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Abstract
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Forward-Edge Control Flow Integrity ISA Extensions for RISC-V
Architecture

by Argyro Palli

Jump Oriented Programming attacks pose a security threat against modern
processors. In order to enhance the security of designs based on the RISC-V
architecture, a set of ISA extensions, namely the Forward-Edge Control Flow
Integrity (CFI) ISA extension, have been proposed and are currently under
evaluation by the relevant RISC-V committees, with the intention of becoming
a standardized ISA extension in the RISC-V architecture. This work is also
intended for publication. Within this context, this thesis presents the imple-
mentation and evaluation of the CFI ISA extension on the CVA6 soft processor
core. The study leveraged the Genesys2 board as the hardware platform and the
Verilator simulator for experimentation. The CFI extension was integrated into
the CVA6 core, ensuring robust protection against potential security vulnerabil-
ities stemming from JOP attacks. Notably, the performance overhead incurred
by this security enhancement was limited to a mere 2%, demonstrating its min-
imal impact on system efficiency. Furthermore, the area utilization overhead on
the Genesys2 board was effectively managed, with an minimal impact compared
to the original design. There was a mere 1.04% increase in LUTs, a 2.14% in-
crement in FFs, no discernible effect on estimated power consumption, and only
a slight impact on the critical path, all without any timing violations. These
adjustments were made while still adhering to the core’s constraints, with a
positive slack of 1.302 ns. This research underscores the feasibility of bolstering
system security through ISA extensions, while preserving system performance
and resource utilization at highly acceptable levels.
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Οι επιθέσεις αλματώδους προγραμματισμού (JOP) αποτελούν απειλή για τους μο-
ντέρνους επεξεργαστές. Για να ενισχυθεί η ασφάλεια των σχεδιασμών που βα-

σίζονται στην αρχιτεκτονική RISC-V, προτάθηκε ένα σύνολο επεκτάσεων εντολών
αριχτεκτονικής (ISA), που ονομάζεται ¨Επεκτάσεις της αρχιτεκτονικής συνόλου
εντολών RISC-V για υποστήριξη ελέγχου ακεραιότητας ροής έμμεσων διακλα-
δώσεων¨, η οποία αυτήν τη στιγμή βρίσκεται υπό αξιολόγηση από τις σχετικές

επιτροπές του RISC-V, με τον σκοπό να γίνουν βασικός τύπος ISA στην αρχιτε-
κτονική RISC-V. Αυτή η εργασία προορίζεται επίσης για δημοσίευση. Εντός αυτού
του πλαισίου, αυτή η διατριβή παρουσιάζει την υλοποίηση και αξιολόγηση των επε-

κτάσεων της αρχιτεκτονικής συνόλου εντολών RISC-V για υποστήριξη ελέγχου
ακεραιότητας ροής εκτέλεσης (CFI) έμμεσων διακλαδώσεων στον πυρήνα επεξερ-
γαστή CVA6. Η μελέτη χρησιμοποίησε την πλακέτα Genesys2 ως πλατφόρμα
υλικού και τον προσομοιωτή Verilator για πειράματα. Η επέκταση της Ακεραι-
ότητα Ροής Εκτέλεσης(CFI) ενσωματώθηκε στον πυρήνα CVA6, εξασφαλίζοντας
αξιόπιστη προστασία από δυνητικά προβλήματα ασφάλειας που προκύπτουν από

επιθέσεις προγραμματισμού με άλματα (JOP). Είναι σημαντικό να σημειωθεί ότι η
επιβράδυνση που προκλήθηκε από αυτήν την ενίσχυση της ασφάλειας περιορίστη-

κε σε μόλις 2%, καταδεικνύοντας την ελάχιστη επίδρασή της στην απόδοση του

συστήματος. Επιπλέον, η αύξηση χρήσης των πόρων στην πλακέτα Genesys2
διαχειρίστηκε αποτελεσματικά, με ελάχιστη αύξηση σε σύγκριση με τον αρχικό

σχεδιασμό.Παρατηρήθηκε μόνο μια αύξηση 1.04% στους LUTs, αύξηση 2.14%
στα FFs, καμία αντίκτυπος στην εκτιμώμενη κατανάλωση ενέργειας και ελάχιστη
επίπτωση στον κρίσιμο μονοπάτι χωρίς καμία παραβίαση χρονισμού. ΄Ολες αυτές

οι προσαρμογές πραγματοποιήθηκαν διατηρώντας τους περιορισμούς του πυρήνα,

με θετικό slack 1.302 ns. Αυτή η έρευνα υπογραμμίζει οτι είναι εφικτή η ενίσχυση
της ασφάλειας του συστήματος μέσω επεκτάσεων εντολών αρχιτεκτονικής (ISA),
διατηρώντας ταυτόχρονα την απόδοση του συστήματος και τη χρήση πόρων σε

πολύ αποδεκτά επίπεδα.
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Chapter 1

Introduction

1.1 Introduction

Code re-use attacks, such as Return-Oriented Programming (ROP) and Jump/
Call-Oriented Programming (JOP/COP)[1], are state-of-the-art exploits that
allow attackers to execute arbitrary code on a vulnerable machine. These at-
tacks do not require any code injections, instead, they re-use existing code
fragments of a program to build the necessary functionality without violating
Data Execution Prevention (DEP) [2]. According to a recent report, more than
80% of the vulnerabilities are exploited using code-reuse attacks[3].

Protecting against such attacks is necessary, in order to preserve program exe-
cution flow, but using software-only solutions is not sufficient, since advanced
attacks can modify even the security software itself, thus bypassing any restric-
tions posed. In addition, the performance overheads of software-based solutions
are non-negligible in many cases. This is particularly true in constrained en-
vironments (such as embedded devices) where there are intrinsic limitations in
the amount of available compute and memory resources [4].

A way to defend against code re-use attacks is by employing Control Flow
Integrity (CFI) techniques. These techniques focus on preventing code injection
and any new functionality that is not part of the legitimate control-flow graph
(CFG). They can be distinguished to Forward-Edge CFI and to Backward-Edge
CFI, which are sets of rules that regard jumps and returns, respectively.

This work aims to enforce Forward-Edge Control Flow Integrity by extending
the Instruction Set Architecture (ISA) of a popular RISC-V soft core, the CVA6
[5]. This core is a 6-stage, single issue, in-order CPU which implements the 64-
bit RISC-V instruction set. New landing pad instructions are introduced, that
enable software to indicate valid targets for indirect jumps in a program. The
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Forward-Edge Control Flow Integrity supports labeling the indirect jumps and
can encode up to 25-bit wide labels. It’s important to note that this project
doesn’t encompass Backward-Edge Control Flow Integrity, as the specification
for this ISA has not been finalized at the time.

The integration of the landing pad extension, signifying the introduction of a
new set of instructions into a program’s codebase, guarantees that in case of
a control flow subversion, the hardware thread (hart) will promptly detect it
and halt program execution, effectively fortifying the system against potential
JOP attacks. Crucially, this security enhancement is achieved with minimal
performance impact, as the average execution time increases by a mere 2.1%.
Furthermore, when employed on the Genesys2 board, it introduces minimal area
utilization overhead and no impact on worst case power consumption estimation.

1.2 Thesis Outline

• Chapter 2 - Theoretical Background: In this chapter, some basic
information is provided in order to understand the theoretical basis of
this work. A reference is made in RISC-V instruction set architecture, in
code re-use attack and in control flow integrity technique.

• Chapter 3 - Related Work:This chapter explores related work.It in-
cludes a discussion of "Branch Regulation: Low-overhead Protection from
Code Reuse Attacks","Hard-edges: Hardware-based Control-Flow Integrity
for Embedded Devices","Security Analysis of Processor Instruction Set
Architecture for Enforcing Control-Flow Integrity" and "Branch Target
Instructions (BTIs)".

• Chapter 4 - Implementation: This chapter provides a detailed account
of the implementation of the Forward Edge Control Flow Integrity (CFI)
ISA extension. It explains the necessary additions and modifications made
to support this extension, as well as the specific changes implemented
in the CVA6 core. This chapter also lists all the tools used to verify
the functionality of the extension and to obtain measurements for the
performance.

• Chapter 5 - Results: This chapter provides an overview of the findings
related to performance, code size, area utilization, power consumption
estimation and timing analysis.
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• Chapter 6 - Conclusions and Future Work: This chapter serves as
a conclusion, summarizing the research conducted and outlining future
directions for this thesis.
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Chapter 2

Theoretical Background

This work implements, investigates and evaluates a RISC-V ISA architecture
in order to incorporate a security technique against a type of code reuse attack.
The following sections will provide a brief presentation of the RISC-V architec-
ture, the Jump - Oriented Programming (JOP) attack, which is the code re-use
attack this work aims to mitigate, and the basic scheme that has been proposed
to secure applications from this kind of attacks.

2.1 RISC-V

RISC-V[6] is an open-source instruction set architecture (ISA), first introduced
in 2010 by researchers from the University of California, Berkeley. The design
philosophy of RISC-V is based on the principles of simplicity, modularity, and
scalability.

The RISC-V ISA is a reduced instruction set architecture (RISC) that provides
a streamlined set of instructions and encoding formats to minimize complex-
ity and improve performance. It uses a fixed-length instruction format, which
simplifies the instruction fetch and decoding process, and provides uniformity
across different implementations.

One of the key features of RISC-V is its modular design, which allows for easy
customization and extension. The ISA is organized into a base instruction set
and a number of optional extensions, which can be added or removed depend-
ing on the application requirements. This modularity also makes it easier for
designers to optimize the ISA for different target markets, such as microcon-
trollers, embedded systems, or high-performance computing.

• ISA Principles:



6 Chapter 2. Theoretical Background

As a RISC architecture, the RISC-V ISA is a load–store architecture,
which means that it divides instructions into two categories: memory
access and arithmetic/logical operations. The base instruction set has a
fixed length of 32-bit naturally aligned instructions, however the ISA also
supports compressed instructions.

Base
Name Description

RVWMO Weak Memory Ordering
RV32I Base Integer Instruction Set, 32-bit
RV32E Base Integer Instruction Set (embedded), 32-bit, 16 registers
RV64I Base Integer Instruction Set, 64-bit
RV64E Base Integer Instruction Set(embedded), 64-bit

Extension
M Standard Extension for Integer Multiplication and Division
A Standard Extension for Atomic Instructions
F Standard Extension for Single-Precision Floating-Point
D Standard Extension for Double-Precision Floating-Point
Zicsr Control and Status Register (CSR) Instructions
Zifencei Instruction-Fetch Fence
Q Standard Extension for Quad-Precision Floating-Point
C Standard Extension for Compressed Instructions
B Standard Extension for Bit Manipulation
Zk Standard Extension for Scalar Cryptography
H Standard Extension for Hypervisor
S Standard Extension for Supervisor-level Instructions
Zihintpause Pause Hint
Zfh Half-Precision Floating-Point
Zfhmin Minimal Half-Precision Floating-Point
Zfinx Single-Precision Floating-Point in Integer Register
Zdinx Double-Precision Floating-Point in Integer Register
Zhinx Half-Precision Floating-Point in Integer Register
Zhinxmin Minimal Half-Precision Floating-Point in Integer Register
Zmmul Multiplication Subset of the M Extension
Ztso Total Store Ordering

Table 2.1: ISA base and Extensions [6].

RISC-V has a modular design, consisting of different base parts, with
optional extensions that can be added. The base architecture specifies
instructions and their encoding, control flow, registers and their sizes,
memory and addressing, logic manipulation, and more, which can imple-
ment a simplified general-purpose computer, with full software support,
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Figure 2.1: 32-bit Instruction Format

including a general-purpose compiler. The ratified base ISA and exten-
sion are presented in Table 2.1 and the 32-bit instruction format is listed
in Figure 2.1.

Concerning the control transfers in RISC-V instruction set, the RV32I/
RV64I provide two types of control transfer instructions - unconditional
jumps and conditional branches. Conditional branches encode an offset
in the immediate field of the instruction and are thus direct branches
that are not susceptible to control flow subversion. Unconditional direct
jumps using JAL transfer control to a target that is in a +/- 1 MiB
range from the current PC. Unconditional indirect jumps using the JALR
obtain their branch target by adding the sign extended 12-bit immediate
encoded in the instruction to the rs1 register. The RV32I/RV64I does not
have a dedicated instruction for calling a procedure or returning from a
procedure. A JAL or JALR may be used to perform either a procedure call
or a return from a procedure. The RISC-V application binary interface
(ABI) however defines the convention that a JAL/JALR where rd (i.e. the
link register) is x1 or x5 is a procedure call, and a JAL/JALR where rs1
is the conventional link register (i.e. x1 or x5) is a return from procedure.
The architecture allows for using these hints and conventions to support
return address prediction and the hints are specified in Table 2.1 of the
unprivileged ISA specifications. The RISC-V CFI extension builds on
these conventions and hints.

RISC-V has 32 (or 16 in the embedded variant) integer registers, and,
when the floating-point extension is implemented, separate 32 floating-
point registers are added to the system. All instructions address registers
except for those of memory access. The first integer register is a zero
register, and the remainder are general-purpose registers.

In terms of software support for RISC-V, there are available tools such as
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the GNU Compiler Collection (GCC) toolchain (with the GDB debugger),
an LLVM toolchain, the OVPsim simulator [7] (and library of RISC-V
Fast Processor Models), the Spike simulator[8], and a simulator in QEMU
(RV32GC /RV64GC) [9].

Operating system support for RISC-V is available (including the Linux
kernel, FreeBSD, NetBSD and OpenBSD), however it is in early stages.
Ports of the Debian and Fedora Linux distributions, and a port of Haiku,
are stabilizing but they only support 64-bit version of RISC-V, with no
plans to support the 32-bit version.

There are many examples of RISC-V IP cores available in the market such
as the[10], a highly configurable, 32-bit RISC-V core that is designed for
embedded and IoT applications, the OpenHW Group CORE-V-MCU[11],
which is an open-source RISC-V core that is optimized for microcontroller
applications, the Codasip Bk3[12] which is a high-performance, 64-bit
RISC-V core that is designed for use in computing and networking appli-
cations.

Furthermore, RISC-V CPU and SoC implementations exist in the RISC-
V ecosystem providing a wide range of applications that RISC-V can be
used for. Some examples [13] of these implementations are SiFive Free-
dom U540, AndesCore N25F, OpenTitan, Berkeley Out-of-Order Machine
(BOOM), Syntacore SCRx, Codasip H50X, Rocket Chip, LowRISC, Chip-
yard, Ariane SoC etc.

This work utilises CVA6 [14], previously known as Ariane, which is a
6-stage, single issue, in-order CPU which implements the 64-bit RISC-
V instruction set. It fully implements I, M and C extensions. It, also,
implements three privilege levels M (machine), S (supervisor), U (user)
to fully support a Unix-like operating system.

2.2 Attacks

A security attack is an attempt to exploit vulnerabilities or weaknesses in a sys-
tem or network in order to gain unauthorized access, steal data, disrupt services,
or cause damage to the system or its users. There are many different types of
security attacks and several ways that they can be categorized. As proposed in
[15], security attacks can be classified according to their characteristics, severity
and impact. As such the authors distinguish seven different categories:
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1. Physical attacks: this category includes attacks that involve physical ac-
cess, such as tampering, theft, or destruction.

2. Network attacks: this category includes attacks that target the commu-
nication networks, such as man-in-the-middle attacks, denial-of-service
attacks and network scanning.

3. Malware attacks: this category includes attacks that involve the installa-
tion of malicious software, such as viruses, worms, and Trojan horses.

4. Device attacks: this category includes attacks that exploit vulnerabilities
in the hardware or firmware, such as buffer overflow or code injection
attacks.

5. Application attacks: this category includes attacks that target the soft-
ware applications, such as SQL injection, cross-site scripting, and buffer
overflow attacks.

6. Cloud attacks: this category includes attacks that target the cloud infras-
tructure, such as data breaches, data leakage, and unauthorized access.

7. Social engineering attacks: this category includes attacks that exploit
human vulnerabilities, such as phishing, baiting, or pretexting.

2.2.1 Code Reuse Attacks - CRA

Code reuse attacks are a type of security attack that exploit vulnerabilities in
software by reusing existing code segments to execute malicious code. The basic
idea behind a code reuse attack is to take advantage of legitimate code segments
in a program, such as function calls or libraries, and modify them to execute
malicious code instead.According to the aforementioned attack categorization,
code reuse attacks may be considered application attacks.

Code reuse attacks can be particularly effective because they bypass traditional
security measures, such as address space layout randomization (ASLR) [16]
and data execution prevention (DEP) [2], which are designed to prevent the
execution of malicious code. Code reuse attacks can also be difficult to detect,
as the attacker is not injecting new code into the program, but rather reuse
existing code snipets.

To prevent code reuse attacks, developers can implement various security mea-
sures, such as control flow integrity (CFI), which verifies that only legitimate
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code paths are executed, and stack canaries, which detect buffer overflow at-
tacks. Additionally, developers can use code analysis tools to identify potential
vulnerabilities and implement coding best practices to minimize the risk of code
reuse attacks.

The two most common types of code reuse attacks are Return-Oriented Pro-
gramming (ROP) and Jump-Oriented Programming (JOP) attacks. Both at-
tacks work by chaining together small code segments to perform a series of
operations that ultimately execute the attacker’s code.

1. Return-Oriented Programming - ROP

A return-oriented programming (ROP) [17] attack is a type of code reuse
attack where an attacker uses existing code fragments in a program’s
memory, known as "gadgets," to execute malicious actions. These attacks
stem from stack overflow attacks.

The technique involves constructing a "ROP chain" by chaining together
the return addresses of these gadgets to create a new sequence of in-
structions that perform the desired actions. The attacker may use this
technique to bypass security defenses, such as non-executable memory or
address space layout randomization (ASLR).

ROP attacks have become increasingly prevalent in recent years, as they
can be used to exploit a wide range of software vulnerabilities, includ-
ing buffer overflows and format string vulnerabilities. Defending against
ROP attacks requires a combination of techniques, including code sign-
ing, control-flow integrity, and runtime defenses such as stack canaries
and shadow stacks.

2. Jump-Oriented Programming - JOP

Jump-Oriented Programming (JOP) is a novel technique employed in
code-reuse attacks, as described in [1]. Jump-Oriented Programming
(JOP), is similar to Return-Oriented Programming (ROP). In an ROP
attack, the software stack is scanned for gadgets that can be strung to-
gether to form a new program. ROP attacks look for sequences that end in
a function return (RET). In contrast, JOP attacks target sequences that
end in other forms of indirect (absolute) branches, like function pointers
or case statements [18]. JOP leverages the fundamental building blocks of
a computer program, namely, the instructions responsible for altering the
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control flow, to construct malicious payloads that redirect program exe-
cution to arbitrary locations within the existing code base by corrupting
function pointers residing in data segments.

Unlike traditional code injection attacks that rely on injecting new code
into a target program, JOP operates by rearranging and repurposing ex-
isting code fragments, known as gadgets, to achieve malicious objectives.
Gadgets are short sequences of instructions that end with a control flow
transfer instruction. By combining these gadgets through careful manip-
ulation of the stack and registers, JOP constructs a chain of instructions
that deviates from the original program logic.

The essence of JOP lies in identifying and chaining together suitable gad-
gets that collectively perform the desired functionality. These gadgets
may be sourced from various locations within the program, such as li-
braries or the program’s own code. The attacker constructs a payload
that populates the stack and registers with the necessary addresses of
gadgets, thus forming a sequence of jumps that ultimately executes the
attacker’s malicious code.

JOP attacks are particularly challenging to detect and mitigate due to
their reliance on legitimate code fragments. Traditional security mecha-
nisms, such as address space layout randomization (ASLR) and data ex-
ecution prevention (DEP), are less effective against JOP, as the attacker
reuses existing code rather than injecting new code.

By leveraging JOP, attackers can bypass security measures, subvert con-
trol flow integrity, and execute arbitrary code within a compromised pro-
gram. This technique has highlighted the need for new defense mecha-
nisms and countermeasures to mitigate the threat posed by code-reuse
attacks.

2.3 Control Flow Integrity - CFI

Control-Flow Integrity (CFI) [19] is a security mechanism designed to defend
against code-reuse attacks, including Return-Oriented Programming (ROP) and
Jump-Oriented Programming (JOP). CFI aims to ensure that the control flow
of a program follows a predetermined legitimate path, preventing deviations
caused by attackers attempting to hijack the control flow.To counter this, CFI
employs two primary strategies: forward edge CFI and backward edge CFI.
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Figure 2.2: Forward Edge CFG and the restrictions that occur

Forward edge CFI focuses on protecting against attacks that exploit indirect
control transfers, such as function pointers or virtual function calls. It enforces
a strict policy that validates the targets of these indirect jumps or calls, allowing
only authorized targets to be executed. By maintaining a comprehensive list of
valid targets for each indirect control transfer site, forward edge CFI thwarts
attempts by attackers to redirect control flow to unauthorized code.

In contrast, backward edge CFI aims to safeguard control flow transfers in-
volving direct control flow instructions, such as function calls and returns. It
focuses on verifying the integrity of return addresses stored on the stack. By
maintaining a set of approved return addresses and validating them before ex-
ecuting a return instruction, backward edge CFI detects any alterations made
by attackers. This prevents control flow hijacking by detecting unauthorized
modifications to return addresses and halting execution in such cases.

Figure 2.3: Backward Edge CFG example
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When combined, forward and backward edge CFI techniques provide a compre-
hensive defense mechanism against control flow hijacking attacks. By ensuring
that control flow adheres to expected paths and validating both indirect and
direct control transfers, CFI significantly raises the bar for attackers attempting
to exploit vulnerabilities.

CFI works by enforcing constraints on the program’s control transfers, such as
function calls, returns, and indirect jumps. It establishes a set of valid targets
for each control transfer instruction and verifies that the actual target matches
the expected set of targets. If an attacker attempts to redirect control flow to
an invalid or unauthorized location, the CFI mechanism detects the deviation
and raises an alert or terminates the program.

There are several approaches to implementing CFI [20], including:

1. Static CFI: Static CFI performs control-flow analysis at compile time,
utilizing static program analysis techniques. It analyzes the program’s
source code or compiled binary to determine valid control flow targets and
inserts runtime checks to ensure compliance with the predefined control
flow graph.

2. Dynamic CFI: Dynamic CFI performs control-flow checks at runtime dur-
ing the execution of a program. It uses runtime monitoring techniques to
verify the legitimacy of control transfers by maintaining a runtime control
flow graph. Dynamic CFI introduces runtime checks to validate control
transfers and detect any unauthorized deviations.

3. Hybrid CFI: Hybrid CFI combines both static and dynamic analysis tech-
niques. It performs static analysis to establish an initial control flow graph
and inserts runtime checks based on this analysis. During program execu-
tion, dynamic analysis further refines the control flow graph and enables
more precise monitoring.

CFI can significantly enhance software security by providing protection against
control-flow hijacking attacks. However, implementing CFI may incur perfor-
mance overhead due to the additional runtime checks and analysis. Various
research efforts aim to optimize CFI techniques to minimize the impact on per-
formance while maintaining robust security.
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Chapter 3

Related Work

Chapter 3 provides valuable insights into related research that contextualizes
Forward-Edge Control-Flow Integrity (CFI). It commences with an in-depth ex-
ploration of branch regulation methods, exemplified in [21]. These techniques
leverage hardware-based approaches to dynamically control indirect branch in-
structions, effectively fortifying defenses against code reuse attacks while main-
taining minimal performance overhead. Subsequently, the focus shifts to the
pioneering work of Hard-Edges [4], which introduces a hardware-centric CFI
enforcement strategy designed explicitly for embedded devices. A cornerstone
of this research is the development of an ISA extension, empowering resource-
constrained devices to efficiently thwart control flow hijacking attacks. Addi-
tionally, Intel’s Control-flow Enforcement Technology (CET) [22] is highlighted
for its introduction of instructions aimed at tracking indirect calls and jumps,
offering a robust defense against code reuse attacks. Furthermore, ARM’s con-
tribution is noted, featuring landing pads in conjunction with Branch Target
Instructions (BTIs) to enhance protections against Jump Oriented Program-
ming (JOP) attacks. This comprehensive examination of related research op-
timally establishes the backdrop for the exploration of Forward-Edge CFI ISA
extension in RISC-V architecture.

3.1 Branch regulation

As mentioned in the previous section, ROP and JOP attacks exploit vulnerabil-
ities in a program by reusing existing code fragments. To mitigate the impact
of these attacks, the branch regulation mechanism proposed in [21] leverages a
small amount of hardware support to track and verify the target addresses of
indirect branches. The proposed approach aims to mitigate the impact of such
attacks with minimal performance overhead.
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The main idea behind branch regulation is to dynamically regulate the execu-
tion of indirect branch instructions. These instructions are commonly targeted
by code reuse attacks as they allow control flow transfers to non-sequential
addresses. By monitoring and regulating these branch instructions, the pro-
posed technique prevents attackers from manipulating control flow to execute
malicious code fragments.

The branch regulation mechanism leverages a small amount of hardware support
to track and verify the target addresses of indirect branches. This hardware
component checks the target addresses against a set of allowed destinations,
ensuring that control flow transfers only occur within the permitted range. If
an unauthorized target is detected, the mechanism interrupts the execution and
triggers an appropriate security response.

The hardware maintains a control flow map that contains information about
the valid target addresses for each indirect branch instruction. This map is
typically generated during a program’s initialization phase or dynamically up-
dated as the program executes.The hardware maintains a control flow map that
contains information about the valid target addresses for each indirect branch
instruction. This map is typically generated during a program’s initialization
phase or dynamically updated as the program executes. If the target address of
an indirect branch is not within the allowed range, indicating a potential code
reuse attack, the hardware interrupts the execution and triggers an appropriate
security response. This response may involve raising an exception, terminating
the program, or invoking specific security mitigation techniques.

The branch regulation mechanism, with its low overhead and hardware-based
approach, is highly relevant to the goals of the Forward-Edge Control-Flow
Integrity (CFI) ISA extension. Both approaches share the common objective
of enhancing control flow integrity and providing defense against code reuse
attacks. By dynamically regulating the execution of indirect branches and ver-
ifying the target addresses, the branch regulation mechanism aligns with the
principles of the Forward-Edge CFI ISA extension. It strives to ensure that
control flow transfers occur within the expected range of valid destinations,
preventing attackers from manipulating the control flow and executing mali-
cious code fragments.
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3.2 Hard edges

In [4], the authors introduce a hardware-based approach to enforce Control-
Flow Integrity (CFI) specifically tailored for embedded devices. Their primary
focus (as well as the focus of this work), is the proposed ISA extension that
incorporates additional instructions and registers to support CFI enforcement
at the hardware level.

By extending the instruction set architecture, the authors provide hardware
support for maintaining and protecting the shadow stack. The ISA extension
introduces instructions for push and pop operations on the shadow stack and
modifies existing instructions to interact with the shadow stack appropriately.

The ISA extension aims to prevent control flow hijacking attacks by ensuring
that program execution follows a valid control flow graph. It introduces new
instructions that enable the verification of control transfers and the maintenance
of integrity checks. The hardware support provided by the ISA extension allows
for efficient and low-overhead enforcement of CFI policies, which is crucial for
resource-constrained embedded devices.

Overall, the paper presents a comprehensive exploration of hardware-based CFI
for embedded devices through the proposed ISA extension. It provides valuable
insights into the design, implementation, and evaluation of an ISA extension
focused on strengthening control flow integrity.

3.3 Security Analysis of Processor Instruction
Set Architecture for Enforcing Control-Flow
Integrity

Another closely related work to this thesis revolves around Intel’s Control-flow
Enforcement Technology (CET) [22], with a particular focus on its significant
component known as Indirect Branch Tracking (IBT). IBT is a critical security
feature within CET, primarily designed to identify and thwart any attempts to
redirect control flow to unintended destinations. It achieves this by introduc-
ing novel branch termination instructions: ENDBR32 for 32-bit programs and
ENDBR64 for 64-bit programs.

CET, through its Indirect Branch Tracking mechanism, effectively identifies
and prevents unauthorized control flow redirection within a program. This
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safeguard is enacted by triggering an exception if the instruction at the destina-
tion of an indirect call or jump does not match the expected branch termination
instruction. This exception mechanism serves as a protective barrier, ensuring
that control flow remains within the prescribed boundaries of the program and
doesn’t deviate towards unauthorized or potentially malicious code segments.

In summary, CET, with its prominent feature IBT, plays a pivotal role in main-
taining control flow integrity and security within software programs. By intro-
ducing specialized branch termination instructions and employing exception
handling, CET effectively mitigates the risks associated with unauthorized con-
trol flow redirection.

3.4 Branch Target Instructions (BTIs)

The Arm architecture uses landing pads. Armv8.5-A introduced Branch Tar-
get Instructions (BTIs) [18], also referred to as landing pads, as a security
measure to defend against Jump-Oriented Programming (JOP) attacks. These
BTIs allow the processor to be configured in such a way that indirect branches
(specifically, BR and BLR instructions) are only permitted to target landing
pad instructions. By restricting the potential destinations for indirect branches
to these landing pads, the attack surface is significantly reduced, making it con-
siderably more challenging for attackers to chain together gadgets and create
malicious code sequences. The implementation of BTIs is page-specific, con-
trolled by a new bit (GP bit) in the translation tables. This per-page control
enables a file system to contain a mix of landing pad-protected code and legacy
code. It’s important to note that BTI-protected code can still operate on older
processors lacking BTI support or when GP=0, albeit without the additional
protective measures in place.

3.5 Thesis Approach

This work primarily focuses on Forward-Edge Control Flow Integrity (CFI)
and advocates harnessing the capabilities inherent in the CPU’s Instruction Set
Architecture (ISA) to fortify defenses against control-flow subversion attacks
in the style of Jump-Oriented Programming (JOP). The foundation of this
approach draws from the RISC-V CFI specification, as proposed by the RISC-V
foundation [23]. More specifically, the proposal introduces six novel landing pad
instructions geared towards tracking indirect calls and jumps, thereby thwarting
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any illicit control flow subversion within a program. The ultimate objective is
to secure the approval and ratification of this extension as an integral part of
the RISC-V architecture, providing an optimal defense mechanism against such
attacks.
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Chapter 4

Implementation

This chapter provides an insight into the threat model and outlines the various
modifications and extensions required for the successful deployment of Forward-
Edge Control-Flow Integrity (CFI) within the CVA6 architecture. Serving as a
foundational guide, the chapter commences with an introduction to the threat
model adopted for guidance. Subsequently, a comprehensive examination is un-
dertaken, detailing the essential adaptations and additions necessary to seam-
lessly integrate Forward-Edge CFI ISA extension into the CVA6 architecture.

4.1 Concepts

Here are some important concepts to clarify before the implementation chapter.

• Privilege modes [24]: At any time, a RISC-V hardware thread (hart) oper-
ates at a specific privilege level, encoded as a mode in one or more control
and status registers (CSRs). RISC-V defines three privilege levels, as
outlined in Table 4.1. These privilege levels serve to establish protection
boundaries within the software stack. Any attempt to perform opera-
tions not allowed by the current privilege mode results in an exception.
Typically, these exceptions lead to traps into an underlying execution en-
vironment.

Level Name Abbreviation
0 User/Application U
1 Supervisor S
2 Reserved
3 Machine M

Table 4.1: Privilege levels



22 Chapter 4. Implementation

The machine level has the highest privileges and is the only mandatory
privilege level for a RISC-V hardware platform. Machine-mode (M-mode)
code is generally considered trustworthy, given its deep access to the ma-
chine’s implementation. M-mode is often used to manage secure execu-
tion environments in the context of RISC-V. User-mode (U-mode) and
supervisor-mode (S-mode) are designed for conventional application and
operating system usage, respectively. Each privilege level comes with a
fundamental set of privileged ISA extensions, along with optional exten-
sions and variants. For instance, machine-mode may support an optional
standard extension for memory protection.

Implementations can offer anywhere from 1 to 3 privilege modes, trading
off reduced isolation for lower implementation costs, as demonstrated in
Table 4.2. M-mode is a mandatory mode in all hardware implementations,
as it grants unrestricted access to the entire machine. Simpler RISC-V
implementations might solely provide M-mode, which, however, offers no
protection against incorrect or malicious application code. Many RISC-V
implementations will also include user mode (U-mode) to safeguard the
rest of the system from application code. Supervisor mode (S-mode) can
be introduced to enforce isolation between a supervisor-level operating
system and some execution environment.

Number of levels Supported Modes Intended Usage
1 M Simple embedded systems
2 M, U Secure embedded systems
3 M, S, U Systems running Unix-like operating systems

Table 4.2: Privilege levels combinations

Typically, a hart runs application code in U-mode until a trap, such as
a supervisor call or a timer interrupt, forces a switch to a trap handler,
often operating in a more privileged mode. The hart then executes the
trap handler, which eventually resumes execution at or after the original
trapped instruction in U-mode. Traps that elevate privilege levels are
referred to as vertical traps, while traps that remain at the same privilege
level are known as horizontal traps. The RISC-V privileged architecture
offers flexible routing of traps to different privilege layers.

• XLEN: In RISC-V, XLEN stands for "Register Width" or "Integer Register
Width," and it represents the width (in bits) of the general-purpose integer
registers in the RISC-V processor architecture. The XLEN value deter-
mines the native word size of the processor and indicates the maximum
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bit width that the processor can use for integer operations. RISC-V is de-
signed to be highly customizable, so the specific value of XLEN can vary
depending on the implementation and target application. Different im-
plementations of RISC-V processors may support different XLEN values
to meet the requirements of various computing environments and perfor-
mance needs. Common XLEN values include 32, 64, and 128, but other
values are possible based on the design choices of the processor. The effec-
tive XLEN in M-mode, S-mode and U-mode are termed MXLEN, SXLEN
and UXLEN, respectively [25].

• WARL: Certain read/write CSR (Control and Status Register) fields in
the RISC-V architecture are designed to be flexible, permitting writes of
various values while ensuring that they always return a valid value when
read. These fields are denoted as WARL, which stands for "Write Any
Values, Reads Legal Values" [26].

In the case of WARL fields, implementations won’t trigger an exception
when receiving unsupported values during writes. Instead, they may re-
turn any valid value when these fields are read after an illegal write. How-
ever, the specific legal value returned should depend in a deterministic
manner on both the illegal value that was written and the architectural
state of the hardware thread (hart).

• Vtables: In computer programming, a vtable [27], short for "virtual func-
tion table", serves as a critical mechanism within programming languages
to facilitate dynamic dispatch, often referred to as runtime method bind-
ing.

When a class defines a virtual function or method, many compilers in-
troduce a concealed member variable to the class. This hidden variable
points to an array of function pointers, which are essentially pointers
to virtual functions. This collection of pointers is known as the virtual
method table (vtable). During runtime, these pointers come into play to
invoke the appropriate function implementations dynamically. This dy-
namic invocation is necessary because, during compile time, it may not
be determined whether the base function or a derived one implemented
by a class inheriting from the base class should be called.

Vtables are commonly employed in object-oriented programming, and
since they essentially are tables with function pointers, they can poten-
tially introduce vulnerabilities susceptible to code reuse attacks.
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• RELRO: Relocation Read-Only, commonly known as RELRO [28], is a
security measure aimed at rendering specific binary sections as read-only.

RELRO operates in two distinct modes: partial and full. By default,
GCC (GNU Compiler Collection) employs partial RELRO, and it’s the
configuration you’ll encounter in most binaries.

From a security perspective, partial RELRO introduces minimal changes,
but it ensures that the Global Offset Table (GOT) [29] precedes the Block
Started by Symbol (BSS) in memory layout. This arrangement eliminates
the risk of buffer overflows causing global variable overwrites that could
affect GOT entries.

On the other hand, full RELRO takes the security measures further by
enforcing read-only status for the entire GOT. This effectively thwarts
"GOT overwrite" attacks, where an attacker attempts to overwrite the
GOT address of a function with the location of another function or a
Return-Oriented Programming (ROP) gadget they intend to execute.

It’s worth noting that full RELRO is not set as the default compiler option
because it can significantly extend program startup times. This delay
arises because all symbols must be resolved before the program commences
execution. In larger programs containing thousands of symbols requiring
linkage, this delay can be noticeable during startup.

• Data-Oriented Programming (DOP) attack: The term "Data-Oriented
Programming" (DOP) [30] refers to an attack technique where an attacker
manipulates or exploits non-control data in a program to achieve malicious
goals. In DOP attacks, the attacker focuses on modifying or controlling
data structures and data flow within a program rather than attempting
to alter the control flow or execution path of the program.

Unlike traditional control-flow attacks that target control structures like
function calls or branch instructions, DOP attacks specifically aim to ma-
nipulate data in such a way that they can achieve unintended behavior
within a program. This can include changing the values of variables,
modifying data structures, or manipulating input data to trigger vulner-
abilities.

DOP attacks can be challenging to detect and defend against because
they do not involve altering the program’s control flow, making them less
susceptible to traditional control-flow integrity (CFI) defenses.
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4.2 Threat Model

The software and firmware threat model in use assumes that an attacker can
exploit vulnerabilities found in the target software binary. These vulnerabilities,
such as use-after-free issues, and similar weaknesses, could allow the attacker
to manipulate critical components like function pointers or VTable pointers.
Additionally, it is assumed that the attacker has successfully bypassed Address
Space Layout Randomization (ASLR) and possesses comprehensive knowledge
of the memory layout. It’s important to note that CFI (Control Flow Integrity)
operates independently of ASLR and does not interfere with it in any manner.

However, the system enforces certain security measures: (i) the .text segment is
non-writable, preventing any modification to the application’s code, and (ii) the
data segments are non-executable, thereby preventing the execution of injected
data, provided it adheres to proper CFI annotations. Regarding linking, it is
assumed that the binaries are configured with RELRO [28] to protect the Global
Offset Table (GOT) [29] and Procedure Linkage Table (PLT) [31] sections from
being tampered with.

For privileged modes, there is no extension of the kernel/firmware using unver-
ified or untrusted kernel/firmware extensions like drivers or modules, as these
may disable the aforementioned protections. Additionally, the toolchain used
for compiling the binary and the libraries loaded by the binary are trusted to
be reliable and free from intentional malicious behavior. At each privilege level,
it is assumed that higher privilege levels are not exploited, and the code is
trustworthy, free from malware.

It’s important to note that this threat model does not encompass Data-Oriented
Programming (DOP) attacks, where attackers manipulate non-control data to
alter the behavior of a CFI-compliant application. In this context, attackers do
not need to deviate from the predefined control flow graph but can change the
application’s behavior by altering data, like arguments passed to a system call.
While Control Flow Integrity can bolster application security, it cannot entirely
mitigate DOP attacks. Additionally, techniques based on debugging, emulation,
and code injection using hooking techniques are excluded from consideration.
Lastly, side-channel techniques allowing arbitrary data accesses fall outside the
scope of CFI’s intended problem-solving domain.



26 Chapter 4. Implementation

4.3 Control Transfer Conventions in RISC-V
architecture

The RISC-V control-flow integrity (CFI) extension proposal utilizes the conven-
tions and hints provided by the RISC-V architecture to application resilience.
The CFI extension takes advantage of the different control transfer instructions
available in RV32/RV64 architectures.

In RV32/RV64, there are two types of control transfer instructions: uncondi-
tional jumps and conditional branches. Conditional branches are direct branches
that are not susceptible to control-flow subversion, as they encode an offset in
the immediate field of the instruction.

Unconditional direct jumps (JAL) transfer control to a target within a range
of +/- 1 MiB from the current program counter (pc). Unconditional indirect
jumps (JALR) calculate their branch target by adding a sign-extended 12-bit
immediate, encoded in the instruction, to the value in the rs1 register.

While the RV32I/RV64I instruction set does not have dedicated instructions for
procedure calls and returns, the RISC-V ABI (Application Binary Interface)
defines conventions for using JAL and JALR instructions. According to the
ABI, a JAL or JALR with the rd (link register) set to x1 or x5 is considered
a procedure call, and a JALR with rs1 set to the conventional link register (x1
or x5) is considered a return from a procedure. These conventions allow for
utilizing hints and supporting return address prediction, as specified in Table
2.1 of the Unprivileged ISA specifications [32].

The RISC-V C extension (RVC) introduces compressed instructions that include
unconditional jump (C.J) and conditional branch (C.JAL) instructions. Similar
to conditional branches in the base ISA, C.J and C.JAL encode an offset in the
immediate field, making them resilient to control-flow subversion.

Additionally, the RISC-V RVC instructions C.JR and C.JALR enable uncon-
ditional control transfers within the instruction sequence. C.JR facilitates pro-
cedure returns when employed with regular link registers such as x1 or x5. If
the instruction uses any other register, it results in an indirect jump. On the
other hand, C.JALR not only performs an unconditional jump but also serves
as a procedure call by saving the address of the subsequent instruction (pc+2)
to the link register x1. This provides an efficient means for managing procedure
calls and returns in RISC-V architectures.
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The RISC-V control-flow integrity (CFI) extension builds upon these estab-
lished conventions and hints to further enhance control-flow security. By lever-
aging the architectural features and specifications, CFI aims to mitigate control-
flow hijacking attacks and improve the overall integrity of program execution.

4.4 Forward Edge Control-Flow Integrity

The Forward-Edge Control-Flow Integrity (CFI) mechanism introduces a set
of new landing pad instructions that allow software to specify valid targets for
indirect jumps within a program. These instructions provide enhanced secu-
rity by enabling precise control over program execution flow. Six new landing
pad instructions have been defined for this purpose, namely LPSLL, LPCLL,
LPSML, LPCML, LPSUL, and LPCUL.

Instructions Encoded lable
LPSLL/LPCML instruction[23:15] (9-bits label)
LPSML/LPCML/LPSUL/LPCUL instruction[22:15] (8-bits label)

Table 4.3: Encoded label in landing pad instructions

Each landing pad is associated with a label, which can be up to 25 bits wide.
When the label is 9 bits or less, the LPSLL and LPCLL instructions are used.
In cases where a label greater than 9 bits is required, the LPSML and LPCML
instruction are utilized too. These instructions encode the middle label as an
8-bit immediate value. Similarly, if a label greater than 17 bits is needed,
the LPSUL and LPCUL instructions are, also, employed 4.3. The compiler is
responsible for emitting set instructions before an indirect jump takes place,
and check instructions at the target address of the indirect jump.

In order to ensure that the target of an indirect call or jump is a valid landing
pad instruction, the hardware maintains an expected landing pad (ELP) state.
This state helps determine whether a landing pad instruction is required at the
target location. When the landing pad feature is active, the hardware maintains
an ELP state. This state is updated with the expected landing pad instruction
upon encountering indirect calls and jumps. An indirect call or jump updates
the ELP state to require an LPCLL instruction at the target. If the instruction
at the target does not match LPCLL, an illegal instruction exception is raised,
indicating a potential control flow integrity violation. To ensure label matching,
a landing pad label register (LPLR) is set up before initiating an indirect call or
jump. The LPLR holds the expected landing pad label, and if the label of the
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landing pad does not match the one in LPLR, an illegal instruction exception
is raised.

4.4.1 Expected Landing Pads - ELP

To track landing pads, the core maintains an expected landing pad (ELP) state
to determine the landing pad instruction that is required at the target of a
JALR, C.JALR or C.JR instruction. The ELP state can be in one of two
states:

1. NO_LP_EXPECTED: This state indicates that a landing pad instruction
is not expected at the target location and so, the target can be any valid
instruction other than a landing pad instruction.

2. LP_EXPECTED: This state signifies that a landing pad instruction is
expected at the target location. The hardware enforces that the target
must be a valid landing pad instruction in order to comply with this state.

An indirect jump occurs when a JALR/C.JALR/C.JR instruction is encoun-
tered, and the destination register (rd) is not equal to x1 or x5, and the
source register (rs1) is not equal to x1 or x5. In such cases, the expected
landing pad (ELP) field is updated to LP_EXPECTED. If the ELP is set to
LP_EXPECTED and the next instruction decoded is not LPCLL, an illegal
instruction exception is raised. This exception indicates that a valid landing
pad instruction was expected, but a different instruction type was encountered.
If the target of the indirect call/jump is a valid landing pad instruction, the
expected label established in the LPLR is matched with the target’s label. If a
mismatch is detected then the label check instruction causes an illegal instruc-
tion exception.

4.4.2 Landing Pad Label Register - LPLR

The LPLR CSR 4.1 (Control and Status Register) is a user-mode read-write
(URW) register and it is responsible for holding the expected label at the target
of an indirect jump. The label is split into a lower label (LL) - 9 bits wide, a
middle label (ML) - 8 bits wide and an upper label (UL) - 8 bits wide. To ensure
label matching, the landing pad label register (LPLR) is set up before initiating
an indirect call or jump, by the set landing pad instructions (LPSLL, LPSML
and/or LPSUL). The LPLR holds the expected landing pad label, and if the
label embedded in the check landing pad instructions (LPCLL, LPCML and/or
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LPCUL) does not match the one in LPLR, an illegal instruction exception is
raised.

Figure 4.1: LPLR CSR for RV32 and RV64

4.4.3 Landing Pad CSRs & FCFIE bit

Machine environment configuration registers (menvcfg and menvcfgh)
4.2

The menvcfg [32] CSR is an MXLEN-bit read/write register, that controls cer-
tain characteristics of the execution environment for modes less privileged than
M.

Figure 4.2: Machine environment configuration register (men-
vcfg) for MXLEN=64

The availability of the Forward-Edge CFI extension in modes lower privileged
than M is controlled by the CFIE field, located at bit 60. When CFIE is set to
1, the Forward-Edge CFI functionality can be utilized in S-mode by enabling
the SFCFIE field, located at bit 59. When the menvcfg. CFIE bit is set to 0,
certain rules apply to privilege modes lower than M:

• Instructions related to the Forward-Edge CFI extension will behave ac-
cording to the defined behavior of Zimops instructions.

• The SFCFIEN and SPELP fields in mstatus are read-only zero.
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Machine Security Configuration (mseccfg) 4.3

mseccfg [32] is an optional MXLEN-bit read/write register, formatted as that
controls security features. When MXLEN=32 only, mseccfgh is a 32-bit read-
/write register that contains the same fields as mseccfg bits 63:32 when MXLEN=64.

The MFCFIE (bit 10) is a WARL field that when set to 1 enables forward-edge
CFI at M-mode.

Figure 4.3: Machine security configuration register (mseccfg)
when MXLEN=64

Machine status registers (mstatus) 4.4

The mstatus [32] register is an MXLEN-bit read/write register that keeps track
of and controls the hart’s current operating state. A restricted view of mstatus
appears as the sstatus register in the S-level ISA.

Figure 4.4: Machine-mode status register (mstatus) for RV64

The UFCFIE (bit 23) is a WARL field that, when set to 1, enable forward-edge
CFI in U-mode.This means that the system will enforce the presence of landing
pad instructions for indirect calls and jumps in U-mode, ensuring the integrity
of control flow.

The SPELP (bit 25) and MPELP (bit 26) are also WARL fields that hold
the previous Expected Landing Pad (ELP) value. These fields are updated
according to the specifications outlined in Section 4.1.5 of the documentation.

The xPELP fields, including SPELP and MPELP, are encoded with the follow-
ing values:
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• 0 - NO_LP_EXPECTED: This indicates that no landing pad instruction
is expected at the current point in the control flow.

• 1 - LP_EXPECTED: This indicates that a landing pad instruction is
expected at the current point in the control flow.

Supervisor status registers (sstatus) 4.5

The sstatus [32] register is an SXLEN-bit read/write register. The sstatus
register keeps track of the processor’s current operating state.

Figure 4.5: Supervisor-mode status register (sstatus) when
SXLEN=64

When menvcfg.CFIE is 1, access to the following fields accesses the homonymous
field of the mstatus register. When menvcfg.CFIE is 0, these fields are read-only
zero.

• UFCFIE (bit 23).

• SPELP (bit 25).

FCFIE bit

When the privilege mode is M, the activation of Forward-Edge Control Flow
Integrity (CFI) depends on the value of the MFCFIE bit in the mseccfg register.
If MFCFIE is set to 1, Forward-Edge CFI is active in M-mode. However, when
the menvcfg.CFIE bit is 0, the Forward-Edge CFI extension is not enabled for
privilege modes lower than M. If menvcfg.CFIE is set to 1, Forward-Edge CFI
is active in S-mode only if the menvcfg.SFCFIE bit is also set to 1. Similarly,
in U-mode, forward-edge CFI is active if the mstatus.UFCFIE bit is set to 1.

The FCFIE bit is used to determine if Forward-Edge CFI is active at privilege
level x and is defined as follows:
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if ( privilege == M-mode )
FCFIE = mseccfg.MFCFIE

else if ( menvcfg.CFIE == 1 && privilege == S-mode )
FCFIE = menvcfg.SFCFIE

else if ( menvcfg.CFIE == 1 && privilege == U-mode )
FCFIE = mstatus.UFCFIE

else
FCFIE = 0

4.4.4 Landing Pad Instructions

The forward-edge CFI introduces the following instructions for landing pad
operations 4.6. All instructions are encoded using the SYSTEM major opcode.

Figure 4.6: Format of CFI Instructions

Before performing an indirect call or indirect jump to a labeled landing pad, the
LPLR is loaded with the expected landing pad label - a constant determined at
compilation time. The LPSLL instruction is used for this purpose.

If FCFIE != 0
LPLR.LL = LPSLL.immediate

else
[rd] = 0;

endif
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The LPCLL instruction serves as a valid landing pad for indirect jumps and
indirect calls. However, there are specific requirements and behaviors associ-
ated with this instruction.The LPCLL instruction includes a lower landing pad
label embedded in the immediate field. This label indicates the destination of
the landing pad. It is important to note that the label needs to match the
LPLR.LL field, otherwise, executing the LPCLL instruction will trigger an ille-
gal instruction exception. In the case of an illegal instruction exception caused
by executing LPCLL instructions, the ELP remains unchanged.

If FCFIE != 0 // If lower landing pad label not matched -> illegal-
instruction

if (LPCLL.immediate != LPLR.LL)
Cause illegal-instruction exception

else
ELP = NO_LP_EXPECTED

else
[rd] = 0;

endif

Similarly, the LPSML and LPSUL instructions are used to set the corresponding
fields ML and UL of the LPLR CSR and the the LPCML and LPCUL instruc-
tions, perform a check operation on the corresponding fields. A summary of the
functionality of Forward-Edge CFI instructions can be found in Table 4.4.

Instruction Functionality
LPSLL (set lower landing pad) LPLR.LL = immediate
LPCLL (check lower landing pad) If LPLR.LL!=LPCLL.immediate;

exception
LPSML (set middle landing pad) LPLR.ML = immediate
LPCML (check middle landing pad) If LPLR.ML!=LPCML.immediate;

exception
LPSUL (set upper landing pad) LPLR.UL = immediate
LPCUL (check upper landing pad) If LPLR.UL!=LPCUL.immediate;

exception

Table 4.4: Functionality of CFI instructions.

The compiler may emit the following instruction sequence at indirect call sites
to set up the Landing Pad Label Register (LPLR) when using labels that are
up to 17 bits wide:



34 Chapter 4. Implementation

:
# x10 is expected to have address of function bar()
lpsll $0x1de
# setup lplr.LL with value 0x1de
lpsml $0x17
# setup lplr.ML with value 0x17
jalr %ra, %x10
:

The following instruction sequence may be emitted at indirect call sites by the
compiler to set up the landing pads at entrypoint of function bar():

bar:
lpcll $0x1de
lpcml $0x17
:

# Verifies that LPLR.LL matches 0x1de
# Verifies that LPLR.ML matches 0x17
# continue if landing pad checks succeed

4.4.5 Preserving expected landing pad state on traps

A trap may need to be delivered to the same or higher privilege level on comple-
tion of JALR but before the instruction at the target of JALR was decoded.To
ensure proper trap handling and preserve the ELP state during the execution
of JALR instructions, the mstatus CSR (Control and Status Register) includes
the MPELP and SPELP fields. In M-mode and S-mode respectively, these bits
indicate the ELP of the current privilege level and are used to deliver traps
to the same or higher privilege level on completion of JALR instructions. The
xPELP fields in mstatus are WARL fields, meaning they can be written with any
value, but the read value is subject to certain restrictions. When a trap is taken
into privilege mode x, the trap handler should preserve the LPLR CSR, which
holds the Landing Pad Label and the xELP bits are updated with current ELP
and ELP is set to NO_LP_EXPECTED. This ensures that the current land-
ing pad label and associated information are not lost during the trap handling
process.To return from a trap in M-mode or S-mode, the MRET and SRET
instructions are used, respectively.When executing an xRET instruction, where
x represents M or S, the ELP is set to the corresponding xPELP value, and
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xPELP is set to NO_LP_EXPECTED. This update ensures that the correct
ELP is restored after returning from the trap.

4.5 CVA6 & Implementation

The CVA6 4.7 [14] core was used as a reference design upon which the CFI logic
described in the previous section was implemented. The core’s datapath con-
sists of 6 stages, the PC generation stage and instruction fetch (IF) stage,both
included on the front-end region, the instruction decode (ID) stage, the issue
stage, the execution stage and the commit stage.

Figure 4.7: Datapath of CVA6 core

• Front-end:

The front-end 4.8 region of the core is responsible for generating the next
program counter (PC) in a computer system. The PC represents the
logical address of the next instruction to be executed. This stage includes
the PC Generation unit, which interacts with the Instruction Fetch (IF)
stage and the Memory Management Unit (MMU) for address translation.

The PC Generation unit incorporates speculation on the branch target
address, meaning it predicts the target address of a branch instruction
before it is resolved. It also determines whether a branch is taken or not.
The IF stage communicates with the PC Generation unit and requests
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Figure 4.8: Front-end high level block diagram

address translation from the MMU for the desired PC. It also controls the
interface to the instruction memory (I$).

When the IF stage wants to fetch an instruction from memory, it signals
the I$ interface. However, the request may or may not be granted depend-
ing on the cache’s state. If the request is granted, the instruction fetch
stage places the request in an internal First-In-First-Out (FIFO) buffer.
This FIFO buffer has two ports, allowing a maximum of two outstanding
transactions at a time. If there are already two outstanding transactions,
the IF stage will not acknowledge any new requests from the PC Gener-
ation unit. Once a valid response is received from memory, the fetched
instruction, along with its fetch address and branch prediction informa-
tion, is stored in the FIFO buffer.

Before advancing to the next stage, a check is performed to determine if
a Jump and Link Register (JALR), a C.JR or a C.JALR instruction with
rs1 equal to one of the conventional long registers, x1 or x5, occurs. If this
condition is true, the core enters an architectural state called the Expected
Landing Pad (ELP). It signals the CSR Register file and sets the expected
landing pad to LP_EXPECTED. While CFI (Control Flow Instructions)
instructions continue to be processed, the architectural state remains the
same. In this way, all labels are included in the control flow graph. The
next instruction is expected to be a CFI instruction; otherwise, an illegal
instruction exception will occur.

The Finite State Machine (FSM) 4.9 described above is implemented in
the Instruction Queue module and is responsible for managing the Ex-
pected Landing Pad (ELP) state in a program. The FSM consists of six
states, which are as follows:

– 000 - NO_LP_EXPECTED : The initial state of the FSM is the idle
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state, during which instructions are fetched and the FSM remains in
the NO_LP_EXPECTED state. When an indirect jump occurs, the
CFI process begins, transitioning the FSM to the WAIT_STATE.

– 001 - WAIT_STATE : In CVA6, all jumps are treated as conditional
jumps, which means that the processor requires some cycles to de-
termine whether the jump will be taken or not. By default, uncondi-
tional jumps are taken, but due to the processor’s design, irrelevant
instructions are still being fetched, until the jump is resolved. This
creates a stall state until the jump is resolved. Once the jump is re-
solved and the program counter (PC) points to the correct address,
the FSM transitions to the L_LP_EXPECTED_STATE.

If an interrupt occurs the ELP state is updated to NO_LP_EXPECTED.

– 010 - L_LP_EXPECTED_STATE : In this state, the Forward-
Edge Control Flow Integrity (CFI) checks start. The initial com-
parison occurs between the instruction located at the target ad-
dress of the indirect jump and an LPCLL format. If the fetched
instruction does not match the LPCLL format, the next state will
be ILLEGAL_INSTRUCTION_STATE. However, if the instruc-
tion at the target address is an LPCLL instruction, the immediate
value of this instruction is compared against the lower label (9 bits)
stored in LPLR CSR. If there is a match between the immediate
value and the label, the next state will be M_LP_EXPECTED. On
the other hand, if there is no match, the next state will be ILLE-
GAL_INSTRUCTION_STATE.

– 011 - M_LP_EXPECTED_STATE : In this state, the compari-
son is directed towards the subsequent instruction following LP-
CLL. If this instruction is not LPCML, it implies that only the
lower label is in use. As a result, the system transitions to the
NO_LP_EXPECTED_STATE, signifying a successful completion
of the control flow. On the other hand, if the instruction is in-
deed a LPCML instruction, the 8-bit label embedded in the in-
struction’s raw bits is matched against the 8-bit middle label stored
in the LPLR CSR. A match directs the next state of the FSM to
U_LP_EXPECTED_STATE, while a mismatch leads to a transi-
tion to the ILLEGAL_INSTRUCTION_STATE.

– 100 - U_LP_EXPECTED_STATE : Similarly, in this state, the
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comparison is directed towards the subsequent instruction follow-
ing LPCML. If this following instruction is not LPCUL, it implies
that the 17-bit label (comprising the lower and middle labels) is ex-
clusively in use. As a result, the system seamlessly transitions to
the NO_LP_EXPECTED_STATE, marking the successful conclu-
sion of the control flow process. Conversely, if the instruction is
indeed LPCUL, the instruction’s raw bits containing the 8-bit la-
bel are matched against the 8-bit upper label stored in the LPLR
CSR. A successful match guides the finite state machine (FSM) into
the NO_LP_EXPECTED_STATE, thereby signifying the contin-
uation of the control flow, now employing a 25-bit label. However,
in cases where the labels do not align, a transition occurs to the
ILLEGAL_INSTRUCTION_STATE, indicating a divergence from
the anticipated control flow.

– 101 - ILLEGAL_INSTRUCTION_STATE : In this state an illegal
instruction exception is raised is raised.

Figure 4.9: Landing Pad FSM

• ID Stage:

The Instruction Decode (ID) stage is the first pipeline stage in the pro-
cessor’s back-end. Its primary objective is to receive instructions from the
data stream provided by the Instruction Fetch (IF) stage, decode them,
and then forward them to the issue stage. Additionally, this stage han-
dles the realignment and decompression of potentially compressed 16-bit
instructions.
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During the decoding procedure, the decoder converts the raw instruction
bits into a scoreboard entry. In Ariane, the scoreboard entry is a control
structure that contains information about the Program Counter (PC),
Functional Unit (FU), Operation (OP), Register Source 1 (RS1), Regis-
ter Source 2 (RS2), Register Destination (RD), type of immediate value,
exception handling, and branch prediction information, among other de-
tails.

The CFI (Control Flow Integrity) instructions have the major opcode
"SYSTEM" and are classified as CSR (Control and Status Register) in-
structions. These instructions are responsible for updating CSRs and
controlling the core’s architectural state. To implement the functionality
of each instruction, all the fields of these instructions are appropriately
assigned in the control structures of the core, extending down to the dat-
apath.

• Issue Stage:

The Issue stage is responsible for managing data information after the ID
stage. Its main objective is to receive decoded instructions and distribute
them to various functional units. Additionally, the Issue stage keeps track
of all issued instructions, monitors the status of functional units, and
receives write-back data from the execute stage using a scoreboard. It
also contains the CPU’s register file.

During the Issue stage, the relevant parts of the instruction are assigned
to the operands (operand A and/or operand B) that will be utilized in
subsequent stages of the datapath to perform the operation specified by
each instruction. In the case of CFI instructions, the label is assigned to
operand A.

• EX Stage:

The execute stage is a critical stage in the processor pipeline that houses
various functional units (FUs). Each unit operates independently, per-
forming its specific operation. The execute stage consists of an Arithmetic
Logic Unit (ALU), a branch unit, a load-store unit (LSU), a multiply/di-
vide unit, and a CSR buffer. For the purpose of this work, the CSR buffer
has been modified.

The CSR buffer serves as a dedicated unit to store the address of the
CSR register that the instruction intends to read from or write to. This
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buffering is necessary because CSR instructions modify the architectural
state, so the instructions must be buffered and executed only when the
commit stage decides to commit them, considering the structure of the
scoreboard entry. Typically, CSR instructions include the address of the
CSR they are going to modify within their raw bit stream. However, in the
CFI (Control Flow Integrity) instructions, this information is not present,
and the address of the LPLR CSR is hard-wired. To avoid cluttering
the scoreboard with special case bit fields, the CSR buffer is introduced.
It simply holds the address, and if the CSR instruction is scheduled for
execution, it uses the stored address from the buffer.

One clear disadvantage of the CSR buffer is that it consists of only a
single element, preventing the execution of consecutive CSR instructions
without a pipeline stall. However, since CSR instructions are relatively
rare, this limitation is not a significant problem. Additionally, certain
CSR instructions may cause a pipeline flush regardless.

• Commit Stage:

The Commit Stage is the final stage in the processor’s pipeline and plays
a crucial role in updating the architectural state. It receives incoming
instructions and is responsible for carrying out actions that affect the
architectural state, such as writing to CSR registers, committing store
operations, and updating the register file. Importantly, only the Commit
Stage is allowed to modify the architectural state of the core.

In addition to handling state updates, the Commit Stage also has control
over the overall stalling of the processor. If the halt signal is asserted,
indicating a need to halt the pipeline, the Commit Stage will not commit
any new instructions. This generates back-pressure and eventually leads
to a stall in the pipeline, allowing for proper synchronization and handling
of exceptional conditions.

The Commit Stage also maintains extensive communication with the con-
troller. It works closely with the controller to execute fence instructions,
which are used for cache flushes and other pipeline resets. By coordinat-
ing with the controller, the Commit Stage ensures the proper execution of
these instructions and the overall synchronization and consistency of the
pipeline.

• CSR Register File:
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The CSR Register file serves as a critical module responsible for manip-
ulating the architectural state of the core and managing updates to the
Control and Status Registers (CSRs). In order to support the Forward-
Edge CFI extension, the CVA6 core, which implements the draft privilege
extension 1.10, is undergoing specific modifications. To begin with, the
read and write processes of the CSR Register File now include the addi-
tion of machine configuration registers (menvcfg, menvcfgh, and mseccfg)
as outlined in the current Privileged Specification version 20211203 [32].
These registers exclusively implement and manage the CFI relevant bits
to enable the privileged functionality of the Forward-Edge CFI extension.

Furthermore, the LPLR CSR, responsible for holding the landing pad la-
bel, has also been integrated into the read/write processes of this module.
Additionally, the implementation of the xFCFIE bit takes place within
this module, as it relies on information from the machine configuration
registers and the privilege level of the core. This bit plays a crucial role in
restricting the execution of CFI instructions if there is no valid extension
of CFI supported on the core or if such instructions are attempted to be
executed at an unauthorized privilege level.

Moreover, this module takes on the responsibility of handling traps ef-
ficiently. Several statements have been carefully added to ensure the
correct behavior of the core when operating in the ELP state, guaran-
teeing its overall reliability and functionality. These modifications collec-
tively enhance the core’s capabilities, enabling seamless support for the
Forward-Edge CFI extension and ensuring the desired system behavior
and privilege management.

4.6 Tools Used

4.6.1 Hardware Tools

To test and verify the Forward-Edge CFI ISA extension in the CVA6 core, a
variety of hardware tools were utilized. These tools included Vivado, which
is a widely used FPGA design and implementation tool, Verilator, a cycle-
accurate simulator for verifying the hardware design, OpenOCD, a debugger
commonly used for debugging and testing embedded systems, GTKwave, a
waveform viewer for analyzing simulation results, and RISC-V PK, a minimal
operating system or runtime environment that serves as a proxy for running
RISC-V programs on a host machine.
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Vivado Design Suite

Vivado Design Suite HLx Editions 2018.3 [33] is a software suite developed by
Xilinx for designing and implementing digital circuits using their FPGAs and
SoCs. Key components of Vivado Design Suite include design entry methods
such as schematic-based entry, HDL entry, and high-level synthesis (HLS). The
IP Integrator tool simplifies design integration using pre-designed IP blocks.
The suite performs synthesis and optimization to convert RTL into gate-level
netlists, and handles implementation including place and route.

In this project, Vivado Design Suite HLx Editions 2018.3 was utilized for various
tasks. Firstly, Vivado was employed for the implementation and synthesis of
the core, including the integration of the Forward Edge CFI ISA extension. It
facilitated the creation of the bitstream required for programming the FPGA.
Additionally, Vivado was utilized for JTAG programming of the FPGA with the
generated bitstream. Furthermore, the suite was instrumental in generating
reports related to the new design, providing valuable information on power
consumption, area utilization, place and route, and other relevant metrics.

Verilator

Verilator [34] is an open-source simulator and synthesizer for digital designs
described in Verilog and SystemVerilog. It provides high-speed simulation by
generating optimized C++ or SystemC code. Verilator supports standard Ver-
ilog and SystemVerilog language constructs and offers cycle-accurate simulation
for accurate verification and debugging. It can seamlessly integrate with C++
and SystemC code for easy hardware-software co-design. Verilator includes a
static analyzer for detecting RTL issues, supports code coverage and functional
coverage analysis, and is cross-platform compatible. As an open-source tool, it
encourages community collaboration and customization.

In this work, Verilator version 4.110 was utilized as the primary tool for simula-
tion and ensuring the functionality of the core, through a test harness, which is
a structured environment for executing test cases and capturing the results for
analysis. Verilator 4.110 provided a reliable and efficient platform for simulating
the digital design described in SystemVerilog. By running the design through
Verilator’s simulation engine, the core’s behavior and functionality could be
thoroughly verified. Verilator’s features, including high-speed simulation and
cycle-accurate modeling, contributed to the accurate assessment of the core’s
performance and functionality.
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RISCV-PK and Bootloader

The RISC-V Proxy Kernel and Boot Loader [35] is a software framework that
enables the execution of user-space binaries on RISC-V processors. It provides
an interface between the user application and the underlying hardware, handling
system calls, memory management, and other operating system-like functions.
The Proxy Kernel acts as a bridge between the user application and the host
operating system, facilitating the execution of user programs.

The RISC-V Proxy Kernel and Boot Loader were utilized to validate the proper
functionality of the core in conjunction with an operating system-like environ-
ment. By employing the RISC-V Proxy Kernel and Boot Loader, the core’s
behavior and performance could be thoroughly assessed within a comprehen-
sive operating system framework.

GTKWave

GTKWave [36] is an open-source waveform viewer used for visualizing and an-
alyzing digital simulation waveforms. It offers features such as waveform vi-
sualization, hierarchical viewing, zoom and navigation, signal analysis, cross-
probing, and customization. In this work, GTKWave was utilized as a waveform
viewer to analyze the behavior of the core when running applications with or
without an operating system.

4.6.2 Software tools

RISC-V Tests

RISC-V tests [37] are a collection of software programs designed to verify the
correctness and functionality of RISC-V processors and related systems. They
serve as a suite of test cases that cover various aspects of the RISC-V archi-
tecture, including instruction set implementation, system calls, memory oper-
ations, interrupts, and more. CVA6 core has been verified by the dhrystone,
median, mm, mt-matmul, mt-vvadd, multiply, pmp, qsort, rsort, spmv, towers
and vvadd benchmarks. Those test were used to verify the functionality of the
Forward Edge CFI ISA Extension and measure the overhead in performance.

Compiler

The benchmarks in this thesis were compiled using a RISC-V GNU Compiler
Toolchain that includes the Control Flow Integrity (CFI) extension. This com-
piler was provided by Rivos Inc. [38]. During my internship at Rivos Inc., which
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lasted for three months, I worked on implementing the Forward and Backward
Edge CFI ISA extension based on the specification proposed by the company
within the RISC-V community. This thesis follows the guidelines and specifi-
cations outlined in that proposal.

The compiler enforces the Forward Edge CFI ISA extension by inserting the set
labels instructions before the indirect jumps in a program and the check labels
instructions in the prologue of every function.

4.7 FPGA Platform

FPGAs (Field-Programmable Gate Arrays) [39] are reprogrammable integrated
circuits used in digital design. They offer flexibility, allowing for the implemen-
tation of custom digital logic circuits through programmable logic blocks and
interconnects. FPGAs provide advantages such as reconfigurability, customiz-
ability, parallelism, prototyping capabilities, and hardware acceleration. They
find applications in various fields and enable the development of optimized and
specialized hardware solutions. This work utilises the Genesys II FPGA board.

Figure 4.10: Genesys II board

4.7.1 Genesys II

The Genesys 2 board is a development platform by Digilent, featuring a pow-
erful Xilinx Kintex-7 FPGA. It offers extensive connectivity options, including
Ethernet, USB, HDMI, and Pmod connectors. With DDR3 and Flash memory
resources, high-speed transceivers, and programmability options, the Genesys 2
board provides a versatile platform for FPGA-based projects. Its user-friendly
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interface, expansion capabilities, and rich feature set make it well-suited for
complex digital design development and prototyping.
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Chapter 5

Evaluation

This chapter presents an extensive description and analysis of all benchmarks
executed in Verilator 4.110 with and without an operating system, alongside
their results. Additionally, it conducts a thorough analysis of the static results
generated by Vivado 2018.3. The primary focus lies on revealing the minimal
performance impact introduced by the Forward-Edge CFI ISA extension on
CVA6 RISC-V softcore and validating its effectiveness.

5.1 Case Study

To evaluate the Forward-Edge Control Flow Integrity (CFI) ISA extension’s
effectiveness, a simple test incorporated two indirect function calls. This test
underwent compilation using the riscv64-unknown-elf-gcc compiler, which pro-
duced a statically linked assembly file. Subsequently, this generated file un-
derwent another compilation step to produce an executable file. The dual-step
compilation was necessary because the riscv64-unknown-elf-gcc compiler does
not support the CFI ISA extension. Instead, the landing pad instructions were
inserted at the correct location in the code using the ".long" assembly directive.

To assess the Forward-Edge CFI ISA extension’s effectiveness, the testbench
rigorously examines various scenarios. These encompass verifying label match-
ing with 9-bit, 17-bit, and 25-bit labels to ensure consistency in control flow.
It also scrutinizes cases of label mismatch, where control flow may diverge un-
expectedly. Furthermore, the absence of an LPCLL instruction at the target
address location is investigated, potentially indicating an invalid redirection of
execution flow. Lastly, the testbench includes a test for interrupt handling,
ensuring that the CFI extension can maintain control flow integrity even when
interrupts occur, thus providing a comprehensive evaluation of the extension’s
capabilities.
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test.c

int main() {
add(8,3);
return foo();

}
int bar(int a){ return a; }
int foo(){

int (*fp)(int) = bar;
int res = fp(4);
return res;

}
int add(int a, int b){

int (*fp)(int,int) = sub;
int res = fp(a,b);
a = res + b;
return a;

}
int sub(int a, int b){

a= a - b;
return a;

}

test.s in RISC-V assembly

main:
:
call add
call foo
:

bar:
:
jr ra

foo:
:
jalr a5 #bar
:

add:
:
jalr a5 #sub
:

sub:
:
jr ra

The test encompasses two indirect jumps, addressing two scenarios in each run.
In the initial run, it validates the control flow for matching labels to guarantee
consistency. This occurs during the first indirect call (from "add" to "sub",
utilizing only a 9-bit label. In the second indirect jump, there’s an absence
of an LPCLL instruction at the target address location (from "foo" to "bar"),
indicating a potential redirection of the execution flow.
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add:
:
.long 0x82044073 #lpsll 8
jalr a5 #sub
:

sub:
.long 0x83044073 #lpcll 8
:
jr ra

bar:
:
jr ra

foo:
:
.long 0x82014073 #lpsll 2
jalr a5 #bar
:

The waveform 5.1 depicts the flow of an indirect jump from the "add" function
to the "sub" function. The initial six signals pertain to the instruction queue
module, while the last two belong to the CSR register file module. Within
the waveform, red boxes represent the LPSLL, JALR, and LPCLL instructions,
respectively. The fetch_entry_valid_o signal identifies instructions advancing
to the next pipeline stages.

The curr_state and next_state signals indicate the current and upcoming states
of the CFI FSM. Beginning in the NO_ELP_EXPECTED_STATE(000), both
the LPSLL and JALR instructions pass through the instruction queue (since
fetch_entry_valid_o is set to 1). A JALR instruction triggers a transition to
the WAIT_STATE(001), awaiting resolution of the branch as taken.

Upon a branch taken resolution (signaled by the move signal turning to one,
depicted in yellow), the FSM enters the L_LP_EXPECTED_STATE(010). At
this point, the label(LL signal) is written into the LPLR CSR , and the lp_exp
register stores the landing pad’s expected architectural state within the CSR
register file.

When fetch_entry_valid_o again indicates an instruction entering the instruc-
tion queue, it is expected to be an LPCLL instruction with a matching label.
Since,it is an LPCLL instruction performed. the label comparison occurs at
this stage, transitioning the FSM to the M_LP_EXPECTED_STATE(011).
In this state, since only the 9-bit label is utilized, the FSM moves forward to
the NO_ELP_EXPECTED_STATE(000), completing the CFI process. Both
the label and the lp_exp register are cleared in this final phase.

The waveform 5.2 depicts the flow of an indirect jump from the "foo" function to
the "bar" function. The analysis includes the same signals, along with the signals
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Figure 5.1: Test 1: Lower Label match

instruction and exception cause that tag instructions leaving the instruction
queue and proceeding through the pipeline.

Following the indirect jump, the FSM enters to WAIT_STATE (001) where
it waits for branch resolution. When the move signal becomes one, the FSM
transitions to the L_LP_EXPECTED_STATE (010). In this state, the label
is written into the LPLR CSR, and the lp_exp register retains the expected
architectural state for the landing pad in the CSR register file.

When fetch_entry_valid_o equals to one, the incoming instruction is exam-
ined to determine if it is a landing pad instruction. In the scenario at hand,
the absence of the LPCLL instruction prompts the FSM to shift to the IL-
LEGAL_INSTRUCTION_STATE (101). Both the architectural state of the
core and the content of the LPLR CSR (with LL=002), remain unaltered. The
instruction departing from the instruction queue carry an exception cause of 2
(as shown by the white box). This indicates an illegal instruction exception,
and the instruction proceeds through the pipeline tagged as an illegal instruc-
tion. Given that the test operates within the proxy kernel, the exception will
be managed by the trap handler.

Figure 5.2: Test 1: Absence of LPCLL instruction in target
address

In the second test run, the analysis encompasses two specific scenarios. The
first scenario involves the validation of control flow integrity when labels match
within a 17-bit wide context. This occurs during the transition from the "add"
function to the "sub" function. The second scenario focuses on a label mismatch,
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particularly concerning a 9-bit wide label, as the control flow proceeds from the
"foo" function to the "bar" function.

add:
:
.long 0x82044073 #lpsll 8
.long 0x8600C073 #lpsml 1
jalr a5 #sub
:

sub:
.long 0x83044073 #lpcll 8
.long 0x8680C073 #lpcml 1
:
jr ra

bar:
.long 0x8301C073 #lpcll 3
:

foo:
:
.long 0x82014073 #lpsll 2
jalr a5 #bar
:

In this waveform 5.3 analysis, the focus lies on examining the behavior of the
core during the execution of an indirect jump secured by a 17-bit label. Follow-
ing the entry of LPSLL and LPSML instructions (indicated by the red boxes)
into the pipeline, an indirect jump (also marked in red) initiates a shift in the
FSM to the WAIT_STATE (001). Upon the resolution of the branch, the move
signal activates (highlighted in yellow), prompting the FSM to advance to the
L_LP_EXPECTED_STATE (010). At this stage, updates occur for both the
lower and middle label, as well as the lp_exp register, within the CSR register
file.

When fetch_entry_valid_o equals 1, and the current instruction corresponds
to an LPCLL instruction, label comparisons are carried out. In the event of a
match, the FSM progresses to the M_LP_EXPECTED_STATE (011). Simi-
larly, upon fetch_entry_valid_o being set to 1 once more, and the current in-
struction is recognized as an LPSML instruction, label comparisons are executed
and matched. Consequently, the FSM transitions to the U_LP_EXPECTED_
STATE (100). Since there is no upper label to validate, the CFI process con-
cludes, and the FSM shifts to the NO_LP_EXPECTED_STATE (000). Once
again, both the label and the lp_expected register are cleared within the CSR
register file.

Following the execution of the indirect jump from "foo" to "bar" 5.4, the antici-
pation is for an illegal exception to occur. As previously detailed, following the
resolution of the indirect jump (indicated by move=1), the FSM transitions to
the L_LP_EXPECTED_STATE (010).
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Figure 5.3: Test 2: Matching 17-bit label

Subsequently, since the current instruction is identified as an LPCLL instruc-
tion, the label comparison is conducted. The label stored in the LPLR CSR,
originating from the LPSLL instruction, equals to 2, while the label encoded
in the LPCLL instruction equals to 3. This label mismatch triggers the FSM’s
transition to the ILLEGAL_INSTRUCTION_STATE (101). The instruction
emerging from the instruction queue is marked as illegal, accompanied by an
exception cause of 2.

Figure 5.4: Test 2: Mismatch of 9-bit label

In the third phase of the study, the focus shifts to examining the core’s response
when an interrupt occurs during the resolution of an indirect branch. To repli-
cate this scenario, the ecall instruction is utilized to trigger an environmental
call exception. This exception is strategically executed just before the indirect
jump, effectively interrupting both the jump resolution process and the CFI
mechanism.

Following the described CFI FSM sequence, when an indirect jump enters the
instruction queue, the FSM transitions to the WAIT STATE (001), the label is
set to the LPLR CSR and a landing pad is expected. This phase investigates two
distinct scenarios: first, the core’s behavior when an interrupt takes place and
matching labels are present, and second, the core’s behavior when an interrupt
occurs and there is a label mismatch.
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Interrupt with matching labels

add:
:
.long 0x82044073 #lpsll 8
ecall
jalr a5 #sub
:

sub:
.long 0x83044073 #lpcll 8
:
jr ra

Interrupt with label mismatch

foo:
:
.long 0x82014073 #lpsll 2
ecall
jalr a5 #sub
:

bar:
.long 0x83044073 #lpcll 8
:
jr ra

When an interrupt occurs the FSM transitions to NO_LP_EXPECTED_
STATE (000). This prompts an immediate halt in the regular execution flow,
with control shifting to the trap handler. Prior to the commencement of the
trap handler’s execution routine, the core’s architectural state is carefully pre-
served in the mstatus csr. This preservation ensures that once the routine
concludes, the core’s architectural state can be seamlessly restored to its initial
configuration.

Upon analyzing the waveforms 5.5, the CSR Register File detects the interrupt
or exception, leading to an update in the trap_to_priv_lvl signal. In this sce-
nario, it transitions to "01", indicating a change in the core’s privilege level from
U-mode to S-mode. The SPELP field of the mstatus csr (wpri3[2]), denoted by
the white box, is adjusted to match the expected landing pad, which, in this
case, is "1".

Once the trap handler completes its routine, the sret signal is set to "1", enabling
the normal program execution flow to resume. In this sequence, where the FSM
is in the NO_LP_EXPECTED_STATE (000) , the verification checks occur
in the core’s backend region. If label matching is confirmed, the label csr is
cleared, and no exceptions arise 5.5a. However, if a label mismatch occurs, it
triggers an update_access_exception 5.5b.
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(a) Matching label

(b) Label mismatch

Figure 5.5: Interrupt and CFI process

Middle label mismatch
add:
:
.long 0x82014073 #lpsll 2
.long 0x8600C073 #lpsml 1
jalr a5 #sub
:

sub:
.long 0x82014073 #lpcll 2
.long 0x8682C073 #lpcml 5
:
jr ra

In the fourth run, the focus of examination centers on the core’s behavior in the
presence of a mismatch in the middle label. As anticipated, the flow proceeds
smoothly until the lower label check. However, when the middle label compari-
son is conducted, the FSM transitions from the M_LP_EXPECTED_STATE
(011) to the ILLEGAL_INSTRUCTION_STATE (101), since the middle label
stored in the LPLR CSR is one and the label encoded in the LPCML instruction
equals to five.

Similarly, when a mismatch occurs in the upper label, the core’s behavior follows
a similar pattern. The flow advances until the U_LP_EXPECTED_STATE
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Figure 5.6: Test 4: Mismatch of the middle label

(100). Upon label comparison, and in the event of a mismatch, the FSM tran-
sitions to the ILLEGAL_INSTRUCTION_STATE (101).

After concluding all the experiments for the case study,it is important to high-
light that with the Forward-Edge CFI extension enabled, if there is not a land-
ing pad instruction at the target address or there is a label mismatch, an illegal
subversion of the program’s control flow occurred.

5.2 Performance

To evaluate performance, the study employed CVA6’s proposed microbench-
marks, including Dhrystone, Towers, VVADD, QSort, Multiply, SPMV, RSort,
Median, MT-Matmul, and MT-VADD. These benchmarks were compiled using
the Rivos Inc. RISC-V GNU Compiler, which includes the Forward-Edge CFI
extension. Importantly, each test incorporates landing pad instructions, when
needed.Note, that all jumps performed by JALR, C.JALR or C.JR instruc-
tions, incorporate landing pad instructions. The execution of these tests took
place in a bare-metal environment, utilizing Verilator 4.110 within the Variane
Testharness testbench framework.

In Figure 5.7, the overhead of each benchmark is illustrated, showcasing the
CPU time used for 9, 17, and 25-bit labels in comparison to the CPU time
utilized by the same tests without the inclusion of landing pads. Notably, as
the label size increases, the performance overhead experiences a corresponding
increment. However, it’s crucial to emphasize that for these relatively small pro-
grams, a label size of 9 bits suffices. The most precise measurement, therefore,
centers on the 9-bit label, indicating an average overhead of 2.1%. The other
measurements, utilizing wider labels of 17 and 25 bits, serve as illustrative ex-
amples, relevant in scenarios where a program necessitates a broader label than
the standard 9 bits.

In another case study, the evaluation involved running a test with varying num-
bers of indirect jumps. To achieve this, modifications were made to the Median
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Figure 5.7: RISC-V Benchmarks’ overhead with Forward-Edge
CFI enable for different label width

microbenchmark by introducing a while loop that indirectly invokes an empty
function. By adjusting the loop’s iteration count, it became possible to obtain
results and observe the core’s behavior across a range of repetitions, spanning
from 0 to 2000 iterations. The outcomes of this study are visually presented
in the accompanying diagram 5.8. To attain these results, a comparative anal-
ysis was conducted by measuring the CPU time for varying iterations against
the CPU time required for a single iteration. As illustrated in the diagram,
an observable trend emerges: as the number of iterations increases, there is a
corresponding rise in performance overhead. Notably, the results obtained for
the 9-bit label exhibit a closer alignment with real-world scenarios, emphasizing
their relevance in practical applications.

It’s essential to note that using a 9-bit label requires two landing pad instruc-
tions per indirect jump, while a 17-bit label demands four, and a 25-bit label
necessitates six. So, the overhead that accompanies this extension stems from
the fact that, depending on the width of the landing pad, an additional 2, 4, or
6 instructions will be present with every indirect call or jump.
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Figure 5.8: Median’s overhead for different iterations with
Forward-Edge CFI enable for different label width

5.2.1 Text area

Another significant metric under consideration pertains to the code size, denot-
ing the volume of code in the benchmarks. To quantify this aspect, the "wc"
command was utilized to enumerate the code size across three distinct label
sizes: 9, 17, and 25 bits.

As it is already mentioned, a 9-bit label necessitates the inclusion of two landing
pad instructions for each indirect jump. In contrast, the utilization of a 17-bit
label escalates this requirement to four landing pad instructions, while a 25-
bit label mandates the incorporation of six landing pad instructions. Notably,
the analysis reveals that when employing a 9-bit label, the text area registers
an average increase of 2.71%. With a 17-bit label, this elevation in code size
averages 4.33%, and with a 25-bit label, the average expansion amounts to
5.78%.

5.3 Vivado Reports

The next step of the evaluation is to analyze the generated reports from Vivado
Hlx Design Suite 2018.3 of the RTL design of the CVA6 core with the Forward-
Edge CFI ISA extension, mapped on a Genesys 2 (Kintex-7 FPGA) board.
Following synthesis and implementation, the tool provided results for power
consumption, area utilization, and timing analysis.



58 Chapter 5. Evaluation

To measure the impact of the Forward-Edge CFI ISA extension, a comparison
was made between the CVA6 core with the extension and the CVA6 core without
the extension within the integrated SoC. Additionally, measurements were taken
for the two instances of the entire SoC. The SoC includes several peripherals
such as ethernet, uart, plic etc. as shown in figure 5.9 [14]. The measurements
for area utilization are, also provided in comparison to the FPGA’s available
resources.

Figure 5.9: Ariane Soc

5.3.1 Area Utilization

To gain insight into the area utilization impact resulting from the addition of
the CFI ISA extension to the CVA6 core, a comparison was made using the
hierarchical utilization report generated by Vivado with the report_utilization
-hierarchical command. This report contains resource utilization details at var-
ious hierarchical levels within the design, offering a breakdown of how resources
are allocated across different design modules, submodules, and the overall de-
sign hierarchy.

Upon comparing CVA6 with and without the extension, it is observed, that
there was a 0.18% increase in the total number of LUTs within the CVA6
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core and a 0.10% increase in the Ariane SoC. Additionally, the number of flip-
flops (FFs) saw an increase of 2.14% within the CVA6 core and 1.04% in the
Ariane SoC. Table 5.1 also,provides a detail area utilisation report for several
components. As expected, other resources such as RAM and DSP blocks appear
to remain unaffected by the extension.

Total LUTs Logic LUTs LUTRAMs SRLs FFs RAMB36 RAMB18 DSP48 Blocks
Ariane SoC 73719 72082 1264 373 48283 49 2 27
CVA6 core 47406 47406 0 0 23563 36 0 27

frontend 3089 3089 0 0 4134 0 0 0
id_stage 235 235 0 0 303 0 0 0
ex_stage 17816 17816 0 0 7683 0 0 0
issue_stage 17218 17218 0 0 6796 0 0 0
csr_regfile 2607 2607 0 0 1706 0 0 0

(a) Area Utilization of CVA6 without the FCFI extension
Total LUTs Logic LUTs LUTRAMs SRLs FFs RAMB36 RAMB18 DSP48 Blocks

Ariane SoC 73796 72159 1264 373 48786 49 2 27
CVA6 core 47491 47491 0 0 24068 36 0 27

frontend 3244 3244 0 0 4145 0 0 0
id_stage 439 439 0 0 318 0 0 0
ex_stage 18191 18191 0 0 7689 0 0 0
issue_stage 17413 17413 0 0 6796 0 0 0
csr_regfile 2638 2638 0 0 1870 0 0 0

(b) Area Utilization of CVA6 with the FCFI extension
Total LUTs Logic LUTs LUTRAMs SRLs FFs RAMB36 RAMB18 DSP48 Blocks

Ariane SoC 0.10% 0.10% 0.00% 0.00% 1.04% 0.00% 0.00% 0.00%
CVA6 core 0.18% 0.18% 0.00% 0.00% 2.14% 0.00% 0.00% 0.00%

frontend 0.001% 0.001% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00%
id_stage 85.5% 85.5% 0.00% 0.00% 4.7% 0.00% 0.00% 0.00%
ex_stage 2.1% 2.1% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00%
issue_stage 1.1% 1.1% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
csr_regfile 1.06% 1.06% 0.00% 0.00% 9.6% 0.00% 0.00% 0.00%

(c) Area Utilization Impact in percentages

Table 5.1: Area Utilization

To further gain insight into the area utilization impact of the design, particu-
larly focusing on the placed design, a comparison was made between CVA6
with and without the ISA extension using the reports generated after the
completion of place and route using the command report_utilization -pb ari-
ane_xilinx_utilization_placed.pb. These reports rely on a placed design database,
specified by the -pb flag, to provide comprehensive details about resource uti-
lization after the design has undergone placement and routing. This level of
reporting offers a more precise view of how the design utilizes resources on the
Genesys 2 FPGA device, including specifics about placement and routing.

Table 5.2 presents the results as percentages, indicating the utilization of various
components (e.g., FFs, LUTs) relative to the available resources on the FPGA
device. It is observed that with the extension, the core requires an additional
0.04% of LUTs, 0.13% more registers, 0.92% more F7 muxes, and 0.32% more
F8 muxes compared to the available resources.
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Site Type Used (Baseline) Used (FCFI) Available Util% (Baseline) Util% (FCFI)
Slice LUTs 73719 73796 203800 36.17 36.21

LUT as Logic 72082 72159 203800 36.36 35.40
LUT as Memory (LUTRAMs/SRLs) 1637 (1264/373) 1637 (1264/373) 64000 2.55 2.55

Slice Registers 48283 48786 407600 11.84 11.97
Register as Flip Flop 48269 48764 407600 11.84 11.97
Register as Latch 0 8 407600 0.00 <0.01
Register as AND/OR 14 14 407600 <0.01 <0.01

F7 Muxes 2315 3251 101900 2.27 3.19
F8 Muxes 359 521 50950 0.70 1.02

Table 5.2: Slice Logic: FPGA resourses after place and route
for CVA6 without and with FCFI

On-Chip Power (W)
CVA6 (baseline) CVA6 with FCFI

Clocks 0.199 0.199
Slice Logic 0.079 0.079

LUT as Logic 0.072 0.072
CARRY4 0.004 0.004
Register 0.002 0.002
LUT as Distributed RAM <0.001 <0.001
F7/F8 Muxes <0.001 <0.001
LUT as Shift Register <0.001 <0.001
Others <0.001 <0.001

Signals 0.097 0.097
Block RAM 0.039 0.039
MMCM 0.324 0.324
PLL 0.133 0.133
DSPs <0.001 <0.001
I/O 0.623 0.623
PHASER 0.456 0.456
XADC 0.004 0.004

Table 5.3: On Chip components: Power Consumption

5.3.2 Power Consumption

Results for power consumption were obtained through an analysis of power
reports generated by Vivado with the report_power -verbose command. These
reports provide insights into worst-case power estimations. In both cases (CVA6
with and without the extension), the total On-Chip Power remains constant at
2.13 W. Static power remains consistent at 0.17 W, with the estimated dynamic
power at 1.95 W. For a more comprehensive perspective on power consumption
related to on-chip components, please refer to Table 5.3. Regarding the RTL
design, the CVA6 core contributes 0.106 W to the total estimated dynamic
power.
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5.3.3 Timing Analysis

Concerning the timing analysis, the results of the Vivado reports that were ex-
amined, were generated from the command report_timing_summary -max_paths
10 -file -pb ariane_xilinx_timing_summary_routed.pb -rpx ariane_xilinx _tim-
ing_summary_routed.rpx -warn_on_violation. This command generates a con-
cise summary of the most critical timing paths in the routed design and high-
lights any timing violations as warnings.

The Ariane SoC, inclusive of the CVA6 core, was configured to operate with
a clock period set at 20ns, corresponding to a 50MHz frequency. Under these
established timing constraints, the CVA6 core, without the Forward-Edge CFI
ISA extension, exhibits a critical path with a positive slack of 2.167ns. However,
when the FCFI extension is enabled within the CVA6 core, the critical path
shows a slightly reduced positive slack of 1.302ns.

To provide additional context, delays were observed in situations involving in-
terrupts, wherein updates to the Control and Status Registers (CSRs) related to
the CFI extension, specifically menvcfg and the label csr, were necessary both
before the initiation of the interrupt handler and after the conclusion of the
interrupt handler routine. Those delays occur in issue stage and are highlighted
with red color in Figure 5.10.
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Figure 5.10: Critical path in CVA6, with the Forward-Edge
CFI extension enabled, focused on Issue Stage

5.4 Performance Evaluation Conclusions

In summary, the performance evaluation of the Forward-Edge CFI ISA exten-
sion entailed conducting various experiments to demonstrate its effectiveness.
The proposed benchmarks were executed to quantify the performance overhead.
Additionally, an analysis was performed on the reports generated from Vivado
when mapping the core onto the Genesys 2 FPGA board, with a focus on area
utilization, power estimation, and timing.

Regarding effectiveness, the results of the experiments reveal that in the case
of an illegal subversion of the control flow of a program (such as the absence
of a landing pad instruction or a label mismatch), an exception will be raised,
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halting the program’s execution. The tagging of all instructions indicating indi-
rect calls or jumps with labels significantly restricts the potential attack surface
for a JOP (Jump-Oriented Programming) attack. This outcome aligns with
the findings of IBTs (Indirect Branch Tracking) in CET [22] (Control-Flow En-
forcement Technology), which is a similar implementation on Intel processors.
Moreover, considering the insights from paper [40], it can be confidently stated
that forward-only approaches provide a sufficient level of precision but are lim-
ited to partial security, as they do not protect the stack.

As for the performance analysis, in Figure 5.7, the depicted performance over-
head for benchmarks using 9, 17, and 25-bit labels compared to those without
landing pads shows an increase as label size grows. Notably, for relatively small
programs, a 9-bit label suffices, resulting in an average overhead of 2.1%. The
measurements for 17 and 25-bit labels serve as illustrative examples, especially
relevant when broader labels are required. Given the hardware-assisted ap-
proach of the Forward-Edge CFI extension, it outperforms software-based CFI
implementations, which can incur up to a 14% performance overhead [40]. It
is worth noting that a wider label results in increased performance overhead
because more instructions are needed to tag the indirect calls and jumps. It’s
essential to note that using a 9-bit label requires two landing pad instructions
per indirect jump, while a 17-bit label demands four, and a 25-bit label necessi-
tates six. The analysis emphasized that employing a 9-bit label led to an average
text area increase of 2.71%. With a 17-bit label, this expansion averaged 4.33%,
and with a 25-bit label, it reached 5.78%.

In another crucial case study, regarding performance analysis, depicted in Fig-
ure 5.8, the core’s performance under varying numbers of indirect jumps was
examined. Modifications to the Median microbenchmark allowed the analysis
of performance across iterations from 0 to 2000. The results unveiled a clear
trend: an increase in iterations resulted in a corresponding rise in performance
overhead. Significantly, the results for the 9-bit label closely mirrored real-world
scenarios, highlighting their practical significance.

Upon reviewing the Vivado reports, it becomes evident that the Forward-Edge
CFI ISA extension has a negligible impact on area utilization. Following the
placement and routing processes, there is a slight uptick in the utilization of
available FPGA resources. When comparing this to the initial design lacking the
Forward-Edge CFI ISA extension, we observe the need for additional resources:
0.04% more LUTs, 0.13% more registers (including Flip-Flops, LATCH registers
as AND/OR), 0.92% more F7 multiplexers and 0.32% more F8 multiplexers.
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Notably, this impact doesn’t affect BRAMs (Block RAMs), SRLs (Shift Register
LUTs), or DSPs (Digital Signal Processors).

In terms of timing analysis, with the Forward-Edge CFI ISA extension enabled
within the CVA6 core, the critical path exhibits a slightly reduced positive slack
but still manages to stay within the originally configured timing constraints of
50MHz.

Regarding the worst-case power consumption estimation, no significant varia-
tions are apparent. Power levels remain constant at 2.13 W, with static power
staying at 0.17 W, and the estimated dynamic power at 1.95 W, when compared
to the initial design.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In conclusion, this thesis aimed to implement the Forward-Edge CFI ISA ex-
tension, following the guidelines outlined in the RISC-V CFI [23] specification
proposal by the RISC-V Foundation. The objective of this ISA extension is
to enhance the security of the CVA6 core against jump-oriented programming
attacks while minimizing performance overhead. To achieve this, the core’s se-
curity was bolstered by monitoring all indirect calls and jumps (e.g., jalr, c.jalr,
c.jr) using labels. Six new instructions were introduced to set and check these
labels during program execution. The "set landing pad" instructions assign la-
bels before indirect calls or jumps, and the "check landing pad" instructions
verify label matches. A label mismatch indicates an illegal subversion of the
control flow, a possible JOP attack, triggering an illegal instruction exception.

All experiments conducted as proof-of-concept demonstrated the extension’s
successful operation, with performance overhead averaging at 2.10% for a 9-bit
label, 4% for a 17-bit label, and 5.66% for a 25-bit label. Corresponding code
size increases were 2.71%, 4.33%, and 5.78%, respectively, based on label width.

Regarding the design, a comparison between the CVA6 core with and without
the Forward-Edge CFI ISA extension revealed minimal area utilization over-
head, with an increase of 2.14% within the CVA6 core and 1.04% in the Ar-
iane SoC. Similarly, the worst-case power consumption estimation remained
unchanged. Additionally, a delay was observed in the critical path of the CVA6
core, without violating any timing constraints.

This thesis serves as a demonstration of the Forward-Edge CFI ISA extension
within the RISC-V architecture, with the ultimate goal of seeking ratification
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from the RISC-V organization as a standard ISA extension in the RISC-V
architecture.

6.2 Future Work

6.2.1 Forward-Edge CFI ISA Extension

In response to recommendations from the RISC-V organization, the landing
pad instructions were categorized as "maybe operations" (Zimops). This clas-
sification implies that in systems lacking support for the CFI extension, these
instructions will function as no-operations (nops). Conversely, when the CFI
extension is available, they will operate as outlined in the thesis. A debate arose
regarding whether to label these instructions as Zimops or HINTs [41]. HINTs
represent a class of instructions that should not modify the core’s architectural
state, which does not align with this extension’s behavior. Initially defined as
Zimops, all six landing pad instructions were required for full implementation
of the Forward Edge CFI logic. However, the latest update leans towards cate-
gorizing the landing pad instructions as HINTs, streamlining implementations
to employ two instruction (set and check) with 20-bit labels. In this context,
the performance overhead corresponds to the additional overhead and code size
associated with the 9-bit label (averaging 2.1% and 2.14%, respectively), while
concurrently reducing FPGA resource demands.

6.2.2 Backward-Edge CFI ISA Extension

Without the implementation of Backward-Edge Control Flow Integrity (CFI)
mechanisms, a system cannot achieve complete protection from code reuse at-
tacks, even if it already employs Forward-Edge protection. To enhance security
further, future work needs to be done to incorporate the Backward-Edge CFI
ISA extension as outlined in the specification [23]. The proposed solution in-
volves the use of a shadow stack.

In its current state with only forward edge protection, the system can mitigate
certain code reuse attacks that rely on altering the control flow at the point
of calling functions (forward edges). However, it remains vulnerable to attacks
that target the return addresses or function pointers (backward edges) where
malicious code can hijack the execution flow.

To address this limitation, the future work aims to implement the Backward-
Edge CFI ISA extension, which involves the utilization of a shadow stack. The
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shadow stack acts as a separate stack from the regular stack used for storing
return addresses. Each function call will have its return address stored both
in the regular stack and the shadow stack. During the function’s return, the
system verifies that the return address matches the value on the shadow stack,
ensuring that the execution flow remains intact and untampered.

By combining forward edge protection with the proposed Backward Edge CFI
mechanism using the shadow stack, the system will be able to more comprehen-
sively safeguard against code reuse attacks, providing a stronger defense against
potential security threats.
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