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Abstract

This work investigates the problem of localizing batteryless, passive, ultra-low cost RFID
tags, under the presence of non-white noise that multipath introduces inside buildings. Two
recently proposed grid-based methods are utilized to tackle the aforementioned problem
with radio signals. The first method is borrowed from the through-the-wall radar imaging
community and this thesis adapts it to the case of monostatic interrogation of Gen2 tags, with
commercial RFID readers. The method exploits the strength of the received signal (RSSI)
and its phase, expressed in a linear system that incorporates the impact of known reflectors.
The second one is a phase-based method, which puts forth a ”differential mitigation” scheme
based on maximum likelihood estimation (MLE).

For the first method, it is found that certain ambiguities need to be resolved, relevant
to the wavelength, which can be mitigated based on the fundamental theory of compressive
sensing. Specifically, it is observed that the so-called sensing matrix, can lead to a successful
reconstruction by properly selecting the carrier frequency or spreading the measurements,
with respect to the coherence of its columns or its blocks.

As for the second method, a selection of a phase measurement is needed; it is found that
if more than one phase measurements are randomly selected, then a more accurate estimate
of the target is achieved. According to simulations, the random selection of a subset of the
phase measurements as a reference can provide up to 50% improvement, concerning root
mean squared error.

This thesis includes both simulation and experimental results using a commercial Gen2
RFID reader at UHF, installed on a robotic platform. Experimental results with the available
equipment show that, given static poles, mean absolute localization error in the order of 10
cm for indoor 2D localization is achieved. On the other hand, when the RFID reader is
placed on a mobile robotic platform, it is shown that mean absolute localization error in the
order of 19cm is possible. Finally, a proof-of-concept is offered, by the modeling of a single
reflector, which leads to about 19% 3D localization error improvement, compared to the case
where the reflector is ignored. Further examination of this finding perhaps opens a fruitful
new research direction.
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(d) depicts the residual defined as the euclidean norm between the estimated
composite vector and the true composite vector for each carrier frequency. . 26

8 Theoretical evaluation considering different metrics. Note that (a), (b), (c),
(d) are exactly the same as Fig. 7 with the only difference that what varies
concerning x-axis is the inter-element spacing given the carrier frequency fc =
868 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9 Measured phases: (a) the histogram of measured phase and Gaussian PDF
fitting, (b) the STD of phase vs distance. . . . . . . . . . . . . . . . . . . . . 31

10 An example of phase jump when the actual phase is 1.95π rad. . . . . . . . . 33
11 Measured phase for a given topology. The phase for frequency fc = 860 MHz

is presented in blue, and the phase for frequency fc = 2.4 GHz in red. . . . . 45
12 (a) Topology (2d) of the transceivers and the tag, no wall assumed. (b) SNR

vs RMSE 100 Monte Carlo experiments in the presence of white complex
gaussian noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

13 (a) Topology (2d) of the transceivers and the tag, a wall assumed at position
xw = 3. (b) SNR vs RMSE 100 Monte Carlo experiments in the presence of
white complex gaussian noise. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

14 (a) Topology (2d) of the transceivers and the tag, a wall assumed at position
xw = 2. (b) SNR vs RMSE 100 Monte Carlo experiments in the presence of
white complex gaussian noise. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

15 (a) Topology (2d) of the transceivers and the tag, a wall assumed at position
yw = 5 (wall is parallel to transceivers), low carrier frequency and inter-
element spacing< λ

10
between the antennas was considered. (b) SNR vs RMSE

100 Monte Carlo experiments in the presence of white complex gaussian noise. 48

5



16 (a) Topology (2d) of the transceivers and the tag, a wall assumed at position
yw = 5 (wall is parallel to transceivers), low carrier frequency and inter-
element spacing> λ

10
between the antennas was considered. (b) SNR vs RMSE

100 Monte Carlo experiments in the presence of white complex gaussian noise. 49
17 (a) Topology (2d) of the transceivers and the tag, a wall assumed at position

yw = 5 (wall is parallel to transceivers), high carrier frequency and inter-
element spacing> λ

10
between the antennas was considered. (b) SNR vs RMSE

100 Monte Carlo experiments in the presence of white complex gaussian noise. 50
18 (a) Topology (3d) of the transceivers and the tag, no wall assumed. (b) SNR

vs RMSE 100 Monte Carlo experiments in the presence of white complex
gaussian noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

19 (a) Topology (3d) of the transceivers and the tag, a wall assumed, which is
fully described by the three points {(−1.5, 5, 0) , (2, 5, 0) , (0, 4, 5)}. (b) SNR
vs RMSE 100 Monte Carlo experiments in the presence of white complex
gaussian noise. Under-modeling was adopted by all methods. . . . . . . . . . 51

20 (a) Topology (3d) of the transceivers and the tag, a wall assumed, which is
fully described by the three points {(−1.5, 5, 0) , (2, 5, 0) , (0, 4, 5)}. (b) SNR
vs RMSE 100 Monte Carlo experiments in the presence of white complex
gaussian noise. Under-modeling vs Exact-modeling is depicted. . . . . . . . . 52

21 (a) Baseline experimental campaign-1: light multipath environment with man-
ual movement of the reader antenna. (b) Topology at Pc = 30 dBm. . . . . . 54

22 Number of measurement vs Tx Power. . . . . . . . . . . . . . . . . . . . . . 55
23 Campaign-1 localization error vs Tx power. . . . . . . . . . . . . . . . . . . . 55
24 Indoor harsh multipath environment a commercial RFID reader on a static

pole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
25 Number of measurements per tag at different power levels - Manual Measure-

ments (2d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
26 Campaign-2 localization error vs Tx power across 15 tags. . . . . . . . . . . 57
27 (a) Indoor harsh multipath environment. A commercial RFID reader on an

autonomous robotic platform scans and localizes the tags. (b) Real map of
the office produced by the Cartographer algorithm. The robot’s estimated
trajectory from AMCL along with the true tag locations can be seen. . . . . 57

28 Number of measurements per tag at different power levels of the reader equipped
on kobuki (2d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

29 Campaign-3 localization error vs Tx power across 15 tags. . . . . . . . . . . 59
30 (a) Setup at Dance Hall (TUC). (b) Topology of (a) scenario. . . . . . . . . 59
31 Real map of the dance hall produced by the Cartographer algorithm, including

robot’s estimated trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
32 Number of measurements per tag at different power levels of the reader equipped

on kobuki (3d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
33 Localization error across 30 tags. . . . . . . . . . . . . . . . . . . . . . . . . 61

6



List of Abbreviations

ADM Alternating Direction Method

CLF Cosine Likelihood Function

CS Compressive Sensing

EPC Electronic Product Code

LASSO Least Absolute Shrinkage and Selection Operator

LoS Line-of-Sight

MAE Mean Absolute localization Error

MLE Maximum Likelihood Estimation

NLF Naive Likelihood Function

NSP Null Space Property

PDF Probability Density Function

RFID Radio-Frequency IDentification

RIP Restricted Isometry Property

RMSE Root Mean Squared localization Error

RSSI Received Signal Strength Indication

RSWCLA Random Sampling Weighted Cosine Likelihood Algorithm

SNR Signal-to-Noise Ratio

SpaRSA Sparse Reconstruction by Separable Approximation

STD STandard Deviation

UHF Ultra High Frequency

USRP Universal Software Radio Peripheral

UUP Uniform Uncertainty Principle

WCLA Weighted Cosine Likelihood Algorithm

YALL1 Your ALgorithms for L1

7



Chapter 1

Introduction

1.1 Discussion

Nowadays, RFID tags have been widely deployed. It is not absurd to say that we are
almost surrounded by RFID tags on a daily basis. For example, RFID tags are used in
clothing stores, credit cards, ID cards, car keys, and more. The attraction of their interest is
because they are very cost-effective and do not require an external power supply. Generally,
an RFID system consists of a reader and multiple tags. Furthermore, special interest has been
expressed in determining the location of the tags included in the system. The aforementioned
system could be an application to a central library to sort books or identify their locations.

Certain research works have focused on the positioning of RFID tags with considerable
success but with some overhead, as they require reference tags [1],[2],[3]. However, there
are several challenges to be faced, especially in room interiors, where in addition to the
backscattered tag signal, reflections are received from adjacent walls, which can degrade the
tag’s localization performance, if not properly modeled.

In this thesis, two grid-based methods are utilized to tackle the problem of tag localization
with radio signals, which are independent of reference tags. The first utilizes RSSI and phase
measurements, and solves a linear system that can accommodate possible reflections in a
room, under some Compressive Sensing (CS) assumptions. These reflections are essentially
expressed as signals that have characteristics that depend on the geometry of the space,
which, if taken into account, can satisfactorily improve the target estimation. The second
method and its variants exploit only phase measurement differences, which are capable of
eliminating uncertainties that stem from reflections and thermal noise.

Simulations and experimental campaigns were conducted to evaluate the methods under
light or harsh environmental conditions. A reader was installed on both a static pole and a
robotic platform, through which measurements were captured at different power levels. It is
found that the involved methods demonstrate some resilience to multipath conditions and the
uncertainty that the robotic platform may induce, despite the under-modeling assumed in
most campaigns. However, it was confirmed via simulations and experiments that modeling
part of the multipath can certainly lead to an improvement in terms of mean error. Given a
2d topology, localization error under light multipath was found in the order of less than 2 cm
in the best case. Moreover, by utilizing static poles under strong multipath, mean absolute
localization error ranged between 9.4 cm - 26.83 cm. The error through the robotic platform
increased, with the most favorable case giving an average error of 18.7 cm. Additionally for
3D localization, 30 tags were placed in a room without many obstacles, where mean absolute
localization error ranged from 17.9 cm to 35.2 cm for transmission power regulated at 30

8



dBm. Finally, an around 19 % improvement was observed, by modeling a significant reflector
at 30 dBm.

1.2 RFID System - Measurements

To begin with, an RFID reader is the brain of the RFID system and is necessary for any
system to function. Readers, also called interrogators, are devices that transmit and receive
radio waves in order to communicate with RFID tags.

As we mentioned in the previous section, the RFID system consists of one reader and
numerous tags. The batteryless tags utilize the backscatter radio link for communications;
through the link, tags modulate their information on the backscattered signals emitted from
a reader. A backscatter tag close to the reader variates its impedance load on its antenna to
modulate the reader’s signal, in order to produce a message with ones and zeros.

Regarding the localization part, low-level user data, such as RSSI and phase, can be
provided by most of the commercial RFID readers, which brings opportunities to realize
fine-grained localization. RSSI is a measure of the strength of a signal received from a
passive tag. One could abstractly say that RSSI is something proportional to the amplitude
of the received signal and it is used to determine how close a tag is to a reader antenna.
In general, the phase depends on the propagation channel and the modulating properties of
both Tx/Rx antennas of the reader and the tag. Below a figure is depicted, which describes
the communication function between an RFID reader and a tag.

Figure 1: RFID System function, where ϕTx and ϕRx represent the phase shift introduced
by the transmitter’s and receiver’s hardware circuit and cables, respectively. Moreover, ϕtag
is the phase shift caused by tag’s reflection characteristic.
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Chapter 2

Compressive Sensing

2.1 Signal Model

In this section, a signal model is adopted from [4], which exploits the line-of-sight com-
ponent and it can be extended in order to accommodate all the possible indirect paths
(reflectors). Measurements can be expressed as a linear system, which can be solved through
a group sparse optimization technique. The method utilizes both phase and RSSI measure-
ments.

2D Model

Assume that N transceivers are arranged as a line array, with element positions xn, n =
0, . . . , N − 1 in the interior of a room. Let the frequencies fm, m = 0, . . . ,M − 1, which are
uniformly spaced over the desired bandwidth fM−1 − f0 .

The region of interest is divided into a regular grid (square shaped) of Nx×Ny points rep-
resenting the number of points in crossrange and downrange, respectively. Let σp be the com-
plex reflectivity of the p-th spatial grid point or the p-th target, where p = 0, 1, . . . , NxNy−1.
Note that the absence of a target at a particular grid point is simply represented by a zero
value for the corresponding target reflectivity. More precisely,

σp =

{
0, absence of a target
a, presence of a target {a ∈ C | a 6= 0}.

Assuming monostatic operation, the target 1 response can be expressed as

y[m,n] =

NxNy−1∑
p=0

σp e
−j2πfmτpn , (1)

where τpn denotes the round-trip propagation delay between the p-th target and the n-th
transceiver.

Given one carrier frequency fc = fm, M = 1⇒ m = 0 and one target, each measurement
in 1 can be found in 4.1. It is worth noting that section 4.1 fully describes the backscattered
signal from a tag along with a single possible reflection.

3D Model

The only difference between the 2d model and the 3d model, is that instead of dividing
the region of interest into Nx ×Ny points, due to the increased dimension extending on the

1In our context when we refer to a target we imply the RFID tag that has been illuminated by a reader.
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z axis, we divide the space into Nx×Ny×Nz points (cube shaped grid in three dimensions).
Subsequently, 1 is written as

y[m,n] =

NxNyNz−1∑
p=0

σp e
−j2πfmτpn . (2)

2.2 Linear System

The measured data vector y ∈ CMN×1 is obtained by stacking the measurements y[m,n]
into a single column vector

y = [y[0, 0], . . . , y[M − 1, 0], . . . , y[M − 1, N − 1]]> . (3)

The complex reflectivities σp can be vectorized as

s =
[
σ0, σ1, . . . , σNxNy−1

]>
, 2d model

s =
[
σ0, σ1, . . . , σNxNyNz−1

]>
, 3d model.

(4)

The sensing matrix Φ contains the phase terms of the target model,

[Φ]ip = exp (−j2πfmτpn) , m = i(modM), n = bi/Mc,
i = 0, 1, . . . ,MN − 1.

(5)

Now, using the previous equations, Eq. 1 , 2 can be expressed as the linear system

y = Φs. (6)
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In the case of 2d, components of 6 can be written more analytically as

y =



y[0, 0]
y[1, 0]
y[2, 0]

...
y[M − 1, 0]
y[0, 1]
y[1, 1]

...
y[M − 1, N − 1]


, s =


σ0

σ1

σ2
...

σNxNy−1

 ,

Φ =



exp (−j2πf0τ0,0) exp (−j2πf0τ1,0) · · · exp
(
−j2πf0τNxNy−1,0

)
exp (−j2πf1τ0,0) exp (−j2πf1τ1,0)

. . . exp
(
−j2πf1τNxNy−1,0

)
...

...
...

exp (−j2πfM−1τ0,0) exp (−j2πfM−1τ1,0) exp
(
−j2πfM−1τNxNy−1,0

)
exp (−j2πf0τ0,1) exp (−j2πf0τ1,1) exp

(
−j2πf0τNxNy−1,1

)
exp (−j2πf1τ0,1) exp (−j2πf1τ1,1) · · · exp

(
−j2πf1τNxNy−1,1

)
...

...
...

exp (−j2πfM−1τ0,N−1) exp (−j2πfM−1τ1,N−1) exp
(
−j2πfM−1τNxNy−1,N−1

)


.

(7)

In the case of only one frequency, 7 reduces to

y =


y[0, 0]
y[0, 1]

...
y[0, N − 1]

 , s =


σ0

σ1

σ2
...

σNxNy−1

 ,

Φ =


exp (−j2πf0τ0,0) exp (−j2πf0τ1,0) · · · exp

(
−j2πf0τNxNy−1,0

)
exp (−j2πf0τ0,1) exp (−j2πf0τ1,1) exp

(
−j2πf0τNxNy−1,1

)
...

...
...

exp (−j2πf0τ0,N−1) exp (−j2πf0τ1,N−1) exp
(
−j2πf0τNxNy−1,N−1

)
 .

(8)
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Extending in 3d components, we have

y =



y[0, 0]
y[1, 0]
y[2, 0]

...
y[M − 1, 0]
y[0, 1]
y[1, 1]

...
y[M − 1, N − 1]


, s =


σ0

σ1

σ2
...

σNxNyNz−1,

 ,

Φ =



exp (−j2πf0τ0,0) exp (−j2πf0τ1,0) · · · exp
(
−j2πf0τNxNyNz−1,0

)
exp (−j2πf1τ0,0) exp (−j2πf1τ1,0)

. . . exp
(
−j2πf1τNxNyNz−1,0

)
...

...
...

exp (−j2πfM−1τ0,0) exp (−j2πfM−1τ1,0) exp
(
−j2πfM−1τNxNyNz−1,0

)
exp (−j2πf0τ0,1) exp (−j2πf0τ1,1) exp

(
−j2πf0τNxNyNz−1,1

)
exp (−j2πf1τ0,1) exp (−j2πf1τ1,1) · · · exp

(
−j2πf1τNxNyNz−1,1

)
...

...
...

exp (−j2πfM−1τ0,N−1) exp (−j2πfM−1τ1,N−1) exp
(
−j2πfM−1τNxNyNz−1,N−1

)


.

(9)

2.3 First Order Reflections

Image of a point using rotations - 2D Model

Think about the scattering scenario 1 depicted in Fig. 2. The p-th point in grid is located
at wp = [xp, yp]

>, and the interior wall (sidewall of a room) is parallel to y−axis and located
at x = xw. Multipath propagation consists of the propagation from the antenna to the grid
point along the path P1, and then from the grid point through a reflection at the interior
wall along P2. Due to the laws of reflection [5] (angle of incidence equals angle of reflection),
the location of the virtual target is found by reflecting the original target at the wall. In
particular, the virtual point is located at w′p = [2xw − xp, yp]

> and the delay associated
with the path P2 is the same as that of the path P3 from the virtual point to the antenna.
From the receiver’s perspective, the two paths are equivalent in terms of delay and angle of
incidence.
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Figure 2: Multipath through reflection at an internal wall parallel to y axis.

Below, we depict the case where the wall is not parallel to y−axis.

Figure 3: Multipath through reflection at an internal wall non parallel to y axis.

Consider the scattering scenario illustrated in Fig. 3. The goal is to recalculate the
virtual point coordinates as we did in scenario 1. An easy way is to reduce scenario 2 to
scenario 1 by rotating all of the coordinate system so that the interior wall is parallel to
the y-axis. In linear algebra, a rotation matrix is a transformation matrix that is used to

14



perform a rotation in an Euclidean space. For example, matrix

A(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(10)

rotates points in the xy-plane counterclockwise, through an angle θ with respect to the x-
axis. If we rotate all the points with respect to the angle −(φ−π/2) (counterclockwise) then
the wall will be parallel to the y-axis. The angle φ is given by

φ = tan−1

(
y2 − y1

x2 − x1

)
, (11)

where (x1, y1) and (x2, y2) are the coordinates of two known wall points.
Before rotation, it is important to translate all the points, according to some reference

point. We select the antenna as a reference point, with coordinates wT = [xT , yT ]> . Thus,
the coordinates of the p-th grid point after translation are w̃p = [xp−xT , yp−yT ]>; that also
holds for the wall points w̃1 = [x1− xT , y1− yT ]> and w̃2 = [x2− xT , y2− yT ]>, respectively.
To calculate the angle φ, it makes no sense to do translation, because the angles at the
Cartesian coordinate system after translation are not altered. For example, equation 12 is
identical to 11.

φ = tan−1

(
y2 − yT − (y1 − yT )

x2 − xT − (x1 − xT )

)
= tan−1

(
y2 − yT − y1 + yT
x2 − xT − x1 + xT

)
= tan−1

(
y2 − y1

x2 − x1

)
.

(12)

Now, we apply rotation to the points, w̃p,w̃1,w̃2 as follows, assuming that µ = −
(
φ− π

2

)
.

w̃′p = A(µ)w̃p =

[
cos(µ) − sin(µ)
sin(µ) cos(µ)

] [
xp − xT
yp − yT

]
=

[
(xp − xT ) cos(µ)− (yp − yT ) sin(µ)
(xp − xT ) sin(µ) + (yp − yT ) cos(µ)

]
=

[
x′p
y′p

]
,

(13)

w̃′1 = A(µ)w̃1 =

[
cos(µ) − sin(µ)
sin(µ) cos(µ)

] [
x1 − xT
y1 − yT

]
=

[
(x1 − xT ) cos(µ)− (y1 − yT ) sin(µ)
(x1 − xT ) sin(µ) + (y1 − yT ) cos(µ)

]
=

[
x′1
y′1

]
,

(14)

w̃′2 = A(µ)w̃2 =

[
cos(µ) − sin(µ)
sin(µ) cos(µ)

] [
x2 − xT
y2 − yT

]
=

[
(x2 − xT ) cos(µ)− (y2 − yT ) sin(µ)
(x2 − xT ) sin(µ) + (y2 − yT ) cos(µ)

]
=

[
x′2
y′2

]
.

(15)
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At this point, we are able to calculate the virtual point, on the translated and rotated
plane. The virtual point of w̃′p is

w̃′v =

[
2x′1 − x′p

y′p

]
=

[
2(x1 − xT ) cos(µ)− 2(y1 − yT ) sin(µ)− (xp − xT ) cos(µ) + (yp − yT ) sin(µ)

(xp − xT ) sin(µ) + (yp − yT ) cos(µ)

]
.

(16)

Once we have found the virtual point, we need to return it to the original coordinate
system, applying the reverse process (Rotation - Translation). Hence, the virtual point in
the original coordinate system is

wv = A(−µ)w̃′v + wT . (17)

Below, two examples are presented for finding the virtual point with the proposed method.
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Figure 4: Two examples of finding a virtual point using the rotation method (2d).

Image of a point with respect to a line - 2D Model

For the sake of completeness, we re-calculated the virtual point for the general case with
a classical geometric method to see whether its results coincide with the ones of the rotation
method. Therefore, let two wall points w1 = (x1, y1), w2 = (x2, y2) and a p-th grid point
wp = (xp, yp).
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The equation of the line defined by the two points w1 and w2 is

y − y1 = λ (x− x1) , (18)

where λ is the slope of the line and is calculated as follows

λ =
y2 − y1

x2 − x1

. (19)

Firstly, we convert 18 into the form of ax+ by + c = 0,

−λ︸︷︷︸
a

x+ 1︸︷︷︸
b

y + λx1 − y1︸ ︷︷ ︸
c

= 0.
(20)

Hence, a = −λ, b = 1 and c = λx1 − y1. Also, the image of point wp in the line mirror
ax + by + c = 0 is the point wv = (xv, yv) such that wpwv line segment is perpendicular
to ax + by + c = 0 and the mid-point of the line segment wm =

(xp+xv
2

, yp+yv
2

)
lies on the

aforementioned line. Moreover, the slope of the line ax+ by + c = 0 is −a
b
. Thus, the slope

of the line segment wpwv is b
a
. Therefore, if wpwv makes an angle θ with x-axis, then it holds

that

tan(θ) =
b

a
⇒ (i) sin(θ) =

b√
a2 + b2

and (ii) cos(θ) =
a√

a2 + b2
. (21)

17



Proof. Firstly, we express cos(θ) as a function of sin(θ) and vice versa

tan(θ) =
sin(θ)

cos(θ)

⇔ sin(θ)

cos(θ)
=
b

a

⇔ sin(θ) =
b

a
cos(θ)

⇔ cos(θ) =
a

b
sin(θ).

(22)

Let the trigonometric identity

sin2(θ) + cos2(θ) = 1. (23)

By combining 22 and 23, we check if our claim (i) is true

sin2(θ) + cos2(θ) = 1⇔

sin2(θ) +
(a
b

sin(θ)
)2

= 1⇔

sin2(θ) +
a2

b2
sin2(θ) = 1⇔

sin2(θ)

(
1 +

a2

b2

)
= 1⇔

sin2(θ)

(
a2 + b2

b2

)
= 1⇔

sin2(θ) =

(
b2

a2 + b2

)
.

(24)

Note that the line segment wpwv, in all scenarios, creates an angle with the x-axis in the
range [0, π] (angle in radians), thus 0 ≤ θ ≤ π. This implies that 0 ≤ sin(θ) ≤ 1. Therefore,

sin(θ) =

(
b√

a2 + b2

)
. (25)

Similarly, from 22 and 25 we get

cos(θ) =
a

b

(
b√

a2 + b2

)
=

(
a√

a2 + b2

)
. (26)

The equation of line wpwv in distance form (parametric form) is

x− xp
cos(θ)

=
y − yp
sin(θ)

. (27)
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Let r be the length of the line segment wpwm. Then, the coordinates of wm are given by

x− xp
cos(θ)

=
y − yp
sin(θ)

= r. (28)

Hence, the coordinates of wm are (xp + r cos(θ), yp + r sin(θ)). Since, wm lies on ax+by+c =
0, it holds that

a (xp + r cos(θ)) + b (yp + r sin(θ)) + c = 0

⇒ r = − axp + byp + c

a cos(θ) + b sin(θ)

⇒ r = −axp + byp + c√
a2 + b2

.

(29)

The coordinates of wv are given by
x− xp
cos(θ)

=
y − yp
sin(θ)

= 2r

x− xp
a

=
y − yp
b

= −2
axp + byp + c√

a2 + b2

⇒


xv = −2a(axp + byp + c)

a2 + b2
+ xp

yv = −2b(axp + byp + c)

a2 + b2
+ yp.

(30)

�

Below, two examples are listed for finding the virtual point with the aforementioned
method.
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Figure 5: Two examples of finding a virtual point using the method that takes advantage of
angles and perpendicularity between the wall and the straight section that joins the target
to its image (2d).

Figures 4 and 5 represent the same scenarios, depicting the same virtual point. Therefore
the two methods are equivalent.
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3D Model

It is important for us to generalize the finding of the virtual point in three dimensions
so that we can describe the delays in more realistic conditions. Thus, let three wall points
w1 = [x1, y1, z1]>,w2 = [x2, y2, z2]>,w3 = [x3, y3, z3]> and a p-th grid point wp = [xp, yp, zp]

>.

Assume two vectors, which define a plane in 3d,

v1 = [x2 − x1, y2 − y1, z2 − z1]>,

v2 = [x3 − x1, y3 − y1, z3 − z1]>.
(31)

Our goal is to find a normal vector perpendicular to the plane defined by these vectors. In
view of that, we proceed with the calculation of their cross product, utilizing the following
”determinant” formula

n = v1 × v2 =

∣∣∣∣∣∣
î ĵ k̂

v1i v1j v1k

v2i v2j v2k

∣∣∣∣∣∣
=

∣∣∣∣v1j v1k

v2j v2k

∣∣∣∣ î− ∣∣∣∣v1i v1k

v2i v2k

∣∣∣∣ ĵ +

∣∣∣∣v1i v1j

v2i v2j

∣∣∣∣ k̂
=
(
v1jv2k − v1kv2j

)
î− (v1iv2k − v1kv2i) ĵ +

(
v1iv2j − v1jv2i

)
k̂

=
(
v1jv2k − v1kv2j

)
î + (v1kv2i − v1iv2k) ĵ +

(
v1iv2j − v1jv2i

)
k̂.

(32)

Thus, the normal vector is

n = 〈α, β, γ〉 , (33)

where

α = (y2 − y1) (z3 − z1)− (y3 − y1) (z2 − z1) ,

β = (x3 − x1) (z2 − z1)− (x2 − x1) (z3 − z1) ,

γ = (x2 − x1) (y3 − y1)− (y2 − y1) (y3 − y1) .
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The plane equation defined by the aforementioned normal vector and is satisfied by the point
[x, y, z] is given by

(x− x1)α + (y − y1) β + (z − z1) γ = 0. (34)

We can express the coordinates of the point [x, y, z] that satisfies 34 in a parametric formxy
z

 =

xpyp
zp

+ t

αβ
γ

 =

xp + αt
yp + βt
zp + γt

 . (35)

By substituting the coordinates [x, y, z] to the plane equation, we get

(x− x1)α + (y − y1)β + (z − z1)γ = 0⇔
αx+ βy + γz = αx1 + βy1 + γz1 ⇔

α(xp + αt) + β(yp + βt) + γ(zp + γt) = αx1 + βy1 + γz1 ⇔
αxp + α2t+ βyp + β2t+ γzp + γ2t = αx1 + bβy1 + γz1 ⇔

t =
α(x1 − xp) + β(y1 − yp) + γ(z1 − zp)

α2 + β2 + γ2
.

(36)

To find the virtual point, we have to move in the direction of the normal vector perpendicular
to the plane by a distance of 2t. Hence, the coordinates of the virtual point reflected by the
plane are xvyv

zv

 =

xpyp
zp

+ 2t

αβ
γ

 =

xp + 2αt
yp + 2βt
zp + 2γt

 . (37)

Below, two examples for finding the virtual point are depicted, using the aforementioned
cross-product method.
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Figure 6: Two examples of finding a virtual point using the cross-product method considering
3 known points that belong to a surface. (a) The surface represents a wall in front of the
target, (b) the surface represents the floor in a room (3d).

2.4 Multipath Mitigation

In our application, multipath propagation corresponds to indirect paths which involve
reflections at one or more interior walls, by which the signal may reach the target. The
dominant multipath component corresponds to a ”bistatic” scattering scenario. Namely, the
transmitted signal propagates directly to a scatterer and the scattered wave travels back to
the transceiver after being reflected by an interior wall, or the opposite.

The observations that are made in the previous paragraph concerning the multipath have
to be integrated into the model 6 . Let a maximum of K − 1 multipath propagation paths
and one direct path. For each considered propagation path k, a separate target reflectivity
vector s(k) is introduced. However, it is assumed that the target reflectivity corresponding
to each path is constant across the array elements. Therefore, 6 can be modified to

y =
K−1∑
k=0

Φ(k)s(k) = Φ(0)s(0) + Φ(1)s(1) + · · ·+ Φ(K−1)s(K−1). (38)

The received multipath components are expressed as the summation of the target reflectivity
vectors s(k) multiplied by the respective matrix Φ(k). The matrices include the modified
delays as described in 2.3, resulting in phase terms analogous to 5.

2.5 Group Sparse Reconstruction with known walls

The backscattered signal is distorted differently when it is reflected directly from the
target compared to when it is reflected from the target through an interior wall. Hence,
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we cannot assume prior knowledge of the exact relationship between the various target
reflectivity vectors s(k). However, we know that all the sub-vectors are representations of
the same ground-truth. If the i-th element of the sub-vector s(l) is non-zero, this should also
be the case for the i-th element of the vector s(m), {l 6= m | l,m ∈ {0, . . . , K − 1}}. This
observation calls for a group sparse or structured sparse reconstruction, which is described
below.

All unknown vectors in 38 can be stacked to form a tall vector

s̃ =
[(
s(0)
)> (

s(1)
)>

. . .
(
s(K−1)

)>]> . (39)

The measurement vector can then be expressed as

y = Φ̃s̃, s̃ ∈ CNxNyK×1, (40)

where the combined measurement matrix is obtained by concatenating the individual ma-
trices into one fat matrix

Φ̃ =
[
Φ(0) Φ(1) . . . Φ(K−1)

]
, Φ̃ ∈ CN×NxNyK . (41)

We proceed to reconstruct the unknown stacked reflectivity vector s̃ from the data record
y under model 40. It has been shown that a group sparse reconstruction can be obtained by
a mixed `1 − `2 norm [6],[7]

ˆ̃s = arg min
s̃

1

2
‖y − Φ̃s̃‖2

2 + λ‖s̃‖2,1, (42)

where

‖s̃‖2,1 :=

NxNy−1∑
p=0

∥∥∥[s(0)
p , s(1)

p , . . . , s(K−1)
p

]>∥∥∥
2

=

NxNy−1∑
p=0

√√√√K−1∑
k=0

s
(k)
p

(
s

(k)
p

)∗
, 2d model,

‖s̃‖2,1 :=

NxNyNz−1∑
p=0

∥∥∥[s(0)
p , s(1)

p , . . . , s(K−1)
p

]>∥∥∥
2

=

NxNyNz−1∑
p=0

√√√√K−1∑
k=0

s
(k)
p

(
s

(k)
p

)∗
, 3d model,

(43)

and λ > 0 is the so-called regularization parameter. According to [6] it is reasonable to
choose the regularization parameter as

λ = ζ
∥∥∥Φ̃†y∥∥∥

∞
, ζ ∈ (0, 1). (44)

Moreover, it can be shown that if λ ≥ ‖Φ̃†y‖∞, then the unique solution is the zero vector

[8],[9]. A value of λ such that λ . ‖Φ̃†y‖∞ can be considered ”large”, while a value such

For the 3d model holds that s̃ ∈ CNxNyNzK×1 and Φ̃ ∈ CN×NxNyNzK , respectively.
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that λ � ‖Φ̃†y‖∞ can be seen as small. Problem 42 can be solved using SpaRSA [6] or
YALL1-Group [7], by imposing a group-sparse constraint on the solution.

Once a solution ˆ̃s is obtained, the sub-vectors can be combined to form an overall vector
with a number of elements equal to the number of points on the grid. In the absence of
any knowledge of the phase of the individual reflectivities s

(k)
p , a reasonable choice is a non-

coherent combination. Hence, we obtain the final vector by forming the Euclidean norm over
each group. The elements of the composite vector ŝ are defined by

[ŝ]p =
∥∥∥[ŝ(0)

p , ŝ(1)
p , . . . , ŝ(K−1)

p

]>∥∥∥
2
, p = 0, . . . , NxNy − 12. (45)

The non-coherent combination of the sub-vectors does not provide SNR gain, as the
spatially white noise will also be accumulated. However, we are able, to enhance the signal-
to-clutter ratio. By employing the aforementioned scheme 45, we ensure that the power
scattered by the target, received through the direct path and multipath, is combined at the
true location. Little or no power is added to the remaining clutter.

Note that when K = 1 then problem 42 reduces to the classic complex LASSO problem

ˆ̃s = arg min
s̃

1

2
‖y − Φ̃s̃‖2

2 + λ‖s̃‖1

= arg min
s(0)

1

2
‖y −Φ(0)s(0)‖2

2 + λ‖s(0)‖1,
(46)

which can also be solved by SpaRSA or YALL1-Basic. Notice that SpaRSA uses a sequence
of sub-problems that can be solved efficiently and converges to the overall optimum solution.
YALL1-Group is based on an ADM, splitting the problem into two alternatingly solved
subproblems. Both methods can be applied to large-scale problems. However, only in [6] a
proof of convergence for this type of problems is given.

2.6 Sufficient Conditions

Intuitively, specific assumptions for a sensing matrix Φ̃ must hold such that a signal can
be reconstructed. If an important part of the signal lies in the null space of the matrix, there
is no way to reconstructing it. Several conditions and properties for the sensing matrix have
been presented such as the RIP [10],[11], mutual coherence [12],[13],[14], NSP [12] and UUP
[15]. The aforementioned conditions are able to provide a unique reconstruction. Below,
only RIP, mutual coherence and block-coherence are presented.

2For the 3d model p takes values in {0, . . . , NxNyNz − 1} .
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2.6.1 Mutual Coherence

For a given sensing matrix Φ̃ ∈ CN×P , the coherence is defined in [13] as

µ(Φ̃) = max
i,j 6=i

∣∣∣φ̃i†φ̃j∣∣∣∥∥∥φ̃i∥∥∥
2

∥∥∥φ̃j∥∥∥
2

, (47)

where φ̃i denotes the i-th column of Φ̃. Hence, the coherence of a matrix is the maximum
correlation between any two of its columns. The mutual coherence should be as low as
possible to obtain a faithful reconstruction. In other words, if any two columns are too similar
to each other, their effect on the vector y cannot be discerned leading to reconstruction
failure.

In the case of group sparse signals, the group pattern should be taken into consideration.
Therefore, the definition of mutual coherence has been extended to the block-coherence [16].
The block-coherence is a measure of the correlation between blocks of columns in Φ̃, rather
than individual columns as before. For simplicity, it is assumed that the groups occur in
blocks of size d in the sparse vector. The block-coherence of a matrix Φ̃ is defined in [16] as

µB(Φ̃) = max
i,j 6=i

1

d
ρ
(
Φ(i)†Φ(j)

)
,

Φ̃ =

[
φ̃1 . . . φ̃d︸ ︷︷ ︸

Φ(0)

φ̃d+1 . . . φ̃2d︸ ︷︷ ︸
Φ(1)

. . . φ̃P−d+1 . . . φ̃P︸ ︷︷ ︸
Φ(K−1)

]
,

(48)

where ρ(·) is the spectral norm and Φ(i) is the normalized sub-matrix of Φ̃ that contains all
columns belonging to the i-th block. Normalization of a matrix means that all columns are
scaled to have unit Euclidean norm. Note that for d = 1 the block-coherence is equal to the
regular coherence, furthermore in can be proved that 0 ≤ µB(Φ̃) ≤ 1 [17].

The advantage of mutual coherence and block-coherence is the ease of computation. For
a given matrix, 47 or 48 can be calculated numerically where the cost is linear in the number
of columns or blocks, respectively. Hence, performance bounds for a practical system can be
found. However, the theoretical results in terms of the RIP are more universal than for the
coherence.

To examine the effect of different carrier frequencies on Φ̃, we constructed a toy exam-
ple where the signal phase depends on the topology (such as in the section 4.1), but the
s(k), k = 0, . . . , K − 1 sub-vectors are constructed to have the same support. We assume
a 2d environment where we put a target at location (xtag, ytag) = (1.5, 2.7) and also we
consider that there is a parallel wall at known location yw = 4; hence K = 2 propagation
paths. The transceivers (N = 100) are arranged in a line array with zero y−coordinates
and x−coordinates that extend from −0.95 to 0.9310, with element spacing 0.019. A cell
array of Nx × Ny points is created, which represents the grid search space. Let j be the

Consider that for the 2 dimensional model it is valid that P = KNxNy,while for the 3 dimensional model
P = KNxNyNz, where K is defined as the number of propagation paths.
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index of the target in the grid search space. In order to create the reflectivities of the sim-
ulated signal, we construct the two zero vectors s(0) (for the direct path) and s(1) (for the
indirect path) and we replace the j−th element with the values 1 and 0.6, respectively. We
suppose that the signal has no noise in order to examine the effect of frequencies on the
matrix Φ̃. Therefore, our data vector y is constructed by the multiplication of the known

stacked vector s̃ =
[(
s(0)
)> (

s(1)
)>]>

and Φ̃. Below, Fig. 7 is depicted, which shows how

the block-coherence metric behaves at different carrier frequencies without the presence of
noise.
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Figure 7: Theoretical evaluation considering different metrics. (a) Contains the block co-
herence of the matrix Φ̃ vs various carrier frequencies, (b) represents the target estimation
error by changing the carrier frequency, (c) captures the support of the estimated compos-
ite vector ŝ for different frequencies, and (d) depicts the residual defined as the euclidean
norm between the estimated composite vector and the true composite vector for each carrier
frequency.

It is easy to observe that at carrier frequencies greater than 1.8 GHz, the method accu-
rately estimates the target. The efficiency of the method in this frequency range seems to
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be well explained by the fact that for high frequencies the block-coherence of matrix Φ̃ is
quite small.

Equally important is whether the distance between the antennas from measurement to
measurement affects the matrix Φ̃. Thus, we experimented by setting the carrier frequency
to fc = 868 MHz but changing the distance between adjacent antennas.

By referring to Fig. 8, we observe that for distances between neighboring antennas greater
than 5 cm the efficiency of the method is the best possible. Again, we see that this is achieved
when the block-coherence is small enough. This raises the necessity for a bound which will
link the efficiency of the method with the carrier frequency and the block-coherence of the
matrix Φ̃. Namely, we are looking for some inequality, which, when satisfied, can safely
guarantee the proper reconstruction of the vector s̃. However, this is a rather challenging
part that is assigned to future work and which is capable of opening new horizons in the
connection between narrowband systems and RFID tags.
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Figure 8: Theoretical evaluation considering different metrics. Note that (a), (b), (c), (d)
are exactly the same as Fig. 7 with the only difference that what varies concerning x-axis is
the inter-element spacing given the carrier frequency fc = 868 MHz.
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2.6.2 Restricted Isometry Property

The RIP for matrix Φ̃ ∈ CN×P is defined with respect to a given sparsity level ε and
isometry constant δε > 0. If Φ̃ obeys the RIP, the inequality

(1− δε) ‖s̃‖2
2 ≤ ‖Φ̃s̃‖2

2 ≤ (1 + δε) ‖s̃‖2
2 (49)

holds for any ε-sparse vector s̃ [10],[11]. For instance, consider that the RIP holds with small
isometry constants. That indicates that the Euclidean norm of any ε-sparse vector is merely
altered by the small constant 1±δε when multiplied with Φ̃. Thus, the energy of the signal is
maintained. Alternatively, any set of ε columns in Φ̃ is approximately linearly independent.
Hence, for a ε-sparse signal, the matrix behaves like an orthonormal matrix.

2.7 Compressive Sensing Localization Algorithm

Based on all the above, the algorithmic steps for 2d localization, are described in 1. A
similar procedure is followed for positioning a target in the 3d space. We introduce also a
method for the division of the initial grid search space. It makes sense to do this to reduce
computational complexity. More specifically, we can start with a fairly large grid, but rela-
tively sparse; then, find a solution to it, and immediately develop a new smaller but denser
grid around the previous solution. Thus, we will gradually come up with a better solution.
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Algorithm 1: CSLA - 2D (Compressive Sensing Localization Algorithm)

Result: Estimated Coordinates x̂, ŷ
1 Initialize tolerance between 10−2, 10−8, ζ ∈ (0, 1) and T (T ∈ N indicates how many

times we want the grid to be divided, if T = 1, then the grid will never be divided)
2 Collect measurements in a vector y
3 Select xstart, xend, ystart and yend points
4 Define the grid resolution dx and dy
5 grid coords := {}
6 [grid coords]=Create grid(xstart,xend,ystart,yend,dx,dy)
7 for t = 1 : T do

8 Φ̃ := []
9 for k = 0 : K − 1 do

10 Φ̃ =
[
Φ̃ Φ(k)

]
11 end

12 λ = ζ
∥∥∥Φ̃†y∥∥∥

∞
, ζ ∈ (0, 1)

13 [s̃] = SpaRSA(y, Φ̃, λ)

14 [ŝ]p =

∥∥∥∥[ŝ(0)
p , ŝ

(1)
p , . . . , ŝ

(K−1)
p

]>∥∥∥∥
2

15 [∼, idx] = max (ŝ)
16 [x̂, ŷ] = grid coords{idx}
17 [xstart, ystart, xend, yend, dx, dy, dist]=Shrink Grid{dist, dx, dy, x̂, ŷ}
18 end
19 return x̂, ŷ

Algorithm 2: Shrink Grid

Result: xstart, ystart, xend, yend, dx, dy, dist
1 Define dist at first place
2 Note that the variable dist symbolizes the distance from the progressive solutions to

the multiple grids
3 Initialize parameters α, β ∈ (0, 1)
4 dist = dist× β
5 dx = α× dx
6 dy = α× dy
7 xstart = x̂− dist
8 ystart = ŷ − dist
9 xend = x̂+ dist

10 yend = ŷ + dist
11 return xstart, ystart, xend, yend, dx, dy, dist

The parameters α, β in line 3 of the method Shrink Grid regulate the resolution and the
size of the grid, respectively. Finally, it is noted that these parameters take values in the
interval (0,1), because we progressively seek to shrink the grid.
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Chapter 3

Phase-based Variant Maximum Likelihood

In this section, a phase-based passive tag positioning method is adopted [18], based
on MLE. The likelihood function and the weight are reconstructed to mitigate the phase
uncertainty and improve the positioning performance in the presence of multipath. Moreover,
an extension of the original idea is presented, in particular, a method that does random
sampling on reference measurements is constructed and it is tested on both simulated and
real data.

3.1 Signal Model

The communication between an UHF-RFID reader and a passive tag depends on the
backscatter modulation resulting from the varying load impedance, which consists of the
forward and the backscatter link. The forward link powers the passive RFID tags, while the
backscatter link reads the message in the tags. Considering a narrowband RFID reader with
transceiver (Tx/Rx) , the transmitted signal at time t is given as

m (t) = µTx (t) cos (2πfct+ ϕTx) , (50)

where µTx denotes the amplitude, fc the carrier frequency, ϕTx the initial phase shift (caused
by the transmitter’s circuits and antenna) at the transmitter. The backscattered signal after
the round-trip propagation can be given by

xRx(t) = µRx(t) cos (2πfc (t− 2τ0) + ϕTx,Rx)xID (t− τ0) , (51)

where µRx is the received amplitude, τ0 = d
c

represents one-way time-of-flight between the
reader and the tag, d the distance from the antenna to the tag, and c the speed of light.
ϕTx,Rx represents the phase shift introduced by the transceiver’s hardware circuit and cables.
The signal xID contains the tag’s unique information i.e. EPC. Hence, the complex baseband
equivalent of the signal is

xBS(t) = µBS(t) exp {−j (4πfcτ0 + ϕTx,Rx + ϕtag)} , (52)

where µBS is the amplitude, and ϕtag is the phase shift caused by tag’s reflection character-
istic.

Assuming no multipath interference, the exported phase from 52 at the n-th observation
can be given by

φ[n] = 4πfcτ0 + ϕTx,Rx + ϕtag︸ ︷︷ ︸
ϕ0

τ0=
d[n]
λfc= 4π

d[n]

λ
+ ϕ0, (53)
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where λ = c/f is the wavelength. By referring to 53, the phase depends on the distance
between the transceiver and the tag as well as on the technical characteristics of the devices
involved. Additionally, the Impinj Speedway R420 RFID reader that we used in the experi-
ments does a modulo operation, which limits our phase measurements to the interval [0, 2π),
namely, φm = mod(φ, 2π).

3.2 Distribution

In this section we will study the distribution of the phase measurements through simu-
lations; similar conclusions have been drawn for the distribution of the phase measurements
and through experimental data in [18].
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Figure 9: Measured phases: (a) the histogram of measured phase and Gaussian PDF fitting,
(b) the STD of phase vs distance.

The measured phase is derived from the backscattered signal, which is always contami-
nated by the thermal noise and environmental clutter, leading to measurement errors. To
examine the statistical distribution of the measured phase, we created simulations consider-
ing different channels, and distances. In order to produce the Fig. 9 (a) and Fig. 9 (b) we
added on simulated data thermal noise w(t) modeled by a complex, circularly symmetric,
additive Gaussian noise process with the following power spectral density

Sww(F ) =

{
N0

2
, |F | ≤ BW

0, else,
(54)

where BW stands for receiver’s bandwidth, N0 = kT , k is the Boltzmann’s constant and
T is the receiver’s temperature in Kelvin’s scale. A single reflector is assumed as described

The parameters for the simulations were selected as BW = 2 MHz and T = 300 K.
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in the section 4.1 and only one tag is utilized to extract information. In Fig. 9 (a), the
normalized histogram of measured phases is depicted, along with the Gaussian PDF fitting
curve. The histogram seems to have a good match with the Gaussian PDF, so it is justified
to consider that the measured phases follow a Gaussian distribution as N (µ, σ2). Fig. 9 (b)
shows the STD of the measured phases, it presents a slow increase concerning the distance.
The STD of the measured phases can be approximated by σ = 0.008d − 0.01 rad using a
linear fitting. Furthermore, we observe that the STD has negligible variations of 0.01; hence
measured phases can be considered as a constant in a small range between 1.5 meters and 3
meters.

3.3 Maximum Likelihood Estimation

According to 3.2, the measured phases of the tag follow a Gaussian distribution, so it is
reasonable to utilize MLE in order to solve the tag localization problem. Considering the N
independent observations of the measured phases, the MLE is given by

Ptag = arg max
Ptag

N−1∏
n=0

1√
2πσ[n]

e
−

(φm[n]− mod ( 4π
λ
d[n]+ϕ0))

2

2σ2[n] , (55)

where d = ‖Pant −Ptag‖2 is the distance from the antenna’s (upon the reader) coordinates
Pant to the tag’s coordinates Ptag. Based on Fig. 9 (b), the STD can be considered as a
constant. Hence, 55 can be rewritten as

Ptag = arg max
Ptag

N−1∏
n=0

1√
2πσ

e−
(φm[n]− mod ( 4π

λ
d[n]+ϕ0))

2

2σ2

= arg max
Ptag

N−1∑
n=0

[
−
(
φm[n]− mod

(
4π

λ
d[n] + ϕ0

))2
]
.

(56)

For the same tag, phase shift ϕ0 can be regarded as almost constant when the antenna
moves along the tag (see [18] for the details on the feasibility of this assumption). Thus, a
differential mitigation method is utilized to mitigate the uncertain phase shift ϕ0. The first
scheme of the differential mitigation is the misaligned subtraction, in which differences of
adjacent measured phases are used in order to eliminate the impact of ϕ0. Define ∆φ

[n,n−1]
m =

φm[n]−φm[n− 1], and ∆ϕ
[n,n−1]
d = mod

(
4π
λ
d[n] + ϕ0

)
− mod

(
4π
λ
d[n− 1] + ϕ0

)
, so we have

Ptag = arg max
Ptag

N−1∑
n=1

[
−
(

∆φ[n,n−1]
m −∆ϕ

[n,n−1]
d

)2
]
. (57)

It holds that (proof is presented in the appendix *)

∆ϕ
[n,n−1]
d =

{
mod

(
4π
λ

∆d[n,n−1]
)
− 2π, ∆ϕ

[n,n−1]
d ∈ (−2π, 0)

mod
(

4π
λ

∆d[n,n−1]
)
, ∆ϕ

[n,n−1]
d ∈ [0, 2π).

(58)
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Figure 10: An example of phase jump when the actual phase is 1.95π rad.

The second scheme is selecting one of the measured phases as the reference φm[r], such
as the phase at the first recorded position. Thus, the tag’s position can be given as

Ptag = arg max
Ptag

N−1∑
n=0

[
−
(

∆φ[n,r]
m −∆ϕ

[n,r]
d

)2
]
, (59)

where ∆φ
[n,r]
m = φm[n]− φm[r], and

∆ϕ
[n,r]
d =

{
mod

(
4π
λ

∆d[n,r]
)
− 2π, ∆ϕ

[n,r]
d ∈ (−2π, 0)

mod
(

4π
λ

∆d[n,r]
)
, ∆ϕ

[n,r]
d ∈ [0, 2π).

(60)

According to 58 and 60, we observe that the phase uncertainty is mitigated. However, the
judging condition in 58 and 60, namely ∆ϕ

[n,n−1]
d ≷ 0 or ∆ϕ

[n,r]
d ≷ 0, is undecidable.

3.4 Likelihood Function Reconstruction

In the previous section, we studied the difference of phase measurements, through which
the phase uncertainty was reduced. However, a new problem arises, that of phase jumps as
a result of the modulo-2π operations. With regard to Fig. 10, when the phase takes values
in the borders of the interval [0, 2π], the measured phase may jump to the value left of 0 or

right of 2π. Hence, the likelihood function fNLF

(
∆φ

[n,r]
m | d

)
= −

(
∆φ

[n,r]
m −∆ϕ

[n,r]
d

)2

in 59,

which we could call as NLF, will cause large errors as a result of ∆φ
[n,r]
m sharp jumping when

the measured phase is at around 2π or 0 rad. For instance, when the actual measured phase
φm[r] = 1.6π rad and φm[n] = 1.95π rad, the phase difference is ∆φ

[n,r]
m = 0.35π rad. But
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due to noise or other interference, φm[n] may jump to 0.03π rad, and then ∆φ
[n,r]
m = −1.57π

rad, which causes massive offset to the NLF.
To eliminate the discontinuities caused by the phase jump, a trigonometric function trans-

formation is exploited. The cosine function is a good choice as it reduces sharp transitions
from 0 to 2π or vice versa. Observe that 59 can be expressed as a function of the co-
sine, according to the second-order Taylor series. Thus, the maximum likelihood positioning
estimation can be converted as

Ptag = arg max
Ptag

N−1∑
n=0

[
−
(

∆φ[n,r]
m −∆ϕ

[n,r]
d

)2
]

≈ arg max
Ptag

N−1∑
n=0

[
2 cos

(
∆φ[n,r]

m −∆ϕ
[n,r]
d

)
− 2
]

= arg max
Ptag

N−1∑
n=0

cos
(

∆φ[n,r]
m −∆ϕ

[n,r]
d

)
︸ ︷︷ ︸

fCLF

(
∆φ

[n,r]
m |d

)
,

(61)

where the reconstructed likelihood function in 61 is called CLF and marked as fCLF (∆φm | d)
(see * the proof of why the approximate equality holds). In addition, it is worth noting that
the cosine transformation also eliminates the condition judgment (the decision) in 60, since

the term −2π when ∆ϕ
[n,r]
d ∈ (−2π, 0) will not change the value of the likelihood function

as a result of the cosine transformation. More specifically, recall the useful trigonometric
identity cos(2π + x) = cos(x); utilizing this property we get that

• If ∆ϕ
[n,r]
d ∈ [0, 2π), then

cos
(

∆φ[n,r]
m −∆ϕ

[n,r]
d

)
= cos

(
∆φ[n,r]

m − mod

(
4π

λ
∆d[n,r]

))
. (62)

• If ∆ϕ
[n,r]
d ∈ (−2π, 0), then

cos
(

∆φ[n,r]
m −∆ϕ

[n,r]
d

)
= cos

(
∆φ[n,r]

m −
(

mod

(
4π

λ
∆d[n,r]

)
− 2π

))
= cos

(
∆φ[n,r]

m − mod

(
4π

λ
∆d[n,r]

)
+ 2π

)
= cos

(
∆φ[n,r]

m − mod

(
4π

λ
∆d[n,r]

))
,

(63)

which confirms the extermination of the ∆ϕ
[n,r]
d ≷ 0 condition.

In closing, the measurements must be evaluated for their quality. Namely, in real condi-
tions RFID signal may contain contaminated components from the thermal noise, reflection,
scattering, or other interference. Hence, the contaminated phase will contain an offset with
the actual phase. To deal with the incident, a weighted MLE is utilized to augment the
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likelihood function. The component with a smaller bias compared with the calculated phase
will be assigned a larger weight. The weighted MLE can be given as

Ptag = arg max
Ptag

N−1∑
n=0

w[n]fCLF
(
∆φ[n,r]

m | d
)
, (64)

where w[n] ∈ [0, 1] is constructed based on the fact that large values of
(

∆φ
[n,r]
m −∆ϕ

[n,r]
d

)
will be punished. Thus, the weights can be given by

w[n] =
∣∣fCLF (∆φ[n,r]

m | d
)∣∣ . (65)
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3.5 Algorithms

Below, the algorithms for determining the position of a tag in 2d are listed. The methods
easily extend to 3d, simply by adding another z dimension to the grid search space. Note
that Scheme 1 refers to the fact that the phase measurement differences are taken in pairs
between adjacent antennas. As mentioned above, Scheme 2 is referring to selecting one of
the measured phases as the reference, such as the phase at the first recorded position, and
calculate all the differences between this reference measured phase and all the others.

Algorithms 3 and 4 do not take advantage of any property of a trigonometric function
to deal with possible phase discontinuities, nor do they use any weight to mitigate the
multipath. They try to directly maximize the likelihood of measurements’ differences and
that is why it is characterized as naive.

For algorithms 5 and 6, the cosine is used as an approximation through the Taylor series
of the cost function and, through the absolute value of this function, weights are generated
that are able to evaluate the quality of measurements.

Finally, algorithms 7 and 8 are an extension of algorithm 6. In particular, algorithm 7
exhaustively examines all possible measurements as a reference and concludes which of them
maximizes the cost function. Algorithm 8 examines a subset, which is randomly selected.
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Algorithm 3: Naive Likelihood Algorithm (NLA) - Scheme 1

Result: Estimated Coordinates x̂, ŷ
1 Let φm the vector with the measured phases wrapped within [0, 2π)
2 Preader are the coordinates of the reader for all the recorded measurements and N is

the number of measurements
3 Select xstart,xend, ystart and yend points.
4 Define the grid resolution dx and dy
5 grid coords := {}
6 candidate values := []
7 [grid coords]=Create grid(xstart,xend,ystart,yend,dx,dy)
8 for Ptag in grid coords do
9 cost f = 0

10 for n = 2 : N do

11 ∆φ
[n,n−1]
m = φm[n]− φm[n− 1]

12 d[n− 1] =
∥∥∥Ptag − P [n−1]

reader

∥∥∥
2

13 d[n] =
∥∥∥Ptag − P [n]

reader

∥∥∥
2

14 ∆ϕ
[n,n−1]
d = mod

(
4π
λ
d[n] + ϕ0

)
− mod

(
4π
λ
d[n− 1] + ϕ0

)
15 ∆d[n,n−1] = d[n]− d[n− 1]

16 ∆ϕ
[n,n−1]
d =

{
mod

(
4π
λ

∆d[n,n−1]
)
− 2π, ∆ϕ

[n,n−1]
d ∈ (−2π, 0)

mod
(

4π
λ

∆d[n,n−1]
)
, ∆ϕ

[n,n−1]
d ∈ [0, 2π)

17 cost f = cost f −
(

∆φ
[n,n−1]
m −∆ϕ

[n,n−1]
d

)2

18 end
19 candidate values = [candidate values cost f ]

20 end
21 [∼, idx] = max (candidate values)
22 est coords = grid coords {idx}
23 [x̂, ŷ] = est coords
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Algorithm 4: Naive Likelihood Algorithm (NLA) - Scheme 2

Result: Estimated Coordinates x̂, ŷ
1 Let φm the vector with the measured phases wrapped within [0, 2π)
2 Preader are the coordinates of the reader for all the recorded measurements and N is

the number of measurements
3 Select xstart,xend, ystart and yend points
4 Define the grid resolution dx and dy
5 Select r ∈ {1, . . . , N} index for the reference phase
6 grid coords := {}
7 candidate values := []
8 [grid coords]=Create grid(xstart,xend,ystart,yend,dx,dy)
9 for Ptag in grid coords do

10 cost f = 0
11 for n = 1 : N , n 6= r do

12 ∆φ
[n,r]
m = φm[n]− φm[r]

13 d[r] =
∥∥∥Ptag − P [r]

reader

∥∥∥
2

14 d[n] =
∥∥∥Ptag − P [n]

reader

∥∥∥
2

15 ∆ϕ
[n,r]
d = mod

(
4π
λ
d[n] + ϕ0

)
− mod

(
4π
λ
d[r] + ϕ0

)
16 ∆d[n,r] = d[n]− d[r]

17 ∆ϕ
[n,r]
d =

{
mod

(
4π
λ

∆d[n,r]
)
− 2π, ∆ϕ

[n,r]
d ∈ (−2π, 0)

mod
(

4π
λ

∆d[n,r]
)
, ∆ϕ

[n,r]
d ∈ [0, 2π)

18 cost f = cost f −
(

∆φ
[n,r]
m −∆ϕ

[n,r]
d

)2

19 end
20 candidate values = [candidate values cost f ]

21 end
22 [∼, idx] = max (candidate values)
23 est coords = grid coords {idx}
24 [x̂, ŷ] = est coords
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Algorithm 5: Weighted Cosine Likelihood Algorithm (WCLA) - Scheme 1

Result: Estimated Coordinates x̂, ŷ
1 Let φm the vector with the measured phases wrapped within [0, 2π)
2 Preader are the coordinates of the reader for all the recorded measurements and N is

the number of measurements
3 Select xstart,xend, ystart and yend points
4 Define the grid resolution dx and dy
5 grid coords := {}
6 candidate values := []
7 [grid coords]=Create grid(xstart,xend,ystart,yend,dx,dy)
8 for Ptag in grid coords do
9 cost f = 0

10 for n = 2 : N do

11 ∆φ
[n,n−1]
m = φm[n]− φm[n− 1]

12 d[n− 1] =
∥∥∥Ptag − P [n−1]

reader

∥∥∥
2

13 d[n] =
∥∥∥Ptag − P [n]

reader

∥∥∥
2

14 ∆d[n,n−1] = d[n]− d[n− 1]

15 w[n] =
∣∣∣cos

(
∆φ

[n,n−1]
m − 4π

λ
∆d[n,n−1]

)∣∣∣
16 cost f = cost f + w[n] cos

(
∆φ

[n,n−1]
m − 4π

λ
∆d[n,n−1]

)
17 end
18 candidate values = [candidate values cost f ]

19 end
20 [∼, idx] = max (candidate values)
21 est coords = grid coords {idx}
22 [x̂, ŷ] = est coords
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Algorithm 6: Weighted Cosine Likelihood Algorithm (WCLA) - Scheme 2

Result: Estimated Coordinates x̂, ŷ
1 Let φm the vector with the measured phases wrapped within [0, 2π)
2 Preader are the coordinates of the reader for all the recorded measurements and N is

the number of measurements
3 Select xstart,xend, ystart and yend points
4 Define the grid resolution dx and dy
5 Select r ∈ {1, . . . , N} index for the reference phase
6 grid coords := {}
7 candidate values := []
8 [grid coords]=Create grid(xstart,xend,ystart,yend,dx,dy)
9 for Ptag in grid coords do

10 cost f = 0
11 for n = 1 : N , n 6= r do

12 ∆φ
[n,r]
m = φm[n]− φm[r]

13 d[r] =
∥∥∥Ptag − P [r]

reader

∥∥∥
2

14 d[n] =
∥∥∥Ptag − P [n]

reader

∥∥∥
2

15 ∆d[n,r] = d[n]− d[r]

16 w[n] =
∣∣∣cos

(
∆φ

[n,r]
m − 4π

λ
∆d[n,r]

)∣∣∣
17 cost f = cost f + w[n] cos

(
∆φ

[n,r]
m − 4π

λ
∆d[n,r]

)
18 end
19 candidate values = [candidate values cost f ]

20 end
21 [∼, idx] = max (candidate values)
22 est coords = grid coords {idx}
23 [x̂, ŷ] = est coords
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Algorithm 7: Deterministic Sampling - Weighted Cosine Likelihood Algorithm
(DSWCLA) - Proposed Approach-1

Result: Estimated Coordinates x̂, ŷ
1 Let φm the vector with the measured phases wrapped within [0, 2π).
2 Preader are the coordinates of the reader for all the recorded measurements and N is

the number of measurements.
3 Select xstart,xend, ystart and yend points
4 Define the grid resolution dx and dy
5 ref points = 1 : N
6 values := []
7 indices := []
8 grid coords := {}
9 [grid coords]=Create grid(xstart,xend,ystart,yend,dx,dy)

10 for ref idx in ref points do
11 r = ref idx
12 candidate values := []
13 for Ptag in grid coords do
14 cost f = 0
15 for n = 1 : N , n 6= r do

16 ∆φ
[n,r]
m = φm[n]− φm[r]

17 d[r] =
∥∥∥Ptag − P [r]

reader

∥∥∥
2

18 d[n] =
∥∥∥Ptag − P [n]

reader

∥∥∥
2

19 ∆d[n,r] = d[n]− d[r]

20 w[n] =
∣∣∣cos

(
∆φ

[n,r]
m − 4π

λ
∆d[n,r]

)∣∣∣
21 cost f = cost f + w[n] cos

(
∆φ

[n,r]
m − 4π

λ
∆d[n,r]

)
22 end
23 candidate values = [candidate values cost f ];

24 end
25 [val, idx] = max (candidate values)
26 values := [values val]
27 indices := [indices idx]

28 end
29 [∼, idx] = max (values)
30 est coords = grid coords {indices (idx)}
31 [x̂, ŷ] = est coords
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Algorithm 8: Random Sampling - Weighted Cosine Likelihood Algorithm
(RSWCLA) - Proposed Approach-2

Result: Estimated Coordinates x̂, ŷ
1 Let φm the vector with the measured phases wrapped within [0, 2π)
2 Preader are the coordinates of the reader for all the recorded measurements and N is

the number of measurements
3 Select xstart,xend, ystart and yend points
4 Define the grid resolution dx and dy
5 ref points ⊂ 1 : N % Select randomly

⌈
N
l

⌉
unique elements from 1 : N , 1 ≤ l ≤ N

6 values := []
7 indices := []
8 grid coords := {}
9 [grid coords]=Create grid(xstart,xend,ystart,yend,dx,dy)

10 for ref idx in ref points do
11 r = ref idx
12 candidate values := []
13 for Ptag in grid coords do
14 cost f = 0
15 for n = 1 : N , n 6= r do

16 ∆φ
[n,r]
m = φm[n]− φm[r]

17 d[r] =
∥∥∥Ptag − P [r]

reader

∥∥∥
2

18 d[n] =
∥∥∥Ptag − P [n]

reader

∥∥∥
2

19 ∆d[n,r] = d[n]− d[r]

20 w[n] =
∣∣∣cos

(
∆φ

[n,r]
m − 4π

λ
∆d[n,r]

)∣∣∣
21 cost f = cost f + w[n] cos

(
∆φ

[n,r]
m − 4π

λ
∆d[n,r]

)
22 end
23 candidate values = [candidate values cost f ]

24 end
25 [val, idx] = max (candidate values)
26 values = [values val]
27 indices = [indices idx]

28 end
29 [∼, idx] = max (values)
30 est coords = grid coords {indices (idx)}
31 [x̂, ŷ] = est coords

It is worth noting that if l = N then algorithm 8 is identical to the algorithm 6.
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Chapter 4

Simulations

In this section, we tested the performance of our algorithms under some assumptions as
well as the effect of frequency on the constructed phases. The performance of the algorithms
was measured with metrics that capture the mean error after many experiments. Below we
explain, which metrics were selected.

Let x be the actual coordinates of a tag in either a 2d or 3d environment and x̂ the
estimation of the coordinates resulting from the algorithms. Therefore the error is defined as
e := ‖x− x̂‖2. In our experiments two metrics where utilized MAE and RMSE, in particular
MAE was set as E {e} and RMSE as

√
E {e2}. The same metrics for evaluating algorithms

were used in the experimental section. It is worth noting that due to the triangular inequality,
we expect that E {e} ≤

√
E {e2} to be valid. The aforementioned metrics were also used in

the experimental section.
Lastly, for all of the simulations, the parameter r in algorithm 4 was chosen to be 1. This

implies that the first measurement is chosen as reference. Additionally, the regularization

parameter λ in algorithm 1 was set as λ = 0.95‖Φ̃†y‖∞, and T = 1 assuming no grid division.
Finally, for the algorithm 8, l parameter was chosen as l = 4.

4.1 Measurement Model

In the simulations, the received signal in the presence of one tag and one carrier frequency
fc modeled as follows. For the direct link it holds that

x[n] =
√

2Pc s |γ0 − γ1| GTx GRx

(
λ

4πd
(n)
0

)2

exp

(
−j4πd

(n)
0

λ

)
, (66)

where Pc is the carrier transmission power at passband, s is the power reflection coefficient,
γ0, γ1 are the antenna loads, λ is the wavelength and d

(n)
0 is the distance of the direct

path between the tag and the n-th transceiver. Let
(
x

(n)
T , y

(n)
T

)
the coordinates of the n-th

transceiver and (xtag, ytag) are the coordinates of the tag. Thus,

d
(n)
0 =

√(
xtag − x(n)

T

)2

+
(
ytag − y(n)

T

)2

. (67)

Finally, GTx is the gain of the transmitting antenna in the direction of the receiving antenna
and GRx

3 is the gain of the receiving antenna.
The equation 66 is approximate because, in general, the quantities of GTx and GRx are

dependent from the wavelength, λ, therefore, from the modulation frequency. What stays

3Note that we set GTx = GRx = 1 and s is expressed in the amplitude of the signal.
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approximate is that “the power of the received signal at the edge of the receiving antenna
increases when the wavelength increases, that is, the modulation frequency decreases”.

According to Fig. 2 the clutter is given by the equation

z[n] = γw
√

2Pc s |γ0−γ1| GTx GRx

(
λ

4πd
(n)
0

)(
λ

4πd
(n)
r

)
exp

−j2π
(
d

(n)
0 + d

(n)
r

)
λ

 , (68)

where γw ∈ (0, 1) is a parameter that specifies the percentage of the signal that will fade

when the signal hits the wall. Also d
(n)
r is the distance of the indirect path and is calculated

using the virtual point. As a result, if there is a wall at position xw parallel to y-axis the
distance between the virtual point and the n-th transceiver will be

d(n)
r =

√(
2xw − xtag − x(n)

T

)2

+
(
ytag − y(n)

T

)2

. (69)

White Complex Gaussian noise assumed w[n] ∼ CN (0, σ2). More precisely,

σ2 =
E{|x[n] + z[n]|2}

10
SNR
10

. (70)

Thus, the noisy received signal is

y[n] = x[n] + z[n] + w[n]. (71)

4.2 Plots

4.2.1 Measured Phase in different carrier frequencies

It is important to consider how phase measurements are affected by the carrier frequency,
for a given topology.
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Figure 11: Measured phase for a given topology. The phase for frequency fc = 860 MHz is
presented in blue, and the phase for frequency fc = 2.4 GHz in red.

Observing Fig. 11 one can easily see that when the carrier frequency increases then
the phase seems to have large fluctuations. Hence, for adjacent antenna positions, more
intensely phase differences are possible for large frequencies, something that results in greater
resolution.

4.2.2 Evaluation - 2D Model

Below, we will examine how our algorithms behave in the case of two dimensions, i.e. the
reader’s antenna is at the same height as the tag. In cases where only the direct link was
modeled, according to section 4.1, the parameters were selected as Pc = 0.1 Watt, s = 0.1,
GTx = 1, GRx = 1, γ0 = 0, γ1 = 1. For the case of a possible reflector, the γw parameter was
set to 0.5. The number of measurements (N), the carrier frequency (fc), and the distance
between the transceivers (inter-element spacing) will always be indicated in the title of the
figures. Finally, it is worth noting that in all the following experiments, we assumed a 1× 1
grid with resolution dx = dy = 0.1, and placed the tag in the coordinates of the grid so that
we can guarantee that it is possible to accurately locate the tag.

Direct path modeling - 2D Model

In Fig. 12, we investigate the case of the presence of only the direct path; for instance,
the signal propagates freely in space reflecting only on the target and not on an adjacent
wall.
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Figure 12: (a) Topology (2d) of the transceivers and the tag, no wall assumed. (b) SNR vs
RMSE 100 Monte Carlo experiments in the presence of white complex gaussian noise.

We observe that all algorithms from 30 SNR in dB and above result in zero error in es-
timating the tag coordinates. Moreover, the algorithms SpaRSA, DSWCLA, and RSWCLA
seem to be more resilient to stronger noise compared to WCLA methods for both schemes.

In Fig. 13, we produce the same scenario as in Fig. 12 with the only difference that
we have placed a wall at position xw = 3, in order to study the effect of a reflector on the
algorithms in terms of performance, despite the under-modeling.
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Figure 13: (a) Topology (2d) of the transceivers and the tag, a wall assumed at position
xw = 3. (b) SNR vs RMSE 100 Monte Carlo experiments in the presence of white complex
gaussian noise.
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What we find is that the non-white noise introduced by the multipath seems to reduce
the performance of the algorithms in terms of estimation error. In particular, we observe
that zero error is achieved for slightly higher SNRs than in the previous case, where we
assumed only LoS, and that the RSWCLA algorithm does not seem to be able to achieve
zero error for the given number of measurements.

Direct and indirect path modeling - 2D Model

Our next goal was to build a scenario through which the performance of the modeling of
a possible reflector in space will be evaluated. Modeling requires knowledge of the location
of the adjacent wall where some reflection will occur. It makes sense in the same scenario to
compare the results of the under-modeling that SpaRSA can offer.
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Figure 14: (a) Topology (2d) of the transceivers and the tag, a wall assumed at position
xw = 2. (b) SNR vs RMSE 100 Monte Carlo experiments in the presence of white complex
gaussian noise.

Thus, in Fig. 14 we have placed a wall in position xw = 2 to enhance the multipath
effect, but we have increased the number of measurements from 100 to 150. What we
find is that wall modeling greatly enhances the performance of the algorithm SpaRSA by
solving a group sparse problem given the specific topology, while wall under-modeling leads
to degraded performance.

After checking the behavior of the system for parallel walls with respect to the y′y-axis,
our next thought was to test a scenario in which the wall would be parallel to the x′x-axis
and therefore parallel to the transceivers.
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Figure 15: (a) Topology (2d) of the transceivers and the tag, a wall assumed at position
yw = 5 (wall is parallel to transceivers), low carrier frequency and inter-element spacing < λ

10

between the antennas was considered. (b) SNR vs RMSE 100 Monte Carlo experiments in
the presence of white complex gaussian noise.

By observing Fig. 15, we find that given the topology and the distance between the
transceivers, the modeling of the reflector leads to a larger error than if we did not model it
at all. To discover if this is not due to an inaccurate solution of the optimization problem
that SpaRSA solves we also included the Dual-Based ADM for Group Sparsity algorithm
that has been implemented under the framework called YALL1-Group. We find that the
algorithms have almost the same performance for different SNR values, so our next thought
was to check what effect the distance between the transceivers has on the estimation.
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Figure 16: (a) Topology (2d) of the transceivers and the tag, a wall assumed at position
yw = 5 (wall is parallel to transceivers), low carrier frequency and inter-element spacing > λ

10

between the antennas was considered. (b) SNR vs RMSE 100 Monte Carlo experiments in
the presence of white complex gaussian noise.

Surprisingly, looking at Fig. 16, we find that by changing the distance between the
transceivers so that it is greater than λ

10
, the performance of the algorithm with the modeling

becomes meaningful again. However, in practical scenarios such as being in a room, it is
not easy to spread the measurements enough to meet the requirements for good modeling.
To deal with this difficulty we can increase the carrier frequency in order to reduce the
wavelength. What we expect based on section 2.6.1 is to build a matrix Φ̃, which will lead
to a better solution by solving the group sparse optimization problem, despite the relatively
short distance between the transceivers.
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Figure 17: (a) Topology (2d) of the transceivers and the tag, a wall assumed at position
yw = 5 (wall is parallel to transceivers), high carrier frequency and inter-element spacing
> λ

10
between the antennas was considered. (b) SNR vs RMSE 100 Monte Carlo experiments

in the presence of white complex gaussian noise.

Fig. 17 confirms that a high frequency can lead to zero error; it is very impressive that
for all SNRs the performance of the algorithms either with full modeling or with under-
modeling is perfect. This finding pushes us in the direction of making custom tags that will
work on Wi-Fi frequencies, except for the already existing standard function of commercial
tags around 868 MHz.

4.2.3 Evaluation - 3D Model

In the last part of the simulations, we will examine the operation of our algorithms in the
case of three dimensions, which implies that the reader’s antenna and the tag are at different
heights. The parameters were selected as in section 4.2.2. Finally, we should highlight that in
all the following experiments we assumed a 1×1×1 grid with resolution dx = dy = dz = 0.1,
and placed the tag in the coordinates of the grid so that we can guarantee that we can
accurately target the solution.

Direct path modeling - 3D Model

In Fig. 18, we produce a scenario closer to real conditions given that we generalize to
the three dimensions. In the first place, only a direct path is assumed.
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Figure 18: (a) Topology (3d) of the transceivers and the tag, no wall assumed. (b) SNR vs
RMSE 100 Monte Carlo experiments in the presence of white complex gaussian noise.

As in the case of the two dimensions, we observe again that all algorithms from 30 SNR in
dB and above lead to zero error in estimating the target. It is noted again that the SpaRSA,
DSWCLA, and RSWCLA algorithms are superior to all the others in low SNRs given the
topology.

It would be interesting to see again how our algorithms behave in the presence of a wall
in three dimensions by under-modeling the reflection that is created. What we expect is a
degraded performance due to the reflector that we do not take into account.
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Figure 19: (a) Topology (3d) of the transceivers and the tag, a wall assumed, which is fully
described by the three points {(−1.5, 5, 0) , (2, 5, 0) , (0, 4, 5)}. (b) SNR vs RMSE 100 Monte
Carlo experiments in the presence of white complex gaussian noise. Under-modeling was
adopted by all methods.
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Indeed, based on Fig. 19, we confirm our assumptions, finding that even for large SNRs,
the algorithms never manage to make an accurate estimation of the target.

Direct and indirect path modeling - 3D Model

Finally, we inspect the performance of the SpaRSA algorithm taking into account the
reflection created by a known wall in three dimensions. As mentioned in section 2.3, to fully
describe a surface in three dimensions we need three points that belong to it. Through these
three points the vector that is perpendicular to the surface can be found and consequently,
the virtual point. Therefore, after considering these points, we simulate the modeling and
produce Fig. 20, which suggests that if we take the reflection created in this wall into
account, the error becomes zero for SNR values greater than 18.
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Figure 20: (a) Topology (3d) of the transceivers and the tag, a wall assumed, which is
fully described by the three points {(−1.5, 5, 0) , (2, 5, 0) , (0, 4, 5)}. (b) SNR vs RMSE 100
Monte Carlo experiments in the presence of white complex gaussian noise. Under-modeling
vs Exact-modeling is depicted.
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Chapter 5

Real data experiments

Four indoor experimental campaigns were performed, with an Impinj Speedway R420
RFID reader. By exploiting Impinj’s LTK API, a software was developed to control the
reader parameters [19].

5.1 Measurement Processing

The SpaRSA method, which solves an optimization problem, uses data described in sec-
tion 2.1 theoretically, and in section 4.1 modeling the signal of a tag at the simulation level.
In practice, the reader that we used in our experiments provides RSSI measurements and
phase measurements. Due to the modeling we described in the previous sections, it makes
sense to use both phase and RSSI measurements. In particular, if µRS is the RSSI measure-
ment vector, which is converted from dBms to volts and φreader is the phase measurement
vector in the interval [0, 2π), then the measurements that will be included in the algorithm
are

y = µRS � e−jφreader . (72)

The probabilistic methods as mentioned in section 3 utilize only the phase vector φreader.
For all the campaigns the carrier frequency was regulated at fc = 866.9 MHz, and for the

algorithms 4, 6 the first measurement was always chosen as the reference measurement, for
all the cases. Therefore, we assume that r = 1. Moreover, the regularization parameter λ in

algorithm 1 was set at λ = 0.95‖Φ̃†y‖∞ and T = 1 for all the campaigns, which indicates
that we assume no grid division. Finally, for the algorithm 8, l parameter was chosen as
l = 4 for campaigns 1,2 and l = 80 for campaigns 3,4, due to the increased number of
measurements.

How to convert dBm to watts and watts to volts

The power conversion of dBm to watts is given by the formula

P (W ) = 1W
10

(
P(dBm)

10

)
1000

= 1W 10
(P(dBm)−30)

10 . (73)

Power to Voltage Conversion in a R = 50 Ω System is

Vpeak(V ) =
√

2P (W )R [V ]. (74)

For campaigns 1,2, and 3 a 1×1 grid with resolution dx = dy = 0.01 was considered for all the methods.
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5.2 Campaign-1: Hall Measurements (2D)

In the first campaign Fig. 21, the reader was connected to an MTI MT-242032 7 dBi
antenna via a 0.9 dB loss coaxial cable. Alien ALN-9540 (Higgs-2) tag was employed at
fixed distances. Reader transmission (Tx) power was configured in the range of 20 dBm to
30 dBm. The antenna was moved manually along a 3 m line at intervals of 5 cm, tag was
placed at the bisector of the antenna’s trajectory at distance of 1 m. The antenna and the
tag were placed at a height of 1.52 m. Tag interrogations lasting 4 seconds were tested at
every position of the antenna, for each of the different Tx power levels.
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Figure 21: (a) Baseline experimental campaign-1: light multipath environment with manual
movement of the reader antenna. (b) Topology at Pc = 30 dBm.

Based on Fig. 22, we find that as we increase the transmission power, the number of
measurements also increases.
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Figure 22: Number of measurement vs Tx Power.

Results for the light multipath environment are depicted in Fig. 23 , where we observe
that the algorithms SpaRSA with only modeling the direct link, RSWCLA and DSWCLA
perform better than all the others in terms of ”absolute” error as we expected based on the
simulations. Note that for this campaign we are not referring to mean absolute localization
error, because we have only one tag in different power levels. Finally, the other methods also
perform satisfactorily but with several fluctuations.
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Figure 23: Campaign-1 localization error vs Tx power.

5.3 Campaign-2: Manual Measurements Lab (2D)

In the second campaign Fig. 24, a manual reader movement setup was tested again with
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15 tags on books, packed on a bookshelf, with an approximately 5 cm distance between
them. Measurements were captured every 5 cm and reader transmission (Tx) power was
configured in the range of 20 dBm to 30 dBm with step 1, similar to the first campaign.
The purpose of this campaign was to test the algorithms in a harsh environment, given the
presence of reflections from the interior walls.

Figure 24: Indoor harsh multipath environment a commercial RFID reader on a static pole.

Increasing the transmission power we notice that more measurements are captured Fig.
25. However, this increase in power is capable of producing more reflections and confuse the
algorithms. In addition, due to the reduced capacity of the room, the measurements can not
be too many given the fact that we required a distance of 5 cm between the measurements.
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Figure 25: Number of measurements per tag at different power levels - Manual Measurements
(2d).
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The performance of the algorithms in terms of estimation error is shown in Fig. 26. As
expected, the average error for 15 tags seems quite high compared to that of the first cam-
paign, as the reflections generated by the room have not been taken into account. However,
we get satisfactory results from the SpaRSA, RSWCLA and DSWCLA methods. Especially,
SpaRSA delivers a significant performance at 30 dBm with an error of less than 10 cm in
terms of MAE.
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Figure 26: Campaign-2 localization error vs Tx power across 15 tags.

5.4 Campaign-3: Kobuki Measurements Lab (2D)

(a) (b)

Figure 27: (a) Indoor harsh multipath environment. A commercial RFID reader on an
autonomous robotic platform scans and localizes the tags. (b) Real map of the office produced
by the Cartographer algorithm. The robot’s estimated trajectory from AMCL along with
the true tag locations can be seen.
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In the third campaign Fig. 27, a custom robotic setup was utilized as in [19]. The robot
was a Turtlebot2 with a Kobuki mobile base for motion support, equipped with a Hokuyo
UST-20LX LIDAR sensor for SLAM operations. The same reader as in campaigns 1 and 2
was placed upon the robot and measurements were received at 20 and 30 dBm, respectively.
The cable and antenna were replaced by smaller counterparts, a 0.74 dB loss coaxial cable,
and a FlexiRay SF-2110 5 dBi antenna. The antenna and 15 Alien ALN-9740 (Higgs-4)
tags were placed at a lower height of 1.1m further increasing the contribution of multipath.
During the experiments, the localization was performed using AMCL [20] and a map of
the room was created using Google’s Cartographer [21] Fig. 27 (b). The robot’s speed
was regulated at 10 cm/sec and measurements were received continuously with an average
distance between them 0.5 cm.

Given the short inter-element spacing (0.5 cm in average) the number of measurements
increased by a very large percentage for each tag compared to campaign 2 Fig. 28.
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Figure 28: Number of measurements per tag at different power levels of the reader equipped
on kobuki (2d).

The results of this campaign in terms of average error across 15 tags are depicted in
Fig. 29. What we notice is that the error has increased sharply for all methods compared
to the previous 2 campaigns, although the number of measurements has increased. This is
probably due to the fact that the robot introduces more error with its movement and position
estimation from measurement to measurement. We also observe that the SpaRSA method
without modeling a reflector, RSWCLA and WCLA considering the first measurement as
a reference, behave much better at 30 dBm antenna emission power compared to 20 dBm.
The reason is that at 30 dBm the number of measurements for all tags is much larger; the
reader with stronger transmission power can interrogate many times each tag separately.
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Figure 29: Campaign-3 localization error vs Tx power across 15 tags.

5.5 Campaign-4: Dance Hall (3D)
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Figure 30: (a) Setup at Dance Hall (TUC). (b) Topology of (a) scenario.
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Wall Point1
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Figure 31: Real map of the dance hall produced by the Cartographer algorithm, including
robot’s estimated trajectory.

In the final campaign Fig.30, the aforementioned robotic setup was utilized again in a
controlled multipath environment in order to test the modeling of a dominant reflector using
the group sparse technique and to evaluate the performance of all the methods in 3d. Two
rows of 15 Alien ALN-9740 (Higgs-4) tags were placed one below the other with a vertical
distance of 22 cm among them. The 30 in total tags were set up between two static poles
at a distance of about 45 cm from the wall. The horizontal distance from tag to tag was 5.5
cm. As for the robotic platform, a longer pole was attached so it could accommodate more
antennas at larger heights. The number of FlexiRay SF-2110 antennas increased to 3, at
heights 1.06, 1.46, and 1.86 m. The same reader was equipped on the robot as in previous
campaigns and measurements were received at 20 and 30 dBm, respectively.

For all the methods, a 1× 1× 1 grid with resolution dx = dy = dz = 0.07 was considered,
also the SpaRSA method was used twice. Once without modeling a wall (reflector), and
once more modeling the wall behind the tags. The wall is fully described by three points,
which were found through the map produced by the robot Fig. 31 assuming some height.

This place (university dance hall) was chosen to fulfill the last campaign due to the large
space it provides. This ensures a greater number of measurements Fig. 32, as the robot
could cover longer trajectories compared to campaign 3.

60



5 10 15 20 25 30

Tag id

0

500

1000

1500

2000

2500

3000

N
u

m
b

er
 o

f 
m

ea
su

re
m

en
ts

20 dBm

30 dBm

Figure 32: Number of measurements per tag at different power levels of the reader equipped
on kobuki (3d).

20

25

30

35

40

45

50

55

39.2

54.7

37.9

36.1

34.6

22

35.2

23

19.6

17.9

20 30

Tx Power (dBm)

SpaRSA (LoS)

WCLA Scheme-1

WCLA Scheme-2

RSWCLA

SpaRSA (1 front wall
 reflector assumed)

(a)

20

30

40

50

60

43.3

58.4

42.8

40.9

37.5

25

37.4

26.1

22.4

20.2

20 30

Tx Power (dBm)

SpaRSA (LoS)

WCLA Scheme-1

WCLA Scheme-2

RSWCLA

SpaRSA (1 front wall

 reflector assumed)
42

43

44

43.3

42.8

20

(b)

Figure 33: Localization error across 30 tags.

The fact that we have increased the number of antennas in the reader and we have
transferred the problem from 2d to 3d we expect to make things difficult for the algorithms
as a larger space is required and the complexity increases. Tables 1, 2, 3, 4 offer the average
execution time of the most representative algorithms for all the campaigns. Regarding the
estimation error Fig. 33, we notice that at 20 dBm all the algorithms have poor performance
even SpaRSA considering the wall behind the tags. This, as we mentioned in campaign 3,
is expected since at 20 dBm the reader is hardly able to read the tags. However, at 30 dBm
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the algorithms seem to do much better with the remarkable performance of SpaRSA, which
takes into account the wall behind the tags. This result is a proof of concept that if we take
into consideration the reflections that are created inside a room, then we can have better
results on average.

Table 1: Execution time in seconds - Campaign 1

Case SpaRSA (LoS) WCLA (Scheme-1) WCLA (Scheme-2) RSWCLA

20 dBm 0.33 0.23 0.23 1.01
30 dBm 0.37 0.42 0.46 6.08

Table 2: Average execution time in seconds - Campaign 2

Case SpaRSA (LoS) WCLA (Scheme-1) WCLA (Scheme-2) RSWCLA

20 dBm 0.3 0.2 0.22 4.11
30 dBm 0.38 0.35 0.36 4.66

Table 3: Average execution time in seconds - Campaign 3

Case SpaRSA (LoS) WCLA (Scheme-1) WCLA (Scheme-2) RSWCLA

20 dBm 3.94 3.24 3.32 28.33
30 dBm 4.81 6.29 6.41 78.58

Table 4: Average execution time in seconds - Campaign 4

Case SpaRSA (LoS) SpaRSA (Known Wall Modeling)

20 dBm 0.93 9.25
30 dBm 2.61 15.89

Case WCLA (Scheme-1) WCLA (Scheme-2) RSWCLA

20 dBm 1.73 1.78 21.27
30 dBm 4.83 4.69 125.36

It is worth noting that in the Table 1 we do not refer to average time, since we have only
one tag at our disposal.
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Chapter 6

Conclusions

6.1 Conclusion

This work provided a review of how multipath affects the localization of passive RFID
tags both in simulations and real conditions. Moreover, the results of the CS theory were
confirmed, which need to be satisfied to obtain a representative reconstruction of the scene.
It is emphasized that Wi-Fi frequencies or long distances between elements are required
to ensure a ”good” solution. In addition, methods that maximize the MLE appear to be
competitive, using appropriately selected weights that mitigate the effect of multipath and
thermal noise. Finally, a proof-of-concept is offered, namely, modeling a known wall that is
responsible for the existence of multipath can lead to an around 19% improvement, in terms
of mean absolute error.

6.2 Future Work

The main objective of this work was to study the effect of multipath in determining
the position of commercial tags, under the constraint of a narrowband system. The results
are encouraging and indicate that multipath modeling can improve the performance of the
algorithms.

There are two important directions that we should follow in the future. First, it is conse-
quential to verify experimentally that increasing frequencies or providing a wider bandwidth
is capable of reducing the estimation error. This raises the need of a custom tag that can
operate on Wi-Fi frequencies with excessive bandwidth, and the necessity of a USRP il-
luminator. Last but not least, it is interesting to design an algorithm that will probably
solve a non-convex optimization problem, which would jointly estimate the target and the
wall that causes the dominant reflection. The latter is a very challenging task, but it could
dramatically improve the positioning of passive RFID tags.
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Appendices

Operators, Functions and Sets

N Set of natural numbers
C Set of complex numbers
� Element-wise product
µ(·) Mutual coherence of a matrix
µB(·) Block-coherence of a matrix
ρ(·) Spectral norm of a matrix, i.e., the maximum singular

value
mod (·) Modulo 2π operator

(·)> Transpose of a vector or matrix
(·)† Conjugate transpose of a vector or matrix
(·)∗ Complex conjugate of a scalar, vector, or matrix
|(·)| Absolute value of a scalar
d·e Ceil operator, i.e., rounding toward greatest integer
‖(·)‖1 `1-norm of a vector
‖(·)‖2 Euclidean norm or `2-norm of a vector
‖(·)‖2,1 Mixed `2/`1-norm of a vector, i.e., an `1-norm of groups

of `2-norms
‖(·)‖∞ Maximum absolute value of an element in a vector

Properties of Modular Arithmetic

• a mod n = (a mod n) mod n

• (a+ b) mod n = [(a mod n) + (a mod n)] mod n

• (a− b) mod n = [(a mod n)− (a mod n)] mod n

Second Order Taylor Series

We are looking for a quadratic series that approximates the cos(·) function around the point
x0 = 0. In general, the Taylor series of a real or complex-valued function f(x) that is
infinitely differentiable at a real or complex number a is the series

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · , (75)
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where n! denotes the factorial of n and f (n)(a) denotes the n-th derivative of f evaluated at
the point a (the derivative of order zero of f is defined to be f itself and (x− a)0 = 0! = 1).
When a = 0, the series is also called a Maclaurin series.

Thus, the Maclaurin for the cos(·) function is written as follows

cos(x) =
∞∑
n=0

cos(n)(0)

n!
(x− a)n

= cos(0) +
cos′(0)

1!
x+

cos′′(0)

2!
x2 +

cos′′′(0)

3!
x3 +

cos′′′′(0)

4!
x4 + . . .

= 1− sin(0)x− cos(0)

2!
x2 +

sin(0)

3!
x3 +

cos(0)

4!
x4 + . . .

= 1− x2

2!
+
x4

4!
− . . .

(76)

When we seek an approximation through second order Taylor series, then we approximate
the function with a quadratic polynomial. More specifically, for cos(·), it holds that

cos(x) ≈ 1− x2

2!
= 1− x2

2
. (77)

Solving for −x2, we easily get that

−x2 ≈ −2 (1− cos(x)) = 2 cos(x)− 2. (78)

Differential Mitigation

The ultimate goal is to prove that

∆ϕ
[n,n−1]
d =

{
mod

(
4π
λ

∆d[n,n−1]
)
− 2π, ∆ϕ

[n,n−1]
d ∈ (−2π, 0)

mod
(

4π
λ

∆d[n,n−1]
)
, ∆ϕ

[n,n−1]
d ∈ [0, 2π).

Proof. The differences of the adjacent measured phases are

∆ϕ
[n,n−1]
d = mod

(
4π

λ
d [n] + φ0

)
−mod

(
4π

λ
d [n− 1] + φ0

)
. (79)

Notice that ∆ϕ
[n,n−1]
d ∈ (−2π, 2π).
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We observe that if ∆ϕ
[n,n−1]
d ≥ 0 then

∆ϕ
[n,n−1]
d = mod

(
4π

λ
d [n] + φ0

)
−mod

(
4π

λ
d [n− 1] + φ0

)
= mod

(
mod

(
4π

λ
d [n] + φ0

)
−mod

(
4π

λ
d [n− 1] + φ0

))
= mod

(
4π

λ
d [n] + φ0 −

(
4π

λ
d [n− 1] + φ0

))
= mod

(
4π

λ
d [n] + φ0 −

4π

λ
d [n− 1]− φ0

)
= mod

(
4π

λ
d [n]− 4π

λ
d [n− 1]

)
= mod

(
4π

λ
(d [n]− d [n− 1])

)
= mod

(
4π

λ
∆d[n,n−1]

)
.

(80)

if ∆ϕ
[n,n−1]
d < 0 then

∆ϕ
[n,n−1]
d = mod

(
4π

λ
d [n] + φ0

)
−mod

(
4π

λ
d [n− 1] + φ0

)
= mod

(
mod

(
4π

λ
d [n] + φ0

)
−mod

(
4π

λ
d [n− 1] + φ0

))
− 2π

= mod

(
4π

λ
d [n] + φ0 −

(
4π

λ
d [n− 1] + φ0

))
− 2π

= mod

(
4π

λ
d [n] + φ0 −

4π

λ
d [n− 1]− φ0

)
− 2π

= mod

(
4π

λ
d [n]− 4π

λ
d [n− 1]

)
− 2π

= mod

(
4π

λ
(d [n]− d [n− 1])

)
− 2π

= mod

(
4π

λ
∆d[n,n−1]

)
− 2π.

(81)

Therefore we proved that

∆ϕ
[n,n−1]
d =

{
mod

(
4π
λ

∆d[n,n−1]
)
− 2π, ∆ϕ

[n,n−1]
d ∈ (−2π, 0)

mod
(

4π
λ

∆d[n,n−1]
)
, ∆ϕ

[n,n−1]
d ∈ [0, 2π).

(82)

�
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