

Novel Techniques for Hardware/Software

Partitioning and Emulation

by

Iakovos Mavroidis

A dissertation submitted in partial fulfillment of the

requirements of the degree of

Doctor of Philosophy

in the

Department of Electronic and Computer Engineering

of the

Technical University of Crete at Greece

Committee in charge:

Professor Ioannis Papaefstathiou

Professor Apostolos Dollas

Professor Dionisios Pnevmatikatos

April 2011

 i

Abstract

Novel Techniques for Hardware/Software

Partitioning and Emulation

Over the last several years, uniprocessor systems, in an effort to overcome the limits of deeper

pipelining, instruction-level parallelism and power dissipation, evolved from one processing core

to tens or hundreds of cores. At the same time, multi-chip systems and Systems on Board (SoB),

have started giving their place to Systems on Chip (SoC) that exploit the latest nanometer

technologies. This has also caused a tremendous shift in the system development process towards

embedded systems, hardware/software co-design, SoC designs, multi-core designs, and hardware

accelerators. Nowadays, one of the key issues for continued performance scaling is the

development of advanced CAD tools that can efficiently support the design and verification of

these new platforms and the requirements of today’s complex applications.

This thesis focuses on three important aspects of the system development process:

hardware/software partitioning, simulation and verification. Since the time consumed in those

tasks is usually a large percentage of the overall development time, speeding them up can

significantly reduce the ever important time to market.

Hardware emulation on FPGAs has been widely used as a significantly faster and more

accurate approach for the verification of complex designs than software simulation. In this

approach, Hardware Simulation Accelerator and Emulator co-processor units are used to offload

calculation-intensive tasks from software simulators. One of the biggest problems however is that

the communication overhead between the software simulator, where the behavioral testbench

usually runs, and the hardware emulator where the Design Under Test (DUT) is emulated, is

becoming a new critical bottleneck. Another problem is that in a hardware emulation environment

it is impossible to bring outside of the chip a large number of internal signals for verification

purposes. Therefore, on-chip observability has become a significant issue. Finally, one more

 ii

crucial issue is the decision that has to be made on how to partition the system components into

two distinct sets: those that will be implemented in hardware and those that will run in software. In

this thesis we analyze all the aforementioned problems and propose novel techniques that can be

used to attack them.

First, we introduce a novel emulation framework that automatically transforms certain HDL

parts of the testbench into synthesizable code in order to offload them from the software simulator

and, more importantly, minimize the aforementioned communication overhead. In particular, we

partition the testbench running on the software simulator into two sections: the testbench HDL

code that communicates directly with the DUT and the rest, C-like, testbench code. The former

section is transformed into synthesizable code while the latter runs in a general purpose CPU.

Next, we extend this architecture by adding multiple fast scan-chain paths in the design in order to

provide full circuit observability and controllability on the fly. Finally, we develop a fully

automated hardware/software partitioning tool that incorporates a novel flow with new cost

metrics and functions to provide fast and efficient solutions. The tool employs two separate

partitioning algorithms; Simulated Annealing (SA) and a novel greedy algorithm, the Grouping

Mapping Partitioning (GMP).

Our experiments demonstrate that our methodologies provide cost-effective solutions for the

hardware/software partitioning and emulation of large and complex systems.

 iii

Abbreviations

API Application Programming Interface

ASIC Application Specific Integrated Circuit

CAD Computer-Aided Design

COTS Commercial-Off-The-Shelf
CPU Central Processing Unit

CPS Cycles Per Second

DCM Digital Clock Management

DSP Digital Signal Processing

DUT Design Under Test

EDA Electronic Design Automation

ELA Embedded Logic Analyzer

ESL Electronic System Level

FF Flip-Flop

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

GA Genetic Algorithm

GMP Grouping Mapping Partitioning

GPGPU General Purpose Graphics Processor Unit

GUI Graphical User Interface

HDL Hardware Description Language

HPC High Performance Computing

HW HardWare

I/F Interface

ISS Instruction Set Simulator

MIPS Million Instructions Per Second

MTPS Million Transactions Per Second

OS Operating System

OSCI Open SystemC Initiative

PnR Place and Route

PLI Programming Language Interface

PLL Phase Lock Loop

RAM Random Access Memory

RC Reconfigurable Computing

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SA Simulated Annealing

SCE-MI Standard Co-Emulation API - Modeling Interface

SDK Software Development Kit

SIMD Single Instruction Multiple Data

SoC System on Chip

SW SoftWare

TB TestBench

TLM Transaction Level Modeling

VHDL VHSIC Hardware Description Language

VLSI Very Large Scale of Integration

 iv

Contents

Chapter 1. Introduction ... 1

1.1 Background ..2
1.1.1 Hardware Simulation Accelerator and Emulator ... 3
1.1.2 Embedded Logic Analyzer .. 6
1.1.3 Hardware/Software Partitioning .. 8

1.2 Contributions ...9

1.3 Outline .. 12

Chapter 2. Technology Trends ... 14

2.1 Field Programmable Gate Arrays (FPGAs) .. 15
2.1.1 System on Chip and HW/SW Co-design ... 16
2.1.2 Reconfigurable Computing .. 17

2.2 High Performance Computing .. 18

2.3 FPGAs vs Microprocessors .. 20

2.4 Summary ... 22

Chapter 3. Related Work ... 24

3.1 Hardware Simulation Accelerators and Emulators ... 25

3.2 Hardware/Software Communication Bottleneck ... 27

3.3 Embedded Logic Analyzers ... 31

3.4 Circuit Observability and Controllability ... 32

3.5 Hardware/Software Partitioning .. 35

Chapter 4. Testbench Code Synthesis ... 42

4.1 Background and Motivation ... 43

4.2 Communication Bottleneck .. 44

4.3 System Architecture .. 46

4.4 Testbench Transformation .. 48

4.5 Simulation Clock and Clock Management .. 49

4.6 Testbench Simulation Flow ... 51

4.7 Pause and Resume Process State ... 52

4.8 Simulation Breakpoint .. 54

4.9 Transformations overview .. 56

4.10 Summary ... 57

 v

Chapter 5. Circuit Observability and Controllability.. 58

5.1 Background and Motivation ... 59
5.1.1 Scan-Chain Methodology ... 60

5.2 System Architecture and Methodology .. 61

5.3 Multiple Scan-Chain Paths .. 63

5.4 Embedded Logic Analyzer ... 64
5.4.1 Functionality of the Logic Analyzer .. 64
5.4.2 Configuration of the Logic Analyzer ... 66
5.4.3 Architecture of the Logic Analyzer ... 67

5.5 Testing and functional verification ... 69
5.5.1 Test Case .. 69
5.5.2 FPGA Clocks .. 70
5.5.3 Testing Environment .. 72

5.6 Summary ... 73

Chapter 6. Hardware/Software Partitioning ... 75

6.1 Background and Motivation ... 76

6.2 Partitioning Process .. 78

6.3 System Representation ... 80
6.3.1 System Description .. 80
6.3.2 Cost Metrics Measurements .. 80
6.3.3 Transaction Graph Creation ... 82
6.3.4 Software Entities Specifications ... 83

6.4 System Partitioning ... 83
6.4.1 GMP Algorithm .. 84
6.4.2 Simulated Annealing .. 87

6.5 Partitioning Tool Implementation .. 88

6.6 First Test Case ... 89

6.7 Second Test Case .. 92

6.8 Summary ... 97

Chapter 7. Performance Analysis and Evaluation ... 99

7.1 Hardware Emulator ... 99
7.1.1 Evaluation board .. 99
7.1.2 Performance Evaluation ... 101
7.1.3 Test Case .. 103

7.2 Embedded Logic Analyzer ... 106
7.2.1 DUT Scan Circuitry Evaluation .. 107
7.2.2 Logic Analyzer Evaluation... 107
7.2.3 Evaluation of the Trigger Condition ... 110

7.3 Hardware/Software Partitioning .. 112

7.4 Summary ... 117

 vi

Chapter 8. Conclusions and Future Directions .. 118

8.1 Future Directions .. 120

 vii

List of Figures

Figure 1.1. Hardware/Software Co-design Flow ..2

Figure 1.2. Typical embedded system project schedule ..4

Figure 1.3. Hardware emulation ..5

Figure 1.4. Software - Hardware communication overhead ...6

Figure 1.5. Architecture of Embedded Logic Analyzer ...7

Figure 1.6. New Emulation Flow transforms portion of TB code into HW and adds scan-chains in DUT. .. 10

Figure 2.1. The growing of transistor density in processors and FPGAs devices. ... 16

Figure 2.2. Number of processors over time. ... 19

Figure 2.3. Application areas over number of systems .. 20

Figure 3.1. Hardware Accelerator/Emulator Systems .. 26

Figure 3.2. High-level view of SCE-MI’s run-time components .. 27

Figure 3.3. Architecture of Altera’s Embedded Logic Analyzer .. 32

Figure 4.1. New design process requires less man-power (less number of steps) and less total time. 44

Figure 4.2. Splitting of the testbench.. 46

Figure 4.3. Proposed Architecture .. 47

Figure 4.4. Tree-like Scheduling of Requests .. 49

Figure 4.5. Xilinx’ Digital Clock Management ... 50

Figure 4.6. Process State Transition Diagram ... 51

Figure 4.7. Process Timing Diagram. ... 51

Figure 4.8. Setup and Hold Time Violations Prevention. .. 52

Figure 4.9. Flow Controller Block can pause/resume simulation ... 55

Figure 4.10. Using a “breakpoint” to speed-up the execution of multiple simulations with common
startups ... 56

Figure 5.1. Scan Chain Architecture .. 60

Figure 5.2. Scan Flip-Flop .. 61

Figure 5.3. System Architecture .. 62

Figure 5.4. Timing Diagram ... 63

Figure 5.5. Captured FFs by the Logic Analyzer. ... 65

Figure 5.6. Configuration Memory of the Logic Analyzer. .. 67

Figure 5.7. Logic Analyzer Architecture .. 68

Figure 5.8. Line Card in TDM mode... 70

Figure 5.9. Clock domains in TDM mode .. 71

 viii

Figure 5.10. Testing Environment for the ELA .. 73

Figure 6.1. Hardware/Software Co-design Flow ... 77

Figure 6.2. Steps of Partitioning Tool .. 79

Figure 6.3. MIPS and MTPS metrics of component A ... 81

Figure 6.4. Flat names of design components .. 82

Figure 6.5. Example Transaction Graph where nodes are annotated with Size(S) and MIPS(M) metrics and
arcs are annotated with MTPS metric. ... 83

Figure 6.6. Steps in Grouping .. 84

Figure 6.7. Graphical User Interface of Partitioning Tool ... 89

Figure 6.8. Block Diagram of digital filter ... 90

Figure 6.9. User commands supported by the tool .. 90

Figure 6.10. Manual merging of design components ... 91

Figure 6.11. Partitioned design where green nodes are assigned to the SW entity and red nodes to the HW
entity ... 91

Figure 6.12. Block Diagram of Mephisto ... 92

Figure 6.13. Design Components of Mephisto ... 93

Figure 6.14. Flat graph of Mephisto depicted in the GUI of the Partitioning Tool 94

Figure 6.15. Annotated graph of Mephisto .. 95

Figure 6.16. Colored nodes have been merged together after the Grouping algorithm is applied 96

Figure 6.17. HW/SW partitioning of Mephisto where red nodes should be implemented in HW and green
nodes should be executed in SW. ... 97

Figure 7.1. XUP Virtex-II Pro Development board .. 100

Figure 7.2. XUP block diagram .. 101

Figure 7.3. Simulation Speed. ... 104

Figure 7.4. Comparison of the proposed architecture. .. 106

Figure 7.5. Length of longest scan chain ... 108

Figure 7.6. Area of ELA .. 109

Figure 7.7. Frequency of ELA .. 109

Figure 7.8. Scan Period ... 110

Figure 7.9. Speed Degradation ... 111

Figure 7.10. Evaluation of Mapping Algorithm ... 113

Figure 7.11. Problem with Mapping Algorithm .. 114

Figure 7.12. Problem tackled with Grouping Algorithm ... 114

Figure 7.13. Comparison between GMP and SA ... 115

 ix

Figure 7.14. Time of SA and GMP algorithms ... 116

Figure 8.1. Hybrid GMP-SA partitioning .. 120

Figure 8.2. Hardware Emulator using three FPGAs .. 121

 x

Acknowledgements

During the years of my studies, I had the opportunity to work with many wonderful people.

This work would not be possible without their generous support.

First, I am very grateful to my advisor, Ioannis Papaefstathiou, for his overall guidance,

support and friendship. He helped me develop a taste for research and encouraged me to all my

efforts. His technical expertise, dedication, immense patience, and availability to students made

him a great advisor. This thesis would not have been possible without his help.

I would like to thank Dionisios Pnevmatikatos and Apostolos Dollas who provided significant

insight comments on my research. Our discussions have influenced my thoughts and research a

lot.

I am especially grateful to Manolis Katevenis, my professor at University of Crete, for

initiating me into computer architecture. I am also indebted to Dave Patterson, my MSc degree

advisor at University of California at Berkeley, for his enthusiastic teaching and valuable advices.

I would like to thank the Greek Secretariat for Research and Technology (GSRT) and the

European Union for their financial support.

I am also very thankful to all my friends for their moral support.

I am indebted to my brother Ioannis for countless hours of discussion, proofreading of draft

papers, and feedback of any kind. Finally, I want to thank my parents, Evangelia and Manolis, and

my brother Dimitrios, for their love, support and encouragement.

 1

Chapter 1. Introduction

“No architecture is so haughty as that which is simple.”

John Ruskin

Development and testing of large complex systems is a time consuming process that

continuously evolves over time following the market requirements of every era. Nowadays, the

rising design complexity combined with the reduced time-to-market window has revolutionized

the embedded system design process. The traditional design techniques (i.e. independent

hardware and software design) are now being challenged when heterogeneous models and

applications are integrated in complex systems on chip. In hardware/software co-design,

designers analyze the trade-offs in the way the hardware and the software components of a

system work together so as to exhibit a specified behavior, given a set of performance goals and

technology.

One very promising approach in developing such an embedded system is to use a

hardware/software co-design platform in order to (a) partition the design into hardware and

software components, (b) design all the partitioned components, (c) co-simulate the entire

system, and (d) finally test and verify the system, as shown in Figure 1.1.

 2

Figure 1.1. Hardware/Software Co-design Flow

This thesis focuses on three important aspects of the system development process:

hardware/software partitioning, simulation and verification. The time spent in those tasks is

usually such a significant portion of the overall development time, so that by reducing it we

significantly reduce the (nowadays so important) time to market. In this thesis, first we introduce

a novel hardware emulation framework that performs fast system simulations on an FPGA-based

platform. Next, we extend this architecture by adding multiple fast scan-chain paths in the design

in order to provide full circuit observability and controllability during the simulation. Finally, we

propose a hardware/software partitioning methodology that provides cost-efficient solutions in a

much faster way than traditional partitioning algorithms.

1.1 Background

Computer-aided design (CAD) tools have severally increased user productivity in recent

decades. CAD tools help designers produce higher quality designs in less time, while powerful

analysis and simulation tools help engineers develop better products in less time. As CAD tools

have become more powerful, they have also become more complex and specialized. Numerous

techniques have been employed in order to perform faster, more efficient and with less human

involvement the required steps in the process of designing and verifying a new system.

System Specifications

High-Level System

Modeling

System Partitioning

Synthesis Compile

Co-Simulation

Design Verification

refine

constraints

testbench

HW Development SW Development

 3

Such widely used techniques pertained to the simulation and verification of complex designs

as well as to the hardware/software partitioning of embedded systems are the following:

 Hardware simulation accelerators and emulators that can imitate the behavior of one

or more pieces of hardware (typically a system under design) by executing

simulations on another piece of hardware, typically a special purpose emulation

system, which is significantly faster than if the simulation is executed on a general

purpose CPU.

 Embedded logic analyzers that can be inserted inside an FPGA design in order to

sample signals for analysis and verification.

 Partitioning frameworks and heuristics in order to decide which components of the

system should be realized on hardware and which ones in software.

Next, we describe these techniques and their limitations.

1.1.1 Hardware Simulation Accelerator and Emulator

Simulation and verification of large complex systems is a time consuming process that

requires significant man-power. The largest fraction of silicon integrated circuit respins are due

to functional errors. Thus, comprehensive functional verification is a key factor in reducing

development costs and delivering a product in time.

Functional verification of a design is most often performed using logic simulation and/or

prototyping. There are advantages and disadvantages for each of those approaches and thus often

both are used. Logic simulation is easy, accurate, flexible, and low cost. However, simulation is

often not fast enough for large designs and almost always too slow to run the complete

application software on top of the hardware design. Software simulation of embedded designs

that need emulation of I/O interfaces or full emulation of embedded CPUs tend to be extremely

slow.

In contrast to software simulations, FPGA-based prototypes are fast. It has been a common

practice for hardware engineers to perform design validation on the FPGA hardware itself since

back-end verification in hardware provides a faster, more accurate and closer-to-reality model

than software simulations. Direct hardware execution is thousands of times faster than software

 4

simulation, and the reconfigurability of FPGAs allows any design modifications to be

recompiled and reloaded directly onto the FPGA. But the time required to implement a large

design into several FPGAs can be very long and is error-prone. The changes needed in order to

fix design flaws also take a long time to implement and may require board wiring changes. Since

FPGA prototypes have limited debugging capabilities, probing signals inside the FPGAs in real

time is very difficult, if not impossible, and recompiling the FPGA designs in order to change the

probes takes too long. Moreover, such approach may delay significantly the development of an

embedded system since the software can be tested only after the hardware implementation is

complete. This is shown in Figure 1.2 where a typical schedule of an embedded system design is

depicted. A flexible hardware/software co-simulation platform that can simulate and test the

software and the hardware sections of the design in parallel is essential.

Figure 1.2. Typical embedded system project schedule

In the last decade, hardware simulation accelerators and hardware emulators have come into

picture in order to tackle the aforementioned limitations of software simulations and FPGA-

based prototypes. Hardware simulation accelerators, designed primarily to speed-up front-end

simulation, have been available to large design centers with large budgets and extensive design

tool support. The hardware accelerator schemes are based on using circuit boards populated with

multiple special-purpose ASICs, each of which contains a number of specialized processors and

lots of local memory (typically 80% to 90% of these devices are memory). In those systems, the

High Description Language (HDL) representation of the design is compiled into machine code,

which is subsequently distributed amongst the various processors.

The alternative to such systems, hardware emulators (or in-circuit emulators), have also

been proposed as a moderate-cost solution, mainly satisfying the needs of back-end verification.

The hardware emulator schemes are based on using circuit boards populated with FPGAs, in

 5

which case the HDL design is typically synthesized into a gate-level equivalent, which is

partitioned across, and loaded into, the various FPGAs. In this case a processor executes the non-

synthesizable code such as the testbench.

Figure 1.3. Hardware emulation

These approaches lighten the burden of hardware design verification by using custom

hardware to aid the verification process. Hardware accelerator and emulator co-processor units

are used to offload calculation-intensive tasks from software simulators. However, both

techniques can address the performance shortcomings of software simulation only to a certain

extent; even though the design is mapped into a hardware accelerator and thus it is executed

much faster, the testbench (and any behavioral design code) continues to run on a CPU-based

platform such as a workstation. A high-bandwidth, low latency channel connects the software

simulation (workstation) and the hardware accelerator/emulator supporting the signal data

exchange between the testbench and the design as shown in Figure 1.3. By Amdahl's law, the

slowest device in the chain will determine the achievable speed and normally, this is either the

testbench executed on the software simulator or the communication channel connecting the

software simulator and the hardware emulator. With a very efficient testbench (written in C or

transaction-based), the channel may become the bottleneck. So the communication overhead

between the software simulator and the hardware emulator is becoming a new critical bottleneck.

 Overall performance is typically limited by the communications channel between the

emulator and the workstation and by the testbench execution time of the components running on

the workstation. Therefore, we introduce a novel way to tackle this problem in Chapter 4 by

partitioning the code running on the software simulator into two parts.

 6

Figure 1.4. Software - Hardware communication overhead

1.1.2 Embedded Logic Analyzer

Even if the hardware-software communication overhead is heavily reduced, the existing

hardware emulation schemes still face important limitations; in order to be very effective in the

verification process, the hardware emulation framework should provide the same level of

testability as a software HDL simulator does. With the term testability we imply observability

(i.e. the ability to view or probe the output of a gate) and controllability (i.e. the ability to

manipulate the inputs of a gate or the state of a flip-flop). Towards this end, FPGA vendors have

provided integrated solutions, such as Embedded Logic Analyzers (ELAs), which show the

transient behavior of the design. Such tools allow the designer to easily probe the internal signals

of the design inside an FPGA, much as he/she would do with an external logic analyzer device.

Figure 1.5 shows an example ELA, where the Design Under Test (DUT) is running on the

FPGA and a trigger event (for example an internal signal of the DUT reaching a specific value)

determines when certain internal signals should be captured and stored in the internal memory of

the FPGA. In this way, the ELA, that has internal access to the test buses, the clocks and certain

test events, can be used to debug the actual chip. Additionally, the configuration of the ELA and

the observations of the acquired results in the shared memory can be accessed through normal

control interfaces of the chip and do not require special test cards.

 7

Figure 1.5. Architecture of Embedded Logic Analyzer

While ELAs lighten the burden of hardware design verification by adding on-FPGA

circuitry in order to observe the design on-the-fly, the observability and controllability they

provide are still limited. Compared to software HDL simulators, the existing ELAs have some

important limitations:

 Changing specific parameters, such as the signal probes or the depth of the sample buffer, in

most cases, requires a time-consuming full recompilation of the user design.

 ELAs utilize the limited FPGA memory in order to store their traces. As a result, their

sample memory, which determines the maximum trace period, is limited by the memory

resources of the FPGA. In a design that uses much of the FPGA's memory, there may not be

enough memory left over for the ELA.

 Basic debug operations such as breakpoints, and step by step execution are not supported.

 There is no controllability of the design; the user cannot force an internal signal to a specific

value.

We tackle all the aforementioned problems in Chapter 5 by extending the hardware emulator

environment introduced in Chapter 4 with multiple fast scan chains added in the user’s design

and organized in an innovative manner.

DUT

Embedded

Logic

Analyzer

FPGA

commands/

config

Memory

traces

captured

values trigger

signal

 8

1.1.3 Hardware/Software Partitioning

While fast and efficient hardware emulators are very significant in the system development,

CAD tools should also provide system level guidelines and techniques. Defining the system

architecture in a software/hardware co-design environment is not a trivial process and any wrong

decisions at that point may result in significant delays in the development time and/or in

inefficient designs that cannot meet the system constraints. When considering the design

costs/time, software implementation is almost always more cost efficient than hardware

implementation. This is mainly because hardware development requires more effort and money

than software development. As a result hardware/software co-design has emerged as a key first

step in the design of complex embedded systems. The ever increasing design complexity and the

ability of current FPGAs to utilize large numbers of embedded CPUs, as well as special purpose

hardware modules, makes hardware-software co-design even more important.

Probably the most important aspect of co-design is the actual hardware/software

partitioning. Hardware engineers usually partition their system into hardware and software

entities at an early design stage. Even though the internal implementation and characteristics of a

design usually are not well specified at the initial design phases, hardware-software partitioning

is decided a priori and is adhered to as much as possible, because even small refinements in the

partitioning may trigger extensive redesign. In general the most common design practice is to

initially try to map everything in software, and then gradually off-load only the most time-critical

parts of the design to hardware in order to meet the timing constraints.

Today’s designs consist of several, usually hundreds of, design components which operate

and communicate with each other in parallel. The design components can range from small

modules such as FIFOs, arithmetic units, etc., to larger ones such as compression or encryption

engines, Signal Processing Units, etc. The level of granularity at which partitioning is performed,

which specifies the size of the design components, is determined at the beginning of the

partitioning process. Instruction-level granularity, block-level granularity as well as function-

level granularity have all been employed in the past (see Section 3.5). These design components

will finally need to be mapped to and implemented by the available system entities, which can

range from general-purpose CPUs, to FPGA slices or to custom-built ASIC gates. In general,

 9

depending on the entity the implementation of the component will either be in software or in

hardware.

The Partitioning Problem is, at its simplest form, a “best fit” problem that tries to identify

the allocation of the design components into two distinct sets, those that will be executed in

embedded CPUs and those that will be implemented in specific hardware modules; the overall

aim is to minimize or maximize a given metric or a number of metrics.

Since executing a design component in a soft or hard-core CPU is always easier and more

flexible than implementing the same functionality in hardware, a common practice is to try to

map as many components as possible into software, making sure at the same time that all the

performance requirements are met. As a result, most partitioning algorithms try to find the

partitioning that minimizes the hardware footprint of the design.

Of course, since the partitioning algorithm is run a priori, in order to decide which

components should be implemented in software and which in hardware, the algorithm usually

has to deal with design components that are described in a more abstract behavioral model. For

this reason, at an initial stage, most algorithms evaluate each design component according to

several cost metrics such as its performance, power, and size if implemented in hardware.

Similarly, capacity metrics are associated with each system entity, such as the maximum

processing power or bandwidth the entity can provide.

In Reconfigurable Computing environments (see definition of RC in Section 2.1.2) the

partitioning algorithm can be applied several times so as to create many different designs that

can be altered at run time. Therefore, performing fast and efficient hardware/software

partitioning is especially important in RC. Despite the extensive research on partitioning

algorithms no commercial tool can yet provide a complete, fast and efficient solution. As our

results demonstrate in Chapter 6 our tool provides clear, fast and effective solutions to all the

partitioning problems that arise during the partitioning process.

1.2 Contributions

The main contributions of this thesis are threefold: a) we introduce an emulation platform

that overcomes the communication problem of existing hardware emulators, b) we provide full

 10

circuit observability and controllability of the emulated design and c) we propose a fast and

efficient approach for hardware/software partitioning.

In Chapter 4 we propose a new approach that outperforms, in a number of real-world

cases, all the current hardware emulator systems by a factor of more than 15. Moreover, our

method is transparent to the designer (unlike some emulators that require re-writing of the

testbench) and can also be used on top of existing emulation platforms triggering an even more

significant acceleration.

Figure 1.6. New Emulation Flow transforms portion of TB code into HW and adds scan-

chains in DUT.

Rerun test

TB

code
DUT

Split

Scan-chain

HW Emulator SW /CPU
PLI

traces

Transform

DDR

Proposed Flow

ELA

Synthesize

Synthesize

PnR

large off-chip

Conventional Flow

TB code DUT

Compile Synthesize

HW Emulator SW /CPU

slow

drivers

specify

traces

ELA

small on-chip

PnR

traces

Rerun test

SRAM

specify

traces

 11

In Chapter 5, we tackle the problems of existing ELAs, described in Section 1.1.2, by

extending the hardware emulator environment introduced in Chapter 4 with multiple fast scan

chains added in the user’s design and organized in an innovative manner. A scan circuitry links

all the storage elements of a design, or part of them, and eventually creates a large shift register,

the so-called scan chain. The major advantage of this approach lies in the fact that, in the scan

mode, we have full observabiliy and controllability of the memory elements included in the scan

chains.

Figure 1.6 shows a conventional emulation flow and our modified flow. The conventional

flow executes the testbench code on a CPU since it is a non-synthesizable code. Instead of that,

we split the testbench code and synthesize a certain portion of it. Moreover, we add scan chains

in the synthesized DUT. The main advantages of these innovative techniques, when compared

with the existing schemes are:

 The accesses on the Programming Language Interface (PLI), shown in Figure 1.6, are

much more infrequent than the accesses at the DUT-testbench boundaries. By

implementing a portion of the testbench on HW we managed to reduce significantly the

communication overhead between SW and HW, and the testbench execution time

outperforming conventional hardware emulation systems by a factor of more than 15.

 By adding scan-chains in the DUT the ELA can easily trace any signal in the DUT. In

this way, in order to rerun a test with different set of traces or set a new trigger condition

the user simply has to modify the configuration memory of the ELA, instead of

performing a very time consuming design re-synthesis, re-placement and re-routing. This

is feasible because the set of traces and the trigger condition are specified in the

configuration memory of the ELA (see Section 5.4) instead of being hardwired in the

ELA.

 Our scheme holds the traces of the emulation in an external large memory instead of

the limited on-chip FPGA memory utilized by the existing schemes. This is feasible due

to the breakpoint operation our methodology provides (see Section 4.8).

 Run-time modifications of the values of any of the internal signals of the DUT during

execution can be easily performed through the scan chains.

 12

These advantages are more significant in complex designs or when time to market is a

critical factor. Simulators simply are too slow to fully verify complex embedded designs at gate

level and provide insufficient feedback to the developer. We propose a platform for efficient

evaluation of complex designs where any modification in the implementation has to be verified

through numerous regression tests.

Regarding the hardware/software partitioning problem, we propose in Chapter 6 an

innovative and fast approach so as to provide cost-efficient systems in a timely manner. Our

novel algorithm produces very similar results (the difference is less than 3%) to those triggered

by the most widely used algorithms (such as simulated annealing) while it is more than 2500

times faster. Performing fast hardware/software partitioning is especially important in

Reconfigurable Computing (RC) since in RC environments the partitioning algorithm can be

applied several times so as to create many different designs that can be altered at run time

[KK04].

1.3 Outline

The outline of the rest of this thesis is as follows.

Chapter 2 provides the background and demonstrates the trends of existing technologies. It

discusses the characteristics and limitations of the FPGAs and the multiprocessor systems. It

provides significant knowledge and guidelines for proposing and developing cost-efficient

algorithms and methodologies in the rest of the thesis.

Chapter 3 describes the related work. It provides information about the existing hardware

simulation accelerators, hardware emulators and ELAs. In parallel, it describes existing

approaches employed in order to tackle the various limitations of current simulation systems,

described in Section 1.1. Finally, it describes the existing algorithms and research on

hardware/software partitioning and shows how this work has influenced our decisions.

Chapter 4 describes the proposed hardware emulator platform which solves the

communication bottleneck between the testbench and the DUT. We first introduced this

platform in [MP07, MP08].

 13

Chapter 5 proposes a scan chain methodology in order to provide full chip observability and

controllability at run time. Connecting the registers of the design in multiple scan chains we

achieved full observabiliy and controllability of the memory elements included in the scan

chains. We first described our scan chain methodology in [MP09].

Chapter 6 presents our hardware/software partitioning tool and methodology. It explains all

the steps of the partitioning process such as the graph representation of the design and the cost

metrics derived through simulations. The tool supports a novel greedy algorithm for partitioning

the design which produces results very close to those of the most successful partitioning

approaches, such as simulated annealing, while it is several times faster. We introduced this

partitioning tool in [MP10].

Chapter 7 provides a detailed evaluation of the proposed methodologies and platforms. Our

approaches are compared against existing methodologies and a performance analysis based on

system simulations of real world and random test scenarios is provided. First, we analyze the

hardware emulator and the scan chain methodology and finally we evaluate the

hardware/software partitioning algorithm.

Finally, Chapter 8 provides summary, conclusion remarks and future directions.

 14

Chapter 2. Technology Trends

“Man is still the most extraordinary computer of all.”

John F. Kennedy

Currently, the most important problem in designing complex devices is that traditional

approaches in system development as well as the associated tools do not scale well. The

designers encounter significant difficulties in delivering competitive products to the market,

since traditional design methods cannot satisfy, at the same time, issues such as short time-to-

market, low cost, and complex, reliable, high performance and low power designs. This Chapter

focuses on the state-of-the-art technologies used for developing competitive systems in order to

meet the high market expectations. This study will provide us significant knowledge and

guidelines for proposing an efficient Hardware Emulator platform (Chapter 4 and Chapter 5) as

well as to understand the requirements of today’s embedded applications in order to provide an

efficient hardware/software partitioning methodology (Chapter 6).

Several different platforms ranging from multi-core CPUs (such as Cell processor), to high-

density FPGAs and ASICs come to meet the requirements of today’s market. However, each

platform has different advantages and disadvantages. While programming a multi-core CPU is

not so trivial, the effort required for implementing an application in an FPGA or ASIC is far

more significant because the description has to be taken down way beyond the assembly coding

 15

level, all the way to the micro electronics gate logic level. On the other hand, a hardware

implementation (FPGA/ASIC) provides faster solutions than a software implementation (CPU).

Moreover, FPGA-based platforms offer higher performance and better energy efficiency than

CPU-based platforms for numerous applications.

A designer can trade off between ease of implementation, system performance and low power

dissipation by using the aforementioned available platforms or a combination of them. The

manpower, regarding the development and testing of a system, and the performance and power

dissipation of the system are highly coupled with the selected technologies.

2.1 Field Programmable Gate Arrays (FPGAs)

A Field Programmable Gate Array (FPGA) is a semiconductor device containing

programmable logic components and programmable interconnects. The programmable logic

components can be programmed to duplicate the functionality of basic logic gates such as AND,

OR, XOR, NOT or more complex combinational functions such as decoders or math functions.

In most FPGAs, these programmable logic components also include memory elements, which

may be simple flip-flops or complete blocks of highly-dense memories. A hierarchy of

programmable interconnects allows the logic blocks of an FPGA to be interconnected as needed

by the system designer. These logic blocks and interconnects can be programmed after the

manufacturing process by the customer/designer (hence the term "field programmable", i.e.

programmable in the field) so that the FPGA can perform whatever logical function is needed.

State of the art FPGAs also provide embedded processors, transceivers and floating point units

interconnected in a modular way.

FPGAs have a faster growth of transistor density even than that of general processors, as it

can be seen in Figure 2.1. The largest FPGAs now in the market, part of the Xilinx Virtex6 and

Virtex7 family devices, provide more than ten million "equivalent gates" (the relative density of

logic). These advanced devices also offer features such as built-in hardwired processors (such as

PowerPC and ARM), substantial amounts of memory in the range of MBytes, clock management

systems, and support for many of the latest, very fast device-to-device signaling technologies

such as gigabit transceivers.

 16

Figure 2.1. The growing of transistor density in processors and FPGAs devices.

2.1.1 System on Chip and HW/SW Co-design

System on Chip (SoC) is an idea of integrating all components of a computer or other

electronic system into a single integrated circuit (chip). SoC designers often have to speed up

critical portions of their design by implementing them in hardware, because general-purpose

processor cores cannot meet the required performance goals.

Most SoCs are developed from pre-qualified hardware blocks (called Intellectual Property

(IP) cores) together with the software drivers that control their operation. By simply

interconnecting pre-qualified IP cores the SoC development can be accelerated significantly. The

hardware blocks are interconnected together using CAD tools and the software modules are

integrated using a software development environment. Certain tools, such as Xilinx EDK,

support SoC design flows on FPGAs.

A typical application of SoC is in the area of embedded systems. An embedded system is a

combination of computer software and hardware, either fixed in capability or programmable, that

is specifically designed for a particular function. Industrial machines, automobiles, medical

equipment, cameras, household appliances, airplanes, vending machines and toys, as well as the

widely used cellular phone and PDA are among the myriad possible hosts of an embedded

system. Since the embedded system is dedicated to specific tasks, design engineers can optimize

it in terms of size and cost as well as in terms of reliability and performance; some embedded

systems are mass-produced, benefiting also from economies of scale.

 17

Current practice, in the vast majority of the cases, in embedded design makes use of a

sequential scheme: the designer decides the platform (FPGA fabric, multi-core CPU, DSP, etc.)

for implementing each design component (arithmetic units, compression, encryption engines,

signal processing units, etc.), then the hardware platform design is completed, then an operating

system and/or middleware is chosen and tested on the hardware prototype platform, and finally

the embedded software is ported on the operating system and/or the middleware. In this

complicated practice, the designer faces the problem of a very long design cycle. A unified,

holistic process to embedded system design will enable the design of such a system to be

performed at a high level of abstraction, where every component of the system has a specified

behavior and several implementation paths, in software or in hardware. Hardware/software

codesign is a unified process, which enables system design to take place free of any

implementation-specific details, by means of defining applications using an abstract system

model, and then by providing a concurrent mapping path into a mix of hardware and software.

The design flow for a SoC aims to seamlessly develop the hardware and software components of

the system in parallel. Essentially an ideal codesign process should decouple the design of the

system from the implementation details of the underneath hardware or software platform

providing a unified model for hardware and software development.

A key step in the SoC design flow is emulation: the hardware is mapped onto an emulation

platform based on a field programmable gate array (FPGA) that mimics the behavior of the SoC,

and the software modules are loaded into the memory of the emulation platform. Once

programmed, the emulation platform enables the hardware and software of the SoC to be tested

and debugged at a speed close to its full operational speed.

2.1.2 Reconfigurable Computing

Reconfigurable Computing (RC) is “computer processing with reconfigurable computing

devices” (such as FPGAs). The principal difference when compared to using ordinary

microprocessors is the ability to make substantial changes to the hardware itself (i.e. the FPGA

fabric) on the fly. Configuration of these reconfigurable systems can happen at deployment time,

between execution phases, or during execution (in this latter case it is called run time

 18

reconfiguration). Implementing the critical operations of a process on hardware instead of using

a general purpose microprocessor can result in significant performance speedup.

The main characteristic of RC is the presence of programmable hardware that can be

reconfigured to implement a specific functionality, which is more suitable for specially tailored

hardware than for a processor. RC systems potentially combine microprocessors and

programmable hardware in order to take advantage of the combined strengths of hardware and

software and have been used in applications ranging from embedded systems to high

performance computing. In reconfigurable computing certain critical parts are implemented in

hardware and therefore heavily accelerated; those parts would have been executed much slower

in general-purpose processor cores.

Hardware, like software, can be designed modularly, by creating subcomponents and then

higher-level components to instantiate them. In many cases it is useful to be able to swap out one

or several of these subcomponents while the FPGA is still operating. Partial Reconfiguration

allows reconfiguration of selected areas of an FPGA anytime after its initial configuration. You

can do this while the design is operational and the device is active (known as active partial

reconfiguration) or when the device is inactive in shutdown mode (known as static partial

reconfiguration). One of the largest FPGA manufacturers, Xilinx, has supported partial

reconfiguration in many generations of its devices. Partial reconfiguration can be used to save

space for big designs by swapping in and out different portions of the design on the same FPGA

area. With the introduction of FPGAs with faster reconfiguration times and partial

reconfiguration support, it is possible to use FPGAs in a dynamically reconfigurable

environment. This technology makes possible the concept of unlimited hardware or "virtual

hardware".

2.2 High Performance Computing

The term High Performance Computing (HPC) refers to the use of parallel supercomputers

and computer clusters, that is, computing systems comprised of multiple (usually mass-

produced) processors linked together in a single system with commercially available

interconnects. The TOP500 project (http://www.top500.org/) was started in 1993 so as to provide

a reliable basis for tracking and detecting trends in HPC. Twice a year, a list of the sites

operating the 500 most powerful computer systems is assembled and released. "HPC in Europe

 19

Taskforce" plans are aimed at creating a sustainable supercomputer infrastructure in Europe to

support science that also includes a world class supercomputer system as the top of the pyramid.

Τhe computer industry has switched to delivering multiple core processors rather than

increasing clock speed. Recent trends in HPC systems have shown that future increases in

performance will only be achieved through increases in system scale, i.e., using a larger number

of components and not by improvements in single-processor performance. The fact that future

single CPU-chips need higher Gigahertz rates, resulting in higher energy consumption,

developing more heat and bringing the chips to their physical limits was the real stimulus for the

multi-core processor technology. In the last couple of years we have witnessed multi-core

systems, within large clusters, and parallel computing becoming a must
1
. The chart in Figure 2.2

shows the increase in the number of processors employed in a system during the last decades.

Figure 2.2. Number of processors over time.

According to the TOP500 list of the world’s most powerful supercomputers, seven systems

achieved performance at or above 1 petaflop/s. The most powerful system is the Chinese Tianhe-

1A system at the National Supercomputer Center in Tianjin, achieving a performance level of

2.57 petaflop/s (quadrillions of calculations per second). The Cray XT5 “Jaguar” system at the

1
 http://www.top500.org/blog/2009/05/20/top_trends_high_performance_computing

 20

U.S. Department of Energy’s (DOE) Oak Ridge Leadership Computing Facility in Tennessee is

ranked in the second place achieving 1.75 petaflop/s when Linpack (the TOP500 benchmark

application) runs.

Five of the systems in the Top 10 were built in 2010. Of the Top 10, five are in the United

States and the others are in China, Japan, France, and Germany. The most powerful system in

Europe is a Bull system at the French CEA (Commissariat à l'Énergie Αtomique), ranked at

number six.

Several HPC systems have been used in simulation environments. Multiprocessor systems

can provide cost-efficient solutions for simulating parallel applications. For example, hardware

simulator accelerators, described in 1.1.1, use multiple CPUs in order to simulate the behavior of

a design. Figure 2.3 shows the most important areas of applications where HPC systems have

been employed.

Figure 2.3. Application areas over number of systems

2.3 FPGAs vs Microprocessors

Programmable Logic Devices offer a cost effective alternative to custom microprocessors

due to their generic nature with the added benefits of short time-to-market, no NRE costs, off-the

shelf availability, relatively low power dissipation, and high performance. An FPGA device can

be reprogrammed to do any logic task that can be fitted into its gates. The logic gates can be

 21

rewired and configured to any possible task while microprocessors already have their own

circuitry and instruction set that the programmer must follow. On the other hand a CPU can be

programmed in a much faster and simpler way than an FPGA.

State of the art supercomputers, such as the Chinese Tianhe-1A system at the National

Supercomputer Center in Tianjin, can achieve PetaFlop processing power. In a scalable multi-

processor infrastructure the computation power is proportional to the number of the processors.

On the other hand, special-purpose platforms can be very effective, both performance-wise

and cost-wise, compared to general-purpose multi-processor platforms. The performance of a

serial algorithm ported to an FPGA is usually in the order of 50 to 100 times faster, than the

same algorithm running on a state-of-the-art general-purpose processor; several studies
2

demonstrate a 90x speedup in parallel applications when employing FPGA-based systems.

Similar conclusions can be derived from hardware simulator accelerator and emulator

systems. The hardware simulator accelerator is based on using circuit boards populated with

multiple processors and lots of local memory. In this case, the HDL representation of the design

is compiled into machine code, which is subsequently distributed amongst the various

processors. The alternative, the hardware emulator, is to use circuit boards populated with

FPGAs, in which case the HDL design is typically synthesized down into a gate-level equivalent,

which is partitioned across, and loaded into, the various FPGAs. A hardware emulator (FPGA-

based simulator) is about 100 times faster than a hardware accelerator (CPU-based simulator) of

similar cost.

In summary, the pros and cons of the FPGAs and the microprocessors are the following:

Advantages of CPUs over FPGAs

 Ease of implementation of a CPU-based design, since the user can develop and test the

system in a purely software environment. FPGAs are quite cumbersome to program. It

seems to be more suited to electronic engineers (who are generally the ones who work on

FPGAs) than software developers.

 Fast turn-around time (time between major modifications of the model) of a CPU-based

platform compared to the time required to generate a new bitstream for FPGA.

2
 http://www.soccentral.com/results.asp?CatID=488&EntryID=13654,

 http://www.drugdiscoverynews.com/index.php?newsarticle=371

 22

 FPGA machines are rarely large enough to encode entire interesting programs all at once.

Smaller configurations handling different pieces of a program must be swapped-in over

time. However, configuration time is too expensive for any configuration to be used only

briefly and discarded. In real programs, much code is not repeated often enough to be

worth loading into an FPGA.

 No circuit constructed with an FPGA can be as efficient as the same circuit in dedicated

hardware. Standard functions like multiplications and double precision floating-point

operations are big and slow in an FPGA when compared to their counterparts in ordinary

processors.

 Problems that are worth solving with FPGAs usually involve more data than can be kept

in the FPGAs themselves. No standard model exists for attaching external memory to

FPGAs. FPGA-based machines typically include ad hoc memory systems, designed

specifically for the first application envisaged for the machine/board.

Advantages of FPGAs over CPUs

 FPGAs are great for real time systems, where even 1ms of delay might be too long.

FPGAs can be significantly faster for certain applications, (for example for well-defined

digital signal processing usages (e.g. radar data)), than even the best CPUs available.

 An FPGA-based design consumes less power than a CPU-based design.

An interesting combination of FPGAs and multiprocessor systems is the Multiprocessor

System-on-Chip (MPSoC) which is a SoC that uses multiple processors usually targeted for

embedded applications. It is used by platforms that contain multiple, usually heterogeneous,

processing elements. All these components are linked to each other by an on-chip interconnect.

These architectures usually meet the performance needs of multimedia applications,

telecommunication architectures, network security and other application domains while limiting

the power consumption through the use of specialized processing elements and architecture.

2.4 Summary

Some scientific and technical applications are very demanding in terms of computational

intensity, size of data sets and number of I/O channels. These applications usually perform High-

 23

Performance Computing-type computations under real-time constraints. As processing

capabilities increase and parallel programming barriers decrease, we expect this trend to continue

and most likely accelerate in terms of Tera and Giga-Floating Point Operations Per Second

(TFLOPS and GFLOPS) and Giga Multiply-ACcumulate operations per Second (GMACS).

In order to respond to these and other related challenges, new technologies for CAD tools

are under development. Such technologies are the following:

 FPGAs that can implement high-performance low power designs using programmable logic

blocks in a modular way.

 Multi-core CPUs that can be easily programmed to execute parallel programs.

By combining different technologies and hardware components available as Commercial-

Off-The-Shelf (COTS) technologies, a hybrid, heterogeneous architecture can be easily

configured which can combine the advantages from all those technologies.

 24

Chapter 3. Related Work

“A generation which ignores history has no past and no future”

Robert Heinlein

With the advent of multi-processor embedded systems (see Chapter 2), system development

has changed from a simple design and verification process to a multi-step process where

advanced CAD tools play a significant role.

Taking a step back in time, 1981 marks the beginning of EDA as an industry. For many

years, some of the largest electronic companies, such as Hewlett Packard, Tektronix, and Intel,

had pursued EDA internally. Within a few years there were many companies specializing in

EDA, each with a slightly different emphasis. The first trade show for EDA was held at

the Design Automation Conference in 1984. In 1986, Verilog, a nowadays popular HDL

(Hardware Description Language), was first introduced by Gateway Design Automation. In

1987, the U.S. Department of Defence funded the creation of VHDL as a specification language.

Simulators quickly followed these introductions, permitting direct simulation of chip designs, the

so called “executable specifications“. In a few more years, back-ends were developed in order to

perform logic synthesis.

By late 1980s, an embedded system was the norm rather than the exception for almost all

electronics devices. The specific constraints that must be satisfied by embedded systems, such as

http://en.wikipedia.org/wiki/Hewlett_Packard
http://en.wikipedia.org/wiki/Tektronix
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Design_Automation_Conference
http://en.wikipedia.org/wiki/Gateway_Design_Automation
http://en.wikipedia.org/wiki/VHDL

 25

timeliness, energy efficiency of battery-operated devices, dependable operation in safety-relevant

scenarios, short time-to-market and low cost, particularly in consumer products, coupled with the

never-ending pressure to increase the functionality, lead to an enormous growth in the

complexity of the design at the system level. System complexity challenges imply super-

exponentially increasing complexity in the design process. Hardware Emulators, Embedded

Logic Analyzers and hardware/software partitioning tools have become common parts of the

design process and essential tools to realize a cost-effective design.

3.1 Hardware Simulation Accelerators and Emulators

Nowadays, with the rising design complexity, there is an increased interest in hardware

simulation accelerators and emulators (see Section 1.1.1). Speeding up simulation and

verification of complex embedded systems can save design teams a lot of money and effort.

Therefore, more and more companies build systems for hardware emulation.

Among the available simulation acceleration and emulator systems, we note the following:

 The Palladium system from Cadence [CAP], which provides hardware acceleration and in-

circuit emulation, can speed up verification 100 to 1M times when compared with software-

based RTL simulation. Palladium is described as an array of “massively parallel Boolean

compute engines”, and supports the latest industry standards, such as OSCI SystemC TLM

1.0/2.0 (transaction-level modeling), IEEE 1850 PSL (assertion-based verification), and

SCE-MI 2.0 (transaction-based acceleration). The designer can apply the Palladium’s

capabilities to mixed SystemC-HDL designs across both hardware-based and software-based

simulation environments. The tool supports advanced SystemC simulation features such as

save/restore, transaction-level recording, and multi-language hierarchical visualization and

analysis.

 The Veloce SoC verification platform from Mentor Graphics [MGV] delivers high

performance simulation acceleration and SoC in-circuit emulation to speed-up the

verification of complex designs from 8 to 512 million gates. The product family platform and

accompanying software allow designers to create reconfigurable hardware representations of

a SoC design, thus enabling pre-silicon testing and debug at hardware speeds with real-world

 26

data. Veloce employs the SCE-MI 2.0 communication protocol to provide a simulation-like

debug environment that allows full signal visibility into the design.

 The Zebu system emulator from EVE [EVZ], which can handle 200 million gates, and up to

five of them can be combined to handle up to 1-billion gates. It is aimed primarily at large-

scale chip and system emulation applications, and it is offered in a modular, 19-inch rack-

mountable configuration, which accepts up to 64 Xilinx Virtex-II XC2V8000 FPGAs. EVE

has also acquired Tharas Systems, the company behind the Hammer accelerator system

which contains up to 128 specialized processors connected through a proprietary backplane.

 The Riviera-IPT system from Aldec [ALR], an FPGA-based PCI board that is tightly

coupled to Aldec’s own software simulator. A single board has a simulation capacity of up to

12M gates. Multiple boards can be connected on the same PCI bus for larger capacity.

The following table summarizes the features of the above systems.

Product Accel. Emul. Capacity Speedup
Emulation

Speed

Cadence

(Palladium)

√ √ 256M 1M 2MHz

Mentor

(Veloce)

√ √ 512M 400 1.5MHz

EVE

(Zebu)

 √ 200M ? 30MHz

ALDEC

(Riviera)

 √ 12Μ ? 1MHz

Speedup column shows the emulation speedup compared to the RTL simulation

Figure 3.1. Hardware Accelerator/Emulator Systems

 27

3.2 Hardware/Software Communication Bottleneck

A major challenge that all these hardware-software co-simulation systems must solve is how

to optimize the communication at the hardware-software interface. Even though this issue has

largely been identified as of critical importance by all these systems, their individual solutions

have not been made publicly available. Most of these systems are commercial systems and

therefore no details have been disclosed regarding their hardware/software communication

schemes, apart from the use of the Standard Co-Emulation Modeling Interface (SCE-MI), an

interface introduced by Accelera [AC07].

SCE-MI attacks the hardware/software communication bottleneck between the DUT and the

testbench, by defining both a methodology as well as a protocol. According to SCE-MI the part

of the testbench closer to the DUT is split into two parts; one that is comprised of “Transactors”

and is written in synthesizable HDL and emulated on-chip together with the DUT, and one that is

comprised of “Message Port Proxies” and is written in software and simulated on a host

workstation.

Figure 3.2. High-level view of SCE-MI’s run-time components

Figure 3.2, derived from [AC07], shows the main components of the SCE-MI standard. By

splitting the testbench into two parts, the hardware/software communication has now been

moved to the proxies-transactors interface. The idea is to make the communication through this

interface as coarse-grained and consequently as low-traffic as possible, thereby eliminating the

hardware/software communication bottelneck.

 28

In order to do this, the two parts communicate using high-level messages (“transactions”),

and it is up to the transactors to decompose each incoming message into a series of cycle-

accurate clocked events for the DUT, and, vice-versa, compose a series of clocked events from

the DUT into a single outgoing message. On the software side, the message port proxies translate

untimed messages to cycle-accurate messages, and vice versa.

SCE-MI also standardizes the proxies-transactors interface, by defining a cycle-accurate

protocol for it, thus increasing the interoperability of transactors between testbenches. The

protocol supports a superset of SystemVerilog’s Direct Programming Interface (DPI – an

interface intended to allow the efficient connection of an HDL model with a C model).

The main disadvantages of SCE-MI’s approach compared to ours are the following:

 Using SCE-MI’s methodology, the designer has to manually implement a part of the

testbench (the “transactors”) in synthesizable code. In contrast, our methodology will

automatically transform HDL testbench into synthesizable code that can run on our

emulation environment (Section 4.4).

 SCE-MI performs more transactions between the hardware emulator and the host processor

than our approach, because we implement a larger portion of the testbench in hardware. By

performing fewer transactions, the host processor is not involved so often in the emulation

and therefore the simulation is executed faster in our approach (Section 7.1.2). Additionally,

we provide a memory controller and floating point unit in order to offload the host processor

(Section 4.3).

[YM07] presents a new scheme that reduces the modeling efforts for a transactor while

retaining the performance of transaction-based verification for hardware/software co-emulation

systems. While a conventional transaction-based verification requires the designer to develop a

synthesizable transactor block which interfaces with the DUT and its unfamiliar system

dependent protocols, the proposed method locates the transactor in the software side instead of in

the hardware emulator; this allows the designer to develop the transactor in a high-level

language. Moreover, to reduce the communication time between testbench and DUT, the authors

make the signal flow uni-directional.

In [MB99] the authors distinguish the behavioral functionality, which further remains on the

simulator, with those parts which can be hardware accelerated. The acceleratable parts have to be

 29

detected in the testbench description and must be remodeled in a Register-Transfer Level (RTL)

description. A transaction-level interface is used to reduce the amount of communication data.

However, no automatic way is provided for finding these hardware accelerated parts of the

testbench and remodeling them in a RTL description.

GateRocket [GRR] provides a platform which allows the designer to place synthesizable

portions of the DUT into the RocketDrive and emulate them on the disk-drive sized verification

platform. RocketDrive plugs into a standard disk drive slot of a workstation and it is available in

several configurations, each containing a different FPGA device from Xilinx or Altera. This

platform can accelerate the simulation by up to an order of magnitude or more depending on the

design and the testbench. However, the software driver can easily become the performance

bottleneck.

In [RH03] the authors introduce a new technology that accelerates functional system

verification. The authors propose a seamless flow from a behavioral testbench to a re-use-

oriented synthesizable testbench fully compatible with the original testbench. In this way, the

authors combine the flexibility of a behavioral testbench and the high performance of a

synthesizable testbench, while greatly reducing the modeling overhead. The approach itself is

hardware independent. The proposed platform was applied on a hard disc controller achieving a

speed-up factor of 5000 versus software simulation. No automatic method is provided for

applying this approach to any generic testbench.

In [YW04, YC04] the authors propose a methodology to reduce the communication

overhead by exploiting burst data transfer and parallelism, which is obtained by splitting the

testbench and moving a part of it into a hardware accelerator. The authors try to identify a part of

the testbench which is involved in generating the next input stimulus using only output results

from the DUT; this part is then moved into hardware and merged with the emulated DUT. Their

experiments demonstrated that the proposed method reduces the communication overhead by a

factor of about 40 compared to conventional hardware accelerated simulation while maintaining

the cycle accuracy and compatibility with the original testbench. The authors also propose a

hybrid dynamic simulation scheme, called TPartitioning, which implements a part of the

simulator in software running on a processor and maps the rest onto a programmable hardware

accelerator. The proposed algorithm for hardware synthesis of simple behavioral testbenches

enables better partitions, thus resulting in lower communication costs between the two

http://www.xilinx.com/
http://www.altera.com/

 30

components. However, the efficiency of their algorithm depends on the behavior of the testbench

since the authors assumed that they could find “autonomous” testbench parts where the

generating stimulus depends only on the DUT outputs.

Axis has developed SEmulation [AXS] which compiles a RTL design into "computing

elements", essentially coprocessors, which are then mapped into FPGAs without going through

logic synthesis. Axis claims to be able to compile 500,000 to 1 million gates in an hour on eight

distributed workstations. Their approach is still slower than a conventional emulator since

everything runs essentially on software, but considerably faster than an accelerator.

Verisity has developed eCelerator [VEE] which focuses on reducing the communication

overhead by using innovative synthesis technology to transform the most frequently executed

sections of e-testbenches in hardware. By shifting the computationally most expensive parts onto

hardware, the tool achieves significant performance gains in the verification process, ranging

from 10x to 50x speedup. With eCelerator, the designer can still create e-testbenches to generate

tests for the design, perform complex data and protocol checking and collect functional

coverage. Verisity has worked with its acceleration/emulation vendor partners to create a new

buffered transaction-based scheme. The ability to buffer many transactions in the design allows

for much higher communication bandwidth and removes the need for Specman Elite (Verisity’s

functional verification tool) to communicate on a cycle-by-cycle basis with the hardware. In

addition, the interface provides visibility to the synthesized testbench and DUT, enabling full

visibility to the entire testbench. However, eCelerator is focused only on e-testbenches.

Finally, [HS06] presents a synthesizable testbench architecture addressing the same

problem, which is based on a defined instruction set for standalone mode verification. A set of

instructions describes the transitions of a signal. The instructions are loaded on the emulator’s

memory. The proposed approach allows for fast emulation and increases flexibility and

reusability by using a specific instruction set. However, in this case the original testbench has to

be rewritten following their defined instruction set.

 31

3.3 Embedded Logic Analyzers

The major FPGA vendors have recognized the value of the ELAs, and have released

proprietary packages that work with their platforms; the most efficient such systems are the

following:

 ChipScope [XCS] by Xilinx provides an embedded, software based logic analyzer that can

monitor the signals of the design. ChipScope tool inserts logic analyzer, system analyzer,

and virtual I/O low-profile software cores directly into the design, allowing the designer to

view any internal signal or node, including embedded hard or soft processors. The signals

are captured in the system at the operational speed and brought out through the

programming interface, freeing up FPGA pins for the design itself.

 SignalTap [AST] by Altera enables efficient design verification by allowing the designer to

quickly route internal signals to I/O pins without affecting the design. The designer can

define custom trigger-condition logic in order to investigate possible problems. All captured

signal data are stored in the device memory for further analysis. The SignalTap embedded

logic analyzer supports up to 1K channels and a sample depth of up to 128K bits. The

architecture of this ELA is shown in Figure 3.3.

 ClearBlue [DCB] by DAFCA provides an advanced verification platform. Pre-silicon, the

ClearBlue Instrumentation Studio software delivers a user-directed environment for

insertion of the Reconfigurable Debug Instruments (ReDU) into the SoC design. Post-

silicon, the ClearBlue Debugger offers a wide spectrum of configurable, at execution speed,

analysis capabilities, including signal trace, on-chip logic analyzers, event-based and

assertion-based debug, and performance monitoring, that all feed directly into standard

graphical debugging software tools.

 Configurable Logic Analyzer Module (CLAM) by First Silicon Solution (FS2) provides

logic analyzer capabilities for Actel’s Flash-based FPGAs. It provides an intuitive and easy

way to view internal signals and debug the logic design. The system features FS2 On-Chip

Instrumentation (OCI) in the form of Configurable Logic Analyzer Module (CLAM) logic.

It can trace and trigger up to 32 channels, selectable in groups of 32, from an available 128

predefined signals in the FPGA fabric.

 32

Figure 3.3. Architecture of Altera’s Embedded Logic Analyzer

Moreover, PALMiCE FPGA [HGP] by HiTech Global is an external analyzer used for

debugging designs on Xilinx FPGAs. PALMiCE connects to the FPGA either with a dedicated

38-pin "MICTOR" connector or "clip-on" connectors. The important feature of this logic

analyzer is that it allows routing of the internal nodes to the pins of the FPGA to be added or

changed without re-synthesizing the circuit. However, the place-and-route step, which is usually

a long process, has to be repeated.

Embedded Logic Analyzers are also developed for application-specific integrated chips

(ASICs). Cisco's embedded logic analyzer module (ELAM) is a debugging device used for many

of Cisco's ASICs. The ELAM is used to capture data and store it for analysis purposes. The user

enters a trigger expression containing data fields of interest in the form of a logical equation. The

data fields associated with the trigger expression are stored in a set of Match and Mask (MM)

registers. Incoming data packets are matched against these registers, and if the user-specified

data pattern is detected, the ELAM starts capturing data until the end of a predetermined period.

The ELAM is tailored to the requirements of the Cisco’s packet based architecture.

3.4 Circuit Observability and Controllability

All the aforementioned products lack circuit controllability (with the exception of

ClearBlue) while they provide limited circuit observability; in order to change the watched

signals they require design recompilation while the size of the data capture buffer is limited by

the internal memory of the FPGA.

 33

Scan-chain is not a new technique. Design-level scan is a structured technique proposed

within the Design For Testability (DFT) process. For example, [WP82] takes advantages of

traditional DFT methods like scan chain, as well as certain DFT methods which control clocks

for testability, and proposes a hybrid DFT method that reduces the hardware overhead and the

test generation time. Moreover, the IEEE 1500 standard [IS05] defines a mechanism for the

testing of the IP-cores within a SoC by employing scan-chains.

The concept of using multiple scan chains has also been utilized in DFT architectures in

order to reduce the test application time as described below.

In [HP99] a new testability technique is introduced, called Parallel Serial Full Scan (PSFS),

for reducing the test application time for full-scan embedded cores. Test application time

reduction is achieved by dividing the scan chain into multiple partitions and shifting in the same

vector to each scan chain through a single scan input.

In [JC05] the authors propose an algorithm, based on a framework of reconfigurable

multiple scan-chains for a System on Chip, to minimize test application time. The test

application time is minimized by using a balancing method to assign registers into multiple scan-

chains. The experimental results show that this technique significantly reduces the test

application time.

In [LH04] the authors present an efficient multiple scan chain architecture for reducing

power dissipation and test time. This paper shows a DFT technique employing clustering of the

unspecified bits in the response test cubes so as to reduce power consumption and test time. The

unspecified bits in the response test cubes are clustered by reordering scan latches; the multiple

scan chain architecture is modified by inserting multiplexers (MUXes) in each scan chain in

order to implement this reordering.

Finally, the multiple scan chain approach is also used in [TA06] where the testing

methodology of the UltraSPARC T1 microprocessor is presented.

The FreedomChip by Lattice Semiconductor [LS07] is the first FPGA-based design

methodology to employ scan-chain structures in the fabric. The user’s design is implemented in

low-cost, custom-tested silicon through automatic insertion of scan logic and dedicated silicon

test features. This eliminates the difficult and error prone back-end design conversion associated

 34

with traditional structured ASICs. Fault coverage of over 99% typically is achieved using these

test techniques. However, the scan chains are used only for DFT and not for circuit observability.

 Wheeler et. al. in [WG01] demonstrate how “design-level scan” can provide an efficient

approach for the monitoring and control of the status of an FPGA. This paper uses a scan chain

methodology for providing full circuit observability and controllability for functionally

debugging FPGA designs. The proposed design-level scan technique includes all FPGA flip-

flops and RAMs in a serial scan chain using the FPGA logic rather than custom-made transistor

logic. This paper describes the general procedure for modifying designs with design-level scan

chains. The authors measured that scan chains result in an average FPGA resource overhead of

84%. However, the authors demonstrate their technique without providing a way to apply it at

run time in order to investigate the transient behavior of a design.

Finally, Tiwari et. al. in [TT04] propose a framework to define trigger conditions in an ELA

utilizing a scan chain methodology. This paper describes a watch-point implementation utilizing

scan chains which is applied to the hardware design running on the FPGA in order to help in

debugging and verification. The hardware debugging procedure proposed, which uses the look-

up table shift registers (srluts) of the FPGA, does not require any recompilation of the design in

order to change the watch-point conditions and thus is very fast. In this paper, the area overhead

resulting from adding this scan-chain based watch-point logic is discussed and it is compared

with other proposed debugging techniques. The observed average area overhead was 46% for the

ITC benchmark circuits with varying widths of watch-point signals. This work is orthogonal to

our approach; their scheme can be used on top of our framework so as to define the trigger

conditions in an optimal way.

The methodology we propose is based on the hardware emulator environment introduced in

Chapter 4. In Chapter 5 we extend the aforementioned basic ideas from [JC05, HP99, WG01,

TT04] by combining a multiple scan chain methodology (Section 5.3), a novel ELA (Section

5.4) and the synthesizable testbench methodology (Chapter 4), so as to build an integrated tool

that supports fast emulations and efficient circuit testability at run time. We show that our

methodology is, to the best of our knowledge, the first that combines the flexibility of a software

simulator with the high speed of a hardware emulator. We also evaluate our approach in terms of

area, cost and speed, and show that the best tradeoffs are achieved for a certain range of scan

chains independent of the DUT size (Section 7.2).

 35

3.5 Hardware/Software Partitioning

The first papers on hardware/software partitioning were presented in early nineties (for

example [EH93]) and then for a few years this was considered a very active research topic in the

CAD community. In the early 2000 the topic was considered “uninterested” and that was valid

until recently. However, nowadays, with the rising design complexity, there is again an increased

interest in hardware/software co-design. Even though, this is an active topic more or less for

about 20 years several issues remain still open due to the unavoidable complexity of the actual

partitioning problem.

The partitioning problem is NP-complete since it requires the exploration of a design space

whose size grows exponentially with the number of design components. Several researchers have

proposed partitioning heuristics that an automated tool can follow. They differ in the initial

specification, the level of granularity at which partitioning is performed, the degree of

automation of the partitioning process, the cost metrics, the cost function, as well as the actual

partitioning algorithm. The effectiveness of a partitioning tool as well as the time required to

partition a system depend on the aforementioned characteristics of the partitioning process.

Common description languages that have been used for the initial specifications of an

unpartitioned system are C [EH93], HardwareC [GM93], VHDL [EP97], and object oriented

languages. In our work we have selected SystemC which is, nowadays, a popular high-level

language for describing a system.

The granularity of a partitioning approach determines the size of each design component

that will be considered to be implemented either in hardware or in software. Instruction-level

granularity [AS93], block-level granularity [HE01] as well as function-level granularity [SN04]

have all been employed in the past. We follow a thread-based approach (as described in Section

6.4.2) considering that each SystemC thread is a design component implementing a single

function and therefore it should not be split into more than one system entities.

Most partitioning approaches model and analyze a system using annotated process graphs.

Common cost metrics that determine the annotated values on the graphs involve the I/O delay

and the rate and execution time of each node. LOTOS [CA96] and QUEST [SR98] can estimate

 36

the delay associated with a combinational circuit from its high-level description. In [EP97] the

authors describe the Computational load of a block and the Communication intensity on a

channel; those metrics are similar to the MIPS (Million Instructions Per Second) and MTPS

(Million Transactions Per Second) metrics that we will introduce in Chapter 6. We strongly

believe that these metrics provide a better insight of the system requirements and of the

allocation of the system resources.

A common approach to estimate the cost metrics is through profiling [FZ05, HE98] and

simulations. In our approach we employ high-level system simulation which seems to be the

most accurate methodology in order to extract realistic design characteristics. The increased time

for calculating the cost metrics based on high-level simulations is compensated by the improved

quality and accuracy of the results.

The effectiveness of a partitioning process is also determined by the actual partitioning

algorithm which partitions the systems into hardware and software entities based on the cost

metrics of the system blocks. Related research on the most effective partitioning algorithms is

described below.

Integer Programming

The translation of the HW/SW partitioning problem into a set of integer programming (IP)

constraints is described in [NM96]. The advantage of using IP is that optimal results are

calculated respective to the chosen objective function. This partitioning approach works in a

fully automatic way and it supports multi-processor systems, interfacing and hardware sharing.

In contrast to other approaches where special estimators are used, the authors used compilation

and synthesis tools for cost estimation. The increased time for calculating the cost metrics is

compensated by an quality of the estimations compared to the results of estimators.

Greedy Algorithms

Kalavade and Lee introduced the Global Criticality/Local Phase (GCLP) algorithm to solve

the two-way partitioning problem [KL94] for tasks of moderate to large granularity. The authors

note that two possible objective functions could be used in order to decide whether a task should

be mapped into hardware or software: minimization of the execution time of that node, and

minimization of the solution size (hardware or software area) of the node’s implementation. To

this end, the authors devise a global criticality measurement, which is re-evaluated at each step

 37

of the algorithm to determine whether time or area is more critical in the design. As the list of

functional tasks is traversed, the global criticality measurement is checked so as to determine the

current design requirement. If time is critical, the mapping minimizes the finish time of the task;

otherwise the resource consumption of the task is minimized. In addition to the global system

requirements, local optimality is sought by classifying each task as either an extremity (meaning

it consumes an extreme amount of resources), a repeller (meaning the task is intrinsically

preferred to have either a software or hardware implementation), or a normal task. This

classification of each task, and its weighty consideration in the choice of hardware or software

mapping, represents the local phase of a given task. The running time of the GCLP algorithm is

extremely efficient (O|N|
2
), and the partitions it determines are no more than 30% larger than the

optimal solution.

Dynamic Programming

Just as Kalavade and Lee incorporated a dynamic performance metric into their partitioning

decision, Henkel and Ernst incorporated “dynamic functional granularity” [EH93]. The authors’

partitioning method allowed the dynamic clustering of fine-grain tasks (at the basic block or

instruction level) into larger units of operation (as large as a procedure/subroutine). The

rationalization for having a flexible functional granularity are that large partitioning objects

should contain complete control constructs (in the form of loop bodies or procedures), and that

only a few moves should be necessary (between hardware and software) in order to determine a

good partition. The innovation comes from the hierarchical search of the design space and the

fast retrieval of a good solution.

Bhasyam et al [KB03] propose a dynamic programming framework for hardware/software

partitioning which incorporates the cost of communication delays between components of two

different partitions. Their work attempts to find a minimum latency solution within finite

resource constraints. A pruning technique is introduced in order to reduce the runtime of the

worst-case scenario for partitioning directed acyclic graphs (DAGs). The algorithm has a

polynomial run time complexity.

Kernighan-Lin/Fiduccia-Matheyes (KLFM)

Vahid and Le extended the Kernighan-Lin (KL) circuit partitioning heuristic to explore the

design space of Hardware/Software functional partitioning [VL97]. The chief advantage of the

 38

KL heuristic is its ability to overcome local minima without making excessive numbers of

moves. The basic strategy of KL is to make the least costly swap of two nodes in different

partitions, and then to lock those nodes. This continues until all nodes are locked. The best

partition bestp is selected from this set. All nodes are subsequently unlocked, and the previous

bestp becomes the starting point for the next set of node swaps. This swapping, locking,

selection of bestp, and subsequent unlocking and looping continues until no subsequent

improvement over the former bestp exists. Vahid and Le extend the KL heuristic by replacing its

cost function with a combined execution-time/area/communication metric, by redefining a move

as a movement of a functional node across partitions (rather than a swap of nodes), and by

reducing the running time of the “next move selection” procedure . Via these means, the authors

are able to achieve nearly equal-quality partitions to simulated annealing in an order of

magnitude less time. The running time of the algorithm is accelerated by considering task nodes

at a subroutine-level granularity.

Ramani and Markov adapted the Fiduccia Mattheyses (FM) hypergraph partitioning

heuristic to Boolean Satisfiability (SAT), and the WalkSAT SAT solver to hypergraph

partitioning [RM03]. They developed a SAT solver based on the FM algorithm, and a

hypergraph partitioner, WalkPart, based on the WalkSAT algorithm (i.e. a stochastic local search

heuristic for Boolean Satisfiability).

Hill Climbing and Simulated Annealing

Ernst and Henkel developed a hill-climbing partitioning heuristic that sought to minimize

the amount of hardware used, while meeting a set of performance constraints [HE98]. Their

work operated on the basic block level of functional granularity. They started with an initial

partitioning that was improved on subsequent iterations. However, to escape convergence to a

local minimum, they utilized simulated annealing to explore design cost. Unlike greedy

heuristics, simulated annealing often accepts changes which decrease the quality of a design, in

hopes of achieving a more optimal final design. Ernst and Henkel began the process with an all-

software partition, seeking to minimize hardware costs by starting with less hardware. In order to

prevent annealing before a performance-satisfying partition has been reached, they used a

heavily weighted cost function that provided high penalties for violating runtime constraints.

This choice proved effective in minimizing hardware costs. To provide performance

 39

enhancement estimates for hardware implementation, Ernst and Henkel utilized simulation and

profiling information to determine the most frequently executed and computationally intensive

regions of functionality.

In [SN04], Banerjee and Dutt represent applications as procedural call-graphs and they

prove that during partitioning, the execution time metric for moving a vertex needs to be updated

only for the immediate neighbours of the vertex, rather than for all ancestors along all the paths

to the root vertex. Consequently, move-based partitioning algorithms such as Simulated

Annealing (SA), can process call graphs with thousands of vertices in less time. The authors also

introduce a new cost function for SA that allows frequent discovery of better partitioning

solutions by searching spaces overlooked by traditional SA cost functions. By optimizing the

SA, several thousand configurations are partitioned in minutes as compared to several hours or

days using traditional SA. Furthermore, this approach can derive better design points in most

cases with over 10% improvement in application execution time compared to the solutions

derived from a Kernighan-Lin partitioning algorithm starting with an all-SW partitioning.

Genetic Algorithms

[CA02] presents a Genetic Algorithm (GA) based approach for Hardware/Software

partitioning targeting an architecture composed of a processor and a dynamically reconfigurable

datapath (FPGA). From an acyclic task graph and a set of Area-Time implementation trade off

points for each task, the GA performs HW/SW partitioning and scheduling such that the global

application execution time is minimized.

In [MZ06] the authors propose an enhanced genetic algorithm which selects the most

“interesting” code-parts of the program to be implemented in hardware using a dynamically-

weighted fitness function. The novelty of their approach resides in the reduction of the search

space obtained by specific optimizations passes that are conducted on each generation.

Moreover, by considering different granularities during the evolution process, very fast and

effective convergence (in the order of a few seconds) can be attained.

[LL09] presents an immune algorithm based on the Pareto concept of multi-objective

optimization problems. The immune algorithm has many merits, such as high searching

efficiency, avoiding immature convergence, colony optimization, keeping individual varieties

 40

and so on. Experimental results show that the algorithm can achieve the global optimal solution

of the HW/SW partitioning problem based on certain system constraints.

Finally, in [XW09] the Non-dominated Sorting Genetic Algorithm (NSGA-II) is applied to

HW/SW partitioning. Each run of the algorithm can produce many Pareto-optional solutions.

This method can provide an effective tool for measuring the performance of different objective

functions.

Tabu Search

In [EP97] two heuristics for automatic hardware/software partitioning of system level

specifications are presented and compared. Partitioning is performed at the granularity of blocks,

loops, subprograms, and processes with the objective of performance optimization with a limited

hardware and software cost. The goal of the partitioning process is to minimize the

communication cost and improve the overall parallelism. One heuristic is based on simulated

annealing and the other on tabu search. Results of extensive experiments, including real-life

examples, show the clear superiority of the tabu search based algorithm.

Similarly, [WC02] compares three heuristic search algorithms: genetic algorithm (GA),

simulated annealing (SA) and tabu search (TS) and shows that TS is superior to SA and GA in

terms of both search time and quality of solutions. In addition, the authors have implemented an

intensification strategy in TS called penalty reward, which can further improve the quality of

results.

Ant Colony Optimization

A recent approach for reconfigurable system partitioning is based on the Ant System (AS)

algorithm, a heuristic optimization method inspired by the behaviors of ants. In this algorithm, a

collection of agents cooperate together to search for a good partitioning solution.

[WL08] presents a collaborative partition approach of coarse-grained reconfigurable system

design using ant colony optimization. The authors create a distributed collaborative design

environment for system decision engineers, software designers, hardware designers and

algorithm developers. The method utilizes the advantages of ant colony optimization in

searching for global optimal solutions in order to provide a framework for multi-field experts to

work collaboratively.

 41

In Chapter 6 we propose a novel two-stage greedy partitioning algorithm (as analytically

described in Section 6.2) that can partition an embedded design in a cost-efficient manner. The

second stage of the algorithm creates sub-graphs similar to the algorithm described in [PA04].

The proposed algorithm provides accurate results and can process large graphs with hundreds of

nodes in less than a second and thus it is much faster than traditional algorithms such as SA and

KLFM. This is especially important, for example, to FPGA designers who may need differently

partitioned systems, all executed on the same platform, so as to efficiently utilize the run-time

reconfiguration characteristics of today’s FPGAs.

Finally, there are limited research frameworks and tools that have been used in order to

develop and test hardware/software partitioning algorithms, such as the following:

 LOTOS [CA96] design flow that performs the partitioning on a Process Communication

Graph (PCG). Each node in a PCG is first decomposed into a Control and Data Flow Graph

(CDFG) whose nodes represent basic data-dependent operations. The CDFG represents a flow

made up of control nodes, which are synthesizable components from a design library. Each

control node may further be associated with a Data Flow Graph (DFG). The DFG consists of

data flowing to and from operator nodes. The response time for the operator nodes are fixed

and are available from an operator library.

 QUEST [SR98] which is an estimation tool that finds reasonably accurate area and delay

values from high-level designs. The input, in this case, is an RTL description of the system.

The basic idea is to implement a small subset of the design in the target technology and

extract prediction parameters.

 MUSIC [JE99] which is a high-level synthesis tool that can be used to convert a high level

description of a system into a VHDL RTL specification for hardware implementation.

 POLIS [CH94] that represents the system design as a network of Codesign Finite State

Machines (CFSM). The next level of abstraction for software is a set of s-graphs that are

derived from the CFSMs. The s-graph is then converted to "C" code using a straightforward

translation. Delay can be estimated either at the CFSM level or from the s-graphs.

 42

Chapter 4. Testbench Code Synthesis

“What you get free costs too much.”

Jean Anouilh

The rising complexity of modern embedded systems is causing a significant increase in the

verification effort required by hardware designers and software developers, leading to the

“design verification crisis”, as it is known among engineers. Today’s verification challenges

require powerful testbenches and high-performance simulation solutions such as Hardware

Simulation Accelerators and Hardware Emulators that have been in use in hardware and

electronic system design centers for approximately the last decade. In particular, in order to

accelerate functional simulation, hardware emulation is used so as to offload calculation-

intensive tasks from the software simulator. However, the communication overhead between the

software simulator and hardware emulator is becoming a new critical bottleneck as described in

1.1.1. In this Chapter, we introduce a novel emulation framework that automatically transforms

into synthesizable code certain HDL parts of the testbench, in order to offload them from the

software simulator and, more importantly, minimize the aforementioned communication

overhead. Our experiments (see Section 7.1), using real-world designs, demonstrate that (i) our

approach is at least 1000 times faster than conventional software simulation, and (ii) the

 43

proposed method reduces significantly the communication overhead and outperforms the

conventional hardware emulation systems by a factor of more than 15.

4.1 Background and Motivation

In order to prototype a system, several steps are performed that usually involve a lot of effort

and associated risks. The approach taken by employing an initial verification of the design on

FPGA devices is a simple cost-effective one. However, while FPGA vendors provide several

evaluation boards supporting many different external interfaces (Ethernet, PCI, Serial, etc.)

connected to a central FPGA or an array of FPGAs, these commercial evaluation boards cannot

still cover all possible requirements of any design, and therefore several times the designer has to

build a custom evaluation board according to the exact requirements of the design. Moreover,

any non-trivial software development and verification can only start once the hardware design is

tested.

Hardware Simulation Accelerators and Hardware Emulators aim to simplify the design

process by performing the simulations faster and more accurately in hardware, and to provide an

application development platform earlier in the design process. These verification platforms can

simulate any testbench, including the behavior of any system interface which is usually part of

the testbench, and therefore they can be used for the verification of any possible design. Using a

Hardware Emulator the designer can simulate the design with silicon-level accuracy and identify

problems that typically go undetected until system-level debugging in the lab. In this way, the

designer can spot problems early in the design cycle when they are much easier to find and fix.

Since performing back-end verification in hardware provides an accurate model, we can even

ignore the FPGA prototyping and testing steps, as long as we have a reliable testbench that

exercises the system under all possible scenarios. Figure 4.1 shows the conventional and

modified design processes.

While hardware emulation is used to offload calculation-intensive tasks from the software

simulator, the communication overhead between the software simulator and the hardware

emulator is becoming a new critical bottleneck as described in Section 1.1.1. To facilitate the

communication path between the hardware and the software sections of an emulator, most

commercial platforms use a certain transaction-level interface so as to reduce the amount of

 44

communication data (most frequently the SCE- MI 2.0 communication protocol introduced by

Accelera (see Section 3.2)). However this method requires designers to rewrite the testbench in a

synthesizable fashion while the transaction-level interface can easily become the new emulation

bottleneck.

Figure 4.1. New design process requires less man-power (less number of steps) and less total

time.

In this Chapter we provide a solution which is transparent to the designer. Our methodology

is able to move this emulation bottleneck away from the interface at the DUT boundaries, and

thus reduce it significantly. This is done in an automated way, largely without any intervention

from the designer, by using a code transformation tool and certain HDL Block libraries that we

have developed. The main idea of our proposed methodology is to split the testbench into two

sections and transform the portion of the testbench that communicates very frequently with the

DUT to synthesizable code.

4.2 Communication Bottleneck

Hardware emulators allow designers to implement a circuit on an FPGA, thereby running

simulations of the circuit at a much higher clock frequency than a software simulator can

provide. When hardware emulators first became available, the complete circuit had to reside in

one or more FPGAs, but today's emulators can communicate with a software simulator and allow

designers to use all the models that the software simulator supports.

Conventional FPGA-based development

System

Specs
HW Design

SW Design

FPGA prototyping

Test/Debug HW

Test/Debug SW

Synthesis

P&R

Test/Debug

on FPGA

ASIC

prototyping

System

Specs
HW Design

SW Design

Test/Debug

on Emulator

ASIC

prototyping

Emulator-based development

SW-based step

HW-based step

 45

Although ISS models, TLMs, and pure C or C++ models all provide system designers with

the means to create powerful testbenches in order to verify and evaluate their designs, it is

extremely difficult, if at all possible, to synthesize these models and implement them on an

FPGA. In practice, such testbench code runs in a software simulation environment usually on a

general purpose CPU, and uses custom communication protocols to communicate with the

synthesizable DUT (Design-Under-Test) that runs in hardware on an FPGA. This leads to a

communication overhead between the testbench and the synthesizable DUT. A software

testbench in a hardware-assisted environment is likely to create a major communication

bottleneck.

The proposed solution reduces the communication overhead by synthesizing the portion of

the testbench code that directly communicates with the DUT. In particular, the process involves

the following steps:

1. Partition the testbench code into two parts: the testbench HDL code that directly

interfaces to the DUT, and the testbench C-like code that interfaces to the testbench

HDL code.

2. Transform the testbench HDL code part into synthesizable code.

3. Put everything on the same FPGA with any supporting modules as needed:

 The C-like testbench runs on one (or more) of the FPGA’s embedded processors.

 The transformed HDL testbench is synthesized together with the DUT and a library

of blocks that we have created so as to provide the environment for transparent

communication with the DUT and the C-like testbench.

Usually the portion of the testbench that communicates directly to the DUT is written in an

HDL, such as Verilog or VHDL, while high-level operations and behavioral models are written

in a C-like language. Figure 4.2 shows how the testbench is split into these two parts. The

communication path between the testbench and the DUT has now been synthesized into

hardware and therefore the transactions are performed in a much faster way.

 46

Figure 4.2. Splitting of the testbench.

4.3 System Architecture

Α high-performance verification system should incorporate both processors and FPGAs. A

processor-only or FPGA-only solution is limited in terms of performance or flexibility in

simulating various types of models. First, in terms of the performance achieved, the maximum

clock frequency of FPGAs lags behind that of processors implemented in contemporary ASIC.

Therefore, processors with higher clock frequency execute behavioral models faster than FPGAs.

On the other hand, FPGAs are more appropriate for executing simultaneous events and

computation-intensive processes in parallel. Moreover, testbenches are commonly created using

HDL such as Verilog or VHDL, sometimes including C-like programming language linked to

the HDL simulator through e.g. the Programming Language Interface (PLI). This technique is

used when the testbench needs to simulate more complex and more abstract functions. FPGAs

are not capable of simulating models created in C-like languages and/or behavioral HDL that is

not synthesizable. Therefore, processors and FPGAs have mutually complementary natures for

high-performance verification systems. Modern large FPGAs provide on-chip general purpose

CPUs and configurable CPU bus architecture facilitating the communication between the FPGA

fabric and the CPUs.

Testbench DUT

HDL

TB
DUT

C-like

TB

split

TB

i/f

i/f

HDL TB

simulator

synthesize CPU

synthesize CPU

 47

In the proposed architecture, shown in Figure 4.3, the embedded CPU(s) located on the

FPGA run the C-like behavioral part of the testbench, execute testbench floating point

expressions, and access large arrays and external files as determined by the testbench code.

Figure 4.3. Proposed Architecture

 The Server Block is responsible for serving the requests from the HDL testbench block.

This block communicates with the embedded CPU(s) in order to execute PLI-like requests

generated from the testbench code. Moreover it can execute other requests such as memory

references, file accesses or floating point instructions. The large arrays of the transformed

testbench code are stored in the external memory.

The HDL Testbench Simulator generates a simulation clock that coordinates the flow of the

simulation. The clock speed of the simulator is defined by that of the testbench. The transformed

HDL testbench block can pause the whole simulation environment in order to send requests such

as PLI calls, memory references, file accesses or floating point instructions to the server block.

In parallel, the HDL testbench block provides all the input signals including the clock signals to

the DUT. This is more elaborated in Section 4.4.

A pipelined DDR memory controller and a single-precision FPU are used in order to offload

the CPU. In this way, the Server Block can send memory requests directly to the external

memory and perform floating point operations without the intervention of the slow CPU. This

clocks
HDL

testbench

mem

cntrl

M

E

M

O

R

Y

D

U

T

sim clock

server

req reply

FPU

CPU

 FPGA

HDL TB simulator

CPU
 C-like TB

 48

saves many cycles on external requests leading to better performance results as shown in Section

7.1.

Two soft-core CPUs serve the PLI requests in parallel. If the requests sent to each CPU are

independent (they access different memory areas for example) the CPUs can work

independently. The parallelism exposed in almost any testbench code favors the existence of

more than one embedded CPUs. State-of-the-art FPGAs can support multiple embedded high

performance CPUs; for example Xilinx’s Virtex-5-FXT FPGAs include two hardcore PowerPC

processors and they can embed several MicroBlaze soft processors.

In this architecture the communication bottleneck between the software and the hardware

sections of the simulation is pushed into the server-CPU(s), server-memory controller and

server-FPU interfaces. However, the accesses on these interfaces are much more infrequent than

the accesses at the DUT boundaries. Moreover, an additional and very important advantage is

that these are fixed interfaces, independent of the emulated DUT.

In the next Sections, we describe the testbench code transformation, giving also emphasis on

the pause/resume mechanism that the architecture provides.

4.4 Testbench Transformation

The original HDL behavioral testbench is transformed into synthesizable code that can run

in the environment provided by the HDL Testbench Simulator of Figure 4.3. The tool we

developed transforms a testbench written in VHDL language; same concepts can be applied to a

Verilog testbench. The process body of a VHDL testbench includes various code sections that

are not synthesizable. Such sections are mainly timing statements such as the VHDL wait

statement, large arrays that are impractical or even impossible to be mapped onto FPGA

embedded memories, floating point calculation and file handling.

A VHDL process of the transformed VHDL testbench running in the HDL Testbench

Simulator can access the CPUs, the external memory and the FPU by sending requests to the

Server Block. We have enhanced the functionality of the VHDL processes in the transformed

testbench in such a way that they can pause the simulation time of the HDL Testbench Simulator

in order to transfer requests to the Server Block (Section 4.7). In every simulation clock cycle the

 49

HDL Testbench Simulator serves all the pending requests before advancing the simulation time

counter.

We use the tree structure of the VHDL code to transfer the requests from the body of a

process to the Server Block; a code segment that receives the requests from a process body and

forwards them to a scheduler block is attached to each process. In every VHDL module a

scheduler block is responsible to gather the requests from all the processes in the module and

advance them a layer higher in the VHDL hierarchy. The scheduler block can serve the requests

in any order since the simulation is paused when any request is pending. This process is

illustrated in Figure 4.4.

Figure 4.4. Tree-like Scheduling of Requests

4.5 Simulation Clock and Clock Management

The HDL Testbench Simulator provides the simulation clock that coordinates the functions

of the simulation by translating all timing references in the original testbench code into

simulation clock cycles. Every simulation clock cycle is divided into four simulation ticks, where

the tick period is equal to the clock period of the synthesized testbench. The four tick time

interval is essential for the operations performed by the transformed, by our toolset, VHDL

process during a simulation cycle. This is because any transformed process requires four ticks at

most in order to perform all its operations involved in a simulation cycle unless a request is

generated, as the next section clearly demonstrates. Upon a request from a process the simulation

time stalls until the request has been served and the four tick time interval starts over.

server

scheduler

scheduler

req

proc

ess

req

proc

ess

req

proc

ess

Module B

scheduler

req

proc

ess

req

proc

ess

req

proc

ess

Module C

req

proc

ess
Module D

Module A

 50

A common practice in several designs is to feed the external clocks to on-chip clock phase-

locked loops (PLLs) and/or delay-locked loops (DLLs) in order to generate stable frequencies,

recover a signal from a noisy communication channel, generate a phase shifted clock, or

distribute clock timing pulses in the design. Such an example digital circuit used in Xilinx

FPGAs is the Digital Clock Management (DCM) which supports clock delay locked loops,

digital frequency synthesizers, digital phase shifters, and digital spread spectrums. Figure 4.5

shows the inputs and outputs of the Xilinx DCM. DCM includes a clock delay locked loop used

to minimize the clock skew in the Xilinx devices. It synchronizes the clock signal at the feedback

clock input (CLKFB) to the clock signal at the input clock (CLKIN). The locked output

(LOCKED) is high when the two signals are in phase. The signals are considered to be in phase

when their rising edges are within a specified time (ps) of each other.

Figure 4.5. Xilinx’ Digital Clock Management

On-chip clock management circuits cannot operate properly in the simulation environment

of our proposed platform since the DUT clocks provided by the HDL TB Simulator block can be

paused at any time. Since our emulator provides functional verification of the design simulating

the system several times slower than the final implementation, clock skew or clock instability is

not an issue during the emulation. Therefore, there is no need for internal PLLs/DLLs and such

circuits have to be replaced with their corresponding simpler behavioral models. For example, an

internal PLL that is used in order to provide a stable clock to the design can be removed and

replaced by a simple wire that connects the external input clock directly to the output generated

clock.

 51

4.6 Testbench Simulation Flow

The transformation of the testbench code is process-based. During a simulation tick a VHDL

process either (a) executes a code segment or (b) waits for the transition of a signal or (c) waits

for some time interval or (d) sends a request to the Server Block. In order to achieve the

aforementioned functionality every VHDL process is transformed according to the FSM shown

in Figure 4.6.

Figure 4.6. Process State Transition Diagram

In the EX state the process executes the synthesizable code of the testbench. A process stays

in the EX state for 1 or 2 cycles depending on the original code. On a timing statement, such as

the VHDL wait instruction, the process jumps in the WT or WS state. Finally, the process enters

the RQ state in order to send a request to the server block. An example timing diagram that

shows three processes and their state transitions is shown in Figure 4.7.

Figure 4.7. Process Timing Diagram.

WS EX WS EX1EX2 RQ EX1EX2 WS EX1 WS

3 0 1 2 3 0 1 2 0 1 2 3 0 1 2

2 3 4 sim_cnt

tick_cnt

proc 1

proc 2

proc 3

 1

WT EX1EX2 WT EX1 WS EX1 EX2

WS EX1EX2 WT EX1 WT

wt ws

done req

ft & st

 WT WS

 EX

 RQ

ft: first tick of sim cycle

lt: last tick of sim cycle

st: signal transition

tm: timeout

wt: wait for sim time

ws: wait for signal

lt & tm

 52

The clock signals generated from the transformed testbench are fed to the clock buffers of

the FPGA that drive in their turn the clock trees of the DUT. The transition from the WT state to

the EX state can happen in the last tick of a simulation cycle while the transition from the WS

state to the EX state can happen in the first tick of a simulation cycle, as shown in Figure 4.8. In

this way, the synchronous signals of the transformed testbench change their values one

simulation tick after the clock signals change their values and thus we prevent setup and hold

time violations of the signals sent from the testbench to the DUT. This is depicted in Figure 4.8.

Assuming that the clk and val signals are sent to the DUT, the val signal will arrive one tick after

the clk signal which is certainly the correct behavior for functional verification.

Figure 4.8. Setup and Hold Time Violations Prevention.

4.7 Pause and Resume Process State

Whenever a VHDL process executes a wait instruction or sends a request to the server block

the process must stall, pause its state and resume at some time later. In order to add this

functionality to a process all the statements in its body are transformed to conditional statements.

process proc1

 begin

 clk <= ’0’; wait for 1 ns;

 clk <= ’1’; wait for 1 ns;

end process;

Original testbench Code

2 3 4 5

3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

sim_cnt

tick_cnt

proc1

clk

proc2

 1

WT EX WT EX WT EX WT EX WT

WS EX WS EX WS EX WS EX

val

p

r

o

c

e

s

s

p

r

o

c

2

b

e

g

i

n

v

a

l

<

=

’

0

’

;

w

a

i

t

u

n

t

i

l

process proc2

 begin

 wait until clk’event;

 val <= not val;

end process;

 53

Any point in the process body can become an exit point by setting an exit condition at that point.

Similarly the last exit point can become an entry point using conditional instructions.

Take for instance the code segment below and its transformation. The wait instruction

becomes the exit point when it is first executed and the entry point after 10 simulation cycles,

assuming that the simulation cycle is 1 ns.

Original code:

 If clk = ’1’ then

 val <= ’1’;

 wait 10 ns;

 val <= ’0’;

 end if;

Transformed code:

 If reset = ’1’ then

 exit_point := 0;

 else

 If (exit_point = 0 or exit_point = 1) and clk = ’1’ then

 if exit_point = 0 then

 val <= ’1’;

 end if;

 if exit_point = 0 then

 proc_state <= WT; -- enter WT state

 wait_time <= 10; -- stay in WT for 10 sim cycles

 exit_point := 1; -- exit point

 elsif exit_point = ’1’ then

 exit_point := 0; -- entry point

 end if;

 if exit_point = 0 then
 val <= ’0’;

 end if;

 end if;

 end if;

If a process can pause its state at any instruction and resume it at some time later then non-

blocking assignments may erroneously become blocking assignments. In order to avoid this

erroneous behavior we transform all the non-blocking assignments of the original code into

blocking assignments by using extra variables. Every extra variable corresponds to a variable

used in a non-blocking assignment. The extra variable holds the value of its corresponding

variable in the last simulation cycle. A VHDL process in the transformed code assigns the values

of all the extra variables in the last tick of every simulation cycle.

transform

 54

Consider the code segment below and its transformation. In the transformed code, the last

non-blocking assignment of the original code uses the last value of a, a_last, in order to avoid an

erroneous assignment once the memory request has been served by the server block.

Original code:

 process

 a <= ’1’;

 c[100] <= ’1’;

 b <= a;

 end process;

 Transformed code:

process begin -- fix non-blocking assignments

 if last_tick = ’1’ then -- last tick of sim cycle

 a_last <= a; -- all variables used in

 … -- non-blocking assignments

 end if;

 end process;

 process begin

 If exit_point = 0 then

 a <= ’1’;

 end if;

 if exit_point = 0 then

 proc_state <= RQ; -- memory reference

 req_type <= REQ_MWRITE;

 req_addr <= 100; req_val <= 1;

 exit_point := 1;

 elsif exit_point = 1 then

 exit_point := 0;

 end if;

 if exit_point = 0 then

 b <= a_last; -- use the old value of a

 end if;

 end process;

4.8 Simulation Breakpoint

Even though FPGA-based emulators have become an essential tool for many companies and

research labs, it is surprising that no such system provides the equivalent of a software

breakpoint: a mechanism to pause the emulation, observe its current state, and resume it.

transform

 55

In our proposed architecture this ability is readily available since we can do this simply by

pausing or resuming the global simulation time counter of the clock generator in the HDL

Testbench Simulator (Figure 4.3). This is the mechanism that the Server Block uses in order to

pause the execution when serving a request.

Figure 4.9 shows the Flow Controller block which uses the same mechanism to temporarily

pause the simulation upon the reception of a trigger event (such as a signal in the DUT receiving

a specific value), providing in this way the equivalent of software breakpoints.

Figure 4.9. Flow Controller Block can pause/resume simulation

The mechanism to pause and resume the hardware emulation can provide us comparable

benefits to a software simulator. Wheeler et. al. in [WG01] demonstrate how design-level scan

can provide an efficient solution in order to monitor and control the status of the FPGA.

However, this technique can work at the end of a hardware execution (not on the fly) while the

authors do not show how this can work in real-time-systems. Combining this scan chain

methodology and our proposed architecture we can have a hardware simulation platform that can

pause and modify the state of the design on the fly. In particular, we can read, save and modify

the state of the memory elements in the DUT while the emulation is paused. FPGA vendors also

provide other techniques to read the state of an FPGA, such as the built-in Xilinx readback.

It is important to notice that we can read and modify any signal of the DUT without

performing any time-consuming full recompilation of the DUT that most embedded logic

analyzers (such as Xilinx chipscope) would require. This is more elaborated in Chapter 5.

Testbench

Simulator DUT

TB i/f

Scan or

readback

pause/resume

FPGA(s)

Flow

Controller

 56

Moreover, the ability to insert breakpoints in hardware emulation can be used to accelerate

the execution of multiple simulations with common long startup parts. The designer only needs

to run the common startup part once, save the state of the DUT block and restore it for each

subsequent simulation using different testbench configurations. Figure 4.10 depicts this process.

 Sim Time Sim Time

 Breakpoint

StartUp Sim
 Save DUT

State

SimN

Sim2

Sim1

 Restore DUT

State

Load TB1

 TB2

 TBN

Read, modify, write State

Multiple Runs

 Resume

 …

Single Run

Figure 4.10. Using a “breakpoint” to speed-up the execution of multiple simulations with

common startups

4.9 Transformations overview

Several other functions are performed by the tool we developed, so as to be able to reduce

the communication overhead in a hardware emulator environment. Briefly, we mention the

following code transformations:

 Timing references are transformed to simulation cycles.

 Large multi-dimensional arrays and their references are transformed into one-dimensional

arrays in order to simplify their mapping to the external memory.

 VHDL assertion statements are sent to the external CPU.

 VHDL after statements are transformed into VHDL processes that are triggered when the

after statements are executed.

 VHDL select statements are transformed into if/else statements.

 Processes that describe combinational logic which sends requests to the server block are

transformed into sequential logic that is clocked with the simulation clock.

 57

4.10 Summary

Hardware emulators and FPGA prototypes have long provided the highest performance

when compared with all the verification approaches in the industry, but they have also suffered

from a number of severe drawbacks. One of the most important problems is that complex

emulator systems demand high communication throughput between the testbench and the

synthesizable DUT which can eventually limit the performance of the simulation. To address the

above shortcoming, we proposed to split the testbench into two sections and transform the

portion of the testbench that communicates very frequently with the DUT to synthesizable code.

Therefore, we built a tool that transforms a behavioral VHDL code to synthesizable code that

can be implemented in our hardware simulation environment. In this way, we claim that we can

overcome the testbench-DUT communication bottleneck and therefore increase the capabilities

of today’s hardware emulators.

 58

Chapter 5. Circuit Observability and

Controllability

“I have always wished for a computer that would be as easy

to use as my telephone. My wish came true. I no longer know

how to use my telephone.”

Bjarne Stronstrup

Performing hardware emulation on FPGAs provides a faster, more accurate and closer-to-

reality model than software simulations. However, it is impossible to bring all the necessary

communication signals outside of the chip; on-chip visibility has become a significant issue.

Recognizing this problem, FPGA vendors have provided tools to help designers understand what

happens internally. However, circuit observability is still limited. Modification to the signals

being captured or to the size of the data capture buffer often requires a time-consuming full

recompilation of the user design. In addition, these tools provide no controllability of the Design

Under Test (DUT). In this Chapter, we tackle these problems by adding multiple fast scan-chain

paths in the design in order to provide full circuit visibility and controllability in a hardware

emulator environment. The scan chain technique proposed provides an easy way for observing

and/or modifying the state of hardware emulation on the fly. Our experiments (see Section 7.2)

demonstrate that using around 25 scan chains is the optimum solution in terms of speed and area.

 59

5.1 Background and Motivation

Apart from a fast emulation environment, engineers urgently need more efficient techniques,

than the ones provided by existing systems, for debugging their complex IC designs. The

existing hardware emulation schemes still face important limitations; in order to be very

effective in the verification process, the hardware emulation framework should provide the same

level of observability and controllability as a software HDL simulator does.

Towards this end, FPGA vendors have provided integrated solutions, such as Embedded

Logic Analyzers (ELAs), which show the transient behavior of the design. Such tools allow the

designer to easily probe the internal signals of the design inside an FPGA, much as he/she would

do with a logic analyzer. For example, while the design is running on the FPGA, a trigger event

determines when specific internal signals should be captured. In Section 3.3 we presented several

ELAs such as the ChipScope by Xilinx, the SignalTap by Altera, the ClearBlue by DAFCA, the

Configurable Logic Analyzer Module by FS2, and the embedded logic analyzer module by

Cisco.

All the aforementioned products lack circuit controllability (with the exception of

ClearBlue) while they provide limited circuit observability. Compared to software HDL

simulators, the existing ELAs have some important limitations:

 Changing specific parameters, such as the signal probes or the depth of the sample buffer, in

most cases, requires a time-consuming full recompilation of the user design.

 The sample memory of the analyzer, which determines the maximum trace period, is limited

by the memory resources of the FPGA. In a design that uses much of the FPGA's memory,

there may not be much memory left over for the ELA.

 Basic debug operations such as breakpoints, and step by step execution are not supported.

 There is no controllability of the design; the user can not set the value of an internal signal.

We tackle these problems in Sections 5.2 and 5.3 by adding multiple fast scan-chain paths in

the design in order to provide full circuit visibility and controllability in a hardware emulator

environment. The scan chain technique proposed provides an easy way for observing and/or

modifying the state of hardware emulation on the fly. Moreover, based on the scan-chain

 60

methodology, we propose, in Section 5.4, the architecture of a novel Embedded Logic Analyzer

along with a software toolset supporting full circuit observability and controllability.

5.1.1 Scan-Chain Methodology

Scan-chain path insertion includes wiring up the memory elements, such as flip-flops (FFs),

in such a way so as to have the state bits contained in these elements exit the circuit serially

through a ScanOut signal whenever the ScanEnable control signal is asserted. New state data

concurrently enters the circuit serially on the ScanIn pin. When ScanEnable is deasserted, the

circuit returns to normal operation. While scan-chain paths are usually employed to find defects

in the silicon, we use this technique in order to provide full circuit observability and

controllability.

Figure 5.1. Scan Chain Architecture

Since FPGAs do not support scan FFs (except for the FreedomChip [LS07]) we developed a

tool (described in Section 5.3) that automatically adds the scan circuitry to the synthesized DUT.

Figure 5.2 shows how a FF of a design can be inserted into a scan chain by attaching a

multiplexor (mux) and logic gates at the inputs of the FF.

Combinational Logic

Scan

FF

Scan

FF

Scan

FF

Scan

FF

ScanEn

ScanIn ScanOut

Clock

 61

Figure 5.2. Scan Flip-Flop

5.2 System Architecture and Methodology

The system presented here consists of the FPGA debug infrastructure and the supporting

toolset needed so as to provide full chip observability and controllability. The tool provides an

environment to the designer, similar to that of a software HDL simulator, where he can execute

the standard hardware emulations on the FPGA, trace internal signals, modify signal values and

perform step-by-step execution.

The common process is to define a trigger condition and a trace period where the tool

captures the DUT traces. During this period the system repeats automatically three steps:

pause execution, scan of DUT signals, resume execution. The proposed architecture is

depicted in Figure 5.3. The ELA block reads/modifies the status of the DUT by employing an

extension of the scan chain methodology (see Section 5.3) proposed in [WG01]. The ELA block

takes several clock cycles to read/modify the state of the DUT through the scan chains every

time the execution is paused and enters the scan mode. In contrast to conventional ELAs that

read the state of the DUT while the emulation is running, our ELA reads the state of the DUT

when the FPGA emulation is paused.

D

ScanIn

ScanEn

ClkEn

ScanEn

ClkEn

Clk

 D

ClKEn

Rst

Q

ScanOut

 62

Figure 5.3. System Architecture

Thus, providing a mechanism for pausing temporarily the hardware emulation gives the

opportunity to the ELA to observe and/or modify the status of the design using the scan-chains.

The key idea for supporting real-time circuit testability is the use of the HDL Testbench

Simulator. The HDL Testbench Simulator block uses a clock generator to drive all the clock

signals of the DUT. Chapter 4 describes in detail how to control (pause and resume) the

emulation execution by pausing or advancing the internal simulation time counter of the clock

generator.

The embedded CPU executes the C-like testbench code and configures the ELA at the

beginning of an emulation.

The Control Logic is a relatively simple block that sends requests to the HDL Testbench

Simulator and the ELA blocks when a trigger event is satisfied in order to capture the trace data.

Once the ELA catches a trigger event (i.e. the trigger condition becomes true) it notifies the

Control Logic. The Control Logic then reads the simulation time from the HDL Testbench

Simulator in order to send pause and resume requests periodically. Upon a pause request, it also

sends a scan request to the Logic Analyzer. Figure 5.4 shows an example timing diagram of the

aforementioned functionality, where sim_clk is the clock signal used by the HDL Testbench

Simulator block; this signal is used to coordinate the emulation and generate all the DUT clock

signals. In this example the Control Logic is configured to send a pause and a scan request once

FPGA(s)

HDL

TB

Simulator

DUT

with scan

chains

Control

Logic
Embedded

Logic

Analyzer

TB i/f

scan i/f pause(2)/resume(4)

 scan (3)

trigger(1)

C

P

U

config

 63

every DUT clock cycle (DUTclk) where the period of the DUT clock is assumed to be equal to

two simulation cycles (sim_clk).

Figure 5.4. Timing Diagram

During the Scan Period of Figure 5.4 the Logic Analyzer reads all the signals of all the scan

chains in order to capture the ones that the designer has specified. As we demonstrate in Section

7.2, the length of the scan period depends on the design size and the number of scan chains.

5.3 Multiple Scan-Chain Paths

Since the time to process a scan chain is proportional to its length, we reduce this processing

time by employing multiple scan chains that are accessed in parallel. The same technique is used

in DFT [JC05, HP99].

The tool, developed in Perl, processes the synthesized DUT in order to add multiple scan

chains. The tool tries to produce the optimal routing of the scan chains in order to minimize the

area occupancy and the access time by placing the FFs in the scan chains according to their

topology in the design; FFs logically close in the design are also close in the scan chain path.

Moreover, the tool tries to balance the lengths of the constructed scan chains. The number of

scan chains generated by the tool is parameterized. This number affects the area of the ELA as

well as the time to process the scan chains. This is further discussed and evaluated in Section 7.2.

The steps performed by the tool are the following:

trigger

Run Run Scan Scan Run Config

sim_clk

DUTclk

 pause

Trace period

 pause

pause/scan

 2cc 2cc

resume
Trigger

period

 64

1. Reading of the FPGA vendor libraries in order to determine the inputs and the outputs of

all the primitive elements.

2. Reading of the design in order to find all the instances of the primitive elements as well as

their input and output signals.

3. Processing of the design instances in order to partition the FFs into separate clock

domains. Two FFs belong to the same clock domain if they use the same clock and there

is a combinational or sequential path that connects them.

4. Processing of the clock domains in order to generate the FF connectivity graphs. A FF is

connected to another FF in the graph of a clock domain only if there is a combinational

logic path that connects them. Each clock domain has a separate connectivity graph.

5. Generation of long scan chains. For each connectivity graph a single scan chain is formed

where the FFs are placed according to their topology in the connectivity graph; i.e. FFs

close in the graph will remain close in the scan chain. Moreover, FFs belonging to the

same bus are placed together in the scan chain.

6. Partitioning of the long scan chains into multiple shorter scan chains. The number of the

short scan chains is defined by the user. The target is to minimize the length (number of

FFs) of the longest scan chain, which is succeeded by trying to equalize the sizes of all

the scan chains.

5.4 Embedded Logic Analyzer

Embedding a Logic Analyzer in a programmable logic device allows signals to be captured

after a trigger condition is true usually for a small period. An ELA captures and stores logic

signals and provides them to a graphical user interface (waveform viewer). The proposed ELA

has no limitation regarding the size of the data capture buffer and the number of signals.

Moreover, the user can modify the signal values or run a simulation in step-by-step mode

providing full chip controllability and observability.

5.4.1 Functionality of the Logic Analyzer

The ELA starts in the Trigger period (see Figure 5.4) by continuously checking for the

trigger condition. There are two ways to monitor the trigger signals in order to evaluate the

trigger condition:

 65

 The common way is to route the trigger signals from the DUT to the ELA. In this case, the

user has to reroute the trigger signals and recompile the design whenever the trigger signals

change.

 Alternatively, the ELA can read all the scan chains in every cycle of the hardware

emulation, even before the trigger condition becomes true, in order to capture and test the

trigger signals periodically. In this case there is no need for a recompilation of the design

when the trigger signals change. However, the ELA delays the entire emulation

significantly and therefore its performance is critical. As we show in Section 7.2.3 this is

not a problem for the proposed ELA which satisfies the speed needs of today’s DUTs and

can therefore adopt this innovative technique. One more advantage following this approach

is that if the ELA can trace any signal in the DUT during the Trigger period, the user can

easily program the ELA (through the embedded CPU) to support multiple trigger conditions

that are altered on the fly depending on the trigger results.

Once the trigger condition becomes true the system enters the Trace period. In typical

hardware emulations the Trace period is usually short, when compared to the entire execution

time, and therefore it is not considered critical.

The performance of the ELA determines the Scan period. The ELA enters a Scan period

when it receives a scan request by the Control Logic. During this period the ELA accesses all the

scan chains in parallel and captures/modifies the values of the data according to its configuration.

The length of the longest scan chain as well as the amount of the captured data determine the

duration of each scan period as will be discussed in Section 7.2.

Figure 5.5. Captured FFs by the Logic Analyzer.

Scan Chains in DUT

SC0

SC1

SC2

. . .

Accumulators

write Cache

Captured FFs

 66

During a scan period, the scan chains in the DUT are accessed by the ELA synchronously

(i.e. at exactly the same frequency, in lock-step with one another). In each access cycle the FFs at

the head of the scan chains are accessed. A 32-bit register per scan chain accumulates the values

of the FFs that we want to capture as shown in Figure 5.5. When an accumulator becomes full it

is written to a fast embedded cache that holds the captured FFs’ values. Since the FFs that we

want to capture have well defined positions in the constructed scan chains, and the scan chains

are accessed and written to the accumulator registers with a well defined and predetermined

timing, we can calculate the position in the embedded cache where each captured signal will

end-up to. These calculations are automatically done for each captured signal by a post-

processing tool we have developed. This tool reads all captured values, and converts them to a

format suitable for display in a waveform viewer.

Since the embedded cache is not big enough to hold all the captured data, a DRAM memory

controller periodically transfers the cache contents to an external DRAM. To prevent the

embedded cache from overflowing, in case the ELA writes trace data faster than the DRAM

controller can read them, a flow control signal can temporarily stall the ELA. In this way, the

maximum amount of data that we can capture is determined by the size of the external

DRAM memory, instead of the size of the limited on-FPGA memory (which is the case for

most existing systems).

5.4.2 Configuration of the Logic Analyzer

The ELA can capture and/or modify the values of the DUT FFs. First, the designer specifies

the trigger condition and the trace data, as well as the length of the Trace period. A software tool

that is aware of the positions of the FFs in the scan chains configures the ELA accordingly.

In each cycle a word with the values of the FFs at the head of the scan chains is formed. A

16-bit embedded pointer memory, shown in Figure 5.6, holds the positions of the words with the

traces (i.e. words including at least one bit that should be captured). Each 16-bit entry of this

memory specifies a number of continuous words. This is done by specifying the position of the

first word and the number of the following words. In this way, an entry can be used to specify a

group of adjacent words.

 67

A 32-bit mask in a mask memory (Figure 5.6) is associated with each word pointer and its

group of pointed words. The mask specifies the positions of the captured FFs in this group of

words. If some words from different groups overlap then their masks are ORed together. The

entries of the configuration memory are placed in order, based on the positions of the pointed

words. In every scan period, the ELA processes the configuration memory sequentially while it

reads the scan chains.

Figure 5.6. Configuration Memory of the Logic Analyzer.

The ELA can also modify the value of a DUT signal during the Scan period. In this case the

configuration memory is not used. The ELA supports three configuration registers (not shown in

Figure 5.6) for this operation; the WordUpdPos and WordUpdMask registers that specify the

position of a word in the scan chains and its FFs that will be modified respectively, and the

WordUpdVal register that holds the new value. For every modification of a word the user has to

update these registers and send a scan/modify request.

5.4.3 Architecture of the Logic Analyzer

A simplified block diagram of the ELA is shown in Figure 5.7. The ELA can capture and/or

modify the values of the DUT FFs. In order to do so, the designer first specifies the trigger

condition and the trace data, as well as the length of the trace period. Our software tool, that has

constructed the scan chains in the DUT, and therefore it is aware of the positions of the FFs in

SC0

. . .

Captured FFs

SC1

SC2

words

words pointer

memory

masks

Words with Traces

overlap

 68

the scan chains, configures the ELA accordingly. In particular, the tool generates the

configuration code running on the embedded CPU which sets the Configuration Memory of the

ELA at the beginning of the emulation.

Figure 5.7. Logic Analyzer Architecture

The Counter is reset when a new scan request is received and is incremented whenever a

new value is read out of the scan chains. Each Modify block is responsible for modifying the

value of a signal in the corresponding scan chain according to the ELA configuration registers

(see Section 5.4.2) and the value of the Counter. The Capture block compares the value of the

Counter with the information in the Configuration Memory in order to capture the traces using

the accumulators of Figure 5.5 where the requested traces are collected. The traces are stored

temporarily in the trace memory before being forwarded to the external DRAM, as explained in

Section 5.4.1. A compression unit can optionally be used to reduce the amount of data stored in

the trace memory.

Figure 5.7 also shows how the DUT clock signals are set during a scan period. In normal

mode these signals are generated by the HDL TB Simulator block (Figure 4.3) and provided to

the DUT as described in Section 4.6. In scan mode the clocks are connected to the scan_clk input

which is also used by the ELA. However, if the value of a clock signal, generated by the HDL

TB Simulator, is 1 when the ELA enters the scan period, the state of the DUT registers using this

sc_out[0] sc_in [0]

Modify

Counter

sc_out[1] sc_in [1]

Modify

DUT

Capture

scan_chain[0] scan_chain[1]

Config

Memory

captured

values

Compre

ssion

DRAM

controller

trace

memory

DRAM
Config

Trigger
Control

Trigger
TB_clk

clocks

mode

ΕLA

scan_clk
Scan

 69

clock signal will not be restored correctly at the end of the scan period; using an XOR gate (as in

Figure 5.7) solves this problem by inverting scan_clk.

The architecture of the ELA, although relatively simple, is very effective as Section 7.2

clearly demonstrates. Moreover, by using the scan command and the trigger block appropriately,

our system is, to the best of our knowledge, the only one that provides: (a) step by step

execution, (b) setting of break points and (c) setting of specific input test vectors at run-time.

5.5 Testing and functional verification

In order to verify the proposed methodology we built an environment for circuit emulations

where we applied the proposed framework. In particular, we used the XUP Virtex-II Pro

Development System from Xilinx which supports a Virtex-2P-30K FPGA which is a widely

used state-of-the-art FPGA and described in more detail in Section 7.1.1.

We have tested the functionality of our platform with several DUTs and testbenches. One of

the real world scenarios we emulated is a TDM card that was developed on a Xilinx FPGA in

order to connect a network with hundreds of clients. The next Section describes this test case.

5.5.1 Test Case

The test case we employed in order to verify the proposed methodology is the FPGA design

of a line card. The FPGA is responsible for the communication between Plain Old Telephone

Service (POTS) interfaces and a back plane. In particular, it forwards the voice data from the

POTS to the back plane and vice versa. Two separate designs have been emulated which

correspond to the two supported modes of the line card: the Time-Division Multiplexing (TDM)

mode and the Fast Ethernet mode. In the TDM mode the data is sent to the back plane through

two TDM channels, while in the Fast Ethernet mode the data is sent to the back plane through

two Fast Ethernet interfaces.

Figure 5.8 depicts the line card and a rough block diagram of the design when it operates in

TDM mode. Eighteen Si3241 Quad Codec chips are connected to the three TDM ports of the

FPGA. The voice data arrives from the codec chips to the Client TDM block interleaved. The

Inter2Ser block receives the interleaved voice data from Client TDM block, serializes them and

sends them to the activated Backplane TDM block.

 70

Figure 5.8. Line Card in TDM mode

In the opposite direction the voice data from the activated Backplane TDM block are

transmitted to the Ser2Inter block. The Ser2Inter block is responsible for changing the order of

the voice data bytes and sends them interleaved to the Client TDM block.

The CPU block is responsible for the signaling interface to the host processor. It also holds

the configuration registers of the FPGA that are accessed from the host processor through the

parallel interface.

The architecture of the Line Card in Fast Ethernet mode is similar to the one in the TDM

mode. Two blocks, the MAC TX and the MAC RX blocks, have taken the place of the

Backplane TDM blocks. The MAC RX block receives Ethernet frames and extracts the voice

data for the codec chips while the MAC TX block generates Ethernet frames with voice data

from the codec chips.

5.5.2 FPGA Clocks

In order to verify the correct functionality of the emulated system we need to take into

account the clock domains and make sure that the clock in each domain functions properly. This

Back Plane

TDM

Channel A

Back Plane

TDM A

Back Plane

TDM B

TDM

Channel B

Client TDM

CPU

i/f

Inter2Ser

Ser2Inter

FPGA

Host

Processor

Management

Pots Interface

Line Card

 71

test case provides several clock domains allowing us to test the functionality of the hardware

emulator and the ELA thoroughly.

Figure 5.9 depicts the clock domains of the FPGA when the Line Card operates in TDM

mode. The three clock domains are colored. The interface to the POTS and the CPU serial

interface of the CPU use a 2.048MHz clock. The backplane TDM interface and the inter2ser and

ser2inter blocks use a 16.384MHz clock received from the backplane. Finally, the CPU parallel

interface use a 48MHz clock received from the external CPU.

Figure 5.9. Clock domains in TDM mode

When the Line Card operates in Fast Ethernet mode the design employs four clock domains:

physical transmit at 25MHz, physical receive at 25MHz, client TDM at 2.048MHz and the CPU

parallel at 48MHz.

DCM

CLKA (16.384MHz)

BackPlane

TDM

client_clkA(2.048MHz) 16.384

CLKB (16.384MHz)

BackPlane

TDM

client_clkB(2.048MHz) 16.384

DCM

 Client

TDM
 inter2ser

 ser2inter

CPU_serial

DivN

PCLK1

SIGN_CLK

(64KHz)

PCLK2

PCLK3

CPU_parallel

CPU_CLK

(48MHz)

 72

5.5.3 Testing Environment

In order to verify the functionality of the proposed hardware emulator and ELA we

connected the XUP evaluation board with a workstation through a serial interface. In this way,

we could read the captured signals, as shown in Figure 5.10. The on-chip PowePC

microprocessor communicates with a uart block that supports an RS-232 link in order to send the

values of the captured signals to a Hyper Terminal running on the workstation. The Hyper

Terminal stores the data in a text file which is parsed by the dump_signals.pl script in order to

create the waveform file. Next, a waveform viewer, such as the one used by modelsim, depicts

graphically the waveforms.

The verification process is the following: First, the PowerPC sets the configuration memory

and registers of the ELA such as the number of scan chains in the DUT, the size of each scan

chain, the positions of the signals in the scan chains that should be captured, the trigger

condition, and the length of the trace period. Next, the ELA controller starts the emulation. When

the trigger condition is true, the ELA starts capturing the signals of the DUT. The values of the

captured signals are stored in the on-chip trace memory. In parallel, the PowerPC reads the

values from the trace memory and transfers them to the workstation through the serial port. If the

ELA fills up the trace memory faster than the read frequency of the PowerPC, the ELA as well

as the whole emulation is paused temporarily in order to prevent any memory overflow, as

described in Section 5.4.1. The ELA stores data in the trace memory for the Trace period

configured by the PowerPC.

In order to rerun a test and capture different traces or set a new trigger condition the user

simply has to modify the configuration memory of the ELA (i.e. the PowerPC has to execute

different configuration code), instead of performing a very time consuming design re-synthesis,

re-placement and re-routing. Therefore, by simply modifying the code running on the PowerPC

we could:

 Capture different signals in the DUT.

 Change the trigger condition.

 Change the length of the Trace period.

 73

Essentially, there is no constraint on the number of the captured signals and the length of the

Trace period. The trace memory never overflows since the emulation is paused in order to allow

the PowerPC to empty it. The final destination of the captured values is the traces.txt file and not

the trace memory which is a small buffer. Therefore, the external disk space of the workstation

determines the buffer size used for capturing the traces which is orders of magnitude larger than

any on-chip SRAM memory used by existing ELAs.

Figure 5.10. Testing Environment for the ELA

The design described in Section 5.5.1 has been extensively used in order to verify the

functionality of the proposed platform. In particular, we tested the emulator by running several

hardware emulations with different input voice data and comparing the captured traces with the

corresponding traces from software simulations.

5.6 Summary

FPGA emulation has long provided the highest performance when compared with all the

verification approaches in the industry, but it has also suffered from a number of severe

drawbacks. One of the most important restrictions is the limited circuit observability and

controllability provided to the designer. While Embedded Logic Analyzers provide circuit

observability there are still significant limitations, such as a) the small number of the probed

FPGA-xc2vp30ff896

PPC Driver
(Instr. Cache)

Trace
mem

(lengths,
signals, period)

ELA
Controller

ELA

DUT

conf
mem

TB

uart

PC (laptop)

hyperterminal

traces.txt

capture

dump_signals.pl

traces.pl

waveforms

modelsim

 74

signals and the short probing period due to the small internal memory of the FPGAs and b) the

time-consuming process of changing the trigger condition or the probed signals due to the

recompilation of the design. To address the above shortcoming, we proposed a novel

methodology based on multiple scan chains that can access quickly any register in the DUT.

Moreover, we proposed the architecture of a novel Embedded Logic Analyzer along with a

software toolset that compose an emulation environment supporting full circuit observability and

controllability on the fly.

 75

Chapter 6. Hardware/Software Partitioning

“Computers WORK, people THINK.”

IBM Corporation Old Adage

One of the most crucial tasks in today’s complex embedded systems is to split them into

their design components and allocate these design components to the available hardware and

software system entities in a cost-effective manner.

This Chapter introduces a fully automated partitioning tool incorporating a novel flow with

new cost metrics and functions. The tool employs two separate partitioning algorithms;

Simulated Annealing (SA) and a novel greedy algorithm, the Grouping Mapping Partitioning

(GMP). By selecting the partitioning algorithm, the designer can trade off between partitioning

time and effectiveness. The innovative GMP algorithm operates in two stages: the first stage

groups the design components according to how closely they interact, and in the second stage the

grouped components are mapped into the system entities. System-level simulations provide

accurate estimations in order to guide the tool to the most effective partitioning. The tool also

interacts with the end user; a feature that is crucial in complex designs. Our experiments (see

Section 7.3) demonstrate that the tool provides cost-efficient solutions in complex and large

designs and derives close to optimum results. In particular our pioneering GMP algorithm

produces results very close to those of SA while it is more than 2500 faster.

 76

6.1 Background and Motivation

Partitioning is a fundamental CAD optimization problem. It is used at almost every level of

abstraction during the synthesis of a digital system. The partitioning problem attempts to take a

set of connected modules and group them to satisfy a set of constraints and optimize a set of

design variables. During physical synthesis, partitioning is used during the floorplanning and

placement tasks. In this case, the modules are gates that are connected by nets and they are

partitioned in such a way that highly connected gates are in the same partition. As we move to

higher levels of abstraction, the modules become larger; from standard cells to macro cells (logic

level) to blocks (architecture level). Partitioning at higher levels of abstraction will impact the

system performance in a more drastic way since the interconnect delay at the higher levels of

abstraction is more pronounced. Even though the internal implementation and characteristics of a

design usually are not well specified at the initial design phases, hardware-software partitioning

is decided a priori and is adhered to as much as possible, because even small refinements in the

partitioning may trigger extensive redesign. A good system partitioning is essential for the

overall quality of the circuit.

The partitioning task is very significant for current FPGA designers since the vast majority

of today’s systems implemented in state-of-the-art FPGAs consist of a number of (mainly) soft-

core CPUs as well as dedicated hardware modules. For architectures consisting of a processor

and one or more fully dynamic run-time reconfigurable (RTR) devices, the nature of the

partitioning problem changes, as a spatial as well as temporal partitioning must be performed

[KK04]. In Reconfigurable Computing (RC) environments the partitioning algorithm can be

applied several times so as to create many different designs that can be altered at run time.

Therefore, performing fast hardware/software partitioning is especially important in RC. Greedy

partitioning algorithms, such as the GMP algorithm described in this Chapter, can provide faster

solutions than other partitioning algorithms.

 77

Figure 6.1. Hardware/Software Co-design Flow

It has been a common practice for designers to strive to make everything fit in software, and

off-load only the most time critical parts of the design to hardware so as to meet timing

constraints. Based on this approach, as Figure 6.1 shows, the designer first models the whole

system in a System Level Modeling Language, such as SystemC. Then, the system level

hardware/software co-simulation is a way to verify the functionality of the system and to give the

designer a better and deeper understanding of the various characteristics of the design, such as

attainable throughput and latency. An automated tool can then collect the information from the

co-simulation phase and give designers certain feedback regarding their design choices such as

the hardware/software partitioning, the CPU selection and the interconnection schemes of the

system entities. Moreover, the designer needs a tool that can provide an integrated environment

allowing her/him to quickly evaluate any such selections through various feedback mechanisms

based on either formal verification or system co-simulation.

The partitioning algorithm is composed of two major tasks: the creation of a system

representation which is usually an annotated graph, and the partitioning of the system

representation. The partitioning problem is NP-complete as it requires the exploration of a

design space whose size grows exponentially with the number of design components. Several

investigations propose partitioning heuristics that an automated tool can follow. The most

System Specifications

High-Level System

Modeling

High Level

Co-Simulation

System Partitioning

HW Synthesis SW Synthesis

Co-Simulation

Design Verification

refine

constraints

 78

effective ones include dynamic programming, greedy algorithms, hill climbing, simulated

annealing, genetic algorithms, tabu search, integer programming, and ant colony optimization as

described in Section 3.5.

Today’s CAD tools although they provide efficient system level simulation and

hardware/software co-simulation schemes, they still fail to address the system-level partitioning

problem effectively. Unfortunately, many design platforms cannot provide trustworthy

partitioning solutions yet and therefore they leave the actual hardware/software partitioning

choice to the system designer, or allow the designer to interactively explore the design space of

partitioning options.

In this Chapter we propose a partitioning tool that implements an innovative and fast

approach so as to provide cost-efficient systems in a timely manner. We introduce the GMP

partitioning algorithm that can produce very similar results (the difference is less than 3%) to

those triggered by the most widely used algorithm (such as SA) while it is several times faster as

shown in Section 7.3. Moreover, our tool supports also a standard SA algorithm implementation,

if even higher quality partitioning results are required. In this way, by selecting the partitioning

algorithm, the designer can trade off between partitioning time and effectiveness.

6.2 Partitioning Process

Before trying to solve the generic hardware/software intractable partitioning problem for

systems with multiple diverse hardware and software entities, we focus on the simpler, while

very important, problem of splitting the system into the parts that will be implemented in

specifically designed hardware modules and the functions that will be executed on the embedded

CPUs. The proposed methodology tries to fit the maximum possible portion of the system

into software as long as the capacity of the available software entities is not exceeded.

In order to perform the actual partitioning the following distinct steps are executed:

 System Description. The system description usually determines the granularity of the

design components. Our scheme gets as input a description of all the design components

in a system level description language (such as SystemC), while the interfaces of the

components follow the Transaction Level Modeling (such as SystemC TLM). The

 79

functionality of each design component can be described in any of several abstraction

levels, ranging from a detailed HDL-like description, to a very abstract behavioral one.

 Cost Metrics Measurement. The Size, MIPS and MTPS metrics of the components are

measured. The original code is transformed and simulated in order to trace the

transactions on the components’ interconnections and the executed CPU instructions.

 Transaction Graph (TG) Creation. A graph of the description is constructed, with

nodes representing the design components, and arcs representing their communication

channels. The cost metrics are annotated on the graph.

 Software Entities Specifications. The MIPS and the external bus MTPS values of the

software entities are specified by the designer.

 Grouping Algorithm. The graph is processed so as to produce a second graph in a more

compact and manageable form. Each node in the new compact graph represents a group

of highly-related design components.

 Mapping Algorithm. The graph is gradually splitted into two distinct parts: one part

contains the nodes with the components that should be executed in software and the other

contains the components that should be implemented in hardware.

Figure 6.2. Steps of Partitioning Tool

 The system partitioning algorithm, shown below the dashed line in Figure 6.2, is performed

iteratively for each software entity until no more design components can be assigned to the

software entities. In the following sub-section each of the steps is further described.

System Description

Transaction Graph

Entities

Specifications Cost Metrics

Grouping

Mapping

HW/SW partitions

System

Representation

System

Partitioning

Simulated

Annealing

GMP

SA=yes GMP=yes

 80

6.3 System Representation

The first main partitioning task is the representation of the system in a form that can

accurately describe both the behavior of the design components as well as the available system

resources.

6.3.1 System Description

The proposed tool takes as input a design described at TLM; such a description provides the

transactions at the design components boundaries while it may conceal the internal

implementation details. The designer should also provide the testbench code to the tool along

with corner-case scenarios where the inputs, as well as the internal signals of the design, are

switched at the maximum possible rates.

Moreover, the frequency of each clock in the design is specified in order to derive the

transaction rates of the signals between the design components. If the rate of a system input is

not fixed (for example it depends on the performance of the system), the whole partitioning

process can be executed several times using different rates and clock frequencies. For example,

this is a common case when the system reads data from a memory and the read rate may depend

on the data processing rate.

6.3.2 Cost Metrics Measurements

In our tool we define three new cost metrics: (a) the MTPS (Million Transactions Per

Second) of a design component’s interconnection bus, (b) the MIPS (Million Instructions Per

Second) and (c) the Size of a design component.

In order to understand the MTPS cost metric, let’s consider an example with two design

components, A and B, that are interconnected trough bus X as shown in Figure 6.3. If, say,

component A is to be implemented in software and component B is to be implemented in

hardware, their communication through bus X should be carried over the bus that interconnects

the corresponding software (i.e. CPUs) and hardware system entities, say bus Z. This bus Z,

which may implement a standard protocol such as AMBA in the case of ARM CPUs, will need

to perform the transactions that are carried across the simulated bus X. The MTPS value

 81

measures the transaction throughput of the bus that interconnects the software and hardware

entities (bus Z in this example) that is needed in order to sustain the throughput of data exchange

on the simulated bus that interconnects the actual design components (bus X). The MTPS value

will of course depend on the transaction rate of the simulated bus X and the ratio of the widths of

the two busses. For example, if 100 128-bit transactions per second are performed on bus X and

we have a 64-bit bus Z, the MTPS value of the interconnection between A and B will be 200.

Figure 6.3. MIPS and MTPS metrics of component A

Continuing with the above example, the software system entity (i.e. CPU) that will

implement design component A will need to run at a certain minimum speed in order to sustain

the MTPS value for the interconnection busses of component A. The MIPS value of a design

component defines the performance requirements for a software system entity, which simulates

this component, in order to sustain the total MTPS value across all its interconnection busses.

This value depends on the number of assembly instructions that should be executed if this

component is mapped into software. The MIPS value, to the best of our knowledge, has not

previously been used as a metric in hardware/software partitioning, whereas as the efficiency of

our algorithm demonstrates it is a value that can precisely characterize the corresponding

entities.

The clock frequency of a system entity or of a design component affects linearly its MIPS

and MTPS values. Both MIPS and MTPS metrics incorporate the clock frequency which makes

them ideal performance metrics for systems with multiple clock domains.

Our system first transforms the original code of the design so as to trace the transactions at

the components’ boundaries and the number of executed instructions. A Hardware Description

Language (HDL), such as VHDL, Verilog and SystemC, usually employs a tree-like structure

which we also utilize in order to create separate flat names for each design component. In Figure

A B
X

SW

(MIPS)
HW

(SIZE)
Z

(MTPS)

 82

6.4 each cycle represents an HDL basic block (module, thread, process, etc.) that instantiates

other HDL blocks. The transformed code creates flat names for all block instantiations; those

names are used in order to distinguish the operations of the design components in the trace file.

Figure 6.4. Flat names of design components

The partitioning tool performs simulations in order to generate a detailed trace file with all

the bus transactions, the executed instructions and the clock transactions. Using the trace file the

tool can automatically calculate the MTPS values of the interconnections and the MIPS values of

the components. In order to take into account performance bursts (i.e. short periods that many

instructions are executed), the MTPS and MIPS calculations are performed in successive short

time periods and the maximum values are selected.

The Size of a design component is a metric demonstrating its silicon area if implemented in

hardware. The area of a component can be estimated from the synthesis of its functions. A

synthesis tool, such as [AGC] for SystemC code, can provide a rough estimate of the area of

each component. An open-source SystemC synthesis tool is also developed in [OS10] that we

can use for the area estimation of the components. Alternatively, the tool can measure the

number of assembly instructions of the compiled description of the component in order to create

a rough estimation of its size.

6.3.3 Transaction Graph Creation

In this step, the design is flattened and an annotated Transaction Graph (TG) is constructed.

In this graph each node initially includes a single design component while the arcs correspond to

the communication paths between the design components of the nodes. The cost metrics are

annotated on the graph, as the example in Figure 6.5 shows.

A

A.B

A.B.C

A.D

A.D.E A.D.F A.D.G
design

components

tree-like structure

of HDL

 83

Figure 6.5. Example Transaction Graph where nodes are annotated with Size(S) and

MIPS(M) metrics and arcs are annotated with MTPS metric.

In order to merge the nodes of a TG, the Sizes and the MIPS values of the initial nodes are

added and the MTPS values of the interconnections are recalculated.

6.3.4 Software Entities Specifications

Regarding the software entities’ specifications, the MTPS supported by the external bus of

each software entity is specified by the designer. The protocol overhead can substantially reduce

the utilization and therefore the maximum MTPS of a bus, so this should also be taken into

account when the designer specifies the MTPS.

Moreover, the designer specifies the MIPS of each software entity as well as the Operating

System overhead (performance percentage) triggered in order to serve multiple design

components in parallel.

6.4 System Partitioning

The tool employs two separate partitioning algorithms, which are described in more detail in

this section. The GMP algorithm is an innovative algorithm invented by us, whereas the tool

implements also the SA algorithm which, based on certain studies such as [SN04], produce very

good partitioning results.

S:100

M:80

S:50

M:40

S:120

M:20

S:70

M:15
S:200

M:20

45

5

20

N1 N2

10

15

N3
5

10

25

15 10

N4

N5

 84

6.4.1 GMP Algorithm

The proposed partitioning is performed in two stages: Grouping and Mapping. While the

Grouping stage is not mandatory, it facilitates the Mapping algorithm leading to more effective

results as shown in Section 7.3.

Grouping Algorithm

While there can be many potential partitioning solutions for a given design, we argue that

there are groups of closely related design components, in almost every design, that will end up

together in any cost-efficient partitioning solution. The Grouping stage aims to group together

such design components early in the partitioning process using as a guideline the load of their

intercommunication channels. Figure 6.6 shows the distinct steps of the Grouping algorithm. The

steps in dash boxes are optional.

The algorithm consists of a coarse-grain grouping followed by a finer-grain grouping; in the

latter phase the design components of each node can be regrouped.

In step 1 the designer can manually merge together nodes. These nodes usually implement a

common function of the system and should be implemented on the same system entity. The

designer can also specify that a group of nodes will be implemented in a specific-purpose

hardware module or executed on a CPU; the specified nodes are merged together and remain

intact throughout the whole partitioning process.

Figure 6.6. Steps in Grouping

 . . .

node 1

refine

thresholds

node 2 . . .

Coarse-grain

Grouping

 . . .
Fine-grain

Grouping

Transaction Graph

1. User Grouping

2. Thresholds

3. Grouping

4. Create TG

2. Thresholds

3. Grouping

4. Create TG

Compact Transaction Graph

 85

In step 2 the designer defines the high MTPS threshold and the low and high group-size

thresholds. These thresholds determine the level of aggressiveness (i.e. the grouping tendency)

of the Grouping algorithm; the lower the MTPS threshold or the higher the low group-size

threshold, the more nodes that will be grouped together. The high group-size threshold is used in

order to limit the Sizes of the nodes in the resulting compact TG. Typical threshold values are

shown in Section 7.3.

In step 3, a greedy algorithm has been implemented in order to group the nodes of the TG

according to the aforementioned thresholds. This algorithm is described in the following pseudo-

code:

a) Find unmarked node A with the minimum Size (all the nodes are initially unmarked and

they are marked in step d). If all nodes are marked exit.

b) Find the adjacent nodes (nodes directly connected to node A) that their Sizes, when

added to the Size of node A, do not exceed the high group size threshold. If no such

adjacent node exists jump to d.

c) Select node B from the adjacent nodes with the maximum total MTPS value on the arcs

connecting it with node A. If this MTPS value is greater than the MTPS threshold or the

size of node A is less than the low group-size threshold merge nodes A and B and jump

back to a. Otherwise continue with d.

d) Mark node A. Jump back to a.

In the TG created by this algorithm, for any two nodes that have total Size less than the high

group-size threshold, the total MTPS value on the communication channels connecting them will

certainly be less than the MTPS threshold. If the designer is not satisfied with the grouping

results, she/he can refine the thresholds and rerun the Grouping algorithm.

In step 4 a node can be disassembled and a new TG can be formed from its design

components. This TG is a sub-graph of the initial TG including only the design components of

the node. Steps 4, 2 and 3 can be iteratively executed for each node of the TG. In this way, the

designer can create a new sub-TG from the design components included in a single node and

rerun the whole Grouping algorithm using different thresholds.

Mapping Algorithm

The Mapping algorithm maps the nodes of the TG derived from the Grouping step into the

available entities of the system. The algorithm can map more than one node into the same entity

 86

essentially merging the nodes together. The primary goal of the Mapping algorithm is to fit

as much logic as possible into the software entities (i.e. maximize the total SIZE of the

software components).

A greedy algorithm is employed which derives accurate results in a much faster way than

existing algorithms. The partitioning methodology proposed here begins with the assumption

that the entire system is implemented in custom hardware. The algorithm then visits the various

nodes in the TG, finding those that can be executed in the specified CPUs without breaking any

timing constraints.

In order to decide whether a node can be implemented on a software entity we need to

compare its MIPS value and the total MTPS value of its arcs against the available MIPS and

MTPS values of the specified CPU taking also into account the OS overhead. In general, our

mapping algorithm creates sub-graphs and assigns them to the software entities. Using the cost

function described below it selects a node and subsequently picks adjacent nodes. The specific

steps of the algorithm are the following:

a) Find a large node A in the TG with small MIPS and MTPS values that can be executed

on the software entity. Nodes that require high throughput and high processing power

are obviously more suited for hardware implementation. On the other hand, certain

nodes that are large and have low throughput and process requirements can better be

executed on a CPU. For example, node 5 in Figure 6.5 is better suited for software

implementation than node 1. Considering this goal, the node with the minimum value

of cost function FSW is selected as the best candidate for software implementation,

where the cost function FSW is defined as following:

The MIPSavail and MTPSavail values are the remaining available MIPS and MTPS

values of the software entity. The MTPSdiff value is the actual numerical difference, in

the remaining available MTPS value of the entity, if the node is selected to be

implemented in software. The MIPSnode and Sizenode are the MIPS and Size values of

the node. This formula roughly shows the percentage of the available resources that a

node will allocate if executed on this software entinty over its Size. This formula

FSW = max (,) / Sizenode

MIPSnode MTPSdiff

MIPSavail MTPSavail

 87

characterizes accurately any system ranging from systems with high throughput

requirements to systems with high process requirements since it dynamically employs

the available throughput percentage or the available process percentage.

b) Calculate the new MIPSavail and MTPSavail values of the software entity:

MIPSavail(new) = MIPSavail(old) + MIPSnode

MTPSavail(new) = MTPSavail(old) + MTPSdiff

c) Use the same cost function FSW in order to select adjacent nodes and create the

maximum sub-graph starting from node A by merging nodes together as long as the

sub-graph can be implemented on the specified software entity.

d) Map the sub-graph into the software entity. Jump back to a.

6.4.2 Simulated Annealing

Simulated annealing is a programming method that attempts to simulate the physical process

of annealing. Annealing is where a material (as steel or glass) is heated and then cooled usually

for softening and making the material less brittle. By analogy with this physical process, each

step of the SA algorithm replaces the current solution by a random "nearby" solution, chosen

with a probability that depends both on the difference between the corresponding function values

and on a global parameter T (called the temperature), that is gradually decreased during the

process. The dependency is such that the current solution changes almost randomly when T is

large, but increasingly "downhill" (i.e. better solutions) as T goes to zero. The allowance for

"uphill" moves (i.e. worst solutions) saves the method from becoming stuck at local optima,

which are the bane of greedier methods. For any given finite problem, the probability that the

simulated annealing algorithm terminates with the global optimal solution approaches 1 as the

annealing schedule is extended. This theoretical result, however, is not particularly helpful, since

the time required to ensure a significant probability of success will usually exceed the time

required for a complete search of the solution space.

Τhe most important factor in SA algorithm, as described in [WC02], is the employed cost

function and whether this function allows the algorithm to hill-climb over suboptimal solutions.

 88

The SA approach creates valid neighborhood solutions by moving a single node from one

partition to the other. The algorithm is described in the pseudo code below:

Construct initial partitioning Pnow with all nodes in HW

Initialize Temperature T=TI

while stopping criterion not met {

for i=1 to TL {

Generate a random neighboring solution Pneigh

Compute cost func. change ΔC=C(Pnow) – C(Pneigh)

if ΔC >= 0 then Pnow = Pneigh

else {

Generate q=random(0,1)

if q < e
- ΔC/T

 then Pnow = Pneigh

}

Set new temperature T= a * T

}

return solution Pnow

(where TI = 400, TL = 100, α = 0.98)

The parameters TI (initial temperature), TL (temperature length), a (cooling ratio) and

stopping criterion specify the cooling schedule. The stopping criterion becomes true if no new

solution has been accepted for three consecutive temperatures. The formula of the cost function

we used, so as to take advantage of all our metrics, is the following:

The SizeSW is the total Size of the nodes that are selected to be implemented on the software

entity and the Sizetotal is the total Size of all the nodes.

6.5 Partitioning Tool Implementation

The input, to our tool, is an embedded system described in SystemC. A SystemC thread,

similar to a Verilog module or a VHDL process, is the building block of any SystemC design

and describes the functionality of a design component. Therefore, the developed tool assumes

that each SystemC thread is a separate design component.

C = - 0.8 * - 0.1 * - 0.1 *
SizeSW MTPSavail MIPSavail

Sizetotal MTPSSW MIPSSW

 89

The tool is available at [OP10]. A snapshot of its GUI is shown in Figure 6.7, where the

design is depicted as an annotated graph as well as a tree-like structure.

In order to verify the functionality of the developed platform we applied it on the SystemC

descriptions of a digital filter and two small RISC CPU-based designs. The original codes of the

digital filter and one of the RISC CPUs were derived from the SystemC examples publicly

available at www.systemc.org. The other RISC CPU (named Mephisto CPU) is a Digital Signal

Processing module that has been designed by the French research organization CEA

(Commissariat à l'Énergie Αtomique). These designs consist of 6, 12 and 18 threads respectively.

The digital filter and the CPU from CEA are described in the following Sections.

Figure 6.7. Graphical User Interface of Partitioning Tool

6.6 First Test Case

The example digital filter consists of six design components: one SOURCE block, two FFT

blocks, one FIR block and two SINK blocks, as shown in Figure 6.8.

 90

The tool first parses the design and creates a graph, where the nodes represent the design

components and the arcs represent the communication paths between the components. The user

can select to execute any of the following commands, as shown in Figure 6.9:

• Flat: A flat graph of the design is constructed with nodes representing the design

components and edges representing the interconnections between the components.

• Annotate: The design is simulated in order to generate a graph annotated with the cost

metrics of the design components.

• Merge: The user can select nodes and manually merge them together.

• Grouping: The Grouping algorithm runs in order to group closely related nodes.

• Mapping: The Mapping algorithm is executed in order to allocate the nodes into the

available hardware and software entities.

Figure 6.8. Block Diagram of digital filter

Figure 6.9. User commands supported by the tool

 91

In Figure 6.10, the designer has manually merged SOURCE1 node with FFT2 node (green

nodes) and FIR1 node with FFT1 node (teal nodes).

Figure 6.10. Manual merging of design components

Figure 6.11. Partitioned design where green nodes are assigned to the SW entity and red

nodes to the HW entity

 92

Figure 6.11 depicts an example partitioning of the digital filter. The green nodes are

assigned to the software entity while the red nodes are assigned to the hardware entity.

6.7 Second Test Case

In order to further verify the functionality of the HW/SW partitioning tool we applied it on

the SystemC description of Mephisto CPU, which has been developed by CEA. The CPU was

used for 3GPP telecommunication. The design consists of 18 components. The block diagram of

the Mephisto’s design is shown in Figure 6.12 and the hierarchy of the design components is

illustrated in Figure 6.13.

Figure 6.12. Block Diagram of Mephisto

 93

Figure 6.13. Design Components of Mephisto

In order to parse and partition this real word design the partitioning tool had to support more

complicated SystemC declarations. First, all the SystemC files of the design are parsed in order

to derive the design components and their interconnections. In this step, the tool finds all

SystemC modules, instantiations and inter-block signals. A flat graph of the design is

constructed, with nodes representing the design components, and edges representing their

communication channels. A snapshot of the GUI is given in Figure 6.14, where the design is

depicted as a flat graph as well as a tree-like structure.

 94

Figure 6.14. Flat graph of Mephisto depicted in the GUI of the Partitioning Tool

The tool transforms the original code of the design so as to trace the transactions at the

components’ boundaries and the number of executed instructions. System simulations are

performed in order to generate a detailed trace file with all the bus transactions, the executed

instructions and the clock transactions. Using the trace file the tool can automatically calculate

the MTPS values of the interconnections and the MIPS values of the components. In order to

take into account performance bursts (i.e. short periods that many instructions are executed), the

MTPS and MIPS calculations are performed in successive short time periods and the maximum

values are selected.

The table below shows the measured MIPS and Size values of the Mephisto’s design

components that were derived from the trace file.

 95

Component Total MIPS Size (instruction count)

mep_sat_cnt 300 77594

mep_regser 1 78562

ag_ra0 198 86042

mep_sp_ram0 97 79365

mep_sp_ram1 97 79365

mep_fifo_out 500 90213

mep_ra 310 86228

cmp_sel 138 91560

mep_fifo_in 526 86073

ag_ra1 197 86042

ag_ra2 210 86042

mep_adr_sr 1 89882

c2p 141 81873

Mdiv 1 90099

mep_sr 300 92812

ag_ram0 1 89019

ag_ram1 1 89019

mep_dp 548 185156

The cost metrics are annotated on the graph as shows in Figure 6.15. The MIPS and total

MTPS values of the design component are annotated on the nodes while the MTPS values of the

communication paths are annotated on the edges.

Figure 6.15. Annotated graph of Mephisto

 96

The partitioning of the design is based on the GMP (Grouping Mapping Partitioning) we

have developed and consists of two steps: The Grouping algorithm and the Mapping algorithm.

The Grouping algorithm is performed where the graph is processed so as to produce a graph in a

more compact and manageable form. Each node in the new compact graph represents a group of

highly-related design components. The threshold values of the Grouping algorithm are set in the

configuration file of the tool. The user defines the high MTPS threshold and the low and high

group-size thresholds. These thresholds determine the level of aggressiveness (i.e. the grouping

tendency) of the Grouping algorithm as described in Section 6.4.1.

Figure 6.17 shows the results after the Grouping algorithm. As shown nodes mep_pc and

mep_dp have been merged together because there are many communication paths between them.

Figure 6.16. Colored nodes have been merged together after the Grouping algorithm is applied

Next the Mapping algorithm is applied where the graph is gradually splitted into two distinct

parts: one part contains the nodes with the components that should be executed in software and

the other contains the components that should be implemented in hardware. In the example of

 97

Figure 6.17 we used a software entity that supports 1000 MIPS and 400 MTPS on its external

bus.

Figure 6.17. HW/SW partitioning of Mephisto where red nodes should be implemented in

HW and green nodes should be executed in SW.

In order to verify the functionality of our partitioning tool, the tool has been extensively

used in partitioning the digital filter and the Memphisto CPU using different software entities

and partitioning parameters. Tweaking the thresholds of the Grouping algorithm we could derive

the optimum partitioning results. These designs are small in order to extensively evaluate the tool

and therefore a very large set of possible graphs were used in Section 7.3.

6.8 Summary

Although Hardware/Software partitioning has been extensively studied in the last twenty

years, there are still many important open issues. At the same time, the partitioning task is very

important for current SoC designers since today virtually all such systems consist of a number of

CPUs as well as dedicated hardware modules. Moreover, performing fast and efficient

hardware/software partitioning is especially important in RC where the partitioning algorithm

 98

can be applied several times at run time. In order to address some of the open issues we first tried

to provide a better understanding of the partitioning problem and then we presented an open-

source tool that provides a complete and efficient solution.

The developed tool utilizes new cost metrics and supports two separate partitioning

algorithms. The tool first constructs a unified performance graph of the embedded system where

the sizes and instructions per second of the nodes, as well as the transactions of the

interconnections between the nodes, are annotated. Next, our innovative GMP algorithm

processes the graph, groups highly-related nodes together and indicates which should be

implemented in hardware and which should be executed on the embedded CPUs. The main

advantage of our GMP-based approach is that it provides cost-efficient solutions in a much faster

way than traditional partitioning algorithms/tools. Alternatively, our tool employs also an

implementation of the SA algorithm which is considered to derive very efficient partitioning

results.

We strongly believe that since this is the first known such open-source framework it can

provide a concrete base of a family of more advanced partitioning design tools that employ

various cost and capacity metrics and accurate cost functions.

 99

Chapter 7. Performance Analysis and Evaluation

“Man is a slow, sloppy and brilliant thinker; the machine is

fast, accurate and stupid.”

William M. Kelly

This Chapter provides a detailed evaluation of the proposed methodologies and platforms.

We compare our approaches against existing methodologies and provide a performance analysis

based on real world test scenarios. First, we analyze the hardware emulator (Section 7.1) and the

scan chain methodology (Section 7.2) and finally we evaluate the hardware/software partitioning

algorithm (Section 7.3).

7.1 Hardware Emulator

In order to evaluate the tool and quantify the proposed methodology we created a typical

hardware emulator system in which we applied the proposed framework.

7.1.1 Evaluation board

We used the Xilinx University Program (XUP) Virtex-II Pro Development System from

Xilinx which supports a Virtex-2P-30K FPGA, a widely used FPGA. The Xilinx Virtex-II Pro

family of devices incorporates small yet powerful PowerPC 405 processor hard cores and

supports Microblaze processor soft cores. Xilinx uses CoreConnect as the bus infrastructure for

 100

all of their embedded processor designs; the CoreConnect is a microprocessor bus-architecture

from IBM for SoC designs and it is used extensively in their PowerPC-based designs.

Advanced features of the Virtex-II Pro FPGAs include powerful system connectivity

solutions, digitally controlled impedance (DCI) technology, comprehensive clocking solutions,

high-speed Active Interconnect routing architecture, and bitstream encryption. Figure 7.1 shows

the Xilinx evaluation board which we used for our Hardware Emulator platform.

Figure 7.1. XUP Virtex-II Pro Development board

The XUP Virtex-II Pro Development System provides an advanced hardware platform that

consists of a high performance Virtex-II Pro Platform FPGA surrounded by a comprehensive

collection of peripheral components that can be used to create a complex system and to

demonstrate the capability of the Virtex-II Pro Platform FPGA. Figure 7.2 shows a block

diagram of the XUP Virtex-II Pro Development System.

 101

Figure 7.2. XUP block diagram

We have tested our proposed methodology against several real-world DUTs and

testbenches, and always derived significant speed-ups compared to conventional emulation

systems and came to the same final conclusions. The speed-up depends directly on the number of

DUT-testbench signals. In Section 7.1.2 we compare the proposed emulator with a conventional

emulation scheme, and in Section 7.1.3 we analyze a test scenario that we have used.

7.1.2 Performance Evaluation

In this Section, “frequency” of an event is defined as the number of times this event occurs

over the total simulated clock cycles.

In a transaction-based conventional emulator, such as the ones described in Section 3.1 that

follow the SCE-MI standard, the FPGA that emulates the DUT and the transactors,

communicates with the external CPU that runs the proxies and software portion of the testbench,

via a fast off-chip bus. The average time to simulate a clock cycle is given by the following

formula:

(1) SimulationCycletime = EmulatorCycletime + TRANSACTIONfrequency X (BUStime + CPUtime)

Where:

 “EmulatorCycletime” is the time required by the FPGA to emulate one clock cycle of the

DUT.

 102

 “TRANSACTIONfrequency” denotes the frequency of the transactions.

 “BUStime” denotes the average bus time to execute the SCE-MI protocol and send the

transaction and its data from the FPGA to the CPU and vice-versa.

 “CPUtime” denotes the average CPU time consumed in the host workstation to process a

transaction.

In our case, the average time to simulate a clock cycle is given by the following formula:

(2) SimulationCycletime = EmulatorCycletime + PLIfrequency X (BUStime + CPUtime) +

MEMfrequency X MEMtime+ FPfrequency X FPtime

Where:

 “EmulatorCycletime ” is the time required by the FPGA to emulate one clock cycle of the

DUT.

 “PLIfrequency”, “MEMfrequency” and “FPfrequency” denote the frequencies of the PLI calls, the

memory references and the floating point operations, respectively.

 “BUStime ” denotes the average bus time to execute the bus protocol (e.g. IBM’s

CoreConnect) and send the PLI call or results from the synthesized testbench to the

embedded CPU and vice-versa.

 “CPUtime ” denotes the average time consumed by the embedded CPU for processing a

PLI call.

 “MEMtime” denotes the access time of the external memory.

 “FPtime” denotes the execution time of a floating point operation by the embedded FPU.

Let us now compare these two formulas. One of the biggest advantages of our approach is

that it will usually result in a much higher portion of the testbench than just the transactors, being

converted into synthesizable HDL code and emulated on the FPGA together with the DUT. The

result is that the emulation will need to halt for PLI calls or other external operations much less

frequently than a conventional emulator will need to halt for a transaction. Thus, compared to a

conventional emulator:

PLIfrequency + MEMfrequency + FPfrequency ≤ TRANSACTIONSfrequency

 103

Moreover, memory and floating-point operations are executed much faster in our approach

since we do not need any software intervention for them, in contrast to a conventional emulator

that performs these operations in software via corresponding off-chip transactions. Thus:

MEMtime < BUStime + Average CPUtime

FPtime < BUStime + Average CPUtime

Additionally, our approach utilizes on-chip high-bandwidth low-latency buses (running e.g.

CoreConnect), in contrast to conventional emulators that usually utilize off-chip buses (running

SCE-MI). Thus:

BUStime < BUStime

Putting it all together, our approach turns out to be considerably faster than a conventional

emulator.

7.1.3 Test Case

The DUT of our reference test scenario, for which we present detailed results in this Section,

is a hardware module containing two memory controllers that make periodically pseudo-random

accesses to a parameterized number of SRAM and DRAM chips. The testbench includes the

memory models for these chips.

The memory models that we used are those of a 32-bit ZBT SRAM and a 16-bit SDRAM

DDR, acquired from Micron Technology, Inc. [MTI]. Thus, even though it is a small-scale test

case, it includes real-world, widely-used code, that has been developed by engineers in a large

semiconductor company. We performed several tests by varying the number of memory chips

that are instantiated.

The tool that we have developed was able to successfully transform the original testbench,

including the memory models from Micron Technology, into synthesizable HDL code. The large

memory arrays of the models are stored in the DDR memory of the XUP board that is accessed

by the embedded PowerPC processor and the DDR memory controller. The whole system,

including the transformed testbench and the DUT, was synthesized and simulated using the ISE

8.1 EDA software from Xilinx.

 104

Performance Measurements

The FPGA which contains the DUT and the synthesized testbench runs at 125 MHz, with

the critical path in the SDRAM model, as expected. An SRAM memory transaction, which

involves a single request between the HDL testbench block and the server (Section 4.3),

averaged 30 ticks in a large number of test runs. A SDRAM burst transaction, which involves 4

requests for a burst size equal to 4, took 140 ticks on average. The DUT performs one access to

every SRAM chip and one to every SDRAM chip in parallel every 200 simulation cycles on

average. Taking all this into account we can measure the simulated Cycles Per Second (CPS).

The results are depicted in Figure 7.3.

0

2

4

6

8

10

12

14

16

1SRAM /1DRAM 2SRAM /2DRAM 3SRAM /3DRAM 4SRAM /4DRAM 5SRAM /5DRAM

Memory Chips

M
e
g

a
 C

y
c
le

s
 P

e
r

S
e
c
 (

M
H

z
)

Figure 7.3. Simulation Speed.

In our tests we varied the number of SRAM and SDRAM chips in order to measure how this

affects the simulation speed. As we can see in the Figure, the simulation speed remains largely

unaffected by the number of memory chips. Increasing the number of memory chips will

certainly result in a higher number of signals between the DUT and the testbench (90 signals per

SRAM, and 48 signals per SDRAM). Since the testbench is synthesized and emulated on the

same FPGA together with the DUT, the increased number of signals does not affect the FPGA

clock cycle EmulatorCycletime , but the number of memory chips affects linearly the frequency of

the memory accesses MEMfrequency. However, the server is able to access the external memory

 105

where the long arrays of the memory models reside without any software intervention

(PLIfrequency = 0) and consequently the emulation speed is slightly affected.

On the other hand, a conventional emulator, using transactors and message port proxies,

needs to go off-chip several times for every memory access. The memory accesses need to be

transferred from the FPGA emulator to the CPU simulating the software part of the testbench,

executed in software that accesses an external memory, and have their results sent back via the

SCE-MI bus. The resulting communication and execution overhead when compared to our

approach can be as high as proportional to the number of memory chips.

As Figure 7.3 shows, our approach reaches a simulation speed of over 10M CPS for 5

SRAM and 5 SDRAM chips. In comparison, Palladium and VStation Pro report emulation

speeds of 600K CPS, and Kim and Kyung [YC04] measure the speed of a conventional emulator

and their improved emulation system between 38K CPS and 701K CPS which is about 15 times

slower than our approach.

In order to further quantify our approach, we compared the simulation frequency of a

conventional system against that achieved by our proposed framework. Following the

transaction-based model, we assumed that the designer provides the transactors that implement

the functionality of the SRAM and SDRAM models. Figure 7.4 shows the speed-up gained by

our approach over a conventional emulator running our test case. We have measured that the

conventional emulator requires an average of 250 cycles at 125 MHz per transaction (BUStime +

Average CPUtime).

These results are in favour of the conventional emulator since several delays incorporated in

the communication, such as the latency of the off-chip communication link, that cannot be

accurately measured or estimated, were assumed to be zero.

 106

0

2

4

6

8

10

12

14

1SRAM/1DRAM 2SRAM/2DRAM 3SRAM/3DRAM 4SRAM/4DRAM 5SRAM/5DRAM

Memory Chips

S
im

u
la

ti
o

n
 S

p
e
e
d

 U
p

Figure 7.4. Comparison of the proposed architecture.

Finally, we wanted to compare our proposed architecture against a widely-used software

simulator such as modelsim or vcs. To this end, we used Intel’s VTune [INV] to analyze a

number of simulations running on modelsim. The main drawback of a software simulator is that

the simulation speed is directly affected by the size of the DUT, in contrast to a hardware

emulator where the DUT is synthesized and the speed is not as severely affected by its size.

VTune shows millions of instructions being executed even for small simulations, while OS

device drivers consume a significant percentage of the simulation time. Our approach operates at

1000 to 10000 times faster than modelsim depending on the actual complexity of the DUT.

7.2 Embedded Logic Analyzer

In order to evaluate and quantify the proposed ELA (see Section 5.4) we used the emulation

environment described in Section 7.1 where we applied the scan chain methodology. The

hardware emulator uses the XUP Virtex-II Pro Development System from Xilinx, described in

detail in Section 7.1.1. This evaluation environment supports an embedded PowerPC which we

used in order to configure and monitor the status of the ELA.

In order to measure the performance and evaluate the scan chain technique and the ELA, we

applied our methodology on the code of the TDM line card described in Section 5.5.1, which

connects a backbone network with hundreds of clients. The DUT includes 786 FFs partitioned

into 5 long scan chains by the scan chain tool (Section 5.3). The final conclusions from the

 107

measurements are independent of the specific DUT we used. The system which includes the

testbench block, the DUT and the ELA was synthesized using the Xilinx ISE 7.1 tool.

7.2.1 DUT Scan Circuitry Evaluation

The area overhead of the scan circuitry is an important issue. [SM97] claims that a D Flip

Flop instrumented for scan is only 10% larger than the original one and adding scan logic in

VLSI requires a 5% to 30% area overhead. This, unfortunately, is not the case in FPGAs (see

also [WG01]), where instrumenting a FF for scan effectively doubles its size since the FF and the

scan mux have the same size (each block covers half of the Logic Element (LE)). The size may

even triple or quadruple by using additional LEs for the clock enable and set/reset scan logic. In

our evaluation environment the DUT with the multiple scan chains occupies around 90% more

area than the original design as our measurements for different DUTs demonstrated. If the future

FPGAs internally support scan structures, such as FreedomChip, this area overhead will

obviously be drastically reduced.

Moreover, in [WG01] the authors claim that adding scan logic, on average, reduces the

speed of the circuit by 20%. The measured speed reduction in our experiments was slightly

lower but in general this is not a significant issue for a hardware emulator; such systems perform

functional verification by emulating the circuits of the user design, orders of magnitude slower

than reality (i.e. the final real hardware implementation).

7.2.2 Logic Analyzer Evaluation

The scan period is important when the ELA is activated during the complete hardware run,

even before the trigger condition is true, in order to capture and test the trigger signals. The

length of the longest scan chain in the DUT affects directly the scan period of the ELA. By

increasing the number of scan chains generated in the DUT, the length of the longest scan chain

diminishes. This is depicted in Figure 7.5 for our example design.

 108

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70

Number of Scan Chains

M
a

x
 S

C
 L

e
n

g
th

Figure 7.5. Length of longest scan chain

Figure 7.5 shows that the length of the longest scan chain decreases slightly when the

number of scan chains is greater than 25. This is obvious since the equation that gives the length

of the longest scan chain when the scan chains are balanced (see Section 5.3) is:

(1) Scan Chain Lengthmax = Number of RegistersTotal / Number of Scan Chains

The number of the scan chains supported by the ELA is parameterized in the VHDL code.

This number affects the size of the ELA linearly, as shown in Figure 7.6. Therefore, it is

important to keep it as small as possible. We used the Xilinx ISE synthesis tool in order to

estimate the size of the ELA. As shown in Figure 5.7 the logic blocks as well as the length of the

internal signals in the ELA are directly affected by the number of the scan chains. Using the

Xilinx Virtex-2P-30K FPGA, an ELA that supports 32 scan chains occupies 13% of the FPGA

area, while an ELA that supports 64 scan chains occupies 20% of the FPGA area.

 109

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70

Number of Scan Chains

F
P

G
A

 S
li
c
e
s

Figure 7.6. Area of ELA

Figure 7.7 shows the clock frequency as a function of the number of the scan chains

supported by the ELA. These numbers were derived from the Xilinx ISE synthesis tool. As the

number of scan chains increases the area of the ELA increases (Figure 7.6); this means that the

internal logic as well as the length of the internal wires increases also. This results in a small

clock frequency drop as shown in the figure below.

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70

Number of Scan Chains

E
L

A
 F

re
q

u
e
n

c
e
 (

M
H

z
)

Figure 7.7. Frequency of ELA

The length of the scan period is an important measurement that characterizes the

performance of the proposed methodology. This number depends on the length of the longest

scan chain in the DUT (or the number of the scan chains), the number of the signals to be traced,

 110

and the speed of the ELA. Figure 7.8 shows the scan period as a function of the number of the

scan chains in the evaluation environment, when we trace the values of 15 signals/busses.

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

Number of Scan Chains

S
c
a
n

 P
e
ri

o
d

 (
μ

s
)

Figure 7.8. Scan Period

Figure 7.8 shows that the scan period is almost fixed when the number of scan chains is

greater than 25. The reason is that the length of the longest scan chain slightly decreases (Figure

7.5) while in parallel the speed of the ELA drops (Figure 7.7) and the clock cycle of the ELA

increases. The length of the scan period is roughly proportional to the length of the longest scan

chain and to the clock cycle of the ELA (there are also some overhead cycles due to the captured

signals and the size of the captured buffer) as described in the following equation:

(2) Scan Periodlength ≈ Scan Chain Lengthmax X ELAclock cycle

The aforementioned plots demonstrate that around 25 scan chains is the optimum solution,

while implementing more scan chains results in increasing the area of the ELA without

succeeding smaller scan period. This conclusion is independent of the DUT we used since the

DUT size (Number of RegistersTotal) affects linearly the measurements of Figure 7.5 and Figure

7.8 as derived from equations (1) and (2).

7.2.3 Evaluation of the Trigger Condition

The ELA must be activated before the trigger condition is true in order to avoid recompiling

the design when the trigger signals change (see Section 5.4.1). In our evaluation environment,

 111

the ELA can access all the scan chains of the DUT (without capturing data) in 145 ns. The

simulation cycle of the emulated design in Section 7.1.3 is 32 ns, where the critical path is in the

testbench code and not in the DUT. Assuming that we activate the ELA once in every cycle, the

new simulation cycle will be 180 ns or about 5 times longer. This means that the simulation will

be about 5 times slower for a design of 786 FFs.

Extrapolating from these results, Figure 7.9 shows how much slower the simulation is when

the ELA is activated in every simulation cycle as a function of the number of registers in the

DUT. The number of registers in the scan chains affects the emulation speed linearly. This is

because the scan period is proportional to the length of the longest scan chain which is

proportional to the number of registers in the DUT as derived from equation (1) in Section 7.2.2.

Figure 7.9. Speed Degradation

In order to decide whether the design should be recompiled or use the ELA (no

recompilation) instead, the designer should consider how much time it takes to compile the

design, when the trigger condition becomes true and how often the ELA should evaluate the

trigger condition. For example, if we want to emulate a big design with 5K registers and the

trigger condition becomes true in 10 seconds when we emulate its behavior without using scan

chains, then it takes 10 secs X 40 = 6.6 minutes with the scan chains enabled. Recompiling

(synthesis, place and route) a design with 5K registers will probably take more than 6.6 minutes.

 112

7.3 Hardware/Software Partitioning

Firstly, we evaluated our approach when implementing the three real world designs

described in Sections 6.5, 6.6 and 6.7 . However, in all three cases our toolset ended up with the

optimal solution so we could not get, from those embedded systems, any additional information

(except of the fact that it works very well for those designs) regarding our novel scheme’s

characteristics.

In order to demonstrate the efficiency of our approach, the two stages of the partitioning

algorithm were extensively analyzed and evaluated using a very large set of possible graphs. In

order to create this large set of graphs we varied the following parameters: (a) the number of

nodes, (b) the average input and output degrees of the nodes, (c) the MIPS, (d) the MTPS and (e)

the Size. We used both random graphs and geometric graphs since they can represent complex

embedded systems [YC95]. Random geometric graphs result from taking uniformly distributed

points in a cube and connecting two points if their Euclidean distance is less than a prescribed

distance.

The example platform to which we mapped these designs utilizes different embedded CPUs

as their software system entities, while their MIPS were derived from the Dhrystone

performance results [DPR]. We also used the specifications of these CPUs to derive the MTPS

values of their external busses. Additionally, for simplicity reasons, we assumed a 5% OS

overhead in all CPUs, which seems realistic for computationally intensive workloads according

to [RE00]. The hardware system entities of our example systems need not be simulated since our

algorithm is evaluated in terms of how many design components it is able to fit into the software

system entities; we assume that the more design components we are able to map into software,

the better the results, as it also supported in many different papers in this area.

In order to evaluate the results and the effectiveness of our partitioning algorithm, we

compare them against the optimum solution which is derived through an exhaustive search of the

complete design space. We define as the software percentage of any partitioning the total Size of

the threads implemented in software over the total Size of all the threads. We then use the

software percentage difference between the partitioning that our algorithm triggers and the

optimum partitioning, in order to accurately evaluate the effectiveness of our algorithm.

Figure 7.10 shows this percentage difference of the Mapping algorithm (see Section 6.4.1)

for random geometric graphs with various average MTPS values on their arcs. The exhaustive

 113

search scheme, which is used as a reference of the optimal solution, is prohibitively slow to

partition graphs with more than 30 nodes so we demonstrate our results for up to 30 nodes. A

SW entity that sustains 500 MIPS and 40 MTPS was used and the ranges of the node Sizes,

MIPS and MTPS values were selected in such a way that the optimum solution partitions the

system roughly in the middle. Each point in the graph is the average result from multiple test

cases.

0

2

4

6

8

10

12

14

5 10 15 20 25 30

Number of Nodes

S
W

 P
e

rc
e

n
ta

g
e

 D
if

fe
re

n
c

e
 (

%
)

MTPS=25

MTPS=15

MTPS=8

Average Graph

MTPS values

Figure 7.10. Evaluation of Mapping Algorithm

While the Mapping algorithm seems to operate efficiently in most graphs, we realized that

the results deviate significantly from the optimum ones when the MTPS values of the design

components are getting closer to the sustainable MTPS of the software entity, as also shown in

Figure 7.10 for the case of MTPS=25. The reason is that the Mapping algorithm is not flexible

enough to select, in a single step, nodes connected with arcs that have high MTPS values. For

instance, assuming that in the example graph of Figure 7.11 the Mapping algorithm has already

selected node N1 as the first node of the sub-graph, the best alternative is to select nodes N3 and

N4 together. However, it will select node N2 because the arc between nodes N3 and N4 has a

high MTPS value and as a result the FSW metrics of nodes N3 and N4 are high. In order to solve

this problem, we can set an upper threshold to the MTPS values in the graph, at the Grouping

stage before the Mapping stage, merging nodes interconnected with high MTPS values, such as

N3 and N4.

 114

Figure 7.11. Problem with Mapping Algorithm

Figure 7.12 shows the results from three test cases when both Grouping and Mapping

algorithms are applied. The MTPS values of the software entities that were used are 40, 70 and

100 while the average MTPS values of the arcs in the graphs are 25, 40 and 60 respectively. In

the first test case (MTPSentity=40 and MTPSgraph=25) when the MTPS threshold of the Grouping

algorithm ranges between 20 and 30, groups with closely related nodes are formed providing

better alternatives to the Mapping algorithm. When the MTPS threshold drops below 20, over-

grouping deteriorates the partitioning results. When the MTPS threshold is above 30 the

Grouping algorithm is essentially inactive. We derived similar results from all the test cases.

0

5

10

15

20

25

30

10 20 30 40 50 60 70

MTPS Threshold

S
W

 P
e
rc

e
n

ta
g

e
 D

if
fe

re
n

c
e
 (

%
)

MTPS=60

MTPS=40

MTPS=25

Average Graph

MTPS values

Figure 7.12. Problem tackled with Grouping Algorithm

If the total MTPS value of the interconnections between two nodes is larger than the MTPS

value of the software entity, the bus of the software entity cannot sustain the transactions

between the two nodes and therefore the Grouping algorithm should group such nodes together.

By analyzing more test cases we concluded that an MTPS threshold close to half of the MTPS

S:20

M:20

S:20

M:10

S:90

M:10

S:20

M:10

10

N2 N3

5

40

15

N1

N4

5

10

5

MIPSavail = 50

MTPSavail = 40

Selected:N1

Next selected:N2

FSW-N2 = 0.02

FSW-N3 = 0.04375

FSW-N4 = 0.04375

 115

value of the software entity derives the optimum solutions. So if such a threshold is utilized our

combined Grouping and Mapping algorithm reports partitioning results that differ by less than

10% from the optimal ones which are denoted by an exhaustive search of the complete search-

space.

To further evaluate our novel GMP algorithm we compare it against the SA algorithm,

which, as it is demonstrated in [WC02], produces efficient results. Figure 7.13 shows the

software percentage difference between the SA algorithm and the GMP algorithm using random

geometric graphs with various sizes. Each point in the graph is the average result from multiple

test cases. The software partitioning percentage of the SA algorithm is about 2.5% better than the

GMP algorithm which shows that the GMP algorithm provides very efficient results. In several

test cases the GMP algorithm and the SA algorithm resulted in exactly the same partitioning.

Moreover, Figure 7.13 shows that the GMP algorithm derives efficient partitioning solutions for

any graph size.

0

1

2

3

4

5

6

7

8

9

10

20 40 60 80 100 120 140 160 180 200

Number of Nodes

S
W

 P
e
rc

e
n

ta
g

e
 D

if
fe

re
n

c
e
 (

%
)

Figure 7.13. Comparison between GMP and SA

Figure 7.14 shows the time consumed by the two algorithms. Notice that the plots use

different time units. A Pentium 4 at 2.8Hz was used for our measurements.

 116

SA Time

0

500

1000

1500

2000

2500

3000

3500

4000

20 40 60 80 100 120 140 160 180 200

Number of Nodes

T
im

e
 (

s
e
c
)

GMP Time

0

200

400

600

800

1000

1200

1400

20 40 60 80 100 120 140 160 180 200

Number of Nodes

T
im

e
 (

m
s
e
c
)

Figure 7.14. Time of SA and GMP algorithms

As those results clearly demonstrate the SA algorithm is about 2500 times slower than our

GMP. The GMP greedy algorithm is very fast since the time complexity of the algorithm is

O(N). On the other hand, the more time we give to the SA by adjusting its parameters, the more

efficient results we derive. The effectiveness as well as the time of the SA algorithm depend on

the cooling ratio parameter, a. This parameter should be close to 1 in order to derive efficient

results prolonging in this way the cooling process.

So, while the SA algorithm supported by our tool derives slightly better results than the

GMP algorithm, the SA algorithm is more than three orders of magnitude slower than the GMP

algorithm making it impractical for large designs.

 117

7.4 Summary

We analyzed the proposed methodologies through simulations of random and real world test

cases. In summary, the evaluation results we derived are the following:

 We could overcome the testbench-DUT communication bottleneck of existing emulators

and therefore increase the capabilities of today’s hardware emulators by up to 1500%

when applied to real-world systems.

 We managed to provide full chip observability and controllability using the scan chain

methodology. Our measurements showed that using between 15 and 25 scan chains offers

the best tradeoffs in terms of performance and area.

 We proposed the GMP hardware/software partitioning algorithm that provides cost-

efficient solutions in a much faster way than traditional partitioning algorithms/tools. In

particular the algorithm is about 2500 faster than the SA while the results of the GMP are

always less than 3% worse than those triggered by the SA.

 118

Chapter 8. Conclusions and Future Directions

“The real danger is not that computers will begin to think

like men, but that men will begin to think like computers.”

Sidney J. Harris

Due to the complexity involved in today’s embedded systems, designing them requires a lot

of man power and the support of advanced CAD tools. Over the years, several algorithms,

methodologies and platforms have been developed in order to speed up this process; hardware

simulation accelerators, hardware emulators and automatic hardware/software partitioning are

some of them. However, there are still several limitations in all the proposed approaches, such

as:

 Complex systems demand high communication throughput between the devices running the

testbench and those emulating the synthesizable DUT. This communication can easily

become the bottleneck and eventually limit the performance of the hardware emulation.

Most of the proposed solutions for reducing the communication require manually rewriting

the testbench in a different language/manner.

 Circuit observability of emulated systems is not efficient. Modification to the signals being

captured or to the size of the data capture buffer often requires a time-consuming full

recompilation of the design. In addition, no circuit controllability is provided.

 119

 Although automatic hardware/software partitioning has been extensively studied in the last

twenty years, there are still many important open issues, which is probably the reason why

commercial CAD tools do not support this functionality yet. There is no standard and

satisfactory methodology that can automatically split any design into design components and

allocate them to the available hardware and software system entities in a cost-effective

manner.

This dissertation described cost-efficient techniques to attack each of the aforementioned

limitations. In particular we proposed the following:

 A methodology that greatly reduces or completely eliminates the aforementioned emulator

bottleneck. The idea is to transform the part of the testbench that communicates the most

with the DUT to synthesizable code, which allows us to emulate it close to the DUT, thus

avoiding costly off-chip communication. In order to evaluate our methodology, we built a

tool that provides a way to synthesize a behavioral VHDL code in a hardware simulation

environment. Our real world experiment demonstrate that we can overcome the testbench-

DUT communication bottleneck and therefore increase the capabilities of today’s hardware

emulators by up to 1500% when applied to real-world systems.

 Next, we attack the problem of circuit observability and controllability during emulation.

Towards this end, we first introduce scan chains that can quickly access any register of the

emulated DUT, and then add a novel Embedded Logic Analyzer, along with a software

toolset. The resulting emulation environment is able to support full on-the-fly circuit

observability and controllability. Our real-world experiments show that using between 15

and 25 scan chains offers the best tradeoffs in terms of performance and area.

 Finally, we propose a methodology to attack the hardware/software partitioning problem. A

graph is constructed out of the design components, and novel cost metrics are used to

annotate this graph. Based on these annotations, as well as on certain capacity metrics for

the system entities, our novel GMP algorithm is able to group closely-related design

components, and decide which should be implemented in hardware and which should be

executed on the embedded CPUs. A large number of randomly generated realistic graphs are

used to compare our algorithm against the widely used Simulated Annealing (SA) algorithm.

Our experiments show that, even though SA produces slightly better results, it is more than

 120

three orders of magnitude slower than our innovative approach making it impractical for

large designs.

8.1 Future Directions

Regarding the hardware/software partitioning we plan to investigate a hybrid approach using

both the GMP and the SA algorithms. The GMP algorithm will provide a fast solution to the SA,

which will be farther optimized in order to derive a better partitioning. In this case, the cooling

process of the SA algorithm will be faster than running the SA alone, since the SA will start from

a reasonable system partitioning instead of a random one. The hybrid approach is shown in

Figure 8.1.

Figure 8.1. Hybrid GMP-SA partitioning

Regarding the emulation platform, one thing that this dissertation does not take into account

is that big designs usually do not fit on a single FPGA. The proposed hardware emulator has to

decide where to implement the testbench-DUT communication channel in a multi-FPGA

environment. One potential approach would be to keep the communication channel on the same

FPGA as shown in Figure 8.2, while other approach may favor to split the channel in order to

increase the parallelism. In a hardware emulator consisting of multiple FPGAs, the utilization of

System Description

Transaction Graph

Entities

Specifications Cost Metrics

Grouping

Mapping

HW/SW partitions

System

Representation

System

Partitioning

Simulated

Annealing

GMP

SA=yes GMP=yes

Hyb=yes Hyb=no

 121

the FPGA logic resource is usually very low due to the limitation on the number of I/O pins.

Therefore, there is a lot of available free FPGA space that can be used in order to have multiple

HDL TB Simulator blocks in the system.

Figure 8.2. Hardware Emulator using three FPGAs

Moreover, we can next investigate the inter-FPGA communication. Virtual wire technology

not only increases the inter-FPGA communication capability, but it also increases the logic

resource utilization by means of time division multiplexing (TDM). TDM allows one physical

wire to be shared by multiple logical wires. For TDM to be effective, each transportation of an

inter-FPGA signal must be carefully assigned to a slot of the time division. Essentially, there are

two things we could investigate:

1. The inter-FPGA requirements in a hardware emulator where the DUT runs several times

slower than the speed of the final design and therefore the internal signal transactions are

much slower than the real system.

2. How we could use the pause mechanism provided by our proposed hardware emulator

(see Section 4.7) in order to pause periodically (probably in every simulation cycle) the

emulation and transfer the values of the signals between the FPGAs. In this way, the

system can essentially operate with any number of I/O pins for the inter-FPGA

communication.

Finally, we plan to investigate the use of General Purpose Graphics Processor Units

(GPGPUs) in the emulation environment. GPGPU is a new parallel technology that can provide

cost-efficient solutions for Single Instruction Multiple Data (SIMD) applications. Such a parallel

application could be the emulation of a design. Towards this end, the authors in [NP10] provide

M

E

M

O

R

Y

D

U

T

CPU

 FPGA 1

 HDL TB

Simulator

D

U

T

 FPGA 2

D

U

T

 FPGA 3

1/3 2/3 3/3

 122

an approach that parallelizes SystemC’s discrete-event simulation (DES) on GPGPUs by

transforming the model of computation of DES into a model of concurrent threads that

synchronize as and when necessary. The proposed threading model is capable of executing in

parallel on the large number of simple processing units available on GPUs.

Because the GPUs are stuck on the relatively slow PCIe bus, the communication overhead

between a GPU and an external CPU can slow down significantly the emulation performance.

Therefore, the GPU-CPU communication channel can become the bottleneck of the system

emulation if the testbench runs on an external CPU and the DUT is emulated on the GPU.

State-of-the-art technologies, such as multi-core CPUs, FPGAs and GPUs, can become

powerful platforms for advanced CAD tools in order to develop high quality systems satisfying

all the needs of the demanding market. Further investigation is required in order to combine the

advantages of these technologies and derive optimum solutions.

 123

Bibliography

[AC07] Standard Co-Emulation Modeling Interface Reference Manual, Version 2.0,

Accellera, 2007, http://www.accellera.org/activities/itc/Release200.pdf

[AGC] Agility Compiler, http://agilityds.com/support/download_agility.aspx

[ALR] ALDEC, Riviera, http://www.aldec.com/products/riviera/

[AS93] P. Athanas and H. F. Silverman, “Processor reconfiguration through instruction-set

metamorphosis,” IEEE Computer Mag., pp. 11–18, Mar.1993.

[AST] Altera, SignalTap, http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

[AXS] Axis, SEmulation, http://www.design-reuse.com/news/1702/axis-tool-blends-

emulation-simulation.html

[CAP] Cadence, Palladium Accelerator/Emulator,

http://www.cadence.com/products/sd/pages/default.aspx

[CA96] C. Carreras et. al., “A Co--Design Methodology Based on formal Specification and

High--Level Estimation”, Fourth International Workshop on Hardware/Software

Codesign, Pittsburgh, Pennsylvania, 1996

[CA02] K Ben Chehida, M Auguin, ”HW/SW partitioning approach for reconfigurable system

design”, CASES 2002

[CH94] M. Chiodo, et. al, “Hardware- Software Codesign of Embedded Systems”, IEEE

Micro, Vol. 14, No. 4, pp.26-36, Aug. 1994

[DCB] DAFCA, ClearBlue, http://www.dafca.com/products/clearblue.html

[DPR] Dhrystone performance results:

http://performance.netlib.org/performance/html/dhrystone.data.col0.html

[EH93] R. Ernst, J. Henkel, and T. Benner, "Hardware-software cosynthesis for

microcontrollers", IEEE Design and Test,V-10, Dec 1993.

[EP97] P. Eles, Z. Peng, K. Kuchcinski, A. Doboli, “System level hardware/software

partitioning based on simulated annealing and tabu search”, Design Automation of

Embedded Systems, 1997, 2(1). pp.5-32.

[EVZ] EVE, Zebu hardware emulator, http://www.eve-team.com/products/index.php

[FZ05] M. Finc, A. Zemvra “Profiling soft-core processor applications for hardware/software

partitioning”, Journal of Systems Architecture: the EUROMICRO Journal, 2005

 124

[GM93] R.K. Gupta and G.D. Micheli, “HW-SW Cosynthesis for Digital Systems”, IEEE

Design & Test of Computers, Sep 1993, pp. 29-41

[GRR] GateRocket, RocketDrive, http://www.gaterocket.com/

[HE01] J. Henkel, R. Ernst, “An approach to Automated Hardware/Software Partitioning

Using a Flexible Granularity that is Driver by High-Level Estimation Techniques”,

IEE Transactions on Very Large Scale Ingration (VLSI) Systems, 9(2):273–289, April

2001.

[HE98] J. Henkel, R. Ernst, “High-Level Estimation Techniques for Usage in

Hardware/Software Co-Design”, ASP-DAC 1998.

[HGP] HiTech Global, PALMiCE,

http://www.hitechglobal.com/designtools/computex/palmicefpga.htm

[HP99] I. Hamzaoglu and J. H. Patel, "Reducing Test Application Time for Full Scan

Embedded Cores", Int. Symp. on Fault-Tolerant Computing, pp. 260-267, June 1999.

[HS06] Ho-seok Choi, Seung-beom Lee, Sin-chong Park , “Instruction Based Synthesizable

testbench Architecture”, IEICE Transactions on Electronics Vol. E89C No.5 pp.653-

657, 2006

[INV] Intel® VTune™ Performance Analyzer, http://software.intel.com/en-us/articles/intel-

vtune-amplifier-xe/

[IS05] IEEE, "IEEE Standard Testability Method for Embedded Core-based Integrated

Circuits", IEEE Std 1500-2005, 2005, pp. 0_1-117.

[JC05] Jiann-Chyi Rau, Chih-Lung Chien, and Jia-Shing Ma, “Reconfigurable Multiple Scan-

Chains for Reducing Test Application Time of SOCs”, Circuits and Systems, 2005.

ISCAS 2005, 23-26 May 2005 Page(s):5846 - 5849 Vol. 6.

[JE99] A.A. Jerraya, et al., “Multilanguage Specification for System Design and Codesign”

chapter on “ System-Level Synthesis”, NATO ASI 1998, A. Jerraya and J. Mermet

eds., Kluwer Academic, 1999

[KB03] Karthikeyan Bhasyam, et. al, “HW/SW Codesign Incorporating Edge Delays Using

Dynamic Programming”, Euromicro Symposium on Digital System Design, IEEE

Computer Society, Sept. 2003

[KK04] Ryan Kastner, Adam Kaplan, Majid Sarrafzadeh, “Synthesis Techniques and

Optimizations for Reconfigurable Systems”, ISBN:978-1-4020-7698-5, 2004

[KL94] A. Kalavade, E. A. Lee, "A Global Criticality/Local Phase Driven Algorithm for the

Constrained Hardware/Software Partitioning Problem”, Workshop on

Hardware/Software Codesign, 1994, pp. 42-48.

[LH04] Il-soo Lee , Yong Min Hur , Tony Ambler, "The Efficient Multiple Scan Chain

Architecture Reducing Power Dissipation and Test Time", pp.94-97, 13th Asian Test

Symposium (ATS'04), 2004

 125

[LL09] Yang Liu, Qing Cheng Li, "Hardware Software Partitioning Using Immune Algorithm

Based on Pareto", vol. 2, pp.176-180, International Conference on Artificial

Intelligence and Computational Intelligence, 2009

[LS07] Lattice Semiconductor Corporation, "FreedomChip - A Cost Reduction Methodology

Lattice SC/M Devices", Lattice Semiconductor Corporation, 2007.

[MB99] M. Bauer et al., “A Method for Accelerating Test Environments”, Proc. 25
th

Euromicro Conf., vol. 1, IEEE Press, 1999. pp. 477-480

[MGV] Mentor Graphics, Veloce, http://www.mentor.com/products/fv/emulation-systems/

[MP07] I. Mavroidis, I. Papaefstathiou, “Efficient Testbench Code Synthesis for a Hardware

Emulator System”, Proc. DATE 2007

[MP08] I. Mavroidis, I. Papaefstathiou, “Accelerating Hardware Simulation: Testbench Code

Emulation”, FPT 2008, pp. 129-136

[MP09] I. Mavroidis, I. Papaefstathiou, “Accelerating Emulation and Providing Full Chip

Observability and Controllability”, IEEE Design & Test, vol. 26, 2009, pp. 84-94

[MP10] I. Mavroidis, I. Papaefstathiou, A. Garbo, S. Nocco, J. Kim, G. Cabodi, L. Lavagno,

“An Open-Source, Fast, Cost-Efficient Hardware/Software Partitioning Tool”, Poster

Session 3, FCCM 2010

[MTI] Micron Technology, http://www.micron.com/

[MZ06] Pierre-Andre Mudy, Guillaume Zufferey, Gianluca Tempesti, “A Dynamically

Constrained Genetic Algorithm For Hardware-software Partitioning”, GECCO, 2006

[NM96] Ralf Niemann, Peter Marwedel, "Hardware/Software Partitioning using Integer

Programming", European Design and Test Conference (ED&TC '96)

[NP10] M. Nanjundappa, H.D. Patel, B.A. Jose, S.K. Shukla, “SCGPSim: A Fast SystemC

Simulator on GPUs”, pp. 149-154, Design Automation Conference (ASP-DAC), 2010

15th Asia and South Pacific

[OP10] OSMOSIS partitioning tool, http://sourceforge.net/projects/osmosispart

[OS10] OSMOSIS synthesis tool, http://sourceforge.net/projects/osmosissynth

[PA04] Pradeep Adhipathi “Model based approach to Hardware/Software Partitioning of SOC

Designs”, MS, Blacksburg, Virginia, 2004

[RE00] J. Redstone, S. J. Eggers, and H. M. Levy, “An analysis of operating system behavior

on a simultaneous multithreaded architecture”, Architectural Support for

Programming Languages and Operating Systems, 2000, pp. 245.256.

[RH03] R. Henftling et al., “Re-use-centric Architecture for a Fully Accelerated testbench

Environment”, Proc. 49
th

 Design Automation Conf. (DAC 03), ACM Press, 2003. pp.

372-375

 126

[RM03] A. Ramani, I. Markov, ”Combining two local search approaches to hypergraph

partitioning”, International Joint, Conference on Artificial Intelligence, AAAI, 2003.

[SM97] M. J. S. Smith. “Application Specific Integrated Circuits”, chapter 14, page 764,

Addison-Wesley, Reading, Mass., 1997

[SN04] Sudarshan Banerjee, Nikil Dutt, “Efficient Search Space Exploration for HW-SW

Partitioning”, International Conference on Hardware Software Codesign, 2004

[SR98] A. Srinivasan and et. al, “Accurate area and delay estimation from RTL descriptions”,

IEEE Transactions on VLSI Systems, 6(1):168--172, Mar. 1998

[TA06] Tan et. Al. “Testing of UltraSPARC T1 Microprocessor and its Challenges” ITC '06.

Oct. 2006 Page(s):1 - 10

[TT04] Anurag Tiwari and Karen A. Tomko, “Scan-chain Based Watch-points for Efficient

Run-Time Debugging and Verification of FPGA Designs”, ASPDAC 2004

[VEE] Verisity, eCeleretor testbench Acceleration,

http://www.verisity.com/products/ecelerator.html

[VL97] F Vahid, T D Le, ”Extending the Kernighan-Lin heuristic for Hardware and Software

functional partitioning”, Jrnl Design Automation for Embedded Systems, V-2, 1997

[WC02] T. Wiangtong, P. Cheung, and W. Luk, ”Comparing three heuristic search methods for

functional partitioning in hardware-software codesign”, Journal of Design Automation

for Embedded Systems, 2002, pp.425-449.

[WG01] T. Wheeler, P. Graham, B. Nelson, and B. Hutchings, “Using Design-Level Scan to

Improve FPGA Design Observability and Controllability for Functional Verification”,

Proceedings of the 11th International Conference on Field-Programmable Logic and

Applications, pages: 483-492, 2001.

[WL08] Dawei Wang, Sikun Li, Yong Dou, “Collaborative hardware/software partition of

coarse-grained reconfigurable system using evolutionary ant colony optimization”,

ASP-DAC, 2008, pp. 679-684

[WP82] T. W. Williams and K. P. Parker, “Design for testability - a survey”, IEEE

Transactions on Computers, C-31(1):2–15, January 1982.

[XCS] Xilinx, ChipScope Pro, http://www.xilinx.com/literature/literature-chipscope.htm

[XW09] Xiao-zhang LU, Wei LIU, Yao-dong TAO, “Method of HW/SW partitioning based on

NSGA-II”, Journal of Computer Applications, 2009, 29(1), pp. 238-241

[YC04] Young-Il Kim, Chong-Min Kyung, "TPartition: testbench Partitioning for Hardware-

Accelerated Functional Verification", IEEE Design and Test of Computers, vol. 21,

no. 6, pp. 484-493, Nov/Dec, 2004.

[YC95] C. W. Yeh, C. K. Cheng, T. T. Y. Lin, “Optimization by Iterative Improvement: An

Experimental Evaluation on Two-Way Partitioning”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 2, 1995, pp.

145-153.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wang:Dawei.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Li:Sikun.html
http://www.informatik.uni-trier.de/~ley/db/conf/aspdac/aspdac2008.html#WangLD08

 127

[YM07] Young-Il Kim, Moo-Kyoung Chung, Ando Ki, and Chong-Min Kyung, "Reducing

Transaction-Level Modeling Effort while Retaining Low Communication Overhead

for HW/SW Co-Emulation System", IEEE International Symposium on VLSI Design,

Automation, and Test (VLSI-DAT), Hsinchu, Taiwan, 2007

[YW04] Young-Il Kim, Wooseung Yang, Young-Su Kwon, Chong-Min Kyung,

"Communication-Efficient Hardware Acceleration for Fast Functional Simulation",

pp. 293-298, Design Automation Conference, 41st Conference on (DAC'04), 2004.

