
TECHNICAL UNIVERSITY OF CRETE

ELECTRICAL AND COMPUTER

ENGINEERING DEPARTMENT

TELECOMMUNICATIONS DIVISION

Network Modeling and Quality of Service (QoS)

in NS-3

by

Antonios Andreadakis

A THESIS SUBMITTED IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS

FOR THE DIPLOMA THESIS OF

ELECTRICAL AND COMPUTER

ENGINEERING

October 2023

THESIS COMMITTEE

Professor Aggelos Bletsas, Thesis Supervisor

Professor George N. Karystinos

Associate Prof. Vasileios V. Samoladas

Abstract

This thesis offers a concrete guide on how to setup and program communication network

simulations in network simulator 3 (NS-3). First, the architecture of the simulator is described and

its basic components. Then, a detailed guide is offered based on three example networks, with

increasing complexity. The examples include both wired and wireless networking scenarios, using

throughput (in bps) as the quality of service (QoS) metric. Subsequently, a case study of energy

efficiency maximization in the user association problem for heterogeneous LTE networks is

performed, comparing three state-of-the-art algorithms. Empirical cumulative distribution

functions for spectral efficiency (in bps/Hz) and energy efficiency (in bits/Hz/Joule) are obtained

and compared. NS-3 is capable of simulating complex scenarios, with however, a steep learning

curve.

Thesis Supervisor: Professor Aggelos Bletsas

Acknowledgements

At first, I would like to express my deeply appreciation and gratitude for my supervisor Prof. A.

Bletsas whose guidance, encouragement, patience and support were outstanding throughout this

study. Thanks to you I have enriched my knowledge in many aspects.

Of course, I want to offer my special thanks to my friends and colleagues for all the memories

we shared.

Also, I am deeply grateful for the continuous and priceless support, forbearance and love of

my family for all those years during my studies.

4

Table of Contents

Table of Contents . [4]

 List of figures . [5]

1 Introduction & Problem Description . [8]

2 Overview of Network Simulator 3 . [10]

2.1 Introduction to NS-3 . [10]

2.2 Applications of NS-3 . [11]

3 NS-3 scripting guide . . [14]

3.1 A hello world wired NS-3 script . [16]

3.2 Simple wireless NS-3 script . [21]

3.3 An advanced NS-3 script . [29]

4 Case Study in User Association . [39]

4.1 Description of modules - Theory . [39]

4.2 Implementation . [42]

5 Analysis of Results. [45]

6 Conclusions . [49]

7 Appendix . [50]

Bibliography . [58]

5

List of figures

1.1 Graphical representation of a hetnet, Analysis of Acquired

Indoor LTE-A Data from an Actual HetNet Cellular

Deployment | SpringerLink [1] . [9]

2.2.1 Overview of Wifi model . [12]

2.2.3 Overview of LTE-EPC model. [13]

3.1.1 Script topology 1 . [16]

3.1.2 Import modules . [16]

3.1.3 Enable logging . [16]

3.1.4 Create nodes . [17]

3.1.5 Connect nodes and define link properties . [17]

3.1.6 Addressing . [18]

3.1.7 Application server . [18]

3.1.8 Application client . [19]

3.1.9 Mobility and position on nodes . [19]

3.1.10 Run and clear Resources . [20]

3.1.11 Execute script 1 . [20]

3.2.1 Example topology 2 . [21]

3.2.2 Import modules . [21]

3.2.3 Command line arguments . [22]

3.2.4 Logging components . [22]

3.2.5 Create p2p nodes, set connection parameters

and install devices on them . [23]

3.2.6 CSMA nodes [23]

3.2.7 Wifi setup . [24]

3.2.8 Ssid setup . [24]

3.2.9 Mobility and position on nodes. [24]

3.2.10 Internet stack and IP addressing configuration . [25]

3.2.11 Application UdpEchoServer . [26]

3.2.12 Application UdpEchoClient. [26]

3.2.13 Routing Tables, stop simulation

Enable trace files . [27]

3.2.14 Run simulation and clear Resources . [27]

6

3.2.15 Script output 2 . [27]

3.2.16 Pcap file output . [28]

3.3.1 Example topology 3 . [29]

3.3.2 Import modules . [29]

3.3.3 Create function and initialize parameters . [30]

3.3.4 Set Wifi . [30]

3.3.5 Wifi configurations . [31]

3.3.6 Mobility and positions on nodes . [31]

3.3.7 Internet stack and addressing . [32]

3.3.8 Fist node app . [32]

3.3.9 Second node app 1 . [34]

3.3.10 Second node app 2 . [34]

3.3.11 Third node app 1 . [35]

3.3.12 Third node app 2 . [35]

3.3.13 Fourth node app 1 . [35]

3.3.14 Fourth node app 2 . [36]

3.3.15 Fifth node app 1 . [36]

3.3.16 Fifth node app 2 . [36]

3.3.17 Routing Tables, enable tracing and monitoring,

Run simulation and clear resources . [37]

3.3.18 Execute script . [37]

3.3.19 Script output 3 . [37]

3.3.20 Flow monitor in NetAnim . [38]

4.2.1 Network Topology . [42]

4.2.2 User association with attach method . [44]

5.1.1 Cdf of Energy Efficiency with 10 BS and 10 Users . [45]

5.1.2 Cdf of Spectral Efficiency with 10 BS and 10 Users . [45]

5.1.3 Cdf of Energy Efficiency with 10 BS and 15 Users . [46]

5.1.4 Cdf of Spectral Efficiency with 10 BS and 15 Users [46]

5.1.5 Cdf of Energy Efficiency with 10 BS and 20 Users . [47]

5.1.6 Cdf of Spectral Efficiency with 10 BS and 20 Users . [47]

5.1.7 Geometric Mean of Energy Efficiency. [48]

7.1 Download Ubuntu software . [50]

7

7.2 Download VMware . [51]

7.3 Create new virtual machine . [51]

7.4 Select Operating System . [52]

7.5 Enter Account Details . [52]

7.6 Name VM . [53]

7.7 Select disk space . [53]

7.8 Finish VM setup . [54]

7.9 Install Ubuntu. [54]

7.10 Visit official website and download NS-3 . [55]

7.11 Test the build and installation . [56]

Chapter 1: Introduction & Problem Description

Nowadays is the information age. People own many devices of different technologies that offer

interconnection to other people and devices. The basic tool offered in wireless communications is

mobile phone and is a reference point serving a wide range of services. Today’s smartphones can

be used in both voice and video calls, access the internet, either music or video or games

entertainment, data exchange etc. Rapid growth of data traffic and improvement of capacity in

order to serve the demands of users, contribute to global energy consumption, so it is necessary to

focus in optimizing the energy efficiency in a thrifty and environmental approach.

 A cellular network is a telecommunications network that provides wireless communication

services to mobile devices, such as smartphones, tablets, and laptops. It is a complex system of

interconnected cells or base stations that cover a specific geographic area. Cells are responsible for

transmitting and receiving signals to and from mobile devices within their coverage areas. Cellular

networks play a vital role in modern telecommunications, enabling people to stay connected while

on the move and facilitating a wide range of applications, from voice calls and text messaging to

mobile internet access, mobile apps, and the Internet of Things (IoT).

 5th and 6th generation (5G/6G) mobile communications are discussed. In fact, the attempt to

combine heterogeneous technologies (GPRS, EDGE, HSPA, LTE, WiFi etc), so that mobiles use

the most efficient solution to achieve it. A Heterogeneous Network (HetNet) is a type of network

architecture consisted of multiple types of wireless access technologies and different types of

network nodes. In a HetNet, various network elements, such as macrocells, microcells, picocells,

and femtocells are deployed together providing wireless coverage and capacity in a more efficient

and flexible manner.

 Any new technology for commercial systems must first be tested in simulated environments to

determine and correct any problems that arise. Most common simulation environment is Network

Simulator 3. A discrete simulator of facts accepted by the academic and research community. In

this thesis, versions 3.31 (June 2020), 3.33 (January 2021) and 3.35 (October 2021) along with

python 3 scripting language are used. In this context, present work tests utilization of NS-3 in

research for a modern version of the classic user association problem i.e., associating users to base

stations, while maximizing energy efficiency in downlink direction. That is, how users can be

optimally allocated while saving energy and maintaining good performance in the network.

 Six chapters complete this work. Chapter [2] introduces the Network Simulator 3 along with

some of its applications and provide a short guide of installation. In Chapter [3], there is a detailed

scripting guide and anyone following those instructions succeeds to setup a simple or advanced

script, as well as three examples of increasing complexity. Chapter [4] describes the modules used

and the implementation. The results occurred and analysis of them is introduced in Chapter [5]. At

last, Chapter [6] consists of the conclusions and future work.

9

Figure 1.1 - Graphical representation of a hetnet, Analysis of Acquired Indoor LTE-A Data from

an Actual HetNet Cellular Deployment | SpringerLink [1]

Chapter 2: Overview of Network Simulator 3

Introduction of Network Simulator 3 and ways to program a simulation script, using its modules is

described. A brief explanation of the architecture and its modules if offered in the main document,

as well as an installation guide in the Appendix.

2.1 Introduction to NS-3

Network Simulator 3 is a Linux based framework, built as a system of libraries that work together

between them or any external library. It has minimal prerequisites for most basic installation, such

as C++ compiler, python3 support, CMake build system and at least one of make, ninja or Xcode

build systems. Only flaw is the lack of a window app offering debugging, execution etc., which is

common in other simulators and user works with the command line for every attempt to execute or

debug the script.

▪ The Network Simulator is a free software using GNU GPLv2 license and is used for

research and educational purposes. Early version of network simulator known as ns-1,

roots back in 1995 and was developed in Lawrence Berkley National Laboratory. It was

known as LBNL Network Simulator and comes from the old simulator named REAL of

S. Keshav. Its core was written in C++ and simulations were written in Tcl scripts. It is

no longer used.

▪ Then, a newer version of network simulator was introduced in 1996. The core remained

in C++, but the Tcl was replaced by Object Tcl of MIT. No longer supported and is not

acceptable for scientific publication since 2009.

▪ At last, new simulator does not have compatibility with ns-2. The development began in

2006 exclusively in C++ and later a framework was added for Python bindings and usage

of <waf build system>. First version 3.1 was published in 2008 and the project continued

to update every 3 months. Latest version is 3.40 (September 2023).

 A wide range of known networks and models is implemented in NS-3. Its core supports IP and

non-IP network protocols. Most research focus on wireless and IP simulations including models

like Wi-Fi, WiMAX, LTE and a variety of static or dynamic routing protocols. Simulation time

fluctuates from seconds to days depending on the needs of the simulation and availability of

resources, mostly the processing power.

 It includes a real-time scheduler that facilitates the interaction of “simulations in the magnifying

glass” use cases with real systems. For example, users can both transmit and receive packets from

ns-3 to real network devices. Also works as a virtual machine interface network. Provides

functionality which gives opportunity at the results to interact with other open-source tools for

further analysis, like Wireshark, NetAnim, gnuPlot etc.

 Many users focus on implemented models for their simulations and export results. Existing

models might not match with their purpose or be missing some functionality required. So,

modifying the existing models or developing one from scratch is a solution. In our case, a detailed

11

search took place for the appropriate models and understand the classes and usage, along with

solving the problems occurred during the implementation of our thesis.

2.2 Applications of NS-3

Specific tool is mostly used for educational and research purposes, so it is an important choice for

students to work with in the context of preparing a diploma thesis and many other fields of

telecommunications, networking and energy. Plenty of support forums for solving questions and

troubleshooting exist. Manual is very detailed and users can get familiar with it. A brief reference

of some models used in Ns-3 follows.

2.2.1 Wi-Fi Module

WifiNetDevice models a wireless network interface controller based on the IEEE 802.11 standard

[ieee80211]. In brief ns-3 provides models for aspects of 802.11:

• basic 802.11 DCF with infrastructure and adhoc modes

• 802.11a, 802.11b, 802.11g, 802.11n (both 2.4 and 5 GHz bands), 802.11ac and 802.11ax

(both 2.4 and 5 GHz bands) physical layers

• MSDU aggregation and MPDU aggregation extensions of 802.11n, and both can be

combined together (two level aggregation)

• QoS-based EDCA and queueing extensions of 802.11e

• the ability to use different propagation loss models and propagation delay models, please

see the chapter on Propagation for more detail various rate control algorithms including

Aarf, Arf, Cara, Onoe, Rraa, ConstantRate, and Minstrel

• 802.11s (mesh), described in another chapter

• 802.11p and WAVE (vehicular), described in another chapter of manual

 The set of 802.11 models provided in NS-3 attempts to describe an accurate MAC-level

implementation of the 802.11 specification and a packet-level abstraction of the PHY-level for

different PHYs, corresponding to 802.11a/b/e/g/n/ac/ax specifications.

 In NS-3, nodes can have multiple WifiNetDevices on separate channels, and the WifiNetDevice

is able to coexist with other device types. With the use of the SpectrumWifiPhy framework, one

can also build scenarios involving cross-channel interference or multiple wireless technologies on

a single channel. The source code for the WifiNetDevice and its models lives in the directory

src/wifi. Implementation is modular and provides roughly three sublayers of models:

• the PHY layer models

• the so-called MAC low models: they model functions such as medium access (DCF and

EDCA), RTS/CTS and ACK. In ns-3, the lower-level MAC is further subdivided into a

MAC low and MAC middle sub layering, with channel access grouped into the MAC

middle.

https://www.nsnam.org/docs/release/3.31/models/ns-3-model-library.pdf#page=561&zoom=100,96,914

12

Figure 2.2.1 - Overview of WiFi model [2]

• the so-called MAC high models implement non-time-critical processes in Wifi such as the

MAC-level beacon generation, probing, and association state machines, and a set of Rate

control algorithms. In literature, this sublayer is sometimes called the upper MAC and

consists of more software-oriented implementations vs. time-critical hardware

implementations.

2.2.2 WiMAX Module

By adding WimaxNetDevice objects to ns3 nodes, one can create models of 802.16-based

networks. Below, we list some more details about what the ns-3 WiMAX models cover but, in

summary, the most important features of the ns-3 model are:

• a scalable and realistic physical layer and channel model

• a packet classifier for the IP convergence sublayer

• efficient uplink and downlink schedulers

• support for Multicast and Broadcast Service (MBS), and

• packet tracing functionality

 The source code for the WiMAX models lives in the directory src/wimax. There have been two

academic papers published on this model [3] & [4]

13

Figure 2.2.3 - Overview of LTE-EPC model [2]

2.2.3 LTE & EPC Module

Term LTE stands for Long Term Evolution and is the standard for wireless data transmission. The

prototype name initially was LENA before being incorporated into Ns-3. It was developed by

Ubuquisys (now is a department of Cisco) and the Center of Technology and Telecommunications

of Catalonia (CTTC). Ubuquisys is a company specialized in developing smart antennas, while

CTTC is a research center for communications technology.

 System gives the opportunity to control the macro, micro and femto cells, so that their best

interoperability is achieved. Those operate as self-organized networks. LENA can be used for

design and estimation of efficiency in up/downlink schedulers, load balance, mobility management

etc. An overview [2] of the LTE-EPC simulation model is depicted in the Figure 2.2.3 - Overview

of LTE-EPC model. There are 2 basic components of LENA:

o LTE model which includes LTE Radio stack Protocol (RLC, PDCP, RRC, PHY, MAC).

Entities exist in each UE and each evolvedNodeB (eNB) nodes.

o EPC model includes core network interfaces, protocols and entities. Entities exist in SGW,

PGW and MME nodes and partially within eNB nodes. With Service Gateway (SGW)

network mobility function is ensured and it is responsible for routing and forward network

functions. The Packet Data Network Gateway (PDN GW) permits network connection and

offers QoS. Mobility Management Entity (MME) manages mobility and provide security

service to different data authentication application in LTE. With EPC, high packet data rate

with low latency is achieved. It also provides ability to optimize packet flow with variety

of operational scenarios.

14

Chapter 3: NS-3 scripting guide

A communication is established with at least one transmitter and one receiver along with the

communication channel. Communication channel serves as the medium between transmitter and

receiver and can be either wired or wireless, depending on the application.

 Usually, transmitter and receiver are shown as nodes, placed in plane and forming a line segment

indicating the transmission medium. In reality it cannot be a straight line, as it can be influenced

by phenomena such as diffraction / refraction / reflection /scattering and other parameters that

create curvature in the communication path. Communication channel is used by transmitter and

sends the signal containing the information to receiver.

 Additionally, it is necessary to determine transmission/connection type, achieved with protocols

like Udp or Tcp, as well as other parameters such as transmission speed (data rate), packet size in

bytes, number of packets to be transmitted and delay in the transmission due to link type (wired or

wireless) of communication channel.

Here's a description of how to program a simulation in NS-3:

1. Install NS-3:

First, you need to install NS-3 on your computer. You can download it from the official ns-

3 website and follow the installation instructions.

2. Create a New Simulation Program:

Create a new C++ of Python file with a ".cc" / ".cpp" or ".py" extension respectively for

your simulation program.

3. Include Necessary Libraries:

On top of the file, include the necessary NS-3 libraries, such as:

C++ Python

#include "ns3/core-module.h" import ns.core

#include "ns3/network-module.h" import ns.network

4. Define the Network Topology:

Define network devices, nodes, routing rules, and other network parameters you want to

simulate.

5. Set Simulation Parameters:

Specify simulation settings, such as duration, time step, events, startup, and termination

behavior.

6. Program Events:

Create events that will occur during the simulation, such as packet transmission, topology

changes, etc.

7. Run the Simulation:

Execute simulation program and monitor the results. You can run the simulation from the

command line or within the NS-3 environment.

15

8. Analysis and Results:

Study the simulation results and analyze the performance of your network.

 This is a basic overview of how to program a simulation in ns-3. NS-3 simulations can be quite

complex, depending on your specific research or testing goals and program can be extended to

include more advanced features and analysis as needed.

 By default, NS-3 has 7 example scripts in C++ and initial three of them are written in python as

well, placed in folder ‘examples/tutorial’. Always keep in mind that any new scripts must be placed

in folder ‘scratch’. Just open any editor in Linux, create a new file, save it in the directory just

mentioned and start scripting. Compile and run for each script are done using the command ‘./waf

--pyrun scratch/fileName.py’. Otherwise, ‘.cc’ files with ‘./waf --run scratch/fileName’. For

command line arguments: “./waf --pyrun "folder_name/fileName.py --argument=value"”

16

Figure 3.1.2 - Import modules

Figure 3.1.1 - Script topology 1

Figure 3.1.3 - Enable logging info

3.1 A hello world wired NS-3 script

Regarding the above and first script of “tutorials” [2], familiarization begins in creating a first script

in python. Each library from ns-3 is called as ‘ns.name’. Including correct libraries requires a few

things to consider like topology, application and the purpose of simulation. Then, parameters are

defined. A basic starting point in which a wired connection is constructed with two nodes is shown

in Figure 3.1.1.

 Node n0 is connected to node n1 and communicate to each other by sending a Udp packet of

size 1024 bytes. Topology is shown in Figure 3.1.1 - Script topology 1 and represents the two nodes

in a point-to-point (p2p) connection. Figure 3.1.2 - Import modules, informs about the needed

libraries.

In Figure 3.1.3 - Enable logging info, logging information is provided during the simulation using

‘ns.core’ library and as a parameter accepts the application’s name which is later setup. Lots of

levels of logging verbosity/detail are available. Logging is always useful in debugging.

17

Figure 3.1.4 - Create nodes

Figure 3.1.5 - Connect nodes and define link properties

 Nodes in simulation, represent computers or any other device about to connect to each other.

Protocol stacks, applications and peripheral cards can be added. Node objects are created by

instantiating the NodeContainer class of “ns.network” library as shown in Figure 3.1.4 - Create

nodes, which contains useful modules like Node Container (large number of nodes), Network

Devices (NetDevices), Sockets APIs etc.

 First line declares a NodeContainer called “nodes” and in second line “Create” method is called

on “nodes” object and asks the container to create two nodes. Νodes cannot communicate, so next

step is vital. Wired link which connects the nodes is relevant to library ‘ns.point_to_point’ and is

linking exactly two devices over a PointToPointChannel.

 Method “ns.point_to_point.PointToPointHelper()” instantiates a PointToPointHelper object on

the stack. Its parameters (Attributes) for “DataRate” and “Delay” define the communication

conditions, such as link speed and propagation delay as seen in Figure 3.1.5 - Connect nodes and

define link properties. Values are set to 13 Mbps and 5 ms respectively. Link is installed on nodes

and stored in variable “devices”, which is a NetDeviceContainer attribute. So far, devices and

channel have been configured.

18

Figure 3.1.6 - Addressing

Figure 3.1.7 - Application server

 Next, internet model is set. It is a useful functionality for IP-based objects with many related

protocols (IPv4, IPv6, ARP, UDP, TCP etc). Internet protocol stack requires the “ns.internet”

library. All of the internet model is installed on nodes and devices corresponding to nodes for

configuration, as shown in Figure 3.1.6 - Addressing. InternetStackHelper is a topology helper just

like PointToPointHelper is for point-to-point net devices. “Install” method will place an Internet

Stack on each of the nodes in the NodeContainer.

 Devices are associated to nodes with IP addresses. A topology helper Ipv4AddressHelper

manages the allocation of IP addresses and “SetBase” method sets IP address and network mask.

By default, allocated addresses will start at one and increase monotonically. “Assign” method

performs the actual address assignment.

 Library ‘ns.applications’ contains every available function for the application layer (internet

models). Two specializations are called, the UdpEchoServerApplication and

UdpEchoClientApplication. Likewise in previous calls, a helper object to configure and manage

the underlying objects.

 Randomly a node is chosen as server (n1), a port number is defined to establish communication

from the instance “ns.applications.UdpEchoServerHelper” and application is installed on it, when

“Install” method is called. Also, time interval is set as shown in Figure 3.1.7 - Application server.

19

Figure 3.1.9 - Mobility and position on nodes

Figure 3.1.8 - Application client

 Application client is set as seen in Figure 3.1.8 - Application client, similar to previous case with

the UdpEchoClientApplication object managed by UdpEchoClientHelper. A few parameters are

set in next lines, attributes for remote address and remote port number (same as server). Recall that

an Ipv4InterfaceContainer was used to keep track of the IP addresses assigned to devices. The

zeroth interface will correspond to IP address of the zeroth node and first interface corresponds to

first node etc.

 Number of packets “MaxPackets” for transmission equals to 1, while “Interval” represents delay

between packets and is set to 1 second. Size of packets “PacketSize” is 1024 bytes and duration

time of the client application accepts arguments similar to echo server. Furthermore, “ns.mobility”

module is installed on nodes. Mobility model objects track the evolution of position with respect

to a cartesian coordinate system. Typically aggregated to an “ns3::Node” object. The initial position

of objects is set with PositionAllocator. Similar types of objects will lay out the position of a

notional canvas.

 Once simulation starts, PositionAllocator may no longer be required or picks future mobility

“waypoints” for such mobility models (in case of moving nodes). Coordinate system includes

structures of Rectangle, Box and Waypoint, while MobilityModel has “ConstantPosition”,

“RandomWalk2D” etc. PositionAllocator is mostly used for “ListPositionAllocator” in which

positions occur as sequential list, but also contains random or uniform allocations or in a grid way.

In Figure 3.1.9 - Mobility and position on nodes the “GridPositionAllocator” is called and module

ConstantPositionMobilityModel sets the nodes as stationary.

20

Figure 3.1.10 - Run and Clear Resources

Figure 3.1.11 - Execute script 1

 Simulation is executed when global function “ns.core.Simulator.Run()” is called. Previously

with methods “Start” and “Stop”, events were scheduled at 1, 2 and 100 seconds respectively.

System crosses through the list of scheduled events and executes them. Fist event at 1.0 second

will enable the echo server application (may schedule other events), event begins at 2.0 seconds

starting the echo client application (might also enable other events) and start event of echo client

application begins data transfer phase of the simulation by sending a packet to the server.

 A chain of events is triggered automatically behind the scenes, according to various timing

parameters set in simulation. Since only one packet is sent, the chain of events triggered by client,

echo request will taper off and simulation is set idle. Remaining events become the stop events for

server and client. During their execution, no further events are processed and the simulation is

completed. Clean up resources is accomplished with method “ns.core.Simulator.Destroy()”. Figure

3.1.10 - Run and Clear Resources displays those function calls. Finally, command: “./waf --pyrun

scratch/first.py” is executed as seen in Figure 3.1.11 - Execute script 1. The output is:

Sent 1024 bytes to 10.1.1.2

Received 1024 bytes from 10.1.1.

Received 1024 bytes from 10.1.1.2

 Communication between the two nodes was successful. A packet of 1024 bytes was sent to

echo server on 10.1.1.2 IP address and confirmation message below shows that the packet was

received from client of IP address 10.1.1.1. Then, echo client receives its packet back from the

server.

Figure 3.2.2 - Import modules

Figure 3.2.1 - Example topology 2

3.2 Second NS-3 script

 A modified example of ‘tutorials’ folder of Ns-3 [2]. Represents a topology of wireless and

wired connection communicating with each other, offering information about signal strength, noise

power, frequency, etc and calculates the total throughput.

 Carrier Sense Multiple Access (CSMA) is a bus network of devices and channels. As seen in

point-to-point (p2p), CSMA topology helper object also constructs point-to-point topologies. Wifi

topology helpers are presented in this example as well. Figure 3.2.1 - Example topology 2

represents a combination of wired and wireless topology communicating to each other. Lan

10.1.2.0 is a bus network on the right side. A simple network in the spirit of Ethernet. On the left

side, there is a wireless network. Figure 3.2.2 - Import modules, informs about the necessary

libraries.

22

Figure 3.2.3 - Command line arguments

Figure 3.2.4 - Logging components

 A verbose flag determines whether the logging components are enabled and defaults to true

(components enabled). Via command line, number of devices on the CSMA network can be

changed (nCsma parameter), as well as the verbose flag, number of devices on the Wifi network

and trace files during testing, as shown in Figure 3.2.3 - Command line arguments and Figure 3.2.4

- Logging components. “If” statement is a simple error detection about the capacity and

effectiveness of the application.

23

Figure 3.2.5 - Create p2p nodes, set connection parameters and install devices on them

Figure 3.2.6 - CSMA nodes

 Node objects are created by instantiating the NodeContainer class of “ns.network” library as

shown in Figure 3.2.5 - Create p2p nodes, set connection parameters and install devices on them.

First line declares a “NodeContainer” called “p2pNodes” and in second line “Create” method is

called on “p2pnodes” object and asks the container to create two nodes. Νodes cannot

communicate, so next step is vital. Wired link which connects the nodes is relevant to library

‘ns.point_to_point’ and is linking exactly two devices over a PointToPointChannel.

 “ns.point_to_point.PoinitToPointHelper()” instantiates a PointToPointHelper object on the

stack. Its parameters (Attributes) for “DataRate” and “Delay” define the communication

conditions, such as link speed and propagation delay. Values are set to 5 Mbps and 2 ms

respectively. Link is installed on the nodes and stored in variable “p2pDevices”, which is a

“NetDeviceContainer” attribute. So far, devices and channel have been configured for the point-

to-point connection.

 Another “NodeContainer” declared in Figure 3.2.6 - CSMA nodes is responsible for nodes being

part of the bus network. Node indexed to one is picked with method “Get” from the p2p node

container and is added to container of CSMA nodes to be treated as a CSMA device. CSMA nodes

are created when “Create” is called right below. After that, an instance of CsmaHelper is created

and configure its attributes likewise the point-to-point. Linking is achieved with “Install” method

on the CSMA nodes.

24

Figure 3.2.7 - Wifi setup

Figure 3.2.8 - Ssid setup

Figure 3.2.9 - Mobility and position on nodes

 Next, wifi devices are constructed as well as the interconnection channel between wifi nodes as

observed in Figure 3.2.7 - Wifi setup. At first, configuration of the physical layer is accomplished

with channel helpers with YansWifiChannelHelper and YansWifiPhyHelper respectively (named

after Yet another network simulator). For simplicity, the default configuration and channel models

are used. Once these objects are created, channel object is associated with physical layer to ensure

that all physical layer objects of YansWifiPhyHelper share the same channel (wireless medium),

communicate and interfere, achieved by “channel.Create()” call. A non-QoS MAC is chosen and

MAC layer is constructed by “WifiMacHelper” object.

 “SetRemoteStationManager” method defines the rate control algorithm. A set identifier (SSID)

object is created and used in MAC layer. Configuration of the MAC type is associated to SSID as

to ensure base stations do not perform active probing. Similarly, MAC layer is configured for

“ns3::StaWifiMac” and “ns::ApWifiMac” at Figure 3.2.8 - Ssid setup and installed on respective

user and access point nodes.

25

Figure 3.2.10 - Internet stack and IP addressing configuration

Furthermore, “ns.mobility” module is installed on nodes. Mobility model objects track the

evolution of position with respect to a cartesian coordinate system. Typically aggregated to an

“ns3::Node” object. Initial position of objects is set with “PositionAllocator”. Similar types of

objects will lay out the position of a notional canvas.

 Once simulation starts, “PositionAllocator” may no longer be required or picks future mobility

“waypoints” for such mobility models (in case of moving nodes). Coordinate system includes

structures of “Rectangle”, “Box” and “Waypoint”, while “MobilityModel” has “ConstantPosition”,

“RandomWalk2D” etc. “PositionAllocator” is mostly used for “ListPositionAllocator” in which

positions occur as sequential list, but also contains random or uniform allocations or in a grid way.

 In Figure 3.2.9 - Mobility and position on nodes, the “GridPositionAllocator” sets a two-

dimensional grid to place the STA nodes, “RandomWalk2dMobilityModel” enables node movement

in a random direction and speed around a bounding box. Mobility model is installed on STA nodes.

 Access point remains in a fixed position using “ConstantPositionMobilityModel” module. Next,

internet model is set. A useful functionality for IP-based objects with many related protocols (IPv4,

IPv6, ARP, UDP, TCP etc). Internet protocol stack requires “ns.internet” library. Internet model is

installed on devices corresponding to nodes for configuration, as shown in Figure 3.2.10 - Internet

stack and IP addressing configuration. InternetStackHelper is a topology helper just like

PointToPointHelper is for point-to-point net devices. “Install” method will place an Internet Stack

on each of the nodes in the NodeContainer.

 Devices are associated to nodes with IP addresses. A topology helper Ipv4AddressHelper

manages the allocation of IP addresses and “SetBase” method sets IP address and network mask.

By default, allocated addresses will start at one and increase monotonically. “Assign” method

performs the actual address assignment.

26

Figure 3.2.11 - Application UdpEchoServer

Figure 3.2.12 - Application UdpEchoClient

 Library ‘ns.applications’ contains every available function for the application layer (internet

models). Two specializations of this class are called, UdpEchoServerApplication and

UdpEchoClientApplication. Likewise in previous calls, a helper object is used to configure and

manage the underlying objects.

 “ns.applications.UdpEchoServerHelper” establishes communication. The “rightmost” node of

point-to-point nodes is chosen and application is installed with “Install” method. Also, time interval

to operate is set as shown in Figure 3.2.11 - Application UdpEchoServer.

 Application client is configured as seen in Figure 3.1.8 - Application client, similar to previous

case with UdpEchoClientApplication object managed by UdpEchoClientHelper. In first line two

attributes are set, remote address and remote port number (same as server). Recall that an

Ipv4InterfaceContainer keeps track of the IP addresses assigned to devices. The zeroth interface

corresponds to IP address of the zeroth node and first interface corresponds to first node etc.

 All parameters are configured shown in Figure 3.2.12 - Application UdpEchoClient.

“MaxPackets” to be transmitted equals to 1, “Interval” for the delay between packets is set to 1

second, “PacketSize” the size of packets is 1024 bytes and the duration time of the client application

is similar to echo server.

27

Figure 3.2.13 - Routing Tables, stop simulation, enable trace files

Figure 3.2.14 - Run simulation and clear resources

Figure 3.2.15 - Script output 2

 An internetwork is built and internetwork routing is configured with “PopulateRoutingTables()”

method as seen in Figure 3.2.13 - Routing Tables, stop simulation, enable trace files. “Stop” method

ensures proper functionality, because beacons are generated forever since a non-QoS MAC was

chosen on Ssid setup and simulation would be executed infinitely.

 Also, enough tracing is created to cover all three networks producing pcap files and can be later

processed in cooperation with any other tool (Wireshark). Global function

“ns.core.Simulator.Run()” render simulation executable. Method “ns.core.Simulator.Destroy()”

releases resources. Figure 3.2.14 - Run simulation and clear resources displays both function calls.

Finally, the script is executed: “./waf --pyrun scratch/sample.py” as seen in Figure 3.2.15 - Script

output 2 and displays the total throughput during simulation (function is found in Appendix).

28

Figure 3.2.16 – Pcap file output

 Also, Figure 3.2.15 - Script output 2 informs about a client sending and receiving packets on

port number 9, a few milliseconds later server sends and receives packet on port number 49153

(default in NS-3) and so on during the simulation time. At the end the total throughput is calculated

and displayed.

 Directory contains a few trace files created from the simulation as well as the “.xml” file

providing information about data transfer in each flow. Different trace files correspond to a

separate part of the topology. Pcap files are processed via command “tcpdump -nn -tt -r Total-1-

0.pcap”. As seen in Figure 3.2.16 – Pcap file output, contains enough information about the

connection providing signal strength, noise power, frequency etc.

29

Figure 3.3.2 - Import modules

Figure 3.3.1 - Example topology 3

3.3 An advanced Ns-3 script

 A representation of a complex application for voice service using WiFi module with different

data rates, packet size and port numbers with different cases of Udp and Tcp socket connections.

Datagrams are sent to a unique access point. Each different case shows a user being served on the

same base station. Tracing is enabled, as well as monitoring with “.xml” and “.pcap” files produced

for further analysis with Wireshark and examination with NetAnim.

 Each node can communicate with all others in different time intervals. Positions are not defined

with a specific model as shown later. Figure 3.3.1 - Example topology 3 is a visual representation

of the topology and Figure 3.3.2 - Import modules represents the necessary libraries for simulation.

30

Figure 3.3.3 - Create function and initialize parameters

Figure 3.3.4 - Set Wifi

 As a starting point a function is created in which all modules are called. Simulation time,

distance, bandwidth and value ‘mcs’ (parameter for data rate) are initialized as seen in Figure 3.3.3

- Create function and initialize parameters. Then, wifi devices are constructed and interconnection

channel between wifi nodes as observed in Figure 3.3.4 - Set Wifi. At first, configuration of the

physical layer is accomplished with channel helpers with YansWifiChannelHelper and

YansWifiPhyHelper respectively.

 For simplicity, default configuration and channel models are used. Once objects are created,

channel object is associated with physical layer ensuring all physical layer objects of

YansWifiPhyHelper share the same channel (wireless medium) and can communicate and interfere.

It is accomplished with “channel.Create()” call. MAC layer is set with a QoS-Supported choice

and MAC layer is constructed by “WifiMacHelper” object.

 “SetRemoteStationManager” method defines rate control algorithm. Constant rate is chosen

(explained in documentation of ns-3 [2]). A set identifier (SSID) object is created and retrieved in

MAC layer. Configuration of MAC type with SSID confirms base stations do not perform active

probing. Similarly, MAC layer is configured for “ns3::StaWifiMac” and “ns::ApWifiMac” and

installed on respective nodes along with the bandwidth configuration, according to Figure 3.3.5 -

Wifi configurations.

31

Figure 3.3.5 - Wifi configurations

Figure 3.3.6 - Mobility and position on nodes

Furthermore, “ns.mobility” module is installed on nodes. Mobility model objects track the

evolution of position with respect to a cartesian coordinate system. Typically aggregated to an

“ns3::Node” object. Initial position of objects is set with PositionAllocator. Similar types of objects

will lay out the position of a notional canvas.

 Once simulation starts, “PositionAllocator” may no longer be required or picks future mobility

“waypoints” for such mobility models (in case of moving nodes). Coordinate system includes

structures of “Rectangle”, “Box” and “Waypoint”, while “MobilityModel” has “ConstantPosition”,

“RandomWalk2D” etc. “PositionAllocator” is mostly used for the “ListPositionAllocator” in which

positions occur as sequential list, but also contains random or uniform allocations or in a grid way.

Allocation of nodes is represented in Figure 3.3.6 - Mobility and position on nodes. Placed directly

through ‘distance’ parameter (defined and initialized on top). All nodes remain in a fixed position

with module “ConstantPositionMobilityModel”.

32

Figure 3.3.7 - Internet stack & Addressing

Figure 3.3.8 – First node app

 Next, internet model is set. A useful functionality for IP-based objects with many related

protocols (IPv4, IPv6, ARP, UDP, TCP etc). Internet protocol stack requires “ns.internet” library.

Internet model is installed on devices corresponding to nodes for configuration, as shown in Figure

3.3.7 - Internet stack & Addressing. “InternetStackHelper” is a topology helper just like

“PointToPointHelper” is for point-to-point net devices. “Install” method will place an Internet

Stack on each node of “NodeContainer”. Devices are associated to nodes with IP addresses. A

topology helper “Ipv4AddressHelper” manages allocation of IP addresses and the “SetBase”

method sets IP address and network mask. By default, allocated addresses will start at one and

increase monotonically. “Assign” method performs the actual address assignment.

33

 A container stores each different application. At first, user ‘wifiStaNode.Get(0)’ is configured

specifying socket Tcp connection. Each node’s IP address can be obtained in a tricky way. Direct

access is not available, so the “internet.Ipv4” is called as instance and object is obtained. IP address

of the particular node is extracted and given as input in ‘sinkSocket’. Also, from “applications” the

“OnOffHelper” determines application type (TCP).

 Parameters ‘on’ and ‘off’ time accept values 1 and 0 respectively. “ConstantRandomVariable”

indicates a Constant Bit Rate with data rate of 20 Mbps and packet size at 1024 bytes. Start time

value ranges from 1.001 to 1.101 in a uniform distribution. Specific node cited as a source receiving

data and is configured as “PacketSinkHelper”. Last three lines of Figure 3.3.8 – First node app

indicate a downlink direction. Sender in this case is the base station ‘wifiApNode’.

34

Figure 3.3.9 – Second node app 1

Figure 3.3.10 - Second node app 2

 For each of the following cases of setting application on pair nodes, there will be reference once

and figures are shown subsequently. Similar to previous, each next “wifiStaNode” is obtained as

receiver, with Udp or Tcp socket, setting parameters “DataRate” to 64, 161 and 250 Kbps

respectively, “PacketSize” to 160, 501 and 750 bytes respectively and “StartTime” at 5.001 ranges

from 5.001 to 5.101 in a uniform distribution and 10.001 ranged from 10.001 to 10.101 in a uniform

distribution as seen in Figure 3.3.9 – Second node app 1, Figure 3.3.11 - Third node app 1, Figure

3.3.13 – Fourth node app 1 and Figure 3.3.15 - Fifth node app 1.

 Figure 3.3.10 - Second node app 2, Figure 3.3.12 - Third node app 2, Figure 3.3.14 - Fourth

node app 2 and Figure 3.3.16 - Fifth node app 2 reflect the uplink and are structured similarly. Both

the two applications provide us the uplink and downlink. As mentioned, next two pages 35 and 36

follow the same structure for different parameters in “DataRate”, “PacketSize” and “StartTime”,

while the last part on page 37 includes file creation for further analysis and script execution. Page

38 contains figure of NetAnim and explanation of figures in pages 37 and 38.

35

Figure 3.3.11 - Third node app 1

Figure 3.3.12 - Third node app 2

Figure 3.3.13 – Fourth node app 1

36

Figure 3.3.14 - Fourth node app 2

Figure 3.3.15 - Fifth node app 1

Figure 3.3.16 - Fifth node app 2

37

Figure 3.3.17 - Routing Tables, enable tracing and monitoring,

Run simulation and clear resources

Figure 3.3.18 - Execute script

Figure 3.3.19 - Script output 3

38

Figure 3.3.20 - Flow monitor in NetAnim

 Internetwork is built and internetwork routing is enabled with

“ns.internet.Ipv4GlobalRoutingHelper.PopulateRoutingTables()” as shown in Figure 3.3.17. Also,

trace file is enabled for a user, while base station provides “.pcap” files for all incoming

connections.

 “flow_monitor” module is used for visualization of topology with NetAnim and also investigate

further for lost packets, data rate, throughput, delay etc. “Stop” method is necessary, cause

simulation would be executed infinitely. Also, enough tracing is created to cover all three networks

producing pcap files. Those can be later processed using any other tool (Wireshark). Global

function “ns.core.Simulator.Run()” render simulation executable. Method

“ns.core.Simulator.Destroy()” releases resources. Figure 3.3.18 - Execute script, represents main

function call in a python way. Finally, script is executed with command: “./waf --pyrun

scratch/sample.py” as seen in Figure 3.3.19 - Script output 3 and “.pcap” files are present along

with “.xml” and “.flowmon” files within directory and are available for further processing with

Wireshark or visualized with NetAnim respectively as in Figure 3.3.20 - Flow monitor in NetAnim.

A minimal part is shown as an example. Each flow is represented separately providing insights

about the throughput, delay, packet loss ratio, data rate etc.

Chapter 4: Case Study in User Association

4.1 Description of the modules - Theory

Long Term Evolution module is used in 4th and later generation networks. LTE's high data rates,

low latency, scalability, efficient spectrum utilization, QoS support, interoperability, security, voice

and data integration, energy efficiency, and backward compatibility make it a compelling choice

for cellular HetNets. These advantages enable LTE to meet the diverse communication needs of

users and devices in a heterogeneous network environment. Following subjects are included in

references [2].

 Main objective of the Evolved Packet Core (EPC) model is to provide means for simulation of

end-to-end IP connectivity over the LTE model. To this aim, it supports interconnection of multiple

UEs to the Internet, via a radio access network of multiple eNBs connected to core network, as

shown in Figure 2.2.3 - Overview of LTE-EPC model. Following design choices have been made

for EPC model:

1. Packet Data Network (PDN) type supported is both IPv4 and IPv6. In other words, the end-

to-end connections between UEs and remote hosts can be IPv4 and IPv6. However,

networks between the core network elements (MME, SGWs and PGWs) are IPv4-only.

2. SGW and PGW functional entities are implemented in different nodes, which are hence

referred to as SGW node and PGW node, respectively.

3. MME functional entities are implemented as a network node, which is hence referred to as

the MME node.

4. The scenarios with inter-SGW mobility are not of interest. But several SGW nodes may be

present in simulations scenarios.

5. A requirement for EPC model is its convenience to simulate the end-to-end performance of

realistic applications. Hence, it should be possible to use with EPC model any regular ns-3

application working on top of TCP or UDP.

6. Another requirement is the possibility of simulating network topologies with presence of

multiple eNBs, some of which might be equipped with a backhaul connection with limited

capabilities. In order to simulate such scenarios, the user data plane protocols being between

the eNBs and the SGW should be modeled accurately.

7. It should be possible for a single UE to use different applications with different QoS profiles.

Hence, multiple EPS bearers should be supported for each UE. This includes the necessary

classification of TCP/UDP traffic over IP done at the UE in the uplink and at the PGW in

the downlink.

Channel and Propagation

For channel modeling purposes, LTE module uses the SpectrumChannel interface provided by the

spectrum module. Two implementations of such interface are available:

SingleModelSpectrumChannel and MultiModelSpectrumChannel. LTE module requires

MultiModelSpectrumChannel in order to work properly. Support of different frequency and

40

bandwidth configurations is necessary. All the propagation models supported by Multi Model

Spectrum Channel can be used within LTE module.

Fading Model

With respect to the mathematical channel propagation model, the one provided by the rayleighchan

function of Matlab is suggested, since it provides a well-accepted channel modelization both in

time and frequency domain. For more information, the reader is referred to [mathworks]. The

simulator provides a matlab script (src/lte/model/fading-traces/fading-trace-generator.m) for

generating traces based on the format used by the simulator.

 In detail, the channel object created with the rayleighchan function is used for filtering a

discrete-time impulse signal in order to obtain the channel impulse response. The filtering is

repeated for different TTI, thus yielding subsequent time-correlated channel responses (one per

TTI). The channel response is then processed with the pwelch function for obtaining its power

spectral density values, which are then saved in a file with the proper format compatible with the

simulator model.

Antennas

Being based on the SpectrumPhy, the LTE PHY model supports antenna modeling via the ns-3

AntennaModel class. Hence, any model based on it can be associated with any eNB or UE instance.

For example, CosineAntennaModel associated with an eNB device allows to model one sector of

a macro base station. By default, the IsotropicAntennaModel is used for both eNBs and UEs.

Resource Allocation

We now briefly describe how resource allocation is handled in LTE, clarifying how it is modeled

in the simulator. Scheduler is in charge of generating specific structures called Data Control

Indication (DCI) which are then transmitted by the PHY of eNB to connected UEs, in order to

inform them of the resource allocation on a per subframe basis. In downlink direction, the scheduler

has to fill some specific fields of the DCI structure with all the information, such as: the Modulation

and Coding Scheme (MCS) to be used, the MAC Transport Block (TB) size, and the allocation

bitmap identifying which RBs will contain the data transmitted by an eNB to each user.

 Mapping of resources to physical RBs, a localized mapping approach is adopted (see

[Sesia2009], Section 9.2.2.1); hence in a given subframe each RB is always allocated to the same

user in both slots. Allocation bitmap can be coded in different formats; in this implementation,

Allocation Type 0 is considered defined in [TS36213], according to which the RBs are grouped in

Resource Block Groups (RBG) of different size determined as a function of Transmission

Bandwidth Configuration in use. For certain bandwidth values not all the RBs are usable, since the

group size is not a common divisor of the group. This is the case when the bandwidth is equal to

25 RBs, which results in a RBG size of 2 RBs, and therefore 1 RB will result not addressable. In

uplink the format of the DCIs is different, since only adjacent RBs can be used because of the SC-

FDMA modulation. As a consequence, all RBs can be allocated by the eNB regardless of the

bandwidth configuration.

https://www.nsnam.org/docs/release/3.31/models/ns-3-model-library.pdf#page=558&zoom=100,96,778
https://www.nsnam.org/docs/release/3.31/models/ns-3-model-library.pdf#page=558&zoom=100,96,332
https://www.nsnam.org/docs/release/3.31/models/ns-3-model-library.pdf#page=557&zoom=100,96,784

41

Round Robin Scheduler

Round Robin (RR) scheduler is probably the simplest scheduler found in the literature. It works by

dividing the available resources among the active flows, i.e., those logical channels which have a

non-empty RLC queue. If number of RBGs is greater than the number of active flows, all flows

can be allocated in the same subframe.

 Otherwise, if number of active flows is greater than number of RBGs, not all the flows can be

scheduled in a given subframe; then, next subframe starts the allocation from the last flow that was

not allocated. The MCS to be adopted for each user is done according to the received wideband

CQIs.

NakagamiPropagationLossModel

Specific propagation loss model implements the Nakagami-m fast fading model, which accounts

for the variations in signal strength due to multipath fading. It does not account path loss due to

distance traveled by the signal, hence for typical simulation usage it is recommended to consider

using it in combination with other models that consider this aspect. The Nakagami-m distribution

is applied to the power level. Probability density function is defined as:

p(x; m, ω) =
2𝑚𝑚

𝛤(𝑚)𝜔𝑚
𝑥2𝑚−1ⅇ−

𝑚

𝜔
𝑥2

 (4.1)

with m the fading depth parameter and ω the average received power. It is implemented by either

a GammaRandomVariable or ErlangRandomVariable random variable. For m = 1 the Nakagami-

m distribution equals to Rayleigh distribution flat fading. The equation’s form is:

p(x; 1, ω) =
2

𝛤(1)𝜔1
𝑥2−1ⅇ−

1
𝜔

𝑥2

and we know that Γ(1) equals to 0! = 1, so:

p(x; 1, ω) =
2

𝜔
𝑥ⅇ−

𝑥2

𝜔 (4.2)

In that case the ω parameter is not affecting us and could be ignored or considered to be equal to 1.

LogDistancePropagationLossModel

Implements a log distance propagation model. The reception power is calculated with a so-called

log-distance propagation model:

𝐿 = 𝐿0 + 10𝛽 𝑙𝑜𝑔 (
𝑑

𝑑0
) (4.3)

where: 𝛽 is the path loss distance exponent, d0 is reference distance (m), L0 is path loss at reference

distance (dB), d is negative value “-distance” (m) and L is path loss (dB). When the path loss is

requested at a distance smaller than the reference distance, the tx power is returned.

Figure 4.2.1 - Network Topology

4.2 Implementation

 Following the structure of the cited work [5] and considering all the parameters and models for

the implementation, we built the script in Ns-3 using python 3. A two-tier heterogeneous network

is considered, consisting of B base stations. The B−1 are micro base stations (mBS) and one is the

macro base station (MBS).

 Base stations have fixed positions considering a circle centered at (0,0) and radius at 200 m.

Users referred as terminals or user equipment (UE) are placed also at fixed positions in a random

way using same circle of radius 200 m. UEs are located inside the coverage area created by base

stations.

 Micro base stations are blue colored antenna and macro base station is slightly different sized

with grey color as seen in Figure 4.2.1 - Network Topology. UEs are represented as mobile phones,

while the EPC is the doted numbers {1,2} for SGW, PGW and MME respectively (mentioned in

4.1). Macro base station is placed at (0,0) and micro base stations are placed considering the center

(0,0) and at distance r = 200 m successively in sub-multiples of ‘r’. UEs are also placed in a cyclic

manner considering the same distance r, but with a random way. Depending on the number of UEs,

random angles are created for a specific number of UEs N = {10, 15, 20} and is used in the x-axis,

while the y-axis uses random values between 0 and 1.

 In NS-3 the transmission power is set by assuming that a base station - evolved Node B (eNB)

maintains a constant transmit power regardless of the specific operational context. This

simplification is common in many simulation environments to reduce complexity of modeling

wireless communication systems. So, the equation of calculating the power is:

43

𝑃𝑎𝑙𝑙(𝑢, 𝑢1) = (𝑢 − 1)𝑃𝑚 + 𝑢1𝑃𝑀 (4.4)

 Where u indicates the total number of active (transmitting) micro eNBs, u1 the state of macro

eNB (active or not), Pm is the transmission power of micro base stations and PM is the transmission

power of macro base stations.

 The average noise power is denoted as σ2 and calculated as: 𝜎2 = −174 + 10 𝑙𝑜𝑔(𝐵) + 𝑁𝐹 for

a given bandwidth B and Noise Figure. In our case bandwidth is set to 100 Resource Blocks

(explanation of RB in previous section - Resource Allocation) and corresponds to 20 MHz and

Noise Figure is set zero. The frequency in which the eNBs and UEs operate is set at 36000 Earfcn

[6] (Band 33 TDD) which corresponds to 1.9 GHz.

 Channel conditions between eNB and UE are modeled using modules Nakagami along with

LogDistance (see previous section). Nakagami with m parameters equal to 1 denotes the small-

scale fading coefficient, following a circular symmetric complex Gaussian with unit variance. Log

Distance’s path-loss exponent is 𝛽 and distance between eNB b and UE n is denoted by d, while d0

is the reference distance and set to 1 m. In this case we have a Rayleigh distribution for flat fading.

 Main point was to properly associate UEs to eNBs. Running the matlab project of the reference

in which the user association problem was studied, the truth tables for each case were extracted

and used. Firstly, all components are created using the appropriate libraries and function calls. The

eNBs are created in ascending order and placed in defined positions. Then, a list of the created

eNBs is kept and based on the truth table we assign (attach method) UEs to eNBs. Thus, we ensure

that each unique UE is attached to one eNB while an eNB can hold many UEs.

 The application was set as Udp server – client, configuring the number of packets to be

transferred, the packet size and the delay, as well as the simulation time to 2 seconds. Insights to

the actual throughput during the simulation, the packet loss and other useful metrics are obtained.

The achievable rate measured in bits/seconds/Hz for downlink between user n and base station b

is:

𝑅𝑏,𝑛 =
1

𝑚
𝑙𝑜𝑔2 (1 +

𝑢𝑏ℎ𝑏,𝑛𝑃𝑏

𝜎2+∑ 𝑢𝑗ℎ𝑗,𝑛𝑃𝑗
𝑗𝜖𝐵∖𝑏

) (4.5)

 Where user 𝑛 ∈ {1, . . . , 𝑁}, base station 𝑏 ∈ {1, . . . , 𝐵}, m denotes the number of UEs served by

eNB b. Numerator of “log()” function corresponds to received Power (assuming fading) at UE of

a specific set eNB – UE and the denominator corresponds to noise occurring on UE due to rest

eNBs. This division is actually the Sinr of eNB – UE pair.

Then, energy efficiency of a heterogeneous network measured in bits/Hz/Joule is:

𝜂 = ∑
∑ 𝑅𝑏,𝑛𝑥𝑏,𝑛𝑏∈𝐵

𝑃𝑎𝑙𝑙(𝑢,𝑢1)𝑛∈𝑁
 (4.6)

 Where the variable Rb,n is calculated right above (4.5), xb,n denotes the association of user n to

eNB b and Pall is total power also calculated (4.4).

44

Figure 4.2.2 - User association with attach method

Above figure reflects the method of attaching UEs to eNBs based on the truth table mentioned

earlier.

 There were 3 different algorithms used. The proposed approach is a distributed solver with

correctness and convergence guarantees. The IE algorithm [7] utilizes a distributed protocol for the

sub-gradient method. Finally, the SC algorithm [8] is a matrix-based EE algorithm with low

complexity.

 Each algorithm was run in a single scenario for N = {10, 15, 20} UEs, with B = 10 eNBs and

for 200 independent experiments. In each experiment, the position of UEs randomly changes, as

well as the small-scale fading. Scripts had a long running time and high complexity, so the

optimized profile of Ns-3 was preferred. Each scenario was a 5-hour long simulation after

optimization of NS-3.

 At last, results were gathered and provided the charts in Energy Efficiency and Spectral

Efficiency respectively. Simulation results occur by calculating the cumulative distribution

function (described in Appendix) of Energy Efficiency (EE) and Spectral Efficiency. EE in

networking, refers to the ability of a network or its components to deliver data and services while

minimizing energy consumption. It's an essential consideration in today's world, where energy

consumption and environmental impact are significant concerns.

45

Figure 5.1.1 - Cdf of Energy Efficiency with 10 BS and 10 Users

Figure 5.1.2 - Cdf of Spectral Efficiency with 10 BS and 10 Users

CHAPTER 5: Analysis of Results

 Algorithms introduced in previous chapter are SC (matrix-based), IE (distributed for sub-

gradient) and Proposed Approach (a distributed solver based on belief propagation message passing

between base stations) in color orange, red and blue respectively.

 In present case 10 base stations and 10 users interacted. Figure 5.1.1 - Cdf of Energy Efficiency

with 10 BS and 10 Users displays IE’s curve steeper than SC’s and Proposed approach at value 0.8,

meaning IE’s probability its values being lower or equal than 0.8 is higher, while SC’s probability

is lower and Proposed Approach values are not as likely less than 0.8.

 The chart in Figure 5.1.2 - Cdf of Spectral Efficiency with 10 BS and 10 Users represents IE

with sufficient spectral efficiency and SC with the worst network rate Proposed Approach is located

between them.

46

Figure 5.1.3 - Cdf of Energy Efficiency with 10 BS and 15 Users

Figure 5.1.4 - Cdf of Spectral Efficiency with 10 BS and 15 Users

 Case second is about 10 base stations and 15 users. As mentioned three algorithms were

compared. In Figure 5.1.3 - Cdf of Energy Efficiency with 10 BS and 15 Users SC’s probability

values less or equal than 0.7 exceed IE’s and in turn Proposed approach. Behavior is differentiated

above value 0.7. Proposed approach probability’s values lower than 0.8 surpasses both SC and IE

whose probability remain relatively constant between them. Figure 5.1.4 - Cdf of Spectral

Efficiency with 10 BS and 15 Users reveals once again IE with optimal spectral efficiency, followed

by proposed approach and SC as in the first case.

47

Figure 5.1.5 - Cdf of Energy Efficiency with 10 BS and 20 Users

Figure 5.1.6 - Cdf of Spectral Efficiency with 10 BS and 20 Users

Lastly, with 10 base stations and 20 users comparison between algorithms provide remarkable

results. Probability of SC values lower or equal to 0.8 hyper passed both IE and Proposed. Figure

5.1.5 - Cdf of Energy Efficiency with 10 BS and 20 Users displays Proposed Approach with the

least probability. Chart in Figure 5.1.6 - Cdf of Spectral Efficiency with 10 BS and 20 Users differs

to previous cases with IE and Proposed Approach being identical, while SC still remains worst.

48

Figure 5.1.7 - Geometric Mean of Energy Efficiency

 Geometric mean of energy efficiency in networking is a mathematical measure used to assess

the overall energy efficiency of a network or a set of network devices, typically in the context of

data communication and information technology. Provides a way of representing the energy

efficiency of various network components or systems as a single, aggregated value. The geometric

mean is a specific type of average calculated by multiplying a set of values together and taking the

nth root of the product, where n is the number of values. In the context of energy efficiency, it is

applied to account for the multiplicative nature of power consumption.

 Performance of the proposed approach algorithm is compared to the state-of-the-art algorithms

IE and SC. Proposed method’s geometric mean outperforms both IE and SC for all N values as

seen in Figure 5.1.7 - Geometric Mean of Energy Efficiency.

 Qualitatively the results are similar to reference study, especially in 10 and 15 UEs, with a slight

difference at 20 users. There is a considerable variation quantitatively in results. Major difference

is the calculation of Pall (4.4). As mentioned, in NS-3 the transmission power is constant and does

not consider operational context. So, this quantity is considered in calculating Energy Efficiency

at equation (4.6). It is common sense that as a denominator is reduced the result is increased.

 Also, this variation, as parameters remain constant, is due to the simulation environment and

hardware or operating system. Most significant is the different environments. NS-3 is highly

accurate in calculations due to the models used and is specially designed for network

communication, wireless networks, protocols and mobility modeling, offering fine-grained

network modeling and simulation with detailed protocol models, unlike Matlab which is a more

general tool with wide range of applications such as signal processing etc. Different hardware or

software architectures can affect simulations due to available amount and speed of RAM required

in large amount of data to be loaded and processed. Simulations that require large-scale data

processing can benefit from more powerful CPUs.

Chapter 6: Conclusions

In summary, present work introduced network simulator 3, offering a competent user guide in

python, showing its architecture and basic elements. Scenarios of increasing difficulty and

complexity are provided for both wireless and wired networks. Also, implements an application

example of energy efficiency maximization in heterogeneous LTE networks, studying the

assignment of users to base stations and comparing three state-of-the-art algorithms. Measurements

of occurred simulation were compared against empirical cumulative distribution functions for

spectral and energy efficiency (in bps/Hz and bit/Hz/Joule respectively). Overall, NS-3 can

simulate complex scenarios, but at the expense of learning time.

 As a future work we could study the influence of movement from users or increase the number

of users making a more complex heterogeneous network for a more realistic scenario or even use

real time devices, since NS-3 provides this possibility, with immediate practical application.

Figure 7.1 - Download Ubuntu software [11]

Appendix

Operating System Requirements And Installation Guide

 For Windows operating system, we can use a Virtual Machine and install Ubuntu/Debian Linux

distributions (as we did in our case). Following the guidance of installation is easy, just download

any iso version of Linux and proceed as mentioned [9]. Another option is to use Windows as Linux

with WSL [10] (I do not recommend it as it is complex and anyone without much knowledge and

experience might be confused).

 Otherwise, if we have Linux as primarily operating system it is fine. Then, there are a few things

we need to consider as mentioned below. Just be careful with older versions of OS, the supported

packages might not match with newer versions of NS-3. So, the versions must be compatible with

each other. You may download the Ubuntu OS as shown above.

51

Figure 7.2 - Download VMware [12]

Figure 7.3 - Create new virtual machine [13]

Download and install the Virtual machine. Then open the VM.

52

Figure 7.4 - Select Operating System [9]

Figure 7.5 – Enter Account Details [9]

Create a new virtual machine and browse the ISO file we downloaded earlier. Enter details and

proceed.

53

Figure 7.6 - Name VM [9]

Figure 7.7 - Select disk space [9]

Name the machine and Specify disk capacity.

54

Figure 7.8 – Finish VM setup [9]

Figure 7.9 - Install Ubuntu [9]

If necessary customize the hardware and proceed. The procedure is known as in every other

installation of operating system.

55

Figure 7.10 - Visit official website of NS-3 [2]

 After the whole setup is complete and we have the OS installed, open the browser (Firefox).

Visit the official website of ns-3 [2] and download any version of choice. Follow the rest of

installation [13]. At this point, we need to install a few libraries and packages using the terminal

(command line):

sudo apt-get install g++ python3 python3-dev pkg-config sqlite3 python3- setuptools git qt5-default

mercurial gir1.2-goocanvas-2.0 python-gi python-gi-cairo python3-gi python3-gi-cairo python3-

pygraphviz gir1.2- gtk-3.0 ipython3 openmpi-bin openmpi-common openmpi-doc libopenmpi-dev autoconf

cvs bzr unrar gdb valgrind uncrustify doxygen graphviz imagemagick texlive texlive-extra-utils texlive-

latex-extra texlivefont-utils dvipng latexmk python3-sphinx dia gsl-bin libgsl-dev libgsl23 libgslcblas0

tcpdump sqlite sqlite3 libsqlite3-dev libxml2 libxml2-dev cmake libc6-dev libc6-dev-i386 libclang-6.0-dev

llvm-6.0-dev automake python3-pip libgtk-3-dev synaptic vtun lxc uml-utilities

 Then we need to run: sudo pip3 install cxxfilt. This is critical for ns-3 to work properly and differs from

version to version of ns-3 (closely look at the documentation of the version we are about to use).

 Finally, we extract the ns-3 zip file in a desired folder/workspace. After that, we enter the

folder/workspace and there are some sub folders along with some files. We build the project with

the “build.py” file using the command ‘./build.py --enable-examples --enable-tests’. Then, we enter

in the directory with the same name ‘cd <name of ns3 folder>’. In that folder we can either run

‘./test.py’ or ‘./waf configure’ because we must configure some parameters before start executing

any other scripts. First case ‘./test.py’ requires some time but can also run test scripts and provide

useful info about the proper installation of ns-3.

56

Figure 7.11 - Test the build and installation [13]

 If we are not familiar with the simulator or if we create simple scripts, we can have the default

profile of execution. In case we have complex functionalities in our script, then we must use the

optimized profile for faster execution as: ‘./waf configure --build-profile=optimized’.

We definitely have to install an editor for scripting, in our case we used “Sublime Text”. You may

use any of your preference.

Build NetAnim for visual representation of topologies requires the qmake package in the following

process:

a. Go to NetAnim directory pasting these commands in the terminal subsequently:

I. cd

II. cd workspace

III. cd <ns folder name>

IV. cd <netanim folder name>

b. Clean make files using the command: “make clean”

c. Make NetAnim using the commands: “qmake NetAnim.pro” and then “make”

d. Test the NetAnim installation by pasting the following command in the terminal,

while within the netanim directory: “./NetAnim”

If NetAnim opens, congratulations! NetAnim is now installed.

Function calculating throughput in script 3.2:

Description of CDF mentioned in 4.2

 The CDF (Cumulative Distribution Function) is a concept used in probability and statistics. It

is a function that provides information about the probability distribution of a random variable. In

particular, the CDF of a random variable X, denoted as F(x), gives the probability that X will take

on a value less than or equal to x.

57

Table 4.2: Simulation parameters

Description Value in NS-3 Corresponding value

Micro eNB transmit power 21.14 dBm 21.14 dBm

Macro eNB transmit power 37.99 dBm 37.99 dBm

Thermal noise 𝜎2 -101 dBm -101 dBm

Bandwidth 100 RB 20 MHz

Carrier frequency 36000 Earfcn 1.9 GHz

Path loss exponent 𝛽 4 4

58

Bibliography

[1] H. Gao, J. S. Bawa, R. Paranjape, Analysis of Acquired Indoor LTE-A Data from an Actual

HetNet Cellular Deployment. Wireless Pers Commun, vol. 114, issue 1, pages 545–563,

2020.

[2] Nsnam. Retrieved 10 11, 2023, https://www.nsnam.org/docs/release/3.31/models/ns-3-

model-library.pdf.

[3] M.A. Ismail, G. Piro, L.A. Grieco, T. Turletti. An improved IEEE 802.16 WiMAX module

for the ns-3 simulator, SIMUTools 2010 Conference, pages 1-10, March 2010.

[4] J. Farooq and T. Turletti, “An IEEE 802.16 WiMAX module for the NS-3 Simulator,”

SIMUTools 2009 Conference, March 2009, Rome, Italy.

[5] R. Chatzigeorgiou, and A. Bletsas, "Inference-based, Energy Efficient User Association

with Convergence Guarantees", IEEE International Conference on Communications (ICC),

May-June 2023, Rome, Italy.

[6] I. Poole, LTE Frequency Bands & Spectrum Allocations. Retrieved 10 11, 2023

http://www.radio-electronics.com/info/cellulartelecomms/lte-long-term-evolution/lte-

frequency-spectrum.php.

[7] D. Liu, L. Wang, Y. Chen, T. Zhang, K. K. Chai, and M. Elkashlan, “Distributed Energy

Efficient Fair User Association in Massive MIMO Enabled HetNets,” IEEE Commun. Lett.,

vol. 19, no. 10, pp. 1770–1773, Jul. 2015.

[8] G. Lee and H. Kim, “Green Small Cell Operation of Ultra-Dense Networks Using Device

Assistance,” Energies, vol. 9, no. 12, pp. 1–19, Dec. 2016.

[9] GeeksforGeeks. Retrieved 10 11, 2023, https://www.geeksforgeeks.org/how-to-install-

ubuntu-on-windows-using-vmware/.

[10] S. Carlos, HOW TO INSTALL WSL ON WINDOWS IEEE Software, 10, 2019,

https://works.bepress.com/smith-carlos/5.

[11] ubuntu. Retrieved 10 11, 2023, https://releases.ubuntu.com/focal/.

[12] vmw. vmware. Retrieved 10 11, 2023, https://www.vmware.com/products/workstation-

player/workstation-player-evaluation.html.

[13] A. S. Randy. Retrieved 10 11, 2023,

https://engineering.fresnostate.edu/research/bulldogmote/documents/NS3%20Tutorial%2

0Installation%20%20Randy.pdf.

