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Abstract: Probabilistic models with flexible tail behavior have important applications in engineering
and earth science. We introduce a nonlinear normalizing transformation and its inverse based on the
deformed lognormal and exponential functions proposed by Kaniadakis. The deformed exponential
transform can be used to generate skewed data from normal variates. We apply this transform to a
censored autoregressive model for the generation of precipitation time series. We also highlight the
connection between the heavy-tailed κ-Weibull distribution and weakest-link scaling theory, which
makes the κ-Weibull suitable for modeling the mechanical strength distribution of materials. Finally,
we introduce the κ-lognormal probability distribution and calculate the generalized (power) mean
of κ-lognormal variables. The κ-lognormal distribution is a suitable candidate for the permeability
of random porous media. In summary, the κ-deformations allow for the modification of tails of
classical distribution models (e.g., Weibull, lognormal), thus enabling new directions of research in
the analysis of spatiotemporal data with skewed distributions.
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1. Introduction

Several physical processes exhibit asymmetric probability distributions which de-
viate from the Gaussian law (e.g., the exponential, gamma, Weibull, lognormal, Pareto,
and generalized Pareto models) [1–8]. Skewed probability distributions describe various
geophysical variables, including the amount and duration of precipitation over a certain
time window [9–12], the waiting times (recurrence or interevent times) between consecutive
earthquakes occurring over a given area [6–8], the fluid permeability of geological porous
media [13–16], as well as the mechanical strength distribution of the earth’s crust [17,18]
and various technological brittle materials [19–22].

A feature of particular interest is the behavior of the tail(s) of a probability distribution,
because the tails define the probabilities of extreme events. Distributions are characterized
as sub-exponential (if their tail decays slower than the exponential) and super-exponential
in the opposite case. The same function (e.g., the Weibull model) may exhibit transitions
from sub-exponential to super-exponential by changing the value of a key parameter; in
the Weibull case this is the modulus m: m < 1 leads to a sub-exponential and m > 1 to a
super-exponential tail. Sub-exponential models are called heavy-tailed if the asymptotic
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behavior of the probability for large events decays algebraically, i.e., P(X > x) ∼ x−α,
where α > 0.

In particular, probability distributions with power-law tails are ubiquitous in natural
phenomena [23,24]. Such power laws can be generated by means of different physical
mechanisms as described in ([23], Chap. 14). Multiple mechanisms including (but not
limited to) phase transitions, self-organized criticality, optimization, multiplicative pro-
cesses, and interdependence in complex systems [25–29] lead to power laws. This fact
explains, to some extent, the omnipresence of power laws in physics, biology, earth science,
cosmology, ecology, finance, and other disciplines. In addition, the detection of power-law
distributions in data has significant impact on statistical analysis and forecasting [30].

Approximately twenty years ago, Kaniadakis introduced the κ-deformed exponential
and κ-deformed logarithmic functions [31–34]. These functions provide a springboard for
the construction of generalized, flexible probability distributions whose tails are controlled
by the deformation parameter κ. Based on the deformed functions, extensions of the known
generalized gamma, Weibull, generalized logistic, and exponential models can be con-
structed which exhibit power-law tails; explicit expressions for the probability functions of
these models are given in [35]. The Kaniadakis functions have found applications in plasma
physics [36,37], gravitational systems [38], income analysis [39–41], epidemiology [42],
and other fields (see [35] for a more comprehensive list of applications). In particular,
κ-statistical theory uses the κ-exponential function to generalize the Maxwell–Boltzmann
distribution, leading to distributions with power-law tails. Distribution models with flexi-
ble tails are also needed in earth science, where datasets often exhibit tail behavior that is
not adequately captured by classical distribution models [43–45].

The motivation for this work is the need for flexible statistical models that can adapt
to the diversity of earth science data and also provide physical intuition. Our objective
is to explore the possibilities created by the parameter κ which appears in the deformed
exponential and logarithmic functions. This investigation leads to novel applications
of the Kaniadakis functions in geostatistics, material fracture, precipitation, and fluid
flow modeling.

The main contributions of this paper are as follows.

• We show (Section 3) that the κ-deformed exponential and logarithmic functions (hence-
forth, κ-exponential and κ-logarithm) can be used to define normalizing transforms
for non-Gaussian data, which extend the well-known (in statistics) Box–Cox family of
transformations [46].

• We formulate an autoregressive, intermittent precipitation model based on the κ-
modified Box–Cox transform in Section 3.3. We show that the resulting precipitation
time series has higher “peaks” than those obtained with the Box–Cox transform with
the same parameter value.

• We review the κ-Weibull distribution focusing on its connection with weakest-link
theory (Section 4). This demonstrates that the κ-Weibull is a physically motivated
generalization of the classical Weibull distribution for the mechanical strength of brittle
materials, unlike modified Weibull distributions which fail to satisfy the weakest-
link principle.

• We show that for several physical quantities, including the thickness of magmatic sheet
intrusions, the tensile strength of steel, earthquake waiting times, and precipitation
amounts the κ-Weibull distribution provides a better fit than the Weibull according to
model selection criteria.

• We introduce the κ-lognormal distribution, which provides a deformation of the
lognormal with lighter tails than the latter in Section 5. The κ-lognormal can be used to
model asymmetric data distributions which concentrate more probability mass around
the median than the lognormal. We discuss the importance of the generalized mean
(power mean) of the lognormal distribution for estimating the effective permeability
of heterogeneous porous media, and we calculate the generalized mean of the κ-
lognormal distribution.
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2. Mathematical Preliminaries

Let (Ω,F , P), where Ω is the sample space, F is a σ-field of subspaces of Ω, and P is
a probability measure, define a probability space. A real-valued, scalar random variable
X(ω) is defined by the mapping X : Ω → R, where R is the set of real numbers [47].
Furthermore, a stochastic process X(t; ω) indexed by the time t ∈ R is defined by the
mapping X : R × Ω → R. In the following, the dependence on the state index ω is
suppressed for convenience. In addition, the random variable X represents a load or
the waiting time between consecutive “failure” events (e.g., earthquakes), or some other
asymmetrically distributed variable.

The function F(x) : P(X ≤ x) : R→ [0, 1] defines the cumulative distribution function
(CDF) of X, or the marginal CDF of a stationary stochastic process {X(t)}. The expectation
of X, assuming it is mathematically well defined, is given by means of E [X] =

∫
dF(x) x.

Assuming that F(x) is at least once differentiable, the probability density function
(PDF) is given by the first derivative of the CDF, i.e., f (x) = dF(x)/dx.

The CDF is related to the so-called survival function, also known as the reliability
function, which is given by S(x) = 1− F(x). Whereas F(x) is a monotonically increasing
function, S(x) is monotonically decreasing. The term “survival function” comes from
reliability engineering: if X represents the strength or critical loading of a given system,
F(x) is the probability that the system fails at loading level X ≤ x; then, S(x) is respectively
the probability that the system remains intact (survives) at this loading level.

The quantile function, Q(p), where p ∈ [0, 1], returns the value xp ∈ R such that
F(xp) = p. Hence, Q(·) is the inverse of the CDF.

The hazard rate, also known as the hazard function, h(x) represents the conditional
probability that the system fails for X ∈ (x, x + δx] where δx � 1, conditioned on the
survival of the system for X ≤ x. Let A denote the event that the system survives at level
x and B denote the event of system failure in the interval [x, x + δx]. Then, by using the
definition of conditional probabilities, h(x) = P(B|A) = P(B ∩ A)/P(A), the hazard rate is
given by the following ratio:

h(x) = lim
δx→0

P(x < X ≤ x + δx)
S(x) δx

=
f (x)δx
S(x)δx

=
f (x)
S(x)

. (1)

The asymptotic behavior of the hazard rate determines the probability of system
failure with increasing load. The hazard rate for x → ∞ is determined by the tail of the
probability functions f (x) and S(x). For certain probability models, e.g., the exponential
and the gamma, h(x) tends to a constant as x → 0; for the Weibull model with modulus
m > 1, h(x) tends to zero, whereas for models with power-law tails, the lognormal, and the
Weibull model with m < 1, h(x) diverges as x → ∞. The hazard rate is an important factor
in seismic risk assessment [48].

2.1. The κ-Exponential Function

The κ-generalized exponential is a one-parameter generalization of the exponential
function, proposed by Kaniadakis [31,34]:

expκ(x) =
(√

1 + x2κ2 + xκ
)1/κ

, (2)

with 0 ≤ κ < 1 and x ∈ R. The first few terms of the Taylor expansion of expκ(x), reported
in [49], are given by

expκ(x) = 1 + x +
x2

2
+ (1− κ2)

x3

3!
+ (1− 4κ2)

x4

4!
+ . . . . (3)

The emerging pattern persists for higher orders, i.e., terms of O(x3) consist of the ordinary
exponential expansion and a κ-dependent correction. The κ-exponential is expressed as the
following power series [49]:
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expκ(x) =
∞

∑
n=0

ξn(κ)
xn

n!
. (4)

The functions {ξn(κ)}∞
n=0 are polynomials of κ defined by the recurrence relations

ξ0(κ) = ξ1(κ) = 1, n = 0, 1, (5)

ξn(κ) =
n−1

∏
j=1

[1− (2j− n)κ] = ξn−2(κ)
[
1− (n− 2)2κ2

]
, n > 1. (6)

The polynomials ξn(κ) for the first seven orders are given by

ξ0(κ) = ξ1(κ) = ξ2(κ) = 1, (7)

ξ3(κ) = 1− κ2, (8)

ξ4(κ) = 1− 4κ2, (9)

ξ5(κ) = (1− κ2)(1− 9κ2), (10)

ξ6(κ) = (1− 4κ2)(1− 16κ2). (11)

It follows from Equation (3) that when x → 0 or κ → 0, expκ(x) converges to the
ordinary exponential, i.e.,

expκ(x) ∼
x→0

exp(x), (12)

expκ(x) ∼
κ→0

exp(x). (13)

Equation (2) shows that the asymptotic behavior of expκ(x) as x → ±∞ follows a power
law [34,49], i.e.,

expκ(x) ∼
x→±∞

∣∣ 2κ x
∣∣±1/κ . (14)

Based on the above, for x → +∞ the modified exponential exhibits a heavy tail, i.e.
expκ(−x) ∼ (2κx)−1/κ . Hence, expκ(x) can be used to model subexponential probability
distributions which are suitable for heavy-tailed data.

The κ-exponential can also be introduced as the solution of a linear, first-order ordinary
differential equation (ODE) with time-dependent rate [42]. Consider the ODE

d f (x)
dx

= −r(x) f (x), with initial condition f (0) = 1, (15)

where r(x) is the following x-dependent rate function

r(x) =
β√

1 + κ2β2x2
. (16)

The solution of the ODE (15) is given by the function f (x) = expκ(−βx). In case κ = 0,
then r(x) = β, and the rate equation is solved by the standard exponential function
f (x) = exp(−βx).

2.2. The κ-Logarithm Function

The inverse of the κ-exponential is the κ-logarithm, defined by the following function
for x > 0:

lnκ(x) =
xκ − x−κ

2κ
. (17)
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The κ-logarithm satisfies the equation lnκ expκ(x) = x. In addition, it respects the
κ-symmetry property lnκ(x) = ln−κ(x). A Taylor expansion of xκ and x−κ around κ = 0
leads to

lim
κ→0

lnκ(x) = ln x . (18)

The first and second derivatives of the κ-logarithm are respectively given by

d lnκ(x)
dx

=
1
2

(
xκ−1 + x−κ−1

)
, (19a)

d2 lnκ(x)
dx2 =

κ − 1
2

xκ−2 − κ + 1
2

x−κ−2 . (19b)

Based on Equation (19a), the first derivative of the κ-logarithm is positive; there-
fore lnκ(x) is a monotonically increasing function. Based on Equation (19b), the second
derivative of lnκ(x) is negative for 0 < κ < 1; therefore, lnκ(x) is a concave function for
κ ∈ (0, 1).

3. Nonlinear Transformation of Data Based on the κ-Logarithm

Nonlinear, monotonic transformations are often applied to non-Gaussian data in order
to restore normality [50–52]. This procedure, known as Gaussian anamorphosis, enables
the use of data processing methods that are based on Gaussian assumptions. Various
transforms are used in practice, including the Box–Cox [46] and Yeo–Johnson [53]. Such
transforms can be generalized by means of the Kaniadakis functions. Below we focus on
Box–Cox but the same arguments can be used for other transforms.

3.1. Box–Cox Transform and the Replica Trick

A widely used normalizing transformation in statistics is the so-called Box–Cox trans-
form (BCT) [46]; the one-parameter version of BCT is given by the monotonic function

gBC(x) =
xλ − 1

λ
, where λ ∈ R, x > 0. (20)

The BCT is applied to skewed (non-Gaussian) data so that the transformed variable
y = gBC(x) is better approximated by the Gaussian distribution. The BCT is applied
to both time series and spatial data [52].

It is interesting to note that if λ < 0, gBC(x) takes positive (negative) values for x < 1
(x > 1), whereas if λ > 0, the gBC(x) takes positive (negative) values for x > 1 (x < 1).
The BCT value for λ = 0 can be obtained by using either l’Hopital’s rule or the Taylor
expansion. The Taylor expansion of xλ around λ = 0 shows that xλ = 1 + λ ln x +O(λ2).
Therefore,

lim
λ→0

xλ − 1
λ

= ln x . (21)

Equation (21) shows that the logarithmic transform is a special case of the BCT for λ = 0.
The inverse BCT is given by hBC(y) , g−1

BC(y) = (λy + 1)1/λ.
In a different context, Edwards and Anderson [54] introduced the famous replica

trick, which is also based on Equation (21), to study spin glasses. The replica trick is used
to calculate the ensemble average (over the magnetic disorder) of the logarithm of the
spin glass partition function, i.e., ln Z. By using the replica trick, ln Z is calculated by first
evaluating gBC(Z), with λ = n ∈ N denoting the number of replicas (identical copies of the
system), and then taking the limit n→ 0.
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3.2. The κ-Logarithmic Transform

The κ-logarithm transform (KLT) is a nonlinear, monotonic transformation from
R+ → R. Therefore, it can be used like the BCT for the Gaussian anamorphosis of positive-
valued data. The KLT takes the form

gKL(x) = lnκ(x) =
xκ − x−κ

2κ
, κ ∈ R, x > 0. (22)

Equation (18) shows that the logarithmic transform is a special case of the KLT for
κ → 0, as it is a special case of the BCT. To understand how the transformation works,
consider the special cases κ = λ = 1 shown in Figure 1. The choice λ = 1 for the
BCT is a simple linear shift of x to x − 1, whereas setting κ = 1 in the KLT leads to the
nonlinear transformation x2−1

2x . The latter tends to the linear transformation x/2 for x � 1.
Figure 2 shows the two transformations for different values of λ = κ. Notice that the KL
transformation is symmetric with respect to κ 7→ −κ. The inverse of the KLT is given by
hKL(y) = expκ(y).

Figure 1. Plots of the Box–Cox and κ-logarithmic transform for λ = κ = 1 (λ is the Box–Cox
parameter and κ is the deformation parameter of the Kaniadakis logarithm).
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Figure 2. Plots of the Box–Cox (left) and κ-logarithmic (right) transform for different values of λ = κ

(λ is the Box–Cox parameter and κ is the deformation parameter of the Kaniadakis logarithm).

3.3. Application to Precipitation Modeling

Autoregressive (AR) models are used for different meteorological processes which
exhibit memory. AR models exhibit short-term memory: the present depends on the past
via the p most recent values of the process

yt = m +
p

∑
i=1

φi (yt−i −m) + σε εt, (23)
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where m = E [yt] is the expectation of yt, the set {φi}
p
i=1 comprises the real-valued

auto-regressive coefficients, {εt} is the innovation process, and σε is its standard devi-
ation. The innovation is typically considered to be standard Gaussian white noise, i.e.,
εt ∼ N (0, 1), leading to a normally distributed time series {yt}T

t=1.
Daily precipitation usually displays intermittency (i.e., intervals of zero precipitation)

in addition to temporal variability of its intensity. These features can be modeled by using
a censored autoregressive time series model [55]. Then, the amount of daily precipitation
is given by xt = yt θ(yt − yc), where θ(·) is the unit step function and yc is a censoring
threshold. The threshold is selected so that Fy(yc) = p0, where p0 is the probability of
observing a dry day. The censored AR model leads to a truncated normal distribution for
xt. Because this distribution does not adequately reflect the extreme values of precipita-
tion, in practice the daily precipitation is given by means of the following censored and
transformed autoregressive process,

xt = h[ yt θ(yt − yc)]− h(0), (24)

where h(·) : R → R is a monotonically increasing transform. The application of h(·)
introduces skewness and increases the weight in the right tail of the distribution. The sub-
tracted term h(0) restores the zero precipitation values after application of the trans-
form. The function h(·) could, for example, represent the inverse BC or KL transforms,
i.e., h(y) = (λy + 1)1/λ or h(y) = expκ(y), respectively.

Figure 3 presents six realizations of the censored AR(1) model of Equation (24) using
both the inverse BCT and KLT as the nonlinear transformation h(·), with equal values of
κ and λ in each frame. The AR(1) model of Equation (24) is applied with φ1 = 0.5 and
σε = 0.6. The time series exhibit intermittent behavior due to censoring. The difference
between BCT and KLT is negligible for small values of κ = λ. For κ ≈ 0, both transforms
yield a censored lognormal process, because hKL(y) and hBC(y) converge to the normal
exponential for κ = λ→ 0. The KLT peaks become progressively higher compared to the
BCT peaks as κ (and λ) increase. This behavior is due to the following inequality between
the inverse transforms

hKL(y) =
(√

1 + κ2 y2 + κy
)1/κ

> hBC(y) = (1 + κy)1/κ , κ > 0.

Figure 3. Realizations of six time series generated by the censored and transformed AR(1) model of
Equation (24) with φ1 = 0.5 and σε = 0.6. The nonlinear transform uses BCT (blue, continuous lines)
and KLT (red, broken lines) for κ = λ ∈ {0.001, 0.2, 0.4, 0.6, 0.8, 0.95}.
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The increase in the relative height of KLT-based versus BCT-based peaks with increas-
ing κ should not be confused with the fact that the peaks of xt are highest for κ = λ = 0,
i.e., when h(·) is the exponential function (herein κ = 0 implies the limit κ → 0). This
behavior is due to the inequality expκ(y) < exp(y) for all y ≥ 0 and for 0 < κ ≤ 1, e.g., [49].

4. The κ-Weibull Distribution and Its Applications

Complex systems involve collections of interacting units and often exhibit probability
distributions with power-law tails [23]. A long (power-law) right tail of the PDF implies
that the occurrence probability for extreme events decays slowly.

One mechanism that can lead to the emergence of long tails is due to limited size of the
observation window as illustrated in Figure 4. Consider an observation domain (indicated
by the square domain in the center) which is part of a larger interconnected system (denoted
by the oval-shaped area). Let us assume that in the entire system, the failure events occur
at times t1 < t2 < t3 < t4. Furthermore, assume that the interevent times t2 − t1, t3 − t2,
and t4 − t3 follow a distribution which does not necessarily have a heavy tail. However,
since the observed system involves only the square domain, the observed interevent times
are t2− t1 and t4− t2; the latter results by adding the true interevent times t3− t2 and t4− t3,
leading to a larger period of quiescence than if the entire system were taken into account.
The repeated occurrence of events outside the observed domain can thus inflate waiting
times and transfer probability weight from the low and middle range of the probability
distribution to the right tail.

Figure 4. Schematic illustrating how long tails can emerge if the observation window (blue square)
is a nested insider a larger, interacting system (see text for explanation). Blue stars indicate events
inside the observation window, while the red star refers to an event outside the window.

In such cases, the classical Weibull distribution may not be adequate because it has
a right tail which decays at best (i.e., for m < 1) as a stretched exponential. In contrast,
the κ-Weibull distribution has a flexible power-law tail with exponent equal to −m/κ.

4.1. κ-Weibull Probability Functions

The Weibull distribution is most simply defined in terms of its survival function
S(x) = exp

[
−(x/xs)

m], for x ≥ 0, where xs > 0 is the scale parameter and m> 0 is the
shape parameter or Weibull modulus. The Weibull distribution is used in many applica-
tions such as modeling the distributions of mechanical strength of materials [17,20,21,56],
earthquake interevent times [1,2,6–8,57–61], and precipitation amounts [62–64].

The κ-Weibull distribution is a deformation of the Weibull model introduced in [39,40]
to model the distribution of income in economy. The κ-Weibull has a power-law right tail
which captures the observed Pareto law followed by income distributions. The κ-Weibull
distribution was later applied to model the mechanical strength of materials and earthquake
interevent times [43,44].
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The κ-Weibull model admits explicit expressions for the main probability functions
which are given by the following expressions [44]:

Fκ(x) = 1− expκ

(
−[x/xs]

m) , (25a)

Sκ(x) = expκ

(
−[x/xs]

m) , (25b)

fκ(x) =
m
xs

(
x
xs

)m−1 expκ

(
−[x/xs]

m)√
1 + κ2(x/xs)2m

, (25c)

hκ(x) =
m
xs

(x/xs)
m−1√

1 + κ2(x/xs)2m
, (25d)

Qκ(p) =
1
xs

[
lnκ

(
1

1− p

)]1/m
. (25e)

Note that due to the asymptotic behavior of the κ-exponential given by (14), the survival
function Sκ(x) of the κ-Weibull follows a power law with tail exponent −m/κ:

Sκ(x) ∼
x→∞

2κ (x/xs)
−m/κ . (26)

The power-law tail gives the κ-Weibull an advantage over the classical Weibull distribution
for systems with algebraic decay of the right tail of the distribution. Figure 5 compares the
tails of the survival functions for the Weibull and κ-Weibull models. Note that Sκ(x) for
κ = 0.1 is practically indistinguishable from the Weibull survival function.

1 2 3 4 5 6 7 8 9 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Figure 5. Survival functions for the Weibull and κ-Weibull distributions for different values of κ and
xs = m = 1.

4.2. Connection with Weakest-Link Scaling Theory

Weakest-link scaling theory underlies the classical Weibull distribution. Weakest-link
scaling was proposed by Gumbel [65] and Weibull [66] in their works on the statistics of
extreme values. This section provides (i) a brief review of weakest-link scaling in connection
with the Weibull model and (ii) a demonstration that the κ-Weibull is also based on the
same principle.



Entropy 2022, 24, 1362 10 of 22

Weakest-link scaling treats a disordered system as a chain of critical clusters, also
known as links or representative volume elements (RVEs). The term “weakest-link scaling”
emphasizes the idea that the strength of an entire system is determined by the strength
of its weakest link [67]. The concept of links implies the presence of critical subsystems.
The failure of one such subsystem is presumably sufficient to cause failure of the entire
system [21]. Thus, weakest-link scaling implies that the survival probability of the system
is equal to the product of the link survival probabilities, i.e.,

SNeff(x) =
Neff

∏
i=1

S(i)
1 (x), (27)

where Neff is the number of links, SNeff(x) is the system survival function, and S(i)
1 (x) is

the survival function of the i-th link, where i = 1, . . . , Neff. The above dependence of
the survival function is characteristic of brittle fibers and ceramic materials [19,20,22] and
justifies the use of the Weibull strength distribution. It has also been shown that if the
strength of the earth’s crust follows the Weibull distribution, then the latter is also justified
for the distribution of recurrence times between earthquakes under the conditions specified
in [18].

Assuming a uniform link survival function S1(x), the system’s survival function,
Equation (27), becomes

SNeff(x) = [S1(x)]Neff . (28)

The number of links can also be expressed as the ratio of the system’s volume, V over the
link volume, V0, i.e., Neff = V/V0.

To obtain the classical Weibull distribution, the link’s survival function is assumed to
have the exponential form S1(x) = exp[−(x/xl)

m], where xl is the link’s scale parameter
and m > 0 is the Weibull modulus or shape parameter [66]. This leads to the system
survival function SNeff(x) = exp[−(x/xs)m], where xs = xl/N1/m

eff is the scale parameter
for the entire system.

The κ-Weibull distribution can be obtained by simply replacing the exponential in the
Weibull survival function with the deformed κ-exponential. However, this mathematically
valid operation does not provide physical motivation for the κ-Weibull. The latter emerges
in the framework of weakest-link scaling by using a modified link survival function. More
precisely, let us assume that the link survival function depends on the parameter κ as shown
in [43,44], i.e., that it satisfies

S1(x) =

√
1 +

(
xm

x̃m
l

)2
−
(

x
x̃l

)m
, (29)

where x̃m
l = xm

l /κ. The parameter κ can be viewed as the inverse number of effective links,
that is, Neff = 1/κ. The link survival S1(x) thus depends on the number of links, which
implies a degree of interactivity in the system. In addition, the asymptotic behavior of
S1(x) for x → ∞ is given by a power law, i.e., S1(x) ∼ Neff (2x/xl)

−m.
The link survival function for different system sizes Neff is plotted in Figure 6 against

the variable z(x) = xm/x̃m
l . The graphs exhibit the power-law asymptotic decline

S1(x) ∼ 1/z(x) as well as slower decrease of S1(x) for increasing Neff.
Finally, the weakest-link scaling relation (28) in view of the link survival function (29)

and the κ-exponential definition (2) leads to an SNeff(x) which is given by the κ survival
function (25b).
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Figure 6. Link survival function for different effective system sizes. The horizontal axis denotes the
variable z(x) = xm/x̃m

l . Larger values of Neff correspond to slower decay of S1(x).

4.3. κ-Weibull Plot for Graphical Testing

If we define the function Φκ(x) = ln lnκ(1/Sκ(x)), it follows from Equation (25b) that
Φκ(x) = m ln(x/xs). This relation suggests a graphical approach to test if a given dataset
{xn}N

n=1 follows the κ-Weibull distribution: it suffices to test if the scatter plot of Φκ(xn)
versus ln xn (for n = 1, . . . , N) is concentrated around a straight line with slope equal to
m. This property allows a quick visual test of the fit between the data and the κ-Weibull
distribution which is analogous to the widely used Weibull plot [68].

The linear dependence of Φκ(x) on ln x is illustrated in the κ-Weibull plots of Figure 7.
The graphs represent estimates of Φκ(x) derived from six samples of 500 random numbers;
the latter are generated from the κ-Weibull distribution by using the inverse transform
sampling method [43]. The samples are drawn from κ-Weibull distributions with xs = 10,
m = 0.9 and with xs = 10, m = 2; the samples with the same m value differ with respect
to κ which takes values in {0.1, 0.5, 0.9}. The function Φκ(x) is estimated by means of
Φ̂κ̂(x) = ln lnκ̂ [1/Ŝ(x)], where Ŝ(x) is the estimated survival function using the empirical
staircase estimate of the CDF from the data, and κ̂ is the maximum likelihood estimate of κ.

Although the use of graphical tools for estimating the tail exponent has an intuitive
appeal, these tools can also be misleading. Thus, in the next section maximum likelihood
estimation is used to determine the κ-Weibull parameters including the tail exponent.
Statistical testing methods (e.g., Kolmororov–Smirnov test) can also be used to validate
the hypothesis of a particular probability distribution model. Note that if the distribution
parameters are not known a priori, but instead are estimated from the data (as is typically
done in practice), Kolmororov–Smirnov testing must be implemented by using a Monte
Carlo resampling approach as described in [27]. This testing approach was applied to
probability models for earthquake recurrence times in [43].
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Figure 7. Plots of estimated Φκ(x) obtained from κ-Weibull synthetically generated samples with
different values of the Weibull modulus m and the deformation parameter κ.

4.4. Application to Real Data

We investigate the κ-Weibull as an alternative to the Weibull distribution for differ-
ent data. These include a dataset comprising measurements of tensile strength of carbon
fibres [69], daily averaged wind speed in Cairo (Egypt) [70], thickness of magmatic sheet
intrusions (dykes) for different tectonic settings [71], tensile strength of steel [72], and earth-
quake recurrence times [73,74].

The aforementioned datasets are fitted to the Weibull and κ-Weibull distributions
by using maximum likelihood estimation. The Matlab code used to estimate the model
parameters is publicly available [75]. The results of the fits are presented in Table 1.
The entries include the maximum likelihood estimates of the model parameters as well
as the optimal negative log-likelihood (NLL) values for each fit. The lower the NLL of
a given distribution model is, the better its fit to a particular dataset. For all the cases
listed in Table 1, the NLL is lower for the κ-Weibull than for the Weibull distribution.
However, the κ-Weibull involves three parameters whereas the Weibull model involves
only two parameters. To account for the different number of parameters, the selection
of the optimal model can be performed by means of the Akaike information criterion
(AIC) [76], i.e., AIC = 2k + 2NLL, where k is the number of free parameters for each model
(k = 2 for the Weibull and k = 3 for the κ-Weibull). The best model has the lowest AIC
value. Because AICκW −AICW = 2(1 + NLLκW −NLLW), AIC favors the κ-Weibull only
if NLLκW −NLLW < −1. This condition is satisfied for all but the first two datasets.

A more stringent condition is provided by the Bayesian information criterion,
BIC = k log N + 2NLL, where N is the data size [77]. For N > 8, the BIC imposes a
bigger penalty on model complexity than AIC. The difference in BIC values for the κ-
Weibull and the Weibull models is given by BICκW − BICW = log N + 2(NLLκW −NLLW).
Thus, under the BIC the κ-Weibull is optimal if NLLκW −NLLW < −(log N)/2. The BIC
condition also favors the κ-Weibull distribution for the datasets 3–9. In order to allow easier
comparison, the values of AIC and BIC (divided by the number of sample points) for both
the Weibull and κ-Weibull distributions are listed for each dataset in Table 2.
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Table 1. Results of maximum likelihood estimated fits to the Weibull and κ-Weibull distribution. 1.
Tensile strength of carbon fibers. 2. Daily averaged wind speeds from 1 January 2009 to 4 October
2009 for Cairo, Egypt. 3–6. Thickness of magmatic sheet intrusions for different tectonic settings. 7.
Tensile strength of low-alloy steels. 8. Recurrence times of aftershocks (A.R.T.) from 25 October 2018
until 31 May 2019, following the major Mw 6.9 Zakynthos earthquake (Greece). 9. Recurrence times
of foreshocks (F.R.T.) preceding the Zakynthos earthquake (from 1 January 2014 until 25 October
2018). For more information regarding the data see the relevant sources. N, sample length; xs, scale
parameter; m, shape parameter; κ, Weibull deformation parameter. Values are rounded off to the
second decimal digit. NLL, Negative log-likelihood.

Weibull κ-Weibull

Data N xs m NLL xs m κ NLL

1. C fibers (GPa) [69] 100 2.94 2.79 141.53 2.90 2.98 0.285 141.23
2. Wind (mph) [70] 100 8.05 2.78 240.21 7.63 3.28 0.56 239.32
3. Dyrfjöll (m) [71] 487 0.90 1.26 378.05 0.84 1.46 0.42 368.40
4. Geitafell (m) [71] 546 0.57 1.02 233.88 0.52 1.17 0.43 225.62
5. Tenerife (m) [71] 550 1.83 1.02 875.18 1.65 1.18 0.45 867.38
6. La Palma (m) [71] 2093 0.43 1.14 206.51 0.37 1.53 0.66 83.98
7. Steel (MPa) [72] 915 548.58 1.98 6194.22 524.26 4.81 0.52 5753.13
8. A.R.T. (days) [74] 7822 0.027 0.94 −20207 0.024 1.19 0.49 −20374
9. F.R.T. (days) [74] 4731 0.28 0.68 −692.60 0.27 0.70 0.17 −698.37

Table 2. Measures of fit to the Weibull and κ-Weibull distributions for the datasets listed in Table 1.
NLL, negative log-likelihood; AIC’, value of Akaike information criterion value per sample point,
i.e., AIC’ = AIC/N = 2(k + NLL)/N; BIC’, value of Bayesian information criterion per sample point,
i.e., BIC’ = BIC/N = (k log N + 2 NLL)/N.

Weibull κ-Weibull

Data N NLL AIC’ BIC’ NLL AIC’ BIC’

1. C fibers (GPa) 100 141.53 2.8706 2.9227 141.23 2.8846 2.9628
2. Wind (mph) 100 240.21 4.8842 4.8963 239.32 4.8464 4.9246
3. Dyrfjöll (m) 487 378.05 1.5608 1.5780 368.40 1.5253 1.5511
4. Geitafell (m) 546 233.88 0.8640 0.8798 225.62 0.8374 0.8611
5. Tenerife (m) 550 875.18 3.1897 3.2054 867.38 3.1650 3.1885
6. La Palma (m) 2093 206.51 0.1992 0.2046 83.98 0.0831 0.0912
7. Steel (MPa) 915 6194.22 13.5437 13.5542 5753.13 12.5817 12.5975
8. A.R.T. (days) 7822 −20207 −5.1662 −5.1644 −20374 −5.2086 −5.2060
9. F.R.T. (days) 4731 −692.60 −0.2919 −0.2892 −692.60 −0.2940 −0.2899

5. The κ-Lognormal Distribution

The lognormal distribution is often used to model long-tailed processes [23]. In this
section we derive a generalization of the lognormal which is based on the κ-deformation
of the exponential function. Let us assume that the random variable Y follows the normal
distribution with marginal PDF given by

fy(y) =
1√
2πσ

e−(y−m)2/2σ2
. (30)

We then define the random variable X = gκ(Y) by means of the κ-exponential transformation

x = gκ(y) , expκ(y) =
(√

1 + κ2y2 + κy
)1/κ

. (31)

To determine the PDF of the random variable X we use the standard integral relation for
the PDF under the nonlinear transformation gκ(y)
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fx(x; κ) =
∫ ∞

−∞
δ(x− gκ(y)) fy(y)dy .

Because the nonlinear transform is monotonic and therefore invertible, the PDF of X is
given by means of the following mapping [47,52]:

fx(x; κ) = fy

(
y = g−1

κ (x)
) ∣∣∣∣dg−1

κ (x)
dx

∣∣∣∣.
Taking into account the normal PDF of Equation (30), the inverse transform which is given
by g−1

κ (x) = lnκ(x), and the first derivative of lnκ(·) which is given by Equation (19), it
follows that the PDF of the κ-lognormal distribution is given by

fx(x; κ) =
1√

2πσ x
e−(lnκ x−m)2/2σ2

(
xκ + x−κ

2

)
. (32)

It is clear that fx(x; κ = 0) recovers the lognormal distribution because limκ→0 lnκ(x) = ln x
and limκ→0

(
xκ+x−κ

2

)
= 1. Moreover, the κ-lognormal PDF given by Equation (32) is

symmetric with respect to κ.
The Box–Cox transform of the Gaussian PDF can be similarly obtained by means of

the PDF transformation under a change of variables. The resulting PDF is given by

fx(x; λ) =
xλ−1
√

2πσ
e−[(xλ−1)/λ−m]

2
/2σ2

. (33)

The κ-lognormal PDF given by Equation (32) has heavier tails than the PDF in Equation (33)
resulting from the Box–Cox transform of the Gaussian. This is confirmed by the parametric
plots of the two parametric PDF families shown in Figure 8 for different values of λ = κ.
Notice that for λ = 0 (left frame in Figure 8), and κ = 0 (right frame in Figure 8) the PDFs
tend to the lognormal PDF.
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Figure 8. Probability density functions resulting from the κ-logarithmic (left) and Box–Cox (right)
transformations of the standard normal distribution, given by Equations (32) and (33) respectively.
The curves correspond to different values of λ = κ (λ is the Box–Cox parameter and κ is the
deformation parameter of the Kaniadakis logarithm).

In order to compare the tails of the κ-lognormal with the tails of the lognormal distri-
bution, let us define the PDF ratio R f (x; κ):

R f (x; κ) ,
fx(x; κ)

fx(x; κ = 0)
= e−{(lnκ x−m)2−(ln x−m)2}/2σ2

(
xκ + x−κ

2

)
. (34)

First, we show that for κ > 0 and for x > 1 it holds that lnκ(x) > ln x. Let us define
the function u(x) = lnκ(x)− ln x. (i) It holds that u(1) = lnκ(1)− ln 1 = 0. It suffices to



Entropy 2022, 24, 1362 15 of 22

show that u(x) is a monotonically increasing function for x > 1. (ii) The derivative of u(x)
is du(x)/dx = (xκ + x−κ − 2)/(2x), and it is positive if xκ + x−κ > 2. By multiplying both
sides with xκ (xκ > 0) and setting xκ = y, the inequality xκ + x−κ > 2 becomes equivalent
to (y− 1)2 > 0, which is true for any y ∈ R. Hence, it holds that limx→∞ R f (x; κ) = 0,
and thus the κ-lognormal has a lighter right tail than the lognormal distribution.

The proof of monotonicity of u(x) also holds for x < 1: by replacing x with x′ = 1/x
where x′ > 1, it holds that xκ + x−κ = (x′)−κ + (x′)κ , and therefore du(x)/dx > 0; that
is lnκ(x) > ln x for x < 1. Therefore, limx→0 R f (x; κ) = 0, and thus the left tail of the
κ-lognormal is also lighter than the lognormal’s tail. Hence, the κ-lognormal concentrates
more density in the middle of the distribution than the lognormal. The relative transfer of
density from the tails to the body of the distribution is controlled by κ and becomes more
pronounced as κ increases. This is confirmed by the parametric plots of R f (x; κ) shown in
Figure 9 (bottom panel) for different values of κ.
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Figure 9. Parametric plots (versus x) of the κ-lognormal PDF defined in Equation (32) (top) and
the ratio function R f (x; κ) defined in Equation (34); the latter compares the tails of the κ-lognormal
relative to the lognormal distribution for different values of the deformation parameter κ (bottom).

5.1. Effective Permeability of Random Media

Single-phase, incompressible, steady-state flow in saturated random media is gov-
erned by the partial differential equation

∇ · K(s)∇P(s) = 0, with suitable boundary conditions, (35)

where s ∈ Rd is the position vector, P(s) is the pressure, and ∇P(s) the pressure gradient,
a · b denotes the inner product of the vectors a and b, and K(s) is the fluid permeability.
The latter is assumed to be a scalar random field, i.e., a random function over the domain
D ⊂ Rd; (in the case of anisotropic media K becomes a tensor). Equation (35) is the
continuity equation which expresses the conservation of mass.

In the case of slow viscous flow through random media, the fluid velocity is given
by Darcy’s law, i.e., V(s) = −K(s)∇P(s)/µ where µ is the fluid viscosity [78], and thus
the continuity equation becomes ∇ ·V(s) = 0. The local variations of the velocity do not
usually matter for the macroscopic flow behavior, i.e., for the average fluid velocity through
a large domain. The macroscopic velocity is often determined in terms of an effective
permeability; the latter connects the average pressure gradient to the average fluid velocity
by means of E [V(s)] = −Ke f f E [∇P(s)]. The ensemble average here is evaluated over the
joint probability distribution of K(s), which represents the local variations (microstructure)
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of the medium. Similarly, effective measures can be defined for other properties (e.g.,
elasticity) of porous media by means of averages over the microstructural disorder [79–81].

The generalized mean 〈K〉α with α = 1− 2/d, also known as the power-law mean, is
used to estimate the effective flow permeability (for single-phase, saturated flow), Ke f f of
random porous media with lognormal disorder and short-range correlations [16]. For a
given power-law exponent α, the generalized mean is defined by means of the following
expectation (assuming that it is well-defined mathematically):

〈K〉α , {E [Kα]}1/α, −1 ≤ α ≤ 1. (36)

For α = −1, Equation (36) yields the harmonic mean, whereas for α = 0 the geometric
mean, KG = exp[E(ln K)], is obtained as the limit limα→0〈K〉α.

Furthermore, assuming that K = g(Y) where Y ∼ N
(
m, σ2) is a normally distributed

random variable. In general, both Y and K can be random fields with spatial correlations.
However, this does not affect the calculation of the generalized mean, which is a point
(marginal) property. The generalized mean of K = g(Y) is now given by

〈K〉α , {EY[gα(Y)]}1/α, −1 ≤ α ≤ 1. (37)

Thus, if K follows the lognormal distribution, namely, K = exp(Y), it holds that

〈K〉α = {EY[exp(αY)]}1/α = em+ α
2 σ2

, −1 ≤ α ≤ 1. (38)

This equation, known as the Landau–Lifshitz–Matheron (LLM) ansatz, was first proposed
for the dielectric permittivity of random dielectric mixtures [82]. In the case of electromag-
netism, the continuity equation is embodied in Gauss’s law; for zero free charge density
the latter becomes ∇ ·D(s) = 0, where D(s) = −ε(s)∇φ(s) is the dielectric displacement
field, φ(s) is the applied electric potential, and ε(s) is the dielectric permittivity of the
medium. Notation differences aside, the mathematical form of the electrostatic equations is
identical to those of the fluid flow problem; in both cases the continuity principle results
in an elliptic partial differential equation with suitable boundary conditions. This reason
underlies LLM’s applicability to both fluid permeability and dielectric permittivity; as
Richard Feynman wrote ([83], Chap. 12.1): “there is a most remarkable coincidence: The
equations for many different physical situations have exactly the same appearance”.

For d = 1 (e.g., for pipe flows), LLM yields the harmonic mean KH = 1/E [K−1];
in this case the flow is cut off if the permeability vanishes at a single point. For d = 2,
Ke f f = 〈K〉0 yields the geometric mean, KG = exp(E [ln K]), which coincides with the
exact solution in two dimensions [84]. Finally, in d = 3 the expression 〈K〉1/3 follows from
perturbative renormalization group analysis [16]. The LLM equation implies that the effect
of disorder (as measured by the log-permeability variance σ2) is reduced as the embedding
dimension of the medium increases. The physical meaning of this dependence is that
three-dimensional media include more permeable paths than one- or two-dimensional
random media, thus enabling the bypass of flow bottlenecks.

5.2. Generalized Mean of the κ-Lognormal Distribution

This section focuses on the calculation of the generalized mean when K follows the
κ-lognormal distribution. In this case, the respective ensemble average over the normal
variable Y ∼ N

(
m, σ2), defined by Equation (37), is given by

〈K〉α;κ =
{
EY

[{
expκ(Y)

}α
]}1/α

=
{
EY
[
expκ/α(αY)

]}1/α, −1 ≤ α ≤ 1, (39)

where in deriving the last equality above we used the identity

[expκ(Y)]
α = expκ/α(αY) = expκ′(αY), where κ′ = κ/α. (40)
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Note that for κ = 0 Equation (39) is equivalent to Equation (38) because the κ-exponential
is reduced to the standard exponential.

If, on the other hand, κ > 0, it holds that κ′ 6= 0. The expectation in Equation (39)
can then be calculated by using the Taylor series expansion of expκ/α(αY) around exp(αY);
according to Equation (4), the expansion is given by

expκ′(αy) = exp(αy) +
∞

∑
n=0

[
ξn(κ

′)− 1
] (αy)n

n!
, where κ′ = κ/α ∈ R, (41)

and the polynomials ξn(·) are defined in Equation (5).
The power series in Equation (41) represents the correction of expκ′(αy) with respect

to exp(αy). Based on Equation (7), it holds that expκ′(αy) = exp(αy) +O(κ′2). Notice that
ξn(κ′)− 1 = 0 for n = 0, 1, 2, whereas ξn(κ′)− 1 < 0 for n = 3, 4. Hence,

expκ′(αy) = exp(αy) +
∞

∑
n=3

[
ξn(κ

′)− 1
] (αy)n

n!
. (42)

Hence, the expectation of the above is given by means of the following expression:

EY[expκ′(αY)] = EY[exp(αY)] +
∞

∑
n=3

[
ξn(κ

′)− 1
] αn

n!
EY[Yn], κ′ = κ/α. (43)

The expectation EY[Yn] is given by means of the following expression by using the fluctua-
tion Y′ = Y−m and Newton’s binomial formula:

EY[Yn] = EY
[
(m + Y′)n] = n

∑
j=0

(
n
j

)
mn−j EY′

[
Y′j
]
.

The expectation over the fluctuations can be calculated by using the Wick–Isserlis
theorem [52] EY′

[
Y2`
]
= (2`)! σ2`/(2``!), and EY

[
Y2`+1

]
= 0 for ` ∈ N.

Therefore the difference between the generalized mean of the κ-lognormal and the
generalized mean of the lognormal (for the same value of α) is given by an infinite power
series (correction factor), where δj,2` is the Kronecker delta, as follows:

EY[expκ′(αY)] = EY[exp(αY)] +
∞

∑
n=3

αn[ξn(κ
′)− 1

] n

∑
j=0

mn−j σj δj,2`

2j/2(n− j)!(j/2)!
. (44)

Finally, returning to Equation (39) and using Equation (44) the generalized mean of
the κ-lognormal distribution is given by

〈K〉α;κ = 〈K〉α

1 +
∑∞

n=3 ∑n
j=0 αn[ξn(κ/α)− 1]

mn−j σj δj,2`

2j/2(n−j)! (j/2)!

〈K〉αα


1/α

. (45)

The convergence of the power series in Equation (45) should be further investigated
mathematically. To gain some insight into Equation (45), consider the case α = 1, which
corresponds to the arithmetic (linear) mean. Then, the arithmetic mean of the κ-lognormal,
i.e., Kκ , 〈K〉α=1;κ is given by

Kκ = K

[
1 +

1
K

∞

∑
n=3

n

∑
j=0

[ξn(κ)− 1] δj,2`
mn−j σj

2j/2(n− j)! (j/2)!

]
. (46)

Hence, the arithmetic mean of the κ-lognormal is given by the standard arithmetic
mean plus a correction factor which involves a double power series. Notice that when
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κ = 0, according to Equation (5) it holds ξn(κ = 0) = 1 for all n ∈ N; hence, Equation (46)
recovers the arithmetic mean when κ = 0 because the double power series vanishes.

On a more practical note, a numerical calculation of the generalized mean shows
that the infinite series in 〈K〉α;κ converges for −1 ≤ α ≤ 1 and 0 < κ < 1. Figure 10
shows parametric plots of the generalized mean obtained by a numerical evaluation of
Equation (39). The expectations (for different α and κ) are calculated by using an ensemble
of 104 random variates drawn from the standard normal distribution, i.e., Y ∼ N(0, 1).
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Figure 10. Parametric plots of the generalized mean versus κ for different values of the averaging
exponent α (left) and the generalized mean versus α for different values of the deformation parameter
κ (right).

The plots on the left of Figure 10 display the generalized mean as a function of κ for
different values of the averaging exponent α. As evidenced in these plots, the difference
between the harmonic mean (α = −1) and the arithmetic mean (α = 1) is reduced as κ
increases. This behavior is due to the smaller tail weight of the κ-lognormal PDF for κ ↑.
It is also observed that the geometric mean (α = 0) is independent of κ (for numerical
reasons we use α = 0.001 instead of α = 0). This is also understood in light of Equation (39).
Finally, the arithmetic mean (more generally, the generalized mean for α > 0) decays with
increasing κ whereas the harmonic mean (more generally, the generalized mean for α < 0)
increases. This behavior is due to the fact that the arithmetic mean reflects the diminishing
right tail of the κ-lognormal as κ increases. On the other hand, the harmonic mean is
more strongly influenced by the lower part of the distribution; according to Figure 9 the
κ-lognormal has higher density in the left tail (except for values very close to zero) for
higher values of κ.

The plots on the right of Figure 10 display the generalized mean as a function of
α for different values of κ. All the curves exhibit an increase of the generalized mean
with increasing α. This reflects the progression from the harmonic to the arithmetic mean
according to the well-known ordering KH ≤ KG ≤ K. All the curves intersect at α = 0,
marking the independence of the generalized geometric mean on κ. Finally, the slope of
the curves is reduced with increasing κ due to the respective shrinking of the tails of the
κ-lognormal.

6. Discussion

Section 3 introduced and investigated the properties of a nonlinear normalizing trans-
form which is based on the κ-logarithm. The proposal generalizes the Box–Cox transform,
and it can be used for normalizing skewed data before geostatistical methods are applied.
An application to precipitation time series modeling was presented. Note that the non-
linear κ-logarithm transform could also be used in spatial models of precipitation in the
framework of the censored latent Gaussian field approach [10]. At fine spatiotemporal
scales, the correlations of dry/wet spells as well as storm autocorrelation patterns can be
better captured by means of two-state models that use copulas to simulate the dependence
structure [85]. We believe that the κ-Weibull and κ-lognormal distributions discussed herein
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will be useful in the framework of two-state models as well, e.g., for modeling the intensity
of wet spells.

Section 4 shows that the κ-Weibull model, which is a deformation of the classical
Weibull with a power-law right tail, also respects the principle of weak-link scaling. Various
extensions of the Weibull model have been proposed in the scientific literature, e.g., [86,87].
However, some of these models provide deformations of the Weibull expression that fail the
weakest scaling equation (see Equation (28)) as pointed out by Zok [22]. Such modifications,
although mathematically permissible, lack the physical justification of the classical Weibull
model which is based on weakest-link scaling. Moreover, we established that the link
statistical properties depend on the number of links in the system. This feature indicates a
strongly interacting system; alternatively, it shows that the observed system is a part of a
larger system.

The asymmetric κ-lognormal distribution introduced in Section 5 has lighter tails
than the lognormal distribution. The deviation from the lognormal is controlled by the
parameter κ. Smaller values of κ ≈ 0 imply small deviations, whereas larger values of
κ ≈ 1 signify thinner tails than the lognormal. The κ-lognormal can be used as a model
of fluid permeability for random porous media. We believe that the stochastic theory of
single-phase, saturated fluid flow in κ-lognormal media can be derived, at least in the
framework of perturbation analysis, and expressions for the effective permeability can
be likewise obtained. An interesting question is how the parameter κ which controls tail
behavior will impact flow properties.

We have reviewed the generalized mean for the lognormal distribution and its appli-
cation in the estimation of the effective permeability of random media. We then studied the
generalized mean for the κ-lognormal distribution. Note that our calculations do not prove
that the effective permeability of random media with κ-lognormal disorder is given by the
generalized mean. This intriguing hypothesis should be further explored in the framework
of the stochastic theory of flow and transport [80].

7. Conclusions

We presented applications of the Kaniadakis κ-exponential and κ-logarithm functions
in the modeling of mechanical strength and in earth science problems. In particular, we
focused on κ deformations of classical distribution models such as the Weibull and the
lognormal. The κ-Weibull distribution has a power-law tail which is useful for the modeling
of mechanical strength, earthquake recurrence times, and properties of geological structures,
among other applications. On the other hand, the κ-lognormal model has a tail lighter than
the lognormal; this feature is of interest for skewed distributions which decline faster than
the lognormal. The methodological applications of the Kaniadakis functions presented
include the following:

• The modified Box–Cox transform given by Equation (22).
• Application of the modified Box–Cox transform to an autoregressive, intermittent

model of precipitation as described in Section 3.3.
• Connection between the κ-Weibull probability model with the theory of weakest-link

scaling as shown in Section 4.2.
• The study of the κ-lognormal distribution which is a generalization of the lognormal

model with lighter tails. The PDF of this new model is given by Equation (32).
• The calculation of the power-mean (generalized mean) of the κ-lognormal as shown

in Section 5.2.

Further study of probability models based on the deformed exponential and log-
arithmic functions will lead to significant advances in different fields of earth science.
The most obvious applications at this time include (i) modeling the mechanical strength
of technological materials and geologic media, earthquake recurrence times, wind speed,
and precipitation amounts, (ii) nonlinear transforms used for Gaussian anamorphosis in
geostatistical and ensemble Kalman filtering applications [88], and (iii) the permeability of
random porous media.
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