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Abstract

We introduce TOQL, a query language for querying time information
in ontologies. A distinguishing feature of TOQL is its ability to handle on-
tologies representing evolution of information in time (thus allowing time to
affect the status of the described concepts). TOQL is designed as a high
level query language that handles ontologies almost like relational databases.
Queries in TOQL are issued as SQL-like statements involving time and high-
level ontology concepts that vary in time. TOQL also supports expressions
relating ontology concepts with time instances or time intervals. TOQL pre-
vents users from being familiar with representation of time in ontologies.
Besides TOQL syntax, this work demonstrates, full query functionality on
ontologies in OWL. This includes query translation and execution of tempo-
ral queries along with a mechanism for representing time evolving concepts
in ontologies. Although independent from TOQL, this work suggests a mech-
anism for representing time evolving concepts in ontologies based on the well
known 4D perdurandist mechanism [22]. TOQL queries are translated into
equivalent statements in SeRQL [11] (which are then executed on OWL). To
show proof of concept, a real world temporal ontology is also implemented
on which several TOQL example queries are processed and discussed. Query
formulation and general user interaction with the ontology is facilitated using
a Graphic User Interface (GUI).



Per�lhyhParousi�zoume thn TOQL, m�a uyhloÔ epipèdou gl¸ssa erwt sewngia ontolog�e
 pou parist�nei statik  all� kai qronik  plhrofor�a. To kÔrioqarakthristikì, pou xeqwr�zei thn TOQL apì �lle
 gl¸sse
 (p.q., SPARQL,
SeRQL), e�nai h ikanìtht� th
 na diaqeir�zetai ontolog�e
 se pou anaparisto-Ôn thn exèlixh th
 plhrofor�a
 ston qrìno (epitrèponta
 ètsi ton qrìno naephre�sei thn kat�stash twn kl�sewn pou perigr�fontai sthn ontolog�a). H
TOQL èqei sqediaste� w
 mia gl¸ssa erwt sewn uyhloÔ epipèdou pou qei-r�zetai ti
 ontolog�e
 sqedìn san sqesiakè
 b�sei
 dedomènwn. Oi erwt sei
sthn TOQL t�jentai san tÔpou SQL erwt mata pou perilamb�noun ekfr�sei
qrìnou. H TOQL ep�sh
 uposthr�zei thn susqètish twn kl�sewn mia
 on-tolog�a
 me qronikè
 stigmè
   qronik� diast mata. Sthn TOQL o qr sth
den qrei�zetai na e�nai gn¸sth
 tou trìpou me ton opo�o o qrìno
 anapar�sta-tai sti
 ontolog�e
. Ektì
 apì thn suntaktikì th
 TOQL, aut  h doule�aperilamb�nei mia efarmog  gia thn pl rh upost rixh erwt sewn se ontolo-g�e
 se OWL. Aut  h efarmog  perilamb�nei met�frash kai ektèlesh twnerwthm�twn, kaj¸
 kai èna mhqanismì gia thn anapar�stash twn kl�sewnpou exel�ssontai ston qrìno. An kai anex�rthto apì thn TOQL, h efarmog enswmat¸nei ton mhqanismì gia thn anapar�stash twn qronik� exelissìme-nwn kl�sewn se ontolog�e
 pou prot�jhke apì thn IBM kai jewre� ìti oikl�sei
 (ènnoie
) èqoun tèsseri
 diast�sei
 (four-dimensional (perdurantist)
approach). Ta erwt mata se TOQL metafr�zontai se ant�stoiqa erwt matase SeRQL (ta opo�a sthn sunèqeia ekteloÔntai p�nw thn ontolog�a). Giana de�xoume thn isqÔ twn parap�nw, èqei ep�sh
 ulopoihje� mia qronik  on-tolog�a, p�nw sthn opo�a ekteloÔntai kai suzhtoÔntai arket� erwt mata se
TOQL. H dhmiourg�a thn erwthm�twn kai genik� h epikoinwn�a tou qr sth methn ontolog�a dieukolÔnetai me thn qr sh enì
 grafikoÔ perib�llonto
.
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Chapter 1

Introduction

Ontologies represent a set concepts and the relationships between those
concepts. Over the past few years there has been an extensive use of on-
tologies on domains such as artificial intelligence, software engineering and
semantic web as a form of knowledge representation, replacing in many cases
relational databases. Because of their increasingly important role, many on-
tology query languages have been proposed as tools for providing enhanced
retrieval support on knowledge and for increasing the efficiency of knowledge
interpretations by querying on entities, associations among entities or on
properties of such entities represented in ontologies. The current state of the
art requires one to submit a textual, description logic (DL) query or SQL-like
query. However the logic and syntax of these querying languages necessitates
a tedious effort from users before being able to write queries effectively. How-
ever, state-of-the-art languages has limited (if not at all) expressive power in
handling time and concepts that vary over time in queries.

1.1 Problem Definition

A critical issue in Knowledge Representation (KR) domain is dealing with
information that changes over time. Many Knowledge Representation appli-
cations need, not only to provide well organised data describing the current
state of a domain, but also to provide data describing the domain’s evo-
lution. State-of-the-art information representation and reasoning methods
have limited expressive power for describing real world changing processes.
For example the (important and persistent) knowledge that a person will
go through the stages of infant, adolescent and adult, or a company will be
established, hire personnel and develop products which evolve as a result of
time, cannot be adequately described using existing methods and is there-
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CHAPTER 1. INTRODUCTION 6

fore unavailable to the experts. Ontology representation languages such as
OWL are based on binary relations (relations connecting two instances with
no time dimension) making the representation of time a difficult matter to
deal with.

It is possible to enhance the capabilities of state-of-the-art information
representation over semantic web and their support for information analysis
and reasoning by exploiting the time dimension in the information possessed.
This can be achieved by adding the concepts of time and change (evolution) in
a rich semantics ontology representation enabling context aware information
analysis and reasoning based on evolution over time.

Ontologies offer the means for representing high level concepts, their prop-
erties and their interrelationships. Dynamic or temporal ontologies will in
addition enable representation of time evolving information in ontologies
through e.g., versioning or the 4D perdurandist approach [22]. According
to this approach all entities are perdurants, making no distinction between
endurants (physical objects such as cars, companies, people) and occurants
(events such as buying a car). The idea is that each entity is considered to
be an event and has a start and an end point. An entity can be seen as a
“space-time worm”, with the slices of the worm being temporal parts (time
slices) of the entity.A temporal ontology query language is then needed to
exploit this information in searching for temporal concepts and time related
information. This might not only increase the quality of searches but also add
improved information interpretation capabilities to existing systems through
statistical analysis, data mining and reasoning that involve time. Existing
ontology query languages such as SeRQL or SPARQL fall short in handling
time.

1.2 Proposed Solution

We introduce TOQL, a high-level query language for querying (time)
information in ontologies. TOQL handles ontologies almost like relational
databases. Queries in TOQL are issued as SQL statements involving time
and high-level ontology concepts that vary in time. TOQL expands the ca-
pabilities of state-of-the-art ontology query languages such as SeRQL [11]
and SPARQL [7] to handle real world changing information. Unlike SeRQL
and SPARQL treats ontologies almost like relational databases, hiding from
the user most of the peculiarities of an ontology. TOQL maintains the basic
structure of an SQL language (SELECT, FROM,WHERE) and treats the
classes and the properties of an ontology almost like tables and columns of a
database. TOQL supports expressions relating concepts with time instances
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or time intervals. This prevents users from being familiar with representa-
tion of time in ontologies. TOQL supports queries not only on static infor-
mation in the static part of the ontology (as conventional query languages
do) but also queries on time evolving information instantiated to the ontol-
ogy (dynamic part). TOQL also introduces the Allen operators (BEFORE,
AFTER, MEETS, METBY, OVERLAPS, OVERLAPPEDBY, DURING,
CONTAINS, STARTS, STARTEDBY, ENDS, ENDEDBY, EQUALS) that
allow comparisons between time intervals, and the operator AT(time point)
or AT(time point, time point) that allows comparisons between an interval
and a specific time interval or time point.

Besides TOQL syntax, this work demonstrates, full query functionality
on ontologies in OWL. This includes query translation and execution of tem-
poral queries along with a mechanism for representing time evolving concepts
in ontologies. Although independent from TOQL, this work suggests a mech-
anism for representing time evolving concepts in ontologies based on the well
known 4D perdurandist mechanism [22]. The 4D perdurandist mechanism
is not part of the language, it is not transparent to the user (so the user
need not be familiar with peculiarities of the underlying mechanism for time
information representation). TOQL queries are first translated into equiva-
lent statements in SeRQL (which are then executed on OWL). Based on the
system’s understanding of information, the system generates a projection (in
time) of the evolution of the acquired ontology concepts.

To show proof of concept, a real world temporal ontology (for enterprise
information) is also implemented on which several TOQL example queries are
processed and discussed. Query formulation and general user interaction with
the ontology is facilitated using a Graphic User Interface (GUI). The platform
can take any temporal ontology as input and perform TOQL queries on it
provided that time information is based on the 4D perdurandist mechanism.

1.3 Contributions of Present Work

The contributions of this work are summarized below:

1. We propose TOQL, a high level query language for temporal ontologies.
TQOL syntax and semantics are fully specified and analyzed.

2. A TOQL interpreter capable of executing TOQL queries on any tem-
poral ontology is described and implemented.

3. To demonstrate and objectively assess TOQL, an integrated informa-
tion system capable of handling TOQL on any temporal ontologies is
implemented.
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1.4 Thesis Outline

Background knowledge and related research are discussed in Chapter 2. A
description of OWL (Web Ontology Language) and of the four-dimensionalist
(perdurantist) approach to handle time in ontologies are given. Ontology
query language such as RDQL, SPARQL and SeRQL and ALLEN calculus
are also presented and discussed. Finally two ontologies, the “Static Enter-
prise Ontology” and the “Dynamic Enterprise Ontology” are presented.

In Chapter 3 TOQL’s syntax and semantics are presented and discussed.
TOQL’s clauses and keywords are provided. The way TOQL handles time in
ontologies implementing the four-dimensionalist (perdurantist) approach is
also discussed. Several query examples based on “Static Enterprise Ontology’
and “Dynamic Enterprise Ontology” are also provided. A formal description
of the language’s syntax in BNF is given in Appendix A.

In Chapter 4 the application implemented to fully support query func-
tionality on ontologies in OWL is presented. Issues such as query translation,
ontology loading into memory and syntax and semantic errors handling are
discussed. Graphic User Interface (GUI) created to facilitate query formula-
tion and general user interaction with the ontology is also presented.

Finally conclusions and issues for further research are given in Chapter
5.



Chapter 2

Background and Related Work

2.1 Ontologies

Ontologies are specifications of the conceptualization and corresponding
vocabulary used to describe a domain. They are well-suited for describing
heterogeneous, distributed and semi-structured information sources that can
be found on the Web. By defining shared and common domain theories, on-
tologies help both people and machines to communicate concisely, supporting
the exchange of semantics and not only syntax. It is therefore important that
any semantic for the Web is based on an explicitly specified ontology. This
way, consumer and producer agents (which are assumed for the Semantic
Web) can reach a shared understanding by exchanging ontologies that pro-
vide the vocabulary needed for discussion. Ontologies typically consist of
definitions of concepts relevant for the domain, their relations, and axioms
about these concepts and relationships. Several representation languages and
systems are defined.

2.2 OWL

The future of the Web is the Semantic Web. In Sementic Web the in-
formation contained in documents is given an explicit meaning, making it
easier to be processed by applications. OWL [6] can be used to represent
the meaning of terms and the relationships between those terms. It is more
expressive than XML, RDF and RDF-S, making it easier to represent ma-
chine interpretable content on the Web. It is a revision of DAML-OIL web
ontology language and it has tree sublanguages (species):

• OWL Lite that supports a classification hierarchy and simple con-
straints.

9
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• OWL DL that supports maximum expressiveness while retaining com-
putational completeness and decidability.

• OWL Full that supports maximum expressiveness but no computa-
tional guarantees.

In our work the ontologies are implemented in OWL DL. OWL DL is
computable while maintaining maximum expressiveness.

2.3 Representation of Time in Ontologies

Dealing with information that changes over time is a critical problem in
Knowledge Representation (KR). Representation languages such as OWL,
RDF (description logics), frame-based and object-oriented languages (F-
logic) are all based on binary relations. The fact is that binary relations may
change over time (e.g., being employee of a company) making the represen-
tation of time a difficult matter to deal with, since binary relations simply
connect two instances (e.g., the employee with the company) without any
temporal information. Time representation using OWL is feasible, although
it is complicated. OWL-Time (formerly DAML-Time) temporal ontology
describes the temporal content of Web pages and the temporal properties of
Web services. Apart from language constructs for the representation of time
in ontologies, there is a need for mechanism for the representation of the
evolution of concepts (events) over time. Versioning suggests that the ontol-
ogy has different versions (one per instance of time). When a change takes
place, a new version is created. Versioning suffers from several disadvantages:
(a) changes even on single attributes result in a new version of the ontology
will be created (information redundancy) (b) searching for events in time
instances or intervals requires exhaustive searches in multiple versions of the
ontology to find the beginning and ending point time interval of interest, (c)
it is clear how the relation between evolving classes are represented. In this
paper the solution based on the four-dimensionalist (perdurantist) approach
[22] is adopted.

Before we describe the four-dimensionalist (perdurantist) approach we
should first briefly describe the three-dimensionalist (endurantist) approach.
This approach distinguishes the world into two basic categories: the en-
durants (physical objects such as cars, companies, people) and the occurants
(events such as buying a car). Endurants are supposed to exist at all times
and have no time dimension, while occurants have temporal parts that exist
during the times the entity exists. The main issue with this approach is that
the diachronic identity (the identity that determines an entity over time) of
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endurants is addressed by identifying a set of properties that do not change
over time. An entity (endurant) has a set of properties that do not change
over time (ex. a person’s DNA) along with a set of properties that do change
over time (ex. the hair’s color). In these case the Leibniz’s Law (i.e., X and
Y are identical if and only if they share all and only the same properties)
does not qualify (e.g., consider a person with black hair as X and the same
person with brown hair as Y. X and Y are not identical because they do not
share all and only the same properties).

The four-dimensionalist (perdurantist) approach assumes that all entities
are perdurants, making no distinction between endurants and occurants. The
idea is that each every entity has a start and an end point (ex. the lifetime
of the sun). An entity can be seen as a four dimensional “space-time worm”,
with the slices of the worm being the temporal parts of the entity. With this
approach the problem of diachronic entity becomes trivial since an entity is
four dimensional and has temporal parts. Changes occur on the properties
of the temporal part keeping the entity as a whole unchanged.

To add the time dimension to an ontology using the 4D fluent (perdu-
rants) approach, classes TimeSlice and TimeInterval, and properties
tsTimeSliceOf and tsTimeInterval are introduced as shown in Figure 2.2.
Class TimeSlice is the domain class for all the entities’ “time slices” (i.e.,
entities’ temporal parts), while class TimeInterval is the domain class for all
time intervals. A time interval holds the temporal information of a time slice.
Property tsTimeSliceOf connects an instance of class TimeSlice with an en-
tity, and property tsTimeInterval connects an instance of class TimeSlice

with an instance of class TimeInterval. Properties having a time dimension
are called fluent properties and connect instances of class TimeSlice.

The “Static Enterprise Ontology” (“StEn Ontology”) of Figure 2.1 has
three classes (concepts), namely Company, Product and Employee. Class
Company has the datatype property companyName and the object proper-
ties produces and hasEmployee; class Product has the datatype properties
productName and price, and class Employee has the datatype property em-

ployeeName.

String

Company ProductEmployee

StringintString

companyName

hasEmployee produces

productNamepriceemployeeName

Figure 2.1: Static Enterprise Ontology
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Figure 2.2 illustrates the “Dynamic Enterprise Ontology” (“DEn Ontol-
ogy”), that is the temporal ontology derived by adding concepts of time
(using the 4D purdurandist approach) to the Static Enterprise Ontology of
Figure 2.1. CompanyName and employeeName are static properties (their
value does not change over time), while properties produces, hasEmployee,
productName and price are dynamic, fluent properties (their value changes
over time). Because these properties are fluents their domain (and range
if they are object properties) is of class TimeSlice. Notice that Figure 2.2
gives only the ontology without any instances. EmployeeTimeSlice, Compa-

nyTimeSlice and ProductTimeSlice generic instances are provided to make
clear that the domain of properties hasEmployee, produces, productName and
price are time slices restricted to be slices of a specific class. For example,
the domain of property productName is not the class TimeSlice but it is
restricted to instances that are time slices of (tsTimeSliceOf ) class Product.

CompanyEmployee Product

String

TimeSlice

String

EmployeeTimeSlice CompanyTimeSlice ProductTimeSlice

String

Int

TimeInterval

companyNameemployeeName

hasEmployee produces productName

Price

ts
T

im
eS

lic
eO

f

ts
T

im
eS

lic
eO

f

ts
T

im
eS

lic
eO

f

tsTimeInterval tsTimeInterval

tsTimeInterval

Figure 2.2: Dynamic Enterprise Ontology

2.4 Ontology Query Languages

Query languages for supporting queries on ontologies are known exist [23].
SquishQL [18] is an RDF query language, RDQL [19] is a query language
first released in Jena [1], nRQL [15] is a query language for RACER, OWL-
QL is a query language for the OWL-QL [14] system. SPARQL [7] is a w3c
recommendation query language supported by SESAME [12],[2] and finally
SeRQL [11] is the query language developed for SESAME. The following
sections describe RDQL, SPARQL and SeRQL further.
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2.4.1 RDQL

RDF is a directed, labeled graph data format for representing information
in the Web. RDQL [19] is an SQL like object oriented query language for
RDF. The purpose of RDQL is to provide a data-oriented query model.
This means that RDQL only retrieves information stored in the model which
contains a set of N-Triple [17] statements.

The main clauses of RDQL are SELECT and WHERE. SELECT clause
identifies the variables to appear in the query results, while WHERE clause
contains a set of N-Triples that define the query pattern. Assume the “StEn
Ontology”. The Knowledge base of this ontology is given in Turtle format
[10]:

Data (Using Turtle format):
@prefix default: <http://www.owl-ontologies.com/Static Enterprise Ontology.owl> .

default:Company1 default:produces default:Product1

default:Company2 default:produces default:Product2

default:Product1 default:price 30

default:Product2 default:price 35

The following query asks for the company that has a product with value
more than 32:

Query:
SELECT ?Company

WHERE (?Company,<ex:produces>,?Product) (?Product,<ex:price> ?price) AND ?price > 32

USING ex FOR <http://www.owl-ontologies.com/Static Enterprise Ontology.owl#>

Looking at the data, one can easily see that only Company2 has a product
with value more than 32 (specifically 35).

Query Result:
Company

Company2

2.4.2 SPARQL

SPARQL is also a query language for RDF influenced from RDQL. SPARQL
consists mainly of two parts: the SELECT clause specifies the variables to
appear in the query results, and the WHERE clause provides the basic graph
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pattern to match against the data graph. The FROM clause is only used to
specify RDF datasets. An RDF dataset represents a collection of graphs [7].
The FROM clause specifies the dataset to be used for matching. Assume
once more the “StEn Ontology”. The following statements in Turtle format
represent instance Company1 of the “StEn Ontology”:

Data (Using Turtle format):
@prefix default: <http://www.owl-ontologies.com/Static Enterprise Ontology.owl> .

default:Company1 default:companyName C1

The following query returns the name of Company1:

Query:
SELECT ?companyName

WHERE

{

<http://www.owl-ontologies.com/Company1>

<http://www.owl-ontologies.com/companyName> ?companyName .

}

Query Result:
companyName

“C1”

2.4.3 SeRQL

SeRQL (Sesame RDF Query Language) [11] is another RDF query lan-
guage that is very similar to SPARQL, but with other syntax. SeRQL,
similarly to RDQL and SPARQL supports SQL syntax but in addition to
RDQL and SPARQL, supports comparison between date times.

SeRQL supports two query modes, referred to as “Select Query” returning
a table of values and “Construct Query” returning an RDF graph (a part of
the Knowledge Base). Typically, a SeRQL “Select Query” can be built-upon
from one and up to seven clauses: SELECT, FROM, FROM CONTEXT,
WHERE, LIMIT, OFFSET and USING NAMESPACE. Construct queries
support exactly the same clauses but start with CONSTRUCT instead of
SELECT. Except from the first clause, SELECT or CONSTRUCT, the re-
maining clauses are optional.
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SELECT clause specifies which values are returned. FROM specifies
path expressions. Path expressions are expressions that match specific paths
through an RDF graph. Path expression’s basic forms are:

{subj} pred {obj}
{subj1} pred1 {obj1} subj2 {obj2}
{subj1} pred1 {obj1} subj2 {obj2} subj3 ...

A path expression consists of nodes and edges. The nodes and edges in
the path expressions can be variables, URIs and literals. Each and every path
can be constructed using a set of basic path expressions. However, there are
available some short cuts to simplify path expressions:

• Multi-value nodes: are used to query two or more statements with
identical subject and predicate. In such cases the subject and predicate
do not have to be repeated. Consider the following path expression:

FROM {subj1} pred1 {obj1, obj2, obj3}

This path expression is equivalent to this one:

FROM
{subj1} pred1 {obj1},
{subj1} pred1 {obj2},
{subj1} pred1 {obj3}
WHERE obj1 != obj2 AND obj1 != obj3 AND obj2 != obj3

• Branches: are used to query multiple properties of a single subject.
Instead of repeating the subject, one can use a semi-colon to attach a
predicate-object combination to the subject:

{subj1} pred1 {obj1};
pred2 {obj2}

The above path exrpession in equivalent to:

{subj1} pred1 {obj1},
{subj1} pred2 {obj2}
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• Reified statements: with this short cut, a path expression represent-
ing a single statement (i.e., node edge node) can be written between
the curly brackets of a node:

{ {reifSubj} reifPred {reifObj} } pred {obj}

This is equivalent to (using “rdf:” as a prefix for the RDF namespace,
and “Statement” as a variable for storing the statement’s URI):

{Statement} rdf:type {rdf:Statement},
{Statement} rdf:subject {reifSubj},
{Statement} rdf:predicate {reifPred},
{Statement} rdf:object {reifObj},
{Statement} pred {obj}

WHERE clause is an optional and is useful for specifying Boolean con-
straints on variables. The most common boolean constrains are:

• Value (in)equality: values are compared using the operators “=”
and “!=”.

Var1 = Var2
Var1 != Var2

• Numerical comparisons: numbers can be compared to each other
by using the operators “<”, “<=”, “>” and “>=”. Notice that SeRQL
allows comparison between dates and datetimes. The following example
query retrieves the countries with population less than 1.000.000:

SELECT Country
FROM Country ex:population Population
WHERE Population < “1000000”xsd:positiveInteger
USING NAMESPACE ex = <http://example.org/things#>

• The LIKE operator: checks whether a value matches a specified pat-
tern of characters. The following example query retrieves the country
named “Belgium”:

SELECT Country
FROM Country ex:name Name
WHERE Name LIKE “Belgium”
USING NAMESPACE ex = <http://example.org/things#>



CHAPTER 2. BACKGROUND AND RELATED WORK 17

• AND, OR, NOT: compine and negate boolean constraints. The NOT
operator has the highest presedence, then the AND operator, and fi-
nally the OR operator. Parentheses can also be used

Assume the “StEn Ontology”. The instances of this ontology are given
in Turtle format. The following statements describe two instances of class
company (Company1 with names C1, Company2 with name C2) producing
Product1 with name P1 and Product2 with name P2 and whose prices are
30 and 35 respectively.

Data (Using Turtle format):
@prefix default: <http://www.owl-ontologies.com/Static Enterprise Ontology.owl/> .

default:Company1 default:produces default:Product1

default:Company1 default:companyName C1

default:Company2 default:produces default:Product2

default:Company2 default:companyName C2

default:Product1 default:productName P1

default:Product1 default:price 30

default:Product2 default:productName P2

default:Product2 default:price 35

The following query asks for companies (companies’ names) producing
products whose price is greater than 32. Also asks for the products’ names:

Query:
SELECT

companyName, productName

FROM {Company} ex:name {companyName},

{Company} rdf:type {ex:Company}

{Product} rdf:type {ex:Product}

Company ex:produces Product

{Product} ex:name {productName}

{Product} ex:price {price}

WHERE price > 32xsd:int

USING NAMESPACE ex = <http://www.owl-ontologies.com/Static Enterprise Ontology.owl/>

Query Result:
companyName productName

C2 P2
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2.5 Temporal Databases

Conventional databases describe the state of concepts at a single moment
of time. As new information is added to concepts, changes affect the current
state of the concepts, with the old data being deleted from the database. A
temporal database has built-in time aspects, representing the progression of
concepts over the time.

Temporal aspects usually include valid time and transaction time. Valid
time denotes the period during which a fact is true with respect to the
real world, while transaction time denotes the period during which a fact
is stored in the database. Both of them together form the bitemporal data.
In a database table bitemporal data is often represented by four extra table-
columns StartVT (start valid time) and EndVT (end valid time), StartTT
(start transaction time) and EndTT (end transaction time).

2.6 Temporal Databases Query Languages

Query languages for supporting queries on relational databases are known
to exist such as TQuel and TSQL2. TQuel is a superset of Quel and TSQL2
specifies a temporal extension to the SQL-92 language standard.

2.6.1 TQuel

TQuel [20] is a superset of Quel [13]. Quel is query language, paricularly
simple, powerfull and less complex than SQL. TQuel is a minimal exten-
sion (syntactically and semantically) of Quel which ensures that all Quel
statements are also TQuel statements that have an identical sementics in
both languages and that the addinional constructs defined in TQuel have
analogues in Quel.

Quel query concists of the two componets: the target list and a where

clause. Target list specifies how the attributes of the relation being returned
are computed from the attributes of the underlying relations and a where

clause specifies which tuples participate in the derivation.
TQuel also introduces clauses such as when that is the temporal analogue

to Quel’s where clause, valid that specifies the value of an attribute in the
derived relation and as of. When and valid clauses access valid times while
as of accesses transaction times.
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2.6.2 TSQL2

TSQL2 [21] is a temporal extension to the SQL-92 language standard.
TSQL2 supports six kinds of tables:

• Snapshot table: nothing is stated after the attributes

• Valid-time state table: AS VALID [STATE] <granularity>

• Valid-time event table: AS VALID EVENT <granularity>

• Transaction-time table: AS TRANSACTION

• Bitemporal state table: AS VALID [STATE] <granularity> AND TRANS-
ACTION

• Bitemporal event table: AS VALID EVENT <granularity> AND TRANS-
ACTION

To get a table with past and current values a snapshot query must be
used. The following query asks for the names of companies (assume the
“StEn Ontology” of Figure 2.1 as a relational database):

SELECT SNAPSHOT companyName
FROM Company

The following query asks for the names of companies and the time period
that each name existed:

SELECT companyName
FROM Company

2.7 Allen Operators

Allen operators [9], define the complete range of intuitive relationships
that can hold between time periods. A time period intuitively is the time
associated with some event occuring or some property holding in the world.
Assume a simple linear model of time (the future always follows the past).
In this model there is one primitive relation: Meets. Two periods m and n
meet if and only if m precedes n, there is no time between m and n, and m
and n do not overlap. Assuming time periods i,j,k,l,m, the axiomatization of
Meets is as follows [9]:
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1. There is no beginning or ending of time and there are no semi-infinite
or infinite periods (every period has a period that meets it and another
that it meets):

∀i.∃j, k.Meets(j, i) ∧ Meets(i, k).

kij

2. Any two periods that meet can be composed to produce a larger period
(concatenation):

∀i, j, k, l.Meets(i, j) ∧ Meets(j, k) ∧ Meets(k, l) ⊃
∃m.Meets(i, m) ∧ Meets(m, l).

ji k

m

l

3. Periods uniquely define an equivalence class of periods that meet them.
If i meets j and k, then if period l meets j must also meet k:

∀i, j, k, l.Meets(i, j) ∧ Meets(i, k) ∧ Meets(l, i) ⊃ Meets(l, k).

i j

k l

4. Equivalence classes uniquely define the periods. If two periods both
meet the same period, and another period meets both them, then they
are equal:

∀i, j, k, l.Meets(k, i) ∧ Meets(k, j) ∧ Meets(i, l) ∧ Meets(j, l) ⊃ i = j
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j

ik l

5. Two pairs of periods (i meets j and k meets l), either they both meets
at the same “place”,or the place where i meets j precedes the place
where k meets l, and vice versa:

∀i, j, k, l.(Meets(i, j) ∧ Meets(k, l)) ⊃ Meets(i, l) ⊗
(∃m.Meets(k, m) ∧ Meets(m, j)) ⊗ (∃.Meets(i, m) ∨ Meets(m, l)).

i j

k l

m

ji

k l

m

i j

k l

With this system, the complete range of intuitive relationships that could
hold between time periods (Allen operators [9]) are: Before - After, Meets

- MetBy, Overlaps - OverlappedBy, Starts - StartedBy, During - Contains,
Finishes - FinishedBy, Equals. Figure 2.3 shows each of these relationships
graphically:

ji

Meets(i,j)

Before(i,j)

Overlaps(i,j)

Starts(i,j)

During(i,j)

Finishes(i,j)

Equals(i,j)

Inverse RelationRelation

After(j,i)

MetBy(j,i)

OverlappedBy(j,i)

StartedBy(j,i)

Contains(j,i)

FinishedBy(j,i)

Figure 2.3: The possible relations between time periods



Chapter 3

TOQL: Syntax and Semantics

TOQL (Temporal Ontology Query Language) is an SQL-like, temporal
query language for OWL. In the following sections the language (syntax
and semantics) and the application developed to support this language are
presented and discussed. A formal description of the language’s syntax in
BNF is given in Appendix A.

3.1 Basic clauses

TOQL supports most of an SQL language syntax and clauses. Namely
TOQL suppports following clauses:

• SELECT: specifies the values to be returned.

• FROM: declares the class or classes to query from. Always follows
SELECT.

• WHERE: includes logic operations and comparisons that restrict the
number of rows returned by the query. Always follows FROM.

• LIMIT: limits the numbers of rows returned by the query (e.g., LIMIT
10 will return the first ten rows). Can be after FROM (if no WHERE
clause is specified in the query), WHERE and OFFSET.

• OFFSET: sets the first row returned by the query (e.g., OFFSET 5
will skip the first 4 rows and will returns the others). Can be after
FROM (if no WHERE clause is specified in the query), WHERE and
LIMIT.

22
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Table 3.1 summarizes TOQL syntax:

Case 1 Case 2 Case 3 Case 4
SELECT ... SELECT ... SELECT ... SELECT ...
FROM ... FROM ... FROM ... FROM ...

OFFSET ... WHERE ... WHERE ...
LIMIT ... OFFSET ...

LIMIT ...

Table 3.1: Examples of TOQL syntax

Except from the above, TOQL also supports the following:

• AS: renames a class (if it is used in clause FROM) or a property (if
it is used in clause SELECT). Renaming a class allows using more
than one instance of a class in a query (e.g., FROM Company AS C1,
Company AS C2). Renaming a property specifies the columns names
of the returning results tables (e.g., SELECT Company.companyName
AS Name).

• AND: connects two properties (datatype or object) in WHERE.

• OR: connects two properties (datatype or object) in WHERE.

• LIKE: compares a datatype property with a string in WHERE. Com-
parison is case sensitive.

• LIKE “string” IGNORE CASE: compares a datatype property
with a string ignoring case.

Table 3.2 summarizes TOQL with the additional clauses:

Syntax
SELECT ... AS ...
FROM ... AS ...
WHERE ... LIKE ... AND ... LIKE “string” IGNORE CASE

Table 3.2: Generic TOQL syntax

Finally there are operation clauses for connecting two queries (combina-
tory operations) and for creating nested queries:

• MINUS: returns query results retrieved by the first operand exluding
results retrieved by the second operand.
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• UNION: returns the union of results returned by both operands. Du-
plicate answers are filtered out.

• UNION ALL: returns the union of results returned by both operands.
Duplicate answers are not filtered out.

• INTERSECT: returns the intersection of results retrieved by both
operands.

• EXISTS: this is a unary operator that has a nested SELECT-query
as its operand. The operator is an existential quantifier that succeeds
when the nested query has at least one result.

• ALL: this is an operator that has a nested SELECT-query as one of
its operands. It always follows a comparison operator (i.e., “=”, “!=”,
“<”, “>”, “<=”, “>=”). It indicates that for every value of the nested
query the comparison must hold.

• ANY: has a nested SELECT-query as one of its operands. It al-
ways follows a comparison operator (i.e., “=”, “!=”, “<”, “>”, “<=”,
“>=”). It indicates for at least one value of the nested query the
comparison must hold.

• IN: has a nested SELECT-query as one of its operands. Allows set
membership checking. The set is defined by the nested SELECT-query.

Table 3.3 summarizes TOQL syntax with operator clauses:

Case 1 Case 2 Case 3 Case 4

Query Query Query Query
MINUS UNION UNION ALL INTERSECT
Query Query Query Query

Case 5 Case 6 Case 7 Case 8

SELECT ... SELECT ... SELECT ... SELECT ...
FROM ... FROM ... FROM ... FROM ...
WHERE EXISTS WHERE ... CO1 WHERE ... CO1 WHERE ...
(QUERY) ALL (Query) ANY (Query) IN (Query)

Table 3.3: TOQL syntax with operator clauses

1CO: comparison operator can be any of “=”, “!=”, “<”, “>”, “<=”, “>=”
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3.2 Dealing with Classes and Properties

In relational databases the basic terms are relations (tables) and attribute
(columns). Tables represent concepts of the world (e.g., the concept of Com-
pany, or the concept of Car) or many to many (N:N) relations between
two concepts, while columns represent attributes attributes of concepts (e.g.,
Company name, address, ...).

In ontologies the basic terms are classes (also named concepts) and prop-
erties (object or datatype). Classes represent concepts of the world (e.g. the
concept of University or the concept of Food). Properties represent relations
between two concepts or between a concept and a value. Properties relating
two classes (concepts) are referred to as object properties, while properties
relating a class with a value are referred to as datatype properties. As an
example of object property consider the relation between the Company and
the Employee. These two classes can be connected with the object property
hasEmployee. As an example of datatype property consider the name of an
Employee. Class Employee can be connected with a name (string value) with
datatype property isNamed.

TOQL not only uses SQL-like clauses and a similar syntax but also treats
ontologies almost like relational databases. Tables representing concepts cor-
respond to classes and tables representing relations correspond to object
properties. Attributes correspond to datatype properties. In addition, 1:1
and 1:N relations correspond to object properties (see Section 4.3). Table 3.4
summarizes the mapping between database relations and ontology concepts
used by TOQL.

Relation Database Ontology

Table representing concept Class
Table representing N/N relation Object Property

1/N, 1/1 relations Object Property
Attribute Datatype Property

Table 3.4: Mapping between database relations and ontology concepts

In TOQL classes are declared in FROM clauses just like SQL handles
tables. To access a datatype property of a class, the name of the class is
followed by a dot (“.”) and the name of the datatype property, just like SQL
handles tables and attributes:

ClassName.DatatypePropertyName
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To access object properties (properties connecting two classes), the name
of the domain class is followed by a dot (“.”), the name of the object property,
double dot (“:”) and finally the name of range class:

DomainClassName.objectPropertyName:RangeClassName

The following query can be used to access the names of companies pro-
ducing products called “x”, in the “StEn Ontology” of Figure 2.1:

SELECT Company.companyName
FROM Company, Product
WHERE Company.produces:Product
AND Product.productName LIKE “x”

Notice that the declaration of classes Company and Product in FROM is
necessary. Also notice that datatype and object properties are being accessed
like SQL accesses table attributes.

3.3 Dealing with Time

TOQL is a high level language hiding the implementation of time at the
ontology level. As such, the user needs not be aware of the details of the 4D
fluent (perdurandist) mechanism used in this work to represent time evolving
information in ontologies. As mentioned in Section 2.3, an ontology imple-
menting the 4D fluent mechanism consists of two parts: the static part which
is the initial ontology (classes, properties, instances) and the dynamic part
consisting of additional temporal classes needed to represent time, evolution
in time as well as properties and instances of the above temporal classes
(TimeSlice class, TimeInterval class, tsTimeSliceOf property, tsTimeInter-

val property, fluent properties). TOQL supports “high level functionality”
for dealing with both static and the dynamic part while the user is aware
only of the static part. TOQL automatically determines references to time
related information. More specificically, TOQL,

• Retrieves all the time slices associated with a class of the static ontol-
ogy.

• Determines whether a property (object or datatype) in the query is a
fluent property (i.e., a property that connects time slices or a time slice
with a datatype) or not (a property that connects “static” classes or a
“static” class with a datatype).
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• Uses the ontology’s dynamic part to answer to the query, if a property
specified by the query is a fluent one.

• Uses the ontology’s static part to answer to the query, if a property
specified by the query is not a fluent one.

As an example consider the “DEn Ontology” of Figure 2.2. Typically to
retrieve companies that hired employees, one should be aware of the 4D fluent
mechanism and ask for all time slices (instances) of class Company and all
time slices of Employee and then query on the object property hasEmployee

that connects those instances. In TOQL but without implementing the high
level functionality described above, this is typically expressed as:

SELECT Company.companyName
FROM Company, Employee, TimeSlice AS T1 ,
TimeSlice AS T2
WHERE T1.tsTimeSliceOf:Company AND
T2.tsTimeSliceOf:Employee AND T1.hasEmployee:T2 AND
Employee.employeeName LIKE “x”

This is rather complicated expression, requires that the user be familiar
with the implementation of time at the level of the ontology (the 4D fluent
method in this work). However, this is not necessary in TOQL and the same
query can be expressed as:

SELECT Company.companyName
FROM Company, Employee
WHERE Company.hasEmployee:Employee
AND Employee.employeeName LIKE “x”

The second query is much more easy to write than the first one. No-
tice that the object property hasEmployee is treated like its domain is class
Company and its range is class Employee, while in fact it is a fluent property
and has domain the class TimeSlice (instances of the class TimeSlice that
are time slices of Company) and range the class TimeSlice (instances of the
class TimeSlice that are time slices of Employee).

To deal with time, TOQL also introduces some other clauses. It uses
additional clauses implementing the ALLEN operators (see Section 2.7). In
TOQL, the implementation of ALLEN operators correspond to comparisons
between fluent properties. Fluent properties connect time slices and time
slices are associated with time intervals. Consequently, implementation of
Allen operators correspond to comparisons between time intervals. In accor-
dance to Allen calculus [9] the following operators are supported in TOQL:
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• BEFORE: returns true if the first time interval is before the second
one.

• AFTER: returns true if the first time interval is after the second one.

• MEETS: returns true if the first time interval meets the second one.

• METBY: returns true if the second time interval meets the first one.

• OVERLAPS: returns true if the first time interval overlaps the second
one.

• OVERLAPPEDBY: returns true if the second time interval overlaps

the first one.

• DURING: returns true if the first time interval is during the second
one.

• CONTAINS: returns true if the first time interval is contains the
second one.

• STARTS: returns true if the two time intervals start together.

• STARTEDBY: returns true if the two time intervals start together.

• ENDS: returns true if the two time intervals end together.

• ENDEDBY: returns true if the two time intervals end together.

• EQUALS: returns true if the first time interval equals the second one.

The following TOQL query retrieves the name of the company that hired
employee “x” and then employee “y”:

SELECT Company.companyName
FROM Company, Employee AS E1, Employee AS E2
WHERE Company.hasEmployee:E1 BEFORE Company.hasEmployee:E2
AND E1.employeeName like “x” AND E1.employeeName LIKE “y”

TOQL also introduces the clause AT which compares a fluent property
(i.e., the time interval in which the property is true) with a time period
(time interval) or time point. Notice that AT clause retrieves data only
explicitly defined in the Knowledge Base. Assume the “DEn Ontology” and
consider that at time point 5 the price of Product1 is 10 and that there is
no information about its price after time point 5. If a query asks for the
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price of Product1 at time point 6 TOQL will return nothing. A reasonable
answer would be 10 (the last known price in the KB). Answering such queries
effectively requires combining TOQL with a reasoner.

• AT(time point) operation returns true if the time interval holds true
this point of time .

• AT(start time point, end time point) operation returns true if the
time interval holds true for all the time interval (start time point - end
time point).

The following TOQL query retrieves the name of the company employee
“x” was working for, from time=3 to time=5:

SELECT Company.companyName
FROM Company, Employee
WHERE Company.hasEmployee:Employee AT(3,5)
AND Employee.employeeName LIKE “x”

As mentioned above in TOQL the user does not have to be aware of
the implementation details of the 4D fluent mechanism. Because TOQL
is independent of the mechanism implementing time, there is no way to
directly access class TimeInterval (i.e., the class holding values of time). In
order TOQL to return time the the keyword TIME is introduced. It follows
datatype or object properties and can be used only in SELECT. It returns
the start and end time point (if any) in which the property is true (the time
interval in which the property is true). If no end point exists it returns only
start point.

• TIME clause returns the time interval (start and end point) in which
a property holds true.

As an example, the following TOQL query retrieves the time for which a
company had employee “x”

SELECT Company.hasEmployee.TIME
FROM Company, Employee
WHERE Company.hasEmployee:Employee AND
Employee.employeeName LIKE “x”

A more formal description of TOQL syntax in BNF is given in appendix
A. Notice that all keywords are case insensitive.
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3.4 Special Cases

This section describes some TOQL special features. These are related to
the way TOQL deals with:

• Class keys (Section 3.4.1).

• Wildcard (*) (Section 3.4.2).

• Scope (Section 3.4.3).

3.4.1 Dealing with keys

In relational databases each table’s tuple is uniquely characterized by a
key. A key can refer to more than one attributes (compound key). Consider
a relational database that has the table Company and that this table uses
the attribute ID as key. To access this key, in SQL, a user should write:

SELECT Company.ID

In OWL, each class instance and each property have a unique name.
This unique name is considered to be equivalent to the unique key of rela-
tional databases. The difference is that this unique name is not an ordinary
datatype property, and so it can not be treated the way described in Section
3.2 (i.e., it cannot be accessed by writing the name of the class followed by a
dot ’.’ and the datatype property). In TOQL, the (unique) name of a class
instance is accessed using the name of the class itself (without reference to a
property). For example, to access the unique name of a company we write:

SELECT Company

Assume the “DEn Ontology”. The following TOQL expression can be
used to access the (unique) name that company, named “x”, has in the time
interval (3,5):

SELECT Company
FROM Company
WHERE Company.companyName
LIKE “x” AT(3,5)
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3.4.2 Dealing with wildcard (*)

In TOQL wildcard (*) can be used only in SELECT. In SQL the presence
of wildcard (*) in SELECT implies that all the columns of all the tables
declared in clause FROM will be returned. If the wildcard (*) follows a table
(tableName.*) all the columns of the specific table will be returned.

In TOQL the presence of wildcard (*) in SELECT implies that all the
datatype properties of all the classes declared in FROM will be returned.
If the wildcard (*) follows a class all the datatype properties of the specific
class will be returned. Notice that the class unique name is not returned
(only its datatype properties are returned).

Assume the ontology “StEn Ontology” of Figure 2.1. The following query
retrieves companies producing product with unique name “x”, as well as the
product’s name.

SELECT *
FROM Company, Product
WHERE Company.hasProduct:Product
AND Product LIKE “x”

3.4.3 Dealing with scope

TOQL supports set combination operations in queries as well as nested
queries. Both set operations and nested queries imply that a TOQL query
may be composed of more than one “subqueries”. Each “subquery” has
its own class declarations, as well as class and property usage and this fact
introduces the need of handling the different scopes. This section discusses
how TOQL handles scopes and sub queries.

TOQL treats composite queries combined by set operators and nested
queries in a different query. Queries combined by set operators belong to
completely different scopes. Classes declared in any of them are local to this
query and are not visible to the others. The following query retrieves names
of “Company 1” and also names of “Company 2” using the “DEn Ontology”:

SELECT C1.companyName
FROM Company As C1
WHERE C1 like “Company 1”
UNION
SELECT C1.companyName
FROM Company As C1
WHERE C1 like “Company 2”
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This TOQL expression specifies two sperate queries combined by the set
operator UNION. Each of them has a different scope: classes declared in the
first “subquery” are not visible to the second one. Even if the same class is
to be used by the second “subquery”, it must be declared again.

In TOQL, a nested query inherits all the classes declared in the query
it is nested into, so a nested query can use all of these classes, but can not
(re)declare any of them. Assume the “Dynamic Enterprise Ontology” and
consider the following TOQL query, that retrieves the product with price
higher than (or equal to) 10 and is not smaller than any other product in the
Knowledge Base:

SELECT P1
FROM Product As P1
WHERE P1.price >= 10 AND NOT
P1.price < Any
(SELECT P2.value FROM Product As P2)

In this TOQL query there is a nested query following clause ANY. Notice
that both query use class “Product” and this class is given different names
within each subquery (i.e., “P1” and “P2” respectively).

Notice that in both queries the same class is used (Product) but different
names are assigned to it (P1 and P2), otherwise a semantic error will occur
(see Section 4.1.2).

3.5 Examples

In this section an ontology/knowledge base and a set of query examples
are provided along with their results. The knowledge base, containing in-
stances of the defined by DEN ontology of Figure 2.2 are given in Turtle[10]
format:

Data (Using Turtle format):
@prefix ex1: <http://www.owl-ontologies.com/Static Enterprise Ontology.owl/> .

ex1:Company1 ex1:companyName “C1” .

ex1:Company2 ex1:companyName “C2” .

ex1:Employee1 ex1:employeeName “John” .

ex1:Employee2 ex1:employeeName “Mark” .

ex1:Employee3 ex1:employeeName “John” .
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Data (cont):
ex1:Company1TimeSlice1 ex1:tsTimeSliceOf ex1:Company1 .

ex1:Company1TimeSlice1 ex1:produces ex1:Product1TimeSlice1 .

ex1:Company1TimeSlice1 ex1:hasEmployee ex1:Employee1TimeSlice1 .

ex1:Company1TimeSlice1 ex1:tsTimeInterval ex1:TimeInterval1 .

ex1:Company1TimeSlice2 ex1:tsTimeSliceOf ex1:Company1 .

ex1:Company1TimeSlice2 ex1:produces ex1:Product2TimeSlice1 .

ex1:Company1TimeSlice2 ex1:hasEmployee ex1:Employee2TimeSlice1 .

ex1:Company1TimeSlice2 ex1:tsTimeInterval ex1:TimeInterval2 .

ex1:Company2TimeSlice1 ex1:tsTimeSliceOf ex1:Company2 .

ex1:Company2TimeSlice1 ex1:produces ex1:Product3TimeSlice1 .

ex1:Company2TimeSlice1 ex1:hasEmployee ex1:Employee3TimeSlice1 .

ex1:Company2TimeSlice1 ex1:tsTimeInterval ex1:TimeInterval3 .

ex1:Employee1TimeSlice1 ex1:tsTimeSliceOf ex1:Employee1 .

ex1:Employee1TimeSlice1 ex1:tsTimeInterval ex1:TimeInterval1 .

ex1:Employee2TimeSlice1 ex1:tsTimeSliceOf ex1:Employee2 .

ex1:Employee2TimeSlice1 ex1:tsTimeInterval ex1:TimeInterval2 .

ex1:Employee3TimeSlice1 ex1:tsTimeSliceOf ex1:Employee3 .

ex1:Employee3TimeSlice1 ex1:tsTimeInterval ex1:TimeInterval3 .

ex1:Product1TimeSlice1 ex1:tsTimeSliceOf ex1:Product1 .

ex1:Product1TimeSlice1 ex1:tsTimeInterval ex1:TimeInterval1 .

ex1:Product1TimeSlice1 ex1:productName “P1” .

ex1:Product1TimeSlice1 ex1:price 10.0 .

ex1:Product2TimeSlice1 ex1:tsTimeSliceOf ex1:Product2 .

ex1:Product2TimeSlice1 ex1:tsTimeInterval ex1:TimeInterval2 .

ex1:Product2TimeSlice1 ex1:productName “P2” .

ex1:Product2TimeSlice1 ex1:price 15.0 .

ex1:Product3TimeSlice1 ex1:tsTimeSliceOf ex1:Product3 .

ex1:Product3TimeSlice1 ex1:tsTimeInterval ex1:TimeInterval3 .

ex1:Product3TimeSlice1 ex1:productName “P3” .

ex1:Product3TimeSlice1 ex1:price 20.0 .

ex1:Product3TimeSlice2 ex1:tsTimeSliceOf ex1:Product3 .
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Data (cont):
ex1:Product3TimeSlice2 ex1:tsTimeInterval ex1:TimeInterval4 .

ex1:Product3TimeSlice2 ex1:productName “P3x” .

ex1:Product3TimeSlice1 ex1:price 22.0 .

ex1:TimeInterval1 ex1:startValue 1 .

ex1:TimeInterval1 ex1:endValue 5 .

ex1:TimeInterval2 ex1:startValue 6 .

ex1:TimeInterval2 ex1:endValue 10 .

ex1:TimeInterval3 ex1:startValue 3 .

ex1:TimeInterval3 ex1:endValue 7 .

ex1:TimeInterval4 ex1:startValue 8 .

ex1:TimeInterval4 ex1:endValue 13 .

Query example 1:
SELECT Product, productName

FROM Product

WHERE price > 10.0

This TOQL query asks for all the products (both product key and product
name) with value greater than 10.0. TOQL returns:

Query Result:
Product productName

Product2 P2

Product3 P3

Product3 P3x

There are only two products (Product2 with name P2 and Product3
whose name was initially P3 and then changed to P3x) satisfying this query.
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Query example 2:
SELECT Product, productName

FROM Product

WHERE price > 10.0

MINUS

SELECT Product, productName

FROM Product

WHERE price > 17.0

The above query asks for products (product key and product name) with
value higher than 10.0 and less than 17.0. The same asks also the next query,
in a different way:

Query example 3:
SELECT Product, productName

FROM Product

WHERE price > 10.0 AND price <= 17.0

TOQL returns product P2 for both queries:

Queries Result:
Product productName

Product2 P2

Query example 4:
SELECT Company, Company.hasEmployee.TIME

FROM Company, Employee AS E

WHERE Company.hasEmployee:E AND E.employeeName LIKE “John”

This query asks for the companies with employees whose name is “John”
and the time period in which he was employeed. TOQL returns:

Query Result:
Company hasEmployee startValue hasEmployee endValue

Company2 3 7

Company1 1 5

Company1 had an employee named “John” between times 1 and 5, while
Company2 had an employee named “John” between times 6 and 10.
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Query example 5:
SELECT Company, Company.companyName

FROM Company, Product AS Prod1, Product AS Prod2

WHERE Company.produces:Prod1 AND Prod1.productName LIKE “P1” AT(3)

AND Company.produces:Prod2 AND Prod2.productName LIKE “P2” AT(8)

This query asks for all the companies (company key and company name)
that produced a product named “P1” at time point 3 and product named
“P2” at time point 8. TOQL returns:

Query Result:
Company companyName

Company1 C1

Company1, named “C1” satisfies this query.

Query example 6:
SELECT Product

FROM Product

WHERE Product.productName LIKE “P3” BEFORE Product.productName LIKE “P3x”

This query asks for a product (product key) that at some time point it
was named “P3” and then it was renamed to “P3x”. TOQL returns:

Query Result:
Product

Product3

TOQL returns Product3 whose name was initially P3 and then changed
to P3x.

Query example 7:
SELECT Product, Product.productName

FROM Product

WHERE price AT(5) < price AT(10)

This query asks for a product (product key and name) whose price at
time point 5 is smaller than its price at time point 10 . TOQL returns:

Query Result:
Product productName

Product3 P3
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Product3 is the only product satisfying this query (its value at time point
4 is 20 and then changed to 20 at time 10).

Query example 8:
SELECT Product, Product.productName

FROM Product

WHERE price AT(10) >= ALL (SELECT price FROM Product AS P1)

This query asks for a products (product key and name) that at time point
10 are more expensive than all other products now and in the past.

Query Result:
Product productName

Product3 P3x

Product3 at time point 10 had price 22.0 which is the higher price of the
kownledge base.



Chapter 4

Implementation-Application

To fully support TOQL an application has been created (Figure 4.1).
This application includes an interpreter, an ontology parser and a Knowl-
edge Base querying component. A Graphic User Interface (GUI) has also
been implemented. The application is implemented in JAVA and uses exter-
nal libraries such as SESAME [12], [2] and JENA [1] to load and to query
ontologies and JGraph [3] to display ontologies graphs. The interpreter’s
input is a TOQL query while its output is a query in SeRQL [11]. The query
is submitted to the knowledge base and the result is returned to the user.
The knowledge base is in OWL [6]. The following sections describe in detail
the application and all the implementation issues. Section 4.1 describes the
interpreter, Section 4.2 gives an overview of the application and describes
the Graphic User Interface (GUI) and Section 4.3 describes the ontology ab-
stract view that is used through the whole application and represents the
component that visualizes this view in order to facilitate the query writting.

Interpreter

Ontology Parser

Quering
Knowledge Base

Knowledge Base on
Memory

Query

TOQL

Query

Ontology
(OWL)

Query Result
Result

Error Messages

SeRQL

Figure 4.1: TOQL query processing system architecture
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4.1 Interpreter

Apart from proposing TOQL, an interpreter for TOQL has been imple-
mented as well. This interpreter takes as input queries written in TOQL and
it outputs queries written in SeRQL [11]. Instead of writing a program for
executing TOQL queries on OWL (which can be complicated) we preferred
the solution with the interpreter that transforms TOQL to SeRQL. SeRQL is
then used to query the KB. TOQL and SeRQL have different syntax. SeRQL
was chosen as a target language for TOQL for two reasons:

• Similar to TOQL, SeRQL is an SQL like language.

• SeRQL supports comparison between datetimes which is very usefull
since TOQL’s main goal is to support queries on time and time opera-
tors.

Notice that SeRQL does not support any other TOQL’s time features
such as ALLEN operators, AT clause and 4D fluent mechanism. The inter-
preter creates rather complicated SeRQL queries to support all these special
features.

Well known from compilers theory [8], the procedure of language inter-
pretation can be roughly divided into four steps:

• Lexical analysis

• Syntax analysis

• Semantic analysis

• Code generation (follows intermediate code generation)

An input TOQL query is initially lexically, syntactically and semantically
analyzed before it is translated into a equivalent SeRQL one. For lexical,
syntax and semantic analysis JFlex 1.4.1 [4], [16] and Byacc/J 1.14 [5] have
been used. Both of these tools create Java code. Figure 4.2 illustrates the
procedure followed to convert a TOQL query into SeRQL.
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Query

Figure 4.2: Converting a TOQL query into SeRQL

4.1.1 Lexical and Syntax analysis

Lexical analysis is the process of converting a sequence of characters into
tokens (a sequence of characters that has been given a meaning-label). The
input query is parsed by the lexer, a program created by the JFlex [4], [16]
and tokens in the query expresssion are recognized. Each token is given a
predefined meaning. For example the token SELECT is given the meaning
SELECT while the token IBM is given the meaning NAME.

The next step is syntax analysis (parsing). Parsing is the process of ana-
lyzing a sequence of tokens to determine grammatical structure with respect
to a given formal grammar. Parser captures the implied hierarchy of the
input query and transforms it into a syntax tree, a form suitable for further
processing. The sequence of tokens produced by the lexer is being processed
by the parser created by Byacc/J [5]. The parser checks if the tokens form an
allowable expression. This is done with reference to the TOQL’s grammar
(Appendix A), which recursively defines components (tokens) that can make
up an expression and the order in which they must appear in the expression.

If lexical or syntax analysis end up with errors (the query has wrong
syntax or uses invalid keywords) query processing terminates and error mes-
sages are returned. These error messages help the user to correct the query
and resubmit it. If the query is lexically and syntactically correct, the query
translation proceeds with semantic analysis.
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4.1.2 Semantic analysis

Semantic analysis is the process of adding semantic information to the
parse tree and building up the symbol table. It needs a complete and correct
parse tree which means that follows lexical and syntax analysis and that
lexical and syntax analysis must end up with no errors.

This phase is parsing a number of semantic checks. There are two types
of semantic checks. The first type are all those checks that need no external
knowledge. Three errors may occur in this category: the first is to use a class
in SELECT clause or in WHERE clause without having declared it first in
FROM clause (Table 4.1), the second is to use a property in SELECT clause
or in WHERE clause without a class preceding it (table 4.2) and the third
type of error is to use more than one properties in the SELECT clause of a
nested query. Notice that, the second case will not cause an error if there is
only one class declared in FROM.

Wrong Query Correct Query

SELECT Company.companyName SELECT Company.companyName
FROM Employee FROM Company, Employee
WHERE Company.hasEmployee:Employee WHERE Company.hasEmployee:Employee
AND Employee.employeeName LIKE “x” AND Employee.employeeName LIKE “x”

Table 4.1: Example of parse error: Class Company used but not declared

Wrong Query Correct Query

SELECT companyName SELECT Company.companyName
FROM Company, Employee FROM Company, Employee
WHERE Company.hasEmployee:Employee WHERE Company.hasEmployee:Employee
AND Employee.employeeName LIKE “x” AND Employee.employeeName LIKE “x”

Table 4.2: Example of parse error: Property companyName must follows a
Class

The second category includes all those checks that need external knowl-
edge (the ontology). This requires that the ontology is first loaded into the
main memory (see also Section 4.2). In this section let us assume that the
ontology is loaded into the memory and that semantic analyzer uses this
information to check the queries for errors. The semantic analyzer checks if
a class or property used in a query exists in the ontology, if a property is
property of a specific class and finally if it is a fluent property so that key-
word TIME can be applied to it. Table 4.3 contains all the error messages
that can be returned by semantic checker and their meaning. If the semantic
analysis ends up with errors query processing terminates.
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Error Message Meaning

A static property
Property is not fluent: property name

is used as fluent

A class is used
Class is not declared: class name

but it is not declared

Property is A property has the

named after table: property name same name with a class

Property declaration A property is used

without table: property name with no preceding class

Only one property can be A nested query can have

used in a nested query: property name only one property in SELECT

Class class does not have A datatype property follows a

datatype property: property name class that is not its domain

Class class does not have An object property follows a

object property: property name class that is not its domain

Class class does not have A property follows a

property: property name class that is not its domain

Class class does not have A static property is used

dynamic property: property name in place of a dynamic

A class is used that
Class does not exist: class name

does not exist in ontology

A class is declared
Class is already declared: class name

twice in FROM

Table 4.3: List of semantic errors

The most important part of the semantic analysis is the symbol table.
Symbol table is a data structure that holds declarations so that inconsistencies
and misuses can be detected. In TOQL, the symbol table is mainly used to
detect multiple declarations of a class in the same query (see Section 3.4.3)
and to handle the scopes of the sub-queries.

Many different implementations of symbol table are known to exist using
different data structures (Binary Search Trees (BST), Linked Lists, Hash
Tables). Some, of these implementations use one large symbol table for all
symbols while others use separated, hierarchical symbol tables one for each
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different scope.
In this work, separated symbol tables, one for each scope, are created.

Each symbol table is implemented as a hash table. Besides a key (class
name in our case), the hash table holds additional information for each class
indicating whether class has been renamed or not (boolean value) and initial
class name (e.g., Company AS C1, Company is the initial class name and
C1 the class name). Symbol table stores class declarations. Whenever the
parser returns a class declaration, the symbol table of the current scope is
searched (lookuped) and the class is added into the symbol if not already
there. If it is already there, there is a duplicate declaration and an error is
returned. Similarly, whenever the parser returns a class usage, the symbol
table is searched (lookuped). The difference between this and first case is that
an error is returned if the class is not exist in the symbol table (class usage
without having been declared). Finally a stack of symbol tables is created.
Each node of this stack points to a separate symbol table corresponding to
a different scope. Whenever the parser enters a nested query a new node is
added at the top of the stack and whenever the parser exits a subquery the
top node is removed. When parsing finishes, the stack is empty. Figure 4.3
illustrates the symbol table.
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Figure 4.3: Symbol Table
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4.1.3 Code generation

The last phase of query processing is the actual translation of a TOQL
into an equivalent SERQL query. It follows lexical, syntax and semantic
analysis and requires that no error occurred during these phases. Code gen-
eration is performed in steps as follows (Figure 4.4):

• Intermediate code generation.

• Intermediate code parsing and Java objects instantiation. These Java
objects represent the TOQL query.

• Java objects processing and expansion with 4D fluent elements.

• Java objects processing and mapping to Java objects representing the
SeRQL query. SeRQL query creation out of these objects.

Intermediate

Code

TOQL Query

Java Objects

SeRQL Query

Java Objects

TOQL Query

(String)

SeRQL Query

(String)

Intermediate Code

Parsing

4D Fluents Expansion

Mapping

Figure 4.4: Code Generation

Intermediate code generation

The input to code generation is the parse tree. Intermediate code is a linear
sequence of instructions in an intermediate language. This linear sequence of
instructions is a direct convertion of the parse tree and is prior to final code
generation. In this work intermediate code is implemented as a list. Each list
node is a Java object that has four fields (type, field1, field2 and field3).
Table 4.4 presents all the different types of nodes and the use of each one of
them.
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Type Field1 Field2 Field3 Description

QUERY - - - Designates the start of a query
END QUERY - - - Designates the end of a query

Designates the
BLOCK - - -

start of a subquery

END BLOCK - - - Designates the end of a subquery
Designates the

SELECT - or DISTINCT - -
start of a SELECT clause

Designates the
END SELECT - - -

end of a SELECT clause

Designates the
FROM - - -

start of a FROM clause

Designates the
END FROM - - -

the end of a FROM clause

Designates the
WHERE - - -

the start of a WHERE clause

Designates the
END WHERE - - -

the end of a WHERE clause

PAR “(” or “)” - - Represents a parenthesis
UNION - - - The keyword UNION

UNION ALL - - - The keyword UNION ALL
MINUS - - - The keyword MINUS

INTERSECT - - - The keyword INTERSECT
- or a property’s Represents a declaration of type

NODE a property’s name - or a class name
alternative name class.property AS “string”

- or a property’s Represents a declaration of type
TIMENODE a property’s name - or a class name

- alternative name class.property.TIME AS “string”

Represents a declaration of type
NODED a property’s name - or a class name -

class.property in WHERE clause

Represents a declaration of type
NODEC a class name

- - class in WHERE clause

The keyword LIMIT.
LIMIT integer value - -

Field1 holds the value

The keyword OFFSET.
OFFSET integer value - -

Field1 holds the value

OR - - - The boolean operator OR
AND - - - The boolean operator AND
NOT - - - The keyword NOT

a value (string,
VALUE

integer,date,...)
the value’s datatype - Holds a value and its datatype

ALL - - - The keyword ALL
ANY - - - The keyword ANY
IN - - - The keyword IN

EXISTS - - - The keyword EXISTS

AT start date - or end date -
The operator AT. Field1 holds
the start date and Field2
the end date (if any)

BEFORE,
ALLEN

AFTER,EQUALS...
- - Represents an ALLEN operator

TRUE - - - The keyword TRUE
FALSE - - - The keyword FALSE

“<”,“>”,“=”,
COMP

“<=”,“>=”,“!=”
- - A comparison operator

LIKE a string - or IGNORECASE - The Keywords LIKE

Table 4.4: Intermediate Code Nodes
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Table 4.5 illustrates an example TOQL query specifying two sub-queries.
This query asks for all the names of Company1 as well as the time period
it had each name. Table 4.6 illustrates the intermediate code generated in
response to this query.

SELECT C1.companyName.TIME as T,
C1.companyName
FROM Company As C1
WHERE C1 like “Company1”

Table 4.5: TOQL query example

QUERY - - -
BLOCK - - -
SELECT - - -
TIMENODE companyName C1 T
NODE companyName C1 -
END SELECT - - -
FROM - - -
NODE - Company C1
END FROM - - -
WHERE - - -
NODEC localName(C1) - -
LIKE “Company1” - -
END WHERE - - -
END BLOCK - - -
END QUERY - - -

Table 4.6: Intermediate code generated in response to the query of Table 4.5

Each line corresponds to a node with fields “Type”, “Field1”, “Field2”,
“Field3” (in this order). Empty values are denoted by “-”. The first line
of intermediate code is the node QUERY and the last one is the node END
QUERY. Each “subquery” is surrounded by the nodes BLOCK and END
BLOCK. This information is passed to the intermediate code parser and is
used to identify sub-queries in the query. Nested queries are treated accord-
ingly.
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Intermediate code parsing

In this phase intermediate code is parsed and Java objects are instantiated.
This parsing facilitates further processing of the query since it is described
in a more “object oriented” way. The parser initially finds the nodes with
types BLOCK and END BLOCK, signifying the beginning and ending of
subqueries respectively, and reads the nodes in between them. Each subquery
is then parsed separately and its nodes data are loaded in the memory. This
process is straitforward since every intermediate code node maps to a different
Java object (see Figure 4.5). Table 4.7 summarizes the mapping between
intermediate code nodes and Java objects:

Node’s Type Action

QUERY a new Query object is created
END QUERY intermediate code parsing is terminated

BLOCK a new SubQuery object is created
END BLOCK sub query parsing is terminated

SELECT Select clause parsing is initiated
END SELECT Select clause parsing is terminated

FROM From clause parsing is initiated
END FROM From clause parsing is terminated

WHERE Where clause parsing is initiated
END WHERE Where clause parsing is terminated

PAR a new Parenthesis object is created
UNION a new SetOperator object is created

UNION ALL a new SetOperator object is created
MINUS a new SetOperator object is created

INTERSECT a new SetOperator object is created

NODE
If Select clause parsing is initiated, a new SelectNode object is created
If From clause parsing is initiated, a new FromNode object is created
If Where clause parsing is initiated, a new ObjectProperty object is created

TIMENODE a new SelectNode object is created
NODED a new DatatypeProperty object is created
NODEC a new ClassId object is created
LIMIT a new QuantifierNode object is created

OFFSET a new QuantifierNode object is created
OR a new LogicOperator object is created

AND a new LogicOperator object is created
NOT a new LogicOperator object is created

VALUE a new Value object is created
ALL a new All object is created. It points to a SubQuery.
ANY a new Any object is created. It points to a SubQuery.
IN a new In object is created. It points to a SubQuery.

EXISTS a new Exists object is created. It points to a SubQuery.
AT a new AT object is created

ALLEN a new AllenOperator object is created
TRUE a new BooleanConstant object is created
FALSE a new BooleanConstant object is created
COMP a new ComparisonOperator object is created
LIKE a new Like object is created

Table 4.7: Mapping between intermediate code and Java objects

Figure 4.5 illustrates the whole structure of Java objects that have been
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created to represent a TOQL query. The description of these objects follows.
Figure 4.6 illustrates the Java objects instantiated to represent the TOQL
query of Table 4.5.

Type

Where Node

SelectNodes List

FromNodes List

WhereNodes List

Set Operator 

QuantifierNodes List

SliceNodes List

IntervalNodes List

Sub Query

Parenthesis

Parenthesis

Operator

Logic Operator

Operator

Comparison Operator
Ingore Case

Like

String

Constant

Boolean Constant

Datatype

Value

Value

SubQuery

In

SubQuery

Any

SubQuery

All

SubQuery

Exists

Class Name

Property Name

Property Rename

isTime

Select Node

Class Name

Class Rename

From Node

Domain Name

Property Name

Range Name

Object Property

Class Name

Property Name

Datatype Property

Class Name

Class Id

End Time Point

AT

Start Time Point
Operator

Allen Operator

Value

Quantifier Node

Type

Type

Where Node

Type

Where Node

SubQueries List

Query

Figure 4.5: Java objects created to represent a TOQL query

The first Java object is the Query. Query represents a TOQL query and
simply has a list of “Subquery”. The “Subquery” has the following fields:

• Select Nodes List: a list of Select Nodes. The elements that may
appear after clause SELECT are datatype properties, so a SelectN-
ode keeps information about the class name of a datatype property
(e.x. Company.name) the property name (e.x. Company.name), the
property’s alternative name (e.x. Company.name AS CompanyName)
and finally whether or not the keyword TIME is used (e.x. Com-
pany.name.TIME ).

• From Nodes List: a list of From Nodes. The elements that may
appear after clause FROM are class declarations, so a FromNode
keeps information about the class name (e.x. FROM Company, ... )
and the class alternative name (e.x. FROM Company AS C1 ).
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• Where Nodes List: a list of Where Nodes. The elements that may
appear after clause WHERE vary, so WhereNode is the parent class
for many others which are specialized in all these different elements.
The only field that WhereNode has, is field type that determines the
type of the element (node). The classes extending WhereNode are:

o ObjectProperty: keeps information about the object properties
that appear in clause WHERE (domain class name, property name
and range class name).

o DatatypeProperty: keeps information about the datatype
properties that appear in clause WHERE (class name, property
name).

o AllenOperator: keeps the type of an ALLEN operator
(BEFORE, AFTER, EQUALS, MEETS, OVERLAPS, DURING,
STARTS, ENDS, ...).

o AT: contains the start and end time point, e.x. AT(start time

point, end time point) of an AT clause.

o ClassId: stores the class name of those classes that appear in
clause WHERE with no property following them (class ids see
Section 3.4.1).

o LogicOperator: stores the type of a logic operator (AND, OR,
NOT).

o ComparisonOperator: stores the type of a comparison operator
(<,>,=,!=).

o Parenthesis: stores the type of a parenthesis (“(”,“)”).

o Like: keeps information about the like clause. This information
consists of the string following LIKE clause (e.x. Company.name
LIKE “x”) and whether or not the clause IGNORE CASE was
used.

o BooleanConstant: stores the type of a boolean constant
(TRUE, FALSE).

o Value: keeps information about values that appear in WHERE.
This information consists of the value (e.x. Product.Price = 5 )
and the value’s datatype.

o All: clause ALL is followed by a nested query, so class All points
to a “sub query”.

o In: clause IN is followed by a nested query, so class In points to
a “sub query”.
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o Exists: clause EXISTS is followed by a nested query, so class
Exists points to a “sub query”.

o Any: clause ANY is followed by a nested query, so class Any
points to a “sub query”.

• Quantifier Nodes List: a list of Quantifiers Nodes. Quantifier nodes
are named the keywords LIMIT and OFFSET that may appear at the
end of “sub query”. So a QuantifierNode simply has one field, the
type of this node (LIMIT or OFFSET).

• Set operator: keeps the set operator (if any) following a “sub query”.
So SetOperator takes one of the following values: UNION, UNION
ALL, INTERSECT, MINUS.

• Slice Nodes List: a list of Slice Nodes. It is used in Time Slice
extension 4.1.3.

• Interval Nodes List: a list of Interval Nodes. It is used in Time Slice
extension (Section 4.1.3).

The next figure illustrates the Java objects instantiated to represent the
TOQL query of Table (Section 4.5).

Class Name = Company

Class Rename = C1

From Node

Type = ClassId

Where Node

Type = Like

Where Node

Class Name = C1

Class Id

String = "Company1"

Ingore Case = FALSE

Like

Class Name = C1

Property Name = companyName

Property Rename = T

isTime = TRUE

Select Node

Class Name = C1

Property Name = companyName

Property Rename = −

isTime = FALSE

Select Node

SelectNodes List

FromNodes List

WhereNodes List

Sub Query

SubQuery 1

Query

Figure 4.6: TOQL query of Table 4.5 represented by Java objects



CHAPTER 4. IMPLEMENTATION-APPLICATION 51

For this query, one “SubQuery” object is created. It has two Select Nodes,
one From Node and two Where Nodes. The field values of each object are
also shown in the Figure 4.6 (e.g. Class Name = C1).

Time Slice extension

In this phase the Java objects representing the TOQL query are being pro-
cessed. This processing has two goals:

• The first goal is to detect the 4D fluent properties and associate them
with corresponding time slices at ontology level. As mentioned in Sec-
tion 2.3, a fluent property interconnects two time slices or a time slice
with a datatype. In TOQL, fluent properties are hadled like the “static”
ones. This means that the user does not have to refer to the time slices
of a class in order to use a fluent property (see Section 3.3). Consider
for example the fluent property productName of “DEn Ontology”. To
access this property in TOQL, we write Product.productName, although
the domain of productName is the class TimeSlice. This phase detects
and handles all these properties.

• The second goal is to replace ALLEN operators and AT clauses with a
number of clauses supported by SeRQL, since SeRQL does not them.

This phase uses the fields Slice Nodes List and Interval Nodes List of
Java object SubQuery (see Figure 4.5). These two lists store additional
WhereNode instances created by this processing. These instances are used
by the next phase of query processing that ends up with the equivalent SeRQL
query.

The next figure illustrates the Java objects instantiated to represent the
TOQL query of Table 4.5 after time slice extension:
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Class Name = Company

Class Rename = C1

From Node

Class Name = C1

Property Name = companyName

Property Rename = −

isTime = FALSE

Select Node
SubQuery 1

Query

SelectNodes List

FromNodes List

WhereNodes List

Sub Query

SliceNodes

Class Name = C1

Class Id

String = "Company1"

Ingore Case = FALSE

Like

Class Name = interval_C1_Slice_1

Property Name = startValue

Property Rename = T_startValue

isTime = TRUE

Select Node

Class Name = interval_C1_Slice_1

Property Name = endValue

Property Rename = T_endValue

isTime = TRUE

Select Node

Class Rename = C1_Slice_1

Class Name = TimeSlice

From Node

From Node

Class Rename = interval_C1_Slice_1

Class Name = TimeInterval

Type = ObjectProperty

Where Node

Type = ObjectProperty

Where Node

Object Property

Property = tsTimeSliceOf

Range = C1

Domain = C1_Slice_1

Object Property

Property = interval_C1_Slice_1

Range = C1

Domain = C1_Slice_1

Type = Like

Where Node

Type = ClassId

Where Node

Figure 4.7: TOQL query of Table 4.5 represented by Java objects

The objects with red border have been added/altered by this phase.
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SeRQL query generation

The SeRQL’s SELECT clause specifies values to be returned, the FROM
clause specifies the path expressions and the WHERE clause specifies boolean
constraints on variables (Section 2.4.3). In TOQL, (see Chapter 3) the SE-
LECT clause specifies datatype properties that will be returned, the FROM
clause specifies the class or classes from which data will be retrieved and the
WHERE clause specifies logic operations and comparisons that restrict the
number of rows returned by the query.

The translation of a TOQL’s SELECT clause to a SeRQL’s one is straight-
forward, since both specify values to be returned. The next table presents
a TOQL SELECT clause and how it is transformed into a SeRQL SELECT
clause:

TOQL Query SeRQL Query

SELECT Company.companyName, SELECT companyName Company,
Employee.employeeName employeeName Employee

To create a SeRQL SELECT clause from a TOQL one, the interpreter
removes the class preceding a property (e.g., Company.companyName) and
also changes the property’s name by extending it with its domain class name
(e.g., companyName becomes companyName Company). This property’s
name changing ensures that the correct values will be returned by the SeRQL
query. Consider the next example:

TOQL Query SeRQL Query

SELECT C1.companyName, SELECT companyName C1,
C2.companyName companyName C2
FROM Company AS C1, Company AS C2

This SELECT clause asks for the names of two companies (namely C1
and C2). Extending the property’s companyName with the domain class (C1
and C2), ensures that the correct values will be returned.

The convertion of TOQL’s FROM and WHERE clauses to a SeRQL’s one
is complicated. A TOQL’s FROM clause declares the classes that will be used
in the query and a WHERE clause specifies logic operations and comparisons,
while a SeRQL’s FROM clause specifies the path expressions and a WHERE
clause specifies boolean constraints on variable. As mentioned in Section
2.4.3, path expressions can be expressed either in their basic form or by
using shortcuts. In this work no shortcuts are used, since this would make
the interpreter’s implementation rather difficult. Besides every shortcutted
path expression can be expressed by a set of basic path expressions (see
Section 2.4.3).
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Every class and every property in a TOQL query is represented by a path
expression in SeRQL. A class is expressed by a path expression consisting
of the nodes class name and namespace

1:Class and the edge rdf:type.
This path expression relates a class name in a TOQL query with its Class in
the ontology. An object property is expressed by a path expression consist-
ing of the nodes domain class name and range class name and the edge
namespace

1:Object Property. This path expression relates two classes
with an object property. Finally datatype property is expressed by a path ex-
pression consisting of the nodes domain class name and datatype prop-
erty name and the edge namespace

1:Datatype Property. This path
expression relates a class with a datatype property. Table 4.1.3 summarizes
the way classes and properties are expressed as path expressions.

Resource Path Expression

Class {Class name} rdf:type {namespace1 :Class}
Object Property {DomainClassName} namespace1:ObjectPropertyName {RangeClassName}
Datatype Property {DomainClassName} namespace1:DatatypePropertyName {DatatypePropertyName}

Table 4.8: Classes and properties expressed as path expressions

Let us now present a TOQL query based on the “StEn Ontology” of
Figure 2.1 and its equivelant SeRQL:

TOQL Query SeRQL Query

SELECT C1.companyName, SELECT companyName C1,
FROM Company AS C1 FROM {C1} rdf:type {ex:Company},
WHERE C1 LIKE “Company 1” {C1} ex:companyName {companyName C1}

WHERE localName(C1) LIKE “Company 1”

This query asks for the Company 1 name. The class C1 is expressed by
the path expression {C1} rdf:type {ex:Company}. This expression declares
that C1 is of type Company. Similarly property companyName is expressed
by the path expression {C1} ex:companyName {ex:companyName C1}. This
expression declares that property companyName has as domain the class
C1. Let us now present a more complex query, also based on the “StEn
Ontology”, and its equivelant SeRQL:

TOQL Query SeRQL Query

SELECT Product.productName, SELECT productName Product,
FROM Company AS C1, Product FROM {C1} rdf:type {ex:Company},
WHERE C1 LIKE “Company 1” {Product} rdf:type {ex:Product},
AND C1.produces:Product {Product} ex:productName {productName Product},

{C1} ex:produces {Product}
WHERE localName(C1) LIKE “Company 1”

1The namespace of the resource
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This query asks for the Products’ names produced by Company 1. The
class C1 is expressed by the path expression {C1} rdf:type {ex:Company}.
This expression declares that C1 is of type Company. Similarly the class
Product is expressed by the path expression {Product} rdf:type {ex:Product},
which declares that Product is of type Product. The property productName
is expressed by the path expression {Product} ex:productName

{ex:productName Product}. This expression declares that property product-
Name has as domain the class Product. Finally the object property produces
is expressed by the path expression {C1} ex:produces {Product}. This ex-
pression declares that property produces has as domain the class C1 and
as range the class Product. The last path expression actually replaces the
expression in WHERE clause AND C1.produces:Product.

The transformations of Table 4.1.3 are achieved by parsing the Java ob-
jects representing a TOQL query (Figure 4.5) and mapping to the Java ob-
jects created to represent a SeRQL query (Figure 4.8). This mapping pro-
cess follows the rules of Table 4.1.3. The Java objects created to represent a
SeRQL query are presented bellow.

Type

Where Node

Parenthesis

Parenthesis

Operator

Logic Operator

Operator

Comparison Operator
Ingore Case

Like

String

Constant

Boolean Constant

Datatype

Value

Value

SubQuery

In

SubQuery

Any

SubQuery

All

SubQuery

Exists

Class Name

Class Id

Value

Quantifier Node

Type

SelectNodes List

FromNodes List

WhereNodes List

Set Operator 

QuantifierNodes List

Sub Query

Predicate

Object

From Node

Subject

Property Name

Select Node

Property Name

Datatype Property

SubQueries List

Query

Figure 4.8: Java objects created to represent a SeRQL query

The first Java object is the Query. Query represents a SeRQL query and
simply has a list of “Subqueries”. The “Subqueries” has the following fields:
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• Select Nodes List: a list of Select Nodes. In SeRQL only prop-
erty names may appear after clause SELECT, so a SelectNode keeps
information only about property name.

• From Nodes List: a list of From Nodes. The FROM clause of SeRQL
specifies path expressions. In our work a path expression can only
consist of a subject, a predicate and an object, so a FromNode keeps
information about these three fields.

• Where Nodes List: a list of Where Nodes. The elements that may
appear in WHERE vary, so WhereNode is the parent class for many
others that are specialized in all these different elements. The only
field that WhereNode has, is field type that determines the type of
the element (node). The classes extending WhereNode are:

o DatatypeProperty: keeps information about the datatype
properties that appear after WHERE clause (property name).

o ClassId: stores the class name of those classes that appear after
WHERE clause with no property following them (class ids see
Section 3.4).

o LogicOperator: stores the type of a logic operator (AND, OR,
NOT).

o ComparisonOperator: stores the type of a comparison operator
(<,>,<=,>=,=,!=).

o Parenthesis: stores the type of a parenthesis (“(”,“)”).

o Like: keeps information about the like clause. This information
consists of the string following LIKE clause (e.x. Company.name
LIKE “x”) and whether or not the clause IGNORE CASE was
used.

o BooleanConstant: stores the type of a boolean constant
(TRUE, FALSE).

o Value: keeps information about values that appear after clause
WHERE. This information consists of the value (e.x. Product.Price
= 5 ) and the value’s datatype.

o All: clause ALL is followed by a nested query, so class All points
to a “sub query”.

o In: clause IN is followed by a nested query, so class In points to
a “sub query”.
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o Exists: clause EXISTS is followed by a nested query, so class
Exists points to a “sub query”.

o Any: clause ANY is followed by a nested query, so class Any
points to a “sub query”.

• Quantifier Nodes List: a list of Quantifiers Nodes. Quantifier nodes
are named the keywords LIMIT and OFFSET that may appear at the
end of “sub query”. So a QuantifierNode simply has one field, the
type of this node (LIMIT or OFFSET). A list is used because both of
them may appear at the end of a query.

• Set operator: keeps the set operator (if any) following a “sub query”.
So a SetOperator takes one of the values: UNION, INTERSECT,
MINUS.

The next figure illustrates the Java objects instantiated to represent the
SeRQL that is equivalent to the TOQL query of Table 4.5.
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Property Name = startValue_interval_C1Slice_1

Select Node

Property Name = endValue_interval_C1Slice_1

Select Node

Property Name = companyNameSlice_C1Slice_1

Select Node

Subject = interval_C1Slice_1

Predicate = startValue

Object = startValue_interval_C1Slice_1

From Node

Subject = C1Slice_1

Predicate = companyNameSlice

Object = companyNameSlice_C1Slice_1

From Node

Subject = C1

Predicate = rdf:type

Object = Company

From Node

Subject = interval_C1Slice_1

Predicate = endValue

Object = endValue_interval_C1Slice_1

From Node

Subject = C1Slice_1

Predicate = rdf:type

Object = TimeSlice

From Node

Subject = C1Slice_1

Predicate = tsTimeSliceOf

Object = C1

From Node

Subject = interval_C1Slice_1

Predicate = rdf:type

Object = TimeInterval

From Node

Subject = C1Slice_1

Predicate = tsTimeInterval

Object = interval_C1Slice_1

From Node

Type = ClassId

Where Node

Class Name = C1

Class Id

Type = Like

Where Node

String = "Company1"

Ingore Case = FALSE

Like

SelectNodes List

FromNodes List

WhereNodes List

Sub Query

SubQuery 1

Query

Figure 4.9: SeRQL query, equivalent to TOQL query of Table 4.5

The last step of SeRQL query generation is to parse the objects represent-
ing the SeRQL query and to create a string with the actual SeRQL query.
The parser processes each Sub Query separately and appends keywords, op-
erators, path expressions and properties to the output string. Table 4.9
summarizes the mapping between the Java objects representing a SeRQL
query and the corresponding strings.
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Object String

SubQuery one or more of “SELECT”, “FROM”, “WHERE”
SelectNode a property name in SELECT (e.g., “companyName”)

a path expression in FROM,
FromNode

subject predicate object (e.g., “Company ex:produces Product”

DatatypeProperty a datatype property name in WHERE (e.g., “productName”)
ClassId a class in WHERE (e.g., “Company”)

LogicOperator a logic operator in WHERE (“AND”, “OR”, “NOT”)
ComparisonOperator a comparison operator in WHERE (“<”,“>”,“<=”,“>=”,“=”,“!=”)

Parenthesis an opening of closing parenthesis in WHERE (“(”,“)”)
the keyword “LIKE” followed by a string in quotes and the keyword

Like
“IGNORE CASE” (optional) e.g, “LIKE “Product1” IGORE CASE”

BooleanConstant a boolean constant in WHERE (“TRUE”, “FALSE”)
Value a value and its datatype in WHERE (e.g., “5xsd:int”)
All the keyword “ALL” in WHERE
In the keyword “IN” in WHERE

Exists the keyword “EXISTS” in WHERE
Any the keyword “ANY” in WHERE

QuantifierNode one of the keywords “LIMIT” and “OFFSET”
one of the keywords “UNION”,

SetOperator
“UNION ALL”, “MINUS” and “INTERSECT”

Table 4.9: Mapping between Java SeRQL objects and corresponding string

Table 4.10 contains the produced SeRQL query for the TOQL query of
Table 4.5. Notice that the clause USING NAMESPACE has been added
at the end of the query even if the user has not provide it with the TOQL
query. Namespace uniquely characterizes ontology resourses. Namespaces
are retrieved automatically from the ontology and are given a symbolic name
(at this case the symbolic name is ex1). More than one namespaces may be
utilized in one query.

4.2 Application - GUI

An overview application (query translation, knowledge base querying) im-
plemented in this work is presented below. The application is implemented in
Java. Also the Graphic User Interface (GUI), developed for this application,
is described as well. Section 4.2.1 describes the application, while Section
4.2.2 describes the GUI.

4.2.1 Application

The interpreter is the main component of the application. Apart from
that, the application incorporates components for ontology parsing and load-
ing into the memory, knowledge base querying, error reporting and presen-
tation of results. Figure 4.1 illustrates the system architecture with all its
components.
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SELECT startValue interval C1Slice 1,
endValue interval C1Slice 1, companyName C1Slice 1
FROM {interval C1Slice 1} ex1:startValue {startValue interval C1Slice 1},
{interval C1Slice 1} ex1:endValue {endValue interval C1Slice 1},
{C1Slice 1} ex1:companyName {companyName C1Slice 1},
{C1} rdf:type {ex1:Company},
{C1Slice 1} rdf:type {ex1:TimeSlice},
{interval C1Slice 1} rdf:type {ex1:TimeInterval},
{C1Slice 1} ex1:tsTimeSliceOf {C1},
{C1Slice 1} ex1:tsTimeInterval {interval C1Slice 1}
WHERE localName(C1) Like “Company 1”
USING NAMESPACE
ex1= <http://www.owl-ontologies.com/Ontology1197730146.owl#>

Table 4.10: SeRQL query example

The input is a query written in TOQL and an ontology in OWL. Notice
that the ontology must be in RDF/XML or in RDF/XML-ABBREV syntax.
The query is translated into SeRQL by the interpeter, following the process
described in Section 4.1. The ontology is parsed using JENA and SESAME
libraries and is loaded into the main memory (see Section 4.3). The ontol-
ogy is checked for consistency with the 4D fluent mechanism. This parser
implements the following list of checks:

1. If the ontology implements the 4D fluent mechanism (2.3), TimeSlice

must be the name used for time slices.

2. If the ontology implements the 4D fluent mechanism (2.3), TimeInter-

val must be the name used for time intervals.

3. If the ontology implements the 4D fluent mechanism (2.3), startValue

and endValue must be the property names used to declare the start
and end time point of time intervals.

4. If the ontology implements the 4D fluent mechanism (2.3), the domain
of the fluent object and fluent datatype properties as well as the range
of fluent object properties must be a restriction of type only on property
tsTimeSliceOf.

5. If the ontology implements the 4D fluent mechanism (2.3), class TimeS-

lice must not be domain or range of any property except for tsTimeS-

liceOf.
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6. If the ontology implements the 4D fluent mechanism (2.3), time slices
must be connected with the time intervals via the object property
tsTimeInterval.

7. If the ontology implements the 4D fluent mechanism (2.3), class
TimeInterval must not be domain or range of any property except for
tsTimeInterval, startValue and endValue.

8. If the domain and the range of a property is a restriction it must be of
type only or some.2

Table 12 illustrates the list of error messages that may arise during this
process:

2Currently the application does not support other restriction types.
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Error Message
PropertyDomainError.Error while loading ontology:

Class className is not concidered a class
Try using on of the: list of class

As domain of property propertyName

PropertyRangeError. Error while loading ontology:
Class className is not concidered a class

Try using on of the: list of class

As range of property propertyName

PropertyRestrictionError. Error while loading ontology:
Domain restriction of propertyName is not curently supported

Try using on of the: All Values From (only), Some Values From (some)
TimeSliceRestrictionError. Error while loading ontology:

Restriction of propertyName must be of type
All Values From (only)

RangeNotFluentError. Error while loading ontology:
Range of propertyName must be a restricion of type
All Values From (only) on property tsTimeSliceOf
RangeFluentError. Error while loading ontology:

Range of propertyName must not be a restricion of type
All Values From (only) on property tsTimeSliceOf
TimeSliceClassError. Error while loading ontology:
Domain of propertyName must be class TimeSlice

but it is class className

TimeIntervalClassError. Error while loading ontology:
Domain of propertyName must be class TimeInterval

but it is class className

Table 4.11: List of error messages in response to ontology loading into main
memory

The Knowledge Base Quering unit uses the SeRQL query created by
the interpreter to query the ontology. We should mention that when we
refer to ontology we mean both the ontology (structure - ABOX) and the
knowledge base (instances - TBOX). The application’s output is a table with
the results returned by the ontology. If errors have been encountered during
interpretation, SeRQL query is an empty string and the application’s output
is one or more error messages.

To run the application one has two choices:

• The first choice is to run the application on a shell by typing
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java -jar TOQL.jar ontology path query path

The results or the error messages are printed on the screen.

• The second choice is to run the application using the Graphic User
Interface (GUI). To invoke the GUI the user should write

java -jar TOQL.jar

A brief description of GUI is given in Section 4.2.2

4.2.2 GUI

GUI (Graphic User Interface) accommodates the creation of TOQL queries
as it supports syntax highlighting. It also support loading the ontology into
the main memory (especially useful of processing a series of queries). Figure
4.10 illustrates the GUI.
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Figure 4.10: Application’s GUI

The GUI is rather simple. It is divided into three panels:

• The toolbar panel

• The query editing panel

• The results panel

The toolbar panel contains buttons useful for querying editing (undo,
redo, copy, cut, paste). These operations can also be accessed through the
menu toolbar. It contains a button for ontology loading (Load Ontology) and
button for ontology viewing (View Ontology). The usage of button “Load
Ontology” is obvious while the usage of button “View Ontology” will be
explained in Section 4.3.

The query editing panel is also splitted into two subpanels. The first is
the actual query editor while the second one is a toolbar panel that contains
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buttons useful for querying editing (save, save as, load query, run). These
operations can also been accessed by the menu toolbar. The query editor
facilitates the query creation by introducing two operations:

• TOQL syntax highlighting: a syntax highlighter specifically for
TOQL has been created (Figure 4.11). It recognizes clauses (SELECT,
WHERE, ...), keywords and classes-properties. In order to recognize
classes and properties an ontology must be loaded into the main mem-
ory first.

Figure 4.11: Editor highlighting

• Code autosuggestion: requires loading an ontology first. Each time
the user writes a class name followed by a dot (“.”) a list with the
class properties is displayed. The user can choose one of the properties
(Figure 4.12).
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Figure 4.12: Code autosuggestion

Finally the results panel has two tabs. The first one displays the results
returned by the query (Figure 4.13), while the second one displays the errors
be returned as the result of query parsing. These errors can be either due
to inconsistencies with the 4D fluent representation or due errors in TOQL
syntax . (Figure 4.14).
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Figure 4.13: Displaying results
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Figure 4.14: Displaying errors

4.3 Ontology Abstract View

As mentioned before, TOQL is high level language. It is designed to
support querying on ontologies that implement the 4D fluent mechanism
[22], and it is designed in a way that the user does not have to be aware of
this mechanism. But how the user queries the ontology if he is not aware of
this mechanism? The answer is that the user has to aware of an abstract form
of the ontology. This abstract ontology is designed to match TOQL’s syntax
and semantics. Using this ontology the user is able to query on ontologies
that implement this mechanism. Section 4.3.1 presents its design and Section
4.3.2 its implementation and its Graphic User Interface (GUI).
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4.3.1 Design

The goal is to create a mechanism in which the input will be a 4D fluented
ontology and the output is an abstract view of this ontology that will match
TOQL’s syntax and semantics. To fulfill this goal, all the class and properties
that the 4D fluent mechanism introduces are excluded from viewing. The
fluent properties that connect Time Slices are now considered to connect
directly the static classes but they also have and a Time dimension.

Consider the “Dynamic Enterprice Ontology” of Figure 2.2. The abstract
ontology that will come out from this one will have three classes, namely
Company, Product and Employee and two datatype properties companyName

and employeeName. Apart from these it will also have the datatype proper-
ties productName and Price and the object properties hasEmployee, produces

that will have an extra attribute, TIME Notice that the abstract ontology
does not refer to the knowledge base. The user only needs to know that
“abstractly” the property hasEmployee interconnects the classes Company

and Employee, which is true, and that it has a time dimension, which is also
true,since it connects TimeSlice classes (see Figure 4.15. Properties with
time dimension are markes with blue color).

String

Company ProductEmployee

StringintString

companyNameemployeeName

hasEmployee produces

productNameprice

Figure 4.15: Figure’s 2.2 ontology abstract view

Notice that this ontology view is actually used by the semantic analysis
(Section 4.1.2) and by code autosuggestion (Section 4.2.2) although it was
not mentioned there. In Section 4.3.2 the Java objects created to handle
this “abstract” view and the Graphic User Interface (GUI), implemented
to illustrate this it to the user and to accommodate query creation, are
described.

4.3.2 Implementation-GUI

As mentioned in Section 4.2.1, ontology is parsed using JENA and is
loaded on memory. Java objects have been created that map the ontology to
the abstract ontology described above. Notice that TOQL does not support
querying on the structure of an ontology (e.x. ISA relations) so there is no
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need for this relations to be mapped into the Java objects. The Java objects
that have been created are:

• Resource: It is the parent class of all the classes. It has two fields,
name and namespace.

• Concept: Represents the concepts. It has two lists, one with all the
datatype properties of the concept and one with all the object proper-
ties.

• Property: Represents the properties and it is the parent class of
Datatype and Object. It has two fields, domain (which is of type Con-

cept) and hasTime (boolean).

• Datatype: Represents the datatype properties. It has one field, range.

• Object: Represents the object properties. It has one field, range which
is of type Concept.

A component that creates a graph out of these Java classes has been
created. This component uses the library JGraph [3] . Clicking the button
“View Ontology” (see Figure 4.1 displays this graph. Figure 4.16 illustrates
this abstract view for a test ontology.

Figure 4.16: Ontology Abstract View



Chapter 5

Conclusions and Future Work

We introduce TOQL (Temporal Ontology Query Language), an ontol-
ogy query language capable of querying ontologies and temporal information
in ontologies. Although independent from the language, temporal concepts
are assumed to be represented in OWL (or RDF) using the 4D perdunadist
approach [22] implementing events occurring at specific points in time, in
time intervals or evolve in time. The language supports a powerful set of
operations for such temporal information including Allen operators. An in-
terpreter, translating TOQL queries into SeRQL [11], compined with a GUI,
are also implemented. We choose to introduce TOQL because of the ontolo-
gies’ increasingly important role in Knowledge Representation (KR) domain
and because of the fact that dealing with information that changes over time
is a critical issue in KR.

A TOQL query is lexically, syntactically and semantically parsed and
analyzed. A TOQL query is first tranlated into intermediate code. This
interermediate code is then parsed to identify classes addressed by the query.
Finally, the TOQL query is translated into an equivalnent SeRQL query
which is executed on the ontology. An example TOQL query is provided as
well as the intermediate code and the SeRQL query that are a response to it.
Also two ontologies “Static Enterprise Ontology” and “Dynamic Enterprise
Ontology” along with instances (KB) are provided. Many TOQL queries
have been posed on these KBs and the results are presented and discussed.

Converting the interpreter to execute TOQL queries directly on OWL
is an extension that allows adding new features in TOQL, currently not
available because SeRQL does not support them, such as INSERT, UPDATE,
DELETE, ORDER BY, GROYP BY, is possible. Compining TOQL with a
reasoner to better support queries on time information is another extension.
Future work includes also extending TOQL’s syntax to handle queries on
ontology structure (i.e., sub-classes and super-classes).
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BNF

TOQL grammar:
Query ::= SubQuerySet
SubQuerySet ::= SubQuery [SetOperator SubQuerySet]
SubQuery ::= “(” SubQuerySet “)”

| Select
SetOperator ::= “union” [“all”]

| “minus”
| “intersect”

Select ::= “select” [“distinct”] Projection [QueryBody]
Projection ::= “*”

ProjectionElem (“,” ProjectionElem)*
ProjectionElem ::= ValueExpr [ “as” <String>]
QueryBody ::= “from” FromExprList

[“where” WhereExprList]
[“limit” <Int>]
[“offset” <Int>]

FromExprList ::= FromExpr ( “,” FromExprList)*
FromExpr ::= <Name> [“as” <String>]
ValueExpr ::= <Name> [“.” <Name>] [“.” “time”]

::= <Name> [“.” “*”]
WhereExprList ::= OrExpr
OrExpr ::= AndExpr [“or” WhereExprList]
AndExpr ::= WhereElem [“and” AndExpr]

::= WhereElem2 AtOperator [“and” AndExpr]
::= WhereValueExpr AtOperator CompOp
WhereValueExpr AtOperator [“and” AndExpr]
::= WhereValueExpr AtOperator CompOp “all”
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TOQL grammar (cont):
“(”SubQuerySet“)” [“and” AndExpr]
::= WhereValueExpr AtOperator CompOp “any”
“(”SubQuerySet“)” [“and” AndExpr]
::= WhereValueExpr AtOperator “in”
“(”SubQuerySet“)” [“and” AndExpr]
::= WhereValueExpr AtOperator CompOp
WhereValueExpr2 [“and” AndExpr]
::= WhereElem2 AllenOperator WhereElem2
[“and” AndExpr]

WhereElem ::= “(” WhereExprList “)”
::= “true”
::= “false”
::= “not” WhereElem
::= WhereValueExpr CompOp (“any”—“all”)
“(”SubQuerySet“)”
::= WhereValueExpr “in” “(”SubQuerySet“)”
::= “exists” “(”SubQuerySet“)”
::= WhereElem2

WhereElem2 ::= WhereValueExpr “like” <String> [“ignore case”]
::= WhereValueExpr CompOp WhereValueExpr2
::= <Name> “.” <Name> “:” <Name>

WhereValueExpr ::= <Name> [“.” <Name>]
CompOp ::= “=” | “!=” | “<” | “<=” | “>” | “>=”
WhereValueExpr2 ::= WhereValueExpr | <Float> | <Int>
AtOperator ::= “at” “(” <Int> [“,” <Int>] “)”
AllenOperator ::= “before” | “after” | “equals” | “meets”

| “metby” | “overlaps” | “overlappedby” | “during”
| “contains” | “starts” | “startedby” | “ends” | “endedby”
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