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[TepiAnyn

O KOp1o¢ 6TdY0C 0THG TG dlatpiPrig ivar 1 dnuovpyio evog I'paeruotog I'viooewg (I'T)
Yoo éva KTiplo oyeddv undevikng evepyeslokng kataviiwone (MEK), to omoio 6o
neptlopPavel pio TolkiAio SIPOPETIKAOV 1O TNPOV, Kol GTN CUVEXELL VO, EPAPUOGEL VL
EPOTNUO OVOKAALYNG Kot ovaKTnong oedopévov oto I'T, mpokeyévov va yiver pia
a&loAGYNOT YL TNV EVEPYELOKT] OOdOTIKOTNTA Kot TV Beppikny dveon tov ktipiov. To
ktipto MEK mov emAéyOnke wg neprtmoioroyikt| perém eivan 1o Leaf House, éva ktipto
€€1 dapepiopdtov tehevtaiog teyvoloyiag, mov ytiotnke amd tov Ouho Loccioni. H
pebodoroyicn mov akoiovOnOnke mepldupove mpdTa TV EpEvva NG TEAELTAING
teyvoroyiag oyetika pe to I'T og ktipra MEK, ta epyaieio povrelomoinong owkodopkdv
mAnpogopidv (MOIT), ta. I'T oty Bropnyovia Tg apyLTEKTOVIKNG, TG UNXOVIKNG KOl TOV
kataokev®v (AMK) kot oplopéves ypnoelg Kol €QOPUOYEG TOLG oTn Propmyovia
dounuévou mepParrovtoc. Tt cvvéyela, akolovdei n dnuovpyio tov I'T tovlLeaf House,
KaODG Kot Eva epMTNUAL OVAKAALYNG Kot EE0ymyNS S£d0UEVOV MG TOPADELY L YPTONG TOV
IT. Metd and avtd mpaypatomoteitar a&loAdynon evepyslokng amddoons yw to Leaf
House, nali e o extipnon Oeppukng dveong, pe  ypnon tov Agiktn Aveeopiog (AA),
Kol T€Aog dedywvtarl kamola cvpnépacpa tov I'T ota ktipio MEK. Ta dedopéva amod
TOUG dPopovg aoOntpeg Kot onueio pvbuiong mov @rro&evel 1o ktipto Ba eivar
dwbéopa amd tn Pdon dedopévev MyLeaf, tpokeipévou va tpopodotnel ovtd o I'T. To
I'T Ba aneikoviotel pe o Brick Viewer kot to Brick Studio, mpoxeyuévou va mapovciactel
N ovvoeon petald Tov kOpPov avtov tov KG. Yroloyiotnke 6T 1 €Tno10 KatavaAmon
gvépyelag tov 32,8MWh i 69,8kWh/m?, 10 64% Tov omoimv TpoepydToV omd TV
katavdiwon ocvotiuatog HVAC kot to 36% amd v MAEKTPIKY KATOVAA®ON TV
dwpeptopdrov. Emiong, n cuvoAikn kabopr| £11o10 KOTOVAA®GON NAEKTPIKNG EVEPYELNG TO

2020 Arav 9.801kWh ko1 n cvvoAikn kabapr KOVOVIKOTOMUEVT] ETNOL0 KOTAVAAMOT)
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NAEKTPIKNG evépyetag To 2020 frov 20,9k Wh/m?. To GUUTEPUGIATA TTOV TPOKVTOVY ATO
v a&loAdynNon TV OMOTEAEGUATOV YL TO EPMOTNUA OVOKAALYNG Kot €EAYWYNG
dedopévmy, gival o omAn Kot ypriyopn Oldikacio Tov TopEYEL OTOV XPNOTN, TOV
TPoépyeTal and omolodNmote VIOPabpo, amoTteAESHATA OVAAVOTG JEOOUEVODV YOPIG TN
xpnon MOII ko pe TAnpogopieg oyetikd pe 1o ktipro. H extiunon Beppikng dveong, n
omoio e&€tace Tov Acgiktn Avoopiog ko ota €61 dwapepicparta, £0e1Ee 0Tl vanpée
nepiodog to 2020,katd ) Bepvi mepiodo kKupimg, dmov KaTm amd to 50% Tov TANOBLGHOD
acBdvOnke Svoeopia. Ov pnveg mov dupkece M dvoeopio déeepay HETAED TOV
dwpepopdtov. Ta dwopepicpota mov piokoviatl 6Tov Hecaio OpPoPo eiyov T0 LKPOTEPO
xpovikd ddotnua pe Beppikn ducpopio, oe cVYKPLON LLE TO GOYELD KOL TOV TEAELTOLO
O6poPo, 01 0Toiot iV LEYOADTEPT XPOVIKN TEPTOSO BEPLUKNG SLGPOPTNG, LLE TOV TEAEVTAIO
O6poPo va Exel TN peyolvtepn odpketa. EmmAéov, to I'T og éva ktipto MEK mapéyet pa
EPUPYLIKT AVOTOPACTAGT) TWV OVIOTHT®V TOL KTipiov, 1 omoia ypnoytonoleitor og faon
Y. TOAAEG 10€eC epOTNUATOV Kot eKUNOEVILEL TNV OVOLLOLOYEVELDL TTOV TTPOEPYETAL OO
SLPOPETIKA LOVTELD OVOTTAPACTOCTC KTIPI®V, KOOMOG Kot divel 6T dEdOUEVO TEPIGGOTEPO
VONUO KO YPNOIUOTNTA, AOY® TOV E1GAYOUEV®V 0vToAOYI®V. Emtiong, elval onpovtikd va
avaeepbel 6tL 10 1010 I'T Srayepileton pe évav amAd tpoOmo, TOAMATAES OLOPOPETIKES
Baocelg Oedopévov Kot owoOnTpeg, € CLVOWIGUO HE TNV €UKOAN TpOcPacmn o€
EVNUEPMUEVEG TTANPOPOPIEC TOL O YPNOTNG MUmopel vo avakaAvyel kot vo e€aydyet,
COUP®VO, [LE TOV TPEY®V okomd. Zuveyilovtag, to I'T emtpénel 6Tovg YPNOTES VO EKTEAOVV
EPOTALLOTA KO VL ALUPAVOLY TANPOPOPIES GYETIKE LLE TIG OVTOTNTEG KOt T HEGOUEVA TOV
KkTpiov og o kown dwdwkocio. Téhog, to I'T ypnoponoteiton Yoo cuvOeT cvoYETIoN

CLOTNUATOV Kol avAAVCT dedoUEVOV YopPIg xpnon epyareiov MOII.
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Abstract

The main goal of this thesis is to create a KG for a near Zero Energy Building (nZEB),
which will include a variety of different sensors, and then apply a data discovering and
retrieval query on the KG, in order to make an energy performance and thermal comfort
assessment. The nZEB that was chosen as a case study is the Leaf House, a residential state
of the art building of six apartments that was built by Loccioni Group. The methodology
that was followed included first, the research of the state of the art about KGs in nZEB,
BIM, AEC-KGs and some uses and applications of them in the Built Environment industry.
Next, follows the creation of Leaf House KG, as well as a data discovering and extraction
query as an example of KG’s usage. After that an energy performance assessment for the
Leaf House takes place, in addition to a thermal comfort assessment, using the Discomfort
Index (DI), and lastly the conclusions of KGs in nZEB. The data from the different sensors
and setpoints that the building is accommodating will be available by MyL eaf database, in
order to feed this KG. The KG will be depicted with Brick Viewer and Brick Studio, in
order to present the connection between the nodes of this KG. It was calculated that the
annual energy consumption was 32.8MWh or 69.8kWh/m?, 64% of which originating from
HVAC system consumption and 36% from the apartments’ consumption. What is more,
the total net annual electrical energy consumption in 2020 was 9,801 kWh and total net
normalized annual electrical energy consumption in 2020 was 20.9kWh/m2. The
conclusions that come up from the results’ assessment for the data discovering and
extraction query, are that is a simple and quick procedure that provides the user, coming
from any background, with data analysis results without the use of a BIM and with
information about the building. The thermal comfort assessment, which examined the
Discomfort Index in all six apartments, showed that there was time in 2020, mainly in
Summer time period, when under 50% of the population felt discomfort. This time period,
which the discomfort lasted varied between the apartments. The apartments which are on
middle storey had the shortest time period with thermal discomfort, in comparison to the
bottom and top floor, which had longer time period of thermal discomfort, with top floor
having the longest. What is more, the KG in a nZEB provides a hierarchical representation
of the building’s entities, which is used as a base for many querying ideas and it nullifies

the heterogeneity coming from different building representation models, as well as it gives
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to data more meaning and usefulness, due to the imported ontologies. Furthermore, it is
important to be mentioned that the same KG manages in a single simple way, multiple
different databases and sensors, in addition to giving easy access to up-to-date information
that the user can discover and extract, according to the current agenda. Continuing, the KG
allows users to perform queries and obtain information about the building’s entities and
data in a common procedure. At last, the KG is used for complex systems correlation and

data analysis without BIM usage.
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1. Introduction

1.1 Semantic Knowledge in Built Environment & AEC Industry

1.1.1 Knowledge Graphs in Built Environment

According to United Nations Environment Programme (UNEP), about 30-40% of
annual energy worldwide is consumed by the building sector and what is important to note
is that many residents are not satisfied with the buildings that they are tenants in, still in
high performing buildings.[1]-[3]That is what escalated the demand of smart buildings,
which provide the application of new technologies, like sensing technologies in a large
scale, data analytics and advanced controls.[4] A smart building can be comprised of three
main categories a)the components, which are the technical building equipment, the energy
production equipment, as well as their sensors, b) the functions, which are enabled by the
components and c¢) the outcomes that are produced from the building’s functions.[5]

In EU, according to Energy Performance of Buildings Directive recast (EPBD
recast, Directive 2010/31/EC), all new public buildings have to be nearly Zero Energy
Buildings (nZEBs) by December 31, 2018 and all new buildings by December 31, 2020.[6]
The nZEB is introduced as a general concept that also incorporates the autonomous
buildings that are not connected to energy grids. What is more, EPBD presents nZEB as a
“pbuilding that has a very good energy performance. The nearly zero energy or very low
amount of energy required should be supplied to a very significant extent by energy from
renewable sources, including energy from renewable sources produced on-site or
nearby”.[6]

It has been made clear that zero energy and zero carbon buildings have the ability
to alleviate the impacts of climate change and reduce the damage all over urban and rural
areas, created by the microclimate.[7] Although, ZEBs on a neighborhood level have not
been researched thoroughly, due to need of a proper representation that these reshearches
require, as well as the lack of specific hypotheses that these neighborhoods would follow,
like the function units, the main source of renewable energy, the morphology of the
neighborhood, the space occupied per resident that defers from place to place, the type of
climate, the building materials and other.[7] The definition of Nearly Zero Energy
Neighborhood that was given by Sornes et al. in 2014, states that “a nZEN is a cluster of

residential units where the overall energy demand is low and is partly met by renewable
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energy self-produced within the neighborhood”.[8] The physical boundary of a nZEN
includes the sites of renewable energy production besides the buildings themselves.[9]

Due to the exponential growth of renewable energy resources and multi energy
systems in residential areas and companies, there has been a deviation from power grids to
decentralized microgrids supporting the growth of future smart grids.[10]-[12] It is noted
that due to the increasing number of smart meters, there is a growth in energy related
resources in microgrids and that is the reason why a sustainable and strong energy
management is needed.[12]-[14] There lies the reason why smart grids (SGs) are of major
significance, when referring to renewable energy resources integration in a controlled grid,
in order to support the power supply computed by smart communications, sensors and
measurement devices.[15] SGs are meant to be highly significant developments in real time
systems, due to the fact that they include both generators and consumers activities, with
their main goal being to provide electricity in a sustainable, economic and secure
way.[16]While achieving these goals, SGs produce massive data about power generation,
power transformation and transmission, distribution network, and electricity consumption,
which are merged to create electric power big data that are used to safely and stably assist
the power grid, business services and decision making procedures.[17]-[19]On the other
hand, data processing analysis and knowledge mining issues emerge too, leading to the use
of semantic knowledge platform usage that cover the needs of electric power data
management, power consumption oriented services and SGs business development.[20]
This semantic knowledge platform should aim to high-end SGs scenario applications and
business services development and accomplish that by combining heterogeneous
information from different sources and different SGs scenarios.[20] A way to produce a
successful solution for this target, is the usage of knowledge graphs (KGs).

1.1.2 Knowledge Graphs in Architecture, Engineering & Construction (AEC) Industry
and Building Information Models (B1M)

The Architecture, Engineering & Construction (AEC) industry shares a lot of fields,
with different amount and kind of information shared between them, in order to achieve a
common project goal. These different fields have been utilizing BIMs to manage and
exchange information.

Building Information Models (BIM) are digital models of a built structure, using
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Figure 1: The Concept of BIM[24]

digital modeling and associated technologies for data collection, which was first introduced
in 1970s and in the last decades has greatly influenced the AEC industry.[21]-[24]In Figure
2 the concept of BIM is being depicted with the main principle being the continuous use
of digital information throughout the life cycle of a built structure. What is more, the use
of BIM has made a more comfortable environment of data exchange from different fields
of a project, surpassing the document-centric method that was previously used. Another
use of BIM is that it can also be used to integrate domain knowledge and specific
methodologies for intelligent applications based on automation.[25]Many data platforms
have been created that are based on BIM systems, which helps AEC industry with
accessing these more organized data.[26]Furthermore, studies have shown that BIM and
the data they produce can be of greater significance when combined with semantic
networks to help with the various data sources.[27] Even more, it is suggested that BIM
can be used in ontology-based data management and sharing, as well as combination of
different knowledge domains and reasoning, to conclude in a KG.[28]

However, even if BIM have been introduced and used for a while now, there is still

a lot of data usage in document form, whereby data becomes fragmented and not easily
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accessed.[29], [30]Also, design changes is a common and rapid situation in AEC industry
phases and keeping up with documented information only creates a confusion and an
unclear goal, ending up with issues of misinformation or out-of-date assumptions resulting
in errors through the process, even when using BIM workflows.[29], [31]-[33] A more
structured way of data is being achieved through BIM, however the document based
climate in this way of work still exist, holding back issues and errors based on that.[31]

The use of semantic web has been proposed and researched to solve document
based ways of working and achieve better interaction inside the industry.[34] Ontologies
are the core of semantic web design, which are characterized as formal, due to a) their
ability to be read by machines, b) their explicit nature and interoperability, based on the
explicit definition of the concepts and the constraints used.[35] AEC-KG is a terminology
that is formed in an attempt to research ontologies, which satisfy data on the web utilizing

vocabularies that already exist.[31], [36]

1.2 Knowledge Graphs (KGs)
1.2.1 Definition

Knowledge Graphs are still evolving today, yet many different attempts to provide
thorough and concise definitions.[37], [38] According to a commonly used definition, a
knowledge graph acquires and integrates information into an ontology and applies a
reasoner to derive new knowledge.[37] This definition was given after a research was
conducted, in order to come up with a working definition based on examples. As referred
by Ehrlinger and Wolfram, considering that there are many diverse applications, a KG is
more likely to be more similar to an abstract framework than to a mathematical
structure.[37] Another approach is that a knowledge graph mainly describes real world
entities and their interrelations, organized in a graph. It does that by, defining possible
classes and relations of entities in a schema, while allowing for other potentially
interrelating arbitrary entities with each other, covering various topical domains.[39] What
is more, it is also stated recently that a knowledge graph can be viewed as a graph of data
intended to accumulate and convey knowledge of the real world, whose nodes represent
entities of interest and whose edges represent relations between these
entities.[40]Knowledge graphs were first introduced in 1973, but it was too early to be used

in a useful way, until 2012, when Google announced its KG, which was the starting point
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for many other companies to introduce their own.[41],[42] Many applications have been
made since then and many papers have been published, all aiming to the core idea that is
to represent data using graphs, even in a way to represent knowledge.[43] Graphs, in
contrary to a relational model or NoSQL approaches, are more coherent and direct, using
edges to represent the relations between entities and that applies for various domains.[40],
[44] One more aspect of a graph is that it provides the creator with the ability to delay the
definition of its schema, making it more flexible to evolve and obtain more incomplete
knowledge, concluding to a continuously updated database schema or serve under an

organization or a community as an ever-evolving shared form of knowledge.[43],[45]

1.2.2 Structure

Data Graphs

One of the first principles of a KG is the graph abstraction to data, making a primary
data graph, which is represented by data models and processed by query languages.
Modelling a graph differs in every situation, although there are some graph data models
that can be adopted and customized. For example, a directed edge-labelled graph is
compiled from a set of nodes and a set of directed labelled edges that connect these
nodes.[46], [47] In KGs nodes stand for entities and edges for their binary relations
between them. This way of modelling a graph is more appropriate when adding new
sources of data. Resource Description framework (RDF) is a model based on directed edge-
labelled graphs, which uses a variety of nodes, most importantly the Internationalized
Resource Identifiers (IRIs), which give access to entities through Web, literals, which
represent strings and other datatype values and blank nodes, which are anonymous nodes
that are not assigned an identifier.[48][49] Another type of graph is a heterogeneous graph,
where each node and edge is given one type, creating a part of the graph model only from
nodes and benefits from dividing nodes based on their type.[50], [51] The property graph
model is another type that in contrary to directed edge-labelled graph, it is more flexible
when modelling.[52]

When querying a graph, there are many languages that has been introduced,
including SPARQL for RDF graphs.[53] Graph patterns are stationed at the center of a
query language, which use the same models as the data graph that is being queried.[52]

What is more, graph patterns also add variables as terms, which are divided into
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constants.[52] Next, mappings are being generated from the variables to constants in data
graph in order for the graph pattern to be included in the data graph. Furthermore, due to
the fact that a graph pattern exports a table of results and due to the need of relational
algebra to work with these tables, more complex queries are being created.[52] Another
aspect of the graph query languages is that navigational graph patterns add path expressions
in queries, allowing matching arbitrary length paths between two nodes, which is expressed

as a regular path and are used in graph patterns to express navigational graph patterns .[52]

Schema, Identity and Context

A KG can be identified as a data graph enhanced with representations of schema,
identity, context, ontologies and rules.[40]

Schemata are used to mark structure and semantics that the KG will be based on,
although it is mentioned that its definition can be delayed for after the KG’s
configuration.[40] One type of graph schemata is the semantic, which is used as a
vocabulary for understanding terms used in a KG, while using these terms for reasoning
the KG.[40] RDF Schema (RDFS) is an example of a semantic schema, which introduces
subclasses, subproperties, domains and ranges for the classes and properties in an RDF
graph.[54] Many more details and content about the semantics of KG terms can be given
from Web Ontology Language (OWL) standard for RDF graphs.[55] In contrary of
semantic schemata, validating schemata are validating existing graph data, using shapes,
which are responsible for targeting set of nodes in a data graph and identifying their
constraints.[56][57] Both types of schemata are in need of a domain expert to identify
definitions and constraints, although in a data graph, latent structures can be exported as
an emergent schema, which uses graph as frameworks to separate quotient groups of nodes,
while maintaining some structural properties of the graph.[58], [59]

In order to clarify some nodes that collide, globally unique identifiers and identity
links are used to prevent naming clashes, when connected with external data and
sources.[40] Long lasting persistent identifiers (P1Ds) are an example of usage to uniquely
identify an entity, as well as global Web identifiers, recommended by the RDF data model,
using Internationalised Resource ldentifiers (IR1s).[48], [60] One way to identify an entity
is to connect it with a uniquely identifying information in the graph and a second way is to
state that one entity has the same identity links with an external source, thus using
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owl:sameAs coreference, when talking in OWL standards.[40] It is practically common for
data models to permit datatype values as nodes, like RDF, which uses XML Schema
Datatypes (XSD).[61] Existential nodes are used to cover places that are needed to
complete the connections, but are not yet identified, supported by RDF as blank nodes.[48]

When referring to context, it is meant to the truth behind the data used, which might
be about individual nodes or edges or sets of edges.[40], [62]When representing context,
one method is to accept it as data or another method is to alter an edge into a node, to add
more context. What is more, using reification makes it possible to define edges about edges
or use hierarchy representations for modelling context, as an alternative. Annotations is an
automated mechanism for reasoning context, which allows mathematical definitions of a
contextual domain and key operations possible within that domain that can then be applied
automatically.[40]

Deductive Knowledge

It is necessary to have knowledge of the meaning of the terms that are used in order
to apply entailment. This is succeeded using ontologies, which provide a formal depiction
of the meaning of the terms. The most recognized ontology is the Web Ontology Language
(OWL), recommended by the W3C and compatible with RDF graphs.[40], [55] In the
process of interpretation, the data graph is changed to domain graph, which includes real
world entities with real world connections and is involving connecting the nodes and edges
of the data graph with the ones of the domain graph, thus following the same model as the
data graph.[40] Linking particular patterns in the data graph with semantic conditions,
which specify the interpretations that will be satisfied, concludes into the features of an
ontology language.[40]

These features result in entailments and each axiom that is introduced from an
ontology, brings up some conditions on the interpretation of the graph that satisfies it,
which are also called graph models. One graph entails another only and only if the first is
also a model of the last one or alternatively the former graph entails the latter.[40]In this
context, there is not an algorithm which can decide the correct true/false answer to the
question of which graph entails the other.[63] Even though it is possible to apply reasoning
algorithms for ontologies that in one situation it will halt on any input ontology, there might

be a risk that will end up losing some entailments, returning instead of true. Another

13| Page



situation is to always halt false with correct answer, only receiving input ontologies with
specific features and the last situation is to only reply with correct answers for any input
ontology, risking never halting on some inputs.[40]

A method that gives easy access to deductive knowledge using inference rules, is
encoding if-then-style consequences, which rules are comprised of the body (if) and the
head (then). They are both graph patterns and can be used to obtain entailments under
ontological conditions.[40]

Description Logics (DLs), which are used to formalize the meaning of frames and
semantic networks, form a family of logics, which due to the fact that semantic networks
are an early version of KGs and that they have had a great impact on Web Ontology
Language, are considered of great significance for the formalization of KGs.[40], [64], [65]
When they were first introduced, DLs were parts of First Order Logic (FOL), which allows
reasoning tasks.[66]What is more, there are differences between expressive power and
computational complexity of reasoning in different DLs. Furthermore, DLs are bound to
three types of elements a) individuals, b) classes and c) properties and use claims, also
known as axioms about these elements.[40]There are also similarities between DLs an
OWL, due to the fact that OWL was greatly influenced by the DLs.

Inductive Knowledge

In contrary to deductive knowledge, which follows specific logical consequences,
inductive knowledge is based on generalized patterns from input observations, which are
used to come up with new but vague predictions. An overview of popular inductive
techniques are shown in Figure 1.

Analytics are based on discovering, interpreting, and communicating important
patterns innate to data collections and so graph analytics are the use of analytical processes
to graph data.[40] Graphs are leaning into specific types of analytics that end up in a
deduction, where nodes and edges are based on the topology of the graph and are gaining
their techniques from graph theory and network analytics.[67]

Machine learning, which have made a significant amount of progress in the past
few years, can be used to directly refine a KG.[68] The target of KG embedding methods
it to condense the graph in a continuous, low-dimensional vector space, where machine

learning tasks can be embedded making it possible for embeddings to execute some low
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Figure 2: Conceptual overview of popular inductive techniques for knowledge [40]

level tasks around nodes and edges.[40]

Another method is to compile a custom machine learning model modified for graph
structured data, with the majority of them depending on artificial neural networks.[69] A
graph neural network (GNN) compiles a neural network depending on the topology of a
data graph, being capable to even replace algorithms.[70], [71][72]

A different method is to use symbolic learning to gain knowledge about hypotheses
in a symbolic language that clarifies some positive and negative edges, which are
automatically produced from the KG and then use these hypotheses as interpretable
models, able for additionally reasoning.[40]

Creation & Enrichment

KGs are made to have a prime core, but they rely on enrichment from external
sources. One method of creation and enrichment of a KG is through human editors, a costly
but successful one, based on previous works.[73]-[75]Another method is extracting
information from text collections, although is not an easy task to be accurate at the
extraction. Otherwise, information can be extracted from markup documents, which are
the foundation of the Web and which are being stripped from their markers, leaving plain
text to become the source.[76], [77][78] Structured formats, primary tables and tree-
structured sources are easily found in the Web and in organizations, although the method
for extracting information from them, relies on mapping the sources to a KG, which
includes the creation of the mapping from the source to the KG and the use of the mapping
to materialize the data as a graph.[40]

There are methods to create schemata using these sources of information, including
human knowledge, concluding to the creation of ontologies, using either ontology
engineering methodologies, and ontology learning.[40] Ontology engineering is about
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constructing and utilizing methodologies for creating ontologies, having as a main goal the
least effort needed to achieve that and ontology requirements, which are needed for the

clarification of the tasks of the KG, relying on its schema.[40]

Quality Assessment

Having created and enriched the KG from data sources, it is important check its
quality, which is actually referring to its fitness for purpose.

The accuracy of a KG is based on how proper real life phenomena are being
represented by the KG and can be further subdivided into syntactic accuracy, which checks
the data based on the grammatical rules of graph model and the domain, semantic accuracy,
which checks how similar are the data values to the real life phenomena and timeliness,
which is how up to date is the KG.[40]

Next, when talking about the coverage in a KG, it is referring in the
inclusion of all domain relevant elements, which would conclude to incomplete query
results or entailments, biased models, etc. and includes completeness, which requires that
there is not any missing information from datasets and representativeness, which is a
dimension that assesses biases for what is included or not in the KG.[40], [79]

Following, coherency checks how well the KG complies with the semantics and
constraints of schema and can be further analyzed into consistency, which checks the
compliance of the KG with the logical entailment that was chosen and validity, which
checks for constraint violations in the KG.[40]

Last, succinctness checks for relevant content in the KG that includes conciseness,
which is about not including schema or data elements that are irrelevant to the domain,
representational-conciseness, which is about how exact is the representation of the context
in the KG and understandability, which is about how easily can data be understood by
human users.[40], [80], [81]

Refinement

Refinement methods are used to automatically complete and correct the KG, which
is known for its incompleteness, with knowledge graph completion and knowledge graph
correction, respectively.[39][82]Completion fills the missing edges that are not given
neither entailed by the KG, usually with methods based on link prediction in the field of
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Statistical Relational Learning.[40], [83]On the contrary to completion, correction finds
and removes incorrect edges in the KG, through the methods of fact validation, which
applies a possibility fact score to an edge with the help of the external sources and
inconsistency repairs, which uses ontological axioms to repair inconsistencies in the
KG.[40], [47]

1.3 Main Goal & Structure

The main goal of this thesis is to create a KG for the building of Leaf House, which
will include many different sensors, and then apply a data discovering and retrieval query
on the KG, in order to make a data analysis and a thermal comfort assessment. This will
bring up some conclusions about the use of KG for a building as well as about the example
of using a building KG to access data in it and assess them.

In Section 2, the state of the art about knowledge graphs in buildings is being
presented and in specific presents developments with respect to BIMSO/BIMDO, BOT,
OPM, ifcOWL, simpleBIM and BRICK ontologies. Next, in Section 3, the methodology
that was followed is being introduced, as well as the case study’s building. In the same
Section, the KG creation and the data discovering and retrieval query are being presented.
Following, in Section 4, the results are being analyzed and some observations are made
known. What is more, in the same section, the data analysis and thermal comfort
assessment take place. Lastly, in Section 5, the conclusions of this thesis are presented as

well as some future work ideas.

2. State of the Art in Ontologies on Built Environment

2.1 BIM Shared Ontology (BIMSO) & BIM Design Ontology (BIMDO)

BIM Shared Ontology (BIMSO) is meant to be used by different building domains
as a foundation ontology to create domain ontologies and was introduced by Mehrdad
Niknama and Saeed Karshenas in 2017.[84] Its scope is focused on sharing information
between different AEC-FM domains and to give answers about information connected with
the elements, levels, spaces, and construction phases of a building. It uses RDF/OWL
language and it is intended to be used for different building lifecycle domains in order to
give access to an easy AEC-FM interface for accessing a semantic bridge of information
exchange. BIMSO used UNIFORMAT |11 classification system to organize its elements,
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Figure 3: General view of BIMSO[84]

which consists of four main levels, level one for major group element types, level two for
group element types, level three for subgroup element types and level four for individual
element types.[85] The general view of BIMSO is shown in Figure 3.What is more,
Uniform Resource Identifiers (URIS) are used to identify a property in an ontology and the
prefix BIMSO was assigned to the URIs.[86]

BIM Design Ontology (BIMDO) is aiming to create a model that is able to design
properties of building elements, like identities, sizes, and material properties and also build
elements connections like intersects and hosts.[84] Like BIMSO, it is also using RDF/OWL
language and targets AEC-FM domains, intending to create BIM design knowledge bases.
The prefix BIMDO is given to its URIs and QUDT, an ontology for units’ measurement,
is added.[87] In Figure 4 shows a schematic view of a case study conducted from the same
authors using BIMSO/ BIMDO and it is an example of how phases, levels, floors, rooms,
and elements of the examined building are defined using the BIMSO ontology vocabulary.

They conclude to the fact that different building domains returned the same
domain-specific element properties, due to the fact that they were created from the same
ontology, using the same querying,.[84]
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2.2 Building Topology Ontology (BOT)
Building Topology Ontology (BOT) is introduced by Rasmussen in 2016 and is a
simple ontology based on the topology of a building and the physical and conceptual

objects in it as well as the connections between them.[88] In Figure 5 the simple BOT is
being depicted. For this to happen, BOT sets some rules that subdivides the building into
storeys and spaces. Spaces are bound by building elements and spaces can contain building
elements. It is an ontology that focuses on the building as a structure and does not cover
the needs of the whole AEC domain, but can be used as a central ontology to link
others.[88] In Figure 6 an example of an extended BOT dataset with geographical and
appliance data is depicted, combining two more ontologies to central BOT.

Concluding BOT is a simple base ontology for building structure that can be easily
linked with other ontologies to add more information, making the procedure more

customizable and malleable in different situations of the AEC industry.

2.3 Ontology for Property Management (OPM)

Ontology for Property Management (OPM) offers the vocabulary for modelling
complex entities in a design environment and was proposed by Rasmussen at
2018.[89]'[90] These entities are defined as complex because they might alter through time,
their reliability might be on assumptions and might be based on other entities that might
also alter, causing an effect on them. OPM is using SEAS, schema.org and PROV-O
ontologies as extensions and can work alongside with BOT, PROPS and PRODUCT
ontologies of the W3C LBD Community Group.[91]

To put OPM into test, there was a case study, which calculated the heating demand
in a building through the ontology, which is also shown in Figure 6.[89] So an OPM-
REST application on the AEC-KG was developed as a generic approach.

Concluding, OPM proved AEC software can utilize semantic web on construction
applications and is so the answer to the question they gave in the beginning of the article:
“How can we effectively store design data in a structured way, allowing interrelated data
to maintain their relations intact as the project progresses, without losing the history of

properties' progression?”.[89]
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Figure 4: A schematic view of part of the Engineering Hall case study knowledge base.[84]
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Figure 7: Visualization of the AEC-KG model for heat loss calculation case study[89]

The case study showed that OPM is a different way of working with building data
and also paved a way to access and utilize BIM models as well as the data they produce,

exchanging any of them between stakeholders using a the same tool.[89]

2.4 ifcOWL & simpleBIM
ifcOWL is a complex ontology language, which is a translation from IFC schema
through EXPRESS data modelling language into an OWL representation and the
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Figure 8: Visual complexity comparison of representing property assignment using ifcOWL and simpleBIM([31]

complexity is shown as a property set assigns the properties using relational nodes, two
intermediate nodes are needed to insert the name and the value of the property and
EXPRESS datatype is used to express literals.[31][92]SimpleBIM is an attempt to simplify
this ifcOWL as it uses the most straightforward approach to do that and in Figure 8 the
difference between them is shown, as they represent the same entities. SimpleBIM also
uses Turtle serialization format for RDF data models.[93]

There are three levels of complexity in ifcOWL, based on Rasmussen, who
described L1 to be equal to simpleBIM, L2 to be used by BIMDO, which consider the
entities as an object and so QUDT and PROVO-O can be attached and L3 to be used by
OPM, which is based on SEAS and allows the property to change through time.[31], [87],
[90], [94][91]

22| Page



2.5 Brick

Brick’s main goal is concentrated on metadata and data points from building
advancement and needs, which are based on end use applications and consists of a main
ontology that establishes the core concepts and the connections between them, as well as a
typology that enlarges the building’s concepts.[95] Brick is a schema that answers to the
problem of heterogeneity of building representation, which adds a quick and non-costly
reaction to energy efficiency measures.[96]

The concept of tags is being adopted, based on Project Haystack, to add a more
flexible way to annotate metadata and then these tags are altered with an ontology that
boosts its concepts, creating a framework that establishes hierarchies, relationships and
properties that are mandatory for building metadata.[95], [97]What is more, using an
ontology provides the schema with the ability to meddle with the metadata using common
tools. In Brick schema, tagset concept is introduced, which groups tags with similar
properties.[96]

In Figure 9, the information concepts and the relationship to a data point is shown.
Relationships are qualities that connects a point with other classes, with the major classes
being the Location, the Equipment and the Measurements, also shown in Figure 10,as well
as their subclasses. In Table 1, the main relationships are being shown with their respective
definitions. Figure 12 shows the relationships for a subset of the example building in Figure
11 and it is understood that it represents an early visual of a KG. Brick models are making
easier to represent some subsystems in buildings, as it bypasses their complex and
heterogeneous character and  supports the composition and hierarchies in the
building.[95]In Figure 13, a comparison is shown between Brick and other similar
ontologies and it is understood that Brick can represent a larger spectrum of building
related information. Furthermore, Brick also stands out for its ability to access open
reference implementations on existing buildings, in order to authenticate the effectiveness
of the solution.[95]
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Relationship / Inverse Transitive? | Definition Endpoints
) . . Loc. / Sensor
contains/isLocatedIn Yes A physically encapsulates B Loc. / Equip.
controls/isControlledBy | No A determines or affects the internal state of B Function Block / Equip.
Equip. / Sensor
hasPart /isPartoOf Yes A has some component or part B (typically mechanical) | Equip. / Equip.
Loc. / Loc.
hasPoint/isPointOf No A is measured by or is otherwise represented by point B Equip. / Sensor
Loc. / Sensor
feeds/ isFedBy Yes A “flows” or is connected to B Funglon BICtCk/ Equip.
Equip. / Equip.
hasInput/isInputOf No Function A has an input B Function Block / Sensor
hasOutput /isOutputOf No Function A has an output B Function Block / Sensor

Table 1: List of the Brick relationships and their definitions[95]
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Modeling Support Brick Project Haystack IFC BOT SAREF

HVAC Systems yes yes yes no no
Lighting Systems yes partial yes no no
Electrical Systems yes yes yes no no
Spatial Information yes no yes yes no
Sensor Systems yes yes generic  no yes
Contral Relationships yes no generic  no no
Operational Relationships  yes no generic  no no
Formal Definitions yes no yes yes yes

Figure 13: Comparison between Brick and other similar ontologies[98]

3. Methodology

The main goal of this thesis is an energy assessment in a near Zero Energy Building
(nZEB) using a knowledge graph (KG). The methodology that was followed is shown in
Figure 16 and consists of four main steps. First, the state of the art about KGs in nZEB,
BIM, AEC-KGs and some uses and applications of them in the Built Environment industry
are being researched. Then, having drawn information about the main goal, a case study is
being constructed. Leaf House is selected as the case study nZEB and a knowledge graph
will be built for it. The KG will be built in Python, with the assistance of Brick schema,
QUDT and OWL ontologies. It will also have access in Leaf House’s meters’ database,
which will be used to add more information about the building. The KG will represent just
all six apartments and the three HVAC subsystems. Following, the results assessment takes
place, where the KG is being visualized with Brick Studio and Brick Viewer, which import
the .ttl file and produces a graph with the main nodes and the relations between them. What
IS more, in this section data are being retrieved from the KG through querying the KG in
python. The data are then being used to create a data analysis based on the data that were
extracted from the KG. After that, a thermal comfort assessment takes place, using the
temperature and relative humidity data that were extracted from the KG, to calculate the
Discomfort Index (DI). Last, conclusions and future work on the subject are being

presented and discussed.
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Figure 14: Methodology that was followed in current paper

3.1 Case Study: Leaf House

The building that was chosen for the case study is Leaf House, a residential nZEB
that was built in 2008 by Loccioni and it is shown in Figure 17 It is located in Angeli di
Rosora in Ancona, Italy (latitude 43°28'43.16 N, longitude 13°04'03.65 E, altitude 130m
above sea level). It has 470m? area and is comprised of three stories with two a couple of
flats in each story, making a total of six apartments. Leaf House has also installed a
ventilated roof, solar tubes, smart monitoring and controls, building integrated
photovoltaics, geothermal air preconditioning with heat pumps, solar thermal collectors,

electrical storage and a user-friendly energy management system for residents.[99]

3.1.1 Electrical Energy System

The electrical energy system of Leaf House is shown in Figure 18 and is comprised
of a 20 kW peak power photovoltaic plant, which is integrated into the building’s roof and
shades and supplies the building with renewable energy when that is possible, covering
part of the energy demand.[100]The plant is made of 150 m? of south oriented mono
crystalline modules, which provides energy both to HVAC system and to the apartments’
lighting and loads. The Leaf House PV power plant is divided in three single-phase circuits,
connected in order to obtain a balanced three phase circuit and what is more, each couple
of the six apartments are connected to form a single phase circuit. The final three circuits
are connected to form a three phase circuit.[100] The system also has access to two energy
storage systems, which serve two couples of apartments and they store energy from two
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Figure 15: Leaf House’s Facade[99]

&

.

CBcircuit breaker

" Maingrid : Micro-grid Electrical scheme
I
| | PV Plant |
: ————— Battery 1
| l cB1 ] Apartment 1 |
~ CBO 82 I Apartment 2 I
| Battery 2 |
| CB3 ! Apartment 3 |
: cea i Apartment 4 |
| CBS 11 Apartment 5 |
I
Apartment 6
| 86 ! I
I
I
| GHP
| Heating system
I $
I
I

Figure 16: Leaf House’s Electrical Energy System[100]
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Figure 17: Leaf House’s Thermal Energy System[100]

out of the three PV arrays. The storage system is comprised mainly from a 5.8 kW h Li-
ion battery and its inverter based interface that manages the charge and discharge policies,
a 6kWp PV array and the corresponding inverter and the energy manager that coordinates
the storage, the production and the demand.[100]

3.2.2 Thermal Energy System

The building hosts a central geothermal heat pump (GHP) supplying cooling,
heating and domestic hot water, as well as radiant floors, which supplies the apartments
with thermal energy during cold seasons and extracting the heat during hot seasons.

Domestic hot water is supplied from seven flat plane solar thermal collectors, which are

connected with a 13001 water tank acting as a thermal energy storage. When the solar
panels are not being fed by enough solar energy an auxiliary electric boiler of about 15kWt

supports the thermal energy production. All this can be shown in Figure 19.

3.1.3 MyLeaf Data
As mentioned, the building has many integrated meters, which are accessed by My
Leaf platform that stores data for every building and renewable energy facility that is

owned by Locioni.[101] Leaf House is one of them and there is a large number of meters
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and sensors placed in it. There are electric meters for all six apartments, measuring the
current, voltage, energy and power of the main electrical loads and for the whole apartment.
There are also electric meters for the central heating system, including meters for domestic
hot water, the photovoltaic, the general distribution, the heat pumps, the storage, the
humidifier as well as the general central heating system. All these parts are subdivided in
L1, L2 and L3 phases, as previously mentioned, each one including two apartments,
summing up to Ltot, which includes all three phases. For each phase there are meters for
the current, voltage, energy and power of every meters of the central heating system. What
is more, there are sensors for every apartment, measuring the air temperature, the relative
humidity and the difference in indoor and outdoor temperature. Furthermore, there are
setpoints for the inner temperature of different regions in the apartment. All these data are
being uploaded in My Leaf dynamically and can be accessed to provide a clear view of the

energy consumption of the whole building, with details for every meter in it.

3.2 Knowledge Graph Development

Imports

Leaf House’s KG was developed using the Python programming language in
Jupyter Lab, which is a user interface based on the web that uses documents and activities
like Jupyter notebooks, text editors, terminals and custom components in a more flexible
way.[102] Getting started with the KG, Brick schema was initially imported, as the base of
the KG and after that other ontologies where added as extensions.[98] These extensions
were namespaces imported from Brick schema like A, OWL, RDF and RDFS.[103]-105]
What is more, RDFIlib was added, which is a RDF library and was used to import entities
like Namespace, Literal, Graph, URIRef, RDF, RDFS and XSD that help with the proper
establish of the RDF triples.[106] QUDT ontology was also imported, which is capable of
providing information about measurement units.[87] All the necessary imports are shown
in Jupyter Notebook in Figure 18.

After having imported the necessary ontologies, the graph that will hold all the
triples is defined as “g”. Then, the namespace “LH” is established, which purpose is to
store all the entities that will be added that are connected with Leaf House. Continuing, the

graph is provided with the knowledge of what the Brick namespace is in order to be allowed
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import brickschema

from brickschema.namespaces import A4, OWL, BRICK, RDF , RDF5, UNIT
from rdflib import MNamespace, Literal, Graph, URIRef,RDF , RODFS
from rdflib.namespace import XsD

Figure 18: Necessary Ontologies and Extensions Imported in Jupyter Notebook

import brickschema

from brickschema. namespaces import &, OWL, BRICK, RDF , RDFS, UNIT
from rdflib import Mamespace, Literal, Graph, URIRef,RDF , RDFS
from rdflib.namespace import XSD

g = Graph()
LH = Mamespace("LeafHouse#™)
BRICK = MNamespace("https://brickschema.org/schema/Brick#™)

g.bind("1h", LH)
g.bind{"brick"”, BRICK)
g.bind("rdf", RDF)
g.bind({"rdfs", RDFS)
g.bind("unit™, UNIT)

Figure 19: Graph Insertion, Namespaces Establishment and Bind in Jupyter Notebook

g.add({ (LH["Loccioni™], A, BRICK.Site))
g.add{ (LH[ "LeafHouse"], A&, BRICK.Building))
g.add{ (LH["Loccioni™], BRICK.hasPart, LH["LeafHouse"™]))

Figure 20: Site and Building Esteblishment

.add((LH["L1"], A, BRICK["HVAC Zone"]))

.add({LH[ "apartmentl™], A, BRICK["Raoom"]))

Ladd({ (LH[ "apartmentl”], BRICK.isPartld+, LH["LeafHouse"]))
.add( (LH[ "apartment1"], BRICK.isPartOf, LH["L1"1))

m o mom

Figure 21: Spatial Elements Definition in Jupyter Notebook

to make references about classes and relationships that are defined in Brick schema. Then,
that namespace URI’s are bind with prefixes. Figure 19 shows these next steps that were

added in the Jupyter Notebook.
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Spatial Entities

Having established the base of the graph, triples are then added to represent the
building in it. First, the building and the site is defined as an RDF type “Brick:Site” and
“Brick:Building” and are connected with the relation “Brick:hasPart” that makes Leaf
House part of the Locioni site, which are also shown in Figure 20. Next, the rest spatial
elements are defined, which are the six apartments and the three phases of the HVAC
system. The HVAC system’s zones are added as “Brick: HVAC_ Zone” and are named after
the MyLeaf database designation L1,L2,L3 and each contain two apartments. The
apartments are added as a “Brick:Room”, which are part of the building, using the relation
“Brick:isPartOf”, as well as part of the HVAC zone, using the same relation. In Figure 21
the spatial elements definition for HVAC L1 phase and apartment one is presented in
Jupyter Notebook. The rest phases and apartments follow the same script with different

names.

Sensors

Following the spatial elements, the building’s sensors are added, which include the
energy sensors as “Brick:Energy Sensors” and the power sensors as
“Brick:Power_Sensors”, for all six apartments. The sensors are connected to the apartment
with the relation “Brick:isPointOf” and units are added to them with “Brick:hasUnit” and
UNIT ontology’s “UNIT[“W-HR”]”, which establishes that this sensor’s measurement
units are Wh. Next, the sensor is also introduced as a timeseries, in order to be able to hold
specidic data from a database. This is made possible with “Brick:timeseries” and
“Brick:hasTimeseriesId”, which establish the unique id of the timeseries. UUIDs
(Universally Unique Identifiers) are 128 bit numbers which are composed of 16 octets and
represented as 32 base-16 characters and can be used to identify information across a
computer system and the web.[107] These UUIDs are introduced into the knowledge graph
with rdflib’s literal term, which are attribute values in RDF and can have different datatypes
that in this situation is a string datatype. The timeseries data are stored with the relation
“Brick:storedAt” in the database. The same procedure is applied for the power sensors,
with the units being W. In this case study, the database that was chosen to be used is

TimescaleDB, which is an open-source database invented to make SQL scalable for
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add( (LH["apl_energy_sensor"], A, BRICK.Energy_Sensor))

add( (LH["apl_energy_sensor"], BRICK.isPointOf, LH["apartmentl™]))

add( (LH["apl_energy_sensor"], BRICK.hasUnit, UNIT["W-HR"™]1))

add( (LH["apl_energy_sensor"], A, BRICK.timeseries))

add( (LH["apl_energy_sensor"], BRICK.hasTimeseriesId, Literal("6639Faba-@cce-1lec-82aB8-08242acl30083", datatype=X¥SD.string))
add( (LH["apl_energy_sensor"], BRICK.storedAt, LH["database™]))

add( (LH["apl_power_sensor"], A, BRICK.Power_Sensor))

add( (LH["apl_power_sensor"], BRICK.isPointOf, LH["apartmentl™]))

add( (LH["apl_power_sensor"], BRICK.hasUnit, UNIT["W"]})

add( (LH["apl_power_sensor”], A, BRICK.timeseries))

add( (LH["apl_power_sensor"], BRICK.hasTimeseriesId, Literal("c@5878c4-8bcc-1lec-9a@3-8242acl30063", datatype=XSD.string)))
add( (LH["apl_power_sensor"], BRICK.storedAt, LH["database"]))

Figure 22: Energy & Power Sensors’ Triples for Apartment 1 in Jupyter Notebook

E
E

.add((LH[ "database"], A, BRICK.Database))
.add{(LH["database"], BRICK.connstring, Literal(“postgres://username:password.host:port/tsdb?sslmede=require”)))

Figure 23: Database Creation and Connection Triples in Jupyter Notebook

CREATE TABLE LeafHousel
time TIMESTAMPTZ NOT MNULL,
uuid TEXT NOT MULL,
value FLOAT NOT RMULL,
PRIMARY KEY(time, uuid)

CREATE INDEX ON LeafHouse(uuid, time DESC);
SELECT * FROM create_hypertablel 'LeafHouse', 'time'’

Ycopy LeafHouse(time,uuid,value) from “/directory™ CSV HEADER;

Figure 24: Table/Hypertable Creation and Data Ingestion into TimescaleDB Using PostgreSQL
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add( (LH["AHU1"], &, BRICK.Air Handler_Unit})

add( (LH[ "AHUl_energy_sensor™], A, BRICK.Energy Sensor))

add( (LH["AHU1l_energy_sensor"], BRICK.isPointOf, LH["AHU1"]1))

add( (LH[ "AHUl_energy_sensor®], BRICK.hasUnit, UNIT["W-HR"]))

add( (LH["4HU1l_energy_sensor"], A, BRICK.timeseries))

add( (LH[ "AHUl_energy_sensor”], BRICK.hasTimeseriesId, Literal("a2337@6a-8c@@-1lec-9a83-8242acl3e083", datatype=XSD.string))
add( (LH["4HU1l_energy_sensor"], BRICK.storedit, LH["database"]))

add( (LH["AHU1l_power_sensor"], A, BRICK.Power_Sensor))

add( (LH[ "AHU1l_power_sensor"], BRICK.isPointOf, LH["AHU1"]1))

add( (LH["AHU1l_power_sensor"], BRICK.hasUnit, UNIT["KiloW"]))

add( (LH["4HU1l_power_sensor"], 4, BRICK.timeseries))

add( (LH["4HU1_power_sensor"], BRICK.hasTimeseriesId, Literal("c@587e8c-8bcc-1llec-9a83-8242acl30083", datatype=XSD.string)))
add( (LH["4HU1l_power_sensor"], BRICK.storedAt, LH["database"]))

Figure 25: Energy & Power Sensors’ Triples for Air Handling Unit 1 in Jupyter Notebook
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add( (LH["air_temperature_sensorl"], A, BRICK["Air_Temperature_Sensor"]))

add((LH["air_temperature_sensorl"], BRICK.hasUnit, UNIT["DEG_C"]1))

add( (LH["air_temperature_sensorl"], BRICK.isPointdf, LH["apartmentl"]))

add( (LH["air_temperature_sensorl"], A, BRICK.timeseries))

add((LH["air_temperature_sensorl"], BRICK.hasTimeseriesId, Literal("c@588538-8bcc-1lec-9a83-8242acl308083", datatype=XSD.string));
add((LH["air_temperature_sensorl"], BRICK.storedAt, LH["database"]))

add( (LH["air_temp_setpointl™], A, BRICK.Air_Temperature_Setpoint))

add((LH["air_temp_setpointl™], BRICK.isPointOf, LH[™apartmentl™]))

add( (LH["air_temp_setpointl®”], BRICK.hasUnit, UNIT["DEG_C"]})

add( (LH["air_temp_setpointl™], A, BRICK.timeseries))

add( (LH["air_temp_setpointl™], BRICK.hasTimeseriesId, Literal("c@588abc-Bbcc-1lec-9a83-8242acl30083", datatype=XSD.string)))
add((LH["air_temp_setpointl™], BRICK.storedAt, LH["database"]))

Figure 26: Air Temperature Sensor & Setpoint for Apartment 1 in Jupyter Notebook
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timeseries data.[108] The database is established in the KG with “Brick:Database” and is
connected to it with the relation “Brick:connstring” to a literal term that uses PostgreSQL,
which is an open source object-relational database system that uses and extends the SQL
language.[109] In Figure 22, the triples for the energy sensor of one apartment are shown
and in Figure 23, the triples for the database creation and connection.

The sensors’ data are provided by MyLeaf webpage and are then stored into
TimescaleDB. So, PostgreSQL is used to connect to the database and then the table that
will contain the data is created. What is more, the time, uuid and value columns are being
inserted and after that based on this table, a hypertable is created to hold the table’s data.
Hypertables consist of “chunks” of tables in order to be easier to manage and to behave
predictably to users familiar with standard PostgreSQL tables.[108]Then, to add the data
into this hypertable, they are copied from the directory that the CSV files exist into the
LeafHouse hypertable. The code for this procedure is shown in Figure 24.

Energy and power sensors also exist for the air handling units, which is added into
the KG as “Brick:Air_Handler Unit” and follows the same pattern as the apartments’
triples. In Figure 25, one of the three units’ triples are shown. In addition, there are air
temperature sensors added for every apartment as “Brick:Air Temperature Sensor”
together with air temperature setpoints as “Brick:Air Temperature Setpoint”. They also
follow the same structure of triples, which is shown in Figure 26. The apartments are also
equipped with air humidity sensors and setpoints, which are added in the KG as
“Brick:Relative Humidity Sensor” and “Brick:Air Humidity Setpoint” and follow the
same structure of triples as the rest sensors, as shown in Figure 27. After applying these
triples for every apartment, all sensors and spatial elements have been established into the
KG and it is then saved as a turtle file (.ttl).

Now that the KG is ready and in turtle file form, it can be visualized in Brick
Viewer, which shows the main classes and connections between them and in Brick Studio,
which shows every node and relation that was added into the KG. Brick Viewer’s graph is
shown in Figure 28 and Brick Studio’s in Figure 29. In Figure 30 a closer look of the Leaf
House KG, viewed in Brick Studio, is shown and it can be understood that there are three
nodes, one being the Air Handling Unit 1, which is connected with “Brick:isPointOf”

relation with the other two nodes, which are the energy and power sensors of the AHUL.
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g.add( (LH[ "humidity_sensorl"], A, BRICK["Relative_Humidity_Sensar"]))

g.add( (LH["humidity_sensorl®], BRICK.hasUnit, UNIT["PERCENT"]}}

g.add{ (LH[ "humidity_sensorl"], BRICK.isPointQf, LH["apartmentl™]1))

g.add( (LH[ "humidi sensorl™], A, BRICK.timeseries))

g.add{(LH["humidity_sensorl"], BRICK.hasTimeseriesId, Literal("cB8589156-8bcc-1lec-9a83-8242acl
g.add{(LH["humidity_sensorl"], BRICK.storedAt, LH["database"]))

.add( (LH[ "air_humidity,
.add( (LH[ "air_humidi

( _setpointl™], A, BRICK.Air_ Humidity_Setpoint))
[
.add( (LH["air_humidi
[
{
{

_setpointl™], BRICK.isPointOf, LH["apartmentl®™]))
setpoint1™], BRICK.hasUnit, UNIT["PERCRNT"1})
_setpointl™], &, BRICK.timeseries))

.add( (LH[ "air_humidi
.add((LH["air_humidi
.add( (LH["air_humidity_setpointl"], BRICK.storedAt, LH["database"]))

m m fm Mmoo

Figure 27: Relative Humidity Sensor and Setpoint for Apartment 1 in Jupyter Notebook
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Figure 28: KG’s Main Classes and Connections Viewed in Brick Viewer
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Figure 29: Leaf House KG’s Entities and Relations Viewed in Brick Studio
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39883, datatype=XSD.string)))

_setpointl™], BRICK.hasTimeseriesId, Literal(“c@5895a2-8bcc-1llec-9a83-8242acl3@@e83", datatype=XsD.string)):
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Air Temperature Sensors
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Energy Sensors
Power Sensors
Air Handling Units

Figure 30: Air Handling Unit 1 Node Connected with Energy and Power Sensor Nodes Viewed in Brick Studio

import brickschema
import time
import pyshacl

LeafHouse = "LeafHouse.ttl™

lh = brickschema.Graph(load_brick_nightly=True)
lh.load_file(LeafHouse)

# "compile™ the graph
print("Compiling graph™)
tl = time.time()
lh.expand{profile="brick")

print(f"Finished compiling (Took {time.time() - t1} seconds)")

lh.serialize(+"compiled-{LeafHouse}", format="turtle")

Figure 31:Leaf House KG Compile
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import pandas as pd
import brickschema
import psycopg?

#matplotlib inline

g = brickschema.Graph().load_file("compiled-LeafHouse.ttl™)
psycopg?.connect("postgres: //username: password@hoat : port/tsdb?sslmode=require™)
Figure 32: Data Retrieval Imports, KG Load and Database Connection Establishment in Jupyter Notebook

def sparql_to dfig, q):
res = g.query(q)
df = pd.DataFrame.from_records(list(res))
df = df.applymap(str)
df.drop_duplicates({inplace=True)
return df

def get_dataluuids, names)
with psycopgZ.connect("postgres://username:password@hoat:port/tsdb?sslmode=require”) as conn:
sql = "SELECT time, wvalue, uuid FROM leafhouse WHERE uuid=ANY(%s) ™
df = pd.read_sgl(sql, conn, params=(uuids,))
df = df.pivot(columns="uuid', values='wvalue', index="time')
df = df.resample('15T').mean()
df.columns = names

return df

Figure 33: “sparql_to_df”and “get_data” Functions in Jupyter Notebook

3.3 KG Compiling and Timeseries Extraction

Having created the Leaf House KG, the next step is to present how it can be useful.
That will be done by creating a quick and easy data retrieval query, which will use the KG
graph to search and locate different parts of the building, access their stored data and
present these data as well as different plots of them, all customizable to the user’s
intentions.

Before querying the KG, an extra procedure is added to make stronger and more
precise connections between the entities, the UUIDs and the database. This procedure is
presented in Figure 31 and is purpose is to compile the KG using the command “expand”
and selecting its profile to be “brick”, which applies “owlr+shacl+owlr” rules into the
graph. For the data retrieval script, first pandas is imported, which is an open source data
analysis and manipulation tool built on top of Python language, then brickschema and last
psycopg2, which is a PostgreSQL database adapter for Python.[110], [111] What is more,
matplotlib inline function is introduced, which renders the figures in Jupyter notebook.
After that, the KG is loaded in and the connection with the database is established, as shown

in Figure 32. Next, to functions are being introduced, one being “sparql_to df”, which will
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g = "
SELECT DISTINCT ?ap ?Energy_Sensor ?esuuid WHERE{
*ap a brick:Room .

?ap brick:hazPoint ?Energy_Sensor .
Energy_Sensor a brick:Energy_Sensor .
*Energy_Sensor a brick:timeseries .
Energy_Sensor brick:hasTimeseriesId »esuuid .

¥

md=sparql_to_df(g, q)
md.head()

0 1 2
0 filey2/C/sers/Filippos/Desktop/Brick_Exampl... file:///C/Users/Filippos/Desktop/Brick_Exampl... &63%fata-Occe-11ec-82a8-0242ac130003
1 file/C/sers/Filippos/Desktop/Brick_Exampl... file://C/Users/Filippos/Desktop/Erick_Exampl... c05074b4-Obce-11ec-9a03-0242ac130003
2 filey2/C/sers/Filippos/Desktop/Brick_Exampl... file:///C/Users/Filippos/Desktop/Brick_Exampl... c05075c2-0bcc-11ec-2a03-0242ac130003
3 filey/C/Users/Filippos/Desktop,/Brick_Exampl... filex//C:/Users/Filippos/Desktop/Erick_Exampl... ©0507624-0bce-11ec-9a03-0242ac130003

4 filew//CUsers/Filinpos/Deskton/Brick Exampl.. filex//CiUsers/Filionos/Deskton/Brick Examol., c0507752-0bce-112c-5a03-0242ac130003
Figure 34: Apartment’ Energy Sensors’ Query and UUID Results for Required Entities in Jupyter Notebook
for (ap, Energy_Sensor, esuuid) in md.values:

df = get_data([esuuid], ['Energy_Sensor'])
print{df.head())

Energy_Sensor

time

2821-85-81 B88:38:88+88.:88 19444 .55
2821-85-81 a8:45:88+88.:88 19444 .55
2821-85-81 al.88:88+88.,;88 19444 .55
2821-85-81 a8l:15:88+88.;88 19445,85
2621-85-81 Al1:38:88+06:08 19445.,85

Figure 35: Apartment’s 1 Energy Sensor Data Extraction Results in Jupyter Notebook

connect the KG and query with a dataframe , make a list of the data that is required and
will drop duplicate results and the other being “get data”, which connects to the database
and access the hypertable that was previously introduced, retrieving in that way the data
that are required and then returning a table of these data. These functions’ code is shown
in Figure 33.

What follows is the query to locate the UUIDs and data for the entities that the user
desire. In this case study of KG there are 42 sensors, all of them connected to a different
UUID and set of data. Taking the apartments’ energy sensors for example, there is a query
introduced in Figure 34 that establishes what is looked for in the KG and then the
“sparql _to_df” function is used for the KG and the query in order to obtain the UUIDs for
all apartments’ energy sensors in a list, also shown in Figure 33. Next, the “get data”
function is used for the entities and UUIDs that were queried, in order to obtain a table of

data, as shown in Figure 35. In this Figure, the data results are shown in two columns, one
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filled with the time data and the other with the energy sensor data of apartment 1.

This procedure can be done for any sensor that is connected to entities in the KG,
creating an example of data discovering and retrieval in a KG. Furthermore, these data can
be plotted and create a diagram, in this example of energy consumption (Wh) in apartment
1 over time. In order to further enhance the example, in section 4.1 there will be presented
the diagrams of the energy and power sensors of apartment 1 and air handling unit 1 as
well as the diagrams of air temperature and air humidity sensors with their respective
setpoints, all over time. Then they will be discussed over their way of creation, usage and

impact.

4. Results’ Assessment

4.1 Discovered and Retrieved Data

Using the plot command for the data that was extracted in the previous section, the
diagram in Figure 36 is created. It shows the energy consumption (kWh) in apartment 1 for
the year 2020, based on the energy electric meter in Leaf House. In this diagram it can be
shown that there is a gradual increase in consumption throughout the year, with a major
increase in the end of summer. Next, the discovering and data retrieval procedure, as well
as its plot will take place for power sensor of apartment 1, energy and power sensor of air
handling unit 1 and air temperature and humidity sensors with their respective setpoints for
apartment 1, all in the same time period as previously mentioned. So in Figure 37, the
diagram of the first apartment’s power sensor is being presented, including power
consumption (W) over time. It can be understood that for the month April, the residents
might be absent, due to the low power demand of the apartment 1. The max power demand
seems to be approximately 3.5kW.Following, the energy and power sensor data for air
handling unit 1 and for the same time period are retrieved and plotted in Figures 38 and 39.
In Figure 38, the energy consumption (Wh) over time diagram is shown. There is a gradual
increase throught the year that seems to create a small plateau for the months May and June
and after that there is a major increase again. This happens due to the fact that these months
in Italy, the climate conditions favours the building’s indoor temperature and humidity, in
a way that not much energy is needed to reach the setpoints. In this point, it should be

reminded that the air handling unit 1 is responsible for both apartments 1 and 2.
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Apartment 1: Energy Consumption over Time
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Figure 36: Annual Energy Consumption (kWh) Over Time for Apartment 1 With Data Retrieved from the KG

Apartment 1- Power Consumption over Time
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Figure 37: Annual Power Demand (W) Over Time for Apartment 1 With Data Retrieved from the KG
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Figure 38: Annual Energy Consumption (Wh) over Time for Air Handling Unit 1 with Data Retrieved from the KG
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Figure 39: Annual Power Demand (kW) over Time for Air Handling Unit 1 with Data Retrieved from the KG
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Apartment 1: Air Temperature Sensor & Setpoint over Time
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Figure 40: Annual Air Temperature (°C) Sensor and Setpoint over Time with Data Retrieved from the KG
Apartment 1: Relative Humidity Sensor & Setpoint over Time
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Figure 41: Annual Relative Humidity (%) Sensor and Setpoint over Time with Data Retrieved form the KG
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In Figure 39, the power consumption over time diagram for the air handling unit 1 is shown
and it has a max value of approximately 6.5kW. The data discovering and retrieval process
is applied for the air temperature sensor and setpoint for apartment 1 and the data plot are
shown in Figure 40. In this Figure, it can understood that the maximum annual indoor air
temperature reaches 27°C and the minimum reaches 16°C . After the minimum temperature
takes place the setpoint changes and brings imidiat results to the apartments temperature.
Last, in Figure 41, the diagram for relative humidity sensor and setpoint over time is
presented, with data retrieved with the same procedure as before. The maximum relative
humidity reaches approximately 80& and a minimum of 10%. The setpoint remains the
same throughout the year.

This data discovering and retrieval procedure that located the needed sensors, being
the energy, power, air temperature and humidity sensors, as well as the setpoints of the last
two sensors for apartment 1 and the energy and power sensor of the air handling unit 1,
was an example of querying the Leaf House KG. This example was an easy extraction of
the energy profile and internal room conditions for a building’s apartment, without the use
of external building models and energy assessment tools. What is more, it was experienced
to be an easy code to apply in a KG, in order to access a building’s data. Also, these data
are plotted into diagrams, making it easier to understand their usage. The procedure is also
quick and can be done by users with different backgrounds, meaning that they do not need
a complex query. Furthermore, the knowledge graph has a hierarchical distribution of the
buildings entities, making the data more meaningful and useful in a situation of data

analysis, like this one.

4.2 Leaf House Energy Assessment

Having analyzed the data discovery and extraction procedure, these data are used
to make an energy assessment of the Leaf House building for 2020. In Table 2, the monthly
energy consumption for Leaf House is being presented. What is more the annual maximum
power demand of the building is 16kW and the annual energy consumption is 32.8MWh
or 69.8kWh/m2. From the same table, it can also be understood that the highest energy
consumption in 2020 takes place in July, August and September, which are the months of
the year with the highest outdoor temperature in Italy. So, with higher outdoor temperature,

there is a greater energy consumption to cover the indoor temperature setpoint, meaning
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greater HVAC system usage. In Figure 42, the monthly energy consumption for Leaf
House in 2020 is being presented in a diagram. The same characteristics with Table 2, are
being understood in Figure 42. What is more, it is also understood that January and
December have high energy consumption and that is due to the fact that the climate in Italy
for these months reaches the lowest outdoor temperatures, creating the need for higher
indoor temperature setpoint, in order to keep the apartments warm. This is the reason, why
the HVAC systems has an increase in energy consumption these months. The lowest
energy consumption values are for the months April to June, which are months that the
climate in Italy reaches temperatures in the same range as the indoor temperature setpoints.
So the HVAC system is not required to be in great usage. The maximum energy

consumption for Leaf House reaches on July at 3.9 MWh or 8.3kWh/m? and minimum on

Energy Consumption (103kWh) | Energy Consumption (kWh/m?)
January 3.2 6.8
February 2.2 4.8
March 2.6 5.6
April 2.1 4.4
May 1.7 3.6
June 2.1 4.4
July 3.9 8.3
August 3.9 8.2
September 33 7.0
October 2.3 4.9
November 2.4 5.2
December 3.1 6.6
Annual 32.8 69.8

Table 2: Monthly & Annual Power Demand & Energy Consumption of Leaf House for 2020

May at 1.7MWh or 3.6kWh/m?.

In Figure 43, a pie diagram is being presented, which shows the annual energy
consumption of each apartment of Leaf House. It is clear that the biggest energy
consumption takes place in apartment 2 with 37% of total apartments’ energy consumption.
Following with 21% is apartment 6 and with 15% the apartment 3. The lowest percentage
takes place in apartment 5 with only 6% of total apartments’ energy consumption. The
reason why apartment 5 has such a great difference might be the absence of residents in
the most part of the year. On the other hand, apartment’s 2 high energy consumption might

be based on full occupancy and high energy consumptive habits. Apartments 1 and 2 are
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Leaf House Monthly Energy Consumption in 2020
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Figure 42: Monthly Energy Consumption for Leaf House in 2020

based on the ground floor of the building, 3 and 4 on the first floor and 5 and 6 on the
second floor. Apartment’s 6 great energy consumption can be based on the fact that is on
the top floor, meaning that is exposed on outdoor climate conditions from more fronts in
comparison with the other floors.

In Figure 44, a pie diagram is being shown, which includes the annual energy
consumption of the apartments and HVAC system. It is understood that 64% of the Leaf
House’s energy consumption is due to HVAC system and 36% is due to apartments.

Next, the monthly energy production of the photovoltaic panels is presented in
Table 3 and in Figure 45, as a diagram. The annual PV energy production is calculated to
be 23,018kWh.

Last, the total and total net annual and normalized annual electrical energy
consumption have been calculated and presented in Table 4, with total annual electrical
energy consumption being 32,819kWh and total net annual electrical energy consumption
being 9,801 kWh and total normalized annual electrical energy consumption
being69.8kWh/m? and total net normalized annual electrical energy consumption being
20.9kWh/m?,
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Figure 43: Apartments’ Annual Energy Consumption
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Figure 44: Annual Energy Consumption of Leaf House for 2020
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Energy Production(kWh)

January 1,312
February 1,858
March 1,732
April 2,421
May 2,447
June 2,536
July 2,784
August 2,393
September 2,080
October 1,651
November 1,002
December 8,04

Annual 23,018

Table 3: Leaf House Monthly & Annual PV Energy Production in 2020
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Figure 45: Leaf House Monthly PV Energy Production in 2020

Total Total Net
Annual Electrical Energy Consumption (kWh) 32,819 9,801
Normalized Annual Electrical Energy Consumption (kWh/m?) 69.8 209

Table 4: Annual & Normalized Annual Energy Consumption of Leaf House in 2020
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4.3 Thermal Comfort Index

Urban environment and human discomfort level have been targets of the effects of
climate change and urban heat island phenomenon.[112], [113]Urban heat island
phenomenon (UHI) is the phenomenon which is created due to the concentration of heat in
urban areas, compared to rural areas and is of major importance, based on the fact that high
UHI means high heat stress, poor air quality and high energy usage, mostly on hotter
days.[114]

The human body’s system is affected by the thermal environment, in obedience to
the thermodynamic laws.[115] Thermal comfort is defined by ASHRAE as “the condition
of mind which expresses satisfaction with the thermal environment”, but the support of
weather variables is equally important for the thermal comforts’ judgement.[116], [117]
To calculate the thermal comfort, there have been developed some thermal comfort
indexes, which use weather variables, like air temperature and relative humidity.[118]One
of these indexes is the Discomfort Index (DlI), proposed by Thom (1959) and has been used
numerous times.[119] DI is a simple index, which uses the dry bulb temperature (Tdb) and
relative humidity (RH%) to calculate the human thermal comfort, as shown in equation 1.
In Table 5 the discomfort index range and descriptions are presented and the information
that provides is that for DI smaller than 21 there is no discomfort in the room, with DI
between 21 and 24 there is discomfort to under 50% of the population, with DI between 24
and 27 over 50% of the population feels discomfort, with DI between 27 and 29 most of
the population feels discomfort, with DI between 29 and 32 everyone feels stress and with

DI greater than 32 there is a state of medical emergency.

DI = Ty, — (0.55 — 0.005 * RH%) * (T, — 14.5) (1)

DI Range Description
<21 No Discomfort
21-24 Discomfort Under 50% of Population
24-27 Discomfort Over 50% of Population
27-29 Most of Population feels Discomfort
29-32 Everyone feels Stress
>32 State of Medical Emergency

Table 5: Discomfort Index (DI) Range & Description

So, with the air temperature and relative humidity data that were discovered and

extracted from the Leaf House KG, the Discomfort Index was calculated for all six
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apartments. The DI values, calculated with the monthly average air temperature and
relative humidity of the Leaf House six apartments for the year 2020, are being presented
in Table 6. The same results are being presented in Figure 48 as a columns diagram. From
both Table 4 and Figure 48, it can be understood that every apartment has no discomfort

for the months January to April. What is more, from May to September, there is discomfort

Discomfort Apartmentl | Apartment2 | Apartment3 | Apartment4 | Apartment5 | Apartment6
Index
January 19 19 19 20 19 20
February 19 20 19 20 19 20
March 19 20 20 20 19 20
April 19 20 20 19 19 21
May 21 20 21 21 21 22
June 21 21 21 21 22 23
July 21 22 21 21 22 22
August 22 22 22 20 23 23
September 22 22 21 20 22 22
October 20 21 20 20 20 21
November 19 20 19 19 19 21
December 19 19 20 19 19 20

Table 6: Monthly Average Discomfort Index (Dl) for Leaf House’s Six Apartments for 2020

under 50% of the population in these apartments, as the DI takes values mostly between 21
and 24. From October and for the rest of 2020 there is no discomfort in the Leaf House
apartments. Apartment 1 surpasses <21 no discomfort limit on August and September,
Apartment 2 does the same on July-September, Apartment 3 on August, Apartment 4 does
not surpass the limit at any month, Apartment 5 from June to September and Apartment 6
from May to September. So Apartment 6 has the biggest time period that the discomfort
index has values from 21-24, which means that under 50% of the population feels
discomfort.

In Figure 46, the annual air temperature for all six apartments is shown for 2020.
Overall, it is understood that for the majority of time, Apartment 6 has the highest
temperature in comparison to the other apartments.. The maximum temperatures are

reached by Apartments 5 and 6.
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Figure 46: Annual Air Temperature for Leaf House’s Apartments in 2020
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Figure 47: Annual Relative Humidity for Leaf House’s Apartments in 2020
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Figure 48: Monthly Average Discomfort Index (DI) for Leaf House’s Six Apartments and Range of Discomfort That These Values Hit
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In Figure 47, the annual relative humidity for all six apartments is presented for
2020. 1t is understood that Apartment 4 has the lowest relative humidity in comparison to
the rest of the apartments. The maximum relative humidity is reached by Apartments 1 and
6.

The thermal discomfort index showed that there was discomfort under 50% of the
population for the summer time period, in most of the apartments. Although, each
apartment suffered for a different number of months. In ground floor’s apartments 1 and 2,
there were two and three months respectfully, where the discomfort was felt by under 50%
of the population. In first floor’s apartments 3 and 4, there were one and zero months
respectfully, where the discomfort was felt by under 50% of the population. Last, in top
floor’s apartments 5 and 6, there were four and five months respectfully, where the
discomfort was felt by under 50% of the population.

A more clear perspective for each apartment is shown in Figure 49, where there are
six diagrams, one for each apartment, of DI over time. From these diagrams it can be
understood as previous that from the beginning of 2020 till May there is no thermal
discomfort in most of the apartments, following by a period of discomfort under 50% of
the population from June to September and last the rest of the year continues with no
thermal discomfort. However, Apartment 6 clearly has periods of thermal discomfort under
50% of the population in every month of the year. The thermal discomfort index is
constantly between the ranges of no discomfort and discomfort to under 50% of the
population from the beginning of 2020 till May as well as from October till the end of the
year. The period in between there it is clear that there is discomfort to under 50% of the
population.

In Table 7 the percentages of DI with range less than 21 and between 21 and 24 for
all apartments is presented. It should be noted again that with DI less than 21, there is no
thermal discomfort in the room and with DI between 21 and 24 there is thermal discomfort
under 50% of the population. So it is understood that in ground floor, apartments 1 and 2,
there is thermal discomfort under 50% of the population for 29% of 2020. In first floor,
there is there is thermal discomfort under 50% of the population for 14% of 2020 for
apartment 3 and 29% of 2020 for apartment 4. Last, for the second floor, there is there is

thermal discomfort under 50% of the population for 45% of 2020 for apartment 5 and 39%
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Figure 49: Discomfort Index (DI) over Time for All Apartments for 2020
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of 2020 for apartment 6. It is made clear once again that the top floor, which is more
exposed to the outdoor conditions, suffers the most time from thermal discomfort. Next,
the ground floor suffers for a smaller time period from thermal discomfort. On the contrary
to the rest of the storeys, first floor has the shortest time period with thermal discomfort,
being one month total for both apartments, giving the idea that the position its holds

between the other two storeys, benefits its thermal comfort conditions.

Apartment DI <21 (%) DI 21-24 (%)
1 71 29
2 71 29
3 86 14
4 71 29
5 55 45
6 61 39

Table 7: Percentage of Discomfort Index range in all six Apartments

5. Discussion

5.1 Conclusions

In this thesis, the main goal was to create a KG for a nZEB, which was the Leaf
House building, that includes many different sensors, and then apply a data discovering
and retrieval query on the KG, in order to make a data analysis assessment. This would
bring up some conclusions about the use of KG for a building as well as about the example
of using a building KG to access data in it and assess them.

The methodology that was followed included first, the research of the state of the
art about KGs in nZEB, BIM, AEC-KGs and some uses and applications of them in the
Built Environment industry, next the selection of the case study’s building being the Leaf
House, following the creation of KG of Leaf House, as well as a data discovering and
extraction query as an example of KG’s usage, continuing to the assessment of these results
in a data analysis, in addition to a thermal comfort assessment using the Discomfort Index
(D) and lastly the conclusion of KGs in nZEB.

The case study that was examined, accessed the apartments and air handling units
sensors’ data and plotted diagrams for the year 2020. It was calculated that the annual

energy consumption was 32.8MWh or 69.8kWh/m?, 64% of which originating from
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HVAC system consumption and 36% from the apartments’ consumption. Apartment 2 had
the highest energy consumption between the apartments, which was responsible for 37%
of the total apartments’ annual energy consumption. On the other hand, Apartment 5 had
the lowest energy consumption between the apartments, which was responsible for only
6% of the total apartments’ annual energy consumption, probably due to residents’
absence. What is more the annual PV energy production was calculated to be 23,018kWh.
So the total net annual electrical energy consumption in 2020 was 9,801 kWh and total net
normalized annual electrical energy consumption in 2020 was 20.9kWh/m?.

The thermal comfort assessment, which examined the Discomfort Index in all six
apartments, showed that in summer time period of 2020, 50% of the population felt
discomfort. The months which the discomfort lasted varied between the apartments. In
ground floor’s apartments 1 and 2, there were two and three months respectfully, where
the discomfort was felt by under 50% of the population. In first floor’s apartments 3 and 4,
there were one and zero months respectfully, where the discomfort was felt by under 50%
of the population. Last, in top floor’s apartments 5 and 6, there were four and five months
respectfully, where the discomfort was felt by under 50% of the population. So, the
apartments which are on middle storey had the shortest time period with thermal
discomfort, in comparison to the bottom and top floor, which had longer time period of
thermal discomfort, with top floor having the longest.

The conclusions that come up from the results’ assessment for the data discovering
and extraction query, are that is a simple and quick procedure that provides the user, who
is coming from any background, with data analysis results, without the use of a BIM, and
with information about the building.

All things considered, the KG in a nZEB provides a hierarchical representation of
the building’s entities, which is used as a base for many querying ideas and it nullifies the
heterogeneity coming from different building representation models, as well as it gives to
data more meaning and usefulness, due to the imported ontologies. Furthermore, it is
important to be mentioned that the same KG manages in a single simple way, multiple
different databases and sensors, in addition to giving easy access to up-to-date information
that the user can discover and extract, according to the current agenda. Continuing, the KG

allows users to perform queries and obtain information about the building’s entities and
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data in a common procedure. At last, the KG is used for complex systems correlation and

data analysis without BIM usage.

5.2. Future Work

A suggestion of future work based on this thesis’ results, could be the enrichment
of the Leaf House KG with more of its real entities and information like materials, spatial
measurements and renewable energy sources, in order to create a more identical
representation of the building. Next, one more proposal is to dynamically link MyLeaf
database and the Leaf House KG and to compare the two approaches versus an established
set of performance criteria. In this context, creating a KG could be developed and assessed
in terms of its advantages when applied in a more complex establishment like a near Zero
Energy Neighborhood (nZEN) that consists of different buildings and renewable energy
systems connected together as a microgrid. All these ideas can have as a base the
information gathered in this thesis, the methodology that was followed, as well as the
results that came up, in order to lead into new findings and applications of KGs in near

Zero Energy Buildings or Neighborhoods.
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