
TECHNICAL UNIVERSITY OF CRETE
DIPLOMA THESIS

Study of a Rotationally Invariant
Hardware Implementable

Convolutional Neural Network
using CORDIC Arithmetic

Author:
Sotirios MICHAIL

Thesis Committee:
Prof. Apostolos DOLLAS

Assoc. Prof. Sotirios

IOANNIDIS

Prof. Michail ZERVAKIS

A thesis submitted in fulfillment of the requirements
for the diploma of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering

Microprocessor and Hardware Laboratory

March 1, 2024

https://www.tuc.gr/
mailto:smichail1@tuc.gr
https://www.ece.tuc.gr/index.php?id=4531&tx_tuclabspersonnel_list[person]=289&tx_tuclabspersonnel_list[action]=person&tx_tuclabspersonnel_list[controller]=List
https://www.ece.tuc.gr/index.php?id=4531&L=570%27&tx_tuclabspersonnel_list%5Bperson%5D=707&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/index.php?id=4531&L=570%27&tx_tuclabspersonnel_list%5Bperson%5D=707&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/index.php?id=4531&L=570%27&tx_tuclabspersonnel_list%5Bperson%5D=294&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/
https://www.mhl.tuc.gr/

iii

TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

Study of a Rotationally Invariant Hardware Implementable
Convolutional Neural Network using CORDIC Arithmetic

by Sotirios MICHAIL

Introduced in this thesis is an approach in enhancing the rotational invari-
ance of Convolutional Neural Networks (CNNs), through integrating the
novel Log-CORDIC algorithm for image pre-processing. This image pre-
processing algorithm presents an advantage over existing cartesian-to-polar
transform algorithms for images, through the computational advantages of
the Coordinate Rotation Digital Computer (CORDIC) algorithm. The re-
sults of the novel algorithm are studied and compared with existing trans-
form methods, along with its efficiency improvements, and its ability to en-
hance rotational invariance in a CNN is ascertained by integrating it into
the pipeline of a customized SqueezeNet neural network. Focusing on the
CIFAR-10 and MNIST datasets, experiments with this customized SqueezeNet
neural network demonstrate an improvement in classification accuracy for
images with varied orientations.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

v

Acknowledgements
I would like to express my deepest gratitude to my professor and supervisor
of this work, Professor Apostolos Dollas, for their invaluable guidance, pa-
tience, and insightful critiques throughout the course of this research. Their
expertise and thoughtful advice have been instrumental in shaping both the
direction and success of this work.

My heartfelt thanks also go to my family, who have provided me with unwa-
vering support and encouragement throughout my academic journey. Their
belief in me and constant encouragement have been a source of strength and
motivation. I am deeply grateful for their sacrifices and for always inspiring
me to pursue my passions.

I would also like to extend my appreciation to my colleagues and friends
in the Technical University of Crete, who have contributed to this journey
through stimulating discussions, constructive feedback, and by providing a
supportive academic environment. Their perspectives and companionship
have been invaluable.

I would like to especially thank the members of the Microprocessor and
Hardware Lab, Mr. Kimionis Markos and Associate Professor Sotirios Ioan-
nidis, for their immense support and guidance during my academic journey
and beyond.

This thesis would not have been possible without the contributions and sup-
port of each one of these individuals. I am immensely grateful to all of you.

vii

Contents

Abstract iii

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xiii

List of Algorithms xv

List of Abbreviations xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Scientific Contributions . 2
1.3 Thesis Outline . 2

2 Theoretical Background 5
2.1 Machine Learning . 5
2.2 Convolutional Neural Networks 6
2.3 Structure of a Convolutional Neural Network 7

2.3.1 Convolution Layers . 8
2.3.2 Pooling Layers . 9
2.3.3 Activation Functions . 10

Perceptron . 10
Rectified Linear Unit . 11
"Leaky" Rectified Linear Unit 12

2.4 Polar Coordinate Representation 13
2.5 Field Programmable Gate Arrays 15
2.6 The CORDIC Algorithm . 16
2.7 SqueezeNet: An Image Classification Model 17

viii

2.7.1 Introduction to SqueezeNet 17
2.7.2 Architecture of SqueezeNet 17
2.7.3 Efficiency and Effectiveness of SqueezeNet 18
2.7.4 SqueezeNet and FPGA Compatibility 18

3 Related Work 21
3.1 Rotational invariance for CNNs 21
3.2 Optimizing CNNs for FPGAs 23
3.3 Using CORDIC on FPGAs . 25
3.4 The FPGA Perspective . 26

4 The Log-CORDIC Transform 27
4.1 Introduction . 27
4.2 The CORDIC Algorithm . 27
4.3 The Log-CORDIC Transform Algorithm 30
4.4 Logarithmic scaling . 33
4.5 Advantages of using the log-CORDIC transform against a typ-

ical log-Polar transform . 39
4.5.1 Performance Metrics . 40
4.5.2 Measurement Techniques 41
4.5.3 Comparison results . 42

5 System Model 45
5.1 Introduction . 45
5.2 Model Description . 46
5.3 Image Classification Model . 47

5.3.1 Overview of Image Classification Models 47
5.3.2 SqueezeNet: An optimized choice for edge computing 47
5.3.3 Adapting SqueezeNet for Rotational Invariance 47

5.4 CyCNN and Cylindrically Sliding Windows 48
5.5 Introducing CSWs to SqueezeNet 49
5.6 Training and validation . 52

5.6.1 Exploring Potential Datasets for Image Classification . 52
5.6.2 Criteria for Dataset Selection 53
5.6.3 Choosing CIFAR-10 for Demonstrating Rotational In-

variance . 53
5.6.4 Utilizing MNIST for Initial Testing and Validation . . . 53
5.6.5 Rationale Behind Combining CIFAR-10 and MNIST . . 54

5.7 System Robustness Analysis . 54

ix

5.7.1 Definition of Robustness 54
5.7.2 Perturbations and Uncertainties 55

5.8 Experimental Setup and Methodology 55
5.8.1 Preparation of Datasets 55
5.8.2 Training Procedure . 55
5.8.3 Testing and Evaluation Setup 56
5.8.4 Evaluation Results . 56

6 Proposed Architecture 59
6.1 A Proposed Hardware Architecture 59
6.2 Selecting the Hardware Platform 59

6.2.1 The PYNQ-Z1 Development Board 59
6.2.2 Accelerating Machine Learning Applications 59

6.3 Development Tools . 60
6.3.1 Introduction to Development Tools 60
6.3.2 Employing Xilinx Vitis HLS 60
6.3.3 System Integration with Vivado Design Suite 60

6.4 Advantages of CORDIC for FPGA-Based Machine Learning . 61
6.5 Transitioning from the model to High-Level Synthesis (HLS) . 61

7 Conclusions and Future Work 65
7.1 Conclusions . 65

7.1.1 Summary of Key Findings 65
7.1.2 Advantages of the Proposed Methodology 65
7.1.3 Practical Implications and Applications 66
7.1.4 Reflection on Research Objectives and Achievements . 67

7.2 Future Work . 67
7.2.1 Enhancing Algorithm Efficiency for Diverse Rotational

Angles . 67
7.2.2 Integration with Advanced Neural Architectures . . . 67
7.2.3 Real-Time Processing and Edge Computing Applications 67
7.2.4 Application Across Diverse and Complex Datasets . . 68
7.2.5 Cross-Domain Application Studies 68
7.2.6 Addressing Other Forms of Image Variations 68

References 69

xi

List of Figures

2.1 High-level Architecture of a CNN 8
2.2 Pooling layer type comparison 10
2.3 The Perceptron activation function 11
2.4 The ReLU activation function 12
2.5 The Leaky ReLU activation function 13
2.6 Converting an image from Cartesian to polar representation . 14

4.1 The result of an image’s transformation with the Log-CORDIC
algorithm . 32

4.2 The result of an image’s transformation with the Log-CORDIC
algorithm . 33

4.3 A distorted polar image due to incorrect logarithmic scaling . 34
4.4 An example of further detail loss due to incorrect logarithmic

scaling . 34
4.5 An even more extreme example 35
4.6 Example where specific areas of the polar image are affected . 35
4.7 The output of the Log-CORDIC transform compared with a

known good cartesian-to-polar transform algorithm 37
4.8 The result of the root mean square error calculation 39

5.1 SqueezeNet Fire module with cylindrical convolution 51
5.2 SqueezeNet architecture with cylindrical convolution 52

xiii

List of Tables

4.1 Comparison of Log-Polar and Log-CORDIC Transformations 42

5.1 Experimental Results: Training and inference with the MNIST
dataset . 57

5.2 Experimental Results: Training and inference with the CIFAR-
10 dataset . 57

xv

List of Algorithms

1 CORDIC Vector Mode Algorithm 30
2 Log-CORDIC Transform Algorithm 31
3 Log-Polar Transform . 43
4 Cylindrical Padding Algorithm 50
5 Cylindrical Convolutional Operation 50

xvii

List of Abbreviations

ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
BRAM Block Random Access Memory
CPU Central Processor Unit
CS Computer Science
DDR4 Double Data Rate type texbf4 memory
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
FF Flip Flops
FPGA Field Programmable Gate Array
GDDR6 Graphics Double Data Rate type 6 memory
GPU Graphic Processor Unit
HBM High Bandwidth Memory
HDL Hardware Description Language
HLS High Level Synthesis
HPC Hight Performance Computing
LUT Look Up Table
MPSoC Multi Processor System on Chip
PL Programmable Logic
PS Processing System
RAM Random Access Memory
SDK Software Development Kit
SIMD Single Instruction Multiple Data
SSE Streaming SIMD Extensions
SSD Solid State Drive
TDP Thermal Design Power
URAM Ultra Random Access Memory
USD United States Dollar

xix

Dedicated to my family and friends. . .

1

Chapter 1

Introduction

1.1 Motivation

The quest for rotational invariance in image classification models, particu-
larly Convolutional Neural Networks (CNNs), stems from a fundamental
challenge in computer vision: the variability in object orientations in real-
world images. Traditional CNNs, despite their impressive performance, of-
ten falter when confronted with images of rotated objects, a scenario fre-
quently encountered in practical applications. This limitation is particularly
pronounced in fields such as autonomous navigation, satellite imagery, and
medical diagnostics, where the orientation of objects or features can be arbi-
trary and unpredictable. The inability to accurately classify rotated images
can significantly hinder the reliability and applicability of automated systems
in these critical areas.

Recognizing this challenge, the central motivation of this thesis is to en-
hance the rotational invariance of CNNs, enabling them to maintain high
classification accuracy regardless of object orientation. The proposed solu-
tion involves a novel approach: transforming images into their polar coordi-
nate representations using the CORDIC algorithm before feeding them into
CNNs. This transformation effectively normalizes rotational variations, al-
lowing the CNN to focus on the intrinsic features of the objects rather than
their orientation in the Cartesian plane. The CORDIC algorithm, known for
its computational efficiency, is particularly well-suited for this task, provid-
ing a method to perform the polar transformation rapidly and accurately.

The significance of training CNNs with polar-transformed images lies in its
potential to improve the robustness of image classification models against
rotational variations. By addressing the rotational invariance challenge, this

2 Chapter 1. Introduction

thesis aims to contribute to the development of more versatile and depend-
able computer vision systems, capable of operating effectively in diverse and
uncontrolled environments.

1.2 Scientific Contributions

The primary contribution of this research is the development and imple-
mentation of an algorithm that significantly improves the transformation of
images from cartesian to polar representation, with a goal to enhance the
rotational invariance of CNNs. By integrating the CORDIC algorithm for
polar transformation of input images, the thesis demonstrates a novel ap-
proach to preprocessing images for CNNs. This method normalizes rota-
tional variations, enabling CNNs to focus on the inherent features of objects
rather than their orientation in space. The result is an increase in the effi-
ciency of the transformation of images from cartesian to polar representation.
Another of this work is the empirical validation of the proposed methodol-
ogy through experimental testing and benchmarking. By employing well-
established datasets like CIFAR-10 and MNIST, modified to include rotated
images, the research provides evidence of the improved accuracy achieved
by CNNs trained with polar-transformed images.

1.3 Thesis Outline

• Chapter 2 - Theoretical Background: Described in detail is the theoret-
ical background for the concepts and technologies this thesis pertains,
namely Machine Learning, CNNs, polar coordinate systems, FPGAs
and the CORDIC algorithm

• Chapter 3 - Related Work: Academic and scientific work related to im-
age classification and image processing

• Chapter 4 - The Log-CORDIC Transform: The core part of this thesis
and the means of achieving rotational invariance

• Chapter 5 - System Model: Modelling the rotationally invariant image
classification system in software form

• Chapter 6 - Proposed Architecture: A proposed hardware implemen-
tation of the system

1.3. Thesis Outline 3

• Chapter 7 - Conclusions and Future Work: Discussing the overall re-
sults of the thesis and how it can be further advanced

5

Chapter 2

Theoretical Background

2.1 Machine Learning

The quest for creating intelligent systems that can interpret and understand
visual information as humans and animals do has been a long-standing pur-
suit in the realm of artificial intelligence. The human visual system, an epit-
ome of high-level image processing, possesses the ability to rapidly identify
patterns, detect objects, and perceive depth from an array of complex visual
stimuli. Similarly, a bird, soaring high in the sky, can discern a tiny fish in
a vast ocean, embodying a perfect model of adaptive image processing. The
ambition of the research presented in this thesis is to develop a system in-
spired by these remarkable biological systems that can likewise identify and
track an object in the same real time fashion, with high accuracy and reliabil-
ity, regardless of the situation and environment variables.

This theoretical background chapters lays the foundation upon which the
rest of this work lies. It provides an in-depth exploration of the core princi-
ples and mechanisms underpinning convolutional neural networks (CNNs),
a class of deep learning models that have achieved ground-breaking perfor-
mance in the field of image processing. We delve into the intricate struc-
ture and functionality of CNNs, including convolutional layers, pooling lay-
ers, and activation functions, illustrating how they collectively enable the
efficient extraction and interpretation of hierarchical features within images.
This understanding is crucial, not only for appreciating the existing capabili-
ties of CNNs in image processing but to also give the basis to understand the
developments and research presented in this work.

6 Chapter 2. Theoretical Background

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have been instrumental in a myr-
iad of applications that involve real-time data and image processing. CNNs’
unique architecture, combining convolutional layers for local feature extrac-
tion, pooling layers for dimensionality reduction, and fully connected lay-
ers for high-level reasoning, enables them to handle large volumes of data
efficiently. [1] CNNs’ ability to learn complex patterns in data makes them
highly effective for a wide range of tasks in various sectors, from healthcare
and autonomous vehicles to entertainment and e-commerce.

In healthcare, CNNs have been extensively applied to analyze medical im-
ages in real-time, aiding in diagnostics and treatment planning. For instance,
they have been used for detecting tumors in MRI scans, identifying anoma-
lies in X-ray images, and classifying skin lesions in dermoscopic images. [2]
In autonomous vehicles, CNNs contribute to real-time object detection and
scene understanding, critical for safe navigation. They analyze the visual
data captured by vehicle sensors to identify pedestrians, other vehicles, traf-
fic signs, and the drivable path. [3]

In the entertainment industry, CNNs have been used for real-time image and
video processing tasks, such as enhancing image quality, colorizing black and
white images, and generating animations from sketches. [4] In the realm of
e-commerce, they aid in real-time product recommendation systems by an-
alyzing user behavior and product images, thereby improving user engage-
ment and sales. [5]

The power and flexibility of CNNs have led to several variations designed
to enhance performance and broaden their applicability. LeNet [6], pro-
posed by Yann LeCun in 1998, was one of the first CNN architectures, pre-
dominantly used for handwritten and machine-printed character recogni-
tion. AlexNet [7], proposed by Alex Krizhevsky in 2012, was instrumental in
advancing CNNs’ application in large-scale image classification tasks. VG-
GNet [8], known for its homogeneous architecture with repeated blocks of
convolutional and pooling layers, and ResNet [9], featuring skip connections
or shortcut connections to tackle the problem of vanishing gradients in deep
networks, are other notable variations. These different architectures have
evolved to address specific challenges and application domains, showcasing
the versatility and potential of CNNs.

2.3. Structure of a Convolutional Neural Network 7

Despite their remarkable success in various applications, face several chal-
lenges and limitations. One of the primary concerns is the computational
complexity and resource consumption, especially in deep architectures that
require substantial memory and processing power. This can hinder real-time
applications and deployment on devices with limited resources. Another
challenge is the susceptibility to adversarial attacks, where slight perturba-
tions in the input can lead to incorrect predictions. CNNs also often require
large amounts of labeled data for training, making them less suitable for tasks
with scarce or imbalanced data. The interpretability of CNNs remains a sig-
nificant issue, as understanding the reasoning behind their decisions is of-
ten complex and non-intuitive. This lack of transparency can be a barrier
in critical applications such as healthcare, where interpretability is essential
for trust and compliance. Furthermore, CNNs may exhibit bias based on the
data they are trained on, leading to unfair or skewed predictions. Addressing
these challenges requires ongoing research and innovation in areas such as
model optimization, robustness, interpretability, and fairness, to fully realize
the potential of CNNs across diverse domains.

2.3 Structure of a Convolutional Neural Network

A Convolutional Neural Network (CNN) is a type of deep learning model
primarily used for processing structured grid data such as images. The fun-
damental structure of a CNN is typically composed of a sequence of three
types of layers: convolutional layers, pooling layers, and fully connected lay-
ers. The convolutional layers, often considered the core building block of a
CNN, perform a mathematical operation known as convolution that extracts
high-level features from the input data. Following the convolutional layers,
pooling or subsampling layers are used to reduce the spatial dimensions of
the data, thereby controlling overfitting and reducing computational com-
plexity. After several alternations of convolutional and pooling layers, the
high-level reasoning in the neural network is done via fully connected layers.
To introduce non-linearity into the network and enhance learning capabili-
ties, an activation function is applied to the output of each layer. Common
activation functions include Perceptron, Rectified Linear Unit (ReLU), and
Leaky ReLU. This hierarchical model design allows CNNs to learn complex
patterns in data, making them highly effective for image processing tasks.

8 Chapter 2. Theoretical Background

FIGURE 2.1: High-level Architecture of a CNN Source: [10]

2.3.1 Convolution Layers

Convolutional layers are an essential part of the convolutional neural net-
work, and they play a crucial role in the CNN’s ability to effectively process
spatial and temporal data. [1] Each convolutional layer in a CNN comprises
of numerous filters, also known as kernels. These kernels serve as the pri-
mary feature detectors within the network. The key operation in a convo-
lutional layer is the convolution operation, a mathematical operation that
involves two functions to generate a third function. [11] In the context of a
CNN, the convolution operation is applied to the input data using the kernel.

The kernels move across the input data, usually in a sliding window fash-
ion, and at each step, the kernel performs a dot product operation between
its weights and the corresponding input values. This operation essentially
multiplies the weights of the filter with the input data and then sums them
to produce a single value. This value is then placed in a new matrix known
as the feature map or convolved feature. The resulting feature map repre-
sents the locations and strength at which the filter’s feature was detected in
the input.

One key aspect of convolutional layers that distinguishes them from fully
connected layers in other types of neural networks is the principle of local
receptive fields. This principle means that each neuron in the convolutional
layer is connected only to a small region of the input volume, as opposed
to being connected to all the neurons in the previous layer. This concept is
closely related to the idea of ’sparse connectivity’, which suggests that by
making connections only to a localized region of the input, the network can
focus on low-level features such as edges or textures.

2.3. Structure of a Convolutional Neural Network 9

A vital advantage of convolutional layers is the concept of parameter shar-
ing. [12] In this, the same filter (with the same weights) is used across the
entire input, drastically reducing the number of parameters to be learned,
enhancing computational efficiency, and making the model more scalable.
This parameter sharing also allows convolutional networks to exhibit ’trans-
lation invariance’, meaning they can recognize features irrespective of their
location in the input, which is especially valuable in image and speech recog-
nition tasks.

Furthermore, multiple filters in each convolutional layer enable the network
to detect various features within the same layer, thereby allowing the net-
work to learn a diverse set of features. [13] As the network gets deeper, these
layers can capture more abstract and high-level features. This hierarchical
feature learning is one of the key reasons behind the impressive performance
of CNNs in various complex tasks.

2.3.2 Pooling Layers

Pooling layers, also known as subsampling or downsampling layers, serve
a critical function in the architecture of a convolutional neural network. The
primary purpose of these layers is to progressively reduce the spatial size of
the input representation, thereby decreasing the amount of parameters and
computations within the network. This reduction aids in controlling overfit-
ting, which refers to the model’s tendency to perform exceptionally well on
training data but poorly on unseen or test data. [14] Pooling layers achieve
this by summarizing the outputs of groups of neurons in the previous layer,
essentially providing an abstracted form of the input.

Two common types of pooling operations are max pooling and average pool-
ing. Max pooling operates by selecting the maximum value from each win-
dow of a given size on the input. This operation has been found to per-
form well in practice, likely due to its ability to preserve the strongest feature
response within the window, which often corresponds to the presence of a
particular feature. [15] Average pooling, on the other hand, calculates the av-
erage of all values within the window. This operation provides an overall
summary of the feature responses in the window but may dilute the impact
of strong feature responses. The selection between max pooling and aver-
age pooling often depends on the specific application and dataset at hand.
Regardless of the type, pooling layers play a significant role in making the
decision function more robust to variations in the input. [16]

10 Chapter 2. Theoretical Background

FIGURE 2.2: Pooling layer type comparison

2.3.3 Activation Functions

Activation functions are a pivotal aspect of convolutional neural networks, as
they introduce non-linearity into the model. Without these functions, no mat-
ter how many layers the neural network has, it would still behave as a linear
model, limiting its capability to learn from complex data and to perform com-
plex tasks. These functions are applied to the output of each neuron in the
network, thus determining whether and to what extent that neuron should
be activated, i.e., transmit its signal to the subsequent layer. The choice of
activation function can significantly influence the network’s learning speed
and performance.

The purpose of an activation function is to map the input onto a desired
range, often introducing non-linearity in the process. This characteristic al-
lows the network to model more complex relationships between its inputs
and outputs, and to learn from errors through the gradient descent optimiza-
tion process. The function’s non-linearity is crucial for the learning process,
as it enables the network to backpropagate errors, a procedure that adjusts
the weights and biases to minimize the loss function.

Perceptron

The Perceptron is a type of artificial neuron that uses a step activation func-
tion. It takes a weighted sum of the input features and adds a bias. The
result is then passed through the step function. If the resultant value exceeds
a certain threshold, the perceptron fires, which in the context of a binary clas-
sification problem signifies classifying the input as the positive class. Oth-
erwise, it remains inactive. The perceptron forms the foundation for more

2.3. Structure of a Convolutional Neural Network 11

complex neural networks, yet it has limitations in solving problems that are
not linearly separable.

FIGURE 2.3: The Perceptron activation function

Rectified Linear Unit

ReLU, or Rectified Linear Unit, is currently one of the most widely used ac-
tivation functions in CNNs and deep learning. It operates by returning the
input directly if it is positive, else it returns zero. The simplicity of this func-
tion allows for faster computational time. Moreover, ReLU helps mitigate
the vanishing gradient problem, a situation where the gradient becomes so
small that the weights and biases of the network cease to learn effectively.
However, a limitation of ReLU is that it can cause dead neurons, i.e., neurons
that output zero for any input, thereby obstructing the learning process.

12 Chapter 2. Theoretical Background

FIGURE 2.4: The ReLU activation function

"Leaky" Rectified Linear Unit

Leaky ReLU is a variant of ReLU that was proposed to fix the "dying ReLU"
problem. Instead of having a zero gradient for negative input values as in
the ReLU function, Leaky ReLU allows small negative values when the in-
put is less than zero. By doing this, it keeps the gradient from becoming
zero for negative input values, thus preserving the ability of these neurons
to learn, even for inputs that induce a negative pre-activation value. Despite
these benefits, choosing between ReLU and Leaky ReLU often depends on
the specific problem and the dataset at hand.

2.4. Polar Coordinate Representation 13

FIGURE 2.5: The Leaky ReLU activation function

2.4 Polar Coordinate Representation

Polar coordinate representation of images is an essential tool in image pro-
cessing and computer vision, especially beneficial in applications where rota-
tional or radial symmetry is present, such as biomedical imaging or in satel-
lite imaging. This system provides a different perspective on the image data
by representing the image coordinates not in terms of the traditional Carte-
sian coordinate system (x, y), but instead in terms of radial distance and an-
gular position (r, θ).

The transformation from Cartesian to polar coordinates is achieved through
the following mathematical relationships:

r =
√

x2 + y2 (2.1)

θ = arctan
(y

x

)
(2.2)

where (x, y) are the Cartesian coordinates of a point in the image, and (r, θ)

are the corresponding polar coordinates. ’r’ represents the distance from the
origin (typically the center of the image) to the point, and ’θ’ is the angle from
the positive x-axis to the point in the counter-clockwise direction.

14 Chapter 2. Theoretical Background

FIGURE 2.6: Converting an image from Cartesian to polar rep-
resentation. The concentric circles in the Cartesian represen-
tation are mapped to vertical lines in the polar representa-

tion Source: [17]

In the context of digital images, which are discretely sampled, the conver-
sion to polar coordinates involves a resampling process. This can be a sim-
ple nearest-neighbor resampling or involve more complex interpolation tech-
niques, such as bilinear or bicubic interpolation, to better preserve the image
details.

There are several benefits of using polar representation. For instance, rotation
of the object in the image corresponds to a simple shift in the polar coordinate
representation. Similarly, scaling corresponds to a stretching or compression
along the radial axis. Therefore, geometric transformations become more
intuitive in this representation.

However, care must be taken when using polar coordinate representation of
images, as distortions may occur, particularly towards the outer regions of
the image due to the larger spacing of polar coordinates compared to Carte-
sian coordinates. This can lead to a decrease in resolution at the edges of the
image.

Despite these challenges, the polar coordinate system offers a powerful way
to analyze and process images, especially in scenarios where the natural sym-
metry of the underlying scene or object can be exploited. It is a valuable tool
in the arsenal of techniques for image processing and computer vision.

2.5. Field Programmable Gate Arrays 15

2.5 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are a class of integrated circuits
(ICs) that can be programmed or reprogrammed to the desired function-
ality after manufacturing. They provide a unique blend of flexibility and
performance that bridges the gap between general-purpose processors and
application-specific integrated circuits (ASICs) [18].

FPGAs consist of an array of programmable logic blocks and a hierarchy of
reconfigurable interconnects that allow these blocks to be wired together to
perform complex combinational functions, or merely simple logic gates like
AND, OR, and XOR. Logic blocks can be programmed to perform the func-
tion of basic logic gates, or they can be configured to perform complex com-
binational functions such as decoders or mathematical functions. In addition
to the logic blocks, FPGAs also contain memory elements, which may in-
clude flip-flops and more complex memory blocks called embedded block
RAM (EBRAM).

The design and programming of FPGAs involve the use of Hardware De-
scription Languages (HDLs), such as VHDL or Verilog, to describe the de-
sired digital logic in text form [19]. This code is then synthesized into a con-
figuration file (bitstream) by specific software tools provided by the FPGA
vendor. The bitstream is then loaded onto the FPGA, configuring the device
to perform the specified logic functions.

One of the primary advantages of FPGAs is their parallel processing capa-
bility, which can lead to significantly higher performance than processors for
certain types of applications. This attribute makes them particularly valuable
for real-time image processing applications, which often require the process-
ing of large amounts of data in parallel. Furthermore, FPGAs offer the ability
to be reprogrammed to suit evolving needs, offering flexibility not found in
traditional ASIC designs. However, designing with FPGAs requires a strong
understanding of digital logic design principles, and the development of ef-
ficient designs can be a complex task.

This modular parallelism that FPGAs offer makes them highly suitable for an
embedded image processing system that is based on CNNs[20]. The various
parts and layers of a CNN that were described above, can be implemented in
such manner in order to exploit the flexibility and parallelism that an FPGA
can offer [21].

16 Chapter 2. Theoretical Background

An image processing system such as the one implemented in the scope of this
work, not only has to be effective in its task of identifying and tracking the
target objects, but it has to do so in a constrained environment, where energy
efficiency is of critical importance, such as an autonomous road vehicle, an
unmanned aerial vehicle (UAV) or a surveillance system.

2.6 The CORDIC Algorithm

The COordinate Rotation DIgital Computer (CORDIC) algorithm, which was
introduced by Jack E. Volder in 1959, is a computationally efficient method
designed to calculate trigonometric and hyperbolic functions, among other
mathematical operations [22]. At its core, CORDIC operates by iteratively
rotating a vector to achieve the desired result, using only shifts and adds,
which makes it particularly suitable for hardware implementations. The al-
gorithm’s iterative nature allows for a trade-off between the number of iter-
ations and the desired accuracy, making it adaptable to various application
requirements.

For Field-Programmable Gate Arrays (FPGAs), the CORDIC algorithm of-
fers a compelling advantage due to its inherent parallelism and simplicity
in hardware design [23]. Traditional methods for computing trigonomet-
ric functions often involve multipliers, which consume significant FPGA re-
sources. In contrast, CORDIC’s reliance on simpler operations like shifts and
adds makes it resource-efficient, leading to faster computations and reduced
power consumption. This efficiency is especially beneficial for real-time ap-
plications where rapid computations are crucial.

In the realm of Convolutional Neural Networks (CNNs), the potential inte-
gration of CORDIC can be seen in the context of optimizing certain opera-
tions, especially when CNNs are deployed on FPGAs [24]. Given that CNNs
involve numerous mathematical computations, any optimization in these
operations can lead to significant improvements in performance. Further-
more, the CORDIC algorithm finds applications in various domains, from
digital signal processing and communication systems to computer graphics
and robotics, showcasing its versatility and enduring relevance in the world
of computational mathematics [25].

2.7. SqueezeNet: An Image Classification Model 17

2.7 SqueezeNet: An Image Classification Model

Image classification is a fundamental task in the field of computer vision,
where the goal is to categorize images into predefined classes. This task has
been revolutionized by the advent of deep learning models, particularly Con-
volutional Neural Networks (CNNs). CNNs are specialized kinds of neural
networks that are adept at processing data with a grid-like topology, such
as images. They consist of one or more convolutional layers, often accom-
panied by pooling layers, fully connected layers, and normalization layers.
These models have significantly improved the accuracy of image classifica-
tion tasks by effectively learning hierarchical representations of image data,
extracting features from low-level details such as edges and colors to high-
level attributes like shapes and object identities.

2.7.1 Introduction to SqueezeNet

SqueezeNet is a distinctive CNN architecture that achieves high accuracy
in image classification tasks with a significantly reduced model size. De-
veloped by researchers at DeepScale, UC Berkeley, and Stanford University,
SqueezeNet was designed to provide AlexNet-level accuracy with fewer pa-
rameters and a smaller memory footprint [26]. This aspect of SqueezeNet
makes it particularly advantageous for deployment in environments with
limited computational resources, such as embedded systems or mobile de-
vices.

2.7.2 Architecture of SqueezeNet

The key to SqueezeNet’s efficiency lies in its innovative architectural design,
which centers around the ’Fire’ module [26]. Each Fire module consists of a
’squeeze’ layer, which uses 1x1 filters to reduce the depth of the input data,
followed by an ’expand’ layer that combines 1x1 and 3x3 filters. The squeeze
layer significantly reduces the number of input channels (or depth) to the ex-
pand layer, decreasing the computational complexity and the number of pa-
rameters in the network. Furthermore, SqueezeNet employs delayed down-
sampling, meaning it reduces the spatial dimensions of the data at a later
stage in the network. This approach allows the network to retain more fine-
grained spatial information in the early layers, contributing to better feature
extraction and overall accuracy.

18 Chapter 2. Theoretical Background

2.7.3 Efficiency and Effectiveness of SqueezeNet

SqueezeNet’s architectural innovations result in a model that is both compu-
tationally efficient and effective in performance. The reduction in model size
and parameters directly translates to less memory usage and faster compu-
tation, which is crucial for real-time applications. Despite its compact size,
SqueezeNet does not compromise on accuracy, maintaining performance lev-
els comparable to larger models like AlexNet [26]. This balance between
size, speed, and accuracy makes SqueezeNet an ideal choice for applications
where resources are constrained but high performance is required.

2.7.4 SqueezeNet and FPGA Compatibility

The architecture of SqueezeNet is inherently well-suited for FPGA imple-
mentation, a factor that significantly influenced its selection in this project.
FPGAs are known for their ability to efficiently handle parallel computa-
tions, making them ideal for deploying convolutional neural networks [27].
SqueezeNet’s streamlined architecture, characterized by its small model size
and reduced parameter count, aligns well with the resource constraints typ-
ical of FPGA devices. The low memory footprint of SqueezeNet mitigates
the limited on-chip memory challenge often encountered in FPGA imple-
mentations. This compactness allows for the entire neural network model to
be loaded onto the FPGA, minimizing the need for external memory access
which can be a bottleneck in terms of speed.

To optimize SqueezeNet for FPGA deployment, certain adaptations are made
to its architecture. The unique design of the Fire module, which combines
1x1 and 3x3 convolutions, lends itself to parallel processing, a strength of FP-
GAs. By restructuring these convolutional layers to exploit the parallelism
capabilities of the FPGA, a significant increase in computational speed can
be achieved. Additionally, quantization techniques are applied to the net-
work weights and activations to fit the precision constraints of FPGA hard-
ware, further enhancing the execution speed while maintaining model accu-
racy[21]. The flexibility of the FPGA also allows for custom hardware logic
to be designed specifically for SqueezeNet’s architecture, enabling more ef-
ficient data flow and processing than what is possible in general-purpose
processors.

The adaptability of SqueezeNet to FPGA implementation is a key factor in
its effectiveness for real-time image classification applications. Its small size,

2.7. SqueezeNet: An Image Classification Model 19

combined with the ability to tailor its architecture to the parallel processing
strengths of FPGAs, results in a powerful and efficient system. This compat-
ibility is especially beneficial for edge computing applications where speed,
accuracy, and efficiency are crucial.

21

Chapter 3

Related Work

3.1 Rotational invariance for CNNs

Worrall et al. [28] present a novel Convolutional Neural Network (CNN) ar-
chitecture known as the Harmonic Network (HarmNet). This unique ap-
proach involves the utilization of circular harmonics, making the HarmNet
equivariant to both rotation and translation. Their innovative idea was to
represent images in polar coordinates, which, in turn, enabled the easier por-
trayal of rotations and translations in the harmonic domain. Their experi-
mental results on the rotated MNIST dataset demonstrate that the HarmNet
outperforms standard CNNs, showcasing the potential advantages of incor-
porating rotational invariance into CNN architectures. Kim et. al [17] in-
troduce CyCNN, a CNN model designed to be invariant to rotational trans-
formations in image classification tasks. The main novelty of CyCNN lies
in the implementation of polar mapping of input images, which essentially
translates rotational changes into translational ones. Furthermore, the model
introduces cylindrical convolutional layers, which leverage a cylindrical slid-
ing window mechanism, adapting to the unique cylindrical attributes of po-
lar coordinates. The authors report that their model, when trained without
data augmentation, significantly outperforms standard CNNs on rotated ver-
sions of the MNIST, CIFAR-10, and SVHN datasets. This work stands as
an exemplar of algorithmic modifications enhancing rotational invariance in
CNNs.

Veeling et. al [29] propose and implement a rotation-equivariant CNN specif-
ically to enhance histopathology image classification tasks. The authors ex-
tend the functionality of CNNs through the incorporation of Group Equivari-
ant Convolutional Networks (G-CNNs), thus instilling rotation equivariance
into the model. The rotation equivariance significantly enhanced the model’s

22 Chapter 3. Related Work

resilience against rotations. This study underscores the importance of rota-
tional invariance in domains such as digital pathology, where orientation of
microscopic tissue images can vary significantly. Further research and work
into enhancing CNNs for medical applications, is explored in the work of
Togo et al. [30]. The authors explore the use of deep convolutional neural net-
work (DCNN)-based features to differentiate cardiac sarcoidosis (CS) from
non-CS using polar maps. Analyzing 85 patients, the study constructs polar
maps from PET/CT images of the left ventricle region and extracts high-level
features through the Inception-v3 network. The study introduces the ReliefF
algorithm and compares the DCNN-based classification method with SU-
Vmax and CoV-based methods. The results demonstrate that DCNN-based
high-level features extracted from polar maps are more effective than con-
ventional quantitative analysis methods for CS classification. Another study
in this field is the one by Sofian et al. [31] where the authors investigate the
detection of calcification in intravascular ultrasound images using convolu-
tional neural network architectures. The study compares three types of CNN
architectures and seven types of classifiers using two types of images: Carte-
sian Coordinates images and polar reconstructed coordinate images. The
results show that classifiers such as Support Vector Machine, Discriminant
analysis, Ensembles, and Error-Correcting Output Codes obtained perfect
results using polar reconstructed coordinate images for InceptionresNet-V2
architecture. The study emphasizes the effectiveness of polar coordinates in
detecting calcification.

Cohen and Welling [32] propose a method to ensure CNNs are equivariant
under rotations by proposing Group Equivariant Convolutional Networks
(G-CNNs). This principled extension of CNNs retains a significantly larger
group of symmetries, including rotation symmetry. This work laid the foun-
dation for many subsequent studies in the field of rotationally equivariant or
invariant neural networks. RotNet, by Johnson et al. [33], a novel approach
that applies Convolutional Neural Networks (CNNs) to estimate stellar rota-
tion periods from Kepler light curves. By converting the time-series data into
image form and employing a ResNet-18 architecture through transfer learn-
ing, the authors have created a method that outperforms existing techniques,
including the Auto-Correlation Function (ACF), which is a widely used stan-
dard. Notably, RotNet achieves greater accuracy with significantly less com-
putational time, being 350 times quicker than ACF for the same data size and
10,000 times quicker for larger datasets. The success of RotNet underscores
the potential of utilizing deep learning for stellar parameter estimation and

3.2. Optimizing CNNs for FPGAs 23

sets a new benchmark for efficiency and precision in determining stellar ro-
tation periods.

3.2 Optimizing CNNs for FPGAs

Umuroglu et al. [34] present the FINN framework, a ground-breaking solu-
tion designed for creating high-performance accelerators for Binarized Neu-
ral Networks (BNNs) on Field-Programmable Gate Arrays (FPGAs), which
are a specialized type of neural network where the weights and activations
are binarized to -1 and +1. This binarization drastically simplifies the compu-
tational and memory requirements, thus making BNNs particularly suited
to FPGA deployments that may have limited resources. The FINN frame-
work proposes a flexible, FPGA-tailored design flow that can achieve high
throughput even on low-cost devices, underlining the compelling potential
of BNNs for FPGA-based acceleration.

An LSTM RNN implementation on FPGA is proposed by Han et al. [35]
While the work does not strictly fall within the domain of Convolutional
Neural Networks, it provides invaluable insights into the optimization of
neural network architectures on FPGAs. The authors highlight the signif-
icance of network sparsity for augmenting computational and energy effi-
ciency in FPGA-based neural network implementations. They achieve this
sparsity by employing an Efficient Inference Engine (EIE) that prunes neu-
rons with negligible effects on the final network accuracy. The study un-
derscores how neural network sparsity can be leveraged for FPGA acceler-
ation, offering wider implications for CNN architectures. Guan et al. [36]
present another LSTM RNN accelerator design optimized for FPGAs. The
authors propose various optimization techniques, including a novel parti-
tioning method, to reduce the memory footprint and enhance computational
efficiency. The FPGA-tailored design strategies adopted by Li and colleagues
are evaluated using a Xilinx Zynq ZC706 Evaluation Kit, demonstrating sig-
nificant performance gains over the baseline designs. While this study pri-
marily focuses on LSTMs, the architectural optimizations and design princi-
ples can be informative for the design of FPGA-accelerated CNNs as well.

Suda et al. [37] introduce an OpenCL-based FPGA accelerator for large-scale
CNNs. This work utilizes a roofline model to guide the design and opti-
mization of their accelerator, aiming to achieve the highest throughput. They

24 Chapter 3. Related Work

provide a comprehensive performance evaluation showing how their accel-
erator design outperforms existing OpenCL-based FPGA designs for large-
scale CNNs. The use of OpenCL in this context illustrates the potential of
high-level synthesis tools in creating efficient FPGA designs for CNNs. An-
other efficient hardware implementation method for optical remote sensing
object detection using CNNs on FPGAs is presented by Zhang et al. [38]. The
authors optimize the CNN model for hardware implementation, providing a
foundation for efficiently mapping the network on an FPGA. They propose
a hardware architecture that includes a general processing engine to imple-
ment multiple types of convolutions using a uniform module. An efficient
data storage and access scheme is also introduced, achieving low-latency cal-
culations and high memory bandwidth utilization. The implementation on
a Xilinx ZYNQ xc7z035 FPGA demonstrates competitive performance with
GPUs in terms of mean average precision (mAP) and significant advantages
in energy efficiency.

The research study of Zhuge et al. [39] explores different fast convolution
algorithms, including Winograd and Fast Fourier Transform (FFT), to find
an optimal strategy for applying them to different types of convolutions on
FPGAs. The paper also proposes an optimization scheme to exploit paral-
lelism in novel CNN architectures like Inception modules in GoogLeNet. The
implementation on a Xilinx Ultrascale device achieves a significant latency
speedup compared to high-end NVIDIA GPUs, surpassing previous FPGA
results.

Han et al. [40] present and implement CNN-MERP, an FPGA-based proces-
sor designed to address the external memory bandwidth bottleneck in large-
scale deep CNNs. The paper introduces an efficient memory hierarchy that
significantly reduces bandwidth requirements through multiple optimiza-
tions, including on/off-chip data allocation, data flow optimization, and data
reuse. The proposed 2-level reconfigurability enables fast and efficient recon-
figuration, resulting in a 55 percent reduction in bandwidth requirements
and a 5.48 times higher throughput compared to state-of-the-art FPGA im-
plementations.

3.3. Using CORDIC on FPGAs 25

3.3 Using CORDIC on FPGAs

Bonabi et al. [41] explore techniques for implementing a Hodgkin-Huxley-
based neural network on an FPGA. The complexity of the model poses chal-
lenges to network size and execution speed. The authors utilize the CORDIC
algorithm, along with step-by-step integration, to implement arithmetic cir-
cuits. They also employ resource-sharing techniques to preserve model de-
tails while increasing network size and maintaining near real-time execution
speed. The implementation provides a foundation for constructing large
FPGA-based network models to study various neurophysiological mecha-
nisms, making it suitable for neural control of cognitive robots and systems.
S. D. Muñoz and J. Hormigo [42] present a hardware design for high through-
put QR decomposition using the Givens rotation method on FPGAs. The
design employs a 2-D systolic array architecture with pipelined processing
elements based on the CORDIC algorithm. The approach allows continu-
ous computation of QR factorizations with simple hardware, optimizing a
fixed-point FPGA architecture for 4x4 matrices. The design achieves at least
50 percent more throughput and much less resource utilization compared to
previous FPGA proposals.

A low-cost sequential and high-performance architecture for implementing
the CORDIC algorithm on FPGAs for fingerprint recognition is presented
by Neji et al. [43]. The design employs radix-2 arithmetic and is suited for
serial operation, performing conversions between polar and rectangular co-
ordinate systems. The paper presents a VHDL description of the CORDIC
algorithm and introduces combinatory blocks to reduce iteration delay. The
architecture is implemented and tested, demonstrating the design flow and
accuracy of the CORDIC algorithm. In their work, the Francheschi et al. [44]
present a case study of applying Inexact Speculative Adders (ISA) to the
FPGA implementation of a CORDIC module within a tactile data process-
ing system. The design focuses on low latency, low power consumption, and
reduced hardware complexity for robotic and biomedical applications. The
implementation on a Xilinx ZYNQ-7000 ZC702 device shows dynamic power
reduction up to 40 percent and delay latency reduction up to 21 percent com-
pared to a conventional CORDIC module, with a negligible average relative
error for sine and cosine computations.

Pardo, Boluda and Sosa innovatively employ the CORDIC algorithm, pri-
marily leveraging its vector mode, to facilitate a computationally efficient
and precise transformation process. A specialized hardware architecture is

26 Chapter 3. Related Work

proposed, optimized to bolster the performance of the Log-CORDIC algo-
rithm, ensuring enhanced computational throughput and reduced latency.
Through rigorous empirical evaluations, the proposed approach demonstrates
remarkable superiority over existing transformation methods in terms of ac-
curacy and computational efficiency, thus offering significant advancements
in the realms of image processing and computer vision, especially in appli-
cations necessitating rotational and scaling invariance.

3.4 The FPGA Perspective

The development of a rotationally invariant image detection system for Field
Programmable Gate Arrays (FPGAs) is of significant interest for several rea-
sons. Primarily, FPGAs offer a unique combination of high performance and
flexibility, making them suitable for real-time image processing applications
where latency is critical. These qualities would further be enhanced by a sys-
tem capable of retaining its accuracy irrespective of the rotational orientation
of the input images, broadening its application scope.

The inherent parallelism of FPGAs allows for simultaneous processing of
multiple image segments, offering speed advantages over sequential proces-
sors. Implementing a rotationally invariant CNN on such a platform would
enable rapid processing of image data, regardless of its orientation. This
would be particularly beneficial in fields such as autonomous vehicles and
drones, or satellite imagery where the orientation of captured images can be
arbitrary and can vary dynamically.

Furthermore, the reprogrammable nature of FPGAs allows for continual sys-
tem updates and modifications to adapt to evolving needs and advance-
ments in neural network architectures. In a rapidly evolving field like ma-
chine learning, this adaptability is particularly beneficial. A rotationally in-
variant image detection system on FPGA would not only provide robust
and fast image recognition capabilities but could also readily incorporate
future improvements in rotational invariance techniques, thereby ensuring
longevity and relevance in a rapidly progressing technological landscape.

27

Chapter 4

The Log-CORDIC Transform

4.1 Introduction

The Log-CORDIC transform is the cornerstone of our approach in achiev-
ing rotational invariance in a convolutional neural network. The CORDIC
algorithm [22], [45], is traditionally used in signal processing systems in or-
der to calculate trigonometric parameters efficiently. Utilizing it to transform
an image from a cartesian to a polar representation has only really been ex-
plored once before [46], thus making this work a novel approach in the realm
of image processing and neural networks.

4.2 The CORDIC Algorithm

The most basic form of the CORDIC algorithm, as described herein, suffices
for our purposes. Let (x0, y0) denote the Cartesian coordinates of a point
before rotation, and (xn, yn) represent the coordinates after rotation by an
angle θ. The transformation equations are given by:

xn = x0 cos θ − y0 sin θ

yn = y0 cos θ + x0 sin θ

These equations can be rearranged into a more convenient form:

xn = cos θ(x0 − y0 tan θ)

yn = cos θ(y0 + x0 tan θ)

When the rotation angles are constrained such that tan θ = 1
2i (where i =

0, 1, . . . , n), the multiplication by the tangent term simplifies to a simple shift

28 Chapter 4. The Log-CORDIC Transform

operation. Utilizing this property, any rotation can be decomposed into a
series of smaller rotations, each following this restriction. In this scenario,
any angle rotation operation can be executed through a series of shift and
addition operations, along with a final multiplication (due to the cos θ factor).
The i-th stage of this series follows the equations:

xi+1 = Ki(xi − yidi2−i)

yi+1 = Ki(yi + xidi2−i)

where Ki = cos θi = cos
(

arctan 1
2i

)
=
√

1 + 2−2i, and di = ±1. All Ki factors
are constants that can be applied at the conclusion of the rotation operation.
The final product term can be viewed as a gain of the circuit. When this
CORDIC operation is integrated into a larger circuit, it is possible to incor-
porate this multiplicative factor into subsequent operations for simplifica-
tion. This holds particularly true for the LOG-CORDIC transformation cir-
cuit, where this factor has been entirely canceled out, as demonstrated later.
The gain factor An is the product of the inverses of all Ki.

The factor di determines the direction of the corresponding elementary i ro-
tation. This sign on each stage depends on the angle to be shifted and aims
to approach the result to the global angle at each stage. A convenient method
for safely converging to the final angle involves defining a difference variable
that indicates the proximity to the target angle. This variable is also useful
for determining the value for di:

zi+1 = zi − di arctan 2−i

di =

−1 if zi < 0

+1 if zi ≥ 0

The above equations, without the Ki constants, constitute the CORDIC equa-
tions in rotation mode. The only operations required for any calculation are
additions and shifts, as the arctan 2−i values are precalculated and stored in
a table. These equations are useful for computing trigonometric functions.
Given (x0, y0, z0) as the initial values, the CORDIC rotator in rotation mode
yields the following results:

4.2. The CORDIC Algorithm 29

xn = An(x0 cos z0 − y0 sin z0)

yn = An(y0 cos z0 + x0 sin z0)

zn = 0

The CORDIC algorithm in rotation mode facilitates sine and cosine opera-
tions by providing the angle z0 and appropriate values for x0 and y0. For
instance, the sine can be calculated by setting x0 = 1 and y0 = 0, with the
result obtained in yn.

Another common mode for the CORDIC rotator is the vector mode. In this
mode, the objective is to minimize the yn term rather than the zn angle. This
simple modification results in a rotation until the rotated point aligns with
the x-axis, with the rotated angle denoted as θ and the resulting xn repre-
sented as r in polar coordinates:

xn = An

√
x2

0 + y2
0 = r

yn = 0

zn = z0 + arctan
(

y0

x0

)
= z0 + θ

The definition for di sign in vector mode aims to minimize yi:

di =

−1 if yi < 0

+1 if yi ≥ 0

This vector mode of the CORDIC rotator has been implemented as part of
the Cartesian to log-polar transformation algorithm. The image pixel coordi-
nates (x, y) are entered into the CORDIC algorithm as (x0, y0), with z0 = 0.
Consequently, the results directly yield the polar coordinates (r, θ).

The CORDIC algorithm in vector mode operates by rotating a given vector to
a predetermined angle, primarily utilizing elementary arithmetic operations.
This mode is initiated with a vector V = (x0, y0) and involves iterative rota-
tions based on a series of predefined angles αi, which are arctangent values of
inverse powers of two, specifically arctan(2−i). In each iteration, the vector is
rotated by αi, either clockwise or counterclockwise, depending on the desired
final orientation. The iterative process involves updating the components of
the vector using simple additions and subtractions, alongside binary shifts

30 Chapter 4. The Log-CORDIC Transform

Algorithm 1 CORDIC Vector Mode Algorithm

1: Constants:
2: N_ITER← 16
3: cordic_angles← arctan(2.0−range(N_ITER))
4: procedure CORDIC_VECTOR_MODE(x0, y0, iterations = N_ITER)
5: xi ← x0
6: yi ← y0
7: zi ← 0
8: for i from 0 to iterations− 1 do
9: di ← −1 if yi < 0 else 1

10: xi_next← xi − yi · di · (2−i)
11: yi_next← yi + xi · di · (2−i)
12: zi_next← zi − di · cordic_angles[i]
13: xi ← xi_next
14: yi ← yi_next
15: zi ← zi_next
16: return xi, zi

that substitute for multiplications by 2−i. This iterative rotation continues
until the vector is aligned as closely as possible to the x-axis, thus allowing
the determination of its magnitude and phase.

4.3 The Log-CORDIC Transform Algorithm

The Log-CORDIC Transform algorithm presented here is a novel approach
to image transformation, specifically converting images from Cartesian to
polar coordinates using the CORDIC algorithm. This procedure begins by
loading and converting an image into an array format, where it then calcu-
lates the center of the image (cx, cy) to serve as a pivot for transformation.
Iteratively, for each pixel in the image, the algorithm computes the relative
Cartesian coordinates (x, y) of the pixel with respect to the center. Utiliz-
ing the CORDIC algorithm in vector mode, these Cartesian coordinates are
then transformed into polar coordinates (ρ, θ). The radial component is fur-
ther processed through a logarithmic transformation to enhance the radial
variations in the image. These transformed coordinates are used to map the
original pixel values into a new image array, effectively converting the im-
age from a Cartesian plane to a polar logarithmic plane. This transformation
is particularly useful in applications where radial and angular features are
more prominent or informative than Cartesian representations.

4.3. The Log-CORDIC Transform Algorithm 31

Algorithm 2 Log-CORDIC Transform Algorithm

procedure LOG-CORDIC(Image, OutputDim, NIter)
2: Input: Image with dimensions (Height, Width, Channels)

Parameters: OutputDim = (RadiusBins, AngleBins), NIter for
CORDIC iterations

4: Output: Transformed image in log-polar coordinates
Define Centre as (Width

2 , Height
2)

6: Initialize Trans f ormedImage as a zero array with dimensions
(Channels, RadiusBins, AngleBins)

Calculate MaxRadius =
√
(Centrex)2 + (Centrey)2

8: Determine LogBase = ln(MaxRadius)
RadiusBins−1

for each rBin from 0 to RadiusBins− 1 do
10: for each aBin from 0 to AngleBins− 1 do

Compute R and Θ using CORDIC_VECTOR_MODE for each
pixel position:

12: Given pixel position (x, y), calculate:
Rtemp = e(rBin·LogBase)

14: Θtemp = 2π·aBin
AngleBins

(R, Θ) = CORDIC_VECTOR_MODE(Rtemp, Θtemp, NIter)
16: Convert to Cartesian coordinates using R and Θ:

Xcartesian = Centrex + (R · cos(Θ))
18: Ycartesian = Centrey + (R · sin(Θ))

Assign interpolated pixel value to Trans f ormedImage[:
, rBin, aBin] by interpolating Image at (Xcartesian, Ycartesian)

32 Chapter 4. The Log-CORDIC Transform

FIGURE 4.1: The result of an image’s transformation with the
Log-CORDIC algorithm

Enhancing the rotational invariance of a CNN through the Log-CORDIC
transform is achieved, since rotated images vary little in their polar repre-
sentation, compared to their cartesian representation. Below is the result of
our Log-CORDIC transform applied to an image, after 90, 180 and 270 degree
rotations have been applied to it.

4.4. Logarithmic scaling 33

FIGURE 4.2: The result of an image’s transformation with the
Log-CORDIC algorithm

4.4 Logarithmic scaling

A particular area where a lot of development time for this algorithm was
spent was the logarithmic scaling needed when using CORDIC to calculate
the radii and angles in order to transform the image from a cartesian to polar
representation. Incorrect logarithmic scaling can lead to a significant loss of
detail from the resulting polar image, or even total distortion.

34 Chapter 4. The Log-CORDIC Transform

FIGURE 4.3: A distorted polar image due to incorrect logarith-
mic scaling

FIGURE 4.4: An example of further detail loss due to incorrect
logarithmic scaling

4.4. Logarithmic scaling 35

FIGURE 4.5: An even more extreme example

Incorrect logarithmic scaling can also cause loss of detail in specific ranges in
the resulting image, where certain areas of the polar image will be mapped
correctly on a cartesian plane in order to be displayed or input into a CNN,
but others will not.

FIGURE 4.6: Example where specific areas of the polar image
are affected

Therefore, in order to resolve these issues, a significant amount of research
and development time was dedicated to this aspect of the algorithm. In
this section, more details about the Log-CORDIC transform algorithm will
be covered, specifically detailing the research about logarithmic scaling and
what purpose it serves in our image transform.

36 Chapter 4. The Log-CORDIC Transform

This is due to the fact that the CORDIC algorithm relies on an iterative pro-
cess to rotate and scale vectors to their target positions. The convergence
of these iterations towards the correct logarithmic mapping is highly sensi-
tive to the initial conditions and the step sizes used in each iteration. Small
changes in these parameters can lead to significant differences in outcomes,
making it challenging to find the optimal set that accurately represents the
logarithmic mapping without distortion. The parameters governing the iter-
ative scaling and rotation are interdependent. Changes to one parameter can
affect the behavior of others, complicating the tuning process. For instance,
adjusting the scaling factor requires corresponding adjustments in the rota-
tion steps to maintain the integrity of the logarithmic mapping. The choice of
output dimensions for the transformed image (i.e., the number of radii and
angles) directly impacts the logarithmic mapping. Parameters must be cho-
sen to ensure that the transformed image fits well within these dimensions
without significant distortion or information loss, which becomes a balanc-
ing act between the theoretical aspects of the CORDIC algorithm and practi-
cal image processing needs.

Comparitively, the typical log-polar transform is mathematically straight-
forward, however, it becomes computationally expensive. The algorithm
directly computes the logarithm of the maximum radius and divides it by
the desired number of radii to determine the logarithmic base. With this,
the logarithmic radius is then calculated, for each step in the output image,
effectively mapping linear distances in the Cartesian plane to logarithmic
distances in the log-polar plane. When it comes to mapping the output di-
mensions, the log-polar algorithm linearly spaces angles and logarithmically
spaces radii. This approach is mathematically straightforward but compu-
tationally intensive due to the explicit use of logarithmic and exponential
functions, as well as trigonometric functions for the conversion between co-
ordinate systems.

While developing the solution to this issue, we constantly compared the out-
put of the Log-CORDIC transform, with the result of OpenCV’s log-polar
image transform, which we shall consider the benchmark. Thus, we were
able to solve the issue through continuous experimentation.

4.4. Logarithmic scaling 37

FIGURE 4.7: The output of the Log-CORDIC transform com-
pared with a known good cartesian-to-polar transform algo-

rithm

Logarithmic scaling is used to transform the linear scale of distances from
the center of an image into a logarithmic scale. This means that as one moves
radially outward from the center, each successive ring in the log-polar trans-
formed image represents a geometrically increasing distance in the original
image. This property is particularly useful for scale and rotation invariance
in image processing tasks. The calculation of the logarithmic scale involves
computing a base for the logarithm that maps the maximum radius of the
image to the desired number of radial bins in the output image. The base is
calculated as:

log_base =
ln(max_radius)

radius− 1

This equation calculates the Euclidean distance from the center to the farthest
corner of the image, essentially giving the maximum radius. The logarithmic
base is then calculated to evenly distribute this maximum radius across the
specified number of radial bins (radius). The subtraction by 1 ensures that
the scale starts correctly from the center. This subtraction is crucial in the
Log-CORDIC algorithm, because an incorrect center calculation will result
in great loss of detail in the polar image, as shown above.

After calculating the logarithmic base, for each radial bin in the output image,
the actual radius in the original image space is calculated with the formula:

r = ei·log_base

38 Chapter 4. The Log-CORDIC Transform

This equation applies the logarithmic scaling by exponentiating the product
of the bin index i and the calculated logarithmic base. This means that for
each step outward in the radial direction, the corresponding radius in the
original image increases exponentially. The first bin corresponds to the center
of the image, and subsequent bins represent exponentially increasing radii.

In order to assess the validity of our Log-CORDIC transform algorithm, we
also compared the Root Mean Square Error (RMSE) of the output of our
transform compared to the output of the OpenCV log-polar image transform.

In the experimental benchmark designed to evaluate the accuracy of the Log-
CORDIC transformation method relative to the established OpenCV log-
polar transformation. The benchmark commenced with the selection of a
standard test image, which was resized to a consistent dimension of 128×
128 pixels to standardize the input across both transformation methods. This
pre-processing step ensured that variations due to image size did not influ-
ence the comparison. Subsequently, the image underwent transformation by
both the Log-CORDIC method, implementing a predefined set of parame-
ters including the number of iterations for the CORDIC algorithm, and by
OpenCV’s log-polar transformation function, with both methods producing
images of identical output dimensions for direct comparison.

The core of the benchmarking process involved the quantitative assessment
of the two resulting images through the calculation of the Root Mean Square
Error (RMSE). The Root Mean Square Error (RMSE) between two images is
calculated as:

RMSE =

√√√√ 1
N

N

∑
i=1

(I1i − I2i)2

Where:

• I1i and I2i are the pixel intensity values of the first and second image,
respectively, at the ith position.

• N is the total number of pixels in each image.

This metric provided a scalar value representing the average magnitude of
difference between the two images, serving as an objective measure of the
similarity and, by extension, the accuracy of the Log-CORDIC method in
replicating the results of the well-established OpenCV transformation.

4.5. Advantages of using the log-CORDIC transform against a typical
log-Polar transform

39

FIGURE 4.8: The result of the root mean square error calculation

As we can see from the results of the calculation benchmark, the root mean
square error of the output image of the log-CORDIC algorithm is 8.42. While
the value might not seem insignifacant, as we can see from the comparison
of the output of the two different transforms, the error value stems from the
difference in logarithmic mapping, instead of any transform errors or arti-
facts that can lead to loss of detail necessary for feature extraction in a neural
network. Thus, the error, while being 8.42, does not lead to any impact when
it comes to the application of our algorithm.

4.5 Advantages of using the log-CORDIC trans-

form against a typical log-Polar transform

The employment of the CORDIC algorithm in this image transformation
process offers significant advantages. Primarily, the CORDIC algorithm is
renowned for its computational efficiency, as it relies solely on basic arith-
metic operations and does not require complex multiplication or division op-
erations. This efficiency is highly beneficial in image processing tasks, which
often involve large data sets and require real-time performance. Further-
more, the iterative nature of the CORDIC algorithm allows for a fine-tuned
balance between accuracy and computational load. By adjusting the number
of iterations, the algorithm can achieve a desired level of precision in the cal-
culation of polar coordinates. This adaptability makes it exceptionally suit-
able for embedded systems or hardware implementations where resources

40 Chapter 4. The Log-CORDIC Transform

are limited. In addition, the logarithmic transformation of the radial compo-
nent, facilitated by the CORDIC algorithm’s precision in calculating angles
and magnitudes, allows for an enhanced visualization of details in images,
particularly in regions with high radial variation. Logarithmic scaling is es-
pecially beneficial for preserving details in the center of the image while still
capturing features at the periphery. It’s particularly adept at handling scale
variations, which makes it valuable in applications like pattern recognition
and scale-invariant feature transformations.

The hallmark of the CORDIC algorithm’s computational efficiency lies in its
reliance on basic arithmetic operations, eschewing more resource-intensive
operations like multiplication and division. This characteristic makes CORDIC
particularly well-suited for hardware implementations where simplicity and
speed are crucial. In digital systems, especially those with limited processing
power or in embedded applications, the efficiency of CORDIC translates into
significant performance benefits. Moreover, the algorithm’s iterative nature
allows for a pipelined approach in hardware, further enhancing its efficiency.

Another advantage of the log-CORDIC transform is the fact that its logarith-
mic mapping results in the local features within an image to be mapped to a
reduced spatial extent in the transformed domain, compared to the log-polar
transform. This concentration of local features can significantly enhance the
efficiency of CNNs in detecting and analyzing these features. In technical
terms, the transformation process effectively increases the density of infor-
mative pixels within certain regions of the image, thereby amplifying the
signal-to-noise ratio with respect to the features of interest. When key fea-
tures of an image occupy a more concentrated area in the transformed space,
CNNs can potentially learn to discriminate between relevant features with
greater precision. This concentration can help the network to focus on the
most informative parts of the image, improving its ability to detect or classify
objects even in the presence of scale and rotational variances. With impor-
tant information condensed into a smaller area, the CNN may require fewer
computational resources to process the same level of detail. This can lead
to faster training and inference times, as the network focuses on the denser,
more information-rich regions of the transformed image.

4.5.1 Performance Metrics

Number of Function Calls The metric quantifies the total number of func-
tion invocations executed throughout the algorithm’s lifecycle. It serves as an

4.5. Advantages of using the log-CORDIC transform against a typical
log-Polar transform

41

indirect indicator of the algorithm’s computational complexity, reflecting the
depth of subroutine dependencies and the potential for optimization. A min-
imal count suggests an efficient and streamlined algorithm, whereas a higher
count may indicate areas prone to optimization, including redundant calcu-
lations or an inefficient algorithmic structure. From a technical standpoint,
this metric is crucial for evaluating the overhead associated with recursive or
iterative constructs, which can significantly impact memory usage and exe-
cution speed.

Execution Time Defined as the total duration required to complete an al-
gorithmic process, execution time is measured in seconds and directly cor-
relates with the algorithm’s operational efficiency. It is a paramount metric
for assessing the algorithm’s practical applicability, particularly in scenar-
ios demanding high throughput or low latency, such as real-time processing.
Technical factors influencing execution time include the algorithm’s inherent
efficiency, data structure selection, and the exploitation of hardware capabil-
ities (e.g., parallelism, cache optimization). Moreover, the choice of imple-
mentation language and its execution environment can substantially affect
performance, with compiled languages typically offering superior speed rel-
ative to interpreted counterparts.

4.5.2 Measurement Techniques

Execution Time Measurement The process employs high-resolution tim-
ing functions, notably time.time() or time.perf_counter() from Python’s
time module, to capture precise execution durations. The technique involves
recording timestamps immediately before and after the algorithm’s execu-
tion, with their difference representing the net execution time. Accuracy con-
siderations necessitate a controlled test environment to mitigate external in-
fluences and, when feasible, averaging results across multiple runs to accom-
modate variability in execution time due to system load or other transient
factors.

Profiling for Computational Complexity Utilizing Python’s cProfilemod-
ule, this deterministic profiling approach measures function call frequencies,
execution times, and the hierarchical structure of calls within the algorithm.
Despite its detailed insights into the algorithm’s execution profile, including
identification of performance bottlenecks, cProfile’s instrumentation may

42 Chapter 4. The Log-CORDIC Transform

introduce overhead that potentially alters the algorithm’s behavior. To min-
imize this effect, profiling is recommended to be confined to specific code
segments integral to the algorithm’s core functionality, thereby ensuring the
relevance and accuracy of the performance data collected.

Isolation of Pre-computation In algorithms where performance can be en-
hanced through the pre-calculation of frequently used values (e.g., the CORDIC
method’s angles), isolating such pre-computations from the primary compu-
tational logic is crucial. By conducting these calculations outside the scope
of performance measurement, the analysis more accurately reflects the effi-
ciency of the algorithm’s transformative process rather than the preparatory
steps, thus ensuring a fair and focused assessment of the algorithm’s compu-
tational demands.

4.5.3 Comparison results

Below are the results of the measurements between the Log-CORDIC trans-
form implemented in this thesis, and a Log-Polar transform. In order to have
a comparison of purely the computation effiency of the two transforms, the
Log-Polar transform we are comparing our Log-CORDIC transform against,
is implemented in Python, using solely the numpy library.

Testing setup The system that the neural network was trained and tested
on was equipped with an Intel i7-12700H processor, with 6 performance cores
and 8 efficiency cores, for a total of 14 cores and 20 total threads, with a max-
imum frequency of 4.7GHz. The total available system memory was 32 GB,
and the system was also equipped with an nVidia Quadro T600 GPU, with 4
GBs of VRAM and 896 CUDA cores.

Metric Log-Polar Log-CORDIC Improvement
Function Calls 73,400,393 1,728,517 x 42
Execution Time (seconds) 99.354 12.931 x 7.6

TABLE 4.1: Comparison of Log-Polar and Log-CORDIC Trans-
formations

The results of the comparative analysis between the Log-Polar and Log-CORDIC
transformation methods provide clear evidence of the superior efficiency of
the Log-CORDIC approach in terms of both computational complexity and
execution speed. The Log-CORDIC transformation method required signif-
icantly fewer function calls (1,728,517) compared to the Log-Polar method

4.5. Advantages of using the log-CORDIC transform against a typical
log-Polar transform

43

(73,400,393). This stark reduction, approximately 97.65%, indicates a vastly
lower computational complexity for the Log-CORDIC method. Fewer func-
tion calls suggest that the Log-CORDIC algorithm employs a more efficient
computational strategy, possibly due to its iterative nature that leverages pre-
computed angles for rotation and vectoring, thus avoiding the computational
overhead associated with the more complex pixel remapping and interpola-
tion processes typical in the Log-Polar method.

In terms of execution time, the Log-CORDIC method completed the transfor-
mation in just 12.931 seconds, while the Log-Polar method took 99.354 sec-
onds. This represents an 86.98% improvement in speed for the Log-CORDIC
method. Such a significant decrease in execution time underscores the Log-
CORDIC method’s suitability for real-time applications or scenarios requir-
ing rapid processing of large datasets. The efficiency gains in execution speed
can be attributed to the method’s streamlined computational process, which
minimizes unnecessary calculations and exploits pre-computation to acceler-
ate the transformation.

We can identify two main areas of inefficiency in the Log-Polar transform that
lead to these results. Presented here is the algorithm of a typical Log-Polar
transform.

Algorithm 3 Log-Polar Transform

image← input image
output_dim← (radius, theta) ▷ Output dimensions
centre← find image centre
max_radius← calculate maximum radius from centre

5: log_base← calculate log base using max_radius and output_dim
for r in range(output_dim.radius) do

for θ in range(output_dim.theta) do
rlinear ← convert r from log space to linear space
x, y← convert polar coordinates (rlinear, θ) to Cartesian

10: pixel_value← interpolate pixel value at (x, y)
store pixel_value in output image at (r, θ)

The typical log-polar transform requires interpolation for each pixel in the
output image, based on Cartesian coordinates derived from the log-polar
coordinates. This process is computationally expensive because it involves
floating-point arithmetic and can require accessing non-contiguous memory
locations, leading to cache inefficiencies. The conversion from log-polar co-
ordinates back to Cartesian coordinates for each pixel in the output image is
necessary to perform interpolation on the original image. This step involves

44 Chapter 4. The Log-CORDIC Transform

trigonometric operations (sine and cosine) for each pixel, which are more
computationally intensive than the simpler arithmetic operations used in the
CORDIC algorithm.

The Log-CORDIC algorithm circumvents the need for direct trigonometric
function calls by employing an iterative approach to calculate vector rota-
tions. The CORDIC technique relies on a series of predefined angles (for
which the tangent values are powers of two) and executes a sequence of shift
and add operations to approximate rotations. This method systematically ro-
tates a vector towards a target angle using a series of iterative steps that either
add or subtract these predefined angles from the current angle, based on the
direction of rotation needed. The sine and cosine values of the target angle
are implicitly calculated through this process, represented by the final coordi-
nates of the rotated vector. This iterative rotation mechanism eliminates the
need for expensive trigonometric function evaluations, replacing them with
more efficient arithmetic operations. As a result, the computational load is
significantly reduced, leading to faster execution times and lower power con-
sumption.

45

Chapter 5

System Model

5.1 Introduction

This chapter details the systematic approach to modeling our real-time im-
age classification system, with a particular emphasis on its implementation
in Python. The process of system modeling is a critical step in the research
and development phase, offering a detailed examination and understand-
ing of the system’s functionality and operational behavior. By engaging in
modeling, we aim to construct a simplified yet comprehensive representa-
tion of the system, which facilitates the exploration, analysis, and validation
of its design. This methodical approach is instrumental in identifying and
addressing potential issues or inefficiencies at an early stage, contributing to
the development of a robust and dependable system design.

The model is designed with precision to capture the key characteristics of
the real-time image classification system, with a special focus on incorporat-
ing the CORDIC algorithm to achieve rotational invariance. The adoption of
Python as the programming language for this model enhances its accessibil-
ity and adaptability, offering a flexible and dynamic development environ-
ment. Python’s compatibility with a wide array of libraries and tools signif-
icantly simplifies the process of model implementation and testing, stream-
lining the development workflow.

In the following sections, we will explore in detail the components and func-
tionalities that comprise our Python-based system model. Through compre-
hensive explanations, code examples, and illustrations, we aim to provide an
in-depth view of the model’s architecture, workflow, and the algorithms that
underpin it. This detailed exposition is intended to equip the reader with a
solid understanding of the model, setting a strong foundation for the later
stages of system development and assessment.

46 Chapter 5. System Model

5.2 Model Description

In the system’s model equivalent, we encompass the various stages of the
necessary image processing and transformation, all developed using Python
and the numpy framework, in order to reduce dependence on libraries that
obfuscate the algorithms that support them, and make the model clear in
its functionality and efficiency. The model’s architecture is delineated into
several pivotal components, each playing a quintessential role in enhancing
the robustness and efficacy of the real-time image classification system.

The initial phase involves image processing, where each image is subjected
to padding. Padding is executed by appending white pixels around the im-
age, the quantity of which is determined by predefined parameters. This
process is instrumental in manipulating the spatial dimensions of the image,
ensuring that essential features are not lost during subsequent convolution
operations. The padding process is meticulously tailored, where k rows of
pixels are added to all sides of the image, ensuring a symmetrical and bal-
anced augmentation of the image dimensions.

Subsequent to the padding process, the images undergo a cylindrical wrap-
ping transformation. In this approach, if k rows of pixels were added as
padding, the bottom k rows of the image are replicated onto the top padding,
and conversely, the top k rows are duplicated onto the bottom padding. This
strategic manipulation fosters a cylindrical effect on the image, a crucial step
that facilitates the seamless application of the CORDIC algorithm in later
stages.

Following the cylindrical transformation, the images are then transmuted
into a polar representation through the application of the CORDIC algorithm.
This algorithm is pivotal in the computation of trigonometric functions, es-
sential for the conversion of the image into its polar form with a Cartesian
representation. The utilization of the CORDIC algorithm is instrumental in
enhancing the rotational invariance of the image classification system, a cor-
nerstone in achieving robust and accurate classification outcomes.

5.3. Image Classification Model 47

5.3 Image Classification Model

5.3.1 Overview of Image Classification Models

Image classification has been revolutionized by the advent of various deep
learning models, each offering unique strengths. Among the prominent mod-
els are AlexNet, which ignited the deep learning revolution in image classi-
fication; VGGNet, known for its depth and architectural simplicity; ResNet,
which introduced residual learning to facilitate training of very deep net-
works; and the Inception series, which implemented novel ideas to capture
information at various scales. These models have continuously pushed the
boundaries of accuracy in image classification tasks. However, their often
considerable computational and memory requirements pose challenges for
deployment on platforms with limited resources, such as FPGAs.

5.3.2 SqueezeNet: An optimized choice for edge computing

SqueezeNet emerges as an optimal choice in our system model due to its
compact architecture and low memory footprint. This model achieves AlexNet-
level accuracy with significantly fewer parameters, using an architecture that
incorporates ’squeeze’ and ’expand’ layers to reduce parameter count while
maintaining performance. The small model size of SqueezeNet is particu-
larly advantageous for image classification systems targeted at embedded or
mobile devices, as it allows the entire model to be loaded onto them without
overburdening their limited resources. This characteristic makes SqueezeNet
an ideal candidate for edge computing applications where both performance
and efficiency are essential.

5.3.3 Adapting SqueezeNet for Rotational Invariance

The integration of SqueezeNet with the Log-CORDIC transform algorithm
presents a powerful combination for enhancing rotational invariance in im-
age classification. The Log-CORDIC transform, by converting images from
Cartesian to polar coordinates, inherently improves the model’s robustness
to rotational variations in input images. SqueezeNet’s architecture, with its
streamlined yet effective feature extraction capabilities, complements this
transform by efficiently processing the transformed images. This synergy
allows for improved rotational invariance without a substantial increase in
computational complexity.

48 Chapter 5. System Model

In order to achieve the rotational invariance in the image classification model,
we need to exploit the cylindrical properties of the polar coordinate system.
In the Cartesian coordinate system, rotating an object translates to vertical
movement in the polar coordinate system. Consider a point p with coordi-
nates (xp, yp) in the Cartesian system, which is equivalent to a point with
coordinates (ρp, φp) in the polar system. When we rotate the point p around
the origin by an angle φp′ − φp, it results in a new point p′ with polar coor-
dinates (ρp′ , φp′). This action, due to the constancy of ρp′ = ρp, is manifested
as a shift along the φ axis by φp′ − φp radians in the polar system. It’s impor-
tant to recognize that in the polar coordinate framework, such vertical shifts
can extend beyond the image’s boundary limits. This is illustrated when ro-
tating another point q with coordinates (xq, yq), where the rotation surpasses
the Cartesian system’s (x > 0, y = 0) ray, leading to its polar translation
exceeding the φ = 2π limit.

The log-polar coordinate system shares its foundational principles with the
polar coordinate system, with the primary difference being the logarithmic
calculation of distance from the origin. In this system, the distance ρ is recal-
culated as ρ = log(

√
x2 + y2). This log-polar representation draws inspira-

tion from the human eye’s structure and finds extensive applications across
various visual tasks.

5.4 CyCNN and Cylindrically Sliding Windows

The CyCNN model by Kim et al. [17], processes images converted into po-
lar coordinates. Imagine an original image and its variations rotated by 90°,
180°, and 270° within the polar coordinate framework. A particular region,
denoted as the receptive field within a pooling layer, focuses on crucial as-
pects of the image, such as specific features on a plane.

When training the CNN with the original image, this receptive field is adept
at identifying significant features, like distinctive marks on a plane’s surface.
However, the challenge arises when the image is significantly rotated, for ex-
ample, by 270°. The model might struggle to recognize the plane if critical
features, like markings or windows, appear too distant or if their spatial rela-
tionship is altered. This issue stems from the model’s inability to accurately
interpret the repositioned features within its receptive field.

5.5. Introducing CSWs to SqueezeNet 49

To address this limitation, they introduced the concept of cylindrically slid-
ing windows (CSW) for convolutional layers, thus creating a cylindrical con-
volutional layer (CyConv). This approach modifies how boundaries are treated:
rather than adding zeros at the input’s top and bottom edges, we replicate
the pixels from the first and last rows at opposite boundaries. This repli-
cation, combined with standard zero padding on the sides, effectively rolls
the image into a cylinder shape. The CyConv layer then cyclically scans this
cylindrical input with its filter.

CSW fundamentally enhances the receptive field’s vertical span on the orig-
inal image, effectively wrapping the input and presenting it anew to each
convolutional layer. Through integrating CSW with the layered structure of
convolutional and pooling layers, the CyCNN is better equipped to discern
complex feature relationships, thereby improving its ability to recognize and
interpret rotated images or objects with shifted feature positions.

5.5 Introducing CSWs to SqueezeNet

While Kim et al. [17] modified the VGG19 and ResNet56 models, we chose to
modify the SqueezeNet model due to its inherent efficiency. In order to do so,
a custom cylindrical convolution layer was implemented for our model, that
was utilised in SqueezeNet’s Fire modules and the layers before and after the
use of fire modules in the SqueezeNet CNN model.

To implement this cylindrical convolution, first, the input images have to be
padded cylindrically. Instead of the usual zero or same padding in convo-
lution layers of CNNs, we are mimicking a cylindrical wrapping along the
vertical edges of the image while applying standard padding to the horizon-
tal edges. For p padding pixels in our image, we are copying the top p pixel
rows of the original image to the bottom p rows of the resulting padded im-
age, and conversely, we are copying the bottom p pixel rows of the original
image to the top p rows of the resulting padded image. The horizontal edges
of the padding are padded with zeroes.

50 Chapter 5. System Model

Algorithm 4 Cylindrical Padding Algorithm

procedure CYLINDRICALPADDING(X, P)
Input: Image tensor X with dimensions (N, C, H, W)

3: Input: Padding size P
Output: Padded image tensor

Step 1: Wrap top and bottom edges
TopWrap← Extract the last P rows from X

6: BottomWrap← Extract the first P rows from X
X ← Concatenate BottomWrap, original X, and TopWrap vertically

Step 2: Pad left and right edges
Le f tRightPadding ← Apply zero padding of width P to the left and

right edges of X
9: return Le f tRightPadding

This cylindrical padding is used to implement a Cylindrically Sliding Win-
dow convolution algorithm. Whereas Kim et al. [17] utilised the Winograd
algorithm for their custom convolution layer, we took a simpler approach,
where we overload the torchvision 2D convolution method with our custom
padding method. This ensures that we are taking advantage of the enhance-
ments in performance that an already mature image processing library like
torchivision already offers, and development time is shortened to a degree.

Algorithm 5 Cylindrical Convolutional Operation

procedure CYLINDRICALCONVOLUTION(X, InChannels, OutChannels,
KernelSize, Stride, Padding)

Input: Input tensor X with dimensions (N, C, H, W)
Parameters:

InChannels - Number of input channels
OutChannels - Number of output channels
KernelSize - Size of the convolution kernel
Stride - Stride of the convolution
Padding - Padding size to be applied before convolution

4: Output: Output tensor after cylindrical convolution
Apply cylindrical padding to input tensor

Xpadded ← CYLINDRICALPADDING(X, Padding)
Apply 2D convolution over the padded tensor

Define convolution operation Conv with parameters:
InChannels, OutChannels, KernelSize, Stride, and no internal padding

Xconv ← Conv(Xpadded)
8: return Xconv

With this custom cylindrical convolution layer, our SqueezeNet’s Fire mod-
ules and its overall architecture are enhanced with rotational invariance.

5.5. Introducing CSWs to SqueezeNet 51

FIGURE 5.1: SqueezeNet Fire module with cylindrical convolu-
tion

52 Chapter 5. System Model

FIGURE 5.2: SqueezeNet architecture with cylindrical convolu-
tion

5.6 Training and validation

5.6.1 Exploring Potential Datasets for Image Classification

In the realm of image classification, the choice of dataset is critical for training
and evaluating the performance of models. Several benchmark datasets have
been established, each with its unique characteristics and challenges. Im-
ageNet, one of the largest and most diverse datasets, has been instrumental
in advancing deep learning models but requires significant computational re-
sources. The CIFAR datasets, including CIFAR-10 and CIFAR-100, offer a bal-
ance between complexity and manageability with their smaller image sizes
and limited classes. MNIST, a dataset of handwritten digits, is renowned for

5.6. Training and validation 53

its simplicity and is often used as an entry point for testing image classifica-
tion models. Other datasets like SVHN (Street View House Numbers) and
Fashion-MNIST provide alternative challenges in image recognition.

5.6.2 Criteria for Dataset Selection

The criteria for selecting datasets in this thesis centered around two key fac-
tors: the ability to effectively demonstrate the model’s rotational invariance
and the computational feasibility of processing the dataset on our FPGA-
based system. It was essential to choose datasets that not only present a vari-
ety of image orientations but also allow for modifications to test the model’s
robustness against rotational variations. Additionally, given the hardware
constraints and the focus on real-time processing, datasets that could be effi-
ciently handled within the FPGA’s resource limitations were preferred.

5.6.3 Choosing CIFAR-10 for Demonstrating Rotational In-

variance

CIFAR-10 was chosen as one of the primary datasets for this project due to
its moderate complexity and diversity. Consisting of 60,000 color images in
10 classes, CIFAR-10 presents a more realistic challenge compared to sim-
pler datasets like MNIST. The variety of natural images in CIFAR-10, includ-
ing animals and vehicles, provides a suitable testbed for demonstrating the
enhanced rotational invariance of our modified SqueezeNet model. By ap-
plying rotations to the CIFAR-10 images and evaluating the model’s perfor-
mance, the effectiveness of the log-CORDIC transform in handling rotational
variations could be effectively showcased.

5.6.4 Utilizing MNIST for Initial Testing and Validation

MNIST was selected as a complementary dataset to CIFAR-10 for its simplic-
ity and uniformity. The dataset comprises 70,000 grayscale images of hand-
written digits, making it less computationally intensive to process and ideal
for initial testing and validation of our system. The simplicity of MNIST al-
lows for a clear demonstration of the model’s improved rotational invariance,
particularly in the early stages of development. By augmenting MNIST im-
ages with various rotational angles, the impact of the log-CORDIC transform
on the model’s ability to recognize digits, irrespective of their orientation,
could be directly observed and quantified.

54 Chapter 5. System Model

5.6.5 Rationale Behind Combining CIFAR-10 and MNIST

The combination of CIFAR-10 and MNIST as test datasets provided a com-
prehensive approach to evaluating our system. While MNIST served as a
straightforward platform for initial experimentation and proof-of-concept,
CIFAR-10 introduced the complexities of real-world images. This dual-dataset
strategy allowed for a nuanced assessment of the model’s capabilities, ensur-
ing that the improvements in rotational invariance were not just limited to
simple or idealized images but were also effective in more challenging sce-
narios.

The selection of CIFAR-10 and MNIST as the datasets for demonstrating the
enhanced rotational invariance of our FPGA-implemented image classifica-
tion system was a strategic decision aligned with our objectives. CIFAR-10
provided the complexity and diversity necessary for a robust evaluation,
while MNIST offered a simpler, computationally efficient platform for ini-
tial testing and validation. This approach ensured a thorough and nuanced
demonstration of the system’s capabilities, affirming the effectiveness of the
log-CORDIC transform and the modified SqueezeNet model in achieving ro-
tational invariance across different levels of dataset complexity.

5.7 System Robustness Analysis

5.7.1 Definition of Robustness

In computational systems and algorithms, robustness is defined as a system’s
ability to maintain consistent and effective operation under varied condi-
tions, uncertainties, or potential adversities. This thesis examines the ro-
bustness of a real-time image classification system implemented on Field-
Programmable Gate Arrays (FPGAs), enhanced with the CORDIC algorithm
for rotational invariance. The system’s robustness is demonstrated by its
capacity to accurately classify images regardless of their rotational orienta-
tion, alongside resilience to image quality variations, hardware constraints,
and external perturbations, ensuring not only theoretical soundness but also
practical reliability and consistent performance in diverse real-world situa-
tions.

5.8. Experimental Setup and Methodology 55

5.7.2 Perturbations and Uncertainties

The domain of real-time image classification on FPGAs, especially with the
integration of the CORDIC algorithm for rotational invariance, encounters
several challenges and uncertainties. Image quality variability, including
resolution differences, contrast, brightness levels, and the presence of noise,
artifacts, or blurring, can affect classification accuracy. Rotational ambigui-
ties, particularly with extreme or uncommon angles, may challenge the sys-
tem’s design premise of rotational invariance. FPGA hardware limitations,
such as memory capacity, processing power, and bandwidth, could restrict
high-resolution image processing or complex model execution. Temporal
variations and environmental changes add another layer of complexity, po-
tentially influencing classification outcomes. Algorithmic limitations of the
CORDIC algorithm may also arise, affecting computational precision. Exter-
nal factors like electromagnetic and thermal interference could impact FPGA
operations, while challenges in model generalization, latency, data trans-
mission anomalies, and scalability concerns necessitate careful navigation to
fully leverage the system’s capabilities in varied applications.

5.8 Experimental Setup and Methodology

5.8.1 Preparation of Datasets

The CIFAR-10 and MNIST datasets were selected for their relevance and pop-
ularity in image classification tasks. CIFAR-10 consists of 60,000 32x32 color
images in 10 classes, offering a diverse array of subjects for classification.
MNIST, on the other hand, includes 70,000 28x28 grayscale images of hand-
written digits and is widely used for benchmarking classification algorithms.
Prior to the experiments, these datasets underwent a standard preprocessing
phase, which included normalization and shuffling, to ensure consistent in-
put data quality and to prevent model overfitting.

5.8.2 Training Procedure

For the training phase, the models were initially trained with 40,000 non-
rotated images from the CIFAR-10 and MNIST datasets respectively. This
baseline training aimed to establish a reference performance level for the
models under standard conditions. The training process involved 10 epochs,
with batch processing and adaptive learning rate adjustments to enhance the

56 Chapter 5. System Model

learning efficiency. The use of mini-batch gradient descent helped in achiev-
ing a balance between computational efficiency and convergence speed.

5.8.3 Testing and Evaluation Setup

Following the training phase, a distinct testing phase, over 10,000 images
from each dataset, was initiated, where the models were exposed to a new
set of images from the respective datasets. These images were pre-processed
using the Log-CORDIC algorithm to introduce rotations in 90, 180 and 270
degrees, in a uniform distribution across the images. These rotations were
selected in order to avoid an additional pre-processing step, where the 32x32
images would have gaps that would have needed to be filled in, were we to
introduce rotations at random degrees. This testing setup was designed to
evaluate the models’ ability to maintain classification accuracy in the face of
rotational variations, thereby assessing the improvement in rotational invari-
ance.

The system that the neural network was trained and tested on was equipped
with an Intel i7-12700H processor, with 6 performance cores and 8 efficiency
cores, for a total of 14 cores and 20 total threads, with a maximum frequency
of 4.7GHz. The total available system memory was 32 GB, and the system
was also equipped with an nVidia Quadro T600 GPU, with 4 GBs of VRAM
and 896 CUDA cores.

5.8.4 Evaluation Results

Presented are the outcomes of our investigation into the efficacy of an image
classification model. The study was conducted by training the model with
two distinct datasets: MNIST and CIFAR-10. The aim was to ascertain the
effectiveness of the Log-CORDIC transform in enhancing the model’s ability
to classify rotated images accurately, when training our SqueezeNet imple-
mentation, which was enhanced with a custom cylindrical two-dimensional
convolution layer.

The results indicate that incorporating the Log-CORDIC transform into the
training process of image classification models leads to an extended train-
ing duration. However, this investment in training time is compensated by a
marked improvement in model performance, specifically a 5% to 7% increase
in accuracy for classifying rotated images. This enhancement underscores

5.8. Experimental Setup and Methodology 57

TABLE 5.1: Experimental Results: Training and inference with
the MNIST dataset

Training Without Log-CORDIC With Log-CORDIC
Training Time (seconds) 10.523 12.442
Testing Time (seconds) 0.337 0.342
Total Time (seconds) 12.816 13.101
Test Accuracy 0.344 0.410

TABLE 5.2: Experimental Results: Training and inference with
the CIFAR-10 dataset

Training Without Log-CORDIC With Log-CORDIC
Training Time (seconds) 12.252 14.704
Testing Time (seconds) 0.572 0.590
Total Time (seconds) 20.302 23.001
Test Accuracy 0.359 0.425

the value of the Log-CORDIC transform in preparing models to handle ge-
ometric variations in input data, a common challenge in real-world image
classification tasks.

59

Chapter 6

Proposed Architecture

6.1 A Proposed Hardware Architecture

In this chapter, we will explore the potential for an acceleration of the Log-
CORDIC transform algorithm. Considering that CORDIC is particularly suited
for embedded or edge computing devices, a hardware architecture in which
the algorithm is utilised to transform images in order to enhance the rota-
tional invariance of image classification or detection systems can prove to be
a viable research area.

6.2 Selecting the Hardware Platform

6.2.1 The PYNQ-Z1 Development Board

The PYNQ-Z1 board, which integrates a dual-core ARM Cortex-A9 proces-
sor with an Artix-7 FPGA, could be used for its ability to balance process-
ing power with programmable logic. This choice is based on the board’s
compatibility with the Python Productivity for Zynq (PYNQ) open-source
framework, enabling Python-based development and simplifying the inter-
face with the FPGA’s programmable logic. The board’s comprehensive I/O
options, including HDMI, USB, Ethernet, Arduino, and Raspberry Pi expan-
sion headers, along with a pre-installed Linux-based operating system, facili-
tate a wide range of applications, from signal processing to machine learning.

6.2.2 Accelerating Machine Learning Applications

The PYNQ-Z1 board’s architecture is particularly advantageous for machine
learning applications that require significant computational speed and effi-
ciency. By offloading intensive tasks to the FPGA, the execution of machine

60 Chapter 6. Proposed Architecture

learning algorithms can be accelerated, enhancing performance for real-time
processing and large dataset analysis. This capability is exemplified in the ac-
celeration of algorithms that benefit from parallel computation, such as those
common in machine learning.

6.3 Development Tools

6.3.1 Introduction to Development Tools

The development of FPGA-based machine learning applications requires tools
that bridge the gap between high-level programming concepts and low-level
hardware implementation. In conjuction with our proposed choice of the
PYNQ platform, two primary tools to facilitate the translation of algorithms
into optimized hardware designs can be used, namely the Xilinx Vitis HLS
and the Vivado Design Suite toolkits.

6.3.2 Employing Xilinx Vitis HLS

Xilinx Vitis HLS can play a pivotal role in converting Python-based machine
learning algorithms into optimized hardware descriptions. By allowing al-
gorithmic descriptions in high-level languages, Vitis HLS enables a focus on
algorithm functionality rather than intricate hardware details and design,
simplifying the development process and accelerating the prototyping and
testing phases of the project.

6.3.3 System Integration with Vivado Design Suite

The Vivado Design Suite provides a comprehensive environment for synthe-
sizing and analyzing the hardware design, integrating HLS-generated code
with other system components, and facilitating advanced debugging. Vi-
vado’s simulation capabilities can offer insights into the performance and in-
teraction of system components, aiding in the optimization of the proposed
architecture.

6.4. Advantages of CORDIC for FPGA-Based Machine Learning 61

6.4 Advantages of CORDIC for FPGA-Based Ma-

chine Learning

Implementing the CORDIC algorithm on the FPGA can demonstrate consid-
erable computational speed improvements. The CORDIC algorithm’s suit-
ability for FPGA architectures—owing to its iterative nature and ability to
perform trigonometric, logarithmic, and hyperbolic functions using basic
arithmetic operations can be leveraged to optimize machine learning tasks
that include rotations, scaling, or transformations.

6.5 Transitioning from the model to High-Level Syn-

thesis (HLS)

This section will present the proposed transition from high-level algorith-
mic descriptions and a Python system model to High-Level Synthesis code
targeting FPGA platforms. Presented here is an in-depth analysis of the Log-
CORDIC transform as a proposed architecture comprised of HLS modules.

Architecture and Design of Log-CORDIC HLS Module At the core of the
Log-CORDIC HLS module lies an architecture tailored to leverage the it-
erative capabilities of the CORDIC algorithm for computing trigonometric
and logarithmic functions efficiently. The design precomputes scaling con-
stants (K_values) and arctangent values (atan_values) to reduce computa-
tional load during runtime. This precomputation is essential for minimizing
the operations required for each iteration, directly impacting the FPGA’s re-
source utilization.

Precision Handling through Fixed-Point Arithmetic Precision management
is a critical aspect of the Log-CORDIC HLS module, where fixed-point arith-
metic is utilized to balance computational accuracy with resource constraints.
This proposition for a hardware architecture carefully selects data types and
iteration counts to ensure that computations remain within the FPGA’s ca-
pabilities while achieving the required precision. This approach underscores
the importance of precision in hardware implementations, where resource
limitations necessitate careful planning and execution.

62 Chapter 6. Proposed Architecture

First, fixed-point arithmetic is markedly less resource-intensive than its floating-
point counterpart, a critical advantage in the resource-constrained environ-
ment of FPGAs. This efficiency stems from the simpler hardware logic re-
quired for fixed-point calculations, which does not necessitate the handling
of floating-point exponents and mantissas. Additionally, fixed-point opera-
tions boast deterministic execution times, a property that guarantees consis-
tent and predictable performance, essential for real-time processing applica-
tions where execution time variability can compromise system reliability.

Moreover, the precision afforded by a 16-bit fixed-point format, with an opti-
mized allocation between integer and fractional parts, is generally sufficient
for the demands of signal processing tasks, including those employing the
CORDIC algorithm. The specific choice of 2 bits for the integer component
intimates an expected operational range that does not necessitate a broad in-
teger spectrum, thus maximizing the precision available for fractional com-
ponents to enhance the accuracy of trigonometric calculations crucial to the
CORDIC algorithm’s efficacy.

This choice is also informed by the necessities of image processing applica-
tions. This allocation supports a [-2, 1.75] range for signed numbers, covering
the normalized or scaled values common in image processing without unnec-
essary bit allocation. Furthermore, it optimizes FPGA resource use, enhanc-
ing precision where most needed and supporting the nuanced requirements
of image transformations and analyses.

Optimization for Efficiency and Throughput To enhance efficiency and
throughput, the Log-CORDIC HLS module can incorporate loop unrolling
and pipelining optimizations. These techniques leverage the pipeline-compatible
nature of the CORDIC algorithm into parallel operations that better utilize
the FPGA architecture. The application of HLS directives for loop optimiza-
tion demonstrates an effective utilization of FPGA resources, highlighting
the module’s design as focused on achieving high performance in hardware
implementations.

In parallel, the pre-computation of CORDIC parameters, such as the itera-
tive angles and the cumulative scaling factor (K), emerges as a strategy to
diminish computational overhead during runtime. This approach alleviates
the need for recalculating these constants for each operation, thereby stream-
lining computational processes. By embedding these pre-computed values

6.5. Transitioning from the model to High-Level Synthesis (HLS) 63

within the HLS module as a lookup table, direct access is facilitated, signifi-
cantly accelerating computation by circumventing the execution of complex
arithmetic operations repeatedly.

65

Chapter 7

Conclusions and Future Work

7.1 Conclusions

7.1.1 Summary of Key Findings

This thesis presented a novel approach to enhancing the rotational invariance
of Convolutional Neural Networks (CNNs) by integrating the Log-CORDIC
algorithm into the image preprocessing pipeline. The key finding in this the-
sis is the comparative efficiency of the Log-CORDIC algorithm in transform-
ing images from a cartesian to polar representation. Also, experiments were
conducted to verify the increase in classification accuracy for rotated im-
ages. These results indicate that the Log-CORDIC algorithm efficiently and
effectively normalizes rotational variations in images, enabling the CNNs to
maintain high accuracy levels irrespective of image orientation.

7.1.2 Advantages of the Proposed Methodology

The methodology proposed in this thesis, involving the application of the
Log-CORDIC algorithm for preprocessing, proposes the Log-CORDIC algo-
rithm due to its computation effiency in transforming images from the a
cartesian to polar representation. Unlike other methods that can be com-
putationally expensive and may require extensive modifications to the CNN
architecture or complex augmentation of training data, the Log-CORDIC al-
gorithm provides a straightforward means to enhance rotational invariance.
This simplicity makes the approach easily adaptable to existing CNN models
and practical for various applications.

66 Chapter 7. Conclusions and Future Work

7.1.3 Practical Implications and Applications

Enhanced Reliability in Automated Systems The enhancement of rota-
tional invariance in image classification models has profound implications
for automated systems across various sectors. In domains such as autonomous
driving and aerial drone navigation, the ability to accurately recognize ob-
jects regardless of their orientation is crucial for safe and efficient opera-
tion. The integration of the Log-CORDIC algorithm into the preprocessing
pipeline of CNNs enhances the reliability of these systems in dynamically
changing environments. For instance, in autonomous vehicles, the improved
ability to recognize traffic signs, pedestrians, and other vehicles, irrespec-
tive of their angle or orientation, directly contributes to improved decision-
making and safety protocols.

Advancements in Medical Imaging and Diagnostics In the field of medi-
cal imaging and diagnostics, the ability to accurately classify images regard-
less of rotation is of paramount importance. Medical scans such as MRIs
and CT scans can vary in orientation, and the requirement for manual ad-
justments or re-scans due to rotational issues can be significantly reduced
with the use of rotationally invariant CNNs. The application of the enhanced
models can lead to more accurate and efficient diagnostic procedures, aiding
in early detection and treatment planning. For example, the ability to detect
anomalies or changes in tissue structure in scans, without the constraint of
standard orientations, can streamline diagnostic workflows and potentially
improve patient outcomes.

Impact on Surveillance and Security The implications of this research also
extend to the fields of surveillance and security. In these areas, cameras of-
ten capture images and footage from varying angles and perspectives. The
enhanced rotational invariance of CNNs ensures more accurate and reliable
image classification, crucial for threat detection and situational awareness. In
scenarios where rapid and accurate interpretation of visual data is essential,
such as in public safety monitoring or border security, the implementation
of rotationally robust CNNs can lead to more effective surveillance systems,
contributing to overall safety and security measures.

7.2. Future Work 67

7.1.4 Reflection on Research Objectives and Achievements

Reflecting on the initial objectives of this research, it is evident that the inte-
gration of the Log-CORDIC algorithm into CNN preprocessing has success-
fully addressed the challenge of rotational invariance in image classification.
The achievement of this objective not only fulfills the primary goal of the the-
sis but also sets a precedent for future research in the field, highlighting the
potential of algorithmic preprocessing in enhancing the capabilities of neural
network models.

7.2 Future Work

7.2.1 Enhancing Algorithm Efficiency for Diverse Rotational

Angles

Future research should focus on optimizing the Log-CORDIC algorithm to
handle a wider array of rotational angles, particularly more extreme rota-
tions. Enhancements in the algorithm’s efficiency and precision would en-
sure consistent model performance across a broader spectrum of orienta-
tions. This optimization could involve developing adaptive or scalable ver-
sions of the algorithm that dynamically adjust based on the degree of rota-
tion encountered, thereby maintaining high accuracy in classification across
diverse scenarios.

7.2.2 Integration with Advanced Neural Architectures

Exploring the integration of the Log-CORDIC preprocessing technique with
emerging and advanced CNN architectures offers a promising avenue for fu-
ture work. Investigating architectures such as EfficientNet, which are known
for their balance of accuracy and efficiency, or delving into Transformer-
based models, could provide new insights into handling rotational invari-
ance. This exploration may reveal synergies between advanced neural struc-
tures and the preprocessing technique, potentially leading to groundbreak-
ing improvements in image classification.

7.2.3 Real-Time Processing and Edge Computing Applications

Given the increasing demand for real-time image processing, particularly in
edge computing devices, future studies should investigate the deployment of

68 Chapter 7. Conclusions and Future Work

the current system in such environments. This involves optimizing both the
neural network model and the Log-CORDIC preprocessing pipeline for low-
latency operations. The aim would be to enable efficient processing on hard-
ware with constrained computational resources, making the technology ac-
cessible for real-time applications like autonomous vehicles or mobile-based
image analysis.

7.2.4 Application Across Diverse and Complex Datasets

Extending the validation of the model to more diverse and complex datasets
is crucial for future research. By testing the enhanced model on datasets with
varying complexities and image types, researchers can better understand the
model’s performance and limitations. This expansion could involve datasets
with higher-resolution images, diverse object categories, or datasets from
specialized fields like aerial or medical imaging, providing a comprehensive
evaluation of the model’s applicability.

7.2.5 Cross-Domain Application Studies

Further research could also explore the application of rotationally invariant
CNNs in specific domains where rotational variation is a common challenge.
Domains such as satellite imagery, underwater imaging, and medical diag-
nostics, where images are often captured at various angles and orientations,
would benefit significantly from improved rotational invariance. Conduct-
ing domain-specific studies would not only demonstrate the practical utility
of the research but also could lead to tailored solutions addressing unique
challenges in these fields.

7.2.6 Addressing Other Forms of Image Variations

Lastly, there is an opportunity to extend the research to handle other forms
of image variations, such as scale changes, translation, or lighting variations.
Developing a more holistic solution that can adapt to a variety of image per-
turbations would significantly enhance the robustness and versatility of im-
age classification models. This approach would move towards a more com-
prehensive solution, capable of tackling the multifaceted challenges encoun-
tered in real-world image classification scenarios.

69

References

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015. DOI: 10.1038/nature14539.

[2] G. Litjens, T. Kooi, B. E. Bejnordi, et al., “A survey on deep learning
in medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88,
Dec. 2017. DOI: 10.1016/j.media.2017.07.005.

[3] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving: Learning
affordance for direct perception in autonomous driving,” in 2015 IEEE
International Conference on Computer Vision (ICCV), IEEE, Dec. 2015. DOI:
10.1109/iccv.2015.312.

[4] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in
Computer Vision – ECCV 2016, Springer International Publishing, 2016,
pp. 649–666. DOI: 10.1007/978-3-319-46487-9_40.

[5] R. He and J. McAuley, “Ups and downs,” in Proceedings of the 25th Inter-
national Conference on World Wide Web, International World Wide Web
Conferences Steering Committee, Apr. 2016. DOI: 10.1145/2872427.
2883037.

[6] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998. DOI: 10.1109/5.726791.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, May 2017. DOI: 10.1145/3065386.

[8] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-
scale image recognition, 2014. DOI: 10.48550/ARXIV.1409.1556.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, Jun. 2016. DOI: 10.1109/cvpr.2016.90.

[10] N. Manchev, Gpu-accelerated convolutional neural networks with pytorch,
Accessed: 2023-10-10, 2022. [Online]. Available: https://domino.ai/
blog/gpu- accelerated- convolutional- neural- networks- with-

pytorch.

https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1109/iccv.2015.312
https://doi.org/10.1007/978-3-319-46487-9_40
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/3065386
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.1109/cvpr.2016.90
https://domino.ai/blog/gpu-accelerated-convolutional-neural-networks-with-pytorch
https://domino.ai/blog/gpu-accelerated-convolutional-neural-networks-with-pytorch
https://domino.ai/blog/gpu-accelerated-convolutional-neural-networks-with-pytorch

70 References

[11] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” Mar. 23, 2016. arXiv: 1603.07285v2 [stat.ML].

[12] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Computer Vision – ECCV 2014, Springer Interna-
tional Publishing, 2014, pp. 818–833. DOI: 10.1007/978-3-319-10590-
1_53.

[13] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional
networks for mid and high level feature learning,” in 2011 International
Conference on Computer Vision, IEEE, Nov. 2011. DOI: 10.1109/iccv.
2011.6126474.

[14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–
1958, 2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.
html.

[16] Y. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature
pooling in visual recognition,” in Proceedings of the 27th International
Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel,
J. Fürnkranz and T. Joachims, Eds., Omnipress, 2010, pp. 111–118. [On-
line]. Available: https://icml.cc/Conferences/2010/papers/638.
pdf.

[17] J. Kim, W. Jung, H. Kim, and J. Lee, CyCNN: A rotation invariant CNN
using polar mapping and cylindrical convolution layers, 2020. DOI: 10.48550/
ARXIV.2007.10588.

[18] C. Maxfield, The Design Warrior’s Guide to FPGAs: Devices, Tools and
Flows. Elsevier, 2004, ISBN: 978-0-7506-7604-5.

[19] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of
Systems and Software,” in ACM Computing Surveys, vol. 34, Jun. 2002,
pp. 171–210. DOI: 10.1145/508352.508353.

[20] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “Large-scale FPGA-
based Convolutional Networks,” Machine Learning on Very Large Data
Sets, vol. 1, no. 1, pp. 1–6, Nov. 2011.

[21] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural Net-
works,” in Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ACM, Feb. 2015. DOI: 10 . 1145 /
2684746.2689060.

https://arxiv.org/abs/1603.07285v2
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1109/iccv.2011.6126474
https://doi.org/10.1109/iccv.2011.6126474
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://icml.cc/Conferences/2010/papers/638.pdf
https://icml.cc/Conferences/2010/papers/638.pdf
https://doi.org/10.48550/ARXIV.2007.10588
https://doi.org/10.48550/ARXIV.2007.10588
https://doi.org/10.1145/508352.508353
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060

References 71

[22] J. E. Volder, “The CORDIC trigonometric computing technique,” IRE
Transactions on Electronic Computers, vol. EC-8, no. 3, pp. 330–334, Sep.
1959. DOI: 10.1109/tec.1959.5222693.

[23] P. K. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50
years of CORDIC: Algorithms, architectures, and applications,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 9, pp. 1893–
1907, Sep. 2009. DOI: 10.1109/tcsi.2009.2025803.

[24] J. Qiu, J. Wang, S. Yao, et al., “Going deeper with embedded FPGA
platform for convolutional neural network,” in Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, ACM, Feb. 2016. DOI: 10.1145/2847263.2847265.

[25] R. Andraka, “A survey of CORDIC algorithms for FPGA based com-
puters,” in Proceedings of the 1998 ACM/SIGDA sixth international sym-
posium on Field programmable gate arrays - FPGA ’98, ACM Press, 1998.
DOI: 10.1145/275107.275139.

[26] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K.
Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and <0.5MB model size,” in arXiv:1602.07360, Feb. 2016. arXiv:
1602.07360 [cs.CV].

[27] S. Han, J. Kang, H. Mao, et al., “ESE: Efficient Speech Recognition En-
gine with Sparse LSTM on FPGA,” Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, Feb. 2017.
DOI: 10.1145/3020078.3021745.

[28] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J. Brostow,
“Harmonic networks: Deep translation and rotation equivariance,” in
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
IEEE, Jul. 2017. DOI: 10.1109/cvpr.2017.758.

[29] B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, and M. Welling, “Ro-
tation equivariant CNNs for digital pathology,” in Medical Image Com-
puting and Computer Assisted Intervention – MICCAI 2018, Springer In-
ternational Publishing, 2018, pp. 210–218. DOI: 10.1007/978-3-030-
00934-2_24.

[30] R. Togo, K. Hirata, O. Manabe, et al., “Cardiac sarcoidosis classifica-
tion with deep convolutional neural network-based features using po-
lar maps,” Computers in Biology and Medicine, vol. 104, pp. 81–86, Jan.
2019. DOI: 10.1016/j.compbiomed.2018.11.008.

https://doi.org/10.1109/tec.1959.5222693
https://doi.org/10.1109/tcsi.2009.2025803
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1145/275107.275139
https://arxiv.org/abs/1602.07360
https://doi.org/10.1145/3020078.3021745
https://doi.org/10.1109/cvpr.2017.758
https://doi.org/10.1007/978-3-030-00934-2_24
https://doi.org/10.1007/978-3-030-00934-2_24
https://doi.org/10.1016/j.compbiomed.2018.11.008

72 References

[31] H. Sofian, J. T. C. Ming, S. Muhammad, and N. M. Noor, “Calcification
detection using convolutional neural network architectures in intravas-
cular ultrasound images,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 17, no. 3, p. 1313, Mar. 2020. DOI: 10 . 11591 /
ijeecs.v17.i3.pp1313-1321.

[32] T. S. Cohen and M. Welling, “Group equivariant convolutional net-
works,” International Conference on Machine Learning (ICML), 2016, 2016.
DOI: 10.48550/ARXIV.1602.07576.

[33] J. E. Johnson, S. Sundaresan, T. Daylan, et al., Rotnet: Fast and scalable
estimation of stellar rotation periods using convolutional neural networks,
2020. DOI: 10.48550/ARXIV.2012.01985.

[34] Y. Umuroglu, N. J. Fraser, G. Gambardella, et al., “FINN: A Framework
for Fast, Scalable Binarized Neural Network Inference,” in Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ACM, Feb. 2017. DOI: 10.1145/3020078.3021744.

[35] S. Han, J. Kang, H. Mao, et al., “ESE: Efficient Speech Recognition En-
gine with Sparse LSTM on FPGA,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ACM, Feb.
2017. DOI: 10.1145/3020078.3021745.

[36] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “FPGA-based accelerator for
long short-term memory recurrent neural networks,” in 2017 22nd Asia
and South Pacific Design Automation Conference (ASP-DAC), IEEE, Jan.
2017. DOI: 10.1109/aspdac.2017.7858394.

[37] N. Suda, V. Chandra, G. Dasika, et al., “Throughput-optimized OpenCL-
based FPGA accelerator for large-scale convolutional neural networks,”
in Proceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ACM, Feb. 2016. DOI: 10.1145/2847263.
2847276.

[38] N. Zhang, X. Wei, H. Chen, and W. Liu, “FPGA implementation for
CNN-based optical remote sensing object detection,” Electronics, vol. 10,
no. 3, p. 282, Jan. 2021. DOI: 10.3390/electronics10030282.

[39] C. Zhuge, X. Liu, X. Zhang, S. Gummadi, J. Xiong, and D. Chen, “Face
recognition with hybrid efficient convolution algorithms on FPGAs,”
in Proceedings of the 2018 on Great Lakes Symposium on VLSI, ACM, May
2018. DOI: 10.1145/3194554.3194597.

[40] X. Han, D. Zhou, S. Wang, and S. Kimura, “CNN-MERP: An FPGA-
based memory-efficient reconfigurable processor for forward and back-
ward propagation of convolutional neural networks,” in 2016 IEEE 34th

https://doi.org/10.11591/ijeecs.v17.i3.pp1313-1321
https://doi.org/10.11591/ijeecs.v17.i3.pp1313-1321
https://doi.org/10.48550/ARXIV.1602.07576
https://doi.org/10.48550/ARXIV.2012.01985
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1145/3020078.3021745
https://doi.org/10.1109/aspdac.2017.7858394
https://doi.org/10.1145/2847263.2847276
https://doi.org/10.1145/2847263.2847276
https://doi.org/10.3390/electronics10030282
https://doi.org/10.1145/3194554.3194597

References 73

International Conference on Computer Design (ICCD), IEEE, Oct. 2016.
DOI: 10.1109/iccd.2016.7753296.

[41] S. Y. Bonabi, H. Asgharian, S. Safari, and M. N. Ahmadabadi, “FPGA
implementation of a biological neural network based on the hodgkin-
huxley neuron model,” Frontiers in Neuroscience, vol. 8, Nov. 2014. DOI:
10.3389/fnins.2014.00379.

[42] S. D. Munoz and J. Hormigo, “High-throughput FPGA implementa-
tion of QR decomposition,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 62, no. 9, pp. 861–865, Sep. 2015. DOI: 10.1109/
tcsii.2015.2435753.

[43] N. Neji, A. Boudabous, W. Kharrat, and N. Masmoudi, “FPGA im-
plementation of the CORDIC algorithm for fingerprints recognition
systems,” International Journal of Computer Applications, vol. 63, no. 6,
pp. 39–45, Feb. 2013. DOI: 10.5120/10473-5204.

[44] M. Franceschi, V. Camus, A. Ibrahim, C. Enz, and M. Valle, “Approxi-
mate FPGA implementation of CORDIC for tactile data processing us-
ing speculative adders,” in 2017 New Generation of CAS (NGCAS), IEEE,
Sep. 2017. DOI: 10.1109/ngcas.2017.40.

[45] J. Walther, “A Unified Algorithm for Elementary Functions,” in Pro-
ceedings of the Joint Computer Conference, 1971, pp. 379–385.

[46] J. Boluda and F. Pardo, “Synthesizing on a reconfigurable chip an au-
tonomous robot image processing system,” in Field Programmable Logic
and Application, Y. K. Cheung and G. Constantinides, Eds., ser. Lecture
Notes in Computer Science, vol. 2778, Berlin, Heidelberg: Springer,
2003. DOI: 10.1007/978-3-540-45234-8_45.

https://doi.org/10.1109/iccd.2016.7753296
https://doi.org/10.3389/fnins.2014.00379
https://doi.org/10.1109/tcsii.2015.2435753
https://doi.org/10.1109/tcsii.2015.2435753
https://doi.org/10.5120/10473-5204
https://doi.org/10.1109/ngcas.2017.40
https://doi.org/10.1007/978-3-540-45234-8_45

75

External Links

[10] N. Manchev, Gpu-accelerated convolutional neural networks with pytorch,
Accessed: 2023-10-10, 2022. [Online]. Available: https://domino.ai/
blog/gpu- accelerated- convolutional- neural- networks- with-

pytorch.

https://domino.ai/blog/gpu-accelerated-convolutional-neural-networks-with-pytorch
https://domino.ai/blog/gpu-accelerated-convolutional-neural-networks-with-pytorch
https://domino.ai/blog/gpu-accelerated-convolutional-neural-networks-with-pytorch

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Motivation
	Scientific Contributions
	Thesis Outline

	Theoretical Background
	Machine Learning
	Convolutional Neural Networks
	Structure of a Convolutional Neural Network
	Convolution Layers
	Pooling Layers
	Activation Functions
	Perceptron
	Rectified Linear Unit
	"Leaky" Rectified Linear Unit

	Polar Coordinate Representation
	Field Programmable Gate Arrays
	The CORDIC Algorithm
	SqueezeNet: An Image Classification Model
	Introduction to SqueezeNet
	Architecture of SqueezeNet
	Efficiency and Effectiveness of SqueezeNet
	SqueezeNet and FPGA Compatibility

	Related Work
	Rotational invariance for CNNs
	Optimizing CNNs for FPGAs
	Using CORDIC on FPGAs
	The FPGA Perspective

	The Log-CORDIC Transform
	Introduction
	The CORDIC Algorithm
	The Log-CORDIC Transform Algorithm
	Logarithmic scaling
	Advantages of using the log-CORDIC transform against a typical log-Polar transform
	Performance Metrics
	Measurement Techniques
	Comparison results

	System Model
	Introduction
	Model Description
	Image Classification Model
	Overview of Image Classification Models
	SqueezeNet: An optimized choice for edge computing
	Adapting SqueezeNet for Rotational Invariance

	CyCNN and Cylindrically Sliding Windows
	Introducing CSWs to SqueezeNet
	Training and validation
	Exploring Potential Datasets for Image Classification
	Criteria for Dataset Selection
	Choosing CIFAR-10 for Demonstrating Rotational Invariance
	Utilizing MNIST for Initial Testing and Validation
	Rationale Behind Combining CIFAR-10 and MNIST

	System Robustness Analysis
	Definition of Robustness
	Perturbations and Uncertainties

	Experimental Setup and Methodology
	Preparation of Datasets
	Training Procedure
	Testing and Evaluation Setup
	Evaluation Results

	Proposed Architecture
	A Proposed Hardware Architecture
	Selecting the Hardware Platform
	The PYNQ-Z1 Development Board
	Accelerating Machine Learning Applications

	Development Tools
	Introduction to Development Tools
	Employing Xilinx Vitis HLS
	System Integration with Vivado Design Suite

	Advantages of CORDIC for FPGA-Based Machine Learning
	Transitioning from the model to High-Level Synthesis (HLS)

	Conclusions and Future Work
	Conclusions
	Summary of Key Findings
	Advantages of the Proposed Methodology
	Practical Implications and Applications
	Reflection on Research Objectives and Achievements

	Future Work
	Enhancing Algorithm Efficiency for Diverse Rotational Angles
	Integration with Advanced Neural Architectures
	Real-Time Processing and Edge Computing Applications
	Application Across Diverse and Complex Datasets
	Cross-Domain Application Studies
	Addressing Other Forms of Image Variations

	References

