also able to learn stochastic policies.

In value-based methods, no policy is defined. Instead, only a value function is

stored and learned. The policy is used indirectly by picking the action with the best

value. Value-based methods can be further categorized to on-policy and off-policy,

depending on how the Q-Value is calculated.

There are also algorithms that combine policy-based and value-based methods, such

as Actor-Critic which has both a value function and a policy function.

2.1.7.3 On-policy vs Off-policy Algorithms

There are two phases of an RL algorithm. The learning phase, which refers to the

process of training the algorithm and the inference phase in which a trained algorithm

is used to make a prediction. The distinction between on-policy and off-policy only

affects the learning phase.

An off-policy algorithm has two different policies, one for each of the two phases

(behavioral policy and optimal policy). The behavioral policy is used to select actions,

while the latter is the policy which the agent tries to estimate (e.g Q-Learning,

DQN and its variants).

On-Policy algorithms evaluate and improve the same policy, which is being used

to select actions (e.g SARSA).

2.1.7.4 Exploration vs Exploitation

When performing the learning process, agents can have either of the following behaviors:

• Exploration - The agents chooses a random action (sub-optimal). This is useful

to explore the environment and gain experience by visiting unexplored states.
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• Exploitation - The agent chooses the greediest action, the best action it can

take according to its current experience level.

As already mentioned, during the training phase, the agent tries to estimate the

optimal value (or policy) function. To maximize the cumulative discounted reward,

the agent theoretically needs to always exploit in order to reach the maximum sum of

rewards. However, at the beginning, the agent has a very poor experience level. By

exploiting very early in the learning process, the agent reaches a sub-optimal behavior,

since it never had the opportunity to visit other unexplored states of the problem.

This challenge is known as the exploration-exploitation trade-off.

To overcome this challenge, researchers introduced the epsilon (ε) parameter. This

parameter has a range of [0, 1] and it denotes the probability of the agent exploring

(performing a random action). There are known policies, which use this parameter

with various approaches, with a common purpose of mitigating this problem:

• Greedy-Epsilon Policy - The agent exploits (1 − e) · 100% of the time, and

explores e · 100% of the time (assuming the randomness follows a uniform

distribution between time-steps).

• Linear-Decaying Greedy-Epsilon Policy - This policy is similar to the

greedy-epsilon policy, but the epsilon parameter slowly decays from a start

value to an end value over k steps.

• Exponential-Decaying Greedy-Epsilon Policy - This policy is similar to the

linear-decaying greedy-epsilon policy, but the decay is exponential and controlled

by a decay factor.

• Stretched Exponential-Decaying Greedy-Epsilon Policy - This policy is

similar to the exponential-decaying greedy-epsilon policy, but there is a larger

opportunity for exploration at the initial part of the training and more room for

exploitation towards the end of the training session. This is done by narrowing

the transition between exploration and exploitation.
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Figure 2.4: Plot showing how the ε-parameter is affected (decayed) by different epsilon-
greedy policies with a starting value of 1 and a terminal value of 0.1 over 1000 steps.

• Softmax Policy - The agent mainly explores, but instead of sampling the actions

from a uniform distribution, it samples from a custom distribution biased for

more preferable actions. However, this policy is more complicated and is out of

the scope of this thesis.

Decaying greedy-epsilon policies are practically useful, since they offer the oppor-

tunity for exploration at the initial part of the training process (in order to increase

the experience level of the agent), so it can later reach the optimal behavior by

mostly exploiting. Figure (2.4) shows how the epsilon parameter is affected over

time for each mentioned policy.

2.1.7.5 Temporal Difference Learning

Temporal Difference (TD) learning is a popular class of model-free algorithms that

estimates the policy by gradually updating the estimate until it converges. Unlike a

dynamic programming approach, TD algorithms are able to learn directly from raw

experiences without the knowledge of the environment’s model. TD algorithms do not
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estimate the Q-value from scratch at every time-step. They instead follow a general

update rule to gradually update the Q-function which has the following structure:

Estimatenew ← Estimateold + StepSize (Estimatetarget − Estimateold)︸ ︷︷ ︸
error

(2.13)

The error is defined as the deviation between the target and the actual value and is

continuously reduced by taking small steps towards the target estimate. The StepSize

however, which will be later referred to as the learning rate, is a hyperparameter that

controls the amplification of the response to error estimates. In Equation (2.13) for

example, a larger StepSize would push the estimate closer to the target. Estimating the

correct learning rate can be challenging. A value too small may result in a long training

process, while a value too large can cause instability issues. It is often recommended

to decay the learning rate as time passes, since large correction steps are required at

the beginning, with smaller fine-tuning steps needed towards the end.

2.1.7.6 Introduction to Q-Learning

Q-Learning [1] is a TD off-policy algorithm, which is used to find the optimal policy

using a Q function. Essentially, it is the process of iteratively updating Q-Values for

each state-action pair, using the Bellman Equation until the q-function eventually

converges to the optimal Q-value function Q?. It is considered off-policy, since the

approximation of the optimal Q-value does not depend on the current policy.

This iterative update method uses a Q-table, a large table of states and actions in

which Q-values for each state-action pair are stored. All values are firstly initialized

to zero, though upon playing, the agent continuously observes the reward and state

transition and estimates the updated Q-value. The TD update step is the following:

Q : S × A→ R

Q (st, at)← Q (st, at) + α
(
rt+1 + γmax

a
Q (st+1, a)−Q (st, at)

)
(2.14)
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Q-learning is further analyzed in Algorithm (1).
Algorithm 1: Q-Learning (TD, off-policy)
Data:
α ∈ (0, 1]→ learning rate (intensity of value updates)
ε ∈ (0, 1]→ greediness (probability of random action)
γ ∈ (0, 1]→ discount factor (importance of future rewards)

1 Q (s, a) = 0,∀s ∈ S,∀a ∈ A // initialize Q-Table
2

3 foreach episode do
4 st ← s0 // initialize state
5 foreach step of episode do
6 at ← π (st) // select action a ∈ A according to current policy

(e.g epsilon-greedy policy)
7

8 Apply action at, observe reward rt+1 and next state st+1
9 Q (st, at)← Q (st, at) + α (rt+1 + γmaxaQ (st+1, a)−Q (st, at))

10 st ← st+1 // next state is now the current state
11

12 end foreach
13 end foreach

2.1.7.7 Function Approximation

So far, Q-Learning estimates the values in a tabular form, gradually updating each state-

action pair in the Q-table. In a way, we memorize every single combination of states and

actions in our environment. This is acceptable for cases where our environment only

consists of a few states and actions. However, as already mentioned in Section (2.1.4)

on most occasions, the state space is concerningly large and complex. This is a well-

known challenge in reinforcement learning, referred to as curse of dimensionality and

indicates the exponential growth of state complexity over the number of dimensions.

In fact, real-world problems naturally also contain continuous state spaces, which

require massive amounts of memory and time to “support” the Q-table, thus rendering

the tabular approach incredibly inefficient.

To overcome this challenge, researchers came up with a mathematical technique,

known as Value Function Approximation, which aims to generalize the estimation of

the value at states that have similar features. Although “generalizing” usually means

some loss of information, it is surprisingly effective and far more efficient than any
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tabular method. There are a variety of function approximation methods used, both

linear (e.g polynomials) and non-linear, such as neural networks (NNs).

2.1.8 The Deep Reinforcement Learning Family

As already mentioned, reinforcement learning algorithms, such as Q-learning, rely on

tabular methods to store and update the Q-values. This is satisfactory in problems

where the state space of the environment is relatively small, but fails miserably as

the environment becomes more and more complicated. This inefficiency is caused

by the fact that tabular methods essentially keep duplicate information about the

environment, in the sense that they cannot correlate similar states and generalize

past experiences. Humans and other animals, on the other hand, overcome this

problem by combining incredibly optimized reinforcement learning along with state-

of-the-art image processing systems.

Thus, a more efficient representation of the environment from high-dimensional

sensory inputs is required. Early solutions proposed the use of linear function

approximators to generalize the available information (as mentioned in Section 2.1.7.7),

but their implementation requires careful study of each specific problem. As it

turns out, non-linear function approximators and especially neural networks generally

offer far greater feature generalization, which leads us to investigate the subfield

of Deep Learning.

2.1.8.1 Deep Learning Overview, Neural Networks and Concepts

Although deep learning’s basic concepts are traced back to the early 1960s, their impact

wasn’t evident enough until the early 2010s where large-scale industrial applications of

deep learning began to formulate. This delay occured for a few reasons. As we will later

find out, deep learning techniques require huge amounts of data to process. By observing

the timeline of the digital revolution, previously there just wasn’t enough available data

to utilize. In addition, processing this data proved to be incredibly time-consuming

and simply unfeasible, considering the computational power at the time. Advances in

hardware in the following years had driven renewed interest in deep learning, especially
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after NVIDIA’s breakthrough in graphics processing units (GPUs) in 2009, which

enabled training of deep-learning systems and saw increased speeds of 100 times due to

their ability for fast matrix/vector computations required for machine and deep learning.

The deep learning field is considered as the succession of artificial neural networks

(ANNs), which were inspired by neuroscientist researchers. An artificial neuron is the

fundamental block of deep learning, which simulates the neurons of our biological brain.

Each articifial neuron has several inputs, along with a bias input that functions as a

weighted sum. These inputs are then passed through an activation function and thus

determine the output of the neuron. By arranging a large number of these neurons

in a chain structure, we are able to construct a neural network. A neural network

with a single artificial neuron is called perceptron.

The neural network is used to approximate non-linear functions. The network’s

performance is dependent on the weight parameters used, which is an iterative process

of continuous updates that we refer to as learning. The neural network consists

of multiple layers, namely, groups of neurons that exist at the same level. The

connection between two consecutive layers can vary. Four of the most popular layer

connection types are explained below.

• Fully Connected Layer - Fully connected layers connect every neuron from

a layer to every neuron of the next layer. Since the amount of connections are

generally large, they can be computationally expensive. They are mainly used in

CNN’s for image classification in computer vision or machine learning.

• Convolutional Layer - Convolution layers are the basic ingredients of any CNN

or FCN. It uses a filter or kernel to scan an image and perform convolutions, a

linear operation which multiplies (dot product) a set of weights (filter) with the

input. The filter is intentionally smaller than the input in order to be multiplied

by the input array multiple times at different points on the input. This is generally

useful to detect features in images. It should be noted that the output layer is

smaller than the input layer, since we are essentially downsampling information.
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(a) Fully Connected Layer (b) Convolution Layer (c) Deconvolution Layer (d) Recurrent Layer

Figure 2.5: Popular types of neural network layer connection

• Deconvolutional Layer - Deconvolution layers are the opposite of convolutional

layers. It is mainly used to upsample data to a higher resolution. It can also be

found in a neural network next to proceeding convolutional layers, to restore the

information to match the input size.

• Recurrent Layer - The main differentiator of recurrent layers is their ability to

support neuron looping, a feature that enables each neuron to set as an input its

own output. This essentially provides memory, which is especially useful in cases

involving sequential data, such as natural language and time series.

Figure (2.5) shows an overview of the mentioned types of layer connections.

Multiple consecutive layers can be connected with different combinations, eventually

forming an architecture. There are many known architectures, such as multi-layer

perceptrons (MLPs), stacked autoencoders (SAEs), convonutional neural networks

(CNNs), deep belief networks (DBNs), recurrent neural networks (RNNs) and generative

adversarial networks (GANs), each of which is optimized for a specific set of tasks.

Before proceeding to the deep reinforcement learning subfield, some deep neural

network concepts require explanation.

• Feed Forward - Feed Forward is a neural network type in which information

only travels forward, from the input nodes (x), all the way to the output nodes.

This network can approximate a function: Ŷ = f (x, θ).
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• Activation Function - In order to approximate the non-linear function, an

activation function is used in the forward propagation phase. Activation functions

can be either linear or non-linear and are used to control the neuron’s outputs.

Sigmoind, TanH and Rectified Linear Unit (ReLU) are three of the most widely

used activation functions.

• Loss - Loss is a metric which evaluates a model’s prediction by comparing the

estimated value Ŷ with the target value Y . There is a variety of loss functions

available, each optimized for a specific task. The most popular loss function is

mean squared error, which calculates the squared distance of the target and the

predicted value.

MSE
(
Ŷ , Y

)
= 1
N

N∑
i=1

(yi − ŷi)2 (2.15)

• Back-Propagation - After we calculate the loss, we need to carefully “correct”

our network weights in order to eventually minimize it. Back-propagating solves

the first part of the problem. Assuming a neuron has two inputs x, y and an

output z, we can define it as z = f (x, y, θ) and its local derivatives (determined

during the forward pass) are ∂z
∂x
, ∂z
∂y
. The local gradient of the loss is estimated

during the back-propagation phase, by multiplying the derivatives with the local

gradient ∂loss
∂θ

.

• Update - After successfully estimating the gradients, the second step is to

update all the parameters. The intensity of correction depends on how large

is the deviation of the predicted value to the target value. This estimation is

performed by an optimizer.

• Optimizer - Optimizers are algorithms used to minimize an error function. They

focus on helping change the weights or learning rate of a neural network. Some

popular optimization algorithms include Gradient Descend, Momentum, Adam,

AdaGrad, RMSProp, etc.
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• Regularization - Not all the information that enters a neural network is reliable.

Some input data does not really represent the true state of an environment,

causing the model to overfit, considering it’s trying hard to construct a pattern.

This challenge can be mitigated by the regularization technique, which decreases

the importance (weight) of “problematic” data. A small sacrifice to flexibility is

made to counter the possibility of overfitting.

2.1.8.2 DQN Algorithm

Deep learning has shown promise in extraction of high-dimensional features from

raw sensory data, such as images, audio and video. In this case, different types

of neural network architectures are used including convolutional networks, fully

connected networks and recurrent neural networks. Therefore, incorporating deep

learning techniques in reinforcement learning problems is a very intriguing approach

in order to manage large state spaces.

This is exactly what Google’s DeepMind research team managed to accomplish in

2013, where they achieved human-equivalent or even superior playing performance on a

variety of Atari 2600 games by only using visual pixel information [2, 3]. The Atari games

were part of the Arcade Learning Environment (ALE) platform also launched in 2013

aiming to speed up development of AI agents for this specific type of environments. DQN

is now considered a successful expansion of Q-learning. Multiple variants of DQN have

also emerged, such as Double DQN (DDQN) [4], Dueling DQN [5] and Prioritized DQN

[6]. Each of these variants have slighlty different implementation methods, focusing on

optimizing some aspects of the original version, but are out of this scope of this thesis.

During the training of our model, the aim is to construct a robust and generalized

agent that does not depend on a specific environment. Though a challenge arises, if

the network learned only from consecutive samples of experiences as they occured

sequentially in the environment, the samples would be highly correlated and therefore

lead to inefficient training. To surpass this issue, the team used a known technique

called experience replay. During training, we define the agent’s experience, that is,
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a tuple containing the current state st, the action taken at, the reward received by

taking this state-action pair rt+1 and next state it reaches st+1:

et = (st, at, rt+1, st+1)

This experience is then stored in a buffer called replay memory, which holds a

particular amount of the agent’s experiences. New experiences initially fill up the

replay memory, then they overwrite older, poorer experiences. The network is now

trained by randomly sampling from this replay memory, thus avoiding correlated

sequential samples.

Deep Q-Learning with Experience Replay is shown in Algorithm 2

At the beginning, the network is initialized with random weights to break symmetry

between different units. If two units with the same activation function and the same

inputs have also the same initial parameters, it would cause the model to update

both units equally. For every episode and time-steps in each episode respectively, an

action needs to be selected,according to our current policy. Epsilon-greedy policies are

typically used (see Section 2.1.7.4 for more information), which determine when to

explore or exploit. After the action is selected, this action is applied to the environment.

As a quick refresher, this is a model-free algorithm, meaning our actions are taking

place in real time, without the ability to revert to a previous state. To complete the

experience tuple, the reward and the next state are extracted from the environment.

After a random batch of experiences is sampled from the replay memory, we need to

perform an essential pre-processing for the states to reduce the network’s input size. In

the original DQN paper for example, states represent entire RGB image frames of the

ATARI game. Each frame consists of 160 horizontal frames, 210 vertical frames and a

128-color palette, thus a single state would contain over 100.000 inputs for the neural

network. Instead, the RGB frame is converted into a grayscale version, downsampled

to 110 × 84 pixels and cropped to a 84 × 84 region that captures the playing area,

reducing the total number of inputs to 7056 (14 times smaller). An additional part

of the pre-processing stage, is to keep the m most recent frames and stack them to
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produce the final input of the neural network. Having multiple frames provides to

the network useful information about the flow of time.

At this point, the training phase has begun. The preprocessed state is passed

as input to the policy network, for the purpose of approximating the optimal policy

(finding the optimal Q-function). The state data is forward- propagated through the

network itself and the model then outputs an estimation of our Q-value for every

available action. To calculate the loss, the model compares this estimation to a

target Q-value for the same action.

loss = Q? (s, a)−Q (s, a)

= E
[
Rt+1 + γmax

a′
Q? (s′, a′)

]
︸ ︷︷ ︸

optimal Q-value

−E
[ ∞∑
i=1

γi−1Rt+i

]
︸ ︷︷ ︸
estimated Q-value

(2.16)

To calculate the optimal value, we need to compute the following term:

max
a′

Q? (s′, a′)

The Q-value of the next state s′ along with the next action a′ are unknown, which is

why we need to perform a second pass to the neural network with the next state as

input (this is why an experience et also holds the next state and action pair). With

the second pass, we obtain the maximum Q-value among the next actions, just to

compute the loss of our original state-action pair.

However, this is where another potential danger can emerge. The second pass is

performed using the same network as the first pass, thus the same network weights.

At each iteration the weights of the network are updated to eventually minimize loss,

causing our estimated Q-values to approach closer to the target values, but then the

target Q-values are also updated and pushed further away. This dog-chasing-its-own-

tail problem creates instability issues for our training. The team introduced a second

network called the target network, which is a clone of the policy network. Its weights

are frozen with the original policy network’s weights and are only being updated every

C amount of steps. The second pass is now performed on the target network, greatly

contributing to a converging training session. The final step of the pipeline is to update

the weights using a gradient descent in order to minimize the loss.
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Algorithm 2: Deep Q-Learning with Experience Replay
1 Initialize replay memory D with capacity N
2 Initialize the policy network with random weights θ
3 Initialize the target network with weights θ− = θ
4 foreach episode do
5 Initialize the starting state
6 Initialize the preprocessed history sequence of states
7 foreach step of episode do
8 Select action at according to policy (explore or exploit)
9 Apply action at in the environment in current state st

10 Observe reward rt+1 and next state st+1
11 Perform pre-processing of state and next state
12 Store experience tuple (st, at, rt+1, st+1) in replay memory
13 Sample random mini-batch (st, at, rt+1, st+1) from replay memory
14 Pass batch of preprocessed states to policy network
15 Calculate loss between Q-values and target Q-values
16 Update network weights θ using gradient descent
17 Every C steps, target network weights catch up to the policy network
18 end foreach
19 end foreach

The ALE environment is capable of rendering images at high frame rates. If

the reinforcement-learning-defined time-step lasted only as long as a frame, it would

cause the agent to take actions very frequently, which is redundant. DeepMind’s

solution was to use frame skipping. By skipping frames, the algorithm only needs to

perform these calculations every m frames, which reduces computational costs and

helps the agent collect more experience.

One last optimization recommended is clipping rewards. As already mentioned

in Subsection (2.1.8.1), regularization is a critical part of a neural network. Having

unbounded rewards popes a similar threat, since it would produce inconsistent loss

values and lead to a divergent training. A typical reward range would be [−1,+1],

where -1 denotes the worst possible reward, while +1 denotes a perfect situation.

2.2 Tools and Frameworks

This section analyzes all the frameworks and tools that were required throughout this

thesis.
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2.2.1 Robot Operating System (ROS)

The Robot Operating System (ROS) platform is a flexible collection of libraries,

tools and conventions aiming to standardize the development of robotic applications.

Right from the beginning, it was built with a modular ecosystem in mind, thanks

to a unified communication system and its open source community that encourages

collaborative work. ROS is based on a distributed architecture, in which a master

node can communicate with secondary nodes and exchange real-time information

about sensors and actuators.

ROS provides out-of-the-box several useful facilities, which can be used to speedup

the robotic development. Its communication system involves a publishing/subscribing

approach transferring asynchronous data, which enables for recording and playback

of messages. The message-passing design pattern can offer automation dynamics,

reduce the development effort and can improve the debugging experience. Although

the messages are mostly asynchronous, there is support for synchronous service calls,

which enhances the real-time interaction of its nodes. Additionally, there is a global

parameter system which allows for parameterized configuration setup between tasks.

Lastly, the ROS team built several specialized high-level robot-specific features in

order to offload some of the effort by developers:

• Standard Robot Messages (template messages for communication)

• Geometry libraries, such as TF (links, joints, frames)

• Robot description language, such as Unified Robot Description Format - URDF

which is an XML document containing important properties of each model

(dimensions, sizes, location, sensors, visual appearance)

• Diagnostic tools, such as Rviz for visualization and debugging, as well as RQT

for plotting.

The middleware, that is, ROS’s internal core, achieves communication through

the following components:
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• Node - A node is an executable process within ROS. It can represent sensors

and actuators, or control different part of the robot’s decision-making. Nodes

can communicate with each other through messages by publishing or subscribing

to topics. Due to ROS’s modular nature, each node should have a very specific

purpose to improve reusability.

• Message - A message is a container of information transferred between nodes.

It is tied to a specific data type and holds all the important data, such as sensor

measurements of the robot. Developers can either utilize existing standard robot

messages or create custom messages with simple or complex structure (messages

containing other messages).

• Topic - A topic is the place where messages are being published. Nodes can

publish a message to a topic to post information, or can otherwise subscribe to a

topic to become informed about its messages. This system is especially flexible,

allowing multiple nodes to be subscribed to multiple topics concurrently (by

running on different threads).

• Service - A service is an additional communication method. It is synchronous

and bidirectional, since it allows a node to send a request and receive a response.

While topics and messages are used for continuous data streams, services should

be used for remote procedure calls that terminate quickly, ideal for specific single

tasks.

2.2.2 Gazebo Simulator

Robot simulation is an essential tool for the development of robotic applications. It

is used to represent a physical robot, but in a virtual world, without depending on

the actual machine. Gazebo is a well-known, fully-ROS-integrated simulator, capable

of high-accuracy representation of robots in complex environments. Gazebo supports

multiple high-performance physics engines, including ODE, Bullet, Simbody and DART,

as well as realistic environments using the OGRE graphics rendering engine. Since

it has an open source community, users can choose between a variety of predefined
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Figure 2.6: A Gazebo world.

robot models or design their own custom models using SDF. There are several types of

sensors available, including laser rangefinders, cameras, kinect, contact and force-torque

sensors. Noise models can be optionally added on each sensor, further simulating real

world scenarios. A Gazebo world can be seen in Figure (2.6).

2.2.3 OpenAI Gym

OpenAI is a research lab focusing on Artificial Intelligence, founded by Elon Musk in

2015. As a competitor to Google’s DeepMind, OpenAI’s research is primarily focused

on Reinforcement Learning. In late 2016, they released Gym, a reinforcement learning

toolkit with a modular structure, which enables the development and comparison of

RL algorithms in a variety of environments. The provided environments implement a

similar interface despite spanning from Atari games to classic control and 2D/3D worlds.

2.2.4 Tensorflow and Keras

Tensorflow is an open source platform that specializes in machine learning development.

It provides a flexible ecosystem of tools and libraries, enabling researchers to easily

build and train machine learning models.

Keras is a python-oriented deep learning API. It is powered by Tensoflow, meaning

it still provides its powerful features, but focuses on delivering fast and easy access
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to deep learning experimentation. Keras is designed to be simple and efficient, by

providing essential abstractions and building blocks for machine learning projects

to offload significant development effort.

2.3 Sensors

Every robot needs sensors in order to have situational awareness. Every sensor

category specializes in a specific task. Camera and distance sensors provide important

information about the robot’s surrounding, while localization and motion detection

can be achieved through satellite systems and internal measuring units respectively.

2.3.1 Optical Camera

What began as a live feed for remote control, has now evolved into an essential machine

vision instrument, capable of applications, such as object recognition, classification,

target tracking and depth estimation. An optical camera is a sealed box with a

small hole (aperture) which allows light to pass through and capture an image on

a light-sensitive digital sensor.

Cameras can be placed on the robot’s fixed frame or can be mounted on a gimbal,

a support mechanism, which can either provide additional stabilization (passive

mechanical gimabls) or extend the object’s rotational capabilities to provide more

degrees of freedom (electronic motorized gimbals).

2.3.2 Distance Measurement Sensor

Another very popular category of sensors used in robotic application is laser sensors.

They essentially emit pulses of light and can estimate a target’s distance depending on

the reflected beam off the surface. While single point laser rangefinders are relatively

simple, to create perception on higher dimensional areas, the Light Detection and

Ranging (LIDAR) technique is used. LIDAR emits laser pulses that move outwards in

various directions reaching objects and then reflecting the light back to the receiver. This

eventually creates a two- or even three-dimensional map of estimated ranges providing a

richer source of information. LIDAR sensors have large measurement ranges, impressive
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accuracy and extremely fast response times, since waves travel at the speed of light,

making it incredibly useful in time-sensitive applications. It is worth noting however,

LIDAR sensors are extremely expensive and are mainly used in high-end applications.

Sound Navigation and Ranging (SONAR) or ultrasonic technology is similar to

LIDAR, but emits sound waves in order to estimate distances. It is a cost-effective

solution for detecting and identifying objects and excels in marine applications, since

sound waves are able to easily penetrate seawater. However, some accuracy and

measurement range are definitely sacrificed.

2.3.3 Inertial Measurement Unit (IMU)

An Interial Measurement Unit (IMU) device is a complete package used in robotic

applications that consists of accelerometers, gyroscopes and potentially magnetometers.

Accelerometers are sensors responsible for measuring inertial acceleration, and change

in velocity over time. Gyroscopes are devices that sense angular velocity, that is,

the change in rotational angle over time. Magnetometers are types of sensors which

can measure the strength and direction of a magnetic field. An IMU can efficiently

combine the information of all three sensors and provide accurate motion sensing

in virtually every robot’s axis.

2.3.4 Global Navigation Satellite System (GNSS)

The Global Navigation Satellite System (GNSS) is a group of artificial satellites used

for proving position and timing data. GNSS receivers are widely used in robotic

applications, mainly for localization purposes, that is, the estimation of the absolute

robot’s position in an environment.
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A fter providing all the necessary background information, we can now

state the problems which this thesis will attempt to resolve, comparing our

approach to other widely implemented methods.

3.1 Problem Statement

Let’s assume a three-dimensional environment filled by a number of randomly generated

obstacles and a predefined number of aruco markers, which are representing our targets.

More information about aruco markers can be found in Appendix A. Then, a UAV

is spawned in a random location inside the environment. The goal for the drone is

to detect and approach every hidden marker in the environment without crashing

into any obstacle. No rules have been given to the agent about its objective or its

environment whatsoever. Therefore, at the beginning, random actions are selected.

After each action, the environment returns to the agent an evaluation of its selection,

thus highlighting if actions were profitable or setbacks to the mission. After many

34
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experiments, possibly leading to many collisions and dead ends in the process, the

agent gradually begins to form a pattern over its actions, resulting in its improvement

over time. Eventually, the agent learns how to safely navigate through the environment,

successfully avoiding obstacles and reaching its targets. The output of this project

can be a list containing the positions of every detected ArUco tag.

The drone used has in its possession an optical camera, a 2D LIDAR rangefinder for

horizontal situational awareness, as well as two sonar sensors for vertical measurements.

3.2 Related Work

Several approaches have been used for UAV navigation tasks. The most common

and well-known technique is Simultaneous Localization and Mapping (SLAM). This

approach uses the UAV’s onboard sensors to construct a real-time map (map-building)

of the environment, while simultaneously estimating its relative position (localization).

Multiple variations of SLAM have been investigated in research studies, including

camera and laser scanner based SLAM [7, 8], ultrasonic based SLAM [9], landmark-

based stereo-vision SLAM [10, 11] and even vision-only SLAM in GNSS-denied regions

[12, 13]. This information can be later used in conjunction with several path-planning

algorithms to determine the best route of the UAV to reach a specific goal.

While this is a complete and proven procedure, challenges arise when the en-

vironment becomes too complex. Firstly, the mathematical calculations required

increase significantly which lowers the onboard real-time capability. Additionally, these

algorithms only work when the environment is fully explored, namely, every decision

of action is based on known pre-calculated signals.

Using “mapless” approaches, such as reinforcement learning can be very effective,

where an exact model of the environment may not be available. These methods are

offline, do not rely on GNSS systems to operate. Some studies [14, 15] implemented

reinforcement learning to navigate UAVs in unknown environments. However, the curse

of dimensionality problem mentioned in (2.1.7.7) becomes an apparent issue, when

the environment becomes very large and complex. Instead, combining deep learning

techniques and reinforcement learning has been repeatedly proven successful [16, 17, 18].
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B ased on previously presented concepts and our problem’s statement, we can

now introduce our autonomous UAV navigation approach. Initially, a detailed

description of both our drone’s models will be provided, as well as an overview

of the creation of dynamically generated environments. Next, from a reinforcement

learning perspective, this chapter will thoroughly examine our approach of integrating

deep learning techniques into an MDP, by explaining the algorithm implementation,

36
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observation extraction, states and actions definition and the concept behind our

reward system. Finally, an overview will be presented regarding the neural network’s

composition, hyperparameter selection and several performance optimizations.

4.1 UAV Setup

In this section we introduce the basic principles of a drone’s coordinate system and

its sensor components.

4.1.1 Coordinate Systems and Transformations

Robotic models can be very complicated, consisting of a series of mechanical connections,

such as joints and links. A joint provides relative motion between two links of a robot,

unlocking a certain degree-of-freedom (DOF). Figure (4.1) depicts a robot’s composition

of two (2) joints and three (3) links. However, a dilemma arises when two sensors

are placed on two different, non-parallel links regarding the way in which the data

is mathematically represented. Obviously, a unified coordinate system is required in

order to provide consistent representations of the data.

ROS’s answer to this confusion, inspired by John Craig’s Introduction to Robotics

book [19], is the use of frames and transformations. Every sensor can provide

measurements on its own frame, namely, its own local coordinate system (consisting

of a set of orthogonal axes that can define positions and orientations relative to the

attached object). A transformation, then, is a mathematical operation describing

the offset (translational and rotational) between the two frames. Any frame can

be described with respect to another through the use of transformations. There is

also a global frame, typically referred to as the “world” frame, which represents the

environment around the robot. Figure (4.2) shows a drone with its frames along with

their correlations. The robot’s frames can be generally represented in an expanding

structure called tf tree. Figure (4.3) shows a TF tree containing the structuralized

relationship of the drone’s frames.
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Figure 4.1: Very Simple representation of a robot containing links and joints.

Figure 4.2: Each drone component has its own frame. Frames can be translated to each
other using transformations, as appeared in RViZ visualization tool.

4.1.2 Basic Aircraft Principles

Drones and other aerial vehicles all obey to a fundamental aircraft principal rotational

system consisting of three (3) axes. This configuration is derived from the right-hand

rule, which serves as a common mnemonic to remember orientation of axes in a 3D

space. Each axis is briefly explained below and graphically illustrated in Figure (4.4)

• Yaw Axis (Normal) - An axis drawn from top to bottom, allowing nose

left/right rotation.
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Figure 4.3: A TF Tree of the hector quadrotor drone consisting of multiple correlated
frames. Both sonar and laser sensors have their own frames relative to base_link, a frame
fixed to the robot’s rigidbody. base_footprint indicates the projection of the robot’s base_link
to the ground. world is the global frame.

• Pitch Axis (Lateral) - An axis drawn parallel to an aircraft’s wings, allowing

nose up/down rotation.

• Roll Axis (Longitudinal) - An axis running through the aircraft’s body from

nose to tail, allowing nose clockwise/anti-clockwise rotation.

4.1.3 Sensor Modules

As already mentioned, every ROS package is based on manufactured counterparts,

allowing projects to be physically ported to the real world. In this subsection we

present the exact sensor modules used in this thesis.
1modified version of https://en.wikipedia.org/wiki/Aircraft_principal_axes
2modified version of https://i.stack.imgur.com/0hxY1.png

https://en.wikipedia.org/wiki/Aircraft_principal_axes
https://i.stack.imgur.com/0hxY1.png
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(a) Right Hand Rule 1

Yaw Axis
Roll Axis

Pitch Axis

(b) An aircraft’s three rotational axes (roll, pitch, yaw) 2

Figure 4.4: Basic aircraft principles

4.1.3.1 Optical Camera Module and 3D Gimbal

The camera module used is a pinhole generic camera sensor with configurable speci-

fications. The camera’s resolution was set to 1280× 768 that captures RGB-format

images, which mostly represents today’s small-scale camera sensors. The image sensor

reports its image planes to the camera_optical_frame which is translated into real

coordinates through the camera_frame.

The camera unit was mounted on a custom gimbal mechanism, based on the

dji_m100_ros package [20]. The gimbal is motorized and composed of three gimbal

joints (roll, pitch, yaw), allowing for 3-DOF rotations. According to the study, each

gimbal joint has a separate frame, connected and translated using the necessary

transformations. Eventually, with a gimbal system, the optical camera becomes

orientationally indipendent of its host, allowing for flexible object detection.
Camera Module Specifications

• Camera Resolution : 1280× 768

• Color Format : RGB

• Frame Rate : 30 frames per second

4.1.3.2 Ultrasonic Module

Sonar sensors were used in this project for vertical obstacle avoidance (floors and

ceilings). Sonars in ROS and Gazebo can be simulated with the gazebo_ros_range
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Figure 4.5: A sonar (ultrasonic) sensor is used to provide vertical obstacle avoidance. A
cone-shaped structure represents the sonar’s detection area as shown in RViZ.

plugin. Using sonar sensors for vertical measurements is convenient, thanks to the

cone-shaped detection area, which offers increased field of view, as shown in Figure (4.5).

Naturally, each sonar has its own frame, mounted directly above or below the UAV’s

base_link fixed frame. The plugin was configured using the following specifications,

which typically represents real-world usage:
Sonar Module Specifications

• Update Rate : 30 measurement updates per second

• Minimum Range : 0.03 meters

• Maximum Range : 5 meters

• Field Of View : 40π/180 degrees

• Ray Count : 3

4.1.3.3 2D Laser Rangefinder Module

To achieve horizontal obstacle avoidance, a two-dimensional LIDAR sensor was used

(Figure 4.6). Specifically, we utilized the Hokuyo UTM-30LX-EW, which is one of the

most popular LIDAR rangefinders for drone applications. The laser rangefinder’s frame

is hokuyo_frame. Considering the required transformations, surrounding distances can
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Figure 4.6: A LIDAR sensor is used to provide horizontal obstacle avoidance in a two-
dimensional plane.

(a) Gazebo world with a drone and two obstacles (b) The distances measured can be represented in a local
point cloud map using RViZ.

Figure 4.7: World with drone and two obstacles shown in both Gazebo and RViZ.

be easily represented in a local point cloud map of the area as shown in Figures (4.7a)

and (4.7b). Our configured LIDAR sensor is presented on the following specsheet.
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LIDAR Module Specifications

• Update Rate : 30 measurement updates per second

• Operating Distance Range : 0.3 meters to 30.0 meters

• Operating Angle Range : [−135,+135] degrees, temporarily increased
range to [−180,+180] during training for increased data

• Ray Count (Resolution) : 1081 points, temporarily decreased to 180
points during training for faster processing

4.1.4 UAV Model Overview

Two UAV models are presented. The first drone will be solely used for training purposes,

while the second drone can provide the final testing results after the training is complete.

4.1.4.1 Hector Quadrotor as Training Drone

hector_quadrotor 1 is a category of general-purpose ROS packages related to modeling,

control and simulations of UAV quadcopter systems. For this thesis, a modified version

of the quadrotor_hokuyo_utm30lx was used. This UAV model consists of:

• 2D laser rangefinder (LIDAR)

• Top facing ultrasonic sensor

• Bottom facing ultrasonic sensor

• IMU

• GNSS receiver

Figure (4.8) shows the Hector Quadrotor in an empty environment from both

the world’s and the drone’s perspective. Subsequent sections will explain why the

training drone is “missing” a camera setup.

1https://github.com/tu-darmstadt-ros-pkg/hector_quadrotor

https://github.com/tu-darmstadt-ros-pkg/hector_quadrotor
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(a) Empty gazebo world with a hector quadrotor model (b) Empty gazebo world with a hector quadrotor model
from RViZ point of view.

Figure 4.8: Empty world with hector quadrotor model shown in both Gazebo and RViZ.

4.1.4.2 DJI Matrice 100 as Testing Drone

dji_m100_gazebo 2 is a ROS package for simulating the real Matrice 100 by DJI, a

quadcopter by DJI designed for developers. This UAV model consists of:

• 2D laser rangefinder (LIDAR)

• Top facing ultrasonic sensor

• Bottom facing ultrasonic sensor

• 3D gimbal

• Optical camera mounted on 3D gimbal

• Single-point laser rangefinder mounted on 3D gimbal

• IMU

• GNSS receiver

Figure (4.9) shows the DJI Matrice 100 drone model in an empty environment

from both the world’s and the drone’s perspective.
2https://github.com/dji-m100-ros/dji_m100_gazebo

https://github.com/dji-m100-ros/dji_m100_gazebo
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(a) Empty gazebo world with a dji matrice 100 model (b) Empty gazebo world with a dji matrice 100 model from
RViZ point of view.

Figure 4.9: Empty world with dji matrice 100 model shown in both Gazebo and RViZ.

4.2 Environment Setup

In this section, we explain the concept of our dynamically generated environment,

define the state and action space of our UAV and ensure compatibility with the OpenAI

Gym framework by following its guidelines and maintaining its internal structure.

4.2.1 World Generation

The training process of a deep reinforcement learning algorithm requires many iterations

in order to converge. To avoid model overfitting, we need a robust enough environment,

which offers a variety of situations for our agent to experience, without being overly

complicated and thus affecting training speed. Therefore, a highly-configurable custom

world generation system was created to comply with our requirements. As mentioned

in the problem statement, the environment consists of an indoor 3D space, containing

obstacles and ArUco markers.

Firstly, we define our 3D indoor space as a training_box, a (10× 10× 7.5)m3

semi-transparent hollow cube, in which all of our experiments will be conducted. An

image of this box is presented in Figure (4.10).

Regarding the obstacles, a set of eleven (11) obstacle models were created with
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Figure 4.10: Gazebo world containing the training_box, a 3D space in which the RL agent
will be trained.

Gazebo Model Name Model Category Size (meters) Color
obstacle_cube_small Cuboid 0.5× 0.5 Green

obstacle_cube_medium Cuboid 1× 1 Yellow
obstacle_cube_large Cuboid 2× 2 Red

obstacle_tall Cuboid 1× 5 Cyan
obstacle_wide Cuboid 3× 2 Purple

obstacle_cylinder_small Cylinder 0.5× 0.5 Navy Blue
obstacle_cylinder_medium Cylinder 1× 1 Yellow
obstacle_cylinder_large Cylinder 2× 2 Orange
obstacle_sphere_small Sphere 0.5× 0.5 Salmon

obstacle_sphere_medium Sphere 1× 1 Pink
obstacle_sphere_large Sphere 2× 2 Blue

Table 4.1: Specifications of the obstacle family

different shapes and sizes to approximate real world scenarios. The obstacle family spec-

ifications are presented in Table (4.1). A Gazebo snapshot is also shown in Figure (4.11).

Lastly, a set of twelve (12) ArUco markers were also included, containing three (3)

different IDs with four (4) sizes each. Table (4.2) presents the specs of the markers

and Figure (4.12) shows the created models in the Gazebo simulator.

With this world generation system, custom specific configurations of markers and

obstacles can be built with random or predefined poses (positions and orientations).

Each time the world is launched, a random set of obstacles and markers is sampled
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Figure 4.11: The obstacle family with different shapes and sizes for increased variety.

Gazebo Model
Name

ArUco
ID

Matrix Size
(Blocks)

ArUco Scale
(centimeters)

Aruco_Marker26_9cm 26 5× 5 9× 9
Aruco_Marker26_11cm 26 5× 5 11× 11
Aruco_Marker26_15cm 26 5× 5 15× 15
Aruco_Marker26_20cm 26 5× 5 20× 20
Aruco_Marker27_9cm 27 5× 5 9× 9
Aruco_Marker27_11cm 27 5× 5 11× 11
Aruco_Marker27_15cm 27 5× 5 15× 15
Aruco_Marker27_20cm 27 5× 5 20× 20
Aruco_Marker28_9cm 28 5× 5 9× 9
Aruco_Marker28_11cm 28 5× 5 11× 11
Aruco_Marker28_15cm 28 5× 5 15× 15
Aruco_Marker28_20cm 28 5× 5 20× 20

Table 4.2: Specifications of the ArUco marker family with 3 different IDs and 4 different
sizes

from the corresponding family pool and spawned inside the training environment.

Configurations can also be exported in JavaScript Object Notation (JSON) files

for future utilization. This high level of adjustability allows the creation of worlds

with ranging difficulties, defined by the number of markers and obstacles, as Figure

(4.13) demonstrates.

This system also supports reinforcement learning setups with multiple training

boxes and drone swarms for faster and parallel training, as shown in Figure 4.14.
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Figure 4.12: The ArUco Marker family with different IDs and sizes for increased variety.
Each column of markers contains a specific ID while each row contains a specific marker size.

(a) Dynamically generated world with twelve (12)
obstacles and one (1) marker

(b) Dynamically generated world with twenty-four (24)
obstacles and three (3) markers

Figure 4.13: Two dynamically generated gazebo worlds with different parameters

This feature was not used for our training at the present time, since the DQN

segment needed significantly more effort than anticipated, but it is definitely the

first action point of future work.

4.2.2 Compatibility for OpenAI Gym

During development, compatibility was maintained with the OpenAI Gym framework.

Gym environments require a specific code structure and strict definitions of state,
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Figure 4.14: A gazebo world with multiple sets of training boxes.

action and reward spaces. Additionally, two main operations have to be implemented.

• step - The step function runs one time-step in the environment and collects the

observation, action and reward of this specific time-step.

• reset - If the agent ever results in a fatal condition, the reset function is called

to reset the environment back to its initial state.

4.3 Deep Reinforcement Learning Pipeline

This section provides in-depth analysis for every aspect of our deep reinforcement

learning implementation. Initially, the sensor data extraction methods along with the

UAV’s action space and the designed reward system are explained. Eventually, focus

will be shifted towards the neural network, analyzing its structure and selection

of hyperparameters.

In Section (2.1.8.2) we introduced the DQN algorithm as an alternative promising

approach to other reinforcement learning methods using deep neural networks. It also

makes use of two powerful features, Experience replay and Target Networks to overcome

several instability problems. A diagram form of DQN can be shown in Figure (4.15).

4.3.1 States and Observations

Section (2.1.3) established the state space and action space as part of the definition

of a Markov Decision Process, denoting that each space can be either discrete or

continuous. The state space of our environment is continuous, since the information

we extract consists of decimal numbers. On every time-step (state), the agent observes
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Figure 4.15: Diagram representation of the DQN algorithm
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the environment and selects an action in order to receive a reward. An observation is a

collection of measurements made by the robot’s sensors, which describes a specific state.

Real-time sensor information can be transmitted using ROS messages and topics.

In our case, there are two types of observations required to solve our problem:

• Target Information - to find and approach the target

• Surroundings Information - to avoid collisions with obstacles and walls

(situational awareness).

4.3.1.1 Target Information

Target information can be achieved in two ways. Surely, we can use the optical camera,

scan the image plane for any ArUco markers, using the OpenCV detection algorithm.

This algorithm then estimates the marker’s pose, that is, position and rotation with

respect to the drone’s camera. Lastly, using transformations, we can obtain the relative

pose between the UAV and the marker.

Alternatively, and this is where things get interesting, we can skip the optical camera

and gimbal setup altogether and just obtain the marker’s known position and rotation

right from the simulator itself. One could argue that the latter method is “cheating”,

because in the real world we do not have access to the real marker pose information.

Strangely, it does not matter, since from a reinforcement learning perspective, we are

only interested in training our neural network. This greatly reduces processing time,

thus increasing training speed. It is important to note, however, that this method can

only be used during training. When the training process is complete, we can then

use the optical camera to estimate the marker’s position.

Another relevant matter to discuss, is that our mission is considered complete,

when the UAV successfully approaches every ArUco marker in the environment. By

“approaching”, we imply reaching a target point, located 2 meters (arbitrarily selected)

away and in front of the marker. This way, the final marker’s pose estimation would

be the most accurate.

The resulting array for our target information is:

T =
[
xdelta ydelta zdelta yawdelta yawglobal

]
(4.1)
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4.3.1.2 Surroundings Information

Both drones can achieve situational awareness by using a 2D LIDAR sensor and a

pair of vertical opposite-facing SONAR sensors.

Extracting SONAR data is relatively easy and minimal processing is required. The

LIDAR sensor on the other hand, produces 180 measurements each time and only six

(6) values are chosen to represent our observation array. Therefore, a dimensionality

reduction processing pipeline is required. Firstly, we split the 180 measurements into 6

zones (each zone is responsible for a 60◦ area). Then, each zone is represented by its

minimum value, resulting in 6 values. The “minimum” operation is chosen to consider

the worst possible case. The resulting array for our surroundings information is:

D =
[
L1 L2 L3 L4 L5 L6 S1 S2

]
(4.2)

where Li are the LIDAR measurements and Sj are the SONAR measurements..

The complete observation array is produced by combining the target information

(4.1) and the surroundings information (4.2) leading to a 13-dimensional state vector.

Figure (4.16) graphically represents this entire procedure, while Figure (4.17) shows a

snapshot of the training process, in which the UAV is trying to approach the target

point (blue dot), in order to optimally estimate the marker’s pose (2D white square).

The drone is also aware of its surroundings, by analyzing the SONAR data (two

opposite cones) and LIDAR data (red dots).

Terminal States

As the DQN diagram indicated in Figure (4.15), if a terminal state occurs, the

environment is reset and a new episode begins.

In our implementation, there are two conditions, which can cause a terminal state:

• Mission Fatal - if any distance measurement is less than 0.4 meters, we presume

a collision has occured:

Fatal = ∃Di < 0.4m,Di ∈ D (4.3)
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Figure 4.16: Diagram representation of the observation system
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Figure 4.17: Snapshot of a training session. The UAV’s goal is to reach the target point
(blue dot) in order to estimate the marker’s pose.

• Mission Complete - If the maximum distance of every dimension between

the drone and the target point is less or equal than 0.8 meters, we presume a

successful target point approach:

Complete = max (xrel, yrel, zrel) ≤ 0.8m (4.4)

A state is terminal, if the drone’s mission is either fatal or complete:

Terminal = Fatal ∨ Complete (4.5)

It should be noted that a cap of 5.000 maximum steps for each episode was

implemented in order to avoid endless episodes.
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Action number Action Title Action Description
0 increase pitch (positive pitch) moves forward
1 decrease pitch (negative pitch) moves backward
2 increase roll (positive roll) moves right
3 decrease roll (negative roll) moves left
4 increase throttle (positive throttle) moves higher
5 decrease throttle (negative throttle) moves lower
6 increase yaw (positive yaw) rotates clockwise
7 decrease yaw (negative yaw) rotates anti-clockwise

Table 4.3: Simple representation of all actions available

Axis Name Velocity increment Min Value Max Value Total Stages
pitch ±1m/s −2m/s 2m/s 4
roll ±1m/s −2m/s 2m/s 4

throttle ±0.75m/s −1.5m/s 1.5m/s 4
yaw ±π/2rad/s −πrad/s πrad/s 4

Table 4.4: Specifications of each axis’s incremental value and range

4.3.2 Actions

Actions define the behavior of a reinforcement learning agent. The action space

of this environment is naturally continuous, since the UAV is constantly moving

and acting in a 3D space. However, since DQN and other RL algorithms do not

usually support continuous action spaces, we classified our actions into eight (8)

discrete options, effectively controlling each vehicle axis’ velocity. The actions are

presented in Table (4.3).

In fact, a two-level velocity system was integrated. Each axis has a minimum and

a maximum velocity. Every action results in an increase/decrease in velocity of a

particular axis by a specific increment. There is a total of four (4) increment stages for

each axis. This allows the drone to delicately fine-tune its velocity when it’s near the

target for increased stability. Axes specifications are presented in Table (4.4). A more

advanced diagram is shown in Figure (4.18), explaining how the increments work.
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Figure 4.18: Diagram showing the different increment stages of each velocity axis.

4.3.3 Reward System

An effective reward system is crucial for training the agent and usually tricky to design.

Even after finding the reward function concept, the fine-tuning required is similar to an

optimization problem, which is solved by trial and error. Based on several guidelines

indicated in Section (2.1.5), the main requirements were to build simple and continuous

reward functions that offer dense rewards for the agent.

Many variations were investigated throughout our testing, including distance to

target, looking direction and more. Our last iteration involves two (2) reward functions,

which are analyzed below. It’s important to remember that rewards are clipped to

a range of [−1,+1] to avoid instabilities in our neural network.

• Wall Distance Reward - This function penalizes the agent for being close to

obstacles and walls. Although it is an exponential function, values are gradually
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Figure 4.19: Plot showing how reward is affected given the minimum distance from a
particular wall or obstacle. The reward becomes exponentially worse as the UAV comes closer
to an obstacle.

distributed throughout its range.

WDR =


0.1 for x > 2
−1.16x−0.35 + 1.01 for 0.4 ≤ x ≤ 2
−1 for x ≤ 0.4

 (4.6)

where:

x = min (D) (4.7)

and:

D =
[
L1 L2 L3 L4 L5 L6 S1 S2

]
(4.8)

The wall distance reward is clipped to a range of [−0.6, 0.1].

• Velocity Direction Reward - This rewards the agent for heading towards the

target, by subtracting the current goal distance from the previous goal distance

over two (2) consecutive time-steps.

V DR = 50 (ddelta,prev − ddelta,curr) (4.9)
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Figure 4.20: Plot showing the general concept of approaching a target by subtracting the
current distance from the previous distance.

where:

ddelta,prev =
√
x2
delta,prev + y2

delta,prev + z2
delta,prev (4.10)

ddelta,curr =
√
x2
delta,curr + y2

delta,curr + z2
delta,curr (4.11)

The coefficient of 50 was added to balance the reward values to a clipped range of

[−1.2, 1.2], since the value of the distance traveled over 2 time-steps is relatively

small. Figure (4.20) shows the concept of approaching the target.

The total reward is produced by just summing up both reward functions (4.6) and

(4.9):

Rt = WDR + V DR (4.12)

The worst possible reward value for our agent is Rmin = −0.6− 1.2 = −1.8 and it is

earned when the UAV almost collides with an obstacle and heading towards the opposite

side of the target. The best possible reward for our agent is Rmax = 0.1 + 1.2 = 1.3,
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achieved if the UAV is perfectly heading towards the target with no obstacles around.

To achieve a total range of [−1, 1], the total reward was clamped (clipped) to the smaller

range without normalizing it, since normalizing would dramatically decrease the impor-

tance of both rewards just to accommodate the rarer cases Rt ∈ [−1.8,−1) ∪ (1, 1.2].

It should be noted that when the environment is reset, there is a lot of movement

involved. In order to catch possible reshuffling errors, a safety mechanism was

implemented, which ignores the first five (5) steps of each episode. These steps

are defined as NO_OP_STEPS. The UAV takes no action, the reward is not taken

into account, no samples are stored to or extracted from the replay memory and

no training is performed.

Distance Interpretation

In machine and reinforcement learning, there are several well-known distance inter-

pretation methods, two of the most popular being the Euclidean Distance and the

Manhattan Distance (also known as the taxicab geometry).

In Euclidean systems, distance is defined as the length of a line segment be-

tween two points.

d (x, y) =

√√√√ N∑
i=1

(xi − yi)2 (4.13)

In Manhattan systems, it is defined as the sum of the absolute differences of each

axis between two points.

d (x, y) =
N∑
i=1
|xi − yi| (4.14)

The Euclidean distance was more suitable for our purpose and it was used to

estimate the distance traveled in the VDR function (4.9), since as Figure (4.21)

indicates, the Manhattan definition equates the previous-target and the current-target

distances, when traveling diagonally.
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(a) Manhattan distances of previous-target and
current-target

(b) Euclidean distances of previous-target and
current-target

Figure 4.21: Manhattan vs Euclidean distances between target and previous/current
coordinates

4.3.4 History Preprocessing

Recall that during a DQN step, we sample a mini-batch from the replay memory. One

last pending operation before proceeding to the neural network is the preparation

of the network’s input. For each experience in this batch, we create a stack of

four (4) consecutive frames. This effectively gives the DQN algorithm a measure

of velocity for moving objects. Since the experience tuple has access to the next

state, consecutive frames can be easily found. Figure (4.22) shows the process of

frame stacking for a single experience.

4.3.5 Deep Neural Network (DNN)

The original DQN paper [2, 3] used entire pre-processed RGB image frames as inputs.

The most efficient method of classifying image information is by using convolutional

layers, since the partial connections (convolution and other pooling layers) are used

for feature extraction. Thus, DeepMind implemented a deep convolutional neural

network, where each node contained raw image pixels.

In our case, our input data only consists of a small number of parameters. Specifically,

each state observation contains 13 scalar values and we stack 4 consecutive frames,

resulting in 52 total input parameters. Since our data is tabular and generally unrelated,

the best option is to use fully connected layers, also referred to as Dense layers. Dense
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Figure 4.22: Diagram showing the process of frame stacking before training.
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Layer
Name

Layer
Type

Input
Shape

Output
Shape

Activation
Function Initializer Params

input_1 InputLayer (-, 4, 13) (-, 4, 13) - - 0
flatten Flatten (-, 4, 13) (-, 52) - - 0
dense Dense (-, 52) (-, 256) relu he_uniform 13.568

dense_1 Dense (-, 256) (-, 512) relu he_uniform 131.584
dense_2 Dense (-, 512) (-, 128) relu he_uniform 64.664
dense_3 Dense (-, 128) (-, 8) linear he_uniform 1.032

Table 4.5: Table showing specifications of every layer of our neural network architecture.
The dash (-) denotes the batch size used.

layers are used whenever there the input data has a lack of structure that can taken

into advantage. Therefore, the implemented neural network architecture consists of

only fully connected layers. Specifically, it contains 1 input layer, 4 hidden layers and

1 output layer. Every node in each layer has the same activation function. Hidden

layers used the ReLU activation function, a linear function that outputs the input

directly if positive, a zero value otherwise. ReLU has become the default activation

function for a variety of neural networks and is known to achieve great performance.

Regarding weight initialization, he_uniform was used, which draws samples from a

uniform distribution within
[
−
√

6/n,
√

6/n
]
, where n is the number of input units.

The specifications of each layer are denoted in Table (4.5). It should be noted

that the Flatten layer unpacks the network’s shape into a single dimension. It does

not affect the size of the batch.

A saving/loading system has also been implemented, allowing for resumable training

sessions. Each save operation includes the policy and target network weights, every

single current hyperparameter and optimizer state.

4.3.6 Hyperparameter Optimization

In machine learning we often use the term hyperparameter to denote a parameter whose

value affects the learning performance. Hyperparameters are static, meaning they don’t

change during training. Finding the optimal tuple of hyperparameters which yield the

best training results can be time-consuming. In our case, hyperparameter optimization

was performed manually, following some generally known guidelines.
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There are many types of hyperparameters, some of which are permanent, while others

depend on training time, in order to accomodate several built training configurations

used in Chapter (5). Table (4.6) presents every single existing parameter in this project.

4.3.7 Relevant Information

This subsection provides some additional related information.

4.3.7.1 ROS and Gazebo Interaction Cycle

This project makes heavy use of ROS messages and topics. Figure (4.23) shows the

active nodes and topics used in a training session. train is the main node responsible

for training the agent. The interaction cycle can be easily noticed between the agent

and the environment. gazebo node has the role of the environment, feeding information

into the drone’s sensors by publishing messages to their topics (sonar_height_bottom

for the bottom sonar, sonar_height_top for the top sonar, scan for LIDAR sensor,

ground_truth_state for positional and rotational information). The train node, being

subscribed to these topics, repeatedly reads incoming messages and process the

received information.

As Figure (4.15) indicated, once every step, we select an action based on our policy

and we immediately apply the action to the environment. Then naturally, an undefined

amount of time passes until the next interaction, since a series of processing operations

take place. During this time, the simulator’s clock is paused using a developed pause-

resume system. If the agent needs to interact with the environment, the simulator is

briefly unpaused and then paused again. This allows for consistent time-steps without

losing any sequential information. Pausing, unpausing, resetting and object spawning

and manipulation operations are achieved through the use of ROS services.

4.3.7.2 Gazebo Performance

Gazebo, being a fully-fledged robotic simulator is a computationally demanding

software. Since one of the thesis’s targets is to train a reinforcement learning agent

as fast and efficiently as possible, several considerations were made during this

project’s development.
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Parameter
Name

Parameter
Category Dependency Value Parameter

Description

gamma (γ) network fixed 0.99 importance of
future rewards

learning_rate (α) network fixed 0.00025 network reaction
intensity to errors

batch_size network fixed 1024 size of sample
to be trained

train_freq network training time
dependent - frequency of

network training

target_update_freq network training time
dependent -

frequency of
target network

update

epsilon_init policy fixed 1
initial value of
random action
probability

epsilon_min policy fixed 0.05
final value of
random action
probability

epsilon_decay_steps policy training time
dependent - number of steps

to reach final value

memory_size replay
memory

training time
dependent - amount of experience

tuple capacity

start_train_steps replay
memory

training time
dependent - training-delay steps

total_steps other training time
dependent - total number of

training steps

max_episode_steps other fixed 5000
max number of steps

in each episode
before resetting

eval_max_episodes other fixed 10
max number of
episodes when
validating

eval_freq other training time
dependent - frequency of

evaluations

Table 4.6: Hyperparameters used in our training. The dash (-) denotes a value range instead
of a fixed value, which will be presented along with the training configurations.
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Figure 4.23: Diagram showing the nodes and topics used in a training sessions.

Firstly, the environment was designed to be as lightweight as possible, containing

3D obstacles with primitive shapes. Basic shapes allow for fast computation of physics

and collision operations. Secondly, when the environment is reset, obstacles are simply

rearranged, instead of being destroyed and recreated. This is a popular design pattern

known as object pooling, which offloads computational resourcess off the CPU.

Regarding the neural network architecture, several optimizations were also made in

order to speed up the training process. For starters, the network’s input is relatively

small, only consisting of 52 parameters. This is considered very small for a neural

network, but results in faster training. While convolutional layers can be easily

parallelized in GPUs, fully connected layers are more CPU-intensive.



4. Approach 66

The training was performed using a computer running an Intel Core i5-6600K (4

cores, 4 threads) paired with 16GB or RAM and accelerated by an NVIDIA Geforce

GTX 1070. Every optimization made resulted in a Gazebo Real Time Factor of 14-20

while training, which denotes the amount of speed increase over the real time. Each

RL training configuration session lasted an average of 32 hours. CPU usage was always

at 100%, while GPU usage only peaked at 15-20%.
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T his chapter will present the results of the UAV’s trained behavior. Initially, an

examination will be made regarding the used experimental setup, including

time and world difficulty configurations. Lastly, we compare the UAV’s

performance in various timing and difficulty circumstances.

5.1 Experimental Setup

In order to evaluate our agent’s behavior, a concrete configuration structure needs to

be prepared. The two following sections will focus on how training sessions can be

parameterized with different timing and world difficulty settings respectively.

67
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Figure 5.1: Plot showing parameters multiplier scale with respect to each configuration.

5.1.1 Training Time Configurations

For the scope of this thesis, six (6) training configurations were created based on

training length, since linear decaying epsilon-greedy policies obligate a fixed pre-defined

number of total training steps (before training starts). Several parameters are time-

dependent and require adjustments in order to become suitable. For example, a

training session with 1000 total steps, probably does not require a replay memory

capacity of 1 million samples.

The six timing configurations are presented in Table (5.1), in which, previously

introduced time-dependent parameters (TDPs) are now fully revealed. TDPs were em-

pirically determined and were optimal considering a discrete number of options. Figure

(5.1) shows the incremental change of each parameter over each longer training session.

It should be noted however that, not every time configuration is used. For final

training purposes, the two largest configurations “Large” and “Marathon” were utilized,

meanwhile quicker, simpler configurations were preferred for internal use and debugging.

Nevertheless, having discrete timing options can help standardize benchmarking results.



5. Experiments and Results 69

Configuration
Name

Demo
(1)

Instant
(2)

Quick
(3)

Standard
(4)

Large
(5)

Marathon
(6)

Total
Steps

5K 30K 125K 400K 1.5M 3M

Total
Duration

5m 25m 1h, 30m 5h 16h 32h

Time
Multiplier

1 6 25 80 300 600

Epsilon Decay
Steps

1.9K 25.5K 100K 320K 1.2M 2.4M

Memory
Size

1K 15K 50K 150K 600K 1M

Start Train
Steps

200 5K 15K 30K 80K 100K

Train
Frequency

20 100 250 500 750 1K

Target Update
Frequency

500 5K 25K 80K 187.5K 500K

Table 5.1: Training configurations based on length with corresponding parameters

5.1.2 World Difficulty Profiles

The ultimate goal of this project is to evaluate the agent’s behavior over a number

of scenarios of varying difficulty. For this reason, five (5) different world profiles of

increasing difficulty were created depending to stillness of uav/marker initialization

and obstacle quantity.

As Table (5.2) suggests, experimentation is initially performed using fixed, perma-

nent spawn coordinates for the drone and markers. “Easy” and “Medium” configurations

eventually replace each fixed aspect with randomness, while “Hard” and “Extreme”

profiles include obstacles at random locations.
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World
Profile

UAV
Initialization

Marker
Initialization

Obstacle
Initialization

Obstacle
Number

Ridiculous fixed fixed - 0
Easy random fixed - 0
Medium random random - 0
Hard random random random 6
Extreme random random random 12

Table 5.2: Specifications of world configurations with increasing difficulty level.

5.2 Training Results

This section provides and justifies the results of each training session. Specifically,

we experiment on each world profile and observe how stillness and obstacle quantity

affect the agent’s performance.

Training in worlds with obstacles was performed using the “Marathon” train

length, while worlds without obstacles used the “Large” configuration due to a lower

world complexity.

In order to make multifaceted comparisons, as much data has been captured as

possible during training. Each training session generates the following charts:

1. [S] Total reward : total accumulated reward during training (blue)

2. [S] Loss : loss occured during training (red)

3. [S] Parameters : epsilon (cyan) and memory filled (gray)

4. [S] Average sample reward : (green)

5. [E] Episode outcome rates : rate of collisions (CR) ( total collisions
total episodes , red), rate

of markers found (MFR) ( total markers found
total episodes , cyan), rate of expiring episodes

( total expired episodes
total episodes , orange)

6. [E] Episode outcome rates of last 100 episodes : rate of collisions (CR100)

( collisions, last 100
100 , red), rate of markers found (MFR100) (markers found, last 100

100 , cyan),

rate of expiring episodes ( expired episodes, last 100
100 , orange)

7. [E] Relative marker approach to target (RMA) : shows how close the

drone approached the target before colliding ( distance from target, after
distancefromtarget,before

, blue)
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8. [E] Total markers found : (brown)

9. [E] Episode length : shows how many steps are performed in each episode

(black)

10. [E] Mean max q-value : mean max Q-values over each episode (purple)

Charts 1 and 2 are the most popular metrics in a reinforcement learning problem.

Loss is used to provide an insight of the neural network’s performance, denoting the

deviation of its weights from the optimal weights. Total reward on the other hand, is

supposed to evaluate the agent’s behavior, but it is not always an accurate indicator.

For example, if a reward system is designed to always provide the highest reward

(e.g +1), the accumulated reward chart would show an incredible performance, but

in reality, the agent would learn nothing.

Therefore, more practical measurements are required in order to effectively measure

our training performance (5,6,7,8), such as marker detection rates and average approach

distance from target.

Relative secondary information is also provided in charts (3,4,9), providing several

details about the training sessions.
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5.2.1 Ridiculous World, Large Training
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Figure 5.3: Network Weight Loss

0.2 0.4 0.6 0.8 1 1.2 1.4
·106

0
0.2
0.4
0.6
0.8

1

Steps

Pe
rc
en
t Epsilon

Memory Filled

Figure 5.4: DQN Parameters (Epsilon and Memory Filled)
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Figure 5.5: Average Sample Reward
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Figure 5.6: Episode outcome rates: collision rate, marker found rate, time expired rate
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Figure 5.7: Episode outcome rates in last 100 episodes: collision rate, marker found rate,
time expired rate
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Figure 5.8: Relative Marker Approach from initial to termination point
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Figure 5.10: Episode Length
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Figure 5.11: Mean Max Q-Value
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5.2.2 Easy World, Large Training
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Figure 5.12: Total Reward
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Figure 5.13: Network Weight Loss
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Figure 5.14: DQN Parameters (Epsilon and Memory Filled)
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Figure 5.15: Average Sample Reward
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Figure 5.16: Episode outcome rates: collision rate, marker found rate, time expired rate
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Figure 5.17: Episode outcome rates in last 100 episodes: collision rate, marker found rate,
time expired rate
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Figure 5.18: Relative Marker Approach from initial to termination point
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Figure 5.19: Total Markers Found
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Figure 5.20: Episode Length
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Figure 5.21: Mean Max Q-Value
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5.2.3 Medium World, Large Training
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Figure 5.22: Total Reward
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Figure 5.23: Network Weight Loss
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Figure 5.24: DQN Parameters (Epsilon and Memory Filled)
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Figure 5.25: Average Sample Reward
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Figure 5.26: Episode outcome rates: collision rate, marker found rate, time expired rate
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Figure 5.27: Episode outcome rates in last 100 episodes: collision rate, marker found rate,
time expired rate
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Figure 5.28: Relative Marker Approach from initial to termination point
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Figure 5.29: Total Markers Found
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Figure 5.30: Episode Length
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Figure 5.31: Mean Max Q-Value
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5.2.4 Hard World, Marathon Training
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Figure 5.32: Total Reward
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Figure 5.33: Network Weight Loss
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Figure 5.34: DQN Parameters (Epsilon and Memory Filled)
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Figure 5.35: Average Sample Reward
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Figure 5.36: Episode outcome rates: collision rate, marker found rate, time expired rate
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Figure 5.37: Episode outcome rates in last 100 episodes: collision rate, marker found rate,
time expired rate
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Figure 5.38: Relative Marker Approach from initial to termination point
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Figure 5.39: Total Markers Found
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Figure 5.40: Episode Length
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5.2.5 Extreme World, Marathon Training
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Figure 5.42: Total Reward
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Figure 5.43: Network Weight Loss
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Figure 5.44: DQN Parameters (Epsilon and Memory Filled)
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Figure 5.45: Average Sample Reward
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Figure 5.46: Episode outcome rates: collision rate, marker found rate, time expired rate
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Figure 5.47: Episode outcome rates in last 100 episodes: collision rate, marker found rate,
time expired rate
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2 4 6 8 10 12 14
·103

0.4

0.6

0.8

1

1.2

1.4

Episodes

M
ea
n
M
ax

Q
-V
al
ue

Figure 5.51: Mean Max Q-Value
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5.2.6 Highlights
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Figure 5.52: Comparison of marker found rates (last 100 episodes) between worlds
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Figure 5.53: Comparison of total markers found between worlds
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Figure 5.54: Comparison of total rewards between worlds
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World Difficulty
Level Ridiculous Easy Medium Hard Extreme

Training Steps 1.5M 1.5M 1.5M 3M 3M
Marker Found Rate

(Last 100) 0.46 0.71 0.22 0.4 0.28

Collision Rate
(Last 100) 0.54 0.29 0.78 0.6 0.72

Relative Marker
Approach (Average) 0.79 0.76 0.64 0.65 0.77

Total
Reward 105.450 44.446 6.145 -32.784 -167.170

Table 5.3: Comparison of agent’s performance between world profiles

5.2.7 Results and Observations

Training results appear to be promising at a first glance. For every scenario, metrics

show a similar behavioral pattern, indicating a poor initial agent performance and a

significantly improved version by the end of each training session.

Total reward decreases, as the world becomes more difficult (Figure 5.54), since

the absence of obstacles in easier worlds, cause the reward system to provide positive

rewards more frequently. Even if the total reward is negative, the rate increase is

always positive, indicating that longer training sessions eventually lead to positive total

rewards. Similarly, the average sample reward gradually decreases at the beginning,

as the replay memory is being filled for the first time, but then increases during

the second and third pass.

Loss always drops instantly as shown in Figures (5.3, 5.13, 5.23, 5.33, 5.43), but then

slightly increases over time. This may be due to a relatively high learning rate which

causes the network to diverge and fail to estimate the minimum of the loss function.

The most important metric of this experiment is the rate at which the drone is

approaching targets and colliding with objects (Figures 5.6, 5.16, 5.26, 5.36, 5.46 and

5.7, 5.17, 5.27, 5.37, 5.47 and 5.52). In every case, collision rate always decreases

while the rate of approaching targets always increases, which means the total markers

found is increasing exponentially.
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Another important metric to consider is how far the UAV moved towards its target

with the relative marker approach (RMA) metric, in cases where a collision occurred. A

value of 1 indicates that the drone collided at the same distance as its spawn location,

while a value of 0.2 means the drone was five (5) times closer than before. Every

training session concluded with an average RMA of <0.8 which indicates that the

agent was consistently approaching the target before colliding.

Generally, a decrease of the agent’s performance is expected as the world difficulty

rises. The ridiculous profile performed surprisingly poor, acheiving a final MFR100

metric of 46% with an all-time-high of 56%. This may be due to the lack of robustness

in a training session with no random elements (fixed marker position, fixed UAV

spawn location). In contrary, the easy profile managed an impressive MFR100 of

71%, completing its mission more than 1500 times. Medium was slow to catch up

and clearly required more training time, since it was outperformed by both upcoming

configurations with rates of 40% and 28% respectively, as shown in Table (5.3).

On every occasion, the agent’s behavior significantly improves, proving that DQN

can be beneficial for this task. Results could be even greater with additional training,

since the above charts indicate that the agent has not yet reached its peak performance.

Training length was instead fixed to a total number of steps, which was required by

the policy’s epsilon decay rate. The goal was to observe how world difficulty increase

affects the agent’s performance over the same number of steps.
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T his final chapter summarizes the research of this thesis, underlying the

potential of deep reinforcement learning. Several limitations are also

presented, along with possible solutions and enhancements.

6.1 Summary

This thesis investigated a mapless approach to UAV autonomous navigation tasks

in fully unknown 3D environments by incorporating deep learning techniques into a

well-defined reinforcement learning problem (MDP). Specifically, the DQN algorithm

was implemented, which integrates several key features, including a neural network

architecture and a replay memory. Navigation is performed in dynamically generated

Gazebo environments, which interacts with the agent (UAV) through the ROS

framework.

Five experiments were conducted in order to evaluate the agent’s performance.

Results suggest that the agent can successfully learn to nagivate in the environment

90
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and avoid obstacles. This also proved that the DQN algorithm with a number of

tweaks can also be applied in a large variety of custom environments, not just ATARI

games, which the original creators intended for.

6.2 Limitations and Optimizations

Unfortunately, this thesis has a few limitations and bottlenecks worth mentioning.

Firstly, the world does not accurately represent reality, with obstacle variation

being limited to cubes, spheres and cylinders, instead of complex objects, such as trees

and cars. This was mainly a performance measure, as upgraded object quality with

complicated collision models would result in increased training times.

Additionally the obstacles are static, meaning their position is immutable throughout

each episode. The model generally should be able to handle at least low-velocity moving

obstacles with minimal sacrifice in the agent performance, albeit this thesis did not

provide explicit testing of this configuration. Avoiding high-speed obstacles may

require several modifications to both the model and the algorithm to confront high

dynamic environments. A study [16] was able to overcome this challenge by using

Long Short-Term Memory (LSTM) based DRL networks.

Several optimization measures can be applied in order to improve training speed and

quality. In the currently implemented DQN algorithm, experience tuples are uniformly

sampled from the replay memory. A study [6] managed to achieve superior performance

by prioritizing samples based on their temporal-difference (TD) error. Picking samples

with higher loss values will cause the neural network to faster minimize the error.

Therefore, prioritized experience replay is an important improvement to consider.

Another valuable change would be an automated hyperparameter optimization process.

Current selection was performed empirically and there may exist other combinations

providing even greater training results.

There are also several performance-improving methods to examine. The most

beneficial is the use of swarm drones for parallel training. Each UAV would separately

send input parameters to a shared neural network, allowing for faster exploration

and sample extraction. Using multiple drones concurrently can multiply the agent’s
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training pace. A more efficient pause-resume system for Gazebo is also deemed

necessary. The current implementation relies on services in order to send and receive

requests, introducing significant delays to the pipeline and slowing down the training

process by 30%.

Finally, as a cost-saving measure, the LIDAR sensor could be replaced by six

ultrasonic sensors around the UAV’s frame. Since we already utilize a neglegible

percentage of the LIDAR’s full potential, we could dramatically lower the drone’s

cost for an insignificant accuracy sacrifice.
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A
Aruco Marker

This appendix chapter will explain the basic functionality of an aruco marker.

A.1 Overview

An Aruco Marker [21, 22] is a square fiducial structure that consists of a N × N

binary matrix enclosed in a black color border. Aruco markers are widely used in

robotic applications, especially in pose estimation challenges, but they can also be

utilized in augmented reality tasks.

Aruco markers consist of black and white blocks. A white block indicates a value

of one (1), while a black block denotes a value of zero (0). Each marker, can act as a

unique identifier depending on the composition of the internal binary matrix. Figure

(A.1a) presents a 5 × 5 marker, with an ID of 42.

In practice, these markers can be found rotated in the environment, however the

detection process needs to be able to determine its original rotation (corner-sensitive).

Detection of aruco markers can be performed by the ArUco Library, which is based

exclusively on the Open Source Computer Vision (OpenCV), the most popular machine

vision framework, containing over 2500 optimized algorithms.

94



A. Aruco Marker 95

(a) Aruco Tag (id = 42) (b) QR Code

Figure A.1: Figure showing difference between an aruco marker and a QR code

A.2 Aruco Marker vs QR-Code

Although an aruco marker and a QR code seem to share similar concepts, they are

different at encoding information and thus have separate use cases. QR code is a general-

purpose tool that is used to encode information, such as websites, usernames, passwords,

text data, booking tickets and more. Aruco markers, on the other hand, are primarily

used in research areas to help a camera estimate its relative position and rotation.
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