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Abstract

In recent years, the issue of traffic congestion has been steadily increasing, 

making driving an arduous and unfavorable experience for many of us. Despite 

the expansion of metropolitan areas, an effective solution to the continuously 

growing number of  vehicles in their  road networks has yet  to be found.  In 

response to this challenge, we have embarked on the design of an application 

that simulates traffic flow in the city of Chania, serving as a support system for 

traffic decision-making.

Our approach involves collecting real-time traffic data at intervals  of  a few 

minutes for each edge/road segment in the city. Subsequently, we employ a 

divisive  hierarchical  clustering  model  to  cluster  this  data,  extracting 

relationships among them, such as traffic propagation, split, and merge. This 

process enables us to illustrate the behavior of the road network’s traffic flow 

throughout  the  day,  providing  a  valuable  tool  for  developing  improved 

transportation systems and techniques to alleviate road overloading.
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Chapter 1 

Introduction

1.1 Importance of road traffic monitoring

Nowadays,  most  cities around the world suffer from traffic congestion,  and 

everything indicates that it will  continue to worsen, negatively affecting the 

quality  of  urban  life.  Increasing  travel  times,  fuel  consumption,  and 

environmental pollution make traffic congestion too 'expensive' from various 

perspectives. However, authorities have not yet found a solid solution for it. 

Road works,  accidents,  poor  transportation  infrastructure,  and traffic signal 

timing are  only  some of  the  reasons  that  contribute  to  traffic overload on 

certain  routes.  For  this  reason,  we  have  decided  to  develop  a  traffic 

management decision support system that incorporates real-time data mining 

techniques to extract traffic patterns.

By collecting and analyzing data on traffic conditions, we can predict the traffic 

flow on the road network of the city and therefore develop strategies to reduce 

congestion. These strategies may include adjusting the timing of traffic lights, 

stationing police officers at key spots for better real-time traffic regulation, or 

even planning for  future  transportation  infrastructure  projects.  Hence,  road 

traffic monitoring is an incredibly useful and important tool for improving traffic 

flow in modern, fast-growing societies.
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1.2 Technical difficulties in developing a 

viable real-time traffic mining framework

At first, we considered using the Google Maps APIs[1] to retrieve information 

about the speed and congestion of roads in a given area through the Google 

Maps Roads API. Undoubtedly, it is an easy-to-use API that provides more than 

we initially asked for. However, the drawback lies in the overwhelming costs 

associated with it, limiting our ability to scale and fine-tune the framework we 

intended to develop. For example, the Google Maps API imposes restrictions 

and bases its pricing policy on the number of queries it serves, prompting us to 

search for alternatives.

Subsequently,  we  explored  the  option  of  Mapbox[3],  where  traffic  data  is 

natively  matched  to  OpenStreetMap[4],  the  source  of  our  information  for 

modeling  the  city  road  network.  The  appeal  was  accessing  data  directly, 

outside of Mapbox SDKs and APIs[2]. However, the downside was that the price 

for this service was even higher than Google’s.

Eventually, we discovered that obtaining real-time traffic data under a pricing 

policy would not make our intended solution neither economically feasible nor 

scalable from smaller cities to metropolitan areas.  That’s why we decided to 

create our own database by 'scraping' traffic data from Google Maps. The idea 

is to collect information about traffic features (average speed, travel time, etc.) 

per  road network edge and treat  these data as time series.  This  approach 

allows us to analyze and extract relationships between the road segments of 

the network.
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1.3 Overview of our traffic relationships 

miner

The main objective of this project is to discern traffic relationships among road 

segments  within  the  network,  encompassing  phenomena  like  traffic 

propagation,  split,  and  merge.  This  pursuit  is  influenced by  the  framework 

introduced in [23]. The traffic of a particular edge can be propagated into one 

of its outgoing edges or be split into multiple ones. Conversely, the traffic of an 

edge may result from merged traffic from its incoming edges. Detecting these 

relationships requires defining similarities between the time series of different 

road segments/edges.

To  accomplish  this,  we  adopted  an  approach  initially  proposed  in  [5], 

leveraging a divisive hierarchical clustering algorithm with three distinct steps. 

After each step, clusters are further split into sub-clusters.

In  Step 1,  we utilize  shape-based clustering distance,  which  detects  edges 

whose traffic increases and decreases at the same rate based on the Euclidean 

distance of their corresponding normalized time series. In Step 2, we employ 

structure-based clustering distance to identify neighboring edges. Finally,  in 

Step 3, we apply value-based distance clustering to identify time series with 

similar values, based on their Euclidean distance.

To  ensure  our  implementation  is  accessible  to  the  general  public,  we've 

consolidated its functionality into a single, user-friendly application. We crafted 

a modern Graphical User Interface (GUI) that allows users to select the month, 

day,  time  span,  time  interval  for  the  time  series  data,  and  the  traffic 

relationships  they  are  interested  in.  Once  these  selections  are  made,  the 

program retrieves the desired time series data, clusters them, and displays the 

results on an interactive map using OpenStreetMap tiles.

Each choice made by the end-user holds significant importance, as the output 

varies  based  on  different  parameter  combinations.  For  instance,  traffic 

relationships on a Saturday will  differ from those on a Monday in the same 
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month, and a Friday in August will exhibit distinctions from a Friday in October, 

especially when the time span refers to rush hours versus the rest of the day. 

In summary, we aimed to design a minimal and user-friendly application where 

every option serves a purpose.

1.4 Thesis outline

This section outlines the following chapters’ description of this thesis:

• In  Chapter  2,  we  elaborate  on  the  design  of the  road  network  and 

topology of the city  under study. In our case this is the city center of 

Chania for which we construct the database of edges on which we later 

perform traffic mining.

• In Chapter 3, we develop an algorithm which is used for scraping traffic 

information from Google Maps’ web application and constructs our time 

series database.

• In Chapter 4, we develop our traffic mining framework that clusters road 

edges  based  on  their  time  series  through  a  hybrid  3-step  clustering 

model. We further showcase the effectiveness of our approach against 

other base line alternatives.

• In  Chapter  5,  we explain  the  design of  the  GUI  of  our  traffic mining 

application  which  produces  the  final  result  according  to  the  user’s 

preferences.

• Chapter 6 includes conclusive remarks and reviews the accomplishments 

of this thesis.
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Chapter 2 

Road network and traffic relationships

In this chapter, we will elucidate the process of obtaining and manipulating the 

necessary  road  data  from  OpenStreetMap.  Subsequently,  we  loaded  this 

data into a PostgreSQL[6] database, enabling us to model the road network 

of Chania city as a directed graph. Using the information extracted from this 

database, we constructed the edges of the network, which will serve as the 

foundation  for  our  examination  of  traffic  relationships  in  the  subsequent 

sections.

2.1 Definitions

Before delving into the practical aspects of this thesis, we must first establish 

the definition of an edge in the road network. Additionally, we will elucidate the 

underlying logic behind traffic relationships, specifically propagation, split, and 

merge.

2.1.1 Edges

In our model, we define an edge as the road segment that connects two nodes, 

which  we term as  'edge points'.  These edge points  are  nodes  in  the  road 

network that connect  two or  more road segments.  To simplify,  consider an 

edge as the portion of  the road from one turn to another.  When an object 

enters the edge, it travels the entire length of the edge until it reaches a point 
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where it  must  decide whether to turn or  continue straight.  This  concept  is 

illustrated in the directed network graph example below.

 

2.1.2 Traffic relationships

In order to be able to analyze and examine the traffic flow, we established 

three different traffic relationships between the edges of the network[5]:

  traffic propagation
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Figure 1. Directed Network Graph[5]

Here the edge points/nodes are depicted as regions (R1, R2, ...)  
and the blue arrows form the directed edges of the hypothetical  

road network.

Figure 2. Propagate Definition[5]

edge e12  propagates its traffic into edge e23



 traffic split

 traffic merge
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Figure 4. Merge Definition[5]

edge e23  and edge e73 merge their traffic into edge e34

Figure 3. Split Definition[5]

edge e12  splits its traffic into edge e23 and edge e26



2.2 Obtaining OSM data

The initial step in our project involved designing the road network for the city 

of  Chania.  Following  research,  we  identified  OpenStreetMap  as  a  valuable 

resource, as it is an open geographic database offering updated topological 

data  for  nearly  every  city  or  region  worldwide.  To  obtain  the  spatial  road 

network data, users can navigate to [4], search for their desired region using 

the search bar, and then click the export button.

For our specific case, where we required a smaller area as a 'test map' for 

better  comprehension,  we manually  selected the center  of  Chania city  and 

exported the data in OpenStreetMap (.osm) files using the same process.

2.3 Importing OSM data into PostgreSQL

Once we obtained the raw OpenStreetMap (OSM) data, our next step was to 

convert  them  into  a  usable  and  readable  format.  To  achieve  this,  we 

downloaded the  osm2pgsql tool[7], which facilitated the import of the .osm 

file  into  a  PostgreSQL  database  through  the  command  line.  Following  this 

process,  we  utilized  an  interface,  specifically  pgAdmin[8],  to  store  and 

manipulate the pertinent data extracted from the database through queries. 
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The  essential  spatial  data  for  modeling  our  road  network  is  found  in  the 

planet_osm_line table. This table encompasses comprehensive details about 

the  network,  and  our  specific  focus  was  on  three  key  columns:  osm_id, 

highway, and way. The osm_id column contains the unique identifier for each 

node on the map, the  highway column specifies the type of the road (e.g., 

living_street,  footway,  residential),  and  the  way column provides  geometry 

information about  the nodes,  including their  coordinates  and how they are 

interconnected. 

By utilizing the appropriate queries, we successfully extracted either all the 

nodes of the map as points or their linked format, known as linestrings, where 

nodes of the same id are connected in a line. However, in both cases, we had 

to establish certain criteria based on the 'highway' column to exclude routes 

that are not accessible by cars. The queries we employed for this purpose are 

as follows:

• Points/nodes
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Text 1. Query for Nodes

SELECT osm_id, st_asText(((ST_Dumppoints (st_transform(way, 4326))).geom))
FROM planet_osm_line 
WHERE highway!='NULL' AND highway!='unclassified' AND highway!='footway' AND 
highway!='steps' AND highway!='service' AND highway!='path' AND highway!
='track' AND highway!='living_street' AND highway!='pedestrian';

Figure 5. Osm Database



• Linestrings

To obtain the longitude and latitude format, we needed to convert the current 

Reference System to the World Geodetic System, identified by SRID 4326. The 

PostGIS[9] function st_transform(way, 4326) returns a geometric variant of the 

'way' column, and the st_asText() function provides the Well-Known Text (WKT) 

representation of that geometry without SRID metadata. This allowed us to 

obtain the data in linestring format. To extract the points along every linestring 

and their individual coordinates, we also used the ST_Dumppoints() function.

2.4 Visualizing data on QGIS

Considering the enormous size of data in these databases, we sought a way to 

visualize them for better understanding before making our selection. Initially, 

we created a PostGIS extension on our PostgreSQL database. Subsequently, we 

downloaded  a  Geographic  Information  System  application,  specifically  the 

QGIS[10]  application.  QGIS  allowed  us  to  visualize  our  data  on  an 

OpenStreetMap tile and verify querying results, such as the selection of data 

types to be excluded in the 'highway' column, using its Query Builder module. 

The interface of the application is depicted in the following image, with the 

green lines on the map representing the data from the selected table in the 

PostgreSQL database.
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Text 2. Query for Linestrings

SELECT osm_id, st_asText((st_transform(way, 4326))) as linestrings
FROM planet_osm_line 
WHERE highway!='NULL' AND highway!='unclassified' AND highway!='footway' AND 
highway!='steps' AND highway!='service' AND highway!='path' AND highway!
='track' AND highway!='living_street' AND highway!='pedestrian';



2.5 Edge construction

At this stage, we had two CSV files. The first contained all the points/nodes on 

the map with their IDs, and the second contained linestrings, which are the 

linked form of those points/nodes, along with their unique IDs. Our primary 

task was to identify and store the points that serve as edge points, namely 

those where an edge starts or ends. This step was crucial for the subsequent 

process of edge identification.
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Figure 6. QGIS interface



2.5.1 Finding the edge points

To  read  and  handle  the  data  in  those  CSV  files,  we  utilized  the  pandas 

library[11] in Python, an incredibly powerful and user-friendly open-source tool 

for data analysis and manipulation. With the help of some built-in functions, 

particularly those for identifying duplicates, we managed to extract the edge 

points from the first file. Simply put, if  a point occurs more than once with 

different IDs in that file, it indicates an edge point, as mentioned in Section 

2.1.1, signifying a connection between two or more road segments/edges. To 

validate  our  approach,  we  stored  these  edge  points  in  another  file  and 

visualized them as markers using the gmplot library[12] in Python.
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Figure 7. Edge Points



2.5.2 Creating edges

Having identified the edge points of the city’s road network, our next step was 

to create its edges. One way to achieve this is by taking each edge point from 

the new file created in Section 2.5.1 and sequentially searching for it in the list 

of nodes obtained from the database. Subsequently, if we find such a node, we 

check the ID of the next node in the file. If the IDs are the same, it indicates 

that we have an edge starting from the current (edge) point and ending at the 

next point in the list. Otherwise, we have an edge starting from the previous 

point and ending at the current (edge) point. While this method may not be 

optimal in terms of time and resources, it is practical. We acknowledge the 

potential for improvement in this aspect of our edge extraction technique as 

future work.

To validate the created edges, we executed the script for data mining, which 

we will analyze later. Unexpectedly, despite the correctness of our logic, we 

encountered an issue due to the short length of edges in a city like Chania. 

This  limitation  prevented  us  from  obtaining  accurate  measurements  for 

average  speed and  travel  time in  our  time series  database.  Google  Maps' 

minimum travel time is 1 minute, and it does not provide information at the 

granularity of seconds, which was essential for our needs. Consequently, we 

considered assigning more than one actual edge of the network to a single 

edge ID. This approach aimed to enhance differentiation between edges for 

improved accuracy in our data representation.

2.5.3 Creating linestring edges

Due to the mentioned limitation at the end of Section 2.5.2, we decided to 

incorporate the second file from the osm database, which contains linestrings 

of the road network. A linestring is essentially a sequence of nodes, positioned 

one after the other, that when connected, forms a line (a sequence of edges) 

on the map. Following a similar logic, we extracted each edge point from the 
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file created in the initial  step and sequentially searched for it  in the list of 

linestrings.  If  we found an edge point  in  any set  of  points  (linestring),  we 

considered  the  entire  linestring  as  an  edge.  This  approach  allowed  us  to 

construct our database of hyper-edges, which will be utilized for traffic data 

mining.

2.6 Conclusions & Future work

One  of  the  most  challenging  aspects  of  this  thesis  was  finding  free  and 

updated spatial data to model the city's road network. Initially, we considered 

using Google Maps and its APIs, given its reputation as a constantly evolving 

service and the distinction of being a premier mapping and routing provider. 

However, in today’s digital landscape, data is often as valuable as currency, 

playing a pivotal role in business success. While Google occasionally provides 

data for  application  development,  developing a fully-fledged application  for 

real-world business typically involves fees for its services. Nevertheless, our 

goal was to create an application that would be free for both the developer and 

the user. To achieve this, we explored and developed our own alternative data 

harvesting solution.

Fortunately, after conducting research, we discovered OpenStreetMap, which 

supplied  us  with  all  the  geographical  data  necessary  for  the  project. 

Additionally,  we  were  pleasantly  surprised  to  find  that  all  coordinate 

information is seamlessly compatible with Google Maps.  This alignment will 

prove particularly beneficial in the upcoming data mining discussions.

As a part of future work, we recommend considering the use of original edges 

if,  at  some point,  Google Maps starts  providing travel  time for short-length 

road segments with granularity in seconds.  However,  developers should be 

aware  that  this  approach  will  require  corresponding  resources  for  the 

automated  process  of  data  scraping,  as  the  number  of  real  edges  will  be 

significantly larger than the hypothetical ones used in this implementation.
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Chapter 3

Traffic data collection

In this chapter, we will present the tools we used to scrape the web application 

of  Google Maps in order to create our own database of time series for the 

edges  of  the  road  network.  Additionally,  we  will  explain  the  techniques 

employed to obtain these measurements on a regular basis.

3.1 Data collection tools

It is evident that web scraping becomes essential in data science when there is 

no  alternative  source  to  acquire  the  necessary  data  for  analysis.  In  our 

scenario,  we have already generated a file containing the edges.  Now,  our 

objective is to gather real-time traffic data for each of these edges at regular 

intervals,  enabling  the  creation  of  a  time  series  database  for  subsequent 

clustering. Achieving this requires an automated process wherein we retrieve 

information such as  distance, travel time, and  delay from the source to the 

destination point/node of each edge.

This specific data, among others, can be obtained from services like Google 

Maps,  which  we  consider  to  be  the  most  up-to-date  and  accurate  for  the 

information we seek. After researching various scraping methods, we opted for 

a combination of Selenium[13] and Beautiful Soup[14] in Python to extract 

and process this data efficiently.
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3.1.1 Selenium

For our automated data mining routine, we selected Selenium due to its status 

as a free,  open-source framework widely employed for automated scraping 

across various platforms and browsers. It goes beyond being merely a tool, 

serving as a suite of software that facilitates the development of automation 

scripts for web applications by offering powerful built-in functions. In essence, 

all that is required is to download the updated driver for the preferred browser 

and  then set  the  path  for  Selenium's  ‘WebDriver’  tool.  This  enables  direct 

communication  with  the  browser,  allowing  us  to  focus  on  extracting  the 

desired data from the rendered HTML document generated by each web page.

3.1.2 Beautiful Soup

Now that we have addressed the automation process, our focus is on reading 

and extracting  information about  travel  time,  distance,  and delay  for  each 

iteration in the file of edges. Whenever a Google Maps page loads, it generates 

an  HTML document  that  encompasses  the  data  essential  for  scraping  and 

creating our time series database. To achieve this, we opted for Beautiful Soup, 

a Python library specifically designed for parsing HTML information from web 

pages. It allows us to isolate the classes and titles of interest through specific 

commands, facilitating the extraction of the required data.

3.2 Time series data collection

Several key factors required careful consideration before proceeding with the 

modeling of our data mining algorithm. These factors include the correct URL 

format, the identification and selection of relevant parts within the HTML of the 

web  page,  and  the  establishment  of  a  mechanism to  sustain  this  process 
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continuously for the desired duration. In the following sections, we will delve 

into the challenges we encountered in addressing these aspects.

3.2.1 WebDriver setup and URL construction 

For our automated process with Selenium, we opted for  Google Chrome as 

the browser of choice. To set up Selenium's WebDriver tool, we downloaded the 

driver  for  the  current  version  of  the  browser,  allowing  seamless 

communication.  Additionally,  to  minimize  reCaptcha  verifications,  we 

employed a fake user agent. Constructing the URL was the next step, using the 

pair of coordinates for each edge to retrieve the necessary information in drive 

mode. It's worth noting that Selenium's capabilities enabled us to effortlessly 

handle  the  "cookie  consent"  page  that  appears  at  the  beginning  of  each 

session  by  automatically  locating  and  clicking  the  appropriate  button.  The 

following code snippet illustrates the implementation of these steps:
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Text 3. Selenium 

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.chrome.service import Service
from fake_useragent import UserAgent

service = 
Service('/home/user/Downloads/chromedriver-linux64/chromedriver') 
user_agent = UserAgent().random
options = Options().add_argument(f'--user-agent={user_agent}') 
driver = webdriver.Chrome(options=options, service=service)

url = f'https://www.google.com/maps/dir/{src_lng},{src_lat}/{dest_lng},
{dest_lat}/data=!4m2!4m1!3e0?hl=en'

driver.get(url)

if first_time == True:
time.sleep(5) 
button = driver.find_element(By.TAG_NAME, 'button') 
button.click()
first_time = False



3.2.2 Web page inspection

Considering that we set everything up about the Selenium suite, we had to find 

which classes, titles and elements to isolate using the HTML parser Beautiful 

Soup. This can be achieved by inspecting the part of the page that has the 

information we are looking for. For example, if we search in Google Maps the 

directions to go from one place to another and then navigate to the area of the 

page that has the information you need, then right click and click “Inspect”, we 

get something like the following image:

Fortunately,  the structure of  the HTML document remains consistent across 

every iteration, allowing us to scrape the required data using Beautiful Soup's 

built-in functions. Subsequently, we can store this data to construct our time 

series database. The following code snippet represents our implementation.
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Figure 8. Page Inspection



As the web page is fully loaded by our driver, we parse the page’s source file 

using lxml’s HTML parser. Firstly, we search for the class named “XdKEzd”  and 

then for the next div inside that class, which has our delay and travel time 

information. The class title of that next div contains the delay data, if there is 

such, and the class’s text is our travel time data. Then we search  inside the 

class “XdKEzd”  for the class named “ivN21e tUEI8e fontBodyMedium”,  whose 

text is our distance data. Finally, we compute and store the recorded speed in 

our database.
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Text 4. Beautiful Soup 

from bs4 import BeautifulSoup

result = None

while result == None :
soup = BeautifulSoup(driver.page_source, 'lxml') 
result = soup.find('div', class_='XdKEzd')

delay_div = result.find('div') 
if len(delay_div['class']) > 2:

delay = delay_div['class'][2] 
else:

delay = 'no-data'

travel_time = result.find('div').text.replace(' min', '')
distance = soup.find('div', 

           class_='ivN21etUEI8efontBodyMedium').text

speed = float(distance)/(int(travel_time)*60)
if delay == 'delay-heavy':

speed /= 2
if delay == 'delay-medium':

speed /= 1.5

if file_exist == False:
edges.append([src_lng, src_lat, dest_lng, dest_lat, speed]) 

else:
edges.append(speed)



3.2.3 Threading

Our objective was to devise a traffic data mining algorithm capable of running 

continuously for an extended duration, collecting data at regular intervals over 

a predetermined period.  This  aligns  with the definition of  a time series.  To 

achieve this, we employed the threading library in Python, with each thread 

initiating a new automated session. By manually executing this script at the 

desired  time,  it  autonomously  initiates  a  new  session  after  the  specified 

interval has elapsed. 

At this point, it's important to note that, on a single script execution for our file 

of edges, the optimal frequency we achieved was one measurement every 10 

minutes. This was achieved with two different computers working in parallel for 

the same purpose. Consequently, each computer could initiate a new session 

every 20 minutes to avoid overloads and potential failures. In essence, the 

more edge IDs present, the greater the resources required to collect real-time 

data within short time intervals.

3.3 Data management

As stated in Section 3.1, the primary objective of the data mining algorithm we 

designed was to construct a dedicated database of time series for each edge 

ID. In practical terms, we calculate the speed, defined as the distance from the 

source  to  the  destination  node  of  the  edge  divided  by  its  travel  time.  To 

enhance the differentiation between measurements, we opted to incorporate 

the factor of delay into the equation.

Prior to executing the script,  it's  necessary to predetermine its duration by 

adjusting certain parameters, such as the total number of sessions and the 

waiting time before each subsequent session begins. Once the execution is 

complete, a file is generated in the format: "Day(yyyy-mm-dd).csv". However, 

it's important to note that data scraping might not occur throughout the entire 

25



day. The process often requires manual oversight for unexpected blocks that 

necessitate a manual refresh or for reCaptcha pop-ups that require verification.

Given this, if we have one file with data for a specific day and time span, and 

another file with data for the same day and month but a different time span, 

we need to merge these files to create a comprehensive time series database 

for that specific day of the month.

3.4 The time series database

Before we proceed to the description of our time series database, we have to 

define what we mean as time series and traffic of an edge. Assuming that 

Google Maps works as a sensor  s  for us on a particular road segment/edge, 

the time series of that sensor is a sequence of the speeds recorded during a 

specific time period [ts, te]  and are given by the formula:

where vi is the speed recorded by the sensor during the time period [ti, ti+Δt) 

and Δt  is the transmission rate of the sensor.

An example of the time series of a sensor  s  with a transmission rate of 10 

minutes would be: TSs = {(30, 9:00), (15, 9:10), (20, 9:20), …} and that is the 

representation of the traffic in the corresponding edge, recorded by its sensor. 

Therefore, the traffic of a road network is a set of time series that describe the 

traffic of its edges during a specific time period [ts, te] :

Having grasped these definitions, we successfully crafted our own time series 

database using Selenium and Beautiful Soup. The table below serves as an 

example of a dataset for a random day spanning from 9:00 to 17:30.
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index src_lng src_lat dest_lng dest_lat 9:00 9:10 … 17:30

0 35.4795 23.9993 35.5042 24.0066 6.67 3.33 … 10

1 35.5030 24.0057 35.5026 24.0083 4.17 4.17 … 4.17

2 35.5063 24.0036 35.5042 24.0066 4.17 4.17 … 6.25

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

843 35.5182 24.0398 35.5167 24.0399 7.5 5 … 7.5

The index  column contains the id of the hyper-edges of our road network. The 

src_lng  and src_lat  columns contain the longitude and latitude coordinates of 

each edge’s  starting/source point,  respectively.  Similarly,  the  dest_lng   and 

dest_lat  columns contain information about longitude and latitude coordinates 

of each edge’s ending/destination point. The rest of the columns are named 

with the time each session started and contain the speed recorded, at this 

specific time, on every edge.

If we plot the time series of the edges, we can make useful observations, both 

for the specific day being plotted and for each individual  edge itself,  even 

before clustering them. For instance, when comparing the time series of e0 and 

e57 for the same time span on different days of the same month, we obtain the 

following results:
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Figure 9. Time series' Plot(1)

Figure 10. Time series' Plot(2)



3.5 Conclusions & Future work

Real-time data  collection  is  undoubtedly  essential  for  projects  of  this  kind, 

given  its  influential  role  in  shaping  the  final  outcome.  The  combination  of 

Selenium  and  Beautiful  Soup  proved  to  be  ideal  for  us,  and  for  several 

compelling  reasons.  Primarily,  Selenium provides  the  capability  to  visualize 

precisely what you are attempting to scrape. This means you can verify the 

logic behind constructing edges and ensure the accurate extraction of data for 

your database through Beautiful Soup. Moreover, Selenium allows for effective 

handling of issues that may arise on the specific web application, such as the 

"cookie  consent"  page  at  the  start  of  each  session,  webpage  blocks,  and 

verification pop-ups. Importantly, these challenges can be addressed without 

disrupting  the  automated  process  or  losing  previously  collected  data.  The 

synergy of  these factors,  along with the excellent  performance of Beautiful 

Soup's built-in functions, validates our choice for this approach.

Nevertheless,  there  are  conceivable  improvements  that  could  enhance this 

script  in  the  future.  For  instance,  after  every  browser  update,  the  need to 

download  the  new  driver  and  replace  it  with  the  older  one  for  proper 

functioning  of  Selenium’s  WebDriver  module  can  be  a  cumbersome  task. 

Currently,  the web driver manager tool  provided for this  purpose somehow 

does not work. Another inconvenience lies in the manual treatment of blocks 

and pop-ups, requiring developer supervision and making the process time-

consuming. In conclusion, if these issues could be addressed, coupled with a 

high-speed internet connection and adequate resources, this algorithm has the 

potential to evolve into a powerful tool for constructing time series databases.
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Chapter 4 

Traffic Mining

In  this  chapter,  we  will  elucidate  our  custom implementation  of  a  divisive 

hierarchical  clustering model.  Each of  the three steps of  the model  will  be 

thoroughly analyzed, accompanied by an introduction to the Python tools that 

aided us in clustering the database of edges’ time series created earlier. The 

outcomes of our algorithm will be discussed, and, in the final sections, we will 

demonstrate how to visualize the clustered data on an interactive map.

4.1 Clustering algorithms and tools

Python offers an extensive array of libraries and packages for data analysis 

and machine learning, facilitating the implementation of clustering algorithms 

tailored to specific needs. In our case, the combination of  DBSCAN[15] and 

OPTICS[16]  clustering  algorithms  emerged  as  the  optimal  choice.  These 

algorithms  utilize  distance  calculating  functions  that  align  with  the 

requirements of constructing our three-level clustering model. In the following 

sections, we will elaborate on the workings of these algorithms and elucidate 

how we utilized them to achieve our objectives.

4.1.1 DBSCAN

Clustering  analysis  is  fundamentally  an  unsupervised  learning  method  that 

partitions  data  into  specific  groups.  Density-based  spatial  clustering  of 
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applications with noise (DBSCAN)[15] is a data clustering algorithm commonly 

employed in machine learning to distinguish regions of high point density from 

those of low point density. It groups points that are close to each other based 

on  a  distance  measurement  function  and  designates  points  in  low-density 

regions as noise.

 The DBSCAN algorithm uses two parameters:

• epsilon (eps): a distance measure that specifies how close the points 

have to be, so as to be considered neighbors and therefore part of a 

cluster.

• min_samples:  the  minimum number  of  points  (neighbors)  to  form a 

dense region.

In  order to  choose these parameters,  we need to  have a basic  knowledge 

about the dataset that will be used and then perform a parameter estimation, 

as follows:

• In  general,  if  the  value  of  epsilon  is  chosen  too  large,  clusters  may 

merge, and the majority of data points will be grouped into the same 

clusters. Conversely, if it is chosen too small, a significant portion of data 

points  may  be  considered  as  outliers.  Experimentation  with  this 

parameter, both increasing and decreasing it, is necessary to find the 

most suitable value for our data. However, smaller values of epsilon are 

typically preferred.

• The  minimum  number  of  min_samples  can  be  determined  from  the 

number  of  dimensions  (D)  in  the  dataset,  with  the  requirement 

min_samples  >=  D  +  1.  Setting  min_samples  =  1  wouldn't  be 

meaningful,  as it  would result  in every data point being considered a 

cluster on its own. Typically, the larger the dataset or the noise within it, 

the  larger  the  value  chosen  for  the  min_samples  parameter. 

Nevertheless, experimentation is crucial to identifying the most suitable 

value.
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Given  epsilon  and  min_samples,  we  can  categorize  the  data  points  in  the 

following three types:

• Core Point: a point that has at least min_samples within epsilon 

range.

• Border/Non-core Point: a point that has fewer than min_samples 

within epsilon range, but is in the neighborhood of a core point.

• Noise/Outlier: a point that is neither a core nor a border.

To comprehend the entire process of the DBSCAN algorithm, it's essential to 

delve into the concepts of  Density Reachability and  Density Connectivity. By 

definition, a point  b is directly density-reachable from a point  a if  a is a core 

point, and b is within its neighborhood. This implies that only core points have 

the capacity to reach non-core points in the context of density reachability. For 

example, on the diagram below for min_samples=4:
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Figure 11. Core, Border and Noise Points[17]



Concerning Density Connectivity, two points  a and  b are considered density-

connected if there exists a point c such that both a and b are density-reachable 

from  c,  forming  a  chaining  process.  Density  Connectivity  is  a  symmetric 

relation, in contrast to Reachability, which is asymmetric.

To sum up, the steps of the DBSCAN algorithm are the following:

1. For every point, find all the neighbor points within eps distance.

2. Identify the core points with at least min_samples as neighbors.

3. Create a new cluster for every core point.
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Figure 12. Density Reachability[18]

Point  A and all  the  red points  are  core  points  as  they  
contain at least 4 points, including itself, whereas points  
B and C are non-core points. Point A is directly density-
reachable from the three red points that are connected to  
it with a “double arrow” and vice versa. Points B and C  
are directly density-reachable from each red point that is  
closer  to  them,  respectively,  but   indirectly density-
reachable from point A. Also, point A and all the red ones  
are   not density-reachable  from  points  B  and  C,  and  
lastly, point N is an outlier, so it is not density-reachable  
from any other point.

A C

B

N



4. Find all the density-connected points for each core point and assign them 

on the same cluster.

5. Assign each remaining non-core point to a nearby cluster,  if  possible, 

otherwise consider it as noise.

The advantages of DBSCAN are:

• It  does not  require specifying the number of  clusters,  unlike k-means 

which needs k as an input.

• It can handle clusters of different shapes and sizes.

• It can detect outliers and separate them from clusters.

• It requires only two parameters and is insensitive to the order of data.

On the other hand, the disadvantages of DBSCAN are:

• It cannot handle varying densities.

• It can struggle on border points that are reachable from more than one 

clusters, depending on the order the data are processed.

• It can struggle on high dimensional data, as it depends only on distance 

measures.

• It is hard to determine the correct set of parameters.

4.1.2 OPTICS

Ordering Points To Identify the Clustering Structure (OPTICS)[16] is a density-

based algorithm that, unlike DBSCAN, can handle varying densities and shapes 

and can identify hierarchical structures. Unlike DBSCAN, where we need to pre-

determine an optimal epsilon parameter, OPTICS processes multiple distance 

parameters simultaneously. It works with an infinite number of epsilons (epsi) 
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smaller than a "generating distance" or max_eps, with the constraint  0 <= 

epsi <= max_eps.

To ensure a consistent result, OPTICS stores the order in which the data are 

processed, giving priority to high-density clusters, specifically those with the 

lowest epsilon.  This allows OPTICS to be effective in identifying hierarchical 

structures within the data. The information it provides consists of two values:

• core distance: is the minimum value of epsilon to classify a point as a 

core point. If it is not a core point, its core distance is UNDEFINED:

where p  is a data point, ε  is the distance value, Nε(p)  is the neighborhood of 

the data point for the specific distance value, MinPts  is the min_sampes value 

and MinPts-distance(p)  is the data points’ distance from its MinPts-th neighbor.

• reachability distance: is the maximum of the core distance of point p 

and the Euclidean distance (or any other metric) between points o and p. 

If p is not a core point, its core distance is UNDEFINED:

where  o  and  p  are  data  points,  ε  is  the  distance  value,  Nε(p) is  the 

neighborhood of p data point for the specific distance value and MinPts is the 

min_sampes value.

After  calculating the reachability  distance for  every data point,  the OPTICS 

algorithm  constructs  an  ordered  list  of  points,  known  as  the  clustering 

structure  of  the  dataset.  To  facilitate  the  visualization  of  this  clustering 

structure,  OPTICS  generates  a  reachability  plot.  This  plot  illustrates  the 

reachability distance values for  each data point  in  the order in which they 
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appear in the cluster ordering,  offering insights into the clustering patterns 

within the dataset.

In the ordered list depicted on the reachability plot, each point is associated 

with a reachability distance, signifying the ease with which that specific data 

point can be reached from other points in the dataset. Notably, clusters with 

higher density are reflected as deeper "valleys" on the plot, whereas clusters 

with  lower density appear as  shallower "valleys." This observation suggests 

that points with similar reachability distances are more likely to belong to the 

same cluster, providing a visual indication of the clustering structure within the 

data.

Finally, the advantages of the OPTICS algorithm are:

• It can handle varying densities.

• It does not need to determine the perfect epsilon, as it only needs it to 

reduce the process time.

• It can reveal clusters that would not be apparent with a constant epsilon.
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Figure 13. Reachability Distances and Reachability Plot[19]

On the left side we have a visual representation of reachability distances and on the right side the  
reachability plot, which corresponds to the three clusters on the left.



On the other hand, the disadvantages of the OPTICS algorithm are:

• It has higher computational complexity than DBSCAN.

• It requires more memory than DBSCAN.

4.2 Divisive hierarchical clustering

Hierarchical clustering is a clustering technique that splits or merges clusters 

depending  on  their  similarities  or  differences.  There  are  two  types  of 

hierarchical clustering:

• Agglomerative: Initially, each data point is regarded as a single cluster. 

At each subsequent step, similar clusters merge until one or N clusters 

are formed.

• Divisive: Initially, every data point is considered to be part of the same 

large  cluster.  At  each  step,  clusters  split  into  sub-clusters  based  on 

certain criteria, continuing until each data point becomes an individual 

cluster or N clusters are formed.

For the purpose of this thesis, we designed a divisive hierarchical clustering 

model.  Divisive  hierarchical  clustering,  in  contrast  to  agglomerative 

hierarchical  clustering,  is  commonly  employed  in  statistical  analysis.  It 

operates as a top-down technique, necessitating either raw data or a distance 

matrix  for  execution.  When using  raw data,  it  automatically  computes  the 

distance matrix in the background, employing a chosen distance metric, such 

as the Euclidean distance.

As we were unable to find Python tools that met our requirements for this 

project  segment,  we  developed  a  custom  divisive  hierarchical  clustering 

algorithm with  three  distinct  levels.  The  primary  distinctions  among  these 

levels lie in the choice of distance metric and the type of data utilized. Our 

37



database  incorporates  both  geographical  data  for  the  edges  and  their 

associated speed measurements. To simplify this, consider the logic behind the 

algorithm as follows:

1. Consider all data points as a single cluster.

2. Choose the distance metric that will be applied on each step. 

3. Split  every  cluster  into  sub-clusters  using  the  OPTICS  or  DBSCAN 

algorithm, until the process is completed.

The following diagram shows an example of our divisive hierarchical clustering 

implementation.
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Figure 14. Divisive Hierarchical Clustering Diagram

Lets say that in the first big cluster we have the data points of our time series database. At step 1,  
we cluster these points and we get two smaller clusters. We follow the same logic using the  
proper distance metric and data on each step, until we complete them. After step 3, we get the  
final clusters that will determine the traffic relationships among the edges of our road network.



4.3 The 3-step clustering model

At this point, we will elucidate each step of the 3-step hierarchical clustering 

model  we  devised,  employing  DBSCAN,  OPTICS,  and  other  tools  from  the 

scikit-learn library  in  Python.  We will  delve  into  both  the  theoretical  and 

practical  aspects  of  each  step,  presenting  our  thoughts  and  work.  The 

approach adopted is rooted in [5].

4.3.1 Step 1

In step 1, where all edges are initially members of the same cluster, our goal 

was  to  identify  those  edges  whose  traffic  exhibits  both  increasing  and 

decreasing patterns at the same rate. We accomplished this by calculating the 

shape-based distance of the edges, determined by the Euclidean distance of 

their  respective  normalized  time  series.  To  normalize  the  time  series,  we 

utilized the  normalize() function from the ‘sklearn.preprocessing’ tool, which 

employs the Euclidean norm formula. So if x=(x1, x2, …,  xn) is a row of our time 

series database, after normalization it becomes (x1/||x||2,  x2/||x||2,  ...  ,xn/||x||2), 

where:

Every row in our database has the data we collected for each edge id which 

means, by definition, that every row contains the edge id’s time series. Now 

that  we  have  their  normalized  values,  we  can  calculate  their  Euclidean 

distance, as follows:

where we assume that we want to calculate the Euclidean distance of edges e1 

and  e2.  Then,  TS1 and  TS2 are their corresponding time series for a specific 
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period of time [ts, te]  and v1’[ti], v2’[ti]  are the normalized values at ti  for TS1 

and TS2  respectively.

We implemented step 1 using the OPTICS algorithm. Initially, we created an 

array comprising values selected from our time series database, representing 

the  rows  and  columns,  and  subsequently  normalized  them.  The  OPTICS 

algorithm was then applied with specific parameters, including max_eps=0.2, 

min_samples=10,  and the  Euclidean distance metric.  We determined  these 

parameters through experimentation, assessing their silhouette score, which 

ranges from -1 (worst) to 1 (best). Scores near 1 signify that data points are 

distant from other clusters, while scores near 0 suggest overlapping clusters, 

and negative values indicate incorrect cluster assignments. Considering our 

normalized data range from 0 to 1, we observed that an epsilon greater than 1 

would be impractical. Similarly, a significantly smaller value for min_samples 

would result in small clusters unlikely to further split in subsequent steps. We 

present a code snippet of our implementation right below.
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Text 5. Step 1 Implementation

import numpy as np
from sklearn.cluster import OPTICS
from sklearn.metrics import silhouette_score
from sklearn.preprocessing import normalize

X_train = np.array(time_series.values) 
X_normalized = normalize(X_train) 

optics_model = OPTICS(min_samples=10, max_eps=0.2, 
metric='euclidean').fit(X_normalized)

 
print(f'Score at Step 1 is: 

{silhouette_score(X_normalized,optics_model.labels_)}')



4.3.2 Step 2

In step 2, our objective was to identify edges, within the sub-clusters created in 

step 1,  that are topologically close to each other in  the network graph.  To 

achieve this, we computed the  structure-based distance between the data 

points, determined by the haversine distance of their respective source edge 

points' coordinates. The haversine formula calculates the great-circle distance 

between two points on a sphere based on their longitudes and latitudes.

The central angle θ  between two points on a sphere is: 

 

where d  is the distance between the two points (epsilon value) and r  is the 

radius of the sphere (radius of Earth = 6371km).

Assuming that we need to calculate the haversine distance between two edges 

e1 and e2, the haversine of θ  would be as follows:

where φ1, φ2 are the latitudes of the source edge points of e1 and e2, and λ1, λ2 

are the longitudes of the source edge points of e1 and e2, respectively.

Finally, the haversine function, that computes half a versine of the angle  θ, 

applied to both the θ and the latitude, longitude differences is:

We  implemented  step  2  using  the  DBSCAN  algorithm  and  its  haversine 

distance metric. Initially, we generated an array that included the latitude and 

longitude values of the source points for the edges within each cluster formed 

in  step  1.  Subsequently,  we  selected  a  set  of  min_samples  and  epsilon 
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parameters, with epsilon being divided by the Earth's radius in kilometers, as 

the haversine metric requires it in radians. The choice of these parameters was 

made  through  experimentation,  adjusting  them  incrementally  and 

decrementally  while  monitoring  the  silhouette  score.  We  present  a  code 

snippet of our implementation and a plot of its results right below.
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Text 6. Step 2 Implementation

import numpy as np
from sklearn.cluster import DBSCAN
from sklearn.metrics import silhouette_score

kms_per_radian = 6371 
epsilon = 5/kms_per_radian 
min_samples = 3

coords = temp[['source_lat', 'source_lng']].values 
X_train = np.array(coords) 

dbscan_cluster_model = DBSCAN(eps=epsilon, min_samples=min_samples, 
   algorithm='ball_tree',metric='haversine').fit(X_train)

print(f'Score at Step 2 (for cluster {i}) is: 
{silhouette_score(X_train, dbscan_cluster_model.labels_)}')



4.3.3 Step 3

In the concluding step, step 3, our aim was to identify edges whose time series 

exhibit similar values, forming the final clusters of our model. To accomplish 

this,  we computed the  value-based distance,  which  is  determined  by the 

Euclidean distance of their respective time series.

As we mentioned at Section 4.3.1,  every row of our database contains the 

edge id’s  time series  information.  Assuming that  we want  to  calculate the 

Euclidean distance between two edges  e1 and  e2,  our formula would be as 

follows:
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Figure 15. DBSCAN Haversine Distance Results

On x axis we have the latitudes and on y axis the longitudes for the edges’ source points of a specific  
cluster generated after step 1. On the right side of the plot we have the number and the color of the  

cluster that each edge will be assigned after step 2.



where TS1 and TS2 are their corresponding time series for a specific period of 

time [ts, te]  and v1[ti], v2[ti]  are the corresponding values at ti  for TS1 and TS2 

respectively.

We implemented step 3 using the OPTICS algorithm and its Euclidean distance 

metric. Initially, we formed an array comprising the data of the edges within 

each cluster generated in step 2. Subsequently, we selected a set of max_eps 

and  min_samples  parameters  based  on  their  silhouette  score.  For 

min_samples, we chose the minimum number that makes sense, considering 

it's the final step in our divisive hierarchical clustering model. Regarding the 

max_eps parameter, we conducted experiments by adjusting it incrementally 

and decrementally to optimize the silhouette score. We present a code snippet 

of our implementation right below.
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Text 7. Step 3 Implementation

import numpy as np
from sklearn.cluster import OPTICS
from sklearn.metrics import silhouette_score

X_train = np.array(time_series.values)

optics_model = OPTICS(min_samples=2, max_eps=2, 
metric='euclidean').fit(X_train)

print(f'Score at Step 3 (for cluster {i}, {j}) is: 
{silhouette_score(X_train,optics_model.labels_)}')



4.4 Separation of traffic relationships

We enhanced our clustering algorithm by introducing an additional feature that 

allows users to extract specific traffic relationships from the street network. 

Users  now  have  the  flexibility  to  choose  between  extracting  all  traffic 

relationships,  only  the  propagates,  or  only  the  splits/merges.  This 

customization  empowers  users  to  tailor  the  information  according  to  their 

needs, facilitating its  use for various research purposes or gaining a better 

understanding of traffic flow dynamics.

To implement this feature, we utilized the ‘geopy.distance’ module in Python, 

which  can  calculate  geodesic  distances  between  two  points.  Geodesic 

distances represent the shortest path between two points on a curved surface, 

making it particularly suitable for our Earth-based context. Following we have a 

code snippet of our implementation and its explanation.
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Text 8. Separation of Traffic Relationships

import geopy.distance as dist

cur_cluster = final_df.loc[final_df['final_clusters'] == cluster]

for i in cur_cluster.index:
coords_source1 = (cur_cluster.iloc[i]['source_lng'], 

cur_cluster.iloc[i]['source_lat'])
coords_dest1 = (cur_cluster.iloc[i]['destination_lng'], 

cur_cluster.iloc[i]['destination_lat'])
lng_source1 = cur_cluster.iloc[i]['source_lng'] 
lng_dest1 = cur_cluster.iloc[i]['destination_lng']

if dist.geodesic(coords_source1, coords_dest1).km >= 0.15:
propagates.append(cur_cluster.iloc[i])

for j in range(i, len(cur_cluster)-1):
lng_source2 = cur_cluster.iloc[j+1]['source_lng'] 
lng_dest2 = cur_cluster.iloc[j+1]['destination_lng']

if ((lng_source1 == lng_dest2) or (lng_dest1 == 
  lng_source2)):

propagates.append(cur_cluster.iloc[i])
propagates.append(cur_cluster.iloc[j+1])



We observed that within a group of actual edges, those indicating propagation 

should belong to the same cluster and be consecutive. While our approach 

may seem slightly unconventional due to working with hypothetical edges, it is 

constructed as follows:

• For each edge within every cluster generated after step 3, we initially 

examine the distance between its starting and ending points. Given that 

our  edges  may  comprise  two  or  more  actual  edges,  if  the  distance 

between the corresponding points of an edge is equal to or greater than 

150 meters, we categorize that hypothetical edge as indicating traffic 

propagation.

• Subsequently, we assess whether the identified edge is connected to any 

other edge within the same cluster. This is achieved by comparing the 

longitudes  of  their  source  and  destination  points,  with  the  aim  of 

identifying consecutive edges. By definition, the presence of consecutive 

edges indicates traffic propagation in our context.

• Upon completing this process for each cluster and its associated edges, 

any edges that remain are considered to represent splits/merges in the 

context of our clustering algorithm.

4.5 Experimental results

In our initial attempts to implement the 3-step clustering model, we presumed 

that the DBSCAN algorithm would be suitable for each step since it provides 

both Euclidean and haversine distance metrics essential for clustering our time 

series database. However, as we progressed, we encountered challenges in 

determining  a  notable  set  of  min_samples  and  eps  input  parameters, 

particularly  in  steps  1  and  3  where  we  dealt  with  data  points  of  varying 

densities and shapes. This led us to explore alternative algorithms, ultimately 
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choosing OPTICS for these steps. As previously explained, OPTICS eliminates 

the  need  for  a  perfect  predetermined  epsilon  but  introduces  a  max_eps 

parameter serving as a threshold for the process duration.

For step 2, we persisted in using the DBSCAN algorithm since OPTICS lacked 

the  haversine  distance  metric  crucial  for  computing  the  structure-based 

distance, resulting in a hybrid model to meet our specific requirements.

To validate our approach, we strategically placed markers in the city center, 

where we had a good understanding of the traffic flow. We recorded the traffic 

relationships  immediately  before  and  after  each  marker.  Subsequently,  we 

conducted experiments on our clustering algorithm using DBSCAN exclusively 

for  every  step,  OPTICS  for  every  step,  and  finally,  our  HYBRID  model. 

Throughout these experiments, we assessed the accuracy of each model in 

identifying the traffic relationships among the markers.

Next,  we  present  two  charts  illustrating  the  results  of  this  experiment, 

conducted  for  the  same  day,  month,  time  span,  and  time  interval.  The 
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Figure 16. Markers' Position



horizontal axis represents traffic relationships, while the vertical axis depicts 

the percentage accuracy for each implementation.
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Figure 17. Algorithms' Accuracy Graph (1)

Figure 18. Algorithms' Accuracy Graph (2)



4.6 Display of clustered edges

For  visualizing  the  results  of  our  divisive  hierarchical  clustering  model 

alongside  the  verification  markers,  we  employed  the  osmnx[20]  and 

folium[21] libraries in Python. We will delve into the capabilities of these tools 

and  their  utility  in  projects  that  demand the  visual  representation  of  road 

networks.

4.6.1 OSMnx

OSMnx is an open-source Python package built on top of NetworkX, Matplotlib, 

and  GeoPandas,  offering  powerful  capabilities  for  real-world  road  network 

analysis and visualization. It facilitates the download, modeling, analysis, and 

visualization  of  street  networks  and  other  geospatial  features  from 

OpenStreetMap.

To model a road network using OSMnx, one can acquire the necessary GIS data 

by  finding  and  downloading  the  appropriate  shapefiles  online.  OSMnx 

simplifies this process by allowing users to download OpenStreetMap (OSM) 

data and construct topologically accurate, one-way directional road networks 

with  straightforward  queries,  such  as  a  place  name or  a  bounding  box.  It 

performs  pre-processing  on  the  raw  OSM  data,  converting  them  into  a 

NetworkX MultiDiGraph.

For network analysis  and spatial  network statistics  calculations,  OSMnx can 

handle tasks such as finding and plotting the shortest-path routes between two 

or  more  points.  Additionally,  the  OSMnx  package  can  convert  a  NetworkX 

graph into a GeoPandas GeoDataFrame, which represents the tabular format of 

the network. This makes it easy to customize resulting maps using GeoPandas 

mapping  tools.  Below  is  a  code  snippet  showcasing  our  implementation, 

providing insight into the functionality of the aforementioned statements:
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We  begin  by  creating  a  NetworkX  MultiDiGraph  using  the  "Municipality  of 

Chania" query to obtain the place boundary polygon and specifying the "drive" 

type  for  the  street  network.  Subsequently,  we  utilize  the  nearest_nodes() 

function to identify the nearest nodes to the source and destination points of 

an edge. Here, Xsrc, Ysrc, Xdst, and Ydst represent their respective coordinates 

in longitude-latitude format.

With the nodes identified, we compute the shortest path between them and 

generate  a  GeoDataFrame  of  the  route.  Finally,  to  visualize  the  results 

interactively, we leverage the GeoDataFrame's built-in  explore() function. We 

select the OpenStreetMaps tileset for the map, define a style for the plotted 

edge, and assign a color representing its cluster. This creates an interactive 

Leaflet map for a comprehensive view of the road network analysis.

4.6.2 Folium

Completing  the  process  outlined  in  Section  4.6.1  for  every  edge  in  our 

database  resulted  in  an  interactive  Leaflet  map  that  displayed  the  road 

network  edges,  color-coded  according  to  their  respective  clusters.  To 
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Text 9. OSMnx

import osmnx as ox

graph = ox.graph_from_place('Municipality of Chania', 
network_type='drive')

origin = ox.distance.nearest_nodes(graph, Xsrc,  Ysrc)
destination = ox.distance.nearest_nodes(graph, Xdst, Ydst)
route = ox.distance.shortest_path(graph, origin, destination, 

  weight='length')

gdf_route = ox.utils_graph.route_to_gdf(graph, route, weight='length')
route_map = gdf_route.explore(tiles='OpenStreetMap', tooltip=False, 

   color=color, style_kwds=dict(opacity=0.6, weight=7))



incorporate markers for verifying our experiments on clustering methods, we 

opted for the folium library in Python. Folium leverages the data manipulation 

capabilities  of  the  Python  ecosystem  and  the  mapping  strengths  of  the 

Leaflet.js library.

To  achieve  this,  we  first  constructed  a  file  containing  the  coordinates,  in 

longitude-latitude format, of each marker. We then added these markers to the 

appropriate  locations  on  the  map  already  created  with  osmnx.  For 

visualization,  we  utilized  pop-up  messages  to  distinguish  the  markers  and 

enhance the interactive leaflet map. Following we have our implementation of 

this process.

4.6.3 The interactive map

Upon  completing  the  addition  of  colored  edges  and  markers  on  the 

‘route_map’, we save it as an HTML file and open it using our web browser. The 

visualization of  our clustering results provides a more accessible means for 

verifying  our  modeling  logic  and  identifying  the  traffic  relationships  that 

emerge  among  the  edges  of  the  road  network.  This  visual  representation 
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Text 10. Folium

import folium
import pandas as pd

markers_df = pd.read_csv('input/markers.csv', 
dtype={'marker_location':str})

for ind in markers_df.index:
message = '<b>Marker'+str(ind)+'</b>' 
cur_location = markers_df.loc[ind, 

'marker_location'].split(' ')
folium.Marker(location=[float(cur_location[0]), 

float(cur_location[1])], popup=message,
icon=folium.Icon(color='red', 
icon='pushpin')).add_to(route_map)



enhances the clarity of our clustering outcomes. Knowing that every cluster 

has its own unique color, we could define the traffic relationships as follows:

• Propagate: the color remains the same on the consecutive edges that 

propagate their traffic. 

• Split:  the color of an edge splits into two different colors of the edges 

that it splits the traffic.

• Merge:  the different colors of two edges merge into one third different 

color of the edge that merges their traffic.

4.7 Conclusions & Future work

Divisive hierarchical clustering is infrequently employed by developers, leading 

to  a  scarcity  of  dedicated libraries  in  Python for  such implementations.  By 

decomposing our clustering algorithm into three distinct steps and addressing 
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Figure 19. The Interactive Map

Before Marker1 we have traffic propagation (gray) and after the marker we have traffic split  
(purple, orange).



each one independently, we successfully amalgamated them to create our own 

hierarchical clustering model. The pivotal role played by the powerful DBSCAN 

and  OPTICS  algorithms  cannot  be  overstated;  they  furnished  us  with 

indispensable tools and information crucial for navigating through each step. 

These algorithms not  only  facilitated the execution of  each phase but  also 

enabled us to scrutinize and refine our results. Their adeptness in handling the 

diverse  densities  and shapes  inherent  in  our  dissimilar  hypothetical  edges' 

time  series  and  spatial  data  proved  instrumental  in  resolving  one  of  our 

primary challenges.

Moreover, the visual representation of our data through the use of the osmnx 

tool  significantly  facilitated  the  examination  of  the  final  results  from  our 

custom divisive  hierarchical  clustering  model.  It  transformed our  raw data, 

which  were  initially  challenging  to  interpret,  into  a  format  that  is  easily 

understood by humans. The tool's seamless integration with OpenStreetMaps 

allowed  us  to  effortlessly  display  our  edges'  data  without  the  need  for 

additional modifications in our code. In essence, osmnx emerges as an optimal 

choice for visualizing street networks reliant on OSM data, offering a diverse 

array of built-in functions capable of addressing a wide range of tasks.

In  summary,  the  hybrid  model  we  adopted  yielded  satisfactory  results. 

However,  we  acknowledge  that  if,  in  the  future,  the  OPTICS  algorithm 

incorporates the haversine distance metric,  it  would be preferable to utilize 

this algorithm for step 2 as well.
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Chapter 5 

The application

In this chapter, we will  illustrate our transformation process of transitioning 

from a  command-line interface (CLI) script for clustering, to a  graphical user 

interface (GUI) desktop application. This shift aims to enhance user interaction 

by leveraging graphical elements. We will  showcase the tools employed for 

designing  the  interface  and  provide  an  explanation  of  the  functionality 

pertaining to its widgets.

5.1 CustomTkinter

CustomTkinter[22]  is  an  extension  of  the  widely  used  Tkinter  module  in 

Python, representing a modernized version with added UI elements that offer 

extensive customization options. Tkinter itself is a lightweight, cross-platform 

GUI framework that is renowned for its simplicity and is commonly employed 

for developing desktop applications. It provides numerous built-in widgets for 

designing interfaces to suit various requirements.

In alignment with this philosophy, CustomTkinter enhances the capabilities of 

Tkinter by introducing additional widgets such as:

• CtkFrame: a “container” widget that groups the other widgets together.

• CtkLabel: a widget to display text.

• CtkTextBox:  a  widget  to  display multi-line,  scrollable  text  or  to  take 

input from the user.

• CtkSwitch: a widget used for toggle options.
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• CtkOptionMenu: a widget to display a list of options/values.

• CtkRadioButton: a widget that allows the user to choose only one of a 

predefined set of options.

• CtkButton: a widget to display a button that can be clicked to perform 

an action.

• CtkTabview: a widget that creates tabs of CtkFrames.

In  order  to  be  able  to  organize  the  geometry  of  these  widgets  in  the 

application frame, CustomTkinter offers three methods:

• the pack() method: organizes the positioning of widgets in relation to 

each other.

• the  grid()  method:  organizes  the  positioning  of  widgets  in  a  two 

dimensional grid of rows and columns.

• the place() method: organizes the positioning of widgets either with x, 

y coordinates or relative to another widget.

It is important to note that we should not combine these methods in the same 

master window, but we should choose one and stick with it instead. Therefore, 

to  sum  up,  the  steps  of  creating  a  desktop  GUI  application  using  the 

CustomTkinter module are the following:

1. Import the CustomTkinter module.

2. Create the main window of the application.

3. Add a CtkFrame as a container for the widgets.

4. Add widgets to the frame and apply their functionality.

5. Use the mainloop() function to run the application.
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5.2 Design & Functionality

Our aim was to create a straightforward application with user-friendly options, 

ensuring ease of use without the need for an instruction manual. To achieve 

this,  we implemented a vertical positioning of the widgets using the  pack() 

method. We fine-tuned the padx and pady variables to optimize the aesthetic 

appeal of the interface.

For the majority of our options, we employed CustomTkinter's ‘CtkOptionMenu’ 

widget,  and  for  time's  am/pm  selection,  we  utilized  the  ‘CtkRadioButton’ 

widget. The title of each option menu and the error message were designed 

using the ‘CtkLabel’ widget. Finally, for the button responsible for initiating the 

clustering based on our preferences, we used the ‘CtkButton’ widget. Below is 

an example of our setup:
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Text 11. CustomTkinter Interface

import customtkinter

app = customtkinter.CTk()
app.geometry("450x850")

frame = customtkinter.CTkFrame(master=app)
frame.pack(pady=30, padx=50, fill="both", expand=True)

label = customtkinter.CTkLabel(master=frame, text="Menu Title")
label.pack(pady=(30,0), padx=10)

optionmenu = customtkinter.CTkOptionMenu(frame, width=200, 
values=[option_values], 

command=message_update)
optionmenu.pack(pady=0, padx=10)

button = customtkinter.CTkButton(master=frame, text="Button", 
fg_color="green", border_width=1, border_color="white", 
width=80, command=button_callback)

button.pack(pady=(30,0), padx=10)

app.mainloop()



The CustomTkinter module offers a wealth of customizations for its widgets, 

providing developers with various styling options. The most noteworthy aspect 

of  the  widgets'  variables  is  the  command parameter,  which  signifies  their 

functionality.  For instance, the  message_update() function is  responsible for 

updating  the  error  message label  whenever  an error  occurs.  On  the  other 

hand,  the  button_callback() function  performs  preprocessing  on  the  user's 

selections  before  providing  them  as  input  to  our  clustering  routine.  This 

modular  approach  enhances  the  flexibility  and  functionality  of  the  GUI 

application.
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Text 12. Button Command (part1)

from clustering import clustering_routine

def button_callback():
am_to_pm1 = int(optionmenu_from.get().split(":")[0]) 
am_to_pm2 = int(optionmenu_to.get().split(":")[0]) 

if radiobutton_var_from.get() == 2 and optionmenu_from.get() != "12:00":
am_to_pm1 += 12
start_time = str(am_to_pm1) + ":00"

elif radiobutton_var_from.get() == 1 and optionmenu_from.get() == "12:00":
am_to_pm1 -= 12
start_time = str(am_to_pm1) + "0:00"

elif radiobutton_var_from.get() == 1 and am_to_pm1 < 10:
start_time = "0" + str(am_to_pm1) + ":00"  

else:
start_time = optionmenu_from.get()

if radiobutton_var_to.get() == 2 and optionmenu_to.get() != "12:00":
am_to_pm2 += 12 
end_time = str(am_to_pm2) + ":00" 

elif radiobutton_var_to.get() == 1 and optionmenu_to.get() == "12:00":
am_to_pm2 -= 12 
end_time = str(am_to_pm2) + "0:00" 

elif radiobutton_var_to.get() == 1 and am_to_pm2 < 10:
end_time = "0" + str(am_to_pm2) + ":00" 

else:
end_time = optionmenu_to.get()



Firstly,  we  import  our  divisive  hierarchical  clustering  routine.  Next,  we 

reconstruct  the  starting  (‘optionmenu_from’)  and  ending  (‘optionmenu_to’) 

times of the measurements that we are going to cluster, based on the user's 

am/pm preferences. In the first case, we search for the pm version of times 

ranging  from  1:00  to  11:00,  and  we  add  12  to  their  first  two  digits  to 

reconstruct them in a format ranging from 13:00 to 23:00. In the second case, 

we look for the am version of 12:00 and reconstruct it to 00:00. In the third 

case, we add a leading zero to the am version of times ranging from 1:00 to 

9:00, so as to reconstruct them in a format ranging from 01:00 to 09:00. In the 

last case, we simply retrieve the user's selection of time as is, following the 

same logic for both ‘start_time’ and ‘end_time’.

After reconstructing the time values, we extract the parameter for the time 

interval selected by the user, dividing it by 10, as the data in our time series 

database are scraped with a transmission rate of 10 minutes. Using the chosen 

day and month, we construct the path for the input file. Finally, we use all the 

above as input variables for our divisive hierarchical clustering routine.
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Text 13. Button Command (part 2)

if optionmenu_interval.get().split(" ")[1] != "hour":
parameter = int(int(optionmenu_interval.get().split(" ")[0]) / 10) 

else:
parameter = 6 

input_file = "data/"+optionmenu_month.get()+"/"+optionmenu_day.get()+".csv"
relationships = optionmenu_relationships.get()
    
try:

clustering_routine(input_file, start_time, end_time, parameter, 
relationships)

except:
label_message.configure(text="Invalid options.\nTry again!", 

text_color="red")



5.3 Usage

The options available in our application's interface are as follows:

• 'Month' and 'Day': Users can select the month and day for which traffic 

data will be clustered.

• 'From' and  'To':  Users  can  specify  the  start  and  end  times  for  the 

measurements collected on the chosen day and month.

• 'Time Interval': Users have the flexibility to choose the time interval 

between samples in the time series database.

• 'Traffic Relationships': Users can indicate which of the detected traffic 

relationships they want to display.
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Figure 20. Application's Interface



If we click the 'Show Results' button with the specified options in Figure 17, we 

would cluster the traffic data collected on a Saturday in October. To be more 

precise, we would select the average speeds measured between 14:00 and 

16:00 with a time interval of 10 minutes. After applying our 3-step divisive 

hierarchical  clustering  model  to  these  data,  an  interactive  map  would  be 

generated. This map would display the edges of our road network, with each 

edge colored according to the cluster to which it belongs.

Visualizing our clustering results allows us to observe the traffic relationships 

among the  edges,  providing insights  into  how traffic flows within  the  road 

network. By zooming in on the map depicted in Figure 18 and applying the 

definitions outlined in Section 4.6.3, we can pinpoint traffic propagation, split, 

and  merge.  This  visual  representation  enhances  our  understanding  of  the 

intricate dynamics of traffic patterns within the network.
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Figure 21. Application's Results



5.4 Conclusions & Future Work

Utilizing the CustomTkinter module, we successfully crafted an aesthetically 

pleasing  and  user-friendly  GUI  desktop  application  that  encompasses  the 

necessary functionality for executing our clustering routine. As a suggestion for 

future work, we propose the development of a web-based version to make it 

accessible  to  users  through  the  internet  without  requiring  installation.  This 

would enhance the convenience and reach of the clustering tool.
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Figure 23. Traffic Split

The 'gray' edge splits its traffic between  
the 'light blue' and 'light green' edges.

Figure 22. Traffic Merge

The 'orange' and 'light blue' edges merge 
their traffic into the 'light green' edge.

Figure 24. Traffic Propagation

The 'blue' edge, preceding the marker, propagates its traffic to the  
'blue' edge after the marker.



Chapter 6 

Epilogue

In this thesis, we addressed the challenge of traffic management by creating 

an application that extracts traffic relationships between the edges of a road 

network,  building  upon  the  approach  outlined  in  [5].  We  successfully 

implemented  these  techniques  in  practice,  utilizing  real-world  data  and 

providing a visual representation of the algorithms' results.

The availability of geospatial data through OpenStreetMap played a crucial role 

in  our  ability  to  design  and  extract  information  about  the  road  network, 

aligning  seamlessly  with  data  obtained  from Google  Maps.  This  alignment 

facilitated  the  scraping  of  traffic  data  necessary  for  constructing  our  time 

series database, a task that would have been challenging without access to 

such comprehensive geospatial information.

Consequently, we developed an automated scraping routine utilizing Selenium 

and Beautiful Soup. This routine enabled the collection of real-time traffic data 

over  extended  periods,  serving  as  the  foundation  for  constructing  our 

comprehensive database.

We  subjected  the  collected  data  to  analysis  through  a  3-step  divisive 

hierarchical  clustering  model.  This  model  calculates  the  shape-based, 

structure-based,  and  value-based  distances  using  the  DBSCAN and  OPTICS 

algorithms. Starting from a single, large cluster encompassing all edges, the 

model  progressively  segments  the  data  into  smaller  sub-clusters,  revealing 

traffic relationships between edges, when displayed on the map.

In the concluding phase, we integrated the clustering process into a simple GUI 

desktop application, crafted with CustomTkinter, so that it ensures accessibility 

for a wider audience.
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