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Abstract

In this thesis we consider the performance degradation of three telecommunication transceivers

with respect to parameters uncertainties. The major contribution of our analysis is the

derivation of simple and informative approximations to the excess mean square error, which

uncover the basic factors that determine the performance of each transceiver under the pres-

ence of parameter uncertainties.

In Chapter 1, we briefly present the channel models and the transceiver structures used

in this thesis.

In Chapters 2 and 3, we consider the case of the Multiple-Input Multiple-Output

(MIMO) flat fading channel and two widely known transceiver schemes, i.e., the trans-

mit MIMO Wiener filtering and the Tomlinson-Harashima (TH) precoding. For the case of

the transmit MIMO Wiener filtering, degradation is due to channel estimation errors and

time-variations, and noise second-order statistics estimation errors. For the case of the TH

precoder, degradation is due to channel estimation errors and time-variations. For both

cases, our final expressions uncover the factors that determine the performance degradation

in practice, and the relative importance between different error sources.

In Chapter 4, we consider the case of the Single-Input Single-Output (SISO) frequency

selective channel and the minimum mean square error (MMSE) linear equalizer. The error

sources that cause the system degradation is the channel and CFO estimation errors. Our

aim is to uncover the relative importance of these error sources. It turns out that the CFO

estimation error is much more important than the channel estimation error. This fact leads

to useful conclusions concerning the optimal training sequence design for joint CFO and

channel estimation.
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Notation

Boldface uppercase and boldface lowercase letters denote matrices and column vectors, re-

spectively. Superscripts T , H and ∗ denote transpose, conjugate transpose and elementwise

conjugation, respectively. tr(·), vec(·) and vech(·) denote the trace, the vectorization and

the half-vectorization operator, respectively. ⊗ denotes the Kronecker product and Re{·}
extracts the real part of a complex number. The eigenvalues of matrix A are denoted as

λi(A). σmax(·), σmin(·), ‖ · ‖2, ‖ · ‖F , and k2(·) denote, respectively, the maximum singu-

lar value, the minimum singular value, the spectral norm, the Frobenius norm, and the

condition number, with respect to the spectral norm, of the matrix argument.

If A is an n×n positive semidefinite matrix, then its eigenvalues are ordered such that

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). A ≥ B means that A − B is positive semidefinite. aij

denotes the (i, j)-th element of matrix A, and IM and OM denote the M ×M identity and

zero matrix, respectively.

x



Matrix results

In this section, we present useful matrix results that are used throughout this thesis.

For matrices with compatible dimensions [20, pp. 17-19]

tr(ABCD) = vecT (DT )(CT ⊗A)vec(B) (1)

vec(ABC) = (CT ⊗A) vec(B). (2)

AB⊗CD = (A⊗C) (B⊗D) (3)

tr(A⊗B) = tr(A) tr(B) (4)

and [20, p. 117]

K(A⊗B)KH = B⊗A. (5)

where K denotes the commutation matrix. If A and B are positive semidefinite, then [20, p.

44]

tr(AB) ≤ tr(A) tr(B). (6)

If B is positive semidefinite with maximum eigenvalue λmax (B), then [20, p. 44]

tr
(
ABAH

) ≤ λmax (B) tr
(
AAH

)
(7)

For any matrix A [20, p. 97]

vec(A) = Kvec(AT ). (8)

If A is lower triangular, then [20, p. 99]

vec(A) = LT vech(A) (9)

and

vec(diag(diag(A))) = LTLKLTLvec(A) (10)

where L is the elimination matrix [20, ch. 9] and diag(diag(A)) is the diagonal matrix

whose elements are the diagonal elements of A. Finally, we remind that [27, p. 130]

(A + ∆A)−1 = A−1 −A−1∆AA−1 + O(‖∆A‖2). (11)
xi
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Chapter 1

Telecommunication Transceivers

In this chapter, we introduce the Single-Input Single-Output (SISO) and the Multiple-Input

Multiple-Output (MIMO) channel models and we briefly comment the impairments they

induce to a telecommunication system. In the sequel, we present commonly used transceiver

structures that combat the unwanted effects caused by the wireless channels.

1.1 Channel models

1.1.1 SISO channels

The transmission over a frequency-selective SISO communication channel is described by

the baseband-equivalent signal model

yn =
L∑

l=0

hlsn−l + wn (1.1)

where sn and wn denote the channel input and additive channel noise, respectively, and

the channel impulse response is denoted as h
4
= [h0 · · ·hL]T .

It is obvious from (1.1) that the received signal suffers from inter-symbol interference

(ISI) that has to be eliminated.

1.1.2 MIMO channels

The transmission over a flat fading MIMO communication channel with nt transmit and

nr receive antennas is described by the baseband-equivalent signal model

y = Hs + w (1.2)
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where s is the nt × 1 channel input vector, H is the nr × nt channel matrix, and w is the

nr × 1 additive channel noise.

From (1.2), we observe that the signal received at each antenna suffers from inter-stream

interference.

In order to eliminate ISI and inter-stream interference in SISO and MIMO systems the

signal has to be processed at the receiver and/or the transmitter. This processing, known

as equalization, is performed using properly designed filters.

1.2 Transceivers

The design of equalizing filters can be stated as a simple optimization problem, that of

finding the filter parameters that minimize an appropriate cost function.

The most efficient strategy is to consider the joint optimization of the transmit and

receive filters, which implies high complexity at both sides of the communication link.

To reduce the complexity at one side of the link, we use the suboptimal solution of the

transmit or receive processing, i.e., transmit processing simplifies receivers, while receive

processing simplifies transmitters. In any case, the transceiver design depends on the

performance requirements and the affordable complexity of the communication scenario

under consideration.

Many transmitter and receiver structures mitigating ISI and inter-stream interference

have been proposed in the literature, achieving various levels of performance with vary-

ing complexity. Linear equalization is a simple technique of low complexity that works

well in many cases. In cases where linear processing does not meet the required system

performance, non-linear structures (usually, of higher complexity) are used.

In many cases, the computation of the equalizing filters assumes perfect knowledge of

system parameters (e.g., the channel state information (CSI), the noise and input second-

order statistics, the carrier frequency offset (CFO)) at the transmitter and/or the receiver.

But, in real-world systems this assumption is not realistic. One way to proceed is to es-

timate the unknown parameters and use the estimates as if they were the true quantities;

this is sometimes called the mismatched approach. Another way is to exploit the statisti-

cal description of the parameter uncertainties and develop robust designs. In both cases,

the design of the equalizing filters is based on inexact estimates and thus performance

degradation is inevitable.
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In this thesis, we study the performance degradation of three widely known transceiver

structures in terms of the excess mean-square error (EMSE) induced by the parameter un-

certainties. More specifically, we estimate the unknown parameters of interest and use the

mismatched approach to compute the transceiver filters. Perhaps, a more interesting system

characterization would result if we used the bit-error rate (BER) as a metric, but, unfortu-

nately, the MSE and BER are not connected by a simple relationship for the transceivers

under consideration.

In Chapter 2, we consider the case of transmit processing (precoding or pre-equalization)

for the case of a flat fading MIMO channel, and more specifically, we study the performance

degradation of the transmit MIMO Wiener filter due to channel and noise second-order

statistics uncertainties. We develop second-order EMSE approximations and assuming op-

timal training we derive simple EMSE approximations in the high SNR cases. Considering

the channel estimation errors, we conclude that the EMSE is proportional to the minimum

MSE (MMSE). Considering the channel time-variations, we find that the EMSE increases

with increasing SNR and for high SNR it reaches an asymptotic value. For the case of

noise SOS estimation errors, we show that the EMSE is proportional to the squared noise

variance. A comparison of the EMSEs for the cases of estimation errors only shows that the

channel estimation errors are much more significant than the noise SOS estimation errors.

In Chapter 3, we consider the non-linear Tomlinson-Harashima (TH) precoder for the

flat fading MIMO channel. The specific TH scheme is implemented by a non-linear structure

at the transmitter followed by a linear filtering and a modulo operator at the receiver.

Again, we compute the associated EMSE induced by the channel estimation errors and the

channel time-variations. Considering a packet-based communication scenario where the

channel may change (slowly) between successive packets, we conclude that the processing

of each packet suffers from errors at both the transmitter and the receiver. We show that

the EMSE consists of two components that can be studied separately. The first component

is due to the mismatch between the previous channel estimate and the current channel,

while the second is due to the mismatch between the current channel and its estimate. We

develop a second-order approximation to the EMSE and, then, using optimal training, we

focus on the high-SNR regime and derive a simple, informative, and tight (for sufficiently

high SNR) EMSE upper bound, which uncovers the basic factors that determine the MIMO-

TH performance degradation.

Finally, in Chapter 4, we apply the MMSE linear equalizer to a SISO frequency-selective
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channel, we quantify the system performance degradation due to channel and CFO esti-

mation errors and we derive useful conclusions for the training sequence design for joint

channel and CFO estimation. More specifically, the performance degradation is due to

the fact that a mismatched MMSE linear equalizer is applied to channel output samples

with imperfectly canceled CFO. We uncover that, in many cases of high practical impor-

tance, the imperfectly canceled CFO is the main cause of the performance degradation. In

these cases, the EMSE is approximately proportional to the CFO estimation error variance,

with the proportionality coefficient being independent of the TS, implying that optimal TS

design for CFO estimation is also highly relevant for joint CFO and channel estimation.



Chapter 2

On the sensitivity of the transmit
MIMO Wiener filter with respect
to channel and noise second-order
statistics uncertainties

We consider the sensitivity of the transmit MIMO Wiener filter with respect to channel and

noise second-order statistics (SOS) uncertainties. Using results from matrix perturbation

theory, we derive second-order approximations to the excess mean-square error (EMSE)

induced by using the channel or noise SOS estimates as if they were the true quantities.

Assuming optimal training and sufficiently high SNR, we develop simple and informative

approximations to the EMSE, which indicate that the channel estimation errors are much

more significant than the noise SOS estimation errors. Uncertainties due to channel time-

variations induce EMSE that increases with increasing SNR and asymptotically tends to a

constant value.

2.1 Introduction

Joint optimization of transmit and receive filters for combatting frequency selectivity and/or

interstream interference in MIMO or multiuser systems has been extensively studied (see,

for example, [12] and the references therein). In order to keep the mobile units as sim-

ple as possible, we may consider separate transmit or receive processing. The transmit

matched filter (TxMF), the transmit zero-forcing filter (TxZF) and the transmit Wiener

filter (TxWF) are three linear pre-equalization (or precoding) structures that combat fre-

quency selectivity and/or inter-stream interference and keep the receivers simple, because

the only processing required at the receiver is a scalar scaling [12], [13].
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The TxWF, which outperforms the two other structures in terms of mean-square er-

ror (MSE) and bit-error rate (BER) [12], can be computed if the channel and the input

and noise second-order statistics (SOS) are perfectly known at the transmitter. This may

happen, for example, in time division duplex (TDD) systems or systems with a feedback

information channel. If the channel and/or the noise SOS are unknown at the transmitter,

as it is usually the case, then a common approach towards the design of the TxWF is to

estimate the unknown quantities and then use the estimates as if they were the true quan-

tities. Estimation errors and/or time-variations introduce uncertainties in the estimated

quantities and induce excess MSE (EMSE) leading to TxWF performance degradation.

In this chapter, we consider the sensitivity of the TxWF with respect to channel and

noise SOS uncertainties and we develop second-order approximations to the associated

EMSEs. While the general expressions are complicated and difficult to interpret, we are

able to derive simple and informative EMSE approximations for the high SNR cases. It

turns out that the EMSE due to channel estimation errors is proportional to the minimum

MSE (MMSE), while the EMSE due to noise SOS estimation errors is proportional to

the squared noise variance. On the other hand, the EMSE due to channel time-variations

increases for increasing SNR and asymptotically reaches a constant value.

2.2 The Transmit Wiener Filter

2.2.1 The system model

We consider the pre-equalized, baseband-equivalent, discrete-time frequency-flat MIMO

system, with nt transmit and nr receive antennas (with nr ≤ nt), depicted in Fig. 2.1.

This system is described by the expression

ŝ = HPs + w (2.1)

where s is the nr × 1 input signal, P is the nt × nr pre-equalization matrix, H is the

nr × nt channel matrix and w is the nr × 1 additive channel noise. The input and noise

vectors, s and w, are assumed to be complex-valued, independent, circular, with covariance

matrices Rs = Inr and Rw = σ2
wInr , respectively; furthermore, the noise is assumed to be

Gaussian. This model is particularly suitable for the broadcast scenario, where the users

cannot cooperate in order to combat inter-stream interference and, thus, the need for pre-

equalization is imperative. In this case, the i-th element of s is the symbol intended for the
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¨
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Fig. 2.1. System model

i-th user.

2.2.2 Computation of the TxWF

Our aim is to compute the TxWF P and the scalar β that minimize the cost function [13]

mse(P, β)
4
= E [‖s− β−1ŝ‖2

2

]
(2.2)

subject to the transmit power constraint

E [‖Ps‖2
2

]
= E. (2.3)

Function mse(·) can be analytically expressed as

mse(P, β) = tr (Inr)− 2β−1Re {tr (HP)}+ β−2tr
(
HPPHHH

)
+ β−2tr (Rw) . (2.4)

The optimal values for this constrained optimization problem are [13]

βo =

√√√√ E

tr
(
P̃oP̃H

o

) (2.5)

and Po = βoP̃o, where

P̃o
4
=

(
HHH + αInt

)−1
HH (2.6)

and

α
4
=

tr (Rw)
E

. (2.7)

In [12], quantity α has been defined as inverse SNR.

Using the optimal values Po and βo in (2.4), it can be shown that the MMSE is

MMSE
4
= mse(Po, βo) = tr

(
Inr

)− 2Re
{

tr
(
P̃oH

)}
+ tr

(
HP̃oP̃H

o HH
)

+ α tr
(
P̃oP̃H

o

)

4
= MSE(P̃o).

(2.8)
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2.2.3 Channel and noise SOS uncertainties

In the above development, we assumed that the channel matrix H and the noise covariance

matrix Rw are perfectly known at the transmitter. Perhaps, the easiest way to obtain esti-

mates of these quantities is through training. In frequency division duplex (FDD) systems,

the estimates can be computed at the receiver and communicated to the transmitter via

a feedback channel, while in TDD systems they can be computed at the transmitter. In

this work, we consider channel estimation at the receiver, i.e., FDD systems. Of course,

analogous results hold for TDD systems.

The channel estimate Ĥ at the transmitter may suffer from two basic sources of un-

certainty, namely, estimation errors and time-variations. We define the channel error or

mismatch as

∆H
4
= Ĥ−H (2.9)

and we assume that vec(∆H) is complex-valued, circular with

Rvec(∆H)
4
= E [

vec(∆H)vecH(∆H)
]

= Σ. (2.10)

Next, we compute Σ for the two cases of interest.

1. Channel estimation errors: In this case, we assume that the channel is time-invariant

and we estimate it using training. If we denote the nt×Ntr training block as Str and

the corresponding channel output as Ytr, then the maximum likelihood (ML) channel

estimate is [28, p. 174]

Ĥ = YtrSH
tr

(
StrSH

tr

)−1
. (2.11)

Optimal channel estimates are obtained for semi-unitary training matrix Str, i.e.,

StrSH
tr ∝ Int . The corresponding channel estimation error covariance matrix is given

by [28, p.175]

Σ =
σ2

w

Ntr
Intnr . (2.12)

2. Channel time-variations: In this case, we assume that uncertainties due to channel

time-variations dominate those due to channel estimation errors (i.e., we assume that

the channel estimate is perfect and we focus on channel time-variations) 1. We denote

with H = Ht the true channel at time instant t and with Ĥ = Ht−τ the outdated

channel version at the transmitter, where τ is the time needed for the feedback loop.
1We introduce the statistical model for the channel time-variations just for analysis purposes. Robust

precoders exploiting this knowledge (see, for example [6]), are beyond the scope of this paper.



2.2 The Transmit Wiener Filter 9

We assume that {Ht} is a stationary matrix random process and, at each time instant

t, the elements of Ht are zero-mean, unit variance i.i.d. Gaussian random variables,

yielding vec(H), vec(Ĥ) ∼ CN (0, Intnr). The channel coefficients are time-varying

according to Jakes’ model, with common maximum Doppler frequency fd. Thus, Ĥ

and H can be modeled as jointly Gaussian with cross-correlation [3, p. 93]

E
[
vec(H)vecH(Ĥ)

]
= ρτIntnr

where ρτ is the normalized correlation coefficient specified by the Jakes model, i.e.,

ρτ = J0(2πfdτ), with J0(·) the zeroth-order Bessel function of the first kind. In this

case, it can be easily proved that

Σ = 2 (1− ρτ )Intnr . (2.13)

We continue with the noise SOS uncertainties. Since we assume that Rw = σ2
wInr , we

define the SOS estimation error as

∆Rw
4
= (σ̂2

w − σ2
w) Inr . (2.14)

Using training data Str, it can be shown that an unbiased noise variance estimate is [24, p.

697]

σ̂2
w =

1
nr (Ntr − nt)

tr
(
YtrP⊥

SH
tr
YH

tr

)
(2.15)

where P⊥
SH

tr
is the orthogonal projector onto the orthogonal complement of the column space

of SH
tr . For more details, the reader is referred to, for example, [28, Sec. 9.4]. Using optimal

training, it can be shown that the noise variance estimate (2.15) has variance (we prove it

in Appendix 2A)

E
[(

σ̂2
w − σ2

w

)2
]

=
σ4

w

nr(Ntr − nt)
. (2.16)

2.2.4 EMSE of the TxWF with uncertainties

In this subsection, we develop a second-order approximation to the EMSE induced by

channel or noise SOS uncertainties. We denote with ˆ̃P and β̂ the scaled TxWF and the

Wiener scalar computed by using the channel or the noise SOS estimates as if they were

the true quantities. The corresponding TxWF is P̂
4
= β̂ ˆ̃P. The MSE associated with P̂

and β̂ is

mse
(
P̂, β̂

)
= MSE

( ˆ̃P
)
.
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Using a Taylor expansion of function MSE(·) around point P̃o, we obtain

MSE( ˆ̃P) = MSE(P̃o) + tr
(
∆P̃HMSE′′(P̃o)∆P̃

)
(2.17)

where ∆P̃
4
= ˆ̃P−P̃o and MSE′′(P̃o) is the second derivative of the function MSE, evaluated

at the point P̃o. From (2.8), we obtain that [10]

MSE′′(P̃o) = HHH + αInt . (2.18)

We define the EMSE as

EMSE( ˆ̃P)
4
= E

[
MSE

( ˆ̃P
)−MSE

(
P̃o

)]
= E

[
tr

(
∆P̃HMSE′′(P̃o)∆P̃

)]

= E
[
tr

(
∆P̃H(HHH + αInt)∆P̃

)]
.

(2.19)

2.3 EMSE due to channel uncertainties

In this section, we assume that the transmitter perfectly knows the noise SOS and has

obtained a channel estimate Ĥ, which is used for the computation of the TxWF. In order

to compute the EMSE in (2.19), we must develop a first-order approximation to ∆P̃ with

respect to ∆H. This is our task in the sequel. If we use in (2.6) the estimate Ĥ as if it

were the true channel H, then we compute the scaled pre-equalization matrix

ˆ̃P =
(
ĤHĤ + αInt

)−1
ĤH (2.20)

which can be written as

ˆ̃P =
(
HHH + αInt + HH∆H + ∆HHH︸ ︷︷ ︸

K∆

+O(‖∆H‖2)
)−1

(HH + ∆HH). (2.21)

Using the first-order approximation in (11) and definition (2.6), we obtain

ˆ̃P = P̃o − (HHH + αInt)
−1(K∆P̃o −∆HH) + O(‖∆H‖2).

Thus, a first-order approximation to ∆P̃ is

∆P̃ = − (HHH + αInt)
−1

︸ ︷︷ ︸
A

(K∆P̃o −∆HH)︸ ︷︷ ︸
∆

(2.22)

and a second-order approximation of the EMSE is given by

EMSE( ˆ̃P) = E
[
tr

(
∆P̃H(HHH + αInt)∆P̃

)]
(2.22)
= E [

tr
(
∆HA∆

)]

= E [
tr

(
A∆Inr ∆H

)] (1)
= E [

vecH(∆)
(
Inr ⊗A

)
vec(∆)

]

= tr
((

Inr ⊗A) E [
vec(∆)vecH(∆)

])
.

(2.23)
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From the definitions of ∆ in (2.22) and K∆ in (2.21), we obtain

vec(∆) = vec(HH∆HP̃o) + vec
(
∆HH

(
HP̃o − Inr

))

= (P̃T
o ⊗HH)︸ ︷︷ ︸

M1

vec(∆H) +
(
(P̃T

o HT − Inr)⊗ Int

)
︸ ︷︷ ︸

M2

vec(∆HH)
(2.24)

where we made use of (2). Using the commutation matrix Kntnr and (8) we obtain

vec(∆) = M1vec(∆H) + M2 Kvec(∆H∗)

where, for notational simplicity, the commutation matrix is denoted as K. Using the

circular symmetry of ∆H and (2.10), we obtain

EMSE( ˆ̃P) = tr
(
(Inr ⊗A)

(
M1 ΣMH

1 + M2 KΣ∗KHMH
2

))
.

Finally, we obtain the expression

EMSE( ˆ̃P) = T1 + T2 (2.25)

where

T1
4
= tr

(
(Inr ⊗A)M1ΣMH

1

)
= tr

(
MH

1 (Inr ⊗A)M1Σ
)

(2.24)
= tr

((
P̃∗

oP̃
T
o ⊗HAHH

)
Σ

) (2.26)

and

T2
4
= tr

(
(Inr ⊗A)M2KΣ∗KHMH

2

)
= tr

(
KHMH

2 (Inr ⊗A)M2KΣ∗)

(2.24)
= tr

(
KH

(
(H∗P̃∗

o − Inr)(P̃
T
o HT − Inr)⊗A

)
KΣ∗

)

= tr
((

A⊗ (H∗P̃∗
o − Inr)(P̃

T
o HT − Inr)

)
Σ∗

)
(2.27)

where we made use of expressions (3) and (5).

Until now, we have expressed the EMSE in terms of Σ. Expressions (2.25)–(2.27) are

admittedly complicated and do not provide significant insight. In the sequel, we assume

sufficiently high SNR and we derive simple and informative approximations of the EMSE.

2.3.1 Channel estimation errors and high SNR

In this subsection, we assume that the channel uncertainties are due to estimation errors,

implying that Σ = (σ2
w/Ntr) Intnr . Using the SVD of H, it can be shown that, for i =

1, . . . , nr (recall the definition of A in (2.22))

λi

(
HAHH

)
=

λi

(
HHH

)

λi (HHH) + α
. (2.28)
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For α ¿ λnr(HHH), that is, α much smaller than the smallest nonzero eigenvalue of HHH,

implying sufficiently high SNR, we obtain

tr
(
HAHH

)
=

nr∑

i=1

λi

(
HHH

)

λi (HHH) + α
≈ tr (Inr) . (2.29)

Another high SNR approximation that will prove useful in the sequel is (the proof is pro-

vided in Appendix 2B)

tr
(
P̃oP̃H

o

) ≈ 1
α

MMSE. (2.30)

Starting with T1 in (2.26) and using (4) we obtain

T1
(2.12)
=

σ2
w

Ntr
tr

(
P̃∗

oP̃
T
o ⊗HAHH

) (2.29)≈ σ2
w

Ntr
tr

(
P̃∗

oP̃
T
o

)
tr (Inr)

=
nr σ2

w

Ntr
tr

(
P̃∗

oP̃
T
o

) (2.30)≈ nr σ2
w

Ntr

1
α

MMSE.

(2.31)

In order to compute an approximation of T2, we use an expression analogous to (2.28), for

i = 1, . . . , nr

λi

(
(H∗P̃∗

o − Inr)(P̃
T
o HT − Inr)

)
=

α2

(λi (HHH) + α)2
. (2.32)

For high SNR, the right-hand side of (2.32) goes to zero, yielding

tr
(
(H∗P̃∗

o − Inr)(P̃
T
o HT − Inr)

)
≈ 0. (2.33)

Thus,

T2
(2.12)
=

σ2
w

Ntr
tr (A) tr

(
(H∗P̃∗

o − Inr)(P̃
T
o HT − Inr)

) (2.33)≈ 0. (2.34)

We conclude that, for sufficiently high SNR, term T2 is negligible compared with T1; this

statement is in agreement with simulations in Section V. Combining expressions (2.25),

(2.31) and (2.34), we obtain

EMSE( ˆ̃P) ≈ nr σ2
w

Ntr

1
α

MMSE
(2.7)
=

E
Ntr

MMSE.

Thus, for optimal training and sufficiently high SNR

EMSE( ˆ̃P) ≈ E
Ntr

MMSE. (2.35)

We observe that the EMSE is approximately proportional to the MMSE, with the propor-

tionality factor being the ratio of the transmit power, E, to the length of the training block

used for channel estimation, Ntr. Expression (2.35) can be used as a criterion for the choice

of the length of the training block Ntr and/or the total transmit power E.
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2.3.2 Time-varying channels and high SNR

In this subsection, we assume that the uncertainties due to time-variations dominate those

due to estimation errors, yielding Σ = 2 (1 − ρτ ) Intnr . The only term of the previous

analysis that is affected is (2.26), which becomes

T1
(2.13)
= 2 (1− ρτ ) tr

(
P̃∗

oP̃
T
o ⊗HAHH

) (2.29)≈ 2 (1− ρτ ) tr
(
P̃∗

oP̃
T
o

)
tr (Inr) . (2.36)

giving that

EMSE( ˆ̃P) ≈ 2nr(1− ρτ )tr
(
P̃∗

oP̃
T
o

)
. (2.37)

It is easy to see that

tr
(
P̃∗

oP̃
T
o

)
= tr

(
P̃oP̃H

o

)
= tr

(
HA2HH

)
=

nr∑

i=1

λi(HHH)
(λi(HHH + α)2

is an increasing function of SNR and tends to tr
(
(HHH)−1

)
for SNR tending to infinity.

Thus, the EMSE increases for increasing SNR and asymptotically attains the value

EMSE( ˆ̃P) ≈ 2nr(1− ρτ ) tr((HHH)−1). (2.38)

Of course, the above approximations are accurate for slow time-variations because fast

time-variations introduce large channel uncertainties rendering our asymptotic analysis

inaccurate.

2.4 EMSE due to noise SOS uncertainties

In this section, we assume that the channel is perfectly known at the transmitter and the

noise SOS estimate R̂w is used as if it were the true Rw. Then the scaled precoding matrix

becomes
ˆ̃P =

(
HHH +

tr (Rw + ∆Rw)
E

Int

)−1

HH . (2.39)

Using (11), a first-order approximation to ∆P̃, with respect to ∆Rw, is given by

∆P̃ = −tr (∆Rw)
E

(
HHH + αInt

)−1
P̃o

(2.22)
= −tr (∆Rw)

E
AP̃o. (2.40)

Substituting the above expression in (2.19), we obtain the second-order approximation

EMSE( ˆ̃P) = E
[
tr

(
∆P̃H(HHH + αInt)∆P̃

)]

=
E [

tr2 (∆Rw)
]

E2
tr

(
P̃H

o AP̃o

)
.

(2.41)
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2.4.1 Optimal training and high SNR

Considering optimal training and high SNR, recalling that we consider the spatially and

temporally white Gaussian noise case and using (2.16), we get

E [
tr2 (∆Rw)

]
= E

[
n2

r

(
σ̂2

w − σ2
w

)2
]

= n2
r E

[(
σ̂2

w − σ2
w

)2
]
. (2.42)

Using (2.16) and (2.42), (2.41) becomes

EMSE( ˆ̃P) =
n2

r E
[(

σ̂2
w − σ2

w

)2
]

E2
tr

(
P̃H

o AP̃o

)
=

nr σ4
w

E2 (Ntr − nt)
tr

(
P̃H

o AP̃o

)
. (2.43)

Using the definitions of P̃o and A in (2.6) and (2.22), respectively, we write

tr
(
P̃H

o AP̃o

)
= tr

(
H

(
HHH + αInt

)−3
HH

)
= tr

(
HA3HH

)
. (2.44)

An expression analogous to (2.28), for i = 1, . . . , nr, is

λi

(
HA3HH

)
=

λi

(
HHH

)

(λi (HHH) + α)3

which, for high SNR, gives

λi

(
HA3HH

) ≈ 1
λ2

i (HHH)
=

1
λ2

i (HHH)
.

Thus

tr
(
P̃H

o AP̃o

)
≈

nr∑

i=1

1
λ2

i (HHH)
= || (HHH

)−1 ||2F (2.45)

and finally, combining expressions (2.43) and (2.45), we obtain

EMSE( ˆ̃P) ≈ nr σ4
w

E2 (Ntr − nt)
|| (HHH

)−1 ||2F . (2.46)

This approximation states that the EMSE is proportional to the squared noise variance,

σ4
w, which decreases very fast for increasing SNR. The proportionality factor is determined

by the transmit power, E, the length of the training block, Ntr, the number of the transmit

and receive antennas nt and nr, and the conditioning of the matrix channel H, through the

Frobenius norm || (HHH
)−1 ||2F . In the simulations section, we will see that this bound is

a good approximation to the EMSE, especially at high SNR.
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Table I

Elements of channel matrix H

-0.2646 + 0.1212*j -0.0456 - 0.2588*j -0.0081 - 0.7268*j

0.0664 + 0.0179*j -0.1597 + 0.4986*j 0.0656 - 0.1866*j
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Fig. 2.2. MMSE using the true channel (‘-o’) and expectation of the MSEs using the channel
estimate (‘-*’).

2.5 Simulation Results

We consider a system with nt = 3 transmit antennas and nr = 2 receive antennas. We

consider the channel matrix H with elements given in Table I 2. The noise is spatially

and temporally white, circularly symmetric complex Gaussian with variance σ2
w. We set

the transmit power E = nt. We assume that the training block is composed of Ntr = 20

columns.

Simulation 1. Channel estimation errors.

In Fig. 2.2, we plot the MMSE (2.8) and the mean of the MSEs computed using the

channel estimate (the average is over different realizations of the channel estimation error
2Our results hold for any channel matrix. Since in our theoretical developments we did not average over

the channels, but only over the channel uncertainties, in the simulations we use only one channel realization.
We have made analogous observations in extensive simulation studies.
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Fig. 2.3. Experimentally computed EMSE, theoretical second-order approximation (2.25),
and high SNR approximation (2.35) for the case of channel estimation errors.

∆H). We observe that the distance of these two quantities is approximately constant and

does not depend on the SNR, verifying expression (2.35).

In Fig. 2.3, we present the experimentally computed EMSE, the theoretical second-order

approximation (2.25) and approximation (2.35). We observe that the experimental and

theoretical EMSE values practically coincide for SNR higher than 5 dB, while approximation

(2.35) is very close to the EMSE, especially at high SNR.

In Fig. 2.4, we plot terms T1 and T2 of the theoretical EMSE of (2.25). We observe

that, for SNR higher than 7 dB, the contribution of term T2 to the EMSE is much smaller

than the contribution of term T1, supporting our claim that the EMSE is approximately

equal to term T1 for the high SNR cases.

Simulation 2. Channel time-variations.

In Fig. 2.5, we plot the MMSE (2.8) and the mean of the MSEs computed using the

outdated channel versions for channel correlation coefficients ρτ = 0.99, 0.9 (the average is

over different realizations of the channel uncertainties due to channel time-variations ∆H).

We observe that the distance of the two curves from the MMSE increases for increasing

SNR, and the mean of the MSEs reaches a floor. This happens because the EMSE induced

by the channel time-variations increases for increasing SNR and asymptotically attains a
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Fig. 2.4. Terms T1 and T2 of the EMSE second-order approximation (2.25) for the case of
channel estimation errors.
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Fig. 2.5. MMSE using the true channel (‘-o’) and expectation of the MSEs using the channel
estimate for ρ = 0.99 (‘-*’) and for ρ = 0.9 (dotted line).

limit value.

In Fig. 2.6, we present the theoretical second-order approximation (2.25), the corre-
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Fig. 2.6. Experimentally computed EMSE, theoretical second-order approximation (2.25),
high SNR approximation (2.37) and asymptotic EMSE value (2.38) for channel time-
variations (ρ = 0.99).

sponding experimentally computed EMSE, the high SNR approximation (2.37) and the

asymptotic value (2.38) for channel correlation coefficient equal to ρ = 0.99, implying very

accurate channel information at the transmitter. We observe that the second-order approx-

imation is very accurate, while (2.37) is a good approximation to the EMSE for SNR higher

than 20 dB.

Simulation 3. Noise estimation errors.

In Fig. 2.7, we present the theoretical second-order approximation (2.43), the corre-

sponding experimentally computed EMSE and the high SNR approximation (2.46). We

observe that the first two quantities practically coincide and approximation (2.46) is very

close to the true EMSE for SNR higher than 15 dB.

Comparing the EMSEs for the cases of estimation errors only (see Fig. 2.3 and Fig.

2.7), we observe that the error induced by the channel estimation errors is much more

significant than that induced by the noise SOS estimation errors.
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Fig. 2.7. Experimentally computed EMSE, theoretical second-order approximation (2.43),
and high SNR approximation (2.46) for the case of noise SOS estimation errors.

2.6 Conclusion

We considered the behavior of the TxWF under channel and noise SOS uncertainties by

developing second-order EMSE approximations. We derived simple EMSE approximations

in the high SNR cases. Considering the channel estimation errors, we concluded that the

EMSE is proportional to the MMSE, with the proportionality factor determined by the

transmit power E and the length of the training block Ntr. Considering the channel time-

variations, we found that the EMSE increases and for high SNR it reaches an asymptotic

value. For the case of noise SOS estimation errors, we showed that the EMSE is proportional

to the squared noise variance, σ4
w. A comparison of the EMSEs for the cases of estimation

errors only, shows that the error induced by the channel estimate is much more significant

than that induced by the noise SOS estimate.
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Appendix 2A

Channel and noise variance ML estimates

The ML estimate of the channel gain matrix H and the noise variance estimate can

be derived from training-based estimation [28]. Using the training block Str of dimension

nt ×Ntr, the received block of dimension nr ×Ntr is given by [28]

Ytr = HStr + Etr

where Etr is the corresponding nr ×Ntr noise matrix. The additive noise is assumed to be

spatially and temporally white Gaussian.

A. ML estimate of the channel matrix

The ML estimate of the channel H based on the received training block Ytr is given

by [28, p. 174]

Ĥ = YtrSH
tr

(
StrSH

tr

)−1
.

This estimate is unbiased and the covariance matrix of vec(∆H) is given by [28, p. 175]

Σ , E [
vec(∆H)vecH(∆H)

]
= σ2

w

((
StrSH

tr

)−T ⊗ Inr

)
.

As shown in [28, p. 176], the optimal training block Str should satisfy

StrSH
tr ∝ Int .

B. ML noise variance estimate

Having estimated the channel matrix H, the ML noise variance estimate is [28, p. 174]

σ̂2
w =

1
Ntrnr

tr
(
YtrP⊥

SH
tr
YH

tr

)

where P⊥
SH

tr
is the orthogonal projector onto the orthogonal complement of the column space

of SH
tr . It can be shown that this estimate is biased. More specifically,

E
[
tr

(
YtrP⊥

SH
tr
YH

tr

)]
= E

[
tr

(
(HStr + Etr)P⊥

SH
tr

(
SH

trH
H + EH

tr

))]

= E
[
tr

(
EH

trEtrP⊥
SH

tr

)]

giving that

E
[
tr

(
YtrP⊥

SH
tr
YH

tr

)]
= (Ntr − nt) nrσ

2
w.

Thus, an unbiased estimate of σ2
w is given by

ˆ̂σ
2

w =
1

nr(Ntr − nt)
tr

(
YtrP⊥

SH
tr
YH

tr

)
=

1
c

tr
(
YtrP⊥

SH
tr
YH

tr

)
.
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where

c , nr (Ntr − nt) .

We continue with the computation of the variance of the unbiased noise variance esti-

mator

varˆ̂σ
2

w = E
[∣∣∣σ2

w − ˆ̂σ
2

w

∣∣∣
2
]

= E
[∣∣∣∣σ2

w −
1
c
tr

(
P⊥

SH
tr
EH

trEtr

)∣∣∣∣
2
]

= σ4
w −

2
c

σ2
wRe

{
E

[∣∣∣tr
(
P⊥

SH
tr
EH

trEtr

)∣∣∣
]

︸ ︷︷ ︸
=c σ2

w

}
+

1
c2
E

[∣∣∣tr
(
P⊥

SH
tr
EH

trEtr

)∣∣∣
2
]

= −σ4
w +

1
c2
E

[∣∣∣tr
(
P⊥

SH
tr
EH

trEtr

)∣∣∣
2
]

︸ ︷︷ ︸
b

.

In order to compute term b, we examine tr
(
P⊥

SH
tr
EH

trEtr

)

tr
(
P⊥

SH
tr
EH

trEtr

)
= tr

(
P⊥

SH
tr
EH

tr InrEtr

)

(1)
= vecT

(
ET

tr

)
︸ ︷︷ ︸

,eT

(
Inr ⊗P⊥

SH
tr

)
vec(EH

tr )︸ ︷︷ ︸
=e∗

= eT
(
Inr ⊗P⊥

SH
tr

)
e∗.

Thus,

b = E
[∣∣∣tr

(
P⊥

SH
tr
EH

trEtr

)∣∣∣
2
]

= E
[
tr

(
P⊥

SH
tr
EH

trEtr

)
trH

(
P⊥

SH
tr
EH

trEtr

)]

= E
[
eT

(
Inr ⊗P⊥

SH
tr

)
e∗ eT

(
Inr ⊗P⊥

SH
tr

)
e∗

]

= E
[
tr

((
Inr ⊗P⊥

SH
tr

)T
e∗eT

(
Inr ⊗P⊥

SH
tr

)
e∗eT

)]

(1)
= E

[
vecT

(
eeH

) (
Inr ⊗P⊥

SH
tr

)T
⊗

(
Inr ⊗P⊥

SH
tr

)
vec

(
e∗eT

)]

= E
[
tr

((
Inr ⊗P⊥

SH
tr

)T
⊗

(
Inr ⊗P⊥

SH
tr

)
vec

(
e∗eT

)
vecT

(
eeH

))]

= tr
((

Inr ⊗P⊥
SH

tr

)T
⊗

(
Inr ⊗P⊥

SH
tr

)
E [

vec
(
e∗eT

)
vecT

(
eeH

)])
.

Terms vec
(
e∗eH

)
and vecT

(
eeT

)
can be computed analytically, by writing down the exact

form of each vector. Thus, having computed these terms, we take expectation, using [15, p.

508]

E (x∗i xjx
∗
kxl) = E (x∗i xj) E (x∗kxl) + E (x∗i xl) E (xjx

∗
k) .

Applying this property to the last term of B, we obtain

E [
vec

(
e∗eH

)
vecT

(
eeT

)]
= σ4

wInrNtr + σ4
wvec (InrNtr) vecH (InrNtr) .
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Thus, term b becomes

b = tr
((

Inr ⊗P⊥
SH

tr

)T
⊗

(
Inr ⊗P⊥

SH
tr

) (
σ4

wInrNtr + σ4
wvec (InrNtr) vecH (InrNtr)

))

= σ4
wtr

((
Inr ⊗P⊥

SH
tr

)T
⊗

(
Inr ⊗P⊥

SH
tr

))

+ σ4
wtr

(
vecH (InrNtr)

((
Inr ⊗P⊥

SH
tr

)T
⊗

(
Inr ⊗P⊥

SH
tr

))
vec (InrNtr)

)

(1),(4)
= σ4

wn2
r (Ntr − nt)

2 + σ4
wtr

((
Inr ⊗P⊥

SH
tr

)(
Inr ⊗P⊥

SH
tr

))

= σ4
wn2

r (Ntr − nt)
2 + σ4

wtr
(
Inr ⊗P⊥

SH
tr

)

= c2σ4
w + c σ4

w.

Now, we return to varˆ̂σ
2

w, which becomes

varˆ̂σ
2

w = −σ4
w +

1
c2

(
c2σ4

w + c σ4
w

)
=

1
c

σ4
w.

Thus, for the unbiased case of the noise variance estimate, the variance is given by

varˆ̂σ
2

w = E
[(

σ2
w − ˆ̂σ

2

w

)2
]

=
σ4

w

nr(Ntr − nt)
.

Appendix 2B

A useful approximation

In order to simplify term tr
(
P̃∗

oP̃
T
o

)
in the high SNR cases, i.e., α ¿ λnr(HHH), we

notice that

tr
(
P̃∗

oP̃
T
o

)
= tr

(
P̃oP̃H

o

)
.

Using the definitions of MMSE and P̃o in (2.8) and (2.6), respectively, we get

MMSE = tr (Inr)− 2tr
(
P̃oH

)
+ tr

(
P̃oP̃H

o HHH
)

+ α tr
(
P̃oP̃H

o

)

= tr (Inr)− 2tr
(
AHHH

)
+ tr

(
AHHHAHHH

)
+ α tr

(
P̃oP̃H

o

)
.

Using approximations analogous to (2.29), we can write for the high SNR cases

MMSE ≈ tr (Inr)− 2tr (Inr) + tr (Inr) + α tr
(
P̃oP̃H

o

)
= α tr

(
P̃oP̃H

o

)
.

Finally, we get

tr
(
P̃oP̃H

o

)
≈ 1

α
MMSE. (2.47)



Chapter 3

On the sensitivity of the MIMO
Tomlinson-Harashima precoder
with respect to channel
uncertainties

The multiple-input multiple-output Tomlinson-Harashima (MIMO-TH) precoder is a well-

known structure that mitigates interstream interference in flat fading MIMO systems. The

MIMO-TH filters are designed by assuming perfect channel state information (CSI) at

both the transmitter and the receiver. However, in practice, channel estimates are avail-

able instead of the true channels. In this chapter, we assess the MIMO-TH performance

degradation in the cases where the channel estimates are used as if they were the true

channels. More specifically, we develop second-order and high-SNR approximations to the

excess mean-square error induced by channel uncertainties, uncovering the factors that de-

termine the MIMO-TH performance degradation in practice. Numerical experiments are

in agreement with our theoretical developments.

3.1 Introduction

Interstream interference is a problem commonly encountered in MIMO communication sys-

tems. Many receiver structures mitigating interstream interference have been proposed in

the literature, achieving various levels of performance with varying complexity. Promi-

nent among them is the MIMO decision feedback equalizer (DFE). This non-linear receiver

works efficiently but may suffer from error propagation. This disadvantage can be over-

come by moving the feedback loop of the DFE to the transmitter, resulting in the so-called

Tomlinson-Harashima precoder. In this chapter, we consider the TH precoder proposed in
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Appendix E of [8]. The design of the TH precoder assumes perfect channel state informa-

tion (CSI) at both the transmitter and the receiver; see, for example, [8], [14], [22], [29]

and [30]. However, since CSI uncertainties always exist in real-world systems, due to, e.g.,

channel estimation errors, this assumption is not realistic. One way to proceed is to use

the channel estimate as if it were the true channel; this is sometimes called the mismatched

or naive approach. Another way is to exploit the statistical description of the channel un-

certainties and develop robust designs; see, for example, [6], [23] and [25]. However, in all

cases, the design of the MIMO-TH filters is based on inexact channel estimates and thus

performance degradation is inevitable.

We consider a packet-based communication scenario where the channel may change

(slowly) between successive packets. During each packet, the receiver estimates the channel

and feeds its estimate back to the transmitter. This estimate is used for the design of the

TH precoding filter that will be applied to the next packet. Thus, the TH precoding filter

suffers from channel estimation errors (that occur at the receiver) and usually also suffers

from mismatch due to channel time-variations, because the next packet may pass through

a (slightly) different channel. Upon arrival of the packet, the receiver estimates the current

channel (which is fed back to the transmitter) and proceeds to equalization and detection.

Thus, the processing of each packet suffers from errors at both the transmitter and the

receiver. Obviously, these errors degrade the MIMO-TH performance. We quantify this

degradation by assessing the associated excess mean-square error. We show that the EMSE

consists of two components that can be studied separately. The first component is due to

the mismatch between the previous channel estimate and the current channel, while the

second is due to the mismatch between the current channel and its estimate. We develop

a second-order approximation to the EMSE which, in our experiments, is very accurate for

SNR higher than 5 dB. However, this approximation is quite complicated and thus difficult

to interpret. We focus on the high-SNR regime and derive a simple, informative, and

tight (for sufficiently high SNR) EMSE upper bound, which uncovers the basic factors that

determine the MIMO-TH performance degradation.

3.1.1 Notation

During our study, we shall develop first- and second-order approximations, with respect to

channel uncertainties, as well as high-SNR approximations. In order to distinguish among

these cases, we shall use the symbols ', ≈, and u, respectively.
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Fig. 3.1. System model.

3.2 The MIMO-TH Precoder

3.2.1 The system model

We consider the baseband-equivalent discrete-time frequency-flat MIMO system depicted

in Fig. 3.1, with nt transmit and nr receive antennas (with nr ≥ nt). The input-output

relation of the channel is

y = Hx + w (3.1)

where x is the nt × 1 channel input vector, H is the nr × nt channel matrix, and w is the

nr×1 additive channel noise. The channel input symbols xk, k = 1, . . . , nt, are successively

generated from the data symbols sk, k = 1, . . . , nt, as shown in Fig. 3.1, where the feedback

loop consists of the feedback matrix C and the modulo operator QM (·). If s is a vector

with independent identically distributed (i.i.d.) elements sk (drawn from an M -QAM

constellation), then it can be shown that x consists of uncorrelated random variables, with

covariance matrix Rx = σ2
xInt , where σ2

x ' 2M2/12 [8, p. 462]. The noise vector, w, is

assumed to be complex-valued circular Gaussian with covariance matrix Rw = σ2
wInr .

3.2.2 Optimal MMSE MIMO-TH

In this subsection, we briefly present the computation of the MMSE MIMO-TH filters,

following the approach of the Appendix E of [8]. The error signal before the receiver’s

modulo operator (see Fig. 3.1) is

e = Vy −Cx (3.2)

and the mean-squared error is defined as

mse(C,V)
4
= E [‖e‖2

2

]
. (3.3)
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The function mse(·) can be expressed as

mse(C,V) = tr
(
V(σ2

xHHH + σ2
wInr)V

H
)

− 2σ2
xRe {tr(VHCH)}+ σ2

xtr(CCH).
(3.4)

For any C, minimization of mse(C,V) with respect to V, yields

V = CHH(HHH + ζInr)
−1

where ζ
4
= σ2

w/σ2
x. By substituting this value to mse(C,V), we obtain

MSE(C)
4
= σ2

wtr
(
C(HHH + ζInt)

−1CH
)
. (3.5)

Minimization of MSE(C) with respect to C, subject to the constraint that C be a lower

triangular matrix with diagonal elements equal to 1, gives [1], [8]

Co = GR (3.6)

where R is the lower triangular matrix satisfying the modified Cholesky factorization

HHH + ζInt = RHR (3.7)

and

G = diag
(
r−1
11 , . . . , r−1

ntnt

)
. (3.8)

Using Co, we compute the optimal V as

Vo = CoHH(HHH + ζInr)
−1. (3.9)

Substituting Co and Vo in (3.4), we obtain

MMSE
4
= mse(Co,Vo) = MSE(Co)

= σ2
w tr

(
Co(HHH + ζInt)

−1CH
o

)
.

(3.10)

Using (3.6), we derive the alternative expression for the MMSE

MMSE = σ2
w tr(GGH)

= σ2
w tr

(
diag

(|r11|−2, . . . , |rntnt |−2
))

.
(3.11)
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3.2.3 Channel uncertainties

After the description of the ideal case, where we assumed that the channel H is perfectly

known at the receiver and the transmitter, we proceed to a realistic scenario where both

the transmitter and the receiver possess channel estimates. More specifically, we consider

a frequency division duplex system and focus on the transmission of packet i. During the

transmission of packet (i− 1), the receiver estimates the true channel, Hi−1, as H̄i−1. This

estimate is communicated to the transmitter through a feedback channel and is used for

precoding packet i. The true channel during the transmission of packet i, Hi, is estimated

at the receiver as H̄i. Thus, in general, the channel estimate used at the transmitter for

precoding packet i, H̄i−1, suffers from both estimation errors and errors due to channel

time-variations (other potential error sources are quantization errors and feedback channel

errors - the following analysis can easily incorporate quantization errors, while the same

does not happen for the feedback channel errors). On the other hand, the channel estimate

at the receiver for packet i, H̄i, suffers only from estimation errors.

In order to assess the associated performance degradation, we adopt the following sta-

tistical models for the channel inaccuracies.

1. Channel estimation errors: During each packet, we use training and estimate the

channel using the maximum likelihood (ML) method, i.e., we assume that the channel

is constant but unknown. The nt ×Ntr training block for packet i, Si, is multiplexed

with the precoded information vectors (for example, it may be at the start of the

packet) but is not precoded (we note that Si may be the same for all i). If Yi

denotes the channel output corresponding to Si, then the ML estimate of Hi is [28, p.

174]

H̄i = YiSH
i

(
SiSH

i

)−1
. (3.12)

The channel estimation error is defined as

∆Hest,i
4
= H̄i −Hi. (3.13)

Optimal channel estimates are obtained for semi-unitary training matrices, i.e.,

SiSH
i = σ2

xNtrInt , and the optimal channel estimation error covariance matrix is [28,

p. 175]

Σest
4
= E [

vec(∆Hest,i)vecH(∆Hest,i)
]

=
σ2

w

σ2
xNtr

Intnr . (3.14)

We note that channel estimation errors associated with different packets are indepen-

dent due to the assumed noise independence.
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2. Channel time-variations: We adopt a commonly used statistical model describing the

time evolution of the channel (the model is used only for analysis purposes and is not

exploited during channel estimation). We denote with τ the time difference between

two successive packets. We assume that {Hi} is a stationary matrix random process

where, for all i, the elements of Hi are unit variance i.i.d. circular Gaussian random

variables, i.e.,

vec(Hi−1), vec(Hi) ∼ CN (0, Intnr).

We assume that the channel coefficients are time-varying according to Jakes’ model,

with common maximum Doppler frequency fd. Thus, Hi−1 and Hi can be modeled

as jointly Gaussian with cross-correlation [3, p. 93]

E [
vec(Hi)vecH(Hi−1)

]
= ρτIntnr (3.15)

where ρτ is the normalized correlation coefficient specified by the Jakes model, i.e.,

ρτ = J0(2πfdτ), with J0(·) the zeroth-order Bessel function of the first kind. If we

define the channel error due to time-variations as

∆Htv,i
4
= Hi −Hi−1 (3.16)

then the associated error covariance matrix is independent of i and is given by

Σtv
4
= E [

vec(∆Htv,i)vecH(∆Htv,i)
]

= 2 (1− ρτ )Intnr . (3.17)

Finally, we note that it is natural to assume that the errors due to channel time-variations

are independent of the channel estimation errors because they are originating from indepen-

dent phenomena, i.e., the first from the random channel evolution in time and the second

from the additive channel noise.

In the sequel, for notational convenience, we neglect index i. We denote with H the true

channel, with Ĥ the channel estimate at the transmitter, and with H̃ the channel estimate

at the receiver. We define the mismatch at the transmitter and the receiver as

∆HTx
4
= Ĥ−H, ∆HRx

4
= H̃−H. (3.18)

It can be easily shown that ∆HTx and ∆HRx are zero mean with covariance matrices

E [
vec(∆HTx)vecH(∆HTx)

]
= Σest + Σtv (3.19)

and

E [
vec(∆HRx)vecH(∆HRx)

]
= Σest (3.20)
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respectively. Furthermore, ∆HRx and ∆HTx are independent.

We close this subsection by mentioning that ζ = σ2
w/σ2

x is also required for the computa-

tion of the filters at both the transmitter and the receiver. We assume that σ2
x = 2M2/12 is

known at both sides and σ2
w is estimated at the receiver (for more details we refer to [28, Sec.

9.4]); then, the estimate is sent to the transmitter through a feedback channel. It turns out

that the variance of the noise variance estimation error is O(σ4
w) and thus, for sufficiently

high SNR, the error in ζ is negligible compared with the channel estimation error. Thus,

we assume that ζ is perfectly known.

3.2.4 MIMO-TH: the mismatched approach

In this subsection, we follow the mismatched approach and compute the MIMO-TH filters

using the channel estimates Ĥ and H̃ as if they were the true channel H. The transmitter,

based on (3.6), computes and uses

Ĉ = ĜR̂ (3.21)

where R̂HR̂ = ĤHĤ + ζInt and Ĝ = diag(r̂−1
11 , . . . , r̂−1

ntnt
). We note that since the receiver

knows Ĥ, it can compute and use Ĉ.

Given that the transmitter uses Ĉ, the input estimation error becomes

ê = Vŷ − Ĉx̂ (3.22)

where x̂ is the channel input produced by the feedback filter Ĉ and ŷ = Hx̂ + w. In

order to compute the “optimal” filter at the receiver, we follow steps analogous to those of

subsection 3.2.2. Then, it can be shown that the filter that minimizes E [‖ê‖2
2

]
is

V̂ = ĈHH(HHH + ζInr)
−1. (3.23)

The best the receiver can do is to use its current channel estimate H̃ as if it were H and

compute1

ˆ̃V = ĈH̃H(H̃H̃H + ζInr)
−1. (3.24)

Using (3.21) and (3.24) in (3.4), we obtain that the MSE achieved by the mismatched

approach is

mse(Ĉ, ˆ̃V) = σ2
xtr

( ˆ̃V(HHH + ζInr)
ˆ̃VH

)

− 2σ2
xRe {tr( ˆ̃VHĈH)}+ σ2

xtr(ĈĈH).
(3.25)

1It can be proved that if the receiver uses Ĥ instead of H̃, then the performance degrades dramatically.
The proof can be made available by the authors upon request.
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The EMSE is defined as

EMSE(Ĉ, ˆ̃V)
4
= E

[
mse

(
Ĉ, ˆ̃V

)−mse
(
Co,Vo

)]
(3.26)

where the expectation is with respect to the channel uncertainties. Our main task in the

sequel is to quantify EMSE(Ĉ, ˆ̃V).

3.3 EMSE - Second-order analysis

In this section, we develop a second-order approximation to EMSE(Ĉ, ˆ̃V), with respect to

channel uncertainties.

We start by considering two unrealistic and, thus, seemingly, useless cases. Their use-

fulness will become evident shortly.

1. Channel uncertainties only at the transmitter: We assume that the transmitter pos-

sesses the channel estimate Ĥ while the receiver has perfect CSI. Thus, the transmit-

ter and the receiver use filters Ĉ and V̂, defined in (3.21) and (3.23), respectively.

Substituting these values into (3.4), we obtain that the associated MSE is

MSE(Ĉ)
4
= mse(Ĉ, V̂)

= σ2
wtr

(
Ĉ(HHH + ζInt)

−1ĈH
)

.
(3.27)

The corresponding EMSE is defined as

EMSE(Ĉ)
4
= E

[
MSE

(
Ĉ

)−MSE
(
Co

)]
. (3.28)

2. Channel uncertainties only at the receiver: We assume that the transmitter has perfect

CSI and the receiver possesses the channel estimate H̃. Thus, the transmitter uses Co

defined in (3.6), while the receive filter, denoted as Ṽ, is computed using the optimal

transmit filter Co and the channel estimate H̃, as

Ṽ = CoH̃H(H̃H̃H + ζInr)
−1. (3.29)

Substituting (3.6) and (3.29) into (3.4), we obtain that the associated MSE is

MSEo(Ṽ)
4
= mse(Co, Ṽ)

= σ2
xtr

(
Ṽ(HHH + ζInr)Ṽ

H
)

− 2σ2
xRe {tr(ṼHCH

o )}+ σ2
xtr(CoCH

o ).

(3.30)
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The corresponding EMSE is defined as

EMSE(Ṽ)
4
= E

[
MSEo

(
Ṽ

)−MSEo

(
Vo

)]
. (3.31)

The next result shows that EMSE(Ĉ, ˆ̃V) can be decomposed into two terms that correspond

to these unrealistic cases.

Proposition 1. The EMSE induced by channel inaccuracies at both the transmitter

and the receiver can be approximated as

EMSE(Ĉ, ˆ̃V) ≈ EMSE(Ĉ) + EMSE(Ṽ). (3.32)

Proof: The proof is provided in Appendix 3A and is based on the fact that the channel

errors ∆HTx and ∆HRx are zero-mean and independent. 2

In the sequel, we develop second-order approximations to EMSE(Ĉ) and EMSE(Ṽ).

3.3.1 Channel uncertainties only at the transmitter

Using a Taylor expansion of the function MSE(C) in (3.27) around Co, we obtain

MSE(Ĉ) = MSE(Co) + tr
(
∆CMSE′′(Co)∆CH

)
(3.33)

where ∆C
4
= Ĉ−Co and MSE′′(Co) is the second derivative of MSE(C) evaluated at Co

2.

It can be shown that [10]

MSE′′(Co) = σ2
w (HHH + ζInt)

−1. (3.34)

Using (3.28), (3.33), and (3.34), we obtain

EMSE(Ĉ) = E [
tr

(
∆CMSE′′(Co)∆CH

)]

= σ2
w E

[
tr

(
∆CA−1∆CH

)] (3.35)

where

A
4
= HHH + ζInt . (3.36)

The following lemma gives a second-order approximation to EMSE(Ĉ).

Lemma 1. A second-order approximation to EMSE(Ĉ) is given by

EMSE(Ĉ) ≈
3∑

i=1

Bi (3.37)

2The first derivative of MSE(C) at Co vanishes because Co is the minimizer of MSE(C).
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where terms Bi are defined as

B1
4
=

(
α +

σ2
w

σ2
xNtr

)
σ2

wtr
((

Int ⊗G2
)
LTL

(
R−TR−∗ ⊗R−HHHHR−1

)
LTL

)
(3.38)

B2
4
= −2

(
α +

σ2
w

σ2
xNtr

)
σ2

wtr
(
(Int ⊗G2)P(R−TR−∗ ⊗R−HHHHR−1)P

)
(3.39)

B3
4
=

(
α +

σ2
w

σ2
xNtr

)
σ2

wtr
(
(Int ⊗G2)LTL(R−THTH∗R−∗ ⊗R−HR−1)LTL

)
. (3.40)

In these expressions, L is the elimination matrix and P
4
= LTLKLTL, where K is the

commutation matrix. The scalar α is defined as α
4
= 2 (1− ρτ ) (see (3.17)).

Proof: The proof is provided in Appendix 3B. 2

3.3.2 Channel uncertainties only at the receiver

Using a Taylor expansion of the function MSEo(V) in (3.30) around Vo, we obtain

MSEo(Ṽ) = MSEo(Vo) + tr
(
∆VMSE′′o(Vo)∆VH

)
(3.41)

where ∆V
4
= Ṽ −Vo, and MSE′′o(Vo) is the second derivative of MSEo(V) evaluated at

Vo
3. It can be shown that [10]

MSE′′o(Vo) = σ2
x (HHH + ζInr). (3.42)

Using (3.31), (3.30), and (3.42), we obtain

EMSE(Ṽ) = E [
tr

(
∆V MSE′′o(Vo)∆VH

)]

= σ2
x E

[
tr

(
∆VB∆VH

)] (3.43)

where

B
4
= HHH + ζInr . (3.44)

The following lemma gives a second-order approximation to EMSE(Ṽ).

Lemma 2. A second-order approximation to the EMSE(Ṽ) is given by

EMSE(Ṽ) ≈ T1 + T2 (3.45)

where

T1
4
=

σ2
w

Ntr
tr

(
HTB−TH∗) tr

(
VoVH

o

)
(3.46)

3The first derivative of MSEo(V) at Vo is zero because Vo minimizes the function MSEo(V).
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and

T2
4
=

σ2
w

Ntr
tr

(
(Co −VoH)H(Co −VoH)

)
tr

(
B−T

)
. (3.47)

Proof: The proof is provided in Appendix 3C. 2

Substituting (3.37) and (3.45) into (3.32), we obtain a second-order approximation

to the EMSE induced by channel uncertainties at both the transmitter and the receiver.

Admittedly, this approximation is complicated and difficult to interpret. In the sequel, we

shall develop simple and insightful high-SNR expressions.

3.4 EMSE - High-SNR approximations

In this section, we focus on the high-SNR regime and we derive a simple upper bound to

EMSE(Ĉ) and a simple approximation to EMSE(Ṽ). Putting these expressions together,

we obtain a simple high-SNR EMSE upper bound for the mismatched MIMO-TH precoder.

Finally, we average over the channel statistics and obtain a simple high-SNR upper bound

for the expected value of the EMSE to MMSE ratio.

High-SNR regime means “small” σ2
w. Our results will be derived either by ignoring

O(σ2
w) terms compared with O(1) terms or by ignoring O(σ4

w) terms compared with O(σ2
w)

terms. We proceed by presenting some high-SNR approximations that will be useful in the

sequel.

Using the definition of matrix R in (3.7), it can be shown that for high SNR

R−HHHHR−1 u Int
(3.48)

and

tr(R−TR−∗) u tr((HHH)−1). (3.49)

Furthermore (the proof is provided in Appendix 3D)

tr
(
VoVH

o

)
u

1
σ2

w

MMSE. (3.50)

Using the matrix inversion lemma [9], it can be shown that

HH(HHH + ζInr)
−1 = (HHH + ζInt)

−1HH . (3.51)

Then, using (3.44), (3.51) and the high-SNR assumption, we get

tr
(
HTB−TH∗) = tr

(
HT (H∗HT + ζInr)

−1H∗)

= tr
(
(HTH∗ + ζInt)

−1HTH∗) u tr (Int) .
(3.52)
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Finally, using (3.9) and (3.51), we can write matrix Co −VoH as

Co −VoH = Co

(
Int −HH(HHH + ζInr)

−1H
)

= Co

(
Int − (HHH + ζInt)

−1HHH
) (3.53)

and for high SNR

Co −VoH u Ont . (3.54)

3.4.1 High SNR - channel uncertainties only at the transmitter

Lemma 3: In the high-SNR regime, the following approximate inequality holds

EMSE(Ĉ) / 2 (1− ρτ ) (nt − 1)tr
(
(HHH)−1

)
MMSE. (3.55)

Proof: Using (3.48) in (3.38) and ignoring the term that involves σ4
w, we obtain

B1 u α σ2
wtr

((
Int ⊗G2

)
LTL

(
R−TR−∗ ⊗ Int

)
LTL

)

(a)

≤ α σ2
w tr

(
(Int ⊗G2)(R−TR−∗ ⊗ Int)

)

(3)
= α σ2

w tr(R−TR−∗ ⊗G2)

(4)
= α σ2

w tr(R−TR−∗) tr(G2)

(3.56)

where at point (a) we used the structure of the elimination and the commutation matrices

and the fact that matrices G2 and R−TR−∗ have positive diagonal elements.

Using (3.48) in (3.39) and ignoring the term that involves σ4
w, we obtain

B2 u −2α σ2
wtr

(
(Int ⊗G2)P(R−TR−∗ ⊗ Int)P

)

= −2α σ2
w tr

(
G2R−TR−∗) .

(3.57)

The proof of the last equality is provided in Appendix 3E for the nr × 2 case (the general-

ization is easy).

Finally, using (3.48) in (3.40) and ignoring the term involving σ4
w, we obtain

B3 u α σ2
wtr

(
(Int ⊗G2)LTL(Int ⊗R−HR−1)LTL

)

(b)

≤ α σ2
w tr

(
(Int ⊗G2)(Int ⊗R−HR−1)

)

(3)
= α σ2

w tr(Int ⊗G2R−HR−1)

= nt α σ2
w tr(G2R−HR−1)

= nt α σ2
w tr(G2R−TR−∗)

(3.58)
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where at point (b) we used the structure of the elimination and the commutation matrices

and the fact that matrices G2 and R−HR−1 have positive diagonal elements.

Combining expressions (3.37) and (3.56)–(3.58), we obtain

EMSE(Ĉ) / α σ2
w tr(R−TR−∗) tr(G2)

+ (nt − 2) α σ2
w tr(G2R−TR−∗)

(6)

≤ α σ2
w (nt − 1) tr(R−TR−∗) tr(G2).

(3.59)

Using (3.59), (3.11) and (3.49), we conclude with the following bound

EMSE(Ĉ) / α (nt − 1)tr((HHH)−1)MMSE. (3.60)

Finally, recalling the definition of α as α := 2 (1− ρτ ), we obtain (3.55) to prove Lemma 3.

2

3.4.2 High SNR - channel uncertainties only at the receiver

Lemma 4: In the high-SNR regime, the following approximation holds

EMSE(Ṽ) u
nt

Ntr
MMSE. (3.61)

Proof: Starting with T1 in (3.46) and using (3.50) and (3.52), we obtain

T1 u
σ2

w

Ntr
tr

(
VoVH

o

)
tr (Int)

u
nt

Ntr
MMSE.

(3.62)

Using (3.54) in (3.47) we get

T2 u 0. (3.63)

We conclude that, for sufficiently high SNR, term T2 is negligible compared with T1.

Combining expressions (3.45), (3.62) and (3.63), we obtain (3.61) to prove Lemma 4. 2

3.4.3 High SNR - channel uncertainties at both the transmitter and the

receiver

Proposition 2: The high-SNR MIMO-TH EMSE induced by channel uncertainties at

both the transmitter and the receiver is upper bounded as

EMSE(Ĉ, ˆ̃V) / 2 (1− ρτ ) (nt − 1)tr((HHH)−1)MMSE

+
nt

Ntr
MMSE.

(3.64)
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Proof: The proof requires only the substitution of (3.55) and (3.61) into (3.32). 2

We observe that the EMSE is upper bounded by an expression proportional to the

MMSE. The proportionality factor is determined by the system parameters nt and Ntr,

the channel correlation coefficient ρτ and the conditioning of the channel matrix through

tr((HHH)−1).

In the simulations section, we shall observe that this high-SNR bound is in many cases

tight because the EMSE due to the channel inaccuracies only at the receiver dominates the

EMSE due to channel inaccuracies only at the transmitter.

3.4.4 High SNR - averaging over the channels

In this subsection, we compute the average, over the channels, of the EMSE to MMSE

ratio.

Proposition 3: Taking expectation with respect to the channels in (3.64), we obtain

the following bound for the average EMSE to MMSE ratio, for nr > nt,

E
[

EMSE(Ĉ, ˆ̃V)
MMSE

]
/ 2 (1− ρτ )

nt(nt − 1)
nr − nt

+
nt

Ntr
. (3.65)

Proof: Bound (3.64) can be written as

EMSE(Ĉ, ˆ̃V)
MMSE

/ 2 (1− ρτ ) (nt − 1)tr((HHH)−1) +
nt

Ntr
. (3.66)

If we take expectation with respect to the channel, we get

E
[

EMSE(Ĉ, ˆ̃V)
MMSE

]
/ 2 (1− ρτ ) (nt − 1)E [

tr((HHH)−1)
]
+

nt

Ntr
. (3.67)

It can be shown that if the elements of H are zero-mean, unit variance i.i.d. circular

complex Gaussian random variables and nr > nt, then [19]

E [
tr((HHH)−1)

]
=

nt

nr − nt
. (3.68)

Substituting (3.68) in (3.67), we prove (3.65). 2

We observe that the average EMSE to MMSE ratio is upper bounded by an expression

which depends on the system parameters nt, nr and Ntr, and the channel correlation

coefficient ρτ .
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Table II

Elements of channel matrix H

0.2877 + 0.2097*j 1.5537 - 1.0653*j 0.3450 - 0.5177*j -0.8714 - 0.2760*j

-0.2433 - 0.5179*j -0.8435 - 0.2245*j 0.1448 + 1.0146*j -0.2163 - 0.5226*j

-1.0170 - 0.5243*j 0.5028 - 0.4757*j -1.1749 + 0.5322*j 1.0848 + 0.5731*j

-0.7636 - 0.6970*j -0.6756 + 0.3384*j 0.4666 - 0.0437*j 0.2691 + 1.0737*j

0.4901 + 0.0910*j 0.0804 + 0.0937*j -0.5181 - 0.7709*j -0.4012 - 0.0189*j

-0.5236 + 0.9038*j 0.2247 + 0.2181*j 0.6343 - 0.8332*j -0.5841 + 0.1868*j

3.5 Simulation Results

In the first part of our experiments, we illustrate Propositions 1 and 2 using a specific

channel realization, by taking averages over the channel uncertainties. More specifically,

we consider a system with nt = 4 transmit antennas and nr = 6 receive antennas and

channel matrix H with elements given in Table II4. The noise is spatially and temporally

white, circularly symmetric complex Gaussian with variance σ2
w. The input symbols are

i.i.d., drawn from a 4-QAM constellation. We assume that the training block consists of

Ntr = 10 columns. We set the channel correlation coefficient equal to ρτ = 0.99. We define

the SNR as the ratio of the total receive power to the total noise power

SNR
4
=
Ex

[
tr(HxxHHH)

]

Ew [tr(wwH)]
=

σ2
x‖H‖2

F

nrσ2
w

. (3.69)

In Fig. 3.2, we plot the MMSE (3.10), the average of the MSEs for the case of channel

inaccuracies only at the transmitter (the average is over ∆HTx), the average of the MSEs

for the case of channel inaccuracies only at the receiver (the average is over ∆HRx), and

finally the average of the MSEs for inaccuracies at both the transmitter and the receiver.

We observe that the EMSE component due to ∆HRx is significantly larger than that due

to ∆HTx. This observation is in agreement with our theoretical results because the high-

SNR approximations (3.55) and (3.61) indicate that both EMSEs are proportional to the

MMSE, with the proportionality factor in (3.61) being larger than the one in (3.55), as

long as the channel matrix, H, is well conditioned and the channel correlation coefficient,

ρτ , is relatively large. An explanation of this phenomenon might be the fact that in the
4Analogous results have been obtained in extended simulations with other channel realizations.
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Fig. 3.2. MMSE using the true channel (‘-o’), expectation of the MSEs for channel inac-
curacies only at transmitter (‘¤’), expectation of the MSEs for channel inaccuracies only
at the receiver (‘¢’) and expectation of the MSEs for channel inaccuracies at both the
transmitter and the receiver (‘-*’).

first case the receiver is optimized by taking into account the channel uncertainties at the

transmitter while something analogous does not happen in the latter case.

In Fig. 3.3, we present the experimentally computed EMSE, the theoretical second-

order approximation as the sum of (3.37) and (3.45), and the EMSE bound in (3.64). We

observe that the experimental and theoretical EMSE values practically coincide for SNR

higher than 5 dB. Also, the EMSE bound is very close to the true EMSE for SNR higher

than 15 dB.

In the second part of our experiments, we take averages over the channel matrices by

assuming that the elements of H are i.i.d. CN (0, 1). The SNR in this case is defined as

SNR
4
=
Ex,H

[
tr(HxxHHH)

]

Ew [tr(wwH)]
=

σ2
x nt

σ2
w

. (3.70)

In Fig. 3.4, we plot the experimentally computed EMSE and the theoretical second-

order approximation, i.e., the sum of (3.37) and (3.45), averaged over different channel

realizations, for the parameters defined above. We observe that the two curves coincide

for SNR higher than 7 dB, meaning that our analysis holds for this case too, although it is

difficult to give a simple expression for the theoretical second-order approximation.



3.5 Simulation Results 39

0 5 10 15 20 25 30 35 40

10
−3

10
−2

10
−1

10
0

10
1

SNR in dB

E
xc

es
s 

M
S

E

 

 
Experimental
Theoretical
EMSE Bound

Fig. 3.3. Experimentally computed EMSE, theoretical second-order approximation (sum
of (3.37) and (3.45)), and EMSE bound in (3.64).
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Fig. 3.4. Experimentally computed EMSE and theoretical second-order approximation
(sum of (3.37) and (3.45)) averaged over different channel realizations.
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Fig. 3.5. Experimentally computed averaged ratio
EMSE
MMSE

and the corresponding bound in

(3.65).

In Fig. 3.5, we plot the experimental average ratio EMSE
MMSE and the simple bound in

(3.65). We observe that the bound in (3.65) is very close to the true average EMSE to

MMSE ratio, which attains a constant value for sufficiently high SNR.

3.6 Conclusion

We considered the sensitivity of the mismatched MIMO-TH with respect to channel estima-

tion errors and channel time-variations. We developed a second-order EMSE approximation

which, unfortunately, was difficult to interpret. We focused on the high-SNR regime and

derived a simple and informative EMSE upper bound that uncovers the factors that de-

termine the sensitivity of the MIMO-TH precoder with respect to channel uncertainties at

both the transmitter and the receiver. Numerical experiments were in agreement with our

theoretical analysis.
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Appendix 3A

Proof of Proposition 1: The aim is to compute the EMSE assuming channel inaccuracies

at both the transmitter and the receiver. The matrix filters used in this case are given by

(3.21) and (3.24).

We have already defined ∆C and ∆V, as ∆C
4
= Ĉ−Co and ∆V

4
= Ṽ−Vo, respectively.

We have also mentioned (and prove in Appendices II, III) that ∆C depends only on ∆HTx,

while ∆V depends only on ∆HRx. We recall that ∆HTx and ∆HRx are independent.

In order to compute the EMSE defined in (3.26), we define ∆V̌
4
= ˆ̃V − Vo and use

(3.24) and (3.29). Then

∆V̌
4
= ˆ̃V −Vo

= (Co + ∆C)H̃H(H̃H̃H + ζInr)
−1 −Vo

= Ṽ −Vo + ∆CH̃H(H̃H̃H + ζInr)
−1

= ∆V + ∆CH̃H(H̃H̃H + ζInr)
−1

︸ ︷︷ ︸
X

.

(3.71)

We observe that ∆V̌ depends on both ∆HTx and ∆HRx, through ∆C and ∆V, respectively.

If we write term X using (11) and then keep only the first-order terms, we get

X = HHB−1 −HHB−1(H∆HH
Rx + ∆HRxHH

︸ ︷︷ ︸
∆B

)B−1

+ ∆HH
Rx B−1 + O(‖∆HRx‖2)

' HHB−1 −HHB−1∆BB−1 + ∆HH
Rx B−1

(3.72)

where matrix B is defined in (3.44). Combining (3.71) and (3.72), we get

∆V̌ ' ∆V + ∆CHHB−1. (3.73)

Next, we return to the EMSE definition in (3.26). We first substitute Ĉ and ˆ̃V with

Ĉ = Co +∆C and ˆ̃V = ∆V̌+Vo, respectively, in (3.25). Then, using the definition (3.26)

and keeping only the second-order terms, we get

EMSE(Ĉ, ˆ̃V) = σ2
xE

[
tr(∆V̌B∆V̌H)

]
︸ ︷︷ ︸

t1

−σ2
xE

[
tr(∆V̌H∆CH)

]
︸ ︷︷ ︸

t2

− σ2
xE

[
tr(∆CHH∆V̌)

]
︸ ︷︷ ︸

t3

+σ2
xE

[
tr(∆C∆CH)

]
.

(3.74)
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Using (3.73), and the fact that ∆HTx and ∆HRx are zero mean and independent (which

implies independence between ∆C and ∆V), terms ti become

t1 ≈ σ2
x E

[
tr(∆VB∆VH)

]
+ σ2

x E
[
tr(∆CHHB−1H∆CH)

]

(3.43)
= EMSE(Ṽ) + σ2

x E
[
tr(∆CHHB−1H∆CH)

] (3.75)

and

t2 = t3 ≈ σ2
x E

[
tr(∆CHHB−1H∆CH)

]
. (3.76)

Finally, we combine (3.74)–(3.76) and use (3.51) and (3.35) to get

EMSE(Ĉ, ˆ̃V) ≈ EMSE(Ĉ) + EMSE(Ṽ).

Appendix 3B

Proof of Lemma 1: The aim is to develop a second-order approximation to EMSE(Ĉ).

Towards this purpose, we must develop a first-order approximation to ∆C with respect to

∆HTx. Using (3.21) and defining ∆G
4
= Ĝ−G and ∆R

4
= R̂−R, we obtain

Ĉ = (G + ∆G)(R + ∆R) = C + G∆R + ∆GR + ∆G∆R.

Thus, a first-order approximation to ∆C, with respect to ∆R and ∆G, is

∆C ' G∆R + ∆GR. (3.77)

Next, we derive first-order approximations to ∆R and ∆G, with respect to ∆HTx. We

start with ∆R. We remind that RHR = A and

R̂HR̂ = ĤHĤ + ζInt ' A +
(
HH∆HTx + ∆HH

TxH
)

︸ ︷︷ ︸
∆A

.

Using a result for the Cholesky factorization of a perturbed positive definite matrix [27],

we obtain

R̂
4
= R + ∆R ' R + FLR

where FL is the lower triangular part of matrix F
4
= R−H∆AR−1, with diagonal elements

equal to half the diagonal elements of F. Thus,

∆R ' FLR. (3.78)
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For term ∆G, we have

∆G
4
= Ĝ−G

= diag
(

1
r̂11

, · · · ,
1

r̂ntnt

)
− diag

(
1

r11
, · · · ,

1
rntnt

)

(a)' diag
(

1
r11

− ∆r11

r2
11

, · · · ,
1

rntnt

− ∆rntnt

r2
ntnt

)

− diag
(

1
r11

, · · · ,
1

rntnt

)

where at point (a) we used the first-order approximation

1
r̂ii

' 1
rii
− ∆rii

r2
ii

.

Thus,

∆G ' −diag
(

∆r11

r2
11

, . . . ,
∆rntnt

r2
ntnt

)
. (3.79)

Finally, using (3.78), (3.79) and the definition of matrix G in (3.8), we get

∆G ' −diag (diag (FL)) diag (diag (R))−1

= −1
2

diag (diag (F)) G.
(3.80)

Up to this point, we have expressed terms ∆R and ∆G as functions of the matrix F, which,

in turn, is a linear function of ∆HTx. Next, we return to (3.35) and using (1) we write the

EMSE as

EMSE(Ĉ) = σ2
w tr

(
(A−T ⊗ Int)E [vec(∆C)vecH(∆C)]

)
. (3.81)

Using (3.77), (3.78) and (3.80), and defining DFL

4
= diag(diag(FL)), we can express term

vec(∆C) as

vec(∆C) ' vec(G∆R) + vec(∆GR)

' vec(GFLR) + vec(−DFL
GR)

(2)
= (RT ⊗G)vec(FL)− (RTGT ⊗ Int)vec(DFL

)

(∗)
= (RT ⊗G)vec(FL)− (RTGT ⊗ Int)vec(DFL

)

± (RT ⊗G)vec(DFL
)

= (RT ⊗G)(vec(FL) + vec(DFL
))

− ((RTGT ⊗ Int) + (RT ⊗G))vec(DFL
)

= (RT ⊗G)vec(Fl)

− ((RTGT ⊗ Int) + (RT ⊗G))vec(DFL
)

(3.82)
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where Fl is the lower triangular part of F. At point (*) we add and subtract the same term

in order to simplify our calculations.

Next, we express vec(Fl) and vec(DFL
) in terms of vec(∆HTx). Using (2), (3) and (9),

we can write

vec(Fl) = LT vech(Fl) = LT vech(F)

= LT vech(R−H∆AR−1)

(9)
= LTL(R−T ⊗R−H)vec(∆A)

= LTL(R−T ⊗R−H)vec(HH∆HTx + ∆HH
TxH)

(2)
= LTL(R−T ⊗R−H)(Int ⊗HH)vec(∆HTx)

+ LTL(R−T ⊗R−H)(HT ⊗ Int)vec(∆HH
Tx)

(3)
= LTL(R−T ⊗R−HHH)vec(∆HTx)

+ LTL(R−THT ⊗R−H)vec(∆HH
Tx).

(3.83)

We continue with vec(DFL
). Using (2), (3), (10) and defining P

4
= LTLKLTL, we obtain

vec(DFL
)

(10)
=

1
2

LTLKLTLvec(F) =
1
2

P vec(R−H∆AR−1)

(2)
=

1
2

P (R−T ⊗R−H)vec(HH∆HTx + ∆HH
TxH)

=
1
2

P (R−T ⊗R−H)(Int ⊗HH)vec(∆HTx)

+
1
2

P (R−T ⊗R−H)(HT ⊗ Int)vec(∆HH
Tx)

(3)
=

1
2

P (R−T ⊗R−HHH)vec(∆HTx)

+
1
2

P (R−THT ⊗R−H)vec(∆HH
Tx).

(3.84)

We return to (3.82), and using (3.83), (3.84) and (8), after some calculations, we obtain

vec(∆C) ' M1vec(∆HTx) + M2vec(∆HH
Tx)

= M1vec(∆HTx) + M2Kvec(∆H∗
Tx)

(3.85)

where

M1
4
= (RT ⊗G)LTL(R−T ⊗R−HHH)

− 1
2

(
(RTGT ⊗ Int) + (RT ⊗G)

)
P(R−T ⊗R−HHH)

(3.86)

and

M2
4
= (RT ⊗G)LTL(R−THT ⊗R−H)

− 1
2

(
(RTGT ⊗ Int) + (RT ⊗G)

)
P(R−THT ⊗R−H).

(3.87)
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Using the circular symmetry of ∆HTx, (3.19), (3.17), (3.14) and (3.81), we obtain

EMSE(Ĉ) ≈ σ2
w tr

((
A−T ⊗ Int

)
M1(Σest + Σtv)MH

1

)

+ σ2
w tr

((
A−T ⊗ Int

)
M2K(Σest + Σtv)∗KHMH

2

)

=
(

α +
σ2

w

σ2
xNtr

)
σ2

w tr
((

A−T ⊗ Int

)
M1MH

1

)

+
(

α +
σ2

w

σ2
xNtr

)
σ2

w tr
((

A−T ⊗ Int

)
M2MH

2

)

(3.88)

where we also defined the scalar α, as α
4
= 2 (1 − ρτ ), and used that KKH = I. Using

(3.86) and (3.87) and after some calculations, it can be shown that the second-order EMSE

approximation (3.88) can be expressed as

EMSE(Ĉ) ≈
3∑

i=1

Bi.

where terms Bi are given in (3.38)–(3.40). During the calculations, we also used that, from

the definition of matrices R and A in (3.7) and (3.36), respectively, we get

R∗A−TRT = Int . (3.89)

Appendix 3C

Proof of Lemma 2: The aim is to develop a second-order approximation to EMSE(Ṽ). In

order to compute the EMSE defined in (3.43), we must develop a first-order approximation

to ∆V with respect to ∆HRx, which is defined as ∆HRx
4
= H̃−H. We can write Ṽ from

(3.29) as

Ṽ = Co(HH + ∆HH
Rx)

(
HHH + ζInr + H∆HH

Rx + ∆HRxHH

︸ ︷︷ ︸
∆B

+O(‖∆HRx‖2)
)−1

. (3.90)

Using (11) and the definition of Vo in (3.9), we obtain

Ṽ ' Vo −
(
Vo∆B−Co∆HH

Rx

)
B−1.

Thus, a first-order approximation to ∆V is

∆V ' − (
Vo∆B−Co∆HH

Rx

)
︸ ︷︷ ︸

K∆

B−1 (3.91)
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and a second-order approximation of the EMSE is given by

EMSE(Ṽ) = σ2
x E

[
tr(∆VB∆VH)

]

(3.91)≈ σ2
x E

[
tr(K∆B−1KH

∆)
]

= σ2
x E

[
tr(IntK∆B−1KH

∆)
]

(1)
= σ2

x E
[
vecH(K∆)

(
B−T ⊗ Int

)
vec(K∆)

]

= σ2
x tr

((
B−T ⊗ Int

) E [
vec(K∆)vecH(K∆)

])
.

(3.92)

From the definitions of K∆ in (3.91), ∆B in (3.90), and (2), we obtain

vec(K∆) = −vec
(
Vo∆HRxHH

)
+ vec

(
(Co −VoH)∆HH

Rx

)

= −(H∗ ⊗Vo)︸ ︷︷ ︸
U1

vec(∆HRx)

+
(
Inr ⊗ (Co −VoH)

)
︸ ︷︷ ︸

U2

vec(∆HH
Rx).

(3.93)

Using (8), we get

vec(K∆) = U1vec(∆HRx) + U2Kvec(∆H∗
Rx).

Using the circular symmetry of ∆HRx and (3.20), we obtain

EMSE(Ṽ) ≈ σ2
x tr

(
(B−T ⊗ Int)U1 Σest UH

1

)

+ σ2
x tr

(
(B−T ⊗ Int)U2KΣ∗

estK
HUH

2

)
.

Finally, using (3.14) we obtain the expression

EMSE(Ṽ) ≈ T1 + T2

where

T1
4
= σ2

x tr
(
(B−T ⊗ Int)U1 Σest UH

1

)

=
σ2

w

Ntr
tr

(
UH

1 (B−T ⊗ Int)U1

)

(3.93)
=

σ2
w

Ntr
tr

(
HTB−TH∗ ⊗VoVH

o

)

(4)
=

σ2
w

Ntr
tr

(
HTB−TH∗) tr

(
VoVH

o

)
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and

T2
4
= σ2

x tr
(
(B−T ⊗ Int)U2 KΣ∗

estK
H UH

2

)

=
σ2

w

Ntr
tr

(
KHUH

2 (B−T ⊗ Int)U2 K
)

(3.93)
=

σ2
w

Ntr
tr

(
KH

(
B−T ⊗ (Co −VoH)H(Co −VoH)

)
K

)

(5)
=

σ2
w

Ntr
tr

((
(Co −VoH)H(Co −VoH)⊗B−T

))

(4)
=

σ2
w

Ntr
tr

(
(Co −VoH)H(Co −VoH)

)
tr

(
B−T

)
.

Appendix 3D

In this Appendix, we simplify term tr
(
VoVH

o

)
in the high-SNR regime (i.e., ζ → 0). Using

(3.6), (3.7), (3.9), and (3.51), we write matrix Vo as

Vo = GR−HHH .

Then, using (3.48), we get

tr
(
VoVH

o

)
= tr

(
GR−HHHHR−1GH

)

u tr
(
GGH

)
.

Finally, using (3.11), we get

tr
(
VoVH

o

)
u

1
σ2

w

MMSE.

Appendix 3E

In this Appendix, we prove the second equality in (3.57) for the nr × 2 case (i.e., nt = 2).

The aim is to simplify the trace term of the first line of (3.57)

tr
(
(Int ⊗G2)P(R−TR−∗ ⊗ Int)P

)
. (3.94)

For notational simplicity, we define matrices Q and Z, as Q
4
= R−TR−∗ and Z

4
= G2.

We first write the matrices inside the trace operator of (3.94). For the nr × 2 case,

P =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1



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and

I2 ⊗ Z =


 Z O2

O2 Z


 .

For the other Kronecker product we get

Q⊗ I2 =




q11 0 q12 0

0 q11 0 q12

q21 0 q22 0

0 q21 0 q22




.

Then, the product of the matrices inside the trace operator is

(Int ⊗G2)P(R−TR−∗ ⊗ Int)P =




z11q11 0 0 0

0 0 0 0

0 0 0 0

0 0 0 z22q22




and is obvious that

tr
(
(Int ⊗G2)P(R−TR−∗ ⊗ Int)P

)
= tr (ZQ)

= tr
(
G2R−TR−∗) .

(3.95)

Using an analogous procedure, it can be shown that result (3.95) holds for the general

nr × nt case.



Chapter 4

On the training sequence design
for joint channel and CFO
estimation in frequency-selective
single-carrier systems with MMSE
linear equalizers

We consider optimal training sequence design for joint channel and carrier frequency off-

set (CFO) estimation in frequency-selective single-carrier systems with an MMSE linear

equalizer. Performance degradation is due to the fact that a mismatched MMSE linear

equalizer is applied to channel output samples with imperfectly canceled CFO. Our aim in

this work is to uncover the relative importance of these error sources. Toward this end, we

develop asymptotic expressions for the excess mean square error induced by the channel

and CFO estimation errors. We show that, in many cases of high practical importance,

the excess mean square error is approximately proportional to the CFO estimation error

variance, with the proportionality factor being independent of the training sequence. Thus,

in these cases, performance degradation is mainly caused by the imperfectly canceled CFO

and optimal training sequence design for CFO estimation is also highly relevant for joint

channel and CFO estimation.

4.1 Introduction

The receiver of a communication system has to deal with synchronization issues like frame

synchronization, carrier frequency offset (CFO) estimation and correction, symbol-timing

recovery, and channel estimation and equalization. Data-aided (DA) techniques perform
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these tasks using training sequences (TSs). DA techniques decrease the symbol rate but are

commonly used in practice due to their overall good performance. A critical step toward

successful application of DA techniques in practice is optimal TS design.

An important problem that usually arises in packet-based wireless systems is that of

the joint frequency-selective channel and CFO estimation. Optimal TS design for this

problem has been considered in [28], where the optimized cost function was the worst-

case, in terms of channel realization, asymptotic Cramér-Rao bound (CRB). However, all

diagonal elements of the CRB were assigned equal weight, which might not be optimal since

“... presumably channel estimation errors will have a different impact, e.g., on bit-error

rate, than frequency estimation errors” [28].

It seems that the unequal weighting problem cannot be resolved unless one considers spe-

cific receiver structures. Toward this end, Ciblat et al. computed the second-order statistics

(power spectrum) of the training sequence that minimizes, under certain assumptions, the

mean square error achieved by the mismatched MMSE linear equalizer [4]. However, in our

opinion, the cost function appearing in [4, eq. (26)] does not clearly uncover the relative

importance of the channel and CFO estimation errors to the performance degradation of

the MMSE linear equalizer.

Performance degradation is due to the fact that a mismatched MMSE linear equalizer is

applied to channel output samples with imperfectly canceled CFO. Our aim in this chapter is

to uncover the relative importance of these error sources. We assume that training consists

of a block of Ntr consecutive training symbols and compute asymptotic expressions for

the excess MSE induced by the channel and CFO estimation errors. Under the small ideal

MMSE assumption, we derive a simple and informative EMSE approximation which reveals

that

• the placement of the TS at the middle of the transmitted data packet is a good

practice;

• the resulting EMSE is approximately proportional to the CFO estimation error vari-

ance, with the proportionality factor being independent of the TS; thus, optimal TS

design for CFO estimation is also highly relevant for joint channel and CFO estima-

tion.
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4.2 The channel model

We consider the linear baseband-equivalent discrete-time frequency-selective channel de-

scribed by the input-output relation

zn =
L∑

l=0

hlan−l + wn (4.1)

where an and wn denote the channel input and additive channel noise, respectively. The

input samples are i.i.d., zero mean, circular, with variance σ2
a, and the noise samples are

i.i.d., zero-mean, circularly symmetric complex Gaussian, with variance σ2
w. The channel

impulse response is denoted as h
4
= [h0 · · ·hL]T . By stacking (M + 1) consecutive output

samples, we construct the vector zn:n−M
4
= [zn · · · zn−M ]T which can be expressed as

zn:n−M = Han:n−M−L + wn:n−M (4.2)

where the definitions of an:n−M−L and wn:n−M are obvious and H is the (M+1)×(M+L+1)

Toeplitz filtering matrix defined as

H
4
=




h0 · · · hL

. . . . . .

h0 · · · hL


 . (4.3)

If angular CFO ω is present, then the channel output is given by

rn = ejωn
L∑

l=0

hlan−l + wn. (4.4)

If we stack (M + 1) consecutive output samples, we construct the vector rn:n−M
4
=

[rn · · · rn−M ]T which can be expressed as

rn:n−M = Γn:n−M (ω)Han:n−L−M + wn:n−M (4.5)

where Γn:n−M (ω)
4
= diag(ejωn, . . . , ejω(n−M)).

4.3 The MMSE linear equalizer

4.3.1 Channel and CFO estimation

We assume that the Ntr input samples atr
4
= [an1 · · · an2 ]

T , with Ntr
4
= n2 − n1 + 1,

are known at the receiver and used for training purposes. Collecting the channel output

samples that depend only on the training symbols, we obtain

y
4
= rn2:n1+L = Γn2:n1+L(ω)Ah + wn2:n1+L (4.6)
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where A is the (Ntr − L)× (L + 1) Hankel matrix constructed by the training symbols as

A
4
=




an2 · · · an2−L

...
. . .

...

an1+L · · · an1


 .

The joint ML CFO and channel estimates are given by [22]

ω̂ = argmax
ω̃

{yHΓn2:n1+L(ω̃)A(AHA)−1AHΓH
n2:n1+L(ω̃)y} (4.7)

and

ĥ = (AHA)−1AHΓH
n2:n1+L(ω̂)y. (4.8)

We define the CFO and channel estimation errors as ∆ω
4
= ω̂ − ω and ∆h

4
= ĥ − h,

respectively. We assume that Ntr is sufficiently large so that the above ML estimators are

(approximately) unbiased and efficient.1 Thus, ∆ω and ∆h are (approximately) zero mean

with second-order statistics (approximately) equal to those indicated by the finite sample

CRBs. More specifically, if we define K
4
= diag(n2, . . . , n1 + L) and P⊥

R(A) the orthogonal

projector onto the orthogonal complement of the column space of A, then [28]

σ2
∆ω

4
= E

[
(∆ω)2

]
=

1
2

σ2
w

[
tr

(
hHAHKP⊥

R(A)KAh
)]−1

(4.9)

C
4
= E [

∆h∆hH
]

= σ2
w(AHA)−1 + σ2

∆ω(AHA)−1AHKAhhHAHKA(AHA)−1 (4.10)

Ct
4
= E [∆h∆hT ] = −σ2

∆ω(AHA)−1AHKAhhTATKA∗(AHA)−T (4.11)

and

E [∆ω∆h] = j σ2
∆ω(AHA)−1AHKAh. (4.12)

If we define Di
4
= diag(0, 1, . . . , i), then it can be easily shown that

σ2
∆ω =

1
2

σ2
w

[
tr

(
hHAHDNtr−L−1P⊥

R(A)DNtr−L−1Ah
)]−1

(4.13)

which implies that the CFO estimation error variance is independent of the training po-

sitions. However, the same does not apply to the channel estimation error second-order

statistics. This occurs because the channel estimate ĥ in (4.8) is in fact a least-squares

estimate based on the CFO-corrected channel output samples. Its accuracy is determined

by the propagated CFO estimation error that exists in Γn2:n1+L(ω̂).
1In the Simulations section, we shall see that our estimates meet the Cramér-Rao bounds for small values

of Ntr.



4.3 The MMSE linear equalizer 53

In order to achieve more accurate channel estimation, we use a slightly different model.

More specifically, we write (4.6) as

y = ΓNtr−L
2

−1:−Ntr−L
2

(ω)Ah′ + wn2:n1+L (4.14)

where h′ 4= ejωξh, with ξ
4
= n1 + Ntr+L

2 , i.e., ξ is the middle position of y. Then, the ML

estimate of h′ is

ĥ′ = (AHA)−1AHΓH
Ntr−L

2
−1:−Ntr−L

2

(ω̂)y. (4.15)

If we define ∆h′ 4= ĥ′ − h′ and K′ 4= diag
(

Ntr−L
2 − 1, . . . ,−Ntr−L

2

)
, then the finite sample

CRBs indicate that

C′ 4= E
[
∆h′∆h′H

]
= σ2

w(AHA)−1 + σ2
∆ω(AHA)−1AHK′Ah′h′HAHK′A(AHA)−1

(4.16)

C′
t
4
= E [∆h′∆h′T ] = −σ2

∆ω(AHA)−1AHK′Ah′h′TATK′A∗(AHA)−T (4.17)

and

E [∆ω∆h′] = jσ2
∆ω(AHA)−1AHK′Ah′. (4.18)

In the sequel, we assume that the true channel is h′ and, consequently, the second-order

statistics of ∆ω and ∆h′ are (approximately) equal to those appearing in (4.9), (4.16)–

(4.18). Finally, we assume that the input and noise variances, σ2
a and σ2

w, are known at

the receiver. In fact, we assume that σ2
a = 1, while the noise variance estimation error is

negligible compared with the channel and CFO estimation error.

4.3.2 The ideal MMSE linear equalizer

In this subsection, we assume perfect channel and CFO knowledge and compute the ideal

MMSE linear equalizer for the channel h′. An order-M delay-d linear equalizer is defined

as f
4
= [f0 · · · fM ]T . Its output at time instant n, ãn−d, is an estimate of the delayed

channel input, an−d, and is given by

ãn−d = fHzn:n−M . (4.19)

The input symbol estimation error is defined as

en
4
= ãn−d − an−d = fHzn:n−M − eH

d an:n−M−L

where ed is the (M +L+1)×1 vector with 1 at the (d+1)-st position and zeros elsewhere.

The mean square input symbol estimation error can be expressed as

MSE(f)
4
= Ea,w

[|en|2
]

= fH
(
H′H′H + σ2

wIM+1

)
f − 2Re{fHH′ed} + 1. (4.20)
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The order-M delay-d MMSE linear equalizer is given by [24, Section 2.7.3]

f =
(
H′H′H + σ2

wIM+1

)−1
H′ed = R−1

z H′ed (4.21)

where Rz
4
= Ea,w

[
zn:n−MzH

n:n−M

]
= H′H′H + σ2

wIM+1.

4.3.3 Mismatched MMSE linear equalizer

If we do not know the channel and the CFO, we may estimate them and use the estimates

as if they were the true quantities. Adopting the channel model presented in (4.14), the

channel output is expressed as

r′n = ejω(n−ξ)
L∑

l=0

h′lan−l + wn. (4.22)

After the computation of the CFO estimate ω̂, we proceed to CFO correction and obtain

s′n = e−jω̂(n−ξ)r′n = ej(ω−ω̂)(n−ξ)
L∑

l=0

h′lan−l + e−jω̂(n−ξ)wn. (4.23)

If we stack (M + 1) consecutive CFO-corrected output samples, we construct the vector

s′n:n−M

4
= [s′n · · · s′n−M ]T , which can be expressed as

s′n:n−M = ej∆ωξΓn:n−M (−∆ω)H′an:n−L−M + ejω̂ξΓn:n−M (−ω̂)wn:n−M . (4.24)

If we use in (4.21) the channel estimate ĥ′ as if it were the true channel, we compute the

mismatched MMSE equalizer

f̂ =
(
Ĥ′Ĥ′H + σ2

wIM+1

)−1
Ĥ′ed. (4.25)

The input symbol estimation error at the output of the mismatched equalizer at the time

instant n is

ên = f̂Hs′n:n−M − eH
d an:n−L−M (4.26)

and the mean square estimation error of an−d is

MSEn(f̂ , ω̂)
4
= Ea,w

[| ên|2
]

= f̂H
(
Γn:n−M (−∆ω)H′H′HΓH

n:n−M (−∆ω) + σ2
wIM+1

)
f̂

− 2Re{ej∆ωξ f̂HΓn:n−M (−∆ω)H′ed}+ 1.

(4.27)

We observe that the mean square estimation error is time-dependent and, thus, not suitable

for training design.
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4.3.4 Excess MSE

The excess MSE at the time instant n is defined as

EMSEn(f̂ , ω̂)
4
= E∆h′,∆ω[MSEn(f̂ , ω̂)]−MSE(f). (4.28)

Using slightly different notation, it has been proved in [18, eq. (22) and (27)] that the

mismatched equalizer f̂ can be expressed as

f̂ = f −R−1
z

(
R∗∆h′ + G∆h′∗

)
+O (‖∆h′‖2

)
(4.29)

where

1. R is the (M + 1)× (L + 1) Hankel matrix constructed by

r
4
= c− ed (4.30)

with c being the combined (channel-equalizer) impulse response, i.e., c
4
= H′T f∗;

2. G
4
= H′FT , where F is the (L+1)× (L+M +1) Toeplitz filtering matrix constructed

by f .

The equalizer mismatch is defined as ∆f
4
= f̂ − f .

The following proposition provides an asymptotic EMSE approximation.

Proposition 1. The EMSE induced by the channel and CFO estimation errors at time

instant n, for n ∈ {d + 1, . . . , n1 + d− 1} ∪ {n2 + d + 1, . . . , N + d},2 can be expressed as

EMSEn(f̂ , ω̂) = T1 + T2(n) + T3(n) +O
(

n2 σ3
w

R7/2

)
+O

(
M2 σ2

w

R3

)
(4.31)

where

T1
4
= tr

(
R−1

z

(
R∗C′RT + GC′∗GH + GC′∗

t RT + R∗C′
tG

H
))

(4.32a)

T2(n)
4
= σ2

∆ωRe{fHD′ 2
n:n−MH′ed} (4.32b)

T3(n)
4
= 2σ2

∆ωRe
{
h′HAHK′A(AHA)−1RTR−1

z D′
n:n−MH′ed

− h′TATK′A∗(AHA)−TGHR−1
z D′

n:n−MH′ed

}
(4.32c)

where D′
n:n−M

4
= diag((n− ξ), . . . , (n−M − ξ)) and R

4
= Ntr − L.

Proof: The proof is provided in Appendix 4A. 2

2We do not compute the EMSE for the training symbols an, n = n1, . . . , n2.
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Remark 1: Term T1 involves only the channel estimation error second-order statistics. In

fact, it is the EMSE that would result if the mismatched equalizer were applied to perfectly

CFO-corrected channel output samples [18, eq. (28)]. On the other hand, T2(n) involves

only the CFO estimation error variance, while T3(n) involves both the channel and CFO

estimation errors. 2

4.4 Small ideal MMSE assumption and average EMSE

Since the time-dependent EMSE expression of (4.31) is not suitable for training design,

we make the assumption of “small ideal MMSE” and adopt as cost function the average

EMSE. Then, we derive a very simple and informative average EMSE approximation.

4.4.1 “Small ideal MMSE” assumption

We assume that the ideal MMSE is sufficiently small, i.e., the equalizer length is sufficiently

large, the SNR is sufficiently high and the delay is chosen carefully. This assumption defines

a scenario of very high practical importance because it refers to the cases where the use of

the MMSE linear equalizer seems most suitable. If this assumption does not hold, then a

more complicated (and, probably, more computationally demanding) equalizer structure,

e.g., a nonlinear equalizer, seems necessary. Under this assumption, the vector r, defined

in (4.30), becomes “small.” More specifically, it has been proved in [18, eq. (29)], that

‖r‖2
2 ≤ MMSE, which implies that ‖r‖2 = O

(√
MMSE

)
. Thus, terms that involve matrix

R, which is constructed by vector r, are “small” in comparison with terms that involve

matrix G. Consequently, terms T1 and T3(n) of (4.32a) and (4.32c), respectively, can be

approximated as

T1 ≈ tr
(
R−1

z GC′∗GH
)

(4.33)

and

T3(n) ≈ −2σ2
∆ω Re

{
h′TATK′A∗(AHA)−TGHR−1

z D′
n:n−MH′ed

}
. (4.34)
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4.4.2 Average EMSE

A cost function that is more relevant for TS design is the EMSE time-average, across the

time instances that correspond to the unknown transmitted data, defined as [4]

EMSE(f̂ , ω̂)
4
=

1
n1 − 1

n1+d−1∑

n=d+1

EMSEn(f̂ , ω̂) +
1

N − n2

N+d∑

n=n2+d+1

EMSEn(f̂ , ω̂)

= T1 +
1

n1 − 1

n1+d−1∑

n=d+1

(T2(n) + T3(n)) +
1

N − n2

N+d∑

n=n2+d+1

(T2(n) + T3(n)) .

(4.35)

If we write matrix D′
n:n−M as

D′
n:n−M = (n− ξ) IM+1 −DM (4.36)

then terms T2(n) of (4.32b) and T3(n) of (4.34) can be expressed as

T2(n) = σ2
∆ω

[
(n− ξ)2 Re {fHH′ed} − 2(n− ξ)Re {fHDMH′ed}+ Re {fHD2

MH′ed}
]

(4.37)

T3(n) ≈ −2σ2
∆ω Re

{
h′TATK′A∗(AHA)−TGHR−1

z ((n− ξ) IM+1 −DM )H′ed

}
. (4.38)

If we define

c1
4
=

1
n1 − 1

n1+d−1∑

n=d+1

n2 +
1

N − n2

N+d∑

n=n2+d+1

n2 (4.39)

and

c2
4
=

1
n1 − 1

n1+d−1∑

n=d+1

n +
1

N − n2

N+d∑

n=n2+d+1

n (4.40)

then it is easy to show that

T2
4
=

1
n1 − 1

n1+d−1∑

n=d+1

T2(n) +
1

N − n2

N+d∑

n=n2+d+1

T2(n)

= σ2
∆ω

[(
c1 − 2 c2ξ + 2ξ2

)
Re{fHH′ed}︸ ︷︷ ︸

t21

−2(c2 − 2ξ)Re{fHDMH′ed}︸ ︷︷ ︸
t22

+2Re{fHD2
MH′ed}︸ ︷︷ ︸

t23

]

(4.41)

and

T3
4
=

1
n1 − 1

n1+d−1∑

n=d+1

T3(n) +
1

N − n2

N+d∑

n=n2+d+1

T3(n)

≈ −2σ2
∆ω Re

{
h′TATK′A∗(AHA)−TGHR−1

z

(
(c2 − 2 ξ)︸ ︷︷ ︸

t31

IM+1 − 2DM

)
H′ed

}
.

(4.42)



4.4 Small ideal MMSE assumption and average EMSE 58

Obviously, both T2 and T3 depend on ξ. It turns out that there does not exist a unique

channel independent ξ that is optimal, i.e., attains minimum EMSE. If we put ξ = c2
2 ,3

then term t21 is minimized4 and terms t22 and t31 vanish. In the sequel, we adopt this

simple choice (however, we do not claim optimality, in general). Then, if we define

c
4
=

(
c1 − c2

2

2

)

=
1
6

(
N(N + Ntr) + N2

tr + 4d(d− L− 1) + L(L + 2)
)

= O (
N2

)
.

(4.43)

it can be shown that

T2 = σ2
∆ω

[
cRe{fHH′ed}+ 2Re{fHD2

MH′ed}
]

(4.44)

and

T3 ≈ 4σ2
∆ω Re

{
h′TATK′A∗(AHA)−TGHR−1

z DMH′ed

}
. (4.45)

Thus, the EMSE is approximately equal to the sum of the three terms in (4.33), (4.44) and

(4.45). In the next subsection, we study these terms in detail.

4.4.3 Comparison of terms T1, T2 and T3

Term T1

From (4.33) and the definition of G, we obtain

T1 ≈ tr
(
C′∗GHR−1

z G
)

= tr
(
C′∗F∗H′HR−1

z H′FT
)

. (4.46)

Using the facts (i) A ≥ B implies that A−1 ≤ B−1 [11, p. 471] and (ii) PH′H ≤ IL+M+1,

where PH′H is the projector onto the column space of H′H , we obtain

H′H
(
H′H′H + σ2

wI
)−1

H′ ≤ H′H
(
H′H′H

)−1
H′ = PH′H ≤ IM+L+1. (4.47)

Using (4.47) and the property in (7) we obtain (recall the definition of Rz)

T1 ≈ tr
(
C′∗F∗H′HR−1

z H′FT
)

/ tr
(
C′∗F∗FT

) ≤ λmax

(
C′) tr

(
F∗FT

)
= λmax

(
C′) ‖F‖2

F

= λmax

(
C′) (L + 1)‖f‖2

2.

(4.48)

3This implies that the training block is placed close to the middle of the packet.
4We shall see that t21 is the most significant EMSE term.
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Using asymptotic expansions, it is proved in Appendix 4B that, if AHA is invertible (and

not very ill-conditioned), then the first term of C′ in (4.16) is much larger than the second.

In this case,

λmax

(
C′) ≈ σ2

w

λmin(AHA)
(4.49)

and

T1 / (L + 1)‖f‖2
2 σ2

w

λmin(AHA)
. (4.50)

Term T2

Term Re{fHH′ed} is the (d + 1)-st coefficient of the combined (channel-equalizer) impulse

response. Using the definition of f in (4.21) and expression (4.47), it can be shown that

Re{fHH′ed} is always smaller than 1, and, under our small MMSE assumption, it is very

close to 1. Thus, t21 ' c. On the other hand, using the definition of f in (4.21), the sub-

multiplicative property of the matrix norms, and the singular value decomposition (SVD)

of H′, it can be shown that t23 = 2Re{fHD2
MH′ed} ≤ 2M2k2(H′). If N is sufficiently large

and H′ is not very ill-conditioned, then t21 À t23 and

T2 ' c σ2
∆ω. (4.51)

Term T3

Using the SVD of A, it can be easily shown that (we prove it in Appendix 4C)

‖ATK′A∗(AHA)−T ‖2 ≤ σmax(A)
σmin(A)

‖K′‖2 =
R

2
k2(A). (4.52)

In the same manner, it can be shown that (recall that G = H′FT ) (we prove it in Appendix

4C)

‖GHR−1
z DMH′ed‖2 ≤ ‖F‖2

σmax(H′)
σmin(H′)

M = M ‖F‖2k2(H′). (4.53)

Thus,

T3 ≤
(
2MR ‖F‖2k2(A)k2(H′)

)
σ2

∆ω. (4.54)

Comparison of T2 and T3

If N is sufficiently large and A and H′ are not very ill-conditioned, then, from (4.51) and

(4.54), we conclude that T2 À T3.
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Comparison of T1 and T2

Using [2, eq. (10)], we can derive the following asymptotic expression

σ2
∆ω ≈

6σ2
w

R2 hHAHAh
. (4.55)

Thus

T2 ≈ 6 c σ2
w

R2hHAHAh
. (4.56)

Using (4.50) and (4.56), we derive the following approximate bound

T1

T2
/ (L + 1)R2 ‖f‖2

2 hHAHAh
6 c λmin(AHA)

≤ (L + 1)R2‖f‖2
2λmax(AHA)

6 c λmin(AHA)

= k2(AHA)(L + 1)‖f‖2
2 α

(4.57)

where α
4
= R2

6 c = O
(

R2

N2

)
. We note that bound (4.57) becomes approximate equality if

AHA = RIL+1, i.e., the training sequence is orthogonal.

Thus, if α is sufficiently small, i.e., R is sufficiently small with respect to N (recall that

R = Ntr − L), and A is not very ill-conditioned, then term T1 is much smaller than T2

and an approximate expression for the EMSE is given by

EMSE(f̂ , ω̂) ' c σ2
∆ω. (4.58)

That is, the EMSE is approximately proportional to the CFO estimation error variance,

with the proportionality factor being independent of the training sequence. Consequently,

training sequences that are optimal for CFO estimation seem also very good candidates for

joint channel and CFO estimation. Optimal training sequence design for CFO estimation

has been extensively studied; see, for example, [2], [16] and [21]. This topic is beyond the

scope of this paper.

Remark 2: If we consider perfect channel estimation and errors due to imperfect CFO

cancellation, we can easily show that the resulting EMSE is approximately equal to term

T2 (for sufficiently large N). Thus, expression (4.58) implies that, under the small ideal

MMSE assumption, the performance degradation caused by the imperfectly canceled CFO

is much more significant than that caused by the mismatched equalizer. 2

4.5 Simulation Results

In this section, we check our theoretical results with simulations. We present results for

channel order L = 3 (the channel coefficients are given in Table III), equalizer order M = 8,
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Table III

Channel Impulse Response h

0.0010-0.0311*j -0.0066+0.0825*j -0.9451+0.3051*j -0.0144-0.0757*j
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Fig. 4.1. Experimental MSE of the ML CFO estimator and the CFO CRB for the channel
realization in Table III.

delay d = 6, packet length N = 300 and TS length Ntr = 30 (α = 0.0073). The data

symbols are i.i.d., BPSK symbols. The training symbols, which are also i.i.d. BPSK,

have been placed close to the middle of the transmitted packet, i.e., ξ = c2
2 . The results

presented in the sequel have been derived by using the binary sequence that corresponds to

the hexadecimal number 198153E6 (we have observed, through exhaustive search, that this

sequence has “good” performance for both CFO and joint channel and CFO estimation).

In Figures 4.1 and 4.2, we compare the experimental MSE of the ML CFO and channel

estimators (in (4.7) and (4.15), respectively) with the corresponding quantities derived by

the CRBs in (4.9) and (4.16). We observe that the experimental and theoretical results

practically coincide for SNR higher than 5 dB. Thus, the assumption that the finite sample

CRBs are met is valid in this case.

In Fig. 4.3, we plot the experimentally computed EMSE and the EMSE theoretical
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Fig. 4.2. Experimental MSE of the ML channel estimator and theoretical channel MSE
(CRB) for the channel realization in Table III.

approximation in (4.31) versus the time instances n, for SNR equal to 30 dB (as mentioned

above, we do not compute the EMSE for the known training symbols). We observe that

the expression (4.31) is a very good approximation to the true time-dependent EMSE.

Moreover, we observe that the EMSE increases as we move away from the training symbol

positions.

In Fig. 4.4, we compare the experimentally computed time-average EMSE and the time-

average of the EMSE theoretical approximation in (4.31). We observe that our theoretical

result practically coincides with the true EMSE for SNR higher than 15 dB.

In Fig. 4.5, we present the time-average of the theoretical terms T1 of (4.32a) and

T3 of (4.32c) and their corresponding high SNR approximations (4.33) and (4.34), which

ignore terms that involve matrix R. Since the approximations practically coincide with the

time-averages for sufficiently high SNR, we conclude that terms that involve matrix R are

indeed negligible compared to terms that involve matrix G.

In Fig. 4.6, we present the time-averages of the three EMSE terms T1, T2 and T3

in (4.33), (4.44) and (4.45), respectively, and their sum, i.e., the approximate EMSE. We

observe that T2 is very close to the approximate EMSE, while terms T1 and T3 are much

smaller.
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Fig. 4.3. Experimentally computed EMSE and the EMSE theoretical approximation in
(4.31) versus n.

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

SNR in dB

E
xc

es
s 

M
S

E

 

 
Experimental
Theoretical Approximation

Fig. 4.4. Experimentally computed EMSE and the EMSE theoretical approximation in
(4.31).
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Fig. 4.5. Terms T1 and T3 and their high SNR approximations (i.e., terms involving R are
neglected).
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Fig. 4.6. Final expressions for terms T1, T2 and T3 in (4.33), (4.44) and (4.45) and their
sum.
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Fig. 4.7. Final EMSE theoretical expression in (4.58).

Finally, in Fig. 4.7 we plot the experimental EMSE and the simple EMSE approximation

(4.58). We observe that the very simple and informative expression of (4.58) is indeed a

very good EMSE approximation.

We also present results for α = 0.0261, i.e., we use the same channel and the same TS,

but we reduce the packet length to N = 150. A bigger value for parameter α means that

the ratio of T1 to T2 increases, and, thus, the final approximation in (4.58) becomes less

accurate. More specifically, in Fig. 4.8, we plot the two significant EMSE terms, T1 and

T2, for α = 0.0073 and α = 0.0261. We note that term T1 remains the same in both cases,

since it depends only on the first term of C′ in (4.16) (see (4.33)). On the other hand, when

we reduce N , term T2 decreases, since the CFO estimation error variance remains the same

and C decreases (see (4.51)). Thus, the final approximation in (4.58) is less accurate for

α = 0.0261 than for α = 0.0073.
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Fig. 4.8. Terms T1 and T2 and the EMSE for α = 0.0073 and α = 0.0261.

4.6 Conclusion

We considered optimal TS design for joint channel and CFO estimation in frequency-

selective single-carrier systems with an MMSE linear equalizer. Performance degradation

is due to the fact that a mismatched MMSE linear equalizer is applied to channel output

samples with imperfectly canceled CFO. We uncovered that, in many cases of high practical

importance, the imperfectly canceled CFO is the main cause of the performance degrada-

tion. In these cases, the EMSE is approximately proportional to the CFO estimation error

variance, with the proportionality coefficient being independent of the TS, implying that

optimal TS design for CFO estimation is also highly relevant for joint CFO and channel

estimation.
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Appendix 4A

Proof of Proposition 1: If we use the definition of the equalizer mismatch, ∆f
4
= f̂ − f , in

(4.27), we get

MSEn(f̂ , ω̂) = fH
(
Γn:n−M (−∆ω)H′H′HΓH

n:n−M (−∆ω) + σ2
wIM+1

)
f

︸ ︷︷ ︸
t1

+∆fH
(
Γn:n−M (−∆ω)H′H′HΓH

n:n−M (−∆ω) + σ2
wIM+1

)
∆f

︸ ︷︷ ︸
t2

+2Re{fH
(
Γn:n−M (−∆ω)H′H′HΓH

n:n−M (−∆ω) + σ2
wIM+1

)
∆f}

︸ ︷︷ ︸
t3

−2 Re{ej∆ωξfHΓn:n−M (−∆ω)H′ed}︸ ︷︷ ︸
t4

−2Re{ej∆ωξ∆fHΓn:n−M (−∆ω)H′ed}︸ ︷︷ ︸
t5

+1.

(4.59)

We define matrix Γ′n:n−M (−∆ω)
4
= ej∆ωξΓn:n−M (−∆ω) = diag(e−j∆ω(n−ξ), . . . , e−j∆ω(n−M−ξ)).

Using the expression exp(x) = 1 + x + x2

2 + O(x3), we obtain

Γn:n−M (−∆ω) = IM+1 − j∆ωDn:n−M − 1
2
∆ω2D2

n:n−M +Op

(
n3σ3

w

R9/2

)
(4.60)

Γ′n:n−M (−∆ω) = IM+1 − j∆ωD′
n:n−M − 1

2
∆ω2D′2

n:n−M +Op

(
n3σ3

w

R9/2

)
(4.61)

where Dn:n−M
4
= diag(n, . . . , n−M), D′

n:n−M

4
= diag(n−ξ, . . . , n−M−ξ) and R

4
= Ntr−L.

We will write analytically the five terms defined in (4.59), using (4.60) and (4.61). We

will also take the expected value of each term with respect to ∆h′ and ∆ω.
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Term t1

Using (4.60) we obtain

E∆h′,∆ω[t1] = E∆h′,∆ω

[
fH

(( (1)

IM+1 −
(2)

j∆ωDn:n−M −
(3)

1
2
∆ω2D2

n:n−M

)
H′H′H

× ( (1)

IM+1 +
(2)

j∆ωDn:n−M −
(3)

1
2
∆ω2D2

n:n−M

)
+ σ2

wIM+1

)
f
]

= E∆h′,∆ω

[
fH

( (11)

H′H′H + σ2
wIM+1

)
f +

(12)

j∆ωfHH′H′HDn:n−M f

−
(13)

1
2
∆ω2fHH′H′HD2

n:n−M f −
(21)

j∆ωfHDn:n−MH′H′Hf

+
(22)

∆ω2fHDn:n−MH′H′HDn:n−M f +

(23)

j
1
2
∆ω3fHDn:n−MH′H′HD2

n:n−M f

−
(31)

1
2
∆ω2fHD2

n:n−MH′H′Hf −
(32)

j
1
2
∆ω3fHD2

n:n−MH′H′HDn:n−M f

+

(33)

1
4
∆ω4fHD2

n:n−MH′H′HD2
n:n−M f

]
.

(4.62)

Using that E∆ω[∆ω] = 0, E∆ω[∆ω3] = 0 (the ML estimator is practically unbiased and

Gaussian) and that the term proportional to ∆ω4 is practically equal to zero, we obtain

E∆h′,∆ω[t1] = fHRzf + σ2
∆ωfHDn:n−MH′H′HDn:n−M f

− 1
2
σ2

∆ωfHH′H′HD2
n:n−M f − 1

2
σ2

∆ωfHD2
n:n−MH′H′Hf .

(4.63)

We write the last three terms of (4.63) using that Dn:n−M = nIM+1 −DM as

1.

σ2
∆ωfHDn:n−MH′H′HDn:n−M f = n2 σ2

∆ωfHH′H′Hf + σ2
∆ωfHDMH′H′HDM f

− nσ2
∆ωfHDMH′H′Hf − nσ2

∆ωfHH′H′HDM f .

(4.64)

2.

−1
2

σ2
∆ωfHH′H′HD2

n:n−M f = −1
2

n2 σ2
∆ωfHH′H′Hf + nσ2

∆ωfHH′H′HDM f

− 1
2
σ2

∆ωfHH′H′HD2
M f .

(4.65)

3.

−1
2

σ2
∆ωfHD2

n:n−MH′H′Hf = −1
2

n2 σ2
∆ωfHH′H′Hf + nσ2

∆ωfHDMH′H′Hf

− 1
2
σ2

∆ωfHD2
MH′H′Hf .

(4.66)
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Using (4.64)-(4.66) in (4.63) we obtain

E∆h′,∆ω[t1] = fHRzf + σ2
∆ωfHDMH′H′HDM f

− 1
2
σ2

∆ωfHH′H′HD2
M f − 1

2
σ2

∆ωfHD2
MH′H′Hf

= fHRzf +O
(

M2 σ2
w

R3

)
.

(4.67)

Term t2

Using (4.60) we obtain

E∆h′,∆ω[t2] = E∆h′,∆ω

[
∆fH

(( (1)

IM+1 −
(2)

j∆ωDn:n−M −
(3)

1
2
∆ω2D2

n:n−M

)
H′H′H

× ( (1)

IM+1 +
(2)

j∆ωDn:n−M −
(3)

1
2
∆ω2D2

n:n−M

)
+ σ2

wIM+1

)
∆f

]

= E∆h′,∆ω

[
∆fH

( (11)

H′H′H + σ2
wIM+1

)
∆f +

(12)

j∆ω∆fHH′H′HDn:n−M∆f

−
(13)

1
2
∆ω2∆fHH′H′HD2

n:n−M∆f −
(21)

j∆ω∆fHDn:n−MH′H′H∆f

+
(22)

∆ω2∆fHDn:n−MH′H′HDn:n−M∆f +

(23)

j
1
2
∆ω3∆fHDn:n−MH′H′HD2

n:n−M∆f

−
(31)

1
2
∆ω2∆fHD2

n:n−MH′H′H∆f −
(32)

j
1
2
∆ω3∆fHD2

n:n−MH′H′HDn:n−M∆f

+

(33)

1
4
∆ω4∆fHD2

n:n−MH′H′HD2
n:n−M∆f

]
.

(4.68)

We keep second and third-order error terms (we keep third-order terms just to see the

lower-order term we neglect for t2). Then

E∆h′,∆ω[t2] = E∆h′,∆ω

[
∆fHRz∆f + j∆ω∆fHH′H′HDn:n−M∆f

− j∆ω∆fHDn:n−MH′H′H∆f
]
.

(4.69)

We write the last two terms of (4.69) using that Dn:n−M = nIM+1 −DM as

1.

E∆h′,∆ω

[
j∆ω∆fHH′H′HDn:n−M∆f

]
= E∆h′,∆ω

[
j n∆ω∆fHH′H′H∆f

]

− E∆h′,∆ω

[
j∆ω∆fHH′H′HDM∆f

]
.

(4.70)
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2.

E∆h′,∆ω

[
− j∆ω∆fHDn:n−MH′H′H∆f

]
= E∆h′,∆ω

[
− j n∆ω∆fHH′H′H∆f

]

+ E∆h′,∆ω

[
j∆ω∆fHDMH′H′H∆f

]
.

(4.71)

Using (4.70)-(4.71) in (4.69) we obtain

E∆h′,∆ω[t2] = E∆h′,∆ω

[
∆fHRz∆f

]
+ E∆h′,∆ω

[
− j∆ω∆fHH′H′HDM∆f

]

+ E∆h′,∆ω

[
j∆ω∆fHDMH′H′H∆f

]

= E∆h′,∆ω

[
∆fHRz∆f

]
+ 2Re

{
E∆h′,∆ω

[
j∆ω∆fHDMH′H′H∆f

]}

= E∆h′,∆ω

[
∆fHRz∆f

]
+O

(
M σ3

w

R5/2

)
.

(4.72)

Term t3

Using (4.60) we obtain

E∆h′,∆ω[t3] = 2Re
{
E∆h′,∆ω

[
fH

(( (1)

IM+1 −
(2)

j∆ωDn:n−M −
(3)

1
2
∆ω2D2

n:n−M

)
H′H′H

× ( (1)

IM+1 +
(2)

j∆ωDn:n−M −
(3)

1
2
∆ω2D2

n:n−M

)
+ σ2

wIM+1

)
∆f

]}

= 2 Re
{
E∆h′,∆ω

[
fH

( (11)

H′H′H + σ2
wIM+1

)
∆f +

(12)

j∆ωfHH′H′HDn:n−M∆f

−
(13)

1
2
∆ω2fHH′H′HD2

n:n−M∆f −
(21)

j∆ωfHDn:n−MH′H′H∆f

+
(22)

∆ω2fHDn:n−MH′H′HDn:n−M∆f +

(23)

j
1
2
∆ω3fHDn:n−MH′H′HD2

n:n−M∆f

−
(31)

1
2
∆ω2fHD2

n:n−MH′H′H∆f −
(32)

j
1
2
∆ω3fHD2

n:n−MH′H′HDn:n−M∆f

+

(33)

1
4
∆ω4fHD2

n:n−MH′H′HD2
n:n−M∆f

]}
.

(4.73)

We keep first and second-order error terms (we keep second-order terms just to see the

lower-order term we neglect for t3). We will write the second-order terms of (4.73) in detail

using that Dn:n−M = nIM+1 −DM
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1.

2Re
{
E∆h′,∆ω

[
j∆ωfHH′H′HDn:n−M∆f

]}
= 2 Re

{
E∆h′,∆ω

[
j n∆ωfHH′H′H∆f

]}

− 2Re
{
E∆h′,∆ω

[
j∆ωfHH′H′HDM∆f

]}
.

(4.74)

2.

2Re
{
E∆h′,∆ω

[
− j∆ωfHDn:n−MH′H′H∆f

]}
= −2 Re

{
E∆h′,∆ω

[
j n∆ωfHH′H′H∆f

]}

+ 2Re
{
E∆h′,∆ω

[
j∆ωfHDMH′H′H∆f

]}
.

(4.75)

Thus, using (4.74)-(4.75) in (4.73), and by ignoring terms of higher order, we obtain

E∆h′,∆ω[t3] = 2 Re
{
E∆h′,∆ω

[
fHRz∆f

]}
− 2Re

{
E∆h′,∆ω

[
j∆ωfHH′H′HDM∆f

]}

+ 2Re
{
E∆h′,∆ω

[
j∆ωfHDMH′H′H∆f

]}

= 2 Re
{
E∆h′,∆ω

[
eH

d H′H∆f
]}
− 2Re

{
E∆h′,∆ω

[
j∆ωfHH′H′HDM∆f

]}

+ 2Re
{
E∆h′,∆ω

[
j∆ωfHDMH′H′H∆f

]}

= 2 Re
{
E∆h′,∆ω

[
eH

d H′H∆f
]}

+O
(

M σ2
w

R3

)

(4.76)

where we have used that f = R−1
z H′ed.

Term t4

Using (4.61) we obtain

E∆h′,∆ω[t4] ≈ −2Re
{
E∆h′,∆ω

[
ej∆ωξfHΓn:n−M (−∆ω)H′ed

]}

= −2Re
{
E∆h′,∆ω

[
fHΓ′n:n−M (−∆ω)H′ed

]}

= −2Re
{
fHH′ed

}
+ 2 Re

{
E∆h′,∆ω

[
j∆ωfHD′

n:n−MH′ed

]}

+ Re
{
E∆h′,∆ω

[
∆ω2fHD′2

n:n−MH′ed

]}
.

(4.77)

Using that E∆ω[∆ω] = 0, we get

E∆h′,∆ω[t4] ≈ −2Re
{
fHH′ed

}
+ Re

{
E∆h′,∆ω

[
∆ω2fHD′2

n:n−MH′ed

]}
. (4.78)
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Term t5

Using (4.61) we obtain

E∆h′,∆ω[t5] ≈ −2Re
{
E∆h′,∆ω

[
ej∆ωξ∆fHΓn:n−M (−∆ω)H′ed

]}

= −2Re
{
E∆h′,∆ω

[
∆fHΓ′n:n−M (−∆ω)H′ed

]}

= −2Re
{
E∆h′,∆ω

[
∆fHH′ed

]}
+ 2 Re

{
E∆h′,∆ω

[
j∆ω∆fHD′

n:n−MH′ed

]}

+ Re
{
E∆h′,∆ω

[
∆ω2∆fHD′2

n:n−MH′ed

]}

= −2Re
{
E∆h′,∆ω

[
∆fHH′ed

]}
+O

(
n2 σ3

w

R7/2

)
.

(4.79)

From the definition of the EMSE and using (4.67), (4.72), (4.76), (4.78) and (4.79) we

get

EMSEn(f̂ , ω̂) = E∆h′,∆ω

[
∆fHRz∆f + ∆ω2Re{fHD′2

n:n−MH′ed}

+ 2Re{j∆ω∆fHD′
n:n−MH′ed}

]
+O

(
n2 σ3

w

R7/2

)
+O

(
M2 σ2

w

R3

)
.

(4.80)

The first term of (4.80) is computed as

T1
4
= E∆h′,∆ω

[
∆fHRz∆f

]

(4.29)
= E∆h′,∆ω

[(
∆h′HRT

o + ∆h′TGH
o

)
R−1

z

(
R∗

o∆h′ + Go∆h′∗
)]

(4.16),(4.17)
= tr

(
R−1

z

(
R∗

oC
′RT

o + GoC′∗GH
o + GoC′∗

tR
T
o + R∗

oC
′
tGH

o

))
.

(4.81)

We continue with the second term of (4.80), which is time-dependent

T2(n)
4
= E∆h′,∆ω

[
∆ω2Re{fHD′2

n:n−MH′ed}
]

= σ2
∆ωRe{fHD′2

n:n−MH′ed}. (4.82)

The third term of (4.80) is also time-dependent, and is computed as

T3(n)
4
= E∆h′,∆ω

[
2Re{j∆ω∆fHD′

n:n−MH′ed}
]

= 2Re
{E∆h′,∆ω

[
j∆ω∆fHD′

n:n−MH′ed

]}

(4.29)
= 2Re

{E∆h′,∆ω

[
j∆ω

(
∆h′HRT

o + ∆h′TGH
o

)
R−1

z D′
n:n−MH′ed

]}

= 2Re
{E∆h′,∆ω

[
j∆ω∆h′HRT

o R−1
z D′

n:n−MH′ed + j∆ω∆h′TGH
o R−1

z D′
n:n−MH′ed

]}

(4.18)
= 2σ2

∆ω Re
{
h′HAHK′A(AHA)−1RT

o R−1
z D′

n:n−MH′ed

− h′TATK′A∗(AHA)−TGH
o R−1

z D′
n:n−MH′ed

}
.

(4.83)
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Appendix 4B

If the covariance matrix of the training sequence is R, then [2, Appendix A]

1
R

AHA = R+O
(

1
R

)
(4.84)

and
1
R2

2

AHDR−1A = R+O
(

1
R

)
. (4.85)

If R is invertible, then, using the first-order expansion (11) we obtain

(
AHA

)−1
=

1
R
R−1 +O

(
1

R2

)
R−2. (4.86)

Furthermore,

AHK′A = AH

(
−DR−1 +

(
R

2
− 1

)
IR

)
A

= −AHDR−1A +
(

R

2
− 1

)
AHA

= −R2

2
R−O(R) +

(
R

2
− 1

)
(RR+O(1))

= O(R). (4.87)

Then

AHK′A
(
AHA

)−1
= O(R)

(
1
R
R−1 +O

(
1

R2

)
R−2

)

= O(1)R−1 +O
(

1
R

)
R−2

= O(1). (4.88)

Using (4.88) and (4.55) it is easy to see that the second term of C′ in (4.16) is O
(

σ2
w

R3

)
,

while, using (4.86) we obtain that the first term of C′ is O
(

σ2
w
R

)
. Thus, if the covariance

of the training sequence is invertible (and not very ill-conditioned), then the first term of

C′ in (4.16) is much larger than the second.
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Appendix 4C

Using the singular value decomposition (SVD), matrix A can be written as

A = UΣVH (4.89)

where U and V are unitary matrices with dimensions (Ntr−L)×(Ntr−L) and (L+1)×(L+1)

respectively, while Σ is the (Ntr − L)× (L + 1) matrix with the singular values of A in its

diagonal, and all the off the diagonal elements equal to zero. Using (4.89) we obtain

(
AHA

)−T
= V∗Σ1VT (4.90)

where Σ1 =
(
ΣHΣ

)−1 = diag
(
σ−2

1 (A), . . . , σ−2
L+1(A)

)
. Thus, in order to prove (4.52) we

use the submultiplicative property of the matrix norms and expressions (4.89) and (4.90)

to get

‖ATK′A∗(AHA)−T ‖2 = ‖V∗ΣTUTK′U∗Σ∗Σ1VT ‖2

≤ ‖V∗‖2‖ΣT ‖2‖UT ‖2‖K′‖2‖U∗‖2‖Σ∗Σ1‖2‖VT ‖2

= σmax(A)‖K′‖2
1

σmin(A)
=

σmax(A)
σmin(A)

‖K′‖2 =
R

2
k2(A)

(4.91)

where for the last equality we used the definition of matrix K′ and the condition number

with respect to the spectral norm.

In the same manner we prove the inequality in (4.53). We first write the SVD of matrix

H′ as

H′ = U1ΛVH
1 (4.92)

where U1 and V1 are unitary matrices with dimensions (M + 1)× (M + 1) and (M + L +

1)× (M +L+1) respectively, while Λ is the (M +1)× (M +L+1) matrix with the singular

values of H′ in its diagonal, and all the off the diagonal elements equal to zero. Using (4.92)

and the definition of Rz we obtain

R−1
z = U1Λ1UH

1 (4.93)

where Λ1 = diag
(

1
σ2
1(H′)+σ2

w
, . . . , 1

σ2
M+1(H

′)+σ2
w

)
.

Using (4.92), (4.93) and that G = H′FT we obtain

‖GHR−1
z DMH′ed‖2 = ‖F∗V1ΛHΛ1UH

1 DMU1ΛVH
1 ed‖2

(∗)
≤ ‖F‖2

1
σmin(H′)

Mσmax(H′)

= ‖F‖2
σmax(H′)
σmin(H′)

M = M ‖F‖2k2(H′)

(4.94)
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where at point (*) we have used that the singular values of ΛHΛ1 are equal to σi(ΛHΛ1) =
σi(H′)

σ2
i (H′) + σ2

w

, i = 1, . . . , M + 1, and σi(ΛHΛ1) =
σi(H′)

σ2
i (H′) + σ2

w

≤ σi(H′)
σ2

i (H′)
=

1
σi(H′)

.

Thus, ‖ΛHΛ1‖2 = max(σi(ΛHΛ1)) ≤ 1
σmin(H′)

.
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