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Abstract

Mobile phones have already outnumbered personal computers. Although until recently the

majority of phones were used mainly as voice communication devices, the emergence of powerful

application-centric mobile devices such as personal digital assistants (PDAs) and smart-phones,

has created excitement for the future of mobile computing. Despite the recent explosion of

advanced mobile applications such as web browsing and video consuming, constraints such as

reduced display size and limited input interaction methods pose new challenges for interaction

designers. The use of more than one interaction modalities has been proposed as a possible

solution to overcome these limitations. Multimodal interfaces process two or more combined

user input modalities such as speech, pen or touch, in a coordinated manner with multimedia

system output and can potentially offer more rich, robust and adaptive interaction experience.

This dissertation investigates multimodal interface design and evaluation with a focus on

mobile interaction. One of the main aims is to showcase how to design information-filling

multimodal systems that combine speech and graphical user interface (GUI) input (e.g. pen or

touch). From the interaction design standpoint, the main focus is on identifying and exploiting

the synergies resulting from the mixing of modalities in order to create robust and effective

interfaces. The system designed and implemented, allows both unimodal and multimodal

interaction and can be used across different platforms such as PCs, PDAs and mobiles such as

the popular iPhone device.

For the evaluation of multimodal interaction both established and novel metrics are em-

ployed. Two new metrics were devised that measure the relation of input modality preferences

to unimodal efficiency and the synergies found in a multimodal system. The proposed metrics,

relative modality efficiency and multimodal synergy, can provide valuable information to the

interaction design process of multimodal systems. Furthermore affective evaluation incorpo-

rating biosignals such as skin conductance and brain waves (EEG) has provided a rich amount

of data not previously available. Use of such physiological channels and their elaborated in-

terpretation is a challenging but also a potentially rewarding direction towards emotional and

cognitive assessment of multimodal interface design.

Evaluation results show that multimodal systems can potentially outperform unimodal

systems in terms of both performance and user satisfaction when designed to maximize the

synergies between the modalities. Overall this research entails significant implications for

designing efficient mobile interfaces.



Chapter 1

Introduction

Although graphical user interfaces (GUIs) have been the dominant user interface technology

for the past two decades, today’s computing platforms (ranging from mobile devices to large

wall displays) call for new, more natural and efficient ways of interaction. Recently, there has

been much interest in investigating alternative input/output interaction modalities that go

beyond the traditional keyboard and mouse input, and text and graphics output.

GUIs are the dominant interface technology in part due to the high bandwidth they pro-

vide on the output side (matching our advanced vision processing capabilities). In general,

information can be better organized and presented to the user using graphical output com-

pared to other modalities. Thus GUIs today are used not only in personal computers (PCs)

but also in every computing based platform such as intelligent information kiosks, portable

and mobile devices and automated teller machines (ATMs). On the input side, GUIs use for

selection, pointer devices such as mouse on desktop computers or pen devices on portable

systems with touch-screens. Some touch-screens support multi-touch sensing allowing input

through one or more fingers which is considered more natural than using a pen. For text input,

desktop computers use keyboard, while portable and mobile devices use methods such as key-

pads, miniaturized physical keyboards, virtual keyboards, or various handwriting recognition

methods such as graffiti input (see Section 2.6.2).

Speech is the most natural form of communication among humans, but it has several limi-

tations when used in HCI. Although speech recognition technology has been studied actively

during the past decades and highly sophisticated recognizers have been constructed, machines

are far from matching human speech recognition performance, especially in adverse recording

conditions.

Speech and GUI interfaces have been extensively studied and compared in the literature,

e.g., [8, 9]. With GUIs everything the user wants to do at any given time must be presented

at the screen, while speech interfaces lack visual information and require users to memorize

1
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all meaningful information. In addition, the sequential nature of speech loads the short-term

memory and takes up the linguistic channel, which makes speech interfaces unsuitable for some

tasks. As an output channel, speech is slow because of its sequential nature, while GUIs convey

information in parallel thus making them suitable for presenting a large amount of information.

Speech output may be more appropriate for grabbing attention and offering an alternative

feedback mechanism to the user, rather than conveying a large amount of information [9].

Spoken interaction may be faster when users immediately say what they want to achieve

without going through GUI menu hierarchies. Spoken messages may also be more expressive

and convey richer information compared to GUI actions, such as the selection of similar objects

among a large number of them. However the freedom and efficiency that speech offers to the

user, makes speech more difficult for the computer to handle. It is also hard for users to know

the limitations of what they can say and how to explore the set of possible tasks they can

perform [9]. Finally, users interacting with speech interfaces do not have the same feeling of

control usually allowed by GUI interfaces. This is because speech input may be inconsistent due

to recognition errors, i.e., the recognition result may be different for the same sentence spoken

twice. Handling speech errors efficiently is a key issue for successful speech applications. Well

designed spoken dialogue systems or the use of additional modalities in multimodal systems

can alleviate these problems and allow for efficient and natural speech interaction.

Multimodal interfaces [10, 11, 12] that combine speech input with other modalities have

been hailed as the solution to the speech robustness problem. Multimodal interfaces offer

increased robustness and error correction capabilities against error-prone modalities due to

both user behavior and system design. It was found [13, 14] that for multimodal dialogue

systems users tend to use simpler language compared to when interacting unimodaly. Also

users tend to use the less error-prone modality at each context (error avoidance) and switch

modalities after system errors (synergistic error correction). These behaviors can be reinforced

by appropriate user interfaces design, e.g., use of pen input for correcting speech recognition

errors.

The emergence of powerful mobile devices such as personal digital assistants (PDAs) and

smart-phones, raises new constraints but also design challenges that could be better addressed

by a combination of more than one modalities. Efforts to build multimodal interfaces for PDAs

are described in [15, 16, 17]. These systems inspired by Bolt’s “Put that there” [18] prototype

mainly focus on map applications that can use speech and pen (gesture) input in a simul-

taneous fashion. Although map-based applications exemplify the advantages of multimodal

vs. unimodal interaction by maximizing the synergies between modalities, information-seeking

applications that involve form-filling are much more common in mobile devices, e.g., travel

information and reservation, financial information and transactions, entertainment informa-

tion. Typical form-filling applications used in MiPad [19, 20] a multimodal PDA prototype use
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“Tap and Talk” (a.k.a.“Click-to-Talk”) sequential multimodality (as opposed to concurrent

multimodality [21]), i.e., only one input modality is active at each interaction turn. This work,

focuses on information-seeking multimodal systems which combine speech and GUI input, and

on the investigation of a variety of multimodal interaction modes in addition to “Click-to-Talk”.

1.1 Research questions and goals

A fundamental research question in the design of multimodal interaction is the identification

and exploitation of synergies between modalities in order to maximize efficiency and user

satisfaction. Synergy is a design principle that applies to systems that support more than one

input or output modalities. Synergistic multimodal interface design can achieve multimodal

interface performance that is better compared to the sum of it’s unimodal parts. To achieve

this goal it is important not only to use the appropriate modality for each application task,

but also to allow for interplay between them, e.g., speech misrecognitions should be resolved

via the GUI interface. A synergistic multimodal interface is more than the sum of its parts.

Designing multimodal interfaces that effectively combine modalities [22, 23], exploit synergies,

are robust and adapt to the users, is not a trivial task.

It is widely supported that voice user interfaces (VUI) and graphical user interfaces (GUI)

when combined to create a multimodal system offer high complementarity for most applications

[9, 24, 25, 26]. As far as input is concerned, GUI interfaces have low error rates and offer easy

error correction. Speech interfaces are inconsistent in terms of input, since they may produce

different recognition results for the same user utterances, causing a lack of control feeling to

users. Although speech is not error-free, it may be more efficient for relatively high speech

recognition accuracy and high verbosity (number of tokens communicated per turn). It is also

the most natural type of input compared to other modalities for many applications. As far

as output is concerned, GUI output is fast (parallel) compared to much slower (sequential)

speech output.

Thus, one of the main goals of this work is to show how multimodal systems that combine

GUI and speech interfaces can potentially become more efficient by taking advantage of: (i)

“input modality choice” synergy, i.e., the user (or system in an adaptive user interface) chooses

the most appropriate input modality for each turn (ii) “visual-feedback”, i.e., the more effi-

cient cognitive processing of visual compared to auditory information, (iii) “error-correction”

synergy, i.e., correcting errors of the VUI via the GUI [27].

An important question one has to consider when building multimodal interfaces is the

suitability of various input methods for different tasks and subtasks [23]. For example, in

[28] the authors compared data entry of isolated word Automatic Speech Recognition (ASR)

with keyboard/mouse interfaces for three different data entry tasks: textual phrase entry,
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selection from a list and numerical data entry. Results indicated that speech input is faster for

textual phrase entry if typing speed is below 45 words/minute. It is also faster for list selection

when the list contains more than 15 items but offers no advantage over keypad or mouse for

numerical data entry. Combining multiple modalities efficiently is a complex task and requires

both good interface design and experimentation to determine the appropriate modality mix.

Few guidelines exist for selecting the appropriate mix of modalities [22, 29, 30]. It is often

the case when designing multimodal user interfaces that the developer is biased either toward

the speech or the GUI modality. This is especially true, if the developer is speech-enabling

an existing graphical user interface (GUI)-based application or building a GUI for an existing

speech-only service.

Another question that is not thoroughly researched is the design of multimodal turn-taking

and the selection of the most efficient interaction modality at each turn. Should users be allowed

to interact as in traditional spoken dialogue systems (SDS) where a voice-activity detector

allows the user to barge-in and speak at any moment (commonly referred as an “Open-Mike”

interaction mode), should the user be constrained as in the GUI paradigm to press a button

to activate the speech recognizer (“Click-to-Talk”), or should either interaction modes be used

were appropriate. One of the goals of this work is to investigate input modality usage from the

user point of view and to better understand efficiency considerations and user biases in input

modality selection. Such information would be valuable for user modeling and multimodal

dialogue system design in general.

Evaluation [31, 32] of multimodal interfaces is an important task and can help design better

interfaces. Although some efforts [33, 34] have emerged that attempt to build a unifying

framework for the evaluation of speech and multimodal interfaces, there are various difficulties

and issues [35]. Additionally, an important difficulty that arises is that the diversity of possible

modalities and the different ways in which they can be combined to result a large number of

different types of multimodal applications makes evaluation methodology even harder. Thus

in practice, evaluation of multimodal systems is based on traditional metrics used in human-

computer interaction. Objective metrics such as speed, number of errors, task completion, are

usually computed for the various system configurations along with subjective metrics [36, 37,

38] and are statistically analyzed [39, 40] to determine the best system.

In this work, a travel reservation form-filling multimodal dialogue system is implemented

and evaluated for both desktop and PDA environments. The desktop system combines key-

board, mouse and speech input while the PDA system combines pen and speech input. Three

multimodal interaction modes were implemented, that differ in multimodal turn-taking and the

selection of the default input modality, namely: “Click-to-Talk”, “Open-Mike” and “Modality-

Selection”. For “Click-to-Talk” interaction, GUI is the default input modality while for “Open-

Mike” interaction, speech is the default input modality. “Modality-Selection” is a mixture of
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the other two multimodal modes. The multimodal systems are evaluated and compared with

the unimodal systems (“Speech-Only”, “GUI-Only”). To compare the efficiency of the various

systems, not only the objective metrics among the different systems are computed, as is typ-

ically done in the literature, but also the various factors that could affect the efficiency and

modality choice by the user are measured in detail. For this purpose, the break down of turn

duration to interaction and inactivity times is proposed in order to better understand the effect

of input modality on interface efficiency. In addition, modality usage is measured for different

levels of relative efficiency of the input modalities.

A fundamental aim of this study is to investigate how factors such as unimodal efficiency,

interface design and user characteristics affect (or bias) input modality selection. For this

purpose two new evaluation metrics are proposed, namely “relative modality efficiency” and

“multimodal synergy”. Relative modality efficiency when compared with modality usage iden-

tifies bias and suboptimal use of modalities in the course of the interaction. Multimodal synergy

expresses in a single number the percent of interface efficiency improvement compared to the

combined unimodal interface efficiency. Multimodal synergy is used to identify problems in

effectively combining various modalities. The proposed metrics are shown to be useful tools

for identifying usability problems in multimodal systems.

Affective evaluation is also an interesting research direction towards a qualitative assess-

ment of the interaction experience. Employing physiological measurements from skin conduc-

tance and EEG allows real time monitoring of interaction which can provide valuable infor-

mation to the designer. It can help detect problems in interaction and also allow for a direct

qualitative comparison between input modalities and various interaction systems.

1.2 Contributions

The main contributions of this work are:

• The identification, exploitation and modeling of synergies between the speech and GUI

modalities in the design of a multimodal dialogue system that supports both unimodal

and multimodal interaction and can be used across different platforms such as PCs, PDAs

and mobiles.

• A detailed evaluation of multimodal interaction modes and the comparison with unimodal

modes which includes the break down of the turn duration into interaction and inactivity

time to better investigate modality synergies.

• An evaluation methodology that proposes two new metrics for the investigation of the

relationship between input modality efficiency and modality usage and the computation
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of synergies and the quality of multimodal interaction modes, namely relative modality

efficiency and multimodal synergy.

• A methodology for evaluating modalities and interaction systems in terms of affective

metrics such as engagement, excitement and frustration.

1.3 Thesis Outline

The thesis is organized as follows. First the related literature review is presented in Chapter 2.

The review is given with the aim of providing a guide to several topics related to the design of

multimodal mobile interfaces. Initially a brief introduction in Human Computer Interaction

(HCI) with emphasis on design and evaluation is given. Then the two interaction modalities

of interest, namely speech and GUI are examined in detail. Background in multimodal inter-

faces with a focus on design, fusion of modalities and interaction patterns is presented next.

Examples of multimodal systems design and the advantages of multimodal interfaces such as

robustness and adaptation are highlighted. The challenges, issues and guidelines of designing

mobile interfaces are discussed next with a focus on the limited input interaction methods

found in these devices. Finally, architectures, standards and tools for designing and building

multimodal interfaces are also discussed.

The main aim of Chapter 3 is to showcase how to design and build information-filling

multimodal dialogue systems combining speech and GUI (e.g. pen or touch) input. From the

interaction design standpoint, the main focus is on identifying and exploiting the synergies

between the modalities and on the investigation of a variety of multimodal interaction modes

in addition to “Click-to-Talk”. The system architecture of a system that allows both unimodal

and multimodal interaction and can be used across different platforms such as PCs, PDAs and

mobile devices is also examined in this chapter and in more detail in Appendix A.

In Chapter 4 the methodology used for evaluating the system is presented with a focus

on the evaluation metrics used. Some of these metrics are standard objective metrics used in

dialogue systems while the rest were devised specially for the investigation of two important

research questions, namely the relation of input modality choice to unimodal efficiency and

the measurement of the synergies in multimodal interaction modes. Overall the metrics used

aim at: (i) comparing in terms of performance and user satisfaction all the interaction modes

(unimodal and multimodal). (ii) identifying input modality selection patterns in the multi-

modal interaction modes and their relation to unimodal efficiency, e.g. is modality selection

proportional to the ratio of unimodal efficiency ratio? (iii) measuring the synergies of the

multimodal interfaces.

In Chapter 5 detailed evaluation results using the metrics described in the previous chap-
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ter are provided. Objective evaluation results include context statistics, user statistics, in-

put modality overrides and distributions of turn duration times broken down into inactiv-

ity/interaction times and input modality type. Relative modality efficiency and multimodal

synergy results are shown in detail and subjective evaluation results are also reported. An

overall discussion of the results is also provided.

Chapter 6 deals with user behavior patterns and modality prediction. As has already been

discussed in Chapter 5, there is significant variability in user behavior and more interestingly

in modality selection patterns (as expected) among the users. The reason for this, mainly

stems from the differences in unimodal efficiency each user exhibits but is not the only factor.

A more detailed investigation of individual user behavior is provided in this chapter. Two

important factors that affect modality usage and related to speech modality, namely speech

verbosity and speech error correction patterns are discussed in detail. In addition a simple

statistical model for predicting input modality selection is described and evaluated. Results,

difficulties and possible ideas for improving prediction are also discussed.

In contrast with the previous chapters where evaluation of the interaction systems were

based on metrics such as interaction speed, error rates, modality selection and synergy, Chap-

ter 7 employs affective metrics such as excitement, frustration and engagement for the evalua-

tion of the various systems. This, not only provides a more qualitative approach to evaluation,

it also provides a better understanding of the interaction process. The methodology proposed

is based on the use of two different modalities for the measurement of affect. The first is

Galvanic Skin Response (GSR) which relates to the sympathetic nervous system and reveals

emotional arousal. The second is Electroencephalography (EEG), a rich source of information

which is able to reveal hints of both affective and cognitive state during an interaction task.

This thesis concludes with Chapter 8. It provides a short summary of the work presented

in this thesis, discusses the main results and proposes plans for future work.



Chapter 2

Background

1

2.1 Introduction

Interface design is interdisciplinary by nature and requires both scientific expertise and creativ-

ity. Expertise in interaction modalities, multimedia, software engineering, cognitive psychology,

human factors and ergonomics and graphic design is essential in order to create a successful

interface. Creative thinking is also required in order to select the appropriate design among the

numerous interface implementations possible for a specific task. An important interface design

choice is the selection and mixing of input and output modalities, i.e., channels of communica-

tion, between the user and the system. In addition to traditional human-computer interaction

(HCI) modalities, such as keyboard and mouse for input, and text and graphics for output,

numerous “novel” modalities are available to today’s interface designer, such as speech, gestures

and haptics. New devices such as augmented reality displays, force feedback gloves, eye-tracking

goggles, force feedback gloves and multi-touch displays have recently emerged that open the

door to new interaction paradigms. The improved device capabilities and available interaction

modalities have increased the freedom of choice for the designer, but also the complexity and

challenges of interface design.

The purpose of this chapter is to familiarize the reader with fundamental concepts of

human computer interaction and review the state-of-the-art in multimodal interface design.

First, a short overview of human computer interaction is given in section 2.2, followed by a

review of the various interaction modalities in section 2.3. Input and output modalities covered

include graphical user interfaces (GUI), speech and gestures. Most interfaces are multimodal,

i.e., employ more than one input or output interaction modalities. Multimodal interfaces

1This chapter is partial adaptation of published book chapter [41].

8
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pose interesting challenges related to the combination or fusion of input modalities, and the

combination or fission of output media streams and are reviewed in detail in section 2.4. As

interfaces are becoming increasingly complex, personalization or adaptation of the interface to

the user’s needs and preferences is becoming a necessity. Adaptive interfaces use information

from user profiles, user ratings or past user interaction patterns to update their behavior

and to better serve the user, as discussed in section 2.5. Mobile interfaces are becoming

increasingly important as multimedia data is more and more stored and consumed from mobile

devices. Mobile interfaces have to cope with small device size, limited processing power,

communication bandwidth and most notably limited interaction methods but can also take

advantage of sensor input to improve context awareness, e.g., global position information,

accelerometers. Design of mobile interfaces is reviewed in section 2.6. The chapter concludes

with a review of architectures (section 2.7), tools, and standards (section 2.8) available for the

design and development of unimodal and multimodal interfaces.

2.2 Human Computer Interaction

Human Computer Interaction (HCI) is the study of interaction between users and computer

systems. HCI is a multi-disciplinary subject, combining topics such as: psychology and cognitive

science that studies user’s perceptual, cognitive, and problem solving skills, ergonomics (i.e.,

the study of the physical capabilities of the user), design, as well as computer science, and

engineering. HCI is concerned among others with theories of interaction, development of new

interfaces and interaction techniques, e.g. for mobile computing, methodologies for designing

interfaces, implementation of software toolkits, design of hardware devices, and techniques for

evaluating and comparing interfaces.

As the number, diversity, and complexity of interactive applications increases users need to

continuously learn, adapt, and cope with new interfaces. As stated in [42]: “a long term goal

of HCI is to design systems that minimize the barrier between the human’s cognitive model of

what they want to accomplish and the computer’s understanding of the user’s task.” The call

for interfaces that will be easier to learn and use is popularized by pioneers such as Dertouzos

[43], and Shneiderman [44].

2.2.1 Theories of Interaction

The study of human beings in the context of HCI draws mainly from cognitive psychology

that studies the capabilities and limitations of humans, how they perceive the world around

them, how they store or process information and solve problems. Input-output channels (vi-

sion, hearing, touch, movement), human memory (sensory, short-term/working, and long-term
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memory), and processing capabilities (reasoning, problem solving, skill acquisition) should all

be considered when designing computer systems with usability in mind. For more details refer

to [45, 46, 47, 48].

Usability concerns the design of a system with the user’s psychology and physiology in

mind. The end-result should be a system that is easy to learn, efficient to use and promotes

user satisfaction (refer also to Section 2.2.2). Based on cognitive psychology, ergonomics, and

empirical results, descriptive or predictive models of human computer interaction have been

devised to help designers analyze interaction and build efficient interfaces.

A fundamental empirical result concerns the limited capacity of working memory. Human

memory consists of sensory buffers, short-term or working memory, and long-term memory.

Short-term memory can be accessed rapidly but it also has a limited capacity. Miller in his

classic article “The Magical Number Seven Plus or Minus Two” [49] found that human working

memory can hold 7±2 chunks of information. This finding has direct implications in the design

of interactive systems; a complex interface may overload the short-term memory, resulting in

poor and inefficient user interaction.

Another well-known result concerns information processing in choice reaction tasks. Reac-

tion time increases logarithmically as the number of alternatives increases (Hick-Hyman law),

while movement time to a target (ignoring initial reaction time) increases logarithmically with

distance to target and inverse logarithmically with target’s width (Fitts’ law). These rules

apply, for example, to the design of menu hierarchies. Another result concerning multimodal

interaction is the “visual dominance” effect [50, 30], which states that “if percepts of varying

modalities are of the same relative intensity, then information gathered via vision tends to

have greater influence on perception, as compared to other modalities”. The visual dominance

effect applies, for example, to multimodal interface design and audio-visual speech recognition.

An early example of a descriptive/predictive model is the Human Model Processor [1]

which is a simplified model of human processing when interacting with computer systems (see

Fig. 2.1). The model comprises of three subsystems, namely: the perceptual system handling

sensory stimulus from the outside world, the motor system that controls actions and the cogni-

tive system that provides the necessary processing to connect the two [45]. “It is a synthesis of

the literature of cognitive psychology of that time and sketches the framework around which a

cognitive architecture could be implemented” according to [51]. It is also the basis of contempo-

rary cognitive architectures that are used in HCI, such as EPIC (Executive Process Interactive

Control), and ACT-R/PM (Adaptive Control of Thought-Rational/Perceptual Motor) [51].

The Goals, Operators, Methods and Selection (GOMS) rules model analyzes routine human

computer interactions and is used to make quantitative predictions about execution time for

a particular task. The interested reader may refer to [1] for more details.
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(b)

Figure 2.1: Human model processor as described in [1]

2.2.2 User Interface Design

The design of interactive systems follows the iterative process of the software life cycle, e.g., an

iterative waterfall model, consisting of stages such as requirements specification, architectural

design, implementation, and testing. For interactive systems, however, requirements specifi-

cation is much harder to accurately define in advance. In order to achieve a highly usable

system, designers continuously enhance the interface based on the feedback that evaluators

provide on early prototypes. Various studies have shown that for interactive systems a large

part of the development resources (up to 50% of total) are spent on the user interface. The

design of interactive systems is not only highly demanding in terms of development efforts; it

should also support usability to a high level in order to be successful.

When designing interactive systems, the notion of usability is central to the design process.

ISO 9241 standard (Ergonomics of Human System Interaction) defines usability in terms of
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three attributes: the “effectiveness, efficiency and satisfaction with which users achieve spec-

ified goals using the system”. According to this definition, effectiveness is the accuracy and

completeness in achieving the user specified goals using the system. Efficiency relates to the

resources expended in relation to the accuracy and completeness of goals achieved. Satisfaction

is a measure of the user’s comfort and acceptability towards the system. It is common to use

objective metrics such as “task completion” and “time to completion” to measure the effec-

tiveness and efficiency of a system, respectively, while satisfaction is measured using subjective

metrics, e.g., evaluation questionnaires.

To make the development of interactive systems easier and ensure high levels of usability, a

designer should create the interface with usability principles in mind. Since usability principles

are essential but rather abstract properties, designers usually try to follow specific design rules

such as user interface (UI) guidelines and standards. Applying design methodologies that

promote usability such as “usability engineering” [45], using appropriate software toolkits and

applying efficient designs such as the Model-View-Controller (MVC) architectural principle,

are essential to successful design of interactive systems. The rest of this section focuses on

usability principles, design rules, and the MVC paradigm.

Usability Principles

In [45], the authors list attributes that support usability under three different categories:

• Learnability: the ease with which new users can begin effective interaction and achieve

best performance.

• Flexibility: the multiplicity of ways the user and the system exchange information.

• Robustness: the level of support provided to the user in the process of achieving his

goals.

Learnability encompasses attributes such as predictability, i.e., determining the effect of fu-

ture actions based on past interaction history, familiarity, i.e., the extend to which a user’s

knowledge or experience with other interactive systems can be applied when interacting with

a new system, and consistency. Consistency, i.e., the likeness in behavior arising from similar

situations, is the most important principle in user interface design, because users rely on in-

terface consistency to carry out specific tasks. According to [52], in order to support internal

consistency, the same conventions and rules for all aspects of an interface screen (GUI or web

pages) should be followed, such as the organization, presentation, usage and location of screen

components.

Related to flexibility is customizability, which refers to modifiability of the interface by the

user (adaptable interfaces) or the system itself (adaptive interfaces); refer to section 2.5 for more
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information on adaptive interfaces. Related to robustness are observability and transparency

that allow the user to monitor the internal state of the system, and recoverability that allows

the user to easily recover from errors, for example through “redo” and “undo” actions.

Design Rules: Guidelines and Standards

Design rules restrict the space of design options and prevent the designer from pursuing op-

tions that would likely result in less usable systems [45]. Design rules are often supported

by psychological, cognitive or ergonomic theory, areas that the designer (typically a software

engineer) might not be familiar with. Following design rules such as guidelines, style guides

(e.g., look and feel for GUIs) and standards throughout the design process, is essential for the

usability of the interactive system. An extensive list of guidelines for a broad range of topics

such as data entry, screen design, graphics/icon design and proper use of GUI components exist

in literature, e.g., [52]. An example of standards is ISO 9241, a multi-part standard covering

many aspects of interaction such as menu and form-filling dialogues.

The MVC Design Paradigm

Every user interface application consists of three major parts: (i) the model or application se-

mantics, (ii) the view or interface implementation and (iii) the control or application logic. The

term model-view-controller has been extensively used in the HCI literature. The separation of

these three key components both architecturally and in the system design process is known as

the MVC paradigm [53]. The MVC paradigm goes beyond the traditional GUI community and

extends also to state-of-the-art multimodal systems, see for example the latest W3C recom-

mendations in [54]. Consider for example a spoken dialogue system: the term “model” could

refer to the modules that perform speech understanding, i.e., turning speech into concepts, the

term “control” could refer to the application manager that determines the next state of the

interaction and the term “view” could refer to the implementation of the communication goals

via the spoken dialogue interface.

2.2.3 Evaluation

An important step during the development of an interactive system is the evaluation of the

interface design and implementation [45]. Although in practice evaluation takes place as the

last step of the development process, ideally it should be integrated as soon as possible in order

to provide feedback during the design life cycle, i.e., evaluation should be integrated in the

iterative design process. Evaluation helps to ensure that the system functionality fulfills the

intended requirements of the various tasks supported. It also allows the system designer to

measure the effectiveness of the system in supporting the tasks, by measuring user performance.
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Finally, evaluation helps ensure that certain usability principles and guidelines have been

followed, while common usability problems have been avoided, resulting in high levels of user

satisfaction.

A variety of evaluation methods exist to test the design and the implementation of an

interactive system. Methods that focus on the design can be used before implementation takes

place to identify and eliminate possible interface related problems early in the design cycle. In

heuristic evaluation [55, 56], usability criteria called heuristics, which are based on usability

principles and guidelines, are used to identify usability problems, debug and effectively alter

the design.

Actual testing of the interfaces with users (user-centered evaluation) includes a number of

methods such as experimental evaluation and query methods, which use objective performance

metrics and user satisfaction subjective metrics, respectively. With experimental evaluation,

performance of different design options can be computed in order to decide the best alternative,

e.g., “is interface A better than interface B”? Objective metrics such as speed, number of

errors, task completion, are computed for the various system configurations and are statistically

analyzed to determine the best system, for examples refer to [39, 40]. Alternatively, query

methods can be used to elicit direct user feedback using either interviews or questionnaires.

Query methods are simpler to carry out and analyze, and can provide useful information if well

designed. Note, however, that the elicited information is subjective and may be less accurate

than for objective evaluation methods. Finally there is participatory design where users are not

only involved in the evaluation phase of the system, but are also included as active participants

during the design phase.

2.3 Interaction Modalities

Although GUIs have been the dominant user interface technology for the past two decades,

today’s computing platforms (ranging from mobile devices to large wall displays) call for new,

more natural and efficient ways of interaction. Recently, there has been much interest in

investigating alternative input/output interaction modalities that go beyond the traditional

keyboard and mouse input, and text and graphics output. Such modalities may include speech,

eye-tracking and haptics. In addition, various input/output devices [57, 58], such as glove

mounted devices [59] and sensors ranging from accelerometers to GPS (global positioning

system), open the door to new interfaces and applications.

In this section, interaction modalities related to this thesis are reviewed, namely GUIs,

speech and gestures. First, GUIs are briefly examined and concepts such as the desktop

metaphor and direct manipulation are presented. A short history of the development of GUIs

is given along with promising future directions such as zooming user interfaces. Speech is
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considered the most natural form of communication and although there are several limitations

in speech recognition technology much progress in both system architectures and applications

have been achieved in recent years. Spoken dialogue systems technology is examined in detail

and example applications are provided. The use of speech at the interface level and the com-

parison with other modalities such as GUIs is also examined. Finally gesture based interfaces

that have recently gained much attention due to emergence of touch based devices such as

mobile phones, tablet PCs and large wall displays are also discussed.

2.3.1 Graphical User Interfaces

Following the command-line and text-based interfaces, graphical user interfaces emerged and

eventually dominated the past two decades. The Xerox Alto and Star (1981) [60] was one of the

first personal workstations having significant local processing power and memory, networking

capabilities, a high resolution bit-mapped display, a keyboard and a mouse. The user interface

incorporated windows, menus, scrollbars, mouse control, and selection mechanisms (WIMP

interface - windows, icons, menus and pointers) and views of abstract structures all presented

in a consistent manner. These systems introduced several innovative concepts found in today’s

personal computers: the desktop metaphor, direct manipulation and WYSIWYG (what you see

is what you get), where a user sees and manipulates on screen a representation of a document

that looks identical to the eventual printed one. By offering a rich set of graphical elements

(widgets) upon which users perform actions (direct manipulation), GUIs are easier to learn

and operate compared to their command-line counterparts.

GUIs are the dominant interface technology in part due to the high bandwidth they provide

on the output side. In general, information can be better organized and presented to the user

using graphical output compared to other modalities. Thus GUIs today are used not only

in desktop computers but also in a variety of other platforms such as intelligent information

kiosks, portable and mobile devices and automated teller machines (ATMs). On the input side,

GUIs use for selection, pointer devices such as mouse on desktop computers or pen devices on

portable systems with touch-screens. Some touch-screens support touch or multi-touch sensing

allowing input through one or more fingers which is considered more natural than using a pen.

A recent example is the Apple iPhone2 that supports various gestures, e.g., the user can zoom

in/out by spreading the two fingers closer together or farther apart. For text input, desktop

computers use keyboard, while portable and mobile devices use methods such as miniaturized

physical keyboards, keypads, virtual keyboards, or various handwriting recognition methods

such as graffiti [2] input.

Some recent advances in GUI interfaces include 3D interfaces and Zooming User Interfaces

2http://www.apple.com/iphone/
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(ZUI). With the advent of powerful graphic processing power, 3D desktop environments have

emerged as a replacement to their 2D counterparts. Other notable efforts include the Croquet

project3, a free software platform and a network operating system for developing and delivering

deeply collaborative multi-user on-line applications. ZUIs extend GUIs by laying out informa-

tion elements on a infinite virtual surface instead of windows. The user can pan across the

surface and zoom into areas of interest. Examples of ZUI applications are mapping applica-

tions such as Google earth/maps and desktop-like environments such as the Sugar ZUI found

in One Laptop Per Child initiative4. ZUIs are especially promising for mobile applications

where screen real estate is limited.

2.3.2 Speech Modality

Speech is the most natural form of communication among humans, but it has several limitations

when used in HCI. Although speech recognition technology has been studied actively during the

past decades and highly sophisticated recognizers have been constructed, machines are far from

matching human speech recognition performance, especially in adverse recording conditions.

A second hurdle is the complexity of spontaneous human speech communication because

it may contain a lot of ungrammatical elements such as hesitations, false starts and repairs.

Finally, another issue is that people are used to talking differently to computers than to other

people and often alter their speaking styles when talking to machines.

Spoken Dialogue Component Technology

Spoken Dialogue Systems (SDS) form the majority of speech applications. The main com-

ponents of an SDS are: speech recognition, natural language understanding (NLU), dialogue

manager (DM), response generation and speech synthesis. Next a brief review of these tech-

nologies is presented. For more details refer to [61, 62, 63, 64, 65, 66].

Automatic speech recognition (ASR), is the process of transforming a spoken utterance

into words. The audio signal is digitized and is transformed into a series of acoustic vectors

Y = y1, y2, . . . , yt (feature extraction) at a fixed rate [64]. To determine the most probable

word sequence Ŵ given the observed signal Y the following Bayesian formulation is used:

Ŵ = argmax
w

P (W |Y ) = argmax
w

P (W )P (Y |W ) (2.1)

where P (W ) is the a priori probability of observing W , determined by the language model, and

P (Y |W ) is the probability of observing the sequence Y given a word sequence W , determined

3http://en.wikipedia.org/wiki/Croquet project/
4http://wiki.laptop.org/go/HIG/
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by the acoustic model. For acoustic modeling, each phone (or sequence of phones) is usually

modeled by a Hidden Markov Model (HMM). An HMM can be though as a random generator of

acoustic vectors which consists of a sequence of states connected by probabilistic transitions.

The language model provides a mechanism of estimating the probability of a word wk in a

utterance given the preceding words w1 . . . wk−1. This is usually achieved by using N -grams,

which assume that wk depends only on the preceding N -1 words. Due to data sparseness

problem, models with N equal to two (bigrams) or three (trigrams) are used in practice.

The output of the speech recognizer is analyzed by the Natural Language Understanding

(NLU) component to derive meaning representations that will be used by the Dialogue Manager

(DM). This involves syntactic and semantic analysis to elicit attribute-value pairs in a symbolic

representation. A grammar that consists of hand crafted rules is sometimes used to produce

a complete parsing of grammatically correct sentences. Techniques such as robust semantic

parsing are often used instead, where only the essential items of meaning are extracted from

the text.

The dialogue manager is responsible for the communication flow with the user. At each

turn, the DM determines if sufficient information has been elicited in order to complete the

user’s request, e.g., information seeking. The DM is often implemented as a finite state machine

(FSM) with conditions residing on the arcs and system actions residing on the nodes of the

FSM. Various techniques are used for resolving errors and ambiguity in user input, such as

implicit or explicit verification/confirmation.

Response generation deals with the construction of the message that will be sent to the user.

Although complex natural language generation (NLG) methods can be used, usually simpler

methods such as template filling (insertion of retrieved data into predefined slots in a template)

are the norm. The message is then send to the text-to-speech synthesis (TTS) component,

which first analyzes the text message (text to phoneme conversion) and then generates the

speech signal (phoneme-to-speech conversion).

Speech as an Input/Output Modality

Speech and GUI interfaces have been extensively studied and compared in the literature, e.g.,

[8, 67]. With GUIs everything the user wants to do at any given time must be presented

at the screen, while speech interfaces lack visual information and require users to memorize

all meaningful information. In addition, the sequential nature of speech loads the short-term

memory and takes up the linguistic channel, which makes speech interfaces unsuitable for some

tasks.

As an output channel, speech is too slow because of its sequential nature, while GUIs convey

information in parallel thus making them suitable for presenting a large amount of information.
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Speech output may be more appropriate for grabbing attention and offering an alternative

feedback mechanism to the user, rather than conveying a large amount of information [67].

Spoken interaction may be faster when users immediately say what they want to achieve

without going through menu hierarchies. Spoken messages may also be more expressive and

convey richer information compared to GUI actions, such as the selection of similar objects

among a large number of them. However the freedom and efficiency that speech gives to

user, makes speech harder for the computer to handle. It is also hard for users to know the

limitations of what they can say and how to explore the set of possible tasks they can perform

[67].

Finally, users interacting with speech interfaces do not have the same feeling of control

usually offered by GUI interfaces. This is because speech input may be inconsistent due to

recognition errors, i.e., the recognition result may be different for the same sentence spoken

twice. Handling speech errors efficiently is a key issue for successful speech applications. Well

designed spoken dialogue systems or the use of extra modalities in multimodal systems can

alleviate these problems and allow for efficient and natural speech interaction.

How Speech Recognizer Features Affect Speech Applications

The capabilities and features of a speech recognition system can affect the design and interac-

tion of a speech application [68]. Vocabulary size and recognition grammars characterize the

interaction possibly better than other properties. For example, it is possible to construct a

speech-only e-mail application with a dozen of words, but for building an information retrieval

system at least a few hundred word vocabulary is needed. The possibility to change or dy-

namically construct vocabularies and grammars also affects interaction; e.g., allow the system

to be context-sensitive and use user profiles with personalized recognition grammars.

Communication style can vary from speaker-dependent, discrete, read speech to speaker-

independent, continuous, spontaneous speech. Speaker-dependent or adaptive models are suit-

able for some applications, e.g., dictation, while speaker-independent models are the norm. Al-

though with current recognizers there is no need to speak in a discrete manner, it usually helps

if words are pronounced clearly and properly. Most SDSs have to deal with various degrees

of spontaneity in speech input, which is still a challenge for state-of-the-art speech recognition

systems. Finally, capabilities like barge-in that can be used to interrupt the system output can

influence the design and allow the system to generate longer and more informative responses.

Usage conditions can vary from clean to hostile environments, and low (public mobile phone

usage) to high quality channels (close-talking microphones). Even with state-of-the-art recog-

nizers, performance can dramatically suffer if usage conditions do not match recognizer training

ones. This is usually compensated by using different acoustic models for each condition.
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Speech Applications

Early speech applications included telephone-based interactive voice response (IVR) systems

that used speech output and telephone keys for interaction. Such applications were designed

to replace human operators. In the past decade, numerous spoken dialogue systems have been

designed and deployed that fully automate simple interactive tasks usually performed over

the telephone. Example applications that have dominated the field are information services

(timetables, weather forecasting, e-banking), e-mail applications, ticketing and voice portals.

Today’s systems are fairly sophisticated and include state-of-the art recognizers, natural lan-

guage understanding and response generation components, but still integration and interface

design are the important factors for building successful applications [66, 68]. Recently, systems

with more advanced natural language and spoken dialogue capabilities have been deployed for

customer service applications, e.g., for telephony, cable TV5, software retailers. Such systems

automate complex interactions with complicated call-flows, but often run into miscommunica-

tion or other problems. When the system detects such problems a human operator is used as

a bail-out.

Desktop applications such as dictation systems and command and control applications have

also been deployed. Dictation systems6 are popular for special user groups. Command and

control applications usually control existing graphical applications, without using (or in con-

junction with) mouse/keyboard, which can be very useful for mobile devices such as personal

digital assistants (PDAs). Other spoken dialogue applications include automotive applications,

e.g., navigational aids, gaming, and human-robot interaction.

2.3.3 Gestures

Gesture based interfaces [69] augment traditional graphical user interfaces, which are based

on direct manipulation, by incorporating 2D and 3D gestures like manual gestures, head and

body movements. Although people may occasionally use gestures as the only means of com-

munication, e.g., to indicate disagreement by a head or hand gesture, in most cases gestures

occur along with other modalities such as speech, as demonstrated in Bolt’s “Put-That-There”

prototype [18]. Apart from deictic gestures, iconic gestures that refer to objects or actions by

describing them visually using familiar representations and symbolic gestures, e.g., thumbs-up,

are also exploited in typical gesture interfaces. Gestures may be used to specify attributes,

e.g., location, size, category of actions, or commands, e.g., creation, confirmation, selection.

Devices to capture 2D gestures include touch sensitive displays, digitizing tablets and light

pens. Recognition of 2D gestures is either template-based, in which case gesture recognizers

5http://www.speechcycle.com/
6http://www.nuance.com/naturallyspeaking/
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compare input patterns with prototypical templates to choose the best matched one, or feature-

based where features extracted from the stream of input coordinates are first processed and

then classified to a gesture class. 3D gestures such as hand and head or body movements can

be incorporated either in active or passive mode. In active mode, dedicated devices are used,

such as position trackers and sensing data gloves. In passive mode, user input is unobtrusively

monitored using one or more cameras and computer vision algorithms are used to segment and

classify the image data. In passive mode, no intrusive devices are necessary but recognition is

much less accurate compared to the active approach. For a review of gesture-based interfaces

refer to [69].

2.4 Multimodal Interfaces

Multimodal systems (or multimodal input/multimedia output systems) employ two or more in-

put modalities and presentation media to interact with the user. Examples of input modalities

include keyboard, pointing devices (mouse, pen), speech, eye-gaze, gestures, haptics. Exam-

ples of presentation media include text, audio, images, video, animation. Multimodal interfaces

pose two fundamental challenges namely: the combination of multiple input modalities, known

as the fusion problem, and the combination of multiple presentation media, known as the fis-

sion problem. “Optimal” solutions to the fusion and fission problems can significantly improve

performance of multimodal systems over their corresponding unimodal constituents, both in

terms of efficiency and user satisfaction. The improvement in performance of a multimodal

interface over the “sum” of its unimodal parts is often referred to as multimodal synergy.

The most common multimodal interface is that of the personal computer that combines,

since the 80’s, keyboard entry with a pointing device (usually mouse). Although the two in-

put modalities can typically be used only sequentially, the fundamental concepts of fusion,

fission and synergy are still very relevant. Extensive experimentation (as well as cognitive

considerations) have determined the rules and guidelines for the design of graphical user in-

terfaces (GUIs). These guidelines are related to the fusion and fission problems. For example,

guidelines about when and how to use “text entry” vs “pull down menus” are related to the

keyboard and mouse fusion problem, while recommendations on the combination on text and

graphics are related to the fission problem.

Recent bibliography on multimodal interfaces and systems focuses on novel interaction

modalities, such as speech, gestures, eye-gaze or haptics. New modalities introduce new op-

portunities and challenges, e.g., speech interfaces are more natural but are prone to recognition

errors. According to Oviatt [14], multimodal interfaces should be a paradigm shift away from

conventional WIMP interfaces towards more flexible, efficient and powerfully expressive means

of human computer interaction. Investigating new interaction modalities and concurrent mul-
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timodal interaction are active research directions in the field. Next the basic concepts of

multimodal interaction, fusion, fission and design are presented.

2.4.1 Multimodal Interaction

In [70], multimodal interaction is categorized into: (i) sequential when at a specific point

in the interaction only one input modality in active, e.g., keyboard and mouse on a typical

desktop interface, (ii) simultaneous or concurrent when “simultaneous” input is received from

multiple modalities but can be treated separately by the fusion module, e.g., eye-gaze combined

with keyboard input, and (iii) composite (or synergistic [21]) when “simultaneous” input from

multiple modalities has to be processed as a compound entity by the fusion module, e.g., the

synchronized speech and gestural input “Put that [gesture pointing] there [gesture pointing]”

from Bolt’s famous demo [18].

Sequential multimodality is by far the most common in human-computer interaction. With

the advent of “novel” modalities, such as eye-gaze and speech input, it is becoming increas-

ingly common to have simultaneous input from different modalities. Composite multimodal

interaction is especially relevant for a range of applications such as map navigation, course

plotting etc. Although the basic principles of fusion are the same for all three interaction

modes, the fusion module becomes more complex when allowing for simultaneous and (more

so for) composite input.

According to [70], multimodal interfaces can alternatively be categorized into supplemen-

tary or complementary depending of whether all input and output tasks can be carried out

by every modality or not. Supplementary interface design is the rule, because it results in a

consistent user interface and improves usability. However, for modalities with limited inter-

action scope, e.g., eye-gaze or gestures, or for interaction tasks where one modality is clearly

superior (in terms of efficiency) a complementary approach might be taken. Finally, symmetric

multimodality [71] refers to interface design that has the same modalities available for both

input and output.

2.4.2 Fusion Techniques and Data Integration

Multimodal systems require fusion in each of the three layers of the MVC paradigm, namely

at the data (semantic fusion), at the view (interface fusion) and at the control level. It is

customary in the literature for the term fusion to refer to data fusion or semantic fusion.

However, interface fusion or modality fusion, i.e., the problem of fusing (or blending) the

modalities at the interface level, is an equally important problem for interface design. Fusion

at the control level is usually tackled by designing a multimodal application manager that

manages all modalities. In fact, if the MVC paradigm is followed the application logic should
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be modality-independent and little integration is needed. Next the problems of data fusion

and interface fusion are discussed.

Data fusion is usually categorized as early fusion, or late fusion [72]. The most common

example of early fusion, also known as feature-level fusion, is the combination of the audio

and video feature streams in audio-visual speech recognition. As discussed in [14], multimodal

systems based on late fusion integrate common meaning representations derived from different

modalities into a combined final interpretation. This requires a common meaning represen-

tation framework for all available modalities and a well-defined operation for integrating the

partial meanings. Late fusion is more common in multimodal systems.

Depending on the multimodal interaction style (sequential, simultaneous or composite), the

internal data representation, and the point of integration in the semantic chain, different fusion

algorithms can be implemented. For sequential or simultaneous multimodal interaction the

semantic information acquired from each modality can be processed more or less independently

and thus late integration is the rule. The semantics extracted from each input stream are

combined, often using a probabilistic framework, to resolve ambiguous or conflicting input. For

composite multimodal interaction, integration typically occurs earlier in the process because

input from various modalities has to be processed jointly. One popular approach is to design

multimodal semantic grammars. For example, to handle composite speech and pen input a

three-tape finite-state machine was proposed in [73].

According to [68, 21] one can consider fusion earlier or later in the semantic chain, i.e., at

the lexical, syntactic or semantic levels. Lexical fusion is used when primitives, e.g., words,

are mapped to application events. Syntactic fusion synchronizes different modalities and forms

a complete representation. Semantic fusion represents functional aspects of the interface by

defining how interaction tasks are represented using different modalities. Most advanced mul-

timodal systems perform syntactic or semantic fusion.

Fusion also depends on the internal data representation. Application data can be repre-

sented in structures such as frames [74], feature structures [75] or typed feature structures [76].

Frames represent objects and relations as consisting of nested sets of attribute/value pairs,

while feature structures go further to use shared variables to indicate common substructures.

Typed feature structures are pervasive in natural language processing, and their primary op-

eration is unification, which determines the consistency of two representational structures and,

if consistent, combines them. As the data structures used become more complex and interde-

pendent, the complexity of the fusion algorithm also increases. Various integration techniques

have been devised: frame-based integration techniques use a strategy of recursively matching

and merging attribute/value data structures (e.g., [77]) while unification-based integration tech-

niques use logic-based methods for integrating the partial meaning fragments. Unification-based

architectures have been applied to multimodal system design [78, 79].
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Some important unification-based integration techniques include feature-structure and sym-

bolic unification. Feature-structure unification is considered well suited to multimodal integra-

tion, because unification can combine complementary or redundant input from both modalities,

but it rules out contradictory input. Symbolic unification when combined with statistical pro-

cessing techniques results in hybrid symbolic/statistical architectures that achieve very robust

results.

Recently, with the advent of the semantic web, there has been much interest in using

semantic mark-up languages such as DAML+OIL7 to represent application semantics and

perform discourse modeling. Such mark-up languages can be combined with reasoners that

can perform automatic inference and consistency checking; refer to [71] for an example of a

multimodal dialogue systems that uses these tools.

Example: QuickSet Fusion Mechanism

As an example of how fusion and semantic unification of two recognition based modalities is

achieved in multimodal systems, the QuickSet multimodal system is described next [80, 13].

QuickSet supports both speech and pen (gesture) input. For pen input each stroke is time-

stamped and an internal data structure holding the x,y coordinates is sent to the gesture

recognition component. The recognizer produces a N-best list of possible interpretations, each

associated with a probability. These signal-level interpretations are then sent to the natural

language agent to create a gestural parse N-best list before being integrated with the parallel

speech interpretation. Like gesture processing, the speech recognizer generates an N-best list of

interpretations, each associated with a probability estimate. These signal-level interpretations

then are filtered by the natural language parser, which forms a spoken language N-best list.

To interpret a whole multimodal command, the time-stamps for speech and gestural input

are compared by the integrator. Based on synchronization patterns typical of speech and pen

input, an integration rule is applied to these time-stamped signals. The integrator will com-

bine speech and pen signals and attempt to process their multimodal meaning when either a

temporal overlap between signals exist or a speech signal begins within four seconds of the

end of gesture (sequential signals). If synchronization rules permit joint processing, semantic

unification will take place. The common meaning representation for speech and pen input,

represented as typed feature structures are combined into a single complete semantic interpre-

tation if compatible. Each item in the N-best list for both speech and pen input is processed

by the unification parser to produce the feature structure representations which are combined

during multimodal integration to produce full representations. The combined interpretations

that do not unify, are left out while the remaining ones are assigned probability estimates (by

7http://www.daml.org/
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combining the unimodal scores) to build the final multimodal N-best list.

2.4.3 Multimodal Interface Fusion and Fission

Interface designers can force or imply to the user what modality (or combination of modalities)

should be used at each point of the interaction. For example, in GUI design, “radio buttons”

and “combo boxes” imply mouse (or pen) input, while text fields imply keyboard input. This is

also true for “novel” interaction modalities, e.g., for speech and pen interfaces a “click-to-talk”

interaction mode biases the user towards the pen modality Designing interfaces that guide the

user towards using the “optimal” input modality mix is the problem of multimodal interface

fusion or fusion at the interface level. Few guidelines exist for selecting the “optimal” mix

of modalities [23, 22]; these guidelines are mostly based on efficiency considerations. Overall,

multimodal interface designers should respect all available input modalities, offer the user

the flexibility to select (or override the default) input modality, and blend modalities having

cognitive, efficiency and user satisfaction considerations in mind. The end goal is to create

a truly multimodal experience, a user interface that maximizes synergies among the input

modalities, by improving efficiency and robustness (error-correction capabilities).

The problem of multimodal fission is symmetric to that of fusion. Fission is the process of

communicating an internal representation of the system to the user, via the co-ordinated action

of multiple output modalities and output media. Selecting the appropriate output media,

their relative importance for each communication act, and, most importantly, co-ordinating

the presentation in time and space are some of the important issues in fission [68, 81]. Fission

has not attracted as much research interest as fusion, and often ad hoc solutions are adopted

for the fission problem. According to [68], most of the work in this area has been done by the

multimedia research community, e.g., in the area of automated multimedia systems [82]. Such

systems often focus more on how to render the information for different media and devices,

rather than investigating the “optimal” blending of media or the selection of appropriate output

modalities.

According to [81], fission algorithms should respect the MVC paradigm and separate com-

munication acts from the interface implementation of these acts. In addition, there should

always be output presentation for internal system representations (system states) and vice

versa. This later principle is referred to as “no presentation without representation” [83]. Co-

ordination and synchronization of the various output modalities is also an important problem.

For example, for embodied conversational agents (also known as talking-heads) [84, 8] system

output is presented via both audio and video streams that have to be synchronized to achieve

a realistic effect (lip-syncing). Overall, selecting the appropriate mix of media to visualize

system information and communicate with the user is an important open research problem
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that requires contributions from researchers, technologists and artists.

2.4.4 Multimodal Interaction Patterns and Usage

An important issue when implementing multimodal systems is the choice of interaction style

(simultaneous vs. sequential), but also the internal implementation of input and output events

in a synchronous or asynchronous manner. According to [70], synchronization of input events

can occur instantaneously at the event level, at the field (concept) level or at the form (groups

of concept) level. User behavior can serve as a guide for the selection of interaction style and

synchronization granularity. In [85], the authors found that users adopt either a simultaneous or

a sequential integration pattern during speech and pen multimodal input (70% simultaneous

and 30% sequential). Their findings also show that user’s dominant integration pattern is

predictable early and remains consistent (89-97%) over time.

As discussed also in [86], multimodal interfaces may have many advantages: error pre-

vention, robust user interface, easy error correction or recovery from errors, increased com-

munication bandwidth, flexibility and alternative communication methods. Disambiguation

of error-prone modalities is the main motivation for using multiple modalities in many sys-

tems. Multimodal interfaces offer improved robustness to errors due to both user behavior

and system support [13]. During the evaluation of the QuickSet system, it was found that

users tend to use simplified language (briefer utterances, fewer referring expressions) when

interacting multi-modally than when interacting using a unimodal spoken dialogue interface.

It is also reported that users tend to use the less error-prone modality in a certain context

(error avoidance) and switch modes after system errors, thus facilitating error recovery. As

far as system support is concerned, temporal, semantic and other constraints can be exploited

to rule out candidates. This mutual disambiguation and synergistic error correction features

make multimodal interfaces more robust compared to unimodal ones.

It should be noted, however, that multiple modalities alone do not bring these benefits

to the interface: currently there is too much hype in multimodal systems, and the use of

multiple modalities may be ineffective or even disadvantageous in some cases [87]. Following

good system and interface design principles is essential for building successful multimodal

applications.

2.4.5 Multimodal Applications

Numerous multimodal systems have been reported in the literature, a large number of which

are cited in [14]. In [69], multimodal applications are categorized according to application do-

main, input/output modalities and fusion type. From the historical perspective, multimodality

offers promising opportunities, as presented in Bolt’s “Put-That-There” system [18]. Bolt’s
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system combined pointing and speech input as a natural way to communicate; gaze direction

tracking was added in a later prototype and used for disambiguation. Other early systems

used speech input along with keyboard and mouse in an effort to support better complex vi-

sual manipulation. Technology advances in late 1980s allowed speech to become an alternative

to keyboard, leading to map and tourist information systems such as CUBRICON [88] and

Georal [89].

Bimodal systems that combine speech and pen-input, or speech and lip-movements emerged

in 1990s leading to work on integration and synchronization issues and the development of new

architectures to support them. Speech and pen-input (2D or 3D gestures) involving a large

number of different interpretations beyond pointing have advanced rapidly both in research,

e.g., Quickset [80], and commercial systems. Speech and lip movement systems exploit the de-

tailed classification of human lip movements (visemes) and offer speech recognition robustness

in noisy environments. Lip movement is also used in coordination with text-to-speech output

in animated character systems (talking heads or speaking agents). Examples of such systems

include include the Rea system [84], KTH’s August, Adapt and Pixie systems [8]. These sys-

tems use audiovisual speech synthesis and anthropomorphic figures to convey facial expressions

and head or body movements. Systems with animated interactive characters have also been

constructed [82, 90]. These systems mainly focus on multimedia presentation techniques and

agent technologies. Information kiosks (intelligent kiosks), such as SmartKom, use speech and

haptics to provide an interface for users in public places, e.g., museums. Animated characters

may have a strong motivational impact, since they are considered as being more lively and

engaging for many users [91].

As noted in [14], systems combining three or more modalities such as biometric identifi-

cation and verification systems [92], which use both physiological (retina, fingerprints, face or

facial thermograms) and behavioral (voice, handwriting) modalities have also been developed.

There is also increased interest in passive input modes [14], which refer to naturally occurring

user behaviors that are unobtrusively monitored by a computer, e.g., eye gaze or facial expres-

sions. Ambient intelligence and blending of active and passive modes is a promising direction

to this end.

2.5 Adaptive Interfaces

As computer applications are becoming increasingly complex both in terms of functionality and

interface design, it is also becoming increasingly hard to build applications and interfaces that

satisfy the needs of all users. For example, users have different capabilities and preferences when

multiple modalities are made available to them. New applications and interaction modes make

user diversity even more apparent. As a result the need for adaptation, i.e., modification of the
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data model, application control and/or application interface to the specific user characteristics,

needs, capabilities and preferences, is becoming increasingly apparent. Adaptation has been

used for a large variety of tasks and applications, often successfully, improving the interaction

efficiency and the user experience. However, despite the promise that adaptive interfaces hold,

designing interfaces that are adaptive and also appear consistent to the user is a challenging

task. In addition, adaptive interfaces are complex and the consequences of adaptivity on

the user experience is sometimes unpredictable. As a result, system designers often opt for

adaptable interfaces, i.e., interfaces that can be modified/adapted explicitly by the user, or

limit the functionality of the adaptive algorithms.

2.5.1 A High Level View of User Adaptive Systems

The literature on adaptive interfaces is rich and very diverse, as researchers with different

research backgrounds attack the problem. A number of definitions for adaptive systems can

be found in the literature [93]. The definition of a user adaptive system given in [94] follows:

“An interactive system that adapts its behavior to individual users on the basis of processes of

user model acquisition and application that involve some form of learning, inference, or deci-

sion making.” Thus, in a user adaptive system, the system gathers information about certain

aspects of user interaction (user model acquisition) and performs learning and/or inference

based on that information in order to create or update a user model. The system then applies

the user model in order to determine how to adapt its behavior to the user (user model appli-

cation). Although much of the adaptation literature focuses on user adaptation, there are also

other aspects of adaptation, e.g., adaptation (or updating) of the system model or adaptation

of the user interface that are equally important (refer to Section 2.5.2).

User model adaptation algorithms can be categorized based on the ways in which infor-

mation about users is acquired. As discussed in [94], information about users can be acquired

either as explicit input to the system or in a implicit way. In the first case, the system requests

information relevant to the adaptation that may be difficult to elicit otherwise, e.g., location,

user’s age, topics of interest. In the second case, the system collects relevant naturally occur-

ring actions or past interaction information and exploits it in the adaptation process. Examples

include user location information extracted using GPS-capable mobile devices, or emotion de-

tection, such as anger or attention. Often a pattern recognition system is used to extract this

information leading to unsupervised adaptation algorithms, e.g., emotion recognition.

Another way to categorize adaptation is based on the learning, inference and decision mak-

ing algorithms used, i.e., model acquisition and application. According to [94], these adaptation

algorithms can be categorized into classification algorithms that employ no general knowledge

about users and goals, and decision theoretic methods, e.g., Bayesian networks. Classification
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methods range from simple ones, such as naive Bayes, to more complex ones, such as advanced

probabilistic classifiers, decision trees, and neural networks. For example, the SwiftFile system

[95] classifies incoming email messages to user folders and uses text classification methods from

the information retrieval field for archiving.

Decision-theoretic systems explicitly define models of interaction, using tools such as Bayesian

Belief Networks (BBNs). The models incorporate variables, for which the system has only an

uncertain belief to begin with, and are connected in a probabilistic network in which the

relationships among them can be interpreted as causal effects. As the system acquires new in-

formation, beliefs about network nodes are updated. For example, in the Lumiere project [96],

the authors use a BBN to decide whether a user may need assistance based on user’s expertise

and task complexity. Other approaches include the use of stereotypes and plan recognition.

A stereotype is a class of categories that a user may belong to. The system employs rules to

assign users to classes and takes actions based on this classification. Plan based approaches

consider user actions as steps towards achieving a certain goal; such techniques are employed

in dialogue and help/tutoring systems.

User Adaptable Systems

There is a clear distinction between user adaptive and user adaptable systems. User adaptive

systems implicitly adapt their user model to user preferences. An adaptable system, on the

other hand, allows the user to explicitly tailor the interface to his preferences. A number of

systems are adaptable but not adaptive. The main advantage of adaptable interfaces is that the

user is in control and unwanted side-effects of adaptation can be avoided. The main drawback

is that the user might not know how to effectively tune the system to his preferences.

2.5.2 Adaptation Examples in the Context of the MVC Paradigm

An alternative view of adaptivity is through the model-view-controller (MVC) paradigm. Al-

though adaptivity may cut through all the components of the MVC model, usually the adap-

tation algorithm may concern only one of the three components of the system architecture. As

discussed next, adaptivity may focus on the interface (view) level of the application, the data

(model) or the application control (controller). Most of the discussion up to this point has

been on user model adaptation. Next examples of adaptation at the interface and controller

level are presented.

Adaptation at the Interface Level

An example of interface adaptation is the Smart Menus feature introduced in Windows 2000.

The idea is to hide infrequently used menu items, so the user can faster access one of the most
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frequent used ones. For hidden menu items, the user has to fully extend the menu in order to

view and select them. Clearly, there is a trade-off between accessing frequent items faster and

“missing” infrequent menu items. The effect might be frustrating or confusing to some users;

the list of items in each menu changes over time, which is highly inconsistent. For users that

prefer to have the full list of menu items showing at all times this feature can be disabled.

Since many applications have become too complex and feature rich, help systems are needed

that can guide users to effectively use the application. Adaptive help systems can potentially

detect when the user needs advice, introduce concepts or features relevant to the given situation

or even directly propose a solution to a given problem. An example of an adaptive help system

is the Office Assistant agent, a derivation of Lumiere research prototype [96]. Lumiere uses

decision theoretic methods (Bayesian networks) to decide if help should be given spontaneously.

This is done if the computed likelihood that a user needs help, exceeds a given threshold. In

the Office Assistant, the decision theoretic methods have been replaced by a relative simple

rule-based mechanism.

Adaptation at the Controller Level: Spoken Dialogue Systems

Adaptation has also been applied to spoken dialogue systems at the dialogue manager (con-

troller) level to improve on existing strategies and find optimal application control policies.

For example, as noted in [94], the TOOT dialogue system [97] can appropriately adapt its

dialogue strategies according to different situations. If the user’s speech is poorly understood

the system can adopt its strategy by acquiring just one piece of information at a time and by

frequently requesting confirmation. Dialogue control for error prevention and correction is a

challenging problem that can be formulated as a Markov Decision Process (MDP). Techniques

such as reinforcement learning can be applied to find the optimal control policies, as described,

for example, in the RavenClaw system [98]. In practice, many multimodal systems implement

two application control logics or interfaces, one for novice and one for expert users. Often the

choice or novice or expert is left to the user leading to an adaptable (rather than an adaptive)

system.

2.5.3 Usability Issues

One of the main concerns of adaptive interfaces is related to usability issues that may arise

from adaptation. According to [94]: “some of the typical properties of user adaptive systems

can lead to usability problems that may outweigh the benefits of adaptation.” Some of these

usability problems are outlined next.

“Predictability” refers to the extent to which a user can predict the effects of his actions.

SmartMenus (refer above) can be thought as an example of lack of predictability, since the
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low usage of a menu item (or high usage of other items) will result in the disappearance of

that item. Predictability is closely associated with “transparency” or visibility. When the

adaptation mechanism is invisible (not allowing the user to understand how it works), the user

will be unable to understand or explain system actions. A way to achieve “controllability”,

a degree of control over system actions, is to allow the user to confirm any action that may

have significant consequences on the interface. Distracting or irritating system behaviors are

against the goal of “unobtrusiveness”. For example, the distracting ways in which the Office

Assistant agent is used to pop up, violates the principles of unobtrusiveness and controllability.

Usually model level adaptation is hidden from the user and does not violate basic usability

principles. However, adaptation at the interface and control level are directly observable by

the user and often lead to an inconsistent look and feel of the application.

2.6 Mobile Interfaces

As mobile devices are becoming increasingly ubiquitous, mobile interface design is emerging

as an important research area of human-computer interaction. Designing and implementing

interfaces on mobile devices, such as PDAs and mobile phones, is a challenging task because

the designer has to operate under various constraints including device size, network bandwidth

and power consumption. In addition, the requirements and usage of mobile devices varies

significantly among users and is situation-dependent. As a result, mobile user interface design

poses unique usability challenges, but also offers new opportunities, e.g., context-aware services.

Next the main differences between mobile and desktop interfaces are outlined [99]:

• Input modality: an important difference between mobile and desktop interfaces is that

the “physical” keyboard is no longer the dominant input modality. Although keypads and

mini-keyboards are still extensively used on mobile devices, alternative input modalities

such as touch-screens, pen, speech, virtual keyboards are becoming increasing popular

and competitive in terms of efficiency to physical keyboard input.

• Screen size: Mobile devices typically suffer from limited screen real estate, screen reso-

lution and screen brightness (the later is important for achieving increased battery life).

As a result, the amount of information that can be displayed using the screen is signif-

icantly decreased compared to the desktop. Alternative modalities, e.g., spoken output

can be used to improve the system output communication for mobile interfaces.

• Network bandwidth and device limitations: Although the cost of network band-

width for mobile devices is continuously decreasing, bandwidth remains an important

factor when designing mobile interfaces. Mobile applications should adapt to bandwidth
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considerations, e.g., changing signal strength. Mobile interface design is also affected by

device limitations such as processing power and energy consumption. Bandwidth and

processing power considerations affect architectural design decisions, e.g., if there is not

enough computing power for an application to run locally on the device a client-server

architecture might be used.

• Location: Location information is available to an increasing number of mobile devices.

Location information is obtained either from cell tower triangulation or by using a GPS

receiver. This information can be a valuable feature for new services that employ the

user’s location as a “information filter”, in essence adapting the user’s list of prefer-

ences to match what is locally available. An important subset of location-aware mobile

applications are geographical information systems (GIS) applications that typically use

GPS-capable mobile devices.

• Environmental conditions: A mobile device has to face variable and often extreme

environmental conditions, e.g., changing levels and patterns of background noise. Mobile

interfaces should adapt to new conditions and allow the user to use appropriate input and

output modalities for each condition. For example, speech might be the input modality

of choice for a low-noise, hands-busy task.

• Attention and cognitive load8: In contrast to the desktop, mobile users often show

reduced attention (especially visual attention), because the user may be on the move or

focusing on other activities. Tactile or audio feedback can be used to draw the user’s

attention without distracting him from his main task. In general, mobile interfaces should

incur limited cognitive load, especially for applications where the user is multi-tasking,

e.g., car navigation applications.

These fundamental differences between mobile and desktop interfaces call for updated de-

sign principles for mobile interface design and create new opportunities for mobile applications.

2.6.1 Mobile Interface Design: Issues and Guidelines

“Mobile Web Best Practices” [101] is a W3C recommendation that specifies best practices for

delivering Web content to mobile devices. It includes a list of 60 recommendations addressing

issues such as page layout and content, navigation and links, input and overall behavior. For

example, images in a web page should be properly resized and rendered for the mobile device,

preferably on the server side.

8Cognitive load can be defined as a multidimensional construct representing the load that performing a
particular task imposes on the learners cognitive system [100]
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Information presentation in the limited screen displays of mobile devices is an important

issue. Information should be hierarchically organized in a number of displays containing short

lists of options. Displays should be properly designed to minimize clutter and navigation effort.

When a large number of items is required in a list, a method to navigate efficiently between

the items should be made available. To facilitate scrolling through large menu items a click

wheel operated in a rotational manner can be used, e.g. iPod devices.

Another important issue is the high degree of diversity among mobile devices, which makes

consistency of applications among platforms and devices a challenging task. For example, PDA

devices have a miniaturized desktop-like interface with pen input and various methods of text

input such as virtual/physical keyboard or graffiti recognition. Most mobile phones, on the

other hand, have a list-based interface that has to be operated with just a numeric keypad

for navigation among screens. One solution for the deployment of an application is to use the

lower common denominator as far as device capabilities are concerned; another approach is to

exploit capability profiles for groups of devices.

2.6.2 Input methods for mobile devices

The diversity of mobile devices keeps growing rapidly, especially towards the high-end spec-

trum. This is due to the recent technological advances in mobile CPU power, cheaper memory,

larger displays often with touch or multitouch support, faster network access and improvements

in power consumption electronics. All these factors affect the user interface design but input

devices/methods and display size and type (touch support) are the most important ones.

Although recent reports show the smartphone market is rapidly growing, the majority of

mobile phones still use a limited size display, a numeric keypad that allows for alphanumeric

input and a small number of special function keys along with a simple navigation button (often

called 4-way key). Text input is achieved through the use of small physical keyboard called

keypad, often utilizing predictive text technology such as the widely adopted T9 system. Text

input is mainly used for authoring short messages (SMS) or for selecting items from large

lists such as contact lists. Selecting contacts is also the main application of embedded speech

recognition; it’s use may be quite limited as the user usually needs to audio record the contacts

she wish to recall using speech input. Although keyboard input may be very popular among

young people, the small size and the learning curve required to effectively input text, proves

to be difficult for more senior aged users.

PDA devices proved to be a relatively successful paradigm during the previous decade

as they filled the gap between data and application centric personal computers (PCs) and

the voice-centric mobile phones. The larger form factor of PDA devices, compared to mobile

phones, allowed for larger screen displays that supported touch input through the use of pen
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(b) (c)

Figure 2.2: Various input methods for mobile computing (a) graffiti single-stroke letters sym-
bols [2] (b) sokgraphs of various common SHARK words [3] (c) dasher input method - user
moves cursor towards “ion” suffix to complete input of the word objection [4].

devices. It also allowed for the use of larger physical keyboards for some of these devices and the

use of virtual keyboards and/or handwriting recognition technologies for text input. The use of

a pointing device such as pen, comparable to mouse input in PCs and the enhanced text input

methods, made possible the porting of a desktop-like applications, already familiar to many

users, to such devices. From a design perspective, the replication of a desktop-like interface

given certain constraints, the use of external pen device needed to operate the interface and

the lack of a new interface paradigm more appropriate for mobile use, rapidly shrunk the PDA

market in favor of touch enabled smartphone devices such as iPhone.

Although on-line handwriting recognition (see [102] for a review, [103] for the NPen++

system) is a relative mature technology and has been used as an input method for a relatively

long time, it is not considered a very successful interaction modality. Despite the fact that it

mimics the familiar to everyone ”writing on a paper” metaphor, training for new users is needed

to effectively use this method; and both speed and accuracy may vary considerably between

users. High levels of accuracy is needed before users accept the technology. Because of the

variability in written text between users may be remarkably high, such levels may be difficult

to reach, requiring sophisticated methods in recognition and adaptation. One of the main

problems is that some letters, or symbols, are composed of multiple strokes which are harder

to recognize compared to single-strokes (separating multi-stroke to single stroks is called the

segmentation problem). Graffiti [2] was a system that successfully addressed the segmentation

problem. Popularized by Palm OS devices, the main idea was to use a slightly modified single-

stroke alphabet (although some resemblance to the alphabet remains - see Fig. 2.2(a)) that
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offered very good performance due to increased discrimination between strokes.

Hardware and virtual keyboards main advantage over online handwriting recognition sys-

tems is consistency. Miniature qwerty-like hardware keyboards may offer a solution for some

users but they also add design complexity and cost to the device; due to their small size they

have also been reported to be hard to use for some users (those with large thumb size). Vir-

tual (or soft) keyboards on the other hand only cost in real estate display size. They can

be operated using either pen or finger input in touch displays. They may be configurable,

offering different layouts and may be used in both landscape and portrait modes. Since they

are programmable they may be adaptable or adaptive or exploit techniques for faster input.

ShapeWriter (previously known as Shorthand-Aided Rapid Keyboarding (SHARK)), is a key-

board text input method from IBM that offers improved performance [3]. Instead of tapping

the word letters one by one, the user draws a gesture (sokgraphs a form of shorthand defined

on a stylus keyboard as a graph -see Fig. 2.2(b)) that connects all the letters in the desired

word.

Dasher [4] is another approach of continuous gesture input letters are arranged dynamically

in multiple columns, with likely target letters closer to users cursor based on the proceeding

context. The user writes letters by making gestures towards the letter’s rectangle (which in

turn contains more probable subsequent letters following the already written one) as shown

in Fig. 2.2(c). The user doesn’t need to tap (compared to virtual keyboards) or stroke (com-

pared to handwriting) individual letters but just move the cursor (e.g. moving his finger

in a touchscreen) through a path of continuously appearing letters. This method is easy to

use and requires almost no training, can be used with any two dimensional pointing device

(mouse/pen/eye tracking) and facilitates predictive text input by visualizing probable letter

sequences; this is also the method’s main drawback since the user’s visual attention needs to

dynamically react to the changing layout.

In the summer of 2007 Apple released the iPhone device that has revolutionized the smart-

phone market. A combination of elegant physical design (a large 3.5 inches display with just

a home button) and a unique user interface experience utilizing multi-touch technology was

the key to success. The user interface is specifically designed for multi-finger input; as finger

touch interaction is much more engaging compared to pen interaction and the user interface

emphasizes simplicity and consistency, it makes the device very easy to learn and use, even

for new users. The movement of the fingers across the screen creates gestures with special

meaning that are used for interaction. For example a single finger gesture used for scrolling a

list is to drag a finger across the screen; to zoom in and out a picture or a page the user has to

use two fingers on the screen and spread them apart (zoom in) or squeeze them together (zoom

out). Note that although more complicated gestures could have been defined the decision to

keep only simple intuitive (with as much resemblance to the physical world) gestures makes
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the interaction easy and pleasant even for novice users.

2.6.3 Example Applications

Despite the limitations in screen size and processing power of mobile devices, the always-on

connectivity and the increased bandwidth available in 3G mobile data networks allows for

the deployment of sophisticated network based applications and services. Traditionally the

majority of applications used in mobile computing was limited to the ones shipped with the

device. Installing extra applications for such device was tedious and only used by advanced

users. With the emergence and growing popularity of recent powerful devices that provide

sophisticated developer libraries and tools, new opportunities for mobile development have

emerged. Such applications can be listed in an application market and can be easily accessed,

downloaded and installed by the user. Application markets for mobile platforms such as

iPhone and Android have been more than successful. According to recent reports9 there are

over 100,000 applications officially available for the iPhone, and 2 billion downloads have been

achieved.

An example of a mobile phone browser is the Opera Mini micro-browser10 that is available

for a wide variety of mobile phones. The browser follows a client-server architecture to over-

come the limited device capabilities. Opera Mini requests web pages through proxy servers,

which retrieve the web page, process it, compress it, and send it back to the user’s mobile

phone. The architecture and interface design emphasizes simplicity, speed and bandwidth con-

servation. Most importantly the Web page information is rendered on the server to match

phone capabilities with very good results. Although it uses keyboard navigation it also sup-

ports a virtual mouse pointer to enhance navigation. More advanced mobile devices include

sophisticated browsers based on the WebKit rendering engine which offer almost desktop-like

experience. Since most of these devices also have a built-in accelerometer support, the browser

can switch to landscape mode when the user rotates the device. Support for zooming in and

out and panning web pages makes browsing experience very much desktop-like. Since internet

searching is one of the main tasks using a browser, the Android platform has introduced voice

searching in the browser; this marks one of the first efforts to use speech as a complementary

input method in mobile computing.

An example of a location-aware service is Google Maps for mobile, a web mapping service

that can be used both by GPS-enabled devices and by mobile phones (using the “My Location”

feature, which exploits cell tower triangulation for approximate positioning). The service offers

street maps, route planning (driving directions) and allows the user to find a variety of nearby

9http://www.apple.com/pr/library/2009/11/04appstore.html
10http://www.operamini.com/features/
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businesses, such as theaters, restaurants and hotels. In low-end mobile devices Google Maps

uses a keypad or/and pen interface; in more advanced devices such as the iPhone the user can

exploit available gestures to easily move and zoom in/out, offering a desktop-like experience.

2.7 Architectures

Most multimodal systems are very complex in terms of architecture and software design, and

usually mix and exploit many software architectural styles and models like the pipe-and-filter,

finite-state machine, event-based model, client-server, object-oriented and agent-based ones.

For example, spoken dialogue systems are usually structured either in a pipeline fashion or

use the client-server model with a central component, which facilitates the interaction between

other components, like the Galaxy-II architecture [104, 105]. Multimodal systems are based on

even more sophisticated architectures like agent architectures [106]. Some of these architectures

follow the MVC paradigm and separate the model from the control logic and the interface

specification, although, in spoken dialogue systems, it is not uncommon to combine the control

logic and speech interface specification into a single module, the dialogue manager. Next the

differences in between GUI and multimodal architectures are examined, and some typical

architectures employed in multimodal input/multimedia output systems are reviewed.

GUIs vs Multimodal architectures

As noted in [14], the design of multimodal/multimedia systems should address several chal-

lenging architectural issues not found in the design of “traditional” GUI applications. First,

unlike GUI systems that assume that there is a single event stream that controls the under-

lying event loop, multimodal interfaces may process continuous and simultaneous inputs and

outputs from parallel streams. Also GUIs assume that the basic interface actions, such as

selection of an item, are atomic and unambiguous events, while multimodal systems process

input modes using recognition-based technologies that are designed to handle uncertainty and

entail probabilistic methods of processing. Finally, multimodal interfaces that process two or

more recognition-based input streams require time-stamping of input, and the development of

temporal constraints on modality fusion operations.

Multimodal Architectures and Frameworks

One popular architecture among the members of the multimodal research community is the

multi-agent architecture, exemplified by the Open Agent Architecture [107] and Adaptive Agent

Architecture [106]. As described in [68, 14], multi-agent architectures provide essential in-

frastructure for coordinating the many complex modules needed to implement multimodal
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system processing, and permit doing so in a distributed manner. According to the authors,

in a multi-agent architecture, the many components needed to support the multimodal sys-

tem, e.g., speech recognition, gesture recognition, natural language processing, multimodal

integration, may be written in different programming languages, on different machines, and

with different operating systems. Agent communication languages are being developed that

can handle asynchronous delivery, triggered responses, multi-casting and other concepts from

distributed systems.

Using a multi-agent architecture, for example, speech and gestures can arrive in parallel

or asynchronously via individual modality agents, with the results recognized and passed to

a facilitator. These results, typically an N-best list of conjectured lexical items and related

time-stamp information are then routed to appropriate agents for further language processing.

Next, sets of meaning fragments arrive at the multimodal integrator which decides whether

and how long to wait for recognition results from other modalities, based on the system’s

temporal thresholds. The meaning fragments are fused into a semantically-and temporally-

compatible whole interpretation before passing the results back to the facilitator. At this

point, the system’s final multimodal interpretation is confirmed by the interface, delivered as

multimedia feedback to the user, and executed by any relevant applications.

Despite the availability of high-accuracy speech recognizers and other mature multimodal

technologies such as gaze trackers, touch screens, and gesture trackers, few applications take ad-

vantage of these technologies. One reason for this is that the cost of implementing a multimodal

interface is prohibitive. The system designer must usually start from scratch, implementing

access to external sensors, developing ambiguity resolution algorithms, etc. However, when

properly implemented, a large part of the code in a multimodal system can be reused. This as-

pect has been identified and many multimodal application frameworks have recently appeared

such as VTT’s Jaspis and Jaspis2 frameworks [68, 108], Rutgers CAIP Center framework [109]

and the embassi system [110].

2.8 Standards and Tools

Next tools, standards and recommendations for developing GUIs, spoken dialogue and multi-

modal interaction systems are briefly outlined.

Graphical User Interfaces

In contrast to web development for which widely used standards exist, e.g., HTML, GUI de-

velopment is characterized by the lack of a single dominant standard. Instead, a multitude of

GUI toolkits, along with their corresponding style guides, exist for different desktop operating
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systems, e.g., MacOS, Windows, Linux and various platforms, e.g., mobile or desktop. Nev-

ertheless all these GUI toolkits are very similar in appearance and functionality. This makes

the application of common design rules and guidelines easier to follow, in practice, regardless

of the toolkit choice. Such guidelines, style guides, e.g., the Apple Human Interface Guidelines

for desktop [111] or iPhone [112], standards, e.g., ISO 9241 (Ergonomics of Human System

Interaction), and toolkits promote usability principles such as consistency and user satisfac-

tion. However, following these guidelines is not always easy for non-HCI expert developers as

reported in [52].

The appearance of cross-platform GUI toolkits and development tools that ease GUI devel-

opment, e.g. automatic creation of GUI related code, helps developers and designers focus on

application functionality and design principles, rather than on low-level details. The diversity

of GUI toolkits is not expected to vanish any time soon, especially as new devices and plat-

forms keep emerging. This is especially true in the mobile/embedded space where new devices

and interaction paradigms appear, posing new challenges and creating new opportunities for

system designers.

Spoken Dialogue Interfaces

The VoiceXML Forum11 an organization founded by Motorola, IBM, AT&T, and Lucent to

promote voice-based development, introduced the VoiceXML language based on the legacy of

languages already promoted by these four companies. In March 2000, version 1.0 was released

and in October 2001, the first working draft of the latest VoiceXML 2.0 was published as a

W3C recommendation12. The VoiceXML standard has simplified the development of voice-

based applications much like HTML did for the development of web-based applications. The

main features of VoiceXML are the familiar HTML-like syntax, the logic that an application

consists of a series of pages (similar to familiar GUI interface logic) and the ability to provide

web content using only voice as an input modality, making web information accessible from

fixed or mobile phones.

VoiceXML browsers consist of an interpreter and a set of VoiceXML documents. VoiceXML

supports dialogues that include menus and forms, sub-dialogues and embedded grammars. The

voice browser renders the VoiceXML documents as a sequence of the two-way interaction be-

tween the system and the end user. Core VoiceXML interpreter and software components

are used for this purpose such as automatic speech recognition and text-to-speech. Many com-

panies build spoken dialogue development toolkits that include building blocks such as sub-

dialogues and grammars. Such toolkits often introduce custom tags of objects in addition

11http://www.voicexml.org/
12http://www.w3.org/TR/voicexml20/
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to the VoiceXML standard ones. Using such complete solutions a system designer can imple-

ment and test VoiceXML-based applications and voice portals, e.g., the Nuance Voice Platform
13 provides an easy-to-use, complete development environment for voice applications. Other

commercial offerings include servers for deploying these applications [113], voice browsers, and

VoiceXML editors and grammar development tools. There are also open source VoiceXML

tools, such as Carnegie Mellon’s OpenVXI interpreter 14.

Multimodal Interaction Standards

The number and diversity of devices that can access the Internet has grown tremendously

in the past years. The capabilities and modes of access of these devices varies; consider

for example mobile phones, smart phones, personal digital assistants, multimedia players,

kiosks, automotive interfaces. The W3C Device Independence Working Group main focus is

on standards that make the characteristics of the device available to the network and, most

importantly, on standards that assist authors in creating sites and applications that can be

supported on multiple devices. The group coordinates its work with the Web Accessibility

Initiative15 and MultiModal Interaction Working Group16 activities as discussed next.

The main goal of the Multimodal Interaction Activity is to extend the Web user interface

to multiple modes of interaction (aural, visual and tactile), offering users the means to provide

input using their voice or their hands via a key pad, keyboard, mouse, or stylus. For output,

users will be able to listen to spoken prompts and audio, and to view information on graphical

displays. By allowing multiple modes of interaction on a variety of devices the activity aims

for accessibility to all. The Working Group was launched in 2002 following a joint workshop

between the W3C and the WAP Forum with contributions from SALT17 (Speech Application

Language Tags) and XHTML+Voice18 (X+V). Major contributions of this activity include:

the Multimodal Interaction Use Cases, the Multimodal Interaction Use Requirements and the

W3C Multimodal Interaction Framework [99]. Work has also been done on: (i) dynamic

adaptation to device configurations, user preferences and environmental conditions (System and

Environment Framework) [114], (ii) integration of composite multimodal input and modality

component interfaces such as interfaces for ink and keystrokes, and (iii) context sensitive

binding of gestures to semantics (note that speech and DTMF modalities are developed by the

Voice Browser Working Group19).

13http://www.nuance.com/voiceplatform/
14http://www.speech.cs.cmu.edu/openvxi/
15http://www.w3.org/WAI/
16http://www.w3.org/2006/12/mmi-charter.html
17http://www.saltforum.org/
18http://www.voicexml.org/specs/multimodal/x+v/12/
19 http://www.w3.org/voice/
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The group’s work has also stimulated the creation of mark-up languages such as EMMA,

and InkML. The Extensible MultiModal Annotation Markup Language (EMMA) [115], is a

markup language intended to represent semantic interpretations of user input (speech, keystrokes,

pen input etc.) together with annotations such as confidence scores, timestamps, input

medium. The interpretation of the user’s input is expected to be generated by signal in-

terpretation processes, such as speech and ink recognition, semantic interpreters, and other

types of processors. InkML [116], defines an XML data exchange format for ink entered with

an electronic pen or stylus as part of a multimodal system, which will enable the capture and

server-side processing of handwriting, gestures, drawings and other specific notations.

Other related efforts for multimodal interaction standardization are the SALT and XHTML

+ Voice efforts. SALT, is a lightweight set of extensions to existing markup languages, allow-

ing developers to embed speech enhancements in existing HTML, XHTML and XML pages.

XHTML+Voice, by IBM, Motorola and Opera Software, is another effort exploiting the com-

bined use of XHTML and parts of VoiceXML through XML events to support for visual and

speech interaction.

2.9 Summary

This chapter presented some of the fundamental concepts behind interface design with a focus

on multimodal interfaces. The introduction to HCI focused on the definition and principles

of usability, namely learnability, flexibility and robustness. The MVC (model-view-controller)

paradigm that serves today as the basis for the architectural design of many unimodal and

multimodal systems was introduced.

Next some of the input and output modalities that are involved in modern interface design,

namely GUI, speech and gestures were presented. Much of the review focused on speech

interfaces, both because of the idiosyncratic nature of the speech modality and the breadth

of technologies involved in speech recognition and synthesis. Then the discussion turned to

the interesting problem of how to combine different modalities to build multimodal interfaces.

The review focused on the problems of multimodal fusion and multimedia fission, as well

as the potential rewards and pitfalls of multimodal interface design. The main advantages of

multimodality are increased interface robustness and usability, especially in adverse conditions.

Adaptation has been used for a large variety of tasks and applications, often successfully,

improving the interaction efficiency and the user experience. However, despite the promise that

adaptive interfaces hold, designing interfaces that are adaptive and also appear consistent to the

user is a challenging task. In addition, adaptive interfaces are complex and the consequences

of adaptivity on the user experience is sometimes unpredictable. As a result, system designers

often opt for adaptable interfaces, or limit the functionality of the adaptive algorithms.
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As mobile devices are becoming increasingly ubiquitous, mobile interface design is emerging

as an important research area of human-computer interaction. Designing and implementing

interfaces on mobile devices, such as PDAs and mobile phones, is a challenging task because the

designer has to operate under various constraints and most importantly the reduced display

size and the limited interaction methods. These limiting factors affect interface design and

multimodal interfaces have been proposed as a solution to the design of more robust and

efficient mobile interfaces.

Most multimodal systems are very complex in terms of architecture and software design

and they usually exploit the MVC paradigm and separate the model from the control logic and

the interface specification. The differences between GUI and multimodal architectures are ex-

amined, and some typical architectures employed in multimodal systems are reviewed. Finally

tools, standards and recommendations for developing GUIs, spoken dialogue and multimodal

interaction systems are presented.

These are exciting times for the design of innovative interfaces. The explosion of multime-

dia content available online, improved device capabilities, novel multimedia signal processing

algorithms, new interaction modalities and interaction paradigms have created possibilities

that we are only now beginning to understand.



Chapter 3

Multimodal Platform and

Interaction Design

The main aim of this chapter is to showcase how to design information-filling multimodal

systems combining speech and GUI (e.g. pen or touch) input. From the interaction design

standpoint, the main focus is on identifying and exploiting the synergies between the modalities

and on the investigation of a variety of multimodal interaction modes. The system architec-

ture of the system which allows both unimodal and multimodal interaction and can be used

across different platforms such as PDAs and mobiles is examined here and in more detail in

Appendix A. A video demonstration of the multimodal systems designed is available online1.

3.1 System Overview

The system is built using the Bell Labs Communicator dialogue platform described in [5]. The

system architecture diagram shown in Fig. 3.1 shows the Communicator SDS (Spoken Dialogue

System) augmented to support GUI in addition to the speech modality. To achieve this the

system is also able of handling, parsing and interpreting GUI input (e.g. mouse input for the

desktop case) and also produce GUI output. This system is then later augmented in order to

support multimodal interaction instead of just unimodal interaction as described in Section 3.4

by incorporating a multimodal controller module shown in Fig. 3.5. The system is designed

with the main aim of clearly separating the interface from the task (that is the application).

The main application used with the system is a travel reservation form-filling application

which allows for flight, hotel and car reservation. In this chapter the main focus is on the form-

filling part (result presentation and navigation part of the application is discussed in [5]) of the

application. Fig. 3.2 shows a tree structure (part of) representing the application (prototype

1http://www.youtube.com/user/holystone74
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Figure 3.1: Bell Labs Communicator architecture (from [5])
.

tree) and the data collected from user input over multiple dialogue turns (note the flight leg

hierarchy and some attribute value pairs, e.g., departure date, June 1 - refer also to Table 3.2

for a list of the attributes used). Switching application, e.g. a movie searching application,

is achieved by using just a different prototype tree; Recall that this separation of task and

interface is also the main design power of the MVC pattern.

Overall, the system designed, supports five different interaction modes; two unimodal ones,

namely, “GUI-Only” (GO) and “Speech-Only” (SO)2, and three multimodal ones combin-

ing the speech and GUI modalities, namely, “Click-to-Talk” (CT), “Open-Mike” (OM) and

“Modality-Selection” (MS). In addition, a sixth interaction mode with unimodal speech input

and GUI and speech output labeled “Open-Mike Speech-Input” (OMSI) was implemented. In

Table 3.1 a summary of the systems described is shown in terms of input and output modali-

ties supported. Note that the three multimodal modes support all available input and output

modalities.

The system has been designed to be fully portable across a variety of computing plat-

forms (desktop, PDA and mobile) with minor differences in the GUI design stemming from

user interface considerations (thus three different GUI view implementations are provided).

The user can communicate with the system using pen and/or speech on the PDA, using key-

board/mouse and/or speech on the desktop and speech and/or touch in the iPhone mobile

2which already existed in the original system
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Trip
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Leg1 Leg2

Departure Arrival Departure Arrival

Time Date City Time Date City

June 1 Atlanta New York Atlanta New York

Position−ambiguous values

Value−ambiguous position

Figure 3.2: Travel reservation application tree (part of) depicting the flight leg hierarchy and
the attribute value pairs (from [5]).

device used. Thus in regard to the MVC model, all systems described share the exact same

model (the prototype tree) but use different view realizations (speech and/or the three GUI

implementations). The controller used exposes the exact same functionality (and behavior)

to the various views. Regarding the controller, the only distinction that can be thought of, is

between the unimodal and multimodal controller, the later being a superset of the first since

it has to coordinate more channels (speech and GUI).

The various systems and interaction modes are described in detail next. First the (original)

”Speech-Only” system is described in section 3.2. In section 3.3 the process of designing the

”GUI-Only” system in order to support the exact same functionality with the ”Speech-Only”

is presented. In addition the three different implemented GUI versions for the desktop, PDA

and mobile platforms respectively, are also described. The design of multimodal interaction

modes that combine the GUI and speech modalities is presented in section 3.4. Two important

design issues that are addressed is the exploitation of the combined modalities synergies and the

selection of the default input modality in the three multimodal interaction modes designed. The

three multimodal interaction modes “Click-to-Talk”, “Open-Mike” and “Modality-Selection”

are then described in detail. Finally in section 3.5 the “Open-Mike Speech-Input” interaction

mode is described. For interesting design and implementation details of the system, please

refer to Appendix A.
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Table 3.1: Supported input and output modalities in the implemented systems.
input modalities output modalities

system GUI speech GUI speech

GO
√

x
√

x

SO x
√

x
√

OMSI x
√ √ √

CT/OM/MS
√ √ √ √

3.2 Unimodal speech interaction

The original Communicator uses the BLSTIP [117] telephony platform. This was substituted

by a highly flexible audio platform that was designed and implemented (see Appendix Sec-

tion A.2) in order to be used on both desktop computers and mobile devices (for various

operating systems). It is high performance and supports advanced features such as Voice

Activity Detection (VAD) and barge-in, i.e., users speaking over system prompts. The au-

dio platform interfaces with Bell Labs speech recognizer [117] and the FreeTTS [118] speech

synthesizer through network sockets.

The “Speech-Only” interface is identical to the one described in [5, 119, 120]. In brief,

the spoken dialogue manager promotes mixed-initiative system-user interaction. All types of

user requests and user input are allowed at any point in the dialogue, i.e., the full application

grammar is active throughout the interaction. The system prompts are focused and try to elicit

specific information from the user, e.g., the value of an attribute. Explicit confirmation is used

only to confirm the values of the attribute at the form level, e.g., for all flight leg user supplied

information. Implicit confirmation is used in all other cases throughout the interaction.

Following is an example interaction scenario:

>> Welcome to the Bell Labs travel reservation system.

>> How can I help you?

<< I want to fly from Athens to London

>> I’ve got you leaving Athens and arriving in London England.

>> Leaving Athens on what date?

<< Tomorrow morning

>> I understand you’re leaving on Monday, November ninth in the morning,

>> What is your preferred airline?

<< Olympic
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>> You fly with Olympic airways

>> Is this information correct? [explicit confirmation at the form level]

<< Yes

>> One way trip?

<< No

...

Table 3.2: Attribute size (sorted by size) for the travel reservation application. The table is
separated in two parts depending on attribute size; we refer to the attributes in the upper part
as “long” attributes and the rest as “short” attributes.

attribute name attribute size

hotelname 250

city 135

airline 93

date 22

car type 15

car company 10

time 9

3.3 Unimodal GUI interaction

The application GUI (see Fig. 3.3 and Fig. 3.4) is generated automatically from the appli-

cation tree and the interface specification. It depicts the application tree and state, using a

series of forms. Each form contains a list of attribute-value pairs, with each pair employing

label and text-field/combo-box/table-view components respectively, depending on GUI view

implementation. Three versions of the GUI are implemented3: a desktop version which allows

for keyboard and mouse input (GUI uses text-field or combo-box components depending on

attribute size), a PDA version which only allows for pen input (GUI uses only combo-box com-

ponents) and an iPhone version which allows for touch input (GUI uses table-views). Flight

reservation, hotel reservation and car rental forms are accessible as separate tab panes/tab-bar

items in the case of desktop/iPhone and via buttons in the bottom of the form in the PDA

GUI4. Also note that the “Speech Input” button (used for multimodal interaction) contained in

all GUI versions is disabled. Next, the differences between the three GUI designs are discussed.

3The desktop, PDA and mobile views use Java Swing, Java AWT and iOS user interface libraries respectively.
4Note that the task manager automatically decides when a form is filled and automatically prompts the user

to move on to the next form. Thus the form navigation buttons/panes are not used much by the user in our
system.
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(a) (b)

Figure 3.3: GUI-Only interaction examples (a) desktop view (b) PDA view.

Differences between the three GUI designs

Since desktop GUI systems allow for both mouse and keyboard (text) input, the desktop GUI

implementation (see Fig. 3.3(a)) exploits both input types to allow for fast GUI interaction.

The choice of using text field or combo-box for a certain attribute field, is based on efficiency

considerations; that is the number of values of that attribute (attribute size). For small at-

tribute sizes i.e., less than 25 values, a combo-box is used, otherwise a text-field (see Table 3.2).

This combination has been found to be the most efficient for our application. For the PDA

GUI on the other hand (see Fig. 3.3(b)), all data entry fields are implemented as combo-box

components due to the slow text input methods available on such devices. The number of

options available to the user in some of these combo-box components is quite large, e.g., 250

choices for the “hotelname” attribute. Note that attribute values in any combo-box appear

sorted alphabetically (with the exception of time which is chronologically sorted).

In contrast with the Zaurus PDA which follows a desktop-like GUI interface and is con-

trolled via a stylus, the iPhone uses a touch interface optimized for simple finger gestures

operations on the screen (refer to section 2.6.2). Thus instead of the precise pointing of the

stylus on PDAs, the larger less precise footprint of finger on the screen has certain implications

in the design of the screen components. For example, in contrast with the traditional form

views in desktop-like GUIs for which both the field labels and components that contain the

fields values (e.g. combo-box) can been fit in a single view, the corresponding form in the

iPhone requires a two level view hierarchy.

The main (top) view (a table-view according to iPhone terminology) holds just the field
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(a) (b)

Figure 3.4: GUI-Only interaction in the iPhone device. In contrast with desktop-like interfaces,
a form view is represented with a 2-level hierarchy of views (a) top-level view (b) detailed view
for deaprture city attribute.

(attribute) labels and the corresponding selected value in each table row (see Fig. 3.4(a)).

By touching each row, a new detailed (two-level) view containing all the possible values the

user can select from, is shown (Fig. 3.4(b)). A navigation bar indicates the depth level in the

hierarchy; after the user scrolls and selects the desired value the detailed view disappears and

the main view is shown again with the selected value shown next to attribute label.

Common features

To ensure the exact same functionality and interaction experience with the “Speech-Only”

system (albeit with a different representation), the following features are common for all three

versions of the GUI : (1) the current context (or focus) of the interaction is highlighted in each

turn (2) GUI components that become inaccessible in the course of the interaction are “grayed

out” (3) information and error messages are represented in the GUI as pop-up dialogues, and

(4) ambiguity is shown as a pull-down box with a list of choices and highlighted in red.
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Figure 3.5: State diagrams of the three multimodal interaction modes: (a)“Click-to-Talk”,
(b)“Open-Mike” and (c)“Modality-Selection”.

3.4 Multimodal interaction

In this section the design of multimodal interaction is described. The two important issues

that have driven the design of the systems described next is the exploitation of the synergies

and the selection of the default input modality; these issues are addressed in sections 3.4.3 and

3.4.4 respectively.

3.4.1 Design issue I: exploitation of modality synergies

It is widely supported that voice user interfaces (VUI) and graphical user interfaces (GUI) when

combined to create a multimodal system offer high complementarity for most applications

[9, 24, 25, 26]. As far as input is concerned, GUI interfaces have low error rates and offer

easy error correction. Although speech is not error-free, it may be more efficient for relatively

high speech recognition accuracy and high verbosity (number of tokens communicated). It

is also considered the most natural type of input compared to other modalities. As far as

output is concerned, GUI output is fast (parallel) compared to much slower (sequential) speech

output. Thus, multimodal systems that combine GUI and speech interfaces can potentially

become more efficient in terms of time to complete a task by taking advantage of: (i) “input

modality choice” synergy, i.e., the user (or system in an adaptive user interface) chooses the

most appropriate input modality for each turn (ii) “visual-feedback”, i.e., the more efficient

cognitive processing of visual compared to auditory information, (iii) “error-correction”

synergy, i.e., correcting errors of the VUI via the GUI [27].
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Figure 3.6: “Modality-Selection” interaction mode example on the PDA platform. System is
in “Open-Mike” mode in the first frame (speech button is yellow indicating waiting for input),
receives user input “From New York to Chicago” during the second frame (speech button is
red showing a VAD has taken place) and switches to “Click-To-Talk” mode in the third frame.
The speech/pen input default modality is selected by the system in the first/third frame,
respectively, due to the large/small number of options in the combo-box.

3.4.2 Design issue II: selection of input interaction modality

A fundamental issue one has to consider when building multimodal interfaces is the suitability

of various input interaction methods for different tasks and subtasks [23]. Combining multiple

modalities efficiently is a complex task and requires both good interface design and experi-

mentation to determine the appropriate modality mix. Few guidelines exist for selecting the

appropriate mix of modalities [22, 29, 30]. It is often the case when designing multimodal

user interfaces that the developer is biased either toward the speech or the GUI modality.

This is especially true, if the developer is speech-enabling an existing graphical user interface

(GUI)-based application or building a GUI for an existing speech-only service.

Another issue that is not thoroughly researched is the design of multimodal turn-taking

and the selection of the most appropriate interaction modality in each turn. Should users

be allowed to interact as in traditional spoken dialogue systems (SDS) where a voice-activity

detector allows the user to barge-in and speak at any moment (commonly referred as an “Open-

Mike” interaction mode), should the user be constrained as in the GUI paradigm to press a

button to activate the speech recognizer (“Click-to-Talk”), or should either interaction modes

be used were appropriate.
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3.4.3 Common design of the multimodal interaction modes

The output interface is common for all multimodal interaction modes to allow us to better

investigate the effectiveness of the input modality mix. The GUI output is identical to the cor-

responding “GUI-Only” mode. Audio output prompts were significantly shortened compared

with the unimodal “Speech-Only” case. Specifically, implicit confirmation prompts were not

used in the multimodal case because confirmation was efficiently done via the GUI modality

(mouse/pen/touch). In addition, form creation prompts and explicit confirmation prompts

were significantly shortened or not used at all, depending on the interaction context. Finally,

information request prompts were shortened down to the name of the attribute requested, e.g.,

“Arrival city?” (compare this to the longer prompt “I have got you leaving Chicago, where

are you flying to?” of the “Speech-Only” mode). In general, speech output was mainly used

as a way to grab the attention of the user, emphasizing information already appearing on the

screen. The speech interface was identical for all multimodal modes.

Note that in all three multimodal modes only one modality is active at a time, i.e., the

system does not allow for concurrent multimodal input5. GUI input is not allowed (GUI is

“grayed-out”) while speech input is active. Also, for all multimodal modes, users are free to

override the system’s proposed input modality, that is, use a modality other than system’s

default, e.g., GUI input for “Open-Mike” mode for which speech is the default input modality.

The functionality of each multimodal mode is discussed in detail next.

3.4.4 Differences between the multimodal interaction modes

The main difference between the three multimodal interaction modes is the default input

modality used at each turn. For “Click-to-Talk” interaction, GUI is the default input modality;

the user needs to click the “Speech Input” button to override the default input modality and use

speech as an input instead. The “Speech Input” button turns then red to highlight that audio

capture and speech recognition are active and the whole GUI view becomes disabled (GUI

input not allowed while speech input in progress). Once recognition finishes, the recognized

results update the GUI view and the focus advances to the next expected attribute where

“Speech Input” button turns gray and becomes clickable again.

For “Open-Mike” interaction, speech is the default input modality; the system is always

listening and a VAD event activates the speech recognizer. The “Speech Input” button is

not clickable in this mode and has yellow color to indicate that audio recording is active at

the beginning of each turn; once a VAD event happens it turns red to indicate that speech

recognition is active. Again the user can override the default input modality by using GUI

5For information-seeking/form-filling multimodal applications this is not a major limitation.
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input (e.g. selecting a combo-box with a pen on the PDA device). Note however, that this can

not happen if a VAD event has already taken place (only one modality active at each turn).

“Modality-Selection” is a mix of the “Click-to-Talk” and “Open-Mike” interaction; the

system switches between the two multimodal modes depending on efficiency considerations

(the size of the attribute that is in focus in the current turn). For short attributes (GUI

input faster than speech), the system goes into “Click-to-Talk” mode and GUI input becomes

the default input modality, otherwise the system goes into “Open-Mike” mode where speech

becomes the default input modality. Thus “Modality-Selection” selects the input modality in

a static way (current attribute size); It is a simple version of the adaptive modality tracking

algorithm proposed in [120].

The state diagrams of the three multimodal interaction modes are shown in Fig. 3.5. For

“Click-to-Talk” (Fig. 3.5(a)) the default system state is the GUI input state (default state

shown in bold); the user can transition to the speech input state by pressing on the GUI the

“Speech Input” button. Upon being pressed, “Speech Input” button turns red (indicating that

the speech recognizer is active), the speech prompt is stopped (barge-in event) and the GUI

is disabled (“grayed-out”) for the duration of the speech recognition event. At the end of the

speech input turn (speech recognition completed or a time-out happened) the system returns

to the GUI input state: the GUI is enabled and so is the “Speech Input” button.

For “Open-Mike” (Fig. 3.5(b)) the default system state is the “speech waiting ” state. In

this state, the color of the “Speech Input” button is yellow to indicate to the user that he/she

can speak at anytime. When voice activity is detected, the system goes to the “speech input”

state; the “Speech Input” button turns red, GUI is disabled and the audio prompt is stopped.

Upon completion of the speech recognition event the system returns to the “speech waiting”

state. The system goes to “GUI input” state if the user starts interacting with the GUI input

modality; once finished the system returns to the default “speech waiting” state.

For “Modality-Selection” (see Fig. 3.5(c)), the default system state is the “Modality-

Selection” state, where the system determines (at the beginning of each interaction turn)

the preferred input modality: GUI or speech. Based on the modality selected, the system

transitions to the default state of the “Click-to-Talk”/“Open-Mike”. Once a user input turn is

complete, the system transitions back to the “Modality-Selection” state (following the dotted

lines in Fig. 3.5(c) rather than the solid lines and selects the modality for the next turn.

In Fig. 3.6, examples from the “Modality-Selection” mode running on the PDA, are shown.

Initially the interaction focus is on “departure city”, the speech modality is selected (over

25 options available) and the system goes to “speech waiting” state. User input “from New

York to Chicago” activates the speech recognizer (VAD event) and the GUI becomes disabled

(“speech input” state). Once recognition of the spoken utterance finishes, the GUI is updated

and the modality is selected for the next turn (“modality selection” state). For the next turn,
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GUI input is selected (focus is on “departure date” for which a combo-box with less than 25

choices is available) and the system goes to the “GUI input” state.

3.5 Other interaction modes

To better investigate the effect of “visual feedback” synergy in spoken dialogue interaction,

a system with limited multimodal capabilities was also implemented, namely “Open-Mike

Speech-Input” (OMSI). The user is allowed only speech input while the system output in-

cludes both speech and visual feedback. OMSI interaction is thus equivalent to “Open-Mike”

interaction with GUI input disabled. Alternatively OMSI can be seen as a “Speech-Only” sys-

tem with visual feedback and shortened prompts. Note that the OMSI prompts are identical

to the rest multimodal systems prompts.



Chapter 4

Evaluation Methodology

4.1 Introduction

In the previous chapter the design of a dialogue system supporting two unimodal and three

different multimodal interaction modes was described. In this chapter the methodology used

for evaluating the system is presented with a focus on the evaluation metrics used. Some

of these metrics are standard objective metrics used in dialogue systems while the rest were

devised specifically for the investigation of two important research questions, namely the re-

lation of input modality choice to unimodal efficiency and the measurement of the synergies

in multimodal interaction modes. Overall the metrics used aim at: (i) comparing in terms of

performance and user satisfaction all the interaction modes (unimodal and multimodal). (ii)

identifying input modality selection patterns in the multimodal interaction modes and their

relation to unimodal efficiency, e.g. is modality selection proportional to the ratio of unimodal

efficiency ratio? (iii) measuring the synergies of the multimodal interfaces.

The objective metrics used are described in section 4.2. Since the system evaluated is

a dialogue based system, metrics for the evaluation of SDSs can be applied such as task

completion ratio, number of turns and turn duration times. These metrics can be additionally

measured per user, task or turn. One important improvement is the break down of turn

duration times into inactivity and interaction times which allows to separate system output

processing (by user) from user input, in order to better study differences between the various

interaction modes. Another metric related to multimodal interaction is the number of overrides

which describes how well a multimodal system matches users’ modality preferences. The

two metrics devised related to items (ii) and (iii) in the previous paragraph, namely relative

modality efficiency and multimodal synergy are defined in section 4.3 and their computation

is described in section 4.3.3.
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4.2 Objective evaluation metrics

Interface evaluation of multimodal dialogue systems is a fairly complex task and different

metrics may be used to evaluate various aspects of such systems [121, 34]. Since one of the

main interests is in computing the relationship between modality usage and relative efficiency

of input modalities, two depended variables become of high importance: modality selection

(GUI or speech) and user turn duration (that is the time spent in each turn, for user input to

the system using either modality1).

In this work, the focus is in the form filling part of the interaction and most specifically on

how the user provides attribute-value pairs to the system2. Other parts of the interaction such

as confirmation questions, verification requests, and navigation among forms were not included

in the analysis. The main reason for this is that for the vast majority of these actions, users

used GUI input, as it was clearly the faster and easier way to respond, e.g., click “Yes” on

a dialog window, containing the question “Is this correct”?. By excluding the navigation,

confirmation and verification actions the biasing of the evaluation results is avoided.

Dialogue based form filling systems are turn based. Turn duration (refer to Fig. 4.1) is

the sum of user and system processing/response duration. Interaction efficiency focuses on the

first component, which in turn consists of user inactivity and interaction times as defined in

section 4.2.2.

Based on user turn times, statistics like average turn duration (mean of turn time), overall

user times (sum of turn time) and number of turns can then be computed for a certain factor

(independent variable) of interest, such as the interaction mode, the user and the attribute

(context). The rest of the section discusses the projection of evaluation data to various factors

in order to compute statistics for the two depended variables of interest, namely user turn

duration and modality selection.

Next a short summary of objective metrics used in this study along with their intended use

is outlined:

• Input modality (GUI/speech) usage: Can be computed per user/system/attribute to

reveal relation to unimodal efficiency.

• Input modality overrides: How well does the multimodal interaction mode matches user

input modality preferences.

1This time also includes an overhead in the case of speech input (ASR overhead time), which has been found
to be relatively small and is thus neglected by the analysis.

2Note that error correction turns are included. Excluded from the analysis are only turns that are responses
to YES-NO questions such as “Is this a one way trip?” or “Is this correct?” (that occurs after filling out each
form).
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Figure 4.1: Turn time decomposition to user and system time. Note that user time can be
further broken down to inactivity and interaction time.

• Inactivity/interaction times: Separate input efficiency (related to interaction times) from

output efficiency and modality selection overhead (related to inactivity times).

• Context(attribute) statistics: Relate input modality efficiency for each attribute with

modality usage.

• User statistics: Identify individual user patterns.

4.2.1 Modality selection and input modality overrides

The issue of modality usage is a focal point of our research. To answer this question a projection

of data on the modality factor is done. Specifically, the usage of each input modality as a

function of number of turns is measured and also the duration of turns attributed to each

modality. Modality usage is also measured as a function of context, i.e., attribute for which

input is expected, as discussed in Section 4.2.3.

Recall that in all three multimodal interaction modes, users have the choice to select among

GUI or speech input at each turn, regardless of the default input modality proposed to the user.

Thus another related measure is the number of input modality overrides, i.e., the number of

turns where users preferred to use a modality other than the one proposed by the multimodal

interaction mode. Low number of overrides reveals that the multimodal mode matches user’s

modality preferences and/or that the modality selection process is system-initiated for this

user. A high number of overrides reveals a mismatch to user’s modality preferences and/or a

power-user that takes the modality selection initiative. The number of overrides is defined as

the number of speech input turns for “Click-to-Talk” mode and as the number of GUI input

turns for “Open-Mike” mode. For “Modality-Selection”, the number of overrides is defined as

the number of speech input turns for “short” attributes (where the system selects GUI input
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as default) plus the number of GUI input turns for the “long” attributes (where the system

selects speech input as default).

4.2.2 Turn duration, inactivity and interaction time

Duration statistics at the turn and task level are important factors, since in this work, efficiency

is defined as being inversely proportional to task duration. In addition to measuring turn and

dialogue duration in total and for each input modality, turn duration is further decomposed

into interaction and inactivity times (refer to Fig. 4.1). Inactivity time3, refers to the idle time

interval starting at the beginning of each turn, until the moment the user actually interacts

with the system using GUI or speech input. During this interval, the user has to comprehend

the system’s response and state and then plan his own response according to the scenario

information. The response typically includes entering the system’s requested information,

using his preferred modality for that turn. Let us refer to this time as interaction time. By

breaking the turn duration into interaction and inactivity time it becomes easier to focus better

on user input and system output processing by user and investigate them separately.

Inactivity time

For GUI input, the inactivity time is defined as the time interval between the turn start time

and the moment the user starts interacting with the GUI. This GUI action event may be the

click on the combo-box for PDA case when user starts writing in a text-field for the desktop

case or when user touches to select an attribute for the iPhone case. For the case of speech

input, inactivity time is defined as the time interval between the turn start time and the

moment of a VAD event, that is the moment the audio subsystem has detected speech activity

and starts sending speech samples to ASR. Note, that in the case of “Click-to-Talk” mode,

one would expect this time to be higher compared, e.g., to “Open-Mike”, since the user has to

also click the “Speech Input” button to start the audio recording first4.

Interaction time

For GUI input, interaction time is defined as the time interval between the moment of the first

GUI event and the moment the user selects the desired value. For speech input, interaction

time is defined as the time interval between the moment of the VAD event and the moment

ASR result becomes available (this also includes an ASR overhead time as discussed earlier).

3The term “inactivity” refers to the fact that the user appears inactive to the system.
4“Click-to-Talk” has voice activity detection enabled in this evaluation.
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4.2.3 Context statistics

Context statistics refer to the objective metrics regarding the attributes shown in Table 3.2,

also referred to as contexts during the course of interaction. Given that the default modality in

the “Modality-Selection” mode is chosen based on attribute size, modality usage and duration

statistics as a function of context will help us better understand the relation between efficiency

and modality choice.

In addition to the traditional computation of the mean (and variance) of turn duration

as a function of context, the empirical probability density functions (PDFs) of turn duration

for each context is also computed. The empirical distributions are computed as a function of

context and modality, for the interaction and inactivity time of each turn.

4.2.4 User statistics

User variability is another important issue that is investigated in this work. The efficiency of

each modality is different for each user due to different GUI performance, speech recognition

accuracy and prior experience with speech interfaces. Also users may have different modality

preferences (bias towards a certain modality) that largely affect modality selection and overall

performance. Individual user statistics also give us an idea of the degree of variability that

users exhibit in making modality selection decisions and can help us to better understand the

generality of the drawn conclusions on the relation between efficiency and modality usage.

4.3 Synergy and Relative Modality Efficiency metrics

Objective metrics are extensively used in HCI in order to evaluate the usability of a system.

Common metrics used for the evaluation of both spoken dialogue and multimodal dialogue

systems include task completion, time to task completion, number of turns, word and concept

error rates. Such metrics can be computed per user, task or subtask. In addition, for multi-

modal systems, objective metrics such as the usage of each modality (both in number turns

and total duration) are computed which can reveal usage patterns and modality efficiency.

Although these metrics are very useful for direct comparison between competing interface im-

plementations and systems, the metrics themselves may not provide enough insight from a

usability standpoint.

Next two new metrics that can help the system designer (in conjunction with the afore-

mentioned metrics) gain a deeper insight into usability aspects of multimodal interface design

are defined. The first metric, relative modality efficiency, computes the amount of informa-

tion communicated in unit time for each modality, i.e., the information bandwidth. Relative

modality efficiency should correlate well with relative modality usage unless there is modality



CHAPTER 4. EVALUATION METHODOLOGY 59

overuse (bias towards a certain modality). The second metric, multimodal synergy, compares

the multimodal interfaces with the “sum” of its unimodal parts and measures how “synergistic”

the interface design is.

4.3.1 Definition of Relative Modality Efficiency metric

Modality efficiency is defined here to be proportional to the inverse of the time required by

that modality to complete a task. Specifically, lets assume that Ts and Tg is the overall time

spent using the speech and GUI modality respectively for a form-filling task using multimodal

interface. The number of fields (attributes) that are filled correctly using each modality is Ns

and Ng respectively5. The relative efficiency of the speech modality (compared to the GUI

modality) is defined as:

Es =
Ns

Ts

Ns

Ts
+

Ng

Tg

=
NsTg

NsTg + TsNg

(4.1)

for a GUI and speech multimodal interface. Thus efficiency is proportional to the number of

tokens (filled fields) communicated correctly in unit time, or else the information bandwidth of

each modality.

Relative modality usage is defined here as the percent of time spent using this modality

over the total interaction time. For example, for a speech and GUI system, the relative usage

of the speech modality is defined as

Us =
Ts

Ts + Tg

. (4.2)

For a user that selects modalities based solely on efficiency consideration the ratio of modality

efficiency to modality usage, Es/Us should be approximately one. This is equivalent to using

each modality in proportion to its information bandwidth, i.e.,

Es

Us

= 1 ⇒ Ts ∼
Ns

Ts

. (4.3)

Ratios Es/Us > 1 signify underuse of the speech modality while Es/Us < 1 signify overuse

(speech bias).

Alternatively, one can define relative modality usage in terms of the number of turns rather

the time spent using each modality. Let us define Qs and Qg the number of speech and GUI

5Field refers to any attribute defined in the GUI that has a label and gets filled, thus a single field might
contain variable numbers of concepts or words, e.g., “date” field. Also note that there are cases where both
modalities are used to correctly fill a field, e.g., correction of speech recognition errors via the GUI, slightly
biasing our estimator.
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turns, respectively. Then, the percent of speech usage is defined as :

QUs =
Qs

Qs +Qg

. (4.4)

4.3.2 Definition of Multimodal Synergy metric

Multimodal synergy is defined as the percent improvement in terms of time-to-completion

achieved by our multimodal system compared to a multimodal system that randomly combines

the different modalities. For the case of the designed system, where the GUI and speech modal-

ities are combined, time-to-completion for the “random” system is computed as the weighted

linear combination of the time-to-completion of the “Speech-Only” and the “GUI-Only” sys-

tems, with weights proportional to the usage of each modality in the actual multimodal system.

Specifically, lets assume that Ds, Dg and Dm are the time-to-completion of the “Speech-Only”,

“GUI-Only” and multimodal systems, and Us and Ug are the relative usage of the speech and

GUI modalities in the multimodal system (normalized in [0,1] and summing to 1 as defined

in the previous section). Then the time-to-completion of the multimodal system Dr that ran-

domly selects a modality at each turn (respecting the a-priori probability of modality usage)

is Dr = UsDs + UgDg. In general, Dr =
∑

i UiDi, where i sums over all available modalities.

Multimodal synergy Sm for a multimodal system m is defined as:

Sm =
Dr −Dm

Dr

= 1− Dm∑
i UiDi

(4.5)

where i sums over all modalities and corresponding unimodal systems.

Note that multimodal synergy expresses the relative improvement in terms of time-to-

completion achieved by multimodal interfaces over the sum-of-its unimodal parts, thus the

term synergy. Also note that synergy may be negative. For example, a multimodal system

that combines modalities inefficiently, does not exploit synergies well or is difficult or complex

to use (increased cognitive load) may have negative multimodal synergy.

An alternative definition of synergy is to compare the time to completion of the multimodal

system Dm with the average time to completion of the corresponding unimodal systems DR
r =

(1/N)
∑N

i=1Di, i.e., use a “truly” random combination of the unimodal systems. Thus, the

random-combination modality synergy SR
m for a multimodal system m is defined as:

SR
m =

DR
r −Dm

DR
r

= 1− N Dm∑N
i=1 Di

(4.6)

where N is the total number of available modalities. One can argue that this definition of

synergy fully captures the efficiency gains due to the “input modality choices” of the user.
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Indeed in almost all practical situations the random-combination synergy will be greater than

the multimodal synergy defined above.

Finally, note that although the discussion here focuses on input modality synergy, the

formulas above capture also output or presentation synergies. If one wants to focus solely

on input modality synergies, all unimodal systems used to compute Dr or DR
r should share

the same multimedia output interface. For multimodal dialogue systems this means that the

unimodal speech input system should allow for graphical output, i.e., “visual feedback”. This

speech input/multimedia output system is the OMSI system defined in section 3.56.

4.3.3 Use of Synergy & Relative Modality Efficiency metrics

Relative Modality Efficiency & Modality Selection

The percent relative efficiency defined in Eq. 4.1 can be computed as a function of the interac-

tion mode, interaction context or user, by adjusting appropriately the time T and number of

tokens N in the definition. Modality efficiency results can additionally be computed for overall

time, interaction and inactivity time.

Similarly the relative modality usage is computed based on Eq. 4.2 or Eq. 4.4. The two

quantities should be plotted against each other to help us understand inefficiencies in the

modality usage. By depicting the relative efficiency and modality usage in a 2D-plot for differ-

ent modes, contexts and users, it is easy to identify when modality usage is not proportional

to modality efficiency; this might be due to poor interface design or user bias towards a certain

modality.

Computation of Multimodal Synergy

Likewise, synergy can be computed for each interaction context, interaction mode, user or any

combination of the above, by using the appropriate time D measurements. In this evaluation,

the random combination synergy defined in Eq. 4.6 is used, since it is easier to compute and

interpret. Results are derived for inactivity, interaction and overall times. The breakdown into

interaction and inactivity time is especially relevant because interaction roughly corresponds

to time spent on user input, while inactivity roughly corresponds to time spent on system

output and cognitive processing. As a result, interaction synergy measures input synergies,

and inactivity synergy measures output plus cognitive load synergies 7. The breakdown can

help the designer pinpoint usability problems in the interface design.

6It is experimentally verified that a significant portion of multimodal synergy is due to “visual feedback”.
7Cognitive load synergy is probably a misnomer since this quantity is usually negative. This is due to the

fact that the inclusion of additional input and output modalities usually increases cognitive load.
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Evaluation Results

In this chapter detailed evaluation results using the metrics described in the previous chapter

are provided. First the interaction modes used for the evaluation are listed (see section 5.1);

these include unimodal and multimodal systems running on the desktop and PDA environ-

ments. The evaluation scenarios, participants and evaluation procedure is also described. Ob-

jective evaluation results are presented in section section 5.2; these include context statistics,

input modality overrides and distributions of turn duration times broken down into inactiv-

ity/interaction times and input modality type. Subjective results are presented in section 5.3

and a discussion of objective and subjective results is provided in section 5.4. Relative modality

efficiency and multimodal synergy results are shown in section 5.5 and discussed in section 5.6.

Note that in the analysis that follows, the main focus is on the PDA environment; reference

to desktop results is done, only when important differences are found.

5.1 Evaluation setting

5.1.1 Apparatus

Evaluation for both desktop and PDA environments includes the “GUI-Only” (GO) and the

three multimodal interaction modes, “Click-to-Talk” (CT), “Open-Mike” (OM) and “Modality-

Selection” (MS). In addition, two speech-input modes were evaluated, namely “Speech-only”

(SO) and “Open-Mike Speech-Input” (OMSI). Thus a total of 10 systems were evaluated.

Evaluation took place in an office environment, with all software (spoken dialogue system,

speech platform, GUI interface) running on the same host computer for the desktop and

speech-only systems. For the PDA system, evaluation took place with all the back-end software

(spoken dialogue system, speech platform) running on the same host desktop computer and the

front-end (GUI interface) running on a Zaurus Linux PDA device. Note that OMSI evaluation

took place in the desktop environment.

62
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Table 5.1: Evaluation scenarios
Scenario ID flight hotel car

leg1 leg2 leg3 reservation rental

1
√

- - - -
2

√ √
- - -

3
√ √

-
√

-
4

√ √
- -

√

5
√ √ √

- -

Table 5.2: Attribute size and attribute usage for the five travel reservation scenarios
attribute name attribute size scenario usage

1 2 3 4 5 total

hotelname 250 0 0 1 0 0 1

city 135 2 3 3 3 3 14

airline 93 1 1 1 1 1 5

date 22 1 2 2 2 3 10

car type 15 0 0 0 1 0 1

car rental 10 0 0 0 1 0 1

time 9 1 2 2 2 3 10

5.1.2 Evaluation scenarios and participants

All systems were evaluated using five scenarios of varying complexity: one/two/three-legged

flight reservations and round trip flights with hotel/car reservation. Table 5.1 summarizes the

required forms in each of the five scenarios. All five scenarios used are shown in Appendix B.1.

In Table 5.2, the usage of attributes in each scenario as well as cumulative attribute usage

across scenarios is shown. For example, in the first scenario (third column in Table 5.2), the

user is required to book a one-way morning flight from Las-Vegas to Miami on July 10th with

Northwest airlines; thus city attribute is used twice, while date, time and airline attributes

once. In Table 5.2 attributes are ordered by size. Let us refer to the three attributes listed,

namely hotelname, city and airline, that have more than 25 possible values as “long” at-

tributes while the rest are referred to as “short”. Note that the cumulative attributes usage

across all scenarios is about the same for “long” and “short” attributes (20 vs 22).1

Eight non-native English-speaking university students evaluated all systems on all five

scenarios. All users had prior limited experience by participating in a previous evaluation of

an older version of the system.

1This means than on average, if modality selection is solely based on efficiency considerations, one expect
that usage of speech and GUI input in multimodal modes will be roughly the same.
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5.1.3 Evaluation procedure

The evaluation procedure is described next. First, users are given a short introductory doc-

ument which explains the system functionality with emphasis on the interaction modes to be

evaluated. In order to familiarize users with the system before actual evaluation takes place,

users are asked to complete a demo scenario using all different systems, for a maximum of 30

minutes. Finally evaluation takes place, by asking users to complete all five scenarios using all

ten systems (a total of 50 sessions per user and 40 sessions per interaction mode). Systems are

evaluated in random order and logs for each session are saved for later processing by the anal-

ysis software written (objective evaluation). Upon completion of all runs, an exit interview is

conducted (user feedback and overall subjective evaluation), using a questionnaire to measure

the subjective opinion of each user for each system and modality. The subjective evaluation

questionnaire used was similar to the one in [5].

5.2 Objective evaluation

5.2.1 System performance comparison

One of the goals of this study is to compare the different unimodal and multimodal interaction

modes in terms of efficiency. User time (time to completion) and total number of turns for

all ten systems (four for desktop, four for PDA and the two speech input interaction modes)

over all users and evaluation scenarios are shown in Fig. 5.1(a) and Fig. 5.1(b) respectively.2

Overall, SO is the less efficient mode. OMSI (equivalent to SO interaction mode with visual

feedback and shortened prompts) is much faster compared to SO mode; in fact, its efficiency

is much closer to the efficiency of the multimodal modes rather than the efficiency of the SO

mode. For both desktop and PDA environments, OM is the fastest mode closely followed by

MS mode and then by the slower GO and CT modes. Note that minor differences exist between

desktop and PDA in GO mode efficiency, number of turns and GUI input usage (slightly higher

for the PDA case - see Fig. 5.1(b)).

5.2.2 Turn duration, inactivity and interaction times

Fig. 5.2(a) shows average turn durations broken into interaction and inactivity times for all

ten systems. ANOVA analysis was conducted for the four PDA and the two speech only

systems (desktop systems are also shown in Fig. 5.2(a)). A within subjects ANOVA shows

that the effect of system on inactivity (F5,2014 = 83.78, p < 0.001), interaction (F5,2014 =

2Note that these results are normalized for 38 instead of 40 runs per system, to compensate the failure of
2 runs for OMSI and 1 run for “SO” systems (completion rate 95% and 97.5% respectively as shown in Table
5.3). These outliers were not included in the data to avoid biasing the results.
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Figure 5.1: Duration and turn cumulative statistics shown for each of the desktop, PDA and
speech-only systems summed over all scenarios: (a) total time to completion in seconds, (b)
total number of turns. The color-codes for each system bar show the total time and number
of turns for GUI and speech input respectively.

33.98, p < 0.001) and overall times (F5,2014 = 23.97, p < 0.001) are all highly significant.

A post-hoc Tukey HSD test (p < 0.05) was performed to find any significant differences. For

inactivity times, GO is the faster, followed by OM, then the CT, MS and OMSI systems (whose

in-between differences are not statistically significant) and finally, SO which has the highest

inactivity times. For interaction times, GO is by far the slower mode; there are no significant

differences among the other systems, except for the MS that has the lowest interaction times.

Finally, SO has the highest overall times, followed by GO, OMSI and CT, and then the MS

and OM systems. Note that the multimodal modes have shorter interaction times compared

to GO and shorter inactivity times compared to SO.

Next, refer to Fig. 5.2(b) that shows average turn durations broken into interaction and

inactivity times and grouped by input type (GUI/speech) for the PDA system. SO (also shown

in Fig. 5.2(b)) and OMSI systems are also included in the ANOVA analysis. A within subjects

ANOVA shows that the effect of system/input on inactivity (F8,1990 = 74.25, p < 0.001),

interaction (F8,1990 = 32.48, p < 0.001) and overall times (F8,1990 = 23.32, p < 0.001) are all

highly significant. A post-hoc Tukey HSD test (p < 0.05) was performed to find any significant

differences.

For pen (GUI) input (left part of Fig. 5.2(b)), MS inactivity times are higher compared to

GO, CT and OM whose in-between differences are not significant. For speech input (right part

of Fig. 5.2(b)), SO and CT have the higher inactivity times, followed by MS, then OMSI and

finally OM. All differences are significant except for SO and CT. For pen input, all interaction

times differ, except for GO and OM (whose estimate is based only on 66 inputs); for speech

input however there are no significant differences among the systems.

Furthermore, note the short inactivity times and varying interaction times for GUI input

shown at Fig. 5.2(b). Inactivity times are short (compared to speech input inactivity times)
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Figure 5.2: (a) Average turn duration (in sec) for all ten systems (four Desktop, four PDA and
the two speech-only systems) broken into inactivity and interaction times. (b) PDA inactivity
and interaction times grouped by input type (GUI and speech) respectively. Note the “Speech-
Only” (SO) system is also included as a reference.

and also roughly the same for all modes, except for the MS mode. Interaction times vary

considerably; they are very high for GO (no input modality choice) compared to multimodal

modes. Note that for GUI input MS has the highest inactivity but lowest interaction times.

As far as speech input is concerned, one can note almost identical interaction times for the

three multimodal modes but highly varying inactivity times. OM has shorter speech inactivity

times compared to CT, while MS inactivity times are approximately the average of the other

two modes. Comparing GUI and speech input, it is evident that inactivity times are much

shorter for GUI input compared to speech input (GUI click vs VAD event).

Table 5.3 shows a summary of objective statistics for the current evaluation. The statistics

are reported for all ten systems evaluated (two for speech only systems, four for desktop and

PDA environments). Metrics include task completion rate(%), percent of speech turns, task

related statistics such as average number of turns per task and average task duration. Turn

related statistics such as average turn duration are also reported along with the break down

into inactivity and interaction parts.
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Table 5.3: Summary of main objective statistics. The second column labeled CR denotes the
task completion rate and the third column labeled SU denotes the percentage of speech turns,
thus speech usage.

Overall Task Average Turn Average duration(sec)
System CR(%) SU(%) # turns duration(sec) inactivity interaction overall

Speech system evaluation
SO 97.5 100 8.69 62.43 4.00 3.18 7.18
OMSI 95 100 8.50 59.09 2.72 3.10 5.83

Desktop evaluation
GO 100 0 8.68 50.10 2.52 3.26 5.78
CT 100 69 8.08 51.65 3.63 2.77 6.40
OM 100 68 8.10 45.70 2.61 3.03 5.64
MS 100 64 8.35 49.38 3.10 2.81 5.91

PDA evaluation
GO 100 0 8.50 51.95 1.67 4.44 6.11
CT 100 61 8.75 50.78 2.91 2.89 5.80
OM 100 82 8.93 46.82 2.12 3.13 5.25
MS 100 59 8.65 47.26 2.84 2.63 5.46

5.2.3 Context statistics

Fig. 5.3 shows PDA inactivity and interaction time distributions grouped by input type (GUI

or speech) for the four most frequently used attributes (termed as contexts in the course of

interaction). Note that inactivity times for speech input are higher compared to GUI ones

(Fig. 5.3(a) and Fig. 5.3(c)). As shown in Fig. 5.3(b) GUI interaction times clearly depend

on attribute (combo-box) size, as expected, while speech interaction times (Fig. 5.3(d)) are

similar for all attributes. Finally, interaction times for speech input are considerably shorter

compared to GUI ones for the case of city and airline attributes but slightly longer for date

and time attributes.

In contrast with GUI interaction for which only one concept is provided per turn using

speech, users can input more than one concepts per turn, e.g. “From New York to Chicago”.

Table 5.4 shows the average number of concepts provided per turn (speech verbosity) for

the various contexts (expected attribute input) grouped by system. In addition, the concept

accuracy is shown, defined as the percent of concepts recognized correctly by the system over

the total number of concepts uttered by the user. Note that for the city and date attributes

verbosity is high, e.g., for the city case, users usually provide both departure and arrival city

e.g., “From Las Vegas to Miami”. The same holds for date, e.g., “July 25th in the morning”.

Also note that concept accuracy is high (about 90%) for all attributes except for date3.

3The “date field” consists of two distinct words namely: month and day, e.g., “July 6”. A recognition error
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Figure 5.3: Distributions of average turn duration in seconds broken down into inactiv-
ity/interaction times and input type (pen/speech) for the four most frequently-used contexts
(city, airline, date, time). Results are cumulative for the four PDA systems (GO, CT, OM,
MS). Distributions approximated using kernel density functions. (a) Avg. inactivity time
distribution for pen input. (b) Avg. interaction time distribution for pen input. (c) Avg.
inactivity time distribution for speech input. (d) Avg. interaction time distribution for speech
input.

Fig. 5.4(a) shows input modality selection (% number of turns) for the four most frequently

used attributes, sorted by size (e.g., 135 for city attribute). Speech usage is fairly high for

“long” attributes (between 80% and 90%) and mode-independent. For “short” attributes on

the other hand, speech usage is clearly mode-dependent i.e., for the time attribute it is 80%

for OM, 35% and 25% for CT and MS respectively.

for either word would result in an error for the “date” concept. Note that although the number of “legal” date
values shown at the GUI are only 22, the speech recognition grammar is unconstrained allowing effectively 365
values.
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Table 5.4: Speech input context statistics: concepts per turn (verbosity) for the three PDA
multimodal systems and averaged % concept accuracy for four contexts.

CT OM MS

context verbosity % concept accuracy

city 1.71 1.52 1.54 92

date 1.35 1.31 1.34 65

time 1.05 1.00 1.00 92

airline 1.00 1.00 1.00 88
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Figure 5.4: PDA context statistics for the four most important attributes (a) percent number
turns and (b) overall user time.

As shown Fig. 5.4(b) (user times for the same four attributes) multimodal interaction for

all three modes is much faster compared to GO mode regarding “long” attributes. For “short”

attributes (date and time), however, multimodal modes perform worse compared to GO mode.

5.2.4 Input modality overrides
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Figure 5.5: Input modality overrides (%) for the three PDA multimodal modes (CT, OM and
MS) grouped by attribute type (attribute size included in parentheses).

Fig. 5.5 shows the (%) number of default input modality overrides for the three PDA

multimodal modes; the four most important attributes are shown, sorted by size. For CT the



CHAPTER 5. EVALUATION RESULTS 70

number of overrides (use of speech instead of GUI input) is very high for “long” attributes

where users preferred to override default GUI modality in favor of speech. For OM the number

of overrides is the lowest. Very few overrides occur for “long” attributes and slightly more for

“short” ones. Finally, although MS has fairly low percent of overrides (use of GUI instead of

speech input) for “long” attributes, percent of overrides for “short” attributes (use of speech

instead of GUI input) is higher (between those of CT and OM). As a result MS has slightly more

overrides compared to OM. Overall, OM has the least number of overrides, closely followed by

MS and then CT where a very high number of overrides occurs.4

5.2.5 User statistics

Fig. 5.6(a) shows total task duration for the three multimodal and the two unimodal GO and

SO systems per user (PDA evaluation scenarios). Task duration per user is further broken

down into duration of GUI-input and speech-input turns. Note how unimodal performance

for both GO and SO interaction modes highly varies between users. Also note that for almost

all users, multimodal interaction modes are more efficient compared to at least one of the

unimodal interaction modes, and for some of the users such as usr2 and usr7, they are much

faster than both unimodal interaction modes.

Fig. 5.6(b) shows number of turns and Fig. 5.6(c) shows average turn duration by averaging

all three multimodal modes for the PDA case. For speech input turns, average turn duration

is between 5 and 6 secs, while for GUI input turns, average turn duration is between 3 and 8

secs. Thus variability in duration (or variability in efficiency) among users is much higher for

GUI input compared to speech input.

There is also high variability in the number of turns; the total number of turns depends

on both the percentage of GUI and speech turns and the combination of speech verbosity and

concept accuracy (thus the number of correct concepts per turn). It was found that concept

accuracy varies between users from 75% to 94% while verbosity (number of concepts supplied

per user turn) varies from 1.05 to 1.52. Note that some users (usr1, usr5 and usr6) completed

all scenarios with less than 126 turns (more than one correct concept per turn for speech input),

while others needed considerably more turns.

5.3 Subjective evaluation

In Table 5.5, the overall subjective evaluation scores are shown for all ten systems. In the last

two rows the mean and standard deviation are also reported. The overall scores were supplied

4Note that override results were presented as a % of the input turns; one has to also consider the relative
usage of the four attributes in Table 5.2. Also, the cost of overrides may not be the same for all cases.
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Figure 5.6: PDA user statistics. (a) total time to completion for the multimodal and GO
systems (b) sum of number of turns for the three multimodal modes (c) average turn duration
for all three multimodal modes.

by the users after the exit interview. A within subjects ANOVA shows that the evaluated

systems differ (F9,63 = 6.08, p < 0.001). A post-hoc Tukey HSD test (p < 0.05) was performed

to find any significant differences.

Results show that while SO significantly differs with all other systems, OMSI only differs

with the OM and MS for both desktop and PDA systems, which got the highest ranking overall.

The only significant differences for the desktop environment are among GO with OM and MS

systems and for the PDA environment among the GO and OM system. Further analysis shows

that the correlation between time-to-completion and overall subjective evaluation scores for

the ten systems is relatively high (-0.43).

5.4 Discussion of objective and subjective results

The results in Fig. 5.2(a) clearly show the importance of having “visual feedback” in a spoken

dialogue system. By incorporating visual output to OMSI the efficiency increases dramatically

(inactivity time decreases by 1.3 secs) compared to the SO system. “Input modality choice”

also plays an important role; note the decrease in interaction time between GO and multimodal

modes, e.g., MS for the PDA case. By offering the users the freedom to select the most efficient

input modality in any given context, interaction time can be shortened considerably. This is

especially true for the “long” attributes (city and airline) in the PDA case for which speech
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Table 5.5: Subjective evaluation results
Platform desktop PDA speech
System GO CT OM MS GO CT OM MS SO OMSI

Usr1 9 10 10 9 9 9 10 9 7 10
Usr2 8 7 10 10 10 10 10 10 6 10
Usr3 10 7 8 7 7 9 10 8 4 5
Usr4 6 7 7 8 7 8 9 8 6 5
Usr5 8 8 10 9 8 9 10 10 7 8
Usr6 6 10 10 10 9 10 10 9 7 8
Usr7 8 9 9 10 8 9 9 10 8 9
Usr8 8 9 9 10 7 8 8 9 8 9

Mean 7.88 8.38 9.13 9.13 8.13 9 9.5 9.13 6.63 8
StDev 1.28 1.13 1.07 1.12 1.07 0.76 0.73 0.83 1.29 1.83

input is much faster compared to GUI input.

5.4.1 Multimodal interaction modes

Among the three multimodal systems the CT system is clearly the least efficient. This is due

to inefficiencies of this mode for speech input; observe the high inactivity times in Fig. 5.2(b)

combined with the relatively high percent of speech usage (see Fig. 5.5).

From Fig. 5.2(b), one can observe that GUI input has on average lower inactivity times,

while speech input has lower interaction times. Although speech is the most efficient in terms

of input (interaction times), recognition errors and context switching incurs higher cognitive

load to the user resulting in higher inactivity times for speech input.

The “adaptive” MS system, which at each turn suggests to the user the most efficient

input mode, has the shorter interaction times, however it typically has high inactivity times.

This is due to the increased cognitive load that adaptivity incurs on the user; automatically

switching between interaction modes (CT/OM) and thus default input modality is sometimes

inconsistent and confusing. This is a common problem of adaptive interfaces.

Given that speech input usage was much higher in our current evaluation compared to

GUI input, it is no surprise that OM is faster than CT; MS being a mixture of the other two

multimodal modes, has efficiency that lies somewhere between the efficiency of the other two

modes.

5.4.2 Modality usage patterns

The interaction mode statistics results in Fig. 5.1(b) clearly show that the multimodal system

biases the input modality usage (CT vs. OM). Users tend to use GUI input more often when

it is the default input mode (in CT), compared to the OM system where speech in the default
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input mode.

In Fig. 5.3(b), one can see that the mean interaction times for GUI input are shorter for

attributes with fewer options in the combo box, as expected. For speech input, the PDFs

shown in Fig. 5.3(d) are very similar for all attributes. Comparing the interaction times per

attribute, it is clear that GUI input is more efficient for “time” and “date”, while speech input

is more efficient for “city” and “airline”.

Based on the observation above and given the almost 50-50% balancing between “GUI-

efficient” and “speech-efficient” attributes in the scenarios, one would expect a 50-50% input

modality usage split between GUI and speech. However, the results show that for all mul-

timodal systems speech input is used for over 60% of the turns. A possible explanation for

this, is that we have an asymmetrically balanced situation; that is, although our scenarios are

almost balanced in terms of number of turns (number of “long” vs “short” attributes), the

difference in unimodal efficiency (GUI vs speech) for the “long” and “short” attributes is not

symmetrical. Difference in efficiency between GUI and speech is much higher for “long” at-

tributes (in favor of speech) compared to “short” ones (in favor of GUI) as shown in Fig. 5.3(b)

and Fig. 5.3(d). Additionally users are aware of the relation of GUI efficiency with attribute

(combo-box) size; however such a relation is not clear for speech input. Speech errors also

affect input modality selection. This can be clearly seen in Fig. 5.4(a) where users use GUI

input for “long” attributes, mainly to correct speech recognition errors.

Subjective results show that users prefer multimodal modes compared to unimodal ones.

Users seem to value both the visual feedback (OMSI vs SO) and the input modality choice

offered by the multimodal modes (multimodal vs unimodal). Although the correlation between

user times and subjective scores is high, other factors also affect users mode preferences.

5.4.3 User variability

From Fig. 5.6 and Table 5.5 it is clear that the user patterns vary significantly as far as

unimodal efficiency, modality selection and subjective scores are concerned. The users display

significant differences in efficiency for GUI input and (expected) differences in efficiency for

speech input (due to different speech recognition error rates). The users also differ significantly

in input modality usage and preferred interaction mode. The high variability in user patterns

shows that a “stereotypical” modality selection model (such as the one implied by the MS

interaction mode) might not model adequately user modality preferences.

Overall, combining multiple modalities efficiently is a complex task that requires both good

interface design and experimentation to determine the appropriate modality mix. From the

analysis of the relative efficiency of the input modalities and from the modality usage results,

it is clear that a relationship between input modality selection and interaction mode efficiency
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exists but is not perfectly linear.

5.5 Relative Modality Efficiency and Synergy evaluation

In this section the two proposed metrics are put into test. Again the presented results are for

the PDA evaluation.

5.5.1 Relative Modality Efficiency and Modality Selection

In Fig. 5.7, relative speech modality efficiently is plotted against relative speech usage (in

terms of number of turns, see Eq. 4.4). There are three free variables in these plots, namely,

interaction mode (CT, OM, MS), interaction context (city, airline, date, time) and user (u1 to

u8). In all plots, a dashed line (y=x) is used to help identify efficient behavior, i.e., modality

usage that is proportional to the modality efficiency. Correlation between modality efficiency

and modality usage is indicated with a solid line in each plot. Note that in almost all cases,

the linear regression line is located higher than the dashed line, indicating an “overuse” of the

speech modality by the users, i.e., a “speech bias”.

As shown in Fig. 5.7(a) there are quite large differences in relative speech efficiency between

short (time, date) and long attributes (airline, city). This is expected due to the large number of

options available for long attributes in the GUI combo-box and vice-versa for short attributes.

For both short and long attributes there is a clear bias towards the speech modality. As a

result, users choose speech more frequently over pen input, e.g., even for the date field, despite

the fact that pen input is more efficient in this case. In Fig. 5.7(b), results are shown for

the three multimodal interaction modes. All three modes display speech bias, especially MS

and CT modes, which have relative speech efficiency less than 50% and speech usage around

60%. In Fig. 5.7(c), the combined data points for interaction modes and contexts over all users

are shown. Note that for the two long attributes (city and airline) speech usage is very high

(ranging from about 80% to 90%) as expected, regardless of interaction mode. On the other

hand, for short attributes (date and time) interaction mode clearly affects input patterns. For

CT and MS modes the data points are near the dashed line as expected, however, for OM

mode speech usage is very high (much above 70%). Thus, the default input modality (speech

in this case) biases users away from efficient modality selection.

User behavior is shown in Fig. 5.7(d). Note that with the exception of users u3 and u6, the

rest have relative speech efficiency ranging between 33% and 50% and a corresponding speech

usage between 60% and 75%. All users with the exception of u3 display a speech bias. Users

u1, u2 and u5 display the least speech efficient behavior. Fig. 5.7(e) shows the combined data

points for interaction contexts and users over all modes. For long attributes, with the exception
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Figure 5.7: Speech modality usage (QUs) as a function of relative speech modality efficiency
- overall times are shown. (a) context averaged over users and interaction modes (4 points).
(b) interaction mode averaged over users and contexts (3 points). (c) combined data points
for interaction modes and contexts over users (12 points). (d) user averaged over contexts and
interaction modes (8 points). (e) combined data points for users and context over interaction
modes (32 points). (f) combined data points for modes and users over contexts (24 points).

of point (city, u3) speech usage ranges between 74% and 95%. For the time attribute, with

the exceptions of u3 and most notably u6, speech usage is below 50% as one would expect.

For the two short attributes, only three users are GUI biased. The data points demonstrate

a “non-linear” user behavior; users abruptly switch from GUI to speech when speech becomes
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Figure 5.8: Speech modality usage as a function of relative speech modality efficiency. Context
(a) inactivity times and (b) interaction times. Combined data points for users and context
over interaction modes (c) inactivity times (d) interaction times.

more efficient. Two important observations are that: (i) the switching point is around 45%

speech efficiency rather that 50% demonstrating a speech bias, and (ii) in the area of equal

modality efficiencies there is high variability in modality usage demonstrating the uncertainty

of the user over which modality is more efficient. Finally in Fig. 5.7(f), the combined data

points for interaction modes and users are shown over all contexts. For OM mode, half of the

users have a speech usage between 88% to 98%; they use speech almost exclusively. User u3 is

a notable exception, having speech usage close to 50% and being somewhat GUI biased while

the rest have speech usage between 70% and 80%. This high diversity in OM mode which

clearly favors speech input, can be attributed to individual speech recognition accuracies and

speech verbosity (which varies considerably among users).

Up to this point the main focus has been on overall times. The same analysis conducted for

inactivity and interaction times is shown in Fig. 5.8. Plots (a) and (b) correspond to Fig. 5.7(a)

and (e) respectively; plots (c) and (d) correspond to Fig. 5.7(e). Fig. 5.8(b) concerning inter-

action times is quite similar to Fig. 5.7(a) except for a non-linear scaling effect on the x-axis.

This effect is due to the incorporation of inactivity times in Fig. 5.8(a). In general: (i) for
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Mode click-to-talk open-mike modality-selection

inactivity -2.6 25.5 0.0
interaction 24.0 17.8 31.0
overall 12.7 21.1 17.8

Table 5.6: Multimodal synergy(%) for the three multimodal interaction modes.

context city (135) airline (93) date (22) time (9)

inactivity -8.1 21.6 4.9 24.9
interaction 33.1 31.5 6.6 10.3
overall 18.7 27.6 5.8 18.4

Table 5.7: Multimodal synergy(%) for the four contexts

interaction times, speech bias is less compared to overall times, and (ii) for inactivity times,

behavior is less efficient compared to interaction and overall times. For more detailed results

concerning inactivity and interaction times, refer to Section B.2.

5.5.2 Multimodal Synergy

As shown next, the achieved synergy is both context, interface dependent and user-dependent.

For computing the synergy Eq. 4.6 is used.

In Table 5.6, the synergy between the speech and GUI modalities is computed for the

three multimodal interaction modes. For interaction times, MS mode has the higher synergy

(31%) followed by CT and then OM modes of interaction. This means that for the MS mode,

users selected input modality, based on unimodal efficiency consideration most of the time

compared to, e.g., OM mode5. As far as inactivity times are concerned, OM which by design

favors speech modality choice has low inactivity times. In contrast, high use of speech in the

other two modes, results high inactivity times and thus very low synergy (-2.6 for CT, 0 for

MS). The low inactivity synergy for CT and MS modes demonstrate increased cognitive load

and time lost to modality switching. For overall times, synergy is higher for OM mode, followed

by MS and then by CT modes. Overall synergy, can be generally thought as a weighted average

of the synergies of inactivity and interaction times.

In Table 5.7, the synergy between the speech and GUI modality is computed for the four

attributes. As far as interaction times are concerned, there is a clear separation of long and

short attributes. Users exploit modality selection to use speech input in favor of pen input

for the two long attributes, since as shown in Fig 5.7(a) the relative speech efficiency is close

5Recall that for OM users used speech much more often (see discussion on speech overuse regarding
Fig. 5.7(d)).
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User u1 u2 u3 u4 u5 u6 u7 u8 mean std

inactivity 16.4 21.4 8.4 -21.1 -2.7 9.6 24.8 2.5 7.4 14.7
interaction 26.5 33.2 15.5 30.5 17.2 14.4 39.0 13.4 23.7 9.85
overall 22.8 28.2 12.5 11.0 10.0 12.0 32.5 8.2 17.2 9.33

Table 5.8: Multimodal synergy(%) for the eight users

Time Mode u1 u2 u3 u4 u5 u6 u7 u8 mean std

inactivity CT 22.6 22.5 -13.1 -19.8 -29.6 -0.2 3.5 -8.2 -2.8 18.8
OM 29.3 25.0 29.1 -16.0 23.5 30.2 48.6 27.5 24.7 18.2
MS -5.2 16.8 6.5 -27.8 -0.8 -0.0 21.7 -12.1 -0.1 15.8

interaction CT 22.8 38.5 16.1 32.9 21.3 2.3 38.8 13.1 23.2 12.9
OM 24.5 21.7 10.8 24.1 6.5 9.5 34.6 5.9 17.2 10.5
MS 32.9 38.9 19.9 35.1 23.8 30.4 43.5 21.7 30.8 8.5

overall CT 22.7 31.8 3.6 12.9 2.8 1.1 22.7 2.9 12.6 11.8
OM 26.2 23.1 18.6 9.0 12.7 19.9 41.0 16.3 20.2 9.8
MS 19.1 29.6 14.2 11.3 14.9 15.1 33.6 5.5 17.9 9.4

Table 5.9: Multimodal synergy(%) for the three multimodal interaction modes and eight users

to 60%. In contrast to long attributes, for which synergy is above 30%, synergy for short

attributes is much lower since users overuse speech input despite being less efficient, compared

to pen input. For inactivity times, there is high synergy for airline and time attributes but

low and negative synergy for date and city attributes respectively.

In Table 5.8, the synergy between the speech and GUI modality is compared across the

eight users. The mean and standard deviation for synergy across users is shown in the last

two columns. For interaction times all synergies are positive and for some users quite high,

e.g., 39% for u7. The variability of interaction synergy is high among the users. For inactivity

times, one can also note high variability among users. Some users even show negative synergy,

such as u4 and u5, demonstrating high cognitive load. Overall time synergy results, show

that users helped by system design, can improve considerably their performance compared to

unimodal systems.

In Table 5.9, the synergy between the speech and GUI modality is compared across the

eight users and the three multimodal modes. The mean and standard deviation for synergy

across users is shown in the last two columns. Note that in contrast to OM mode, CT and MS

have almost zero mean synergy as far as inactivity times are concerned. As far as interaction

times are concerned, OM has lower synergy compared to CT and MS modes. Again note the

disparities among users.



CHAPTER 5. EVALUATION RESULTS 79

5.6 Discussion of results for the new metrics

5.6.1 Context

As far as interaction times are concerned, the “input modality choice” synergy is more clearly

pronounced in the case of context results shown in Table 5.7 and Fig.5.8(b), for which differ-

ences in unimodal efficiency are quite large, especially for the long attributes. This causes a

clear decision on behalf of the users regarding modality choice; users almost always use speech

input, except in the case of speech recognition errors for which they use GUI input. In contrast,

for short attributes, relative speech efficiency is closer to the 50% decision line, thus making

more blurry the modality choice decision. As a result, one can note speech overuse for short

attributes (Table 5.7 and Fig 5.8(b)).

As far as inactivity times are concerned (Table 5.7), synergy is negative for “city” attribute

and only about 5% for the “date” attribute. The first is due to the fact that “city” is the

first attribute users have to fill in a series of forms, which often requires the pre-reading of all

form attribute values (cognitive load). For the “date” attribute, it can be attributed to the

fact that the default modality changes from speech to GUI in MS mode, causing increased

cognitive load to the users.

5.6.2 User Variability

The variability of interaction synergy (Table 5.8) is high among the users, indicating that

multimodal modes may not serve equally well all users. Note that user synergy expresses the

percent improvement of combined modality usage over unimodal user efficiency. This doesn’t

mean that for example, u7 (interaction synergy 39%) is the faster user (see Fig. 5.6(a)); it means

that during multimodal interaction, that user exploited input modality and other synergies in

a higher degree, that helped him improve his performance with the system more, compared

to other users. The differences in synergy are due to user dependent input modality usage,

variable speech recognition rates, variable number of concepts per utterance for speech input,

variable ability/experience using pen input on the PDA and most-importantly, to what degree

users used efficiency considerations when selecting the input modality at each part of the

interaction6.

In any case, the fact that synergy is highly user-dependent shows that there is potentially

high-reward in designing multimodal interfaces that adapt to the user. Creating multimodal

interfaces that are “optimal” for a stereotypical user does not grep all the reward (in terms

of synergy) over unimodal interfaces. Multimodal dialogue interfaces will not work equally

for all users. Just as is the case for unimodal spoken dialogue systems, there might be some

6This last factor is directly related to synergy, random input modality selection achieves zero synergy.
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users for which one or more modalities might not work well, or the ability of the user to

maximize modality synergy might be limited (these users are referred to as “goats” in the

speech recognition slang). Some of these shortcomings might be cured over time with training,

but clearly multimodal interfaces will not work for everyone, right from the start.

Finally, although multimodal synergy computes the improvement in multimodal interaction

due to combined synergies, it would be interesting if one could measure the improvement due

to each synergy (modality choice, visual output, error correction) separately. This is not a

simple task, since for example error correction and modality choice are closely related. Also

there are negative synergies such as the modality selection process overhead. As has been

shown in the results visual output can be estimated indirectly by comparing the SO and OMSI

interaction modes.



Chapter 6

Usage Patterns and Input Modality

Prediction

As has already been discussed in the previous chapter, there is significant variability in user

behavior and more interestingly in modality selection patterns (as expected) among the users.

The reason for this, mainly stems from differences in unimodal modality efficiency between user

exhibits but is not the only factor. A more detailed investigation of individual user behavior is

provided here, in section 6.1. Two important factors that affect modality usage and related to

speech modality, namely speech verbosity and speech error correction patterns are discussed

in section 6.2. Next statistical models for predicting input modality selection are described

and evaluated in sections 6.3-6.5. Discussion of results are provided in section 6.6.

6.1 Modality usage patterns

Fig. 6.1 shows input modality selection (as % number of input turns) for the three multimodal

interaction modes (CT/OM/MS), evaluated for the PDA device; the four most frequently

used attributes are shown, sorted by size (e.g., 135 for city attribute). Speech usage is fairly

high for “long” attributes (between 80% and 90%) and mode-independent. Due to large

difference in unimodal efficiency between speech and GUI, users prefer speech input unless

they need to correct speech recognition errors, in which case they might use GUI input. For

“short” attributes on the other hand, speech usage is clearly mode-dependent i.e., for the

time attribute it is 80% for “Open-Mike”, 35% and 25% for “Click-to-Talk” and “Modality-

Selection” respectively. Thus for short attributes there is a clear bias towards speech modality

usage as far as “Open-Mike” is concerned. For the other two multimodal interaction modes

GUI usage is above the 50% line, which can be attributed to input efficiency considerations.

As has already been discussed, there is significant variability in modality selection patterns

81
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Figure 6.1: Modality selection usage (context) statistics for the three multimodal PDA systems
(CT, OM, MS); the four most important attributes are shown as % number turns.

(as expected) among the users. The reason for this, stems mainly from the unimodal modality

efficiency each user exhibits but is not the only factor. To better investigate and justify

individual modality usage, a more detailed analysis follows based on Fig. 6.2 which shows

modality selection usage (context) statistics for each of the eight users.

For the two long attributes (city and airline) GUI usage is very low (mainly used to correct

speech recognition errors as explained above) for all users; the main exception is users u3 who

exhibits high speech recognition error rates. For short attributes (Fig. 6.2):

• GUI usage in OM is very close to zero for both date/time attributes for most users with

the exception of users u1, u3 and u5 (Fig. 6.2(a),(c),(e)). In contrast with the modality

usage for long attributes, high GUI usage in the case of short ones is a combination of

both speech recognition errors (case of u3 for date attribute) and speech bias/modality

efficiency; for example user u5 prefers GUI input because it is faster, despite the fact he

has very high speech recognition accuracy.

• Generally GUI usage for time attribute is higher compared to date attribute (except for

user u2).

• User u6 (Fig. 6.2(f)) is clearly an outlier; GUI usage is very close to zero even for CT/MS

modes. All in all, this user seems to have used GUI only to correct errors (having ASR

WER/CER of 90%/93% respectively and speech verbosity of 1.35)

• User u3 is also an outlier (having ASR WER/CER of 72%/75% respectively and speech

verbosity of 1.05) he is one of the few users to have higher GUI usage for date compared

to time.
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Figure 6.2: Modality selection usage (context) statistics for each of the eight users, for the
three multimodal PDA systems (CT, OM, MS); the four most important attributes are shown
as % number turns. (a)-(h) corresponds to users u1 . . . u8 respectively.

6.2 Speech verbosity and error correction patterns

Two important factors that affect modality usage are related to speech modality. In contrast

to GUI input that has almost zero error rate and allows for only one concept input at a time,

speech input is more complicated. First it allows the user to input several concepts at a single
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turn with the system. Also, since speech recognition accuracy is not perfect, errors may occur

that change the user behavior. As a result, speech input efficiency (number of correct concepts

per time unit) is a combined result of both speech verbosity and speech errors. As shown in a

previous discussion at section 5.2.3 and Table 5.4 both verbosity and concept accuracy depend

on context (but also on interaction mode and user). These two factors and their relation to

modality selection is discussed next.

6.2.1 Speech verbosity patterns

As has been shown in various literature studies, speech expressiveness differs between human-

human communication, human-machine speech-only communication and in multimodal sys-

tems with speech support [13, 14]. For example, it was found that in “Speech-Only” system

users respond to system often with more rich and expressive language (“I would like to flight

from New York to Chicago please”) compared to the multimodal interaction modes (“From

New York to Chicago”). This may be attributed mainly to prompt design (more verbose for

speech-only systems compared to multimodal interaction modes).

The analysis conducted has shown that some users tend to use the multimodal system as a

speech-only system with GUI correction support (that is they still speak with relatively high

verbosity), while others tend to use them as GUI systems with speech input support (that

is, verbosity near 1). Some of the verbosity patterns noticed during the PDA evaluation are

described next:

• departure.city → arrival.city → date → time: e.g. ”From New York to Chicago July

13th in the morning”. This verbosity pattern indicates a user trying to fill the whole

form at once. Although not used often in multimodal interaction it does however shows

users willing to use the system as a speech-only system; such users have already high

confidence of successfully using speech and/or correcting speech errors if they happen.

Such user is user u6, who has a concept accuracy of 93%.

• departure.city → arrival.city → date: Used more frequently than the previous pattern,

shows users eager to input several concepts in one turn such as users u1 and u6, who

both have concept accuracy above 90%

• departure.city → arrival.city: The most frequent pattern used by almost all users due

to close semantic relation between departure and arrival cities.

• date → time: A less frequent pattern, mainly because the date attribute already requires

two words and has high CER.



CHAPTER 6. USAGE PATTERNS AND INPUT MODALITY PREDICTION 85

The most common action is to input only one concept per turn; this is the main pattern of

use for attributes that are not related with previous input, e.g. when the dialogue state goes

to hotel form and asks for the ”hotelname” attribute. It is also a common pattern for input

to other attributes with high verbosity (such as city), by users with high WER/CER who

hesitate to input more than one concepts and have an overall low verbosity. Such users are

u1 and u7, who have verbosity of exactly one; these users have the lowest concept accuracies

(75% and 78% respectively).

6.2.2 Error correction patterns

Since having speech recognition errors in any speech interaction is unavoidable, it is interesting

to investigate how users cope with such errors when they happen. While in unimodal speech

interaction systems it may be hard to correct errors, causing interaction sessions to even fail

and leading to user frustration, in multimodal systems error correction may be as simple as

using an alternative less error prone modality such as GUI input (such as in the case of the

system described in this thesis). Robustness is arguably one of the main benefits of multimodal

systems when they combine a more natural recognition-based inconsistent interface such as

speech with a more constrained but consistent interface such as GUI.

Before examining the error correction patterns, it is important to underline the types of

errors that may arise when using a spoken or multimodal dialogue system.

• Rejections, e.g. (<city> →<>) for the case of a single attribute; i.e. although the user

tried to input a concept, (e.g. Boston), the recognizer understood nothing and asks the

user to input the concept again.

• Single attribute (but same concept) error (<city1>→<city2>): e.g. user speaks Boston

but the system understands Austin and moves to the next expected input in the dialogue

flow. To correct the error the user has to request a transition of the dialogue state to

the previous context and input the concept again. This type of error is called value

ambiguity [5] and is the most common error type encountered.

• Single attribute but different concepts error (<airline>→<city>): e.g. user speaks an

airline concept while the system understands a city value; this semantic or position

ambiguity [5] that might be harder to solve compared to previous kind of errors.

Shown in Fig.6.3 is an example of ambiguity caused by a speech recognition error. The

example is taken from the evaluation of an “Open-mike” two way trip scenario. Note that at

state number three where user is expected to provide a time concept, the speech recognizer

understands may ninth instead of midnight thus causing ambiguity for the departure date.

The ambiguity introduced is reflected in the application tree as follows:
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Figure 6.3: Example dialogue flow with speech recognition errors, ambiguity and error correc-
tion.

S APPLICATION TREE:

root

. trip

. . flight

. . . leg1

. . . . departure

. . . . . city ( 0.500, 0.755 ) NYC/JFK_LGA_EWR

. . . . departure

. . . . . date ( 0.500, 0.444 ) Jun 16, 2011

. . . . . date ( 0.500, 0.444 ) May 9, 2011

. . . . arrival

. . . . . city ( 0.500, 0.650 ) BOS

. . . . .

The user then resolves the ambiguity by using GUI input (June 16, 2011 ) and proceeds to

next input field (time) for which he also used GUI input (Fig.6.3). It is also important to note

that multiple recognition errors may arise when users input more than one concepts per turn

(verbosity > 1) which may even further complicate the error correction process.

Next the error correction patterns found during system evaluation are described. Since error

correction is also a concept-input action, it is interesting to investigate if the same concept

input patterns apply, as with the case of error free input. For example, do users always use

GUI input to correct errors directly or do they also try again with speech input, and for how
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many turns until the error is corrected? Also, does the WER/CER or input modality efficiency

affect error correction patterns?

Since in terms of the total number of error turns, errors mainly occur for the date (65%

concept accuracy - see Table 5.4) and city (92% concept accuracy but large number of turns)

attributes, the error correction patterns are examined separately for these two attributes.

For the date attribute, the dominant error correction patterns are :

(a) Speech → Speech → GUI (13%)

(b) Speech → Speech (25%)

(c) Speech → GUI (62%)

In the case of the date attribute, users try to correct the error using directly GUI input two

out of three times (c).

For the city attribute, the dominant error correction patterns are :

(a) Speech → Speech → Speech → GUI (6%)

(b) Speech → Speech → Speech (7%)

(c) Speech → Speech → GUI (7%)

(d) Speech → Speech (40%)

(e) Speech → GUI (40%)

It interesting to note that only a 40% of errors are corrected directly through GUI (e). Users

take a chance to correct the error using speech input again 60% of the time, the majority of

which is a success (d). Note that 14% of the time, users try to correct the previous unsuccessful

correction effort using again speech input ((a) and (b) cases).

Overall, results show that both input (GUI) modality efficiency and CER levels affect the

error correction strategy. For the case of the short date attribute, not only is probability of

misrecognition using speech again high, but also GUI is much faster to use for correcting the

error; that is why users use GUI input two out of three times to correct errors. For the case

of the long city attribute on the other hand, the above pattern is used only 40% of the time,

because the chance of successfully correcting the error using speech is relatively high and also

GUI input is slow compared to speech input.

6.3 Modality prediction based on context and interaction mode

Generally as shown in Fig.6.1 modality selection depends on both the current context and

interaction mode for short attributes. For the case of OM, users clearly prefer speech input

while for the CT and MS users use slightly more GUI compared to speech turns (selection

patterns are not that clear). This makes the modality choice prediction difficult, since it is

very close to the 50% decision line for these cases. For the long attributes, the modality

patterns are much more clear however; GUI usage is between 10% - 20% (users use speech
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mainly to correct speech recognition errors).

6.3.1 Statistical model

Thus a first model that can be used for modality prediction is described by P (m|c, s), that is
input estimates based on context and interaction mode, where m denotes the input modality

type (GUI or Speech), c the context and s the system used (CT/OM/MS). The model prob-

abilities are estimated using Maximum Likelihood; thus they are estimated by counting the

number of times that input m was used when context c occurred during evaluation of interac-

tion mode s. Since as shown in Table 5.2 the majority of turns in the evaluation scenarios are

for two long (city, airline) and two short (date, time) attributes, let us use these 4 attributes

to compute the model probabilities (the few turns for the other attributes may not provide

robust statistics).

GUI selection probabilities for the four attributes over all users are shown in Table 6.1.

The values denoted with bold face, are probabilities close to the 50% decision line which are

expected to cause the most prediction errors. The application of the model for the modality

prediction evaluation is described in the following section.

Table 6.1: GUI selection probability for the P (m|c, s) model
Context/mode CT OM MS

city 0.1885 0.1641 0.1416
airline 0.1026 0.1026 0.0952

date 0.5444 0.2424 0.6022
time 0.6528 0.1719 0.7534

Table 6.2: GUI selection probability for the recomputed P (m|c, s) model with users u3 and u6
removed

Context/mode CT OM MS

city 0.1474 0.1300 0.0909
airline 0.1333 0.1000 0.0333

date 0.5588 0.1622 0.6418
time 0.8182 0.1702 0.8909

6.3.2 Model evaluation process

Based on the probabilities of the computed model, the process of predicting the output is the

following: for each turn conducted in the user evaluation sessions (across all users, scenarios,

systems and the four attributes) the classifier chooses GUI input with probability P (mi|ci, si)
according to Table 6.1. Then, the predicted inputs are compared to the real one, performed by
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the users, in order to derive the prediction accuracy of the classifier. This process is repeated a

large number of times, and the overall mean and standard deviation estimations are computed.

6.3.3 Results

Using as both train and test-set all the evaluation sessions, a large number of times, as described

above the prediction accuracy of the model is 76.73%The accuracy of the model is not very

high, considering that the same data are used for both training and testing (for results using

the leave-one out method see following sections). Apparently, values near 0.5 in Table 6.1

cause a lot of misclassifications; this is the case with date and time attributes for CT and MS

interaction modes.

Clearly one way to increase prediction accuracy would be to decrease the variability between

users selection patterns in the train-set. In other words, in the process of building a statistical

model such the one that is described above, what would be a good train-set to use? The

answer of course is one that maximizes the balance of representing all possible input patterns

while keeping enough discrimination power. It is clear from the analysis that users u3 and u6

can be considered as outlier users (section 6.1) since their usage patterns vary considerably

compared to the rest users (see also how far these users are from the cluster of the rest six

users in Fig.5.7(d)).

In order to test how much the prediction accuracy increases when removing these two users

from the train-set, the statistical model P (m|c, s) is recomputed by removing each user u3 and

u6 data out of the training set, one at a time and then both. For each of the three recomputed

models, the model evaluation process described above is repeated again. The results for the

original and three recomputed models are shown next:

Using as test-set, train-set all 8 users: accuracy 77%

Using as test-set, train-set all users except u6: accuracy 78%

Using as test-set, train-set all users except u3: accuracy 79%

Using as test-set, train-set all users except u3,u6: accuracy 82%

Thus removing users u3 and u6, classification performance increases from 77% to 82%.

The recomputed model for the last case is shown in Table 6.2. Comparing the values with that

of Table 6.1, one can note that with the exception of airline and CT value, all other values

have been moved further away of the 50% decision line, thus providing increased discrimination

power. Also note that the values changed more in Table 6.2 compared to Table 6.1 are the

ones for the time attribute (0.65 → 0.82 for CT and 0.75 → 0.89 for MS - shown in bold face).

Recall from Fig. 6.2(f) the strange modality selection behavior of user u6 who uses almost

100% speech input for the time attribute - removing this behavior improves overall prediction

accuracy.



CHAPTER 6. USAGE PATTERNS AND INPUT MODALITY PREDICTION 90

Another question related to the variability of the training data and thus the prediction

accuracy is how consistent are users’ modality choice patterns across turns. That is, do users

follow the same consistent modality patterns again and again or not? Users who do, can be

classified as highly predictable with respect to their modality choices. An important factor

(already examined in some respect in the previous paragraphs) is how similar to “common

behavior” is the modality choice patterns of a certain user (such user u6 in previous paragraph).

Obviously users with consistent behavior and close to “common behavior” patterns of other

“mainstream” users will help produce a prediction model of high accuracy.

Table 6.3: Modality prediction classification rate(%) results per user
self-test leave-1-out difference

u1 77 68 -9
u2 93 85 -8
u3 67 57 -10
u4 77 73 -4
u5 86 84 -2
u6 90 63 -27
u7 91 90 -1
u8 80 80 0

One way to test a user’s input consistency is to build a prediction model and evaluate it

on the user’s own collected data (self-test column in Table 6.3). Note in Table 6.3 that with

the exception of u3 who has classification rate of only 67%, most users have classification rate

> 77% (some of them above 90% such as user u2).

The second column shows results of the “leave-one-out” method. That is the prediction

model has been estimated by using data from all rest users and then tested on that user’s

evaluation sessions. Note that users u3 and u6 are the ones located far apart from the rest

users (also in Fig. 5.7(d)) and having prediction accuracy of 57% and 63% (shown in bold

face) respectively. The third column of Table 6.3 shows the difference in prediction accuracy

between the two previous methods. Note how large the difference is for u6; for some other

users though difference is close to zero, indicating that their modality patterns conform to

“common behavior”.

6.4 Modality prediction based on context and previous input

6.4.1 Statistical model

Another approach for input modality selection is to assume that the input type in each turn

depends on both the current context and the input type used in the previous turn, described by
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P (mi|ci,mi−1). Using Maximum Likelihood(ML) estimation, the probability can be computed

by the following equation:

P (mi|ci,mi−1)
ML
=

#ci,mi−1 → mi

#ci,mi−1 → ∗ (6.1)

That is, the number of times users used input type mi while in context ci while in the

previous turn used input type mi−1 divided by the number of times users used any input type

mi while in context ci.

Another way to compute the model probabilities is to assume that events ci and mi−1 are

independent and that ci and mi−1 are also independent given mi. Then

P (mi−1|ci) = P (mi−1) · P (ci),mi−1⊥ci (6.2)

P (ci,mi−1|mi) = P (mi−1|mi) · P (ci|mi−1),mi−1⊥ci given mi (6.3)

and using the following derivations (Bayes rule):

P (mi|ci,mi−1) =
P (ci,mi−1|mi) · P (mi)

P (ci,mi−1)
(6.4)

P (ci|mi−1) =
P (mi−1|ci) · P (ci)

P (mi−1)
(6.5)

P (mi−1|mi) =
P (mi|mi−1) · P (mi−1)

P (mi)
(6.6)

By applying the previous equations, we get

P (mi|ci,mi−1)
(6.5)
=

P (ci,mi−1|mi) · P (mi)

P (ci,mi−1)

(6.4)
=

P (mi−1|mi) · P (ci|mi) · P (mi)

P (ci,mi−1)

(6.6),(6.7)
=

P (mi|mi−1) · P (mi−1) · P (mi|ci) · P (ci)

P (mi) · P (mi) · P (mi−1, ci)

=
P (mi|mi−1) · P (mi−1) · P (mi|ci) · P (ci)

P (mi) · P (mi−1, ci)

=
P (mi|mi−1) · P (mi−1) · P (mi|ci) · P (ci)

P (mi) · P (mi−1) · P (ci)

(6.3)
=

P (mi|mi−1) · P (mi|ci)
P (mi)

(6.7)
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Assuming also that P (mi) =
1
2 and maximizing the above probability:

argmax
mi

P (mi|mi−1) · P (mi|ci)
P (mi)

= argmax
mi

P (mi|mi−1) · P (mi|ci)

ML
= argmax

mi

#mi−1 → mi

#mi−1 → ∗ · #ci → mi

#ci → ∗ (6.8)

6.4.2 Results

Table 6.4: P (mi|mi−1) probability
previous input type current input type probability

GUI GUI 0.5
GUI AUDIO 0.5
AUDIO AUDIO 0.74
AUDIO GUI 0.26

Table 6.5: Classification results (%) for P (mi|ci,mi−1) model
ML computation Bayes, independence and ML

u1 67 67
u2 83 83
u3 50 58
u4 71 71
u5 74 77
u6 84 64
u7 82 82
u8 76 76

overall 73 72

Table 6.5 shows the computed P (mi|mi−1) probabilities for each possible combination.

Note that the most frequent pattern is using speech input if speech was used in the previous

turn too which reflects the high speech usage in data. As shown in Table 6.5 the two models

perform similarly except for the case of users u3 and u6, that is the two users having P (mi)

away from 0.5 (see Fig. 6.2). The results indicate that modality prediction using these kind of

particular statistical model is not enough to achieve high performance.

6.5 Modality prediction using modality tracking

Another model that could be used is modality tracking. Let’s denote m the modality type

(GUI/speech) the user selects at each turn, i the modality type proposed by the system and u
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the user. Given that i ⊥ u we get :

P (m|i, u) =
P (i, u|m) · P (m)

P (i, u)

=
P (i|m) · P (u|m) · P (m)

P (i, u)

=
P (i|m) · P (u|m) · P (m)

P (i) ∗ P (u)

=
P (u|m)

P (u)
· P (i|m)

P (i)
· Pm

=
P (m|u) · P (m|i) · P (m)

P (m) · P (m)

=
P (m|u) · P (m|i)

P (m)
(6.9)

m̂ = argmax
m

P (m|i, u) = argmax
m

P (m|i)P (m|u)
P (m)

(6.10)

This model was not evaluated due to lack of discrimination power for the context statistics.

6.6 Discussion

There are two main issues in building more complex and potentially successful user behavior

and prediction models. The first one is to identify all possible factors that may affect user

behavior. The second one, is to quantify these factors and estimate their effect on user’s

behavior and decision making, e.g. modality selection, speech verbosity and error correction

patterns. For example, there is strong evidence that such a factor is speech bias, but how to

quantify it and what weight should be given to this factor?

Another issue is that modality selection shouldn’t be considered in isolation but rather in

relation to overriding the default input modality. For example using speech input for date

attribute in OM mode (where speech is the default input modality) and speech input for CT

mode for the same attribute (where GUI is the default input modality and thus user should

override the proposed input modality), should not be considered the same. Since the cost of

overriding the default input in this case is high in CT mode, perhaps a higher weight should be

given to this modality selection action. By taking into account modality overrides information

compared to just modality selection alone, more valuable information can be incorporated in

a prediction model.

The fact that one of the modalities is speech further complicates modality prediction. This

is because speech usage entails both recognition errors and the verbosity feature (both not

found in GUI usage) . As speech recognition is inconsistent, there is the additional difficulty
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of knowing whether a recognition error has taken place. A possible approach for detecting

speech recognition errors would be to use speech recognition’s engine confidence scores or

other method such as emotion recognition (although these methods only provide evidence for

presence of errors). Incorporation of this information to the prediction model would allow to

use the error correction probabilities derived in section 6.2.2.

In practice, even if we devised a good model, it doesn’t mean users would adopt it (not

overriding the system’s proposed modality choice), during application of the algorithm Also the

generalization power of the model should be validated across different conditions, e.g. levels of

relative modality efficiency. For example it would be interesting to investigate it’s performance

in situation where user’s modality choice decision is always hard, e.g. all attributes in the

travel reservation application have almost equal size resulting in same modality efficiency for

speech and GUI modalities.



Chapter 7

Affective Evaluation

7.1 Introduction

In human communication affect and emotion play an important role, as they enrich the com-

munication channel between the interacting parties. The lack of this source of information in

human computer interaction has recently inspired many research efforts which aim at incorpo-

rating affective and emotional cues in the human computer interaction loop. These efforts are

known collectively as affective computing, a term coined by MIT Media Lab professor Rosalind

Picard [122].

In contrast to the previous chapters where evaluation of the interaction systems were based

on evaluation metrics such as interaction speed, error rates, modality selection and synergy,

this chapter uses affective metrics such as excitement, frustration and engagement for the

evaluation of the various systems. This, not only provides a more qualitative approach to

evaluation, it also provides a better understanding of the interaction process in general. The

methodology proposed is based on the use of two different modalities for the measurement of

affect. The first is Galvanic Skin Response (GSR) which relates to the sympathetic nervous

system and reveals emotional arousal. The second is Electroencephalography (EEG) a rich

source of information which is able to reveal hints of both affective and cognitive state during

an interaction task. Use of such physiological channels and their elaborated interpretation

is a challenging but also a potentially rewarding direction towards emotional and cognitive

assessment of multimodal interaction design.

In section 7.2 a brief introduction of affective computing is presented. Section 7.3 describes

in detail the EEG and GSR apparatus used along with the software developed (affective record-

ing studio) to record and analyze the evaluation sessions. It also outlines the techniques used

for eliminating noise (artifact removal) of the EEG signals. Section 7.4 presents and comments

the affective evaluation results. Further discussion regarding various issues such as the appli-

95
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cability of affective evaluation is provided in section 7.5. Additional ideas for future work are

discussed in section 7.6. The chapter concludes with section 7.7.

7.2 Affective computing

Affective computing studies the communication of affect between humans and computational

systems. It is an interdisciplinary area of research, spanning disciplines such as psychology

(study of affect and emotion) cognitive science (emotion and memory, emotion and attention)

computer and electrical engineering and design (signal processing, affective detection and inter-

pretation, affective design). In the realm of HCI and context awareness, it aims at supporting

enhanced interaction experience by utilizing the affective dimension of communication.

The main efforts until now have been concentrated in the fields of affective detection and

emotion recognition1. Affective computing relies on detection of emotional cues in channels

such as speech (emotional speech), face (facial affect detection) and body gestures. It also

utilizes a number of physiological channels such as GSR, facial electromyography (EMG),

blood pressure, heart rate monitoring (EKG) and pupil dilation. All these channels have been

shown to correlate with certain emotional states such as fear, joy, surprise, etc. Thus they can

potentially provide valuable information in the course of interface evaluation.

Choosing which modalities (channels) to use in an affective setting depends on many factors,

such as availability of modality (e.g. emotional speech cannot be used in the evaluation of

a GUI system), affect resolution (facial expression more appropriate than GSR) and affect

recognition rates. Thus modality appropriateness play an important role. As a result, as

emotion modulates all these channels, the idea of using more than one channels (e.g. facial

expression and EKG) is common in the research community and is referred to as multimodal

affect recognition.

Advancements in cognitive and brain sciences has recently made it possible to add the

brain as another source of rich information. In the case of the study of the brain, the term

is emotion instead of affect recognition to reflect the fact that affect is the expression of

emotions. Detection of emotions using brain signals (EEG) compared to affective detection is

way more difficult but also conveys much more information. Also, using brain signals, apart

from emotions, we can study other cognitive functions that are also of high significance in the

context of interaction design such as attention, memory and cognitive load.

Incorporation of brain study is thus a challenging but also a potentially rewarding direction

towards emotional and cognitive computing.

1Note that affect is generally considered to be the expression of emotions and as such is used in the context
of this thesis.
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(a)
(b)

Figure 7.1: (a) Human brain areas (b) EEG sensor locations according to 10-20 system [6].

7.2.1 The human brain

The human brain is the more complex human organ. There exist around 100 billion neurons

in the human brain, about the same number as of stars in our galaxy. The study and under-

standing of the brain has been benefited by the recent advances in sophisticated equipment

such as functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG) and

near-infrared spectroscopy (NIRS). Compared to EEG which is the older method used in brain

studies most of these methods are very expensive or have low data transmission rates and are

not ambulatory. EEG is an established and mature technology which can be used outside

the lab, has high temporal resolution (which makes it ideal for interaction evaluation) and is

relatively cheap. The main drawback of EEG compared to the other methods is the relative

poor spatial resolution and the high noise from non cognitive sources called artifacts.

Fig.7.1(a) shows the main areas of the human brain called lobes in different colors along

with their main functionality. Some of these areas are almost dedicated to a single function

such as sensorimotor cortex (sensation and movements) or occipital lobe (vision). Other areas

have been found to be the source of a large variety of cognitive processes such as the frontal

lobe which is the center of planning, problem solving and also emotions to name a few.

EEG measures the electric potential of the scalp by detecting the summation of the syn-

chronous activity of thousands or millions of neurons. Using surface electrodes at various

scalp locations it can reliably detect even small such changes in the cerebral cortex. Because

the brain activity is attenuated by the tissue and bone between the cerebral cortex and the

electrodes, the recorded potentials are only in the range of a few microvolts; midline or deep

structures of the brain on the other hand have minimal impact in the EEG recordings.

A large number of electrodes are usually used in clinical settings to allow for a relative

adequate spatial resolution. The placement of the electrodes follows some standard to allow
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for reproducibility across a subject’s measurements or between subjects. A common standard

used in the 10-20 system shown in Fig.7.1(b). The two numbers refer to the distances between

adjacent electrodes which can be at 10% or 20% of the total front-back or right-left distance of

the skull. Locations are identified by a letter corresponding to the lobe (e.g. F for frontal, P

for parietal, etc) and a number that identifies the hemisphere location (odd or even numbers

for left/right hemispheres respectively).

The brain activity produces a rhythmic signal that is constantly present. These rhythms

(so called brain waves in popular literature) are divided in several bands according to their

frequency which ranges from 1-100 Hz, have characteristic amplitudes ranging from 10 to 100

microvolts and are associated with certain states. These bands are delta (up to 4Hz), theta

(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), gamma (>30Hz) and mu rhythm(8-13 Hz). Lower

bands have higher amplitude compared to high frequency ones. Alpha and beta waves are the

most relevant to this work. Alpha waves are typical of an alert but relaxed mental state and

are evident in the parietal and occipital lobes. Beta waves are indicative of active thinking

and concentration, found mainly in frontal and other areas of the brain.

Apart from the regular brain rhythms, electric activity is altered during external events

(e.g. sensory stimuli) or internal processes taking place. These changes occurring during such

external or internal events are generally called event potentials (EPs). Study of these EPs

can be accomplished using various approaches such as ERPs and ERD/ERS. Event-related

potentials (ERPs) are transient changes in brain activity (typically a series of voltage polarity

changes with characteristic peaks and troughs) time locked to the onset of an event. As different

kind of EPRs have been found to be related with distinct events or processes in the brain, they

are used to distinguish and identify the different neural processes involved in perceptual tasks.

For example P300 is an ERP elicited using the oddball paradigm in which infrequent target

items are mixed with frequent non-target ones. It is used in the P300 brain computer interface

keyboard (P300 speller) to allow people with disabilities to enter text using only brain input.

Note that because of the relative small fluctuations of ERPs compared to background brain

activity the study of a certain phenomenon requires averaging of a large number of time locked

trials called epochs; recent developments towards single trial identification of EPRs is an active

research effort in this field.

Another modulation of information flow in the brain is manifested by event related syn-

chronization and desynchronization (ERS/ERD) of EEG rhythms [123]. These phenomena

correspond to relative decrease/increase in the power of a certain frequency band during stim-

ulus processing. For example according to [124] the encoding of acoustic information elicits

topographically widespread alpha-ERS responses whereas auditory retrieval or recognition elic-

its topographically widespread alpha-ERD responses. Similarly it is well known that execution

of movement e.g. finger movement, is accompanied by a desynchronization of mu and central
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(a) (b)

Figure 7.2: (a) Plutchiks model of emotions. (b) Emotions mapped to arousal - valence space
(y - x axis respectively).

beta rhythms over the corresponding area of the sensorimotor cortex. This again is used for the

detection of imaginary movements in BCI scenarios where people with disabilities can move

prosthetic limbs using just brain input.

EEG studies more relevant to the domain of HCI and affective computing are those study-

ing emotions and fundamental cognitive processes related to attention and memory. EEG

emotion recognition has been an active topic in the last years. Emotion recognition using

EEG has advantage over affect recognition using e.g. video facial expression recognition since

it potentially allows for a more fine grained classification and might be present even if not

expressed. There are various representations of emotions such as the wheel of emotions by

Plutchik [125] shown in Fig.7.2(a). Fig.7.2(b) shows the mapping of various emotions in the

arousal-valence space, one of the most used frameworks in the study of emotions. Arousal is

the degree of awakeness and reactivity to stimuli and valence is the positiveness degree of a

feeling. The mapping of emotions in the arousal-valence space allows a quantitative approach

to emotion recognition since theoretically, if one could estimate these two values he could easily

determine the exact emotion. According to previous studies, indicative metrics of arousal is

the beta/alpha band power ratio in the frontal lobe area of Fp1, Fp2 and FPz. For valence the

alpha ratio of frontal electrodes F3/F4 has been used, as according to [126] there is hemisphere

asymmetry in emotions regarding valence e.g. positive emotions are experienced in the left

frontal area while negative emotions on the right frontal area.

User state estimation based on cognitive attributes related to attention and memory (in

addition to emotions) is also of great importance in the context of HCI research. Memory load
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(a) (b)

Figure 7.3: a) The Emotiv Epoc neuroheadset, a 14 channel consumer EEG device. b) loca-
tions of the 14 EEG channels according to 10-20 system [6]; CMS/DLR are the two reference
electrodes.

(an index of cognitive load2) is an important index of mental effort while carrying out a task.

Memory load classification has thus drawn attention from the HCI research community since

it can reveal qualitative parameters of an interface. In [127] authors report a classification

accuracy of 99% for two and 88% for four different levels of memory load. They argue that

previous research findings that high memory loads correlate with increase in theta and low-

beta(12-15 Hz) bands power in the frontal lobe may not always hold true for their experiments.

Other memory load metrics such as the ratio of beta/(alpha+theta) powers are also put in

question. They built their classifier by exploiting data from the n-back experiment [128]. N-

back is a well known experiment in which at each trial, participants are presented with a specific

stimuli (e.g. letters) and have to recall the last trial they encountered the same stimuli; thus

they have to hold a sequence of n items in memory. Interestingly, they also report that using

only three specific electrodes (Cz, Pz, Fz) they get quite the same performance as with using

all 32 electrodes.

7.2.2 Galvanic Skin Response

Galvanic skin response (GSR) or skin conductance measures the electrical conductance of the

skin, which varies with its moisture level. GSR is used as an indication of psychological or

physiological arousal since sweat glands are controlled by the sympathetic nervous system.

Previous studies indicate that GSR may correlate not only to emotional (e.g. arousal [129])

but also to cognitive (e.g. cognitive load [130]) activity.

2Cognitive load can be defined as a multidimensional construct representing the load that performing a
particular task imposes on the learners cognitive system [100]
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7.3 Affective evaluation

7.3.1 EEG device

The EEG device used is the Emotiv3 Epoc, a 14 electrode neuroheadset device (see Fig 7.3)

targeting mainly the gaming and HCI market. The main advantage of the device is the very

low price (around 300$ for the consumer and 700$ for research edition, as of 2010) compared

to clinical grade EEG devices prices (tenths of thousands of $). In addition to it’s price, it

is very easy to use and the preparation time is very short (only few minutes to apply saline

solution) compared again to clinical EEG systems which require enough time and expertise in

order to use. It is also wireless allowing the users to freely move while interacting. Finally, the

provided SDK provides a suite of detections (affective, expressive and cognitive) which allow

people without EEG expertise to integrate them to a large number of applications. The main

critique is the low number of electrodes (compared to e.g. 128 electrodes of clinical grade EEG)

and the lower sensitivity/higher noise of EEG measurements compared to clinical grade EEG

devices. Nevertheless, using advanced noise filtering techniques one can solve most of these

issues. As a result, the device has been actively used recently by game developers, individual

researchers and HCI labs around the world.

As the device is mainly targeted towards computer interaction, it is accompanied by a

standalone tool which offers the following family of capabilities (suites):

• Expressive suite, which detects user’s face expression and depicts them using a talking

head agent (avatar)

• Affective suite, which measures several affective metrics such as frustration, engagement,

excitement and meditation

• Cognitive suite, which allows the mapping of different cognitive patterns to different

actions, e.g. pull/push a virtual object in the screen

These capabilities allow a user to associate various expressive events or cognitive states to

computer actions and thus use the Epoc device as a BCI (brain computer interface) [131]

device, substituting devices like mice and joysticks. This capability is also offered for program-

mers through a programming library, which allows to integrate the device into any kind of

application. Finally a research edition offers additional features such as access to raw EEG

signals.

The detailed device specifications, according to the company, are listed below.

3www.emotiv.com

www.emotiv.com
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(a) (b)

Figure 7.4: (a) Early Galvanic Skin Response (GSR) apparatus. Breadboard circuit and velcro
strips were added later. (b) Evaluation setting. Depicted counter clockwise is the iphone device,
the GSR apparatus (arduino and breadboard), the Emotiv device, the audio headset and the
PlayStation Eye camera.

Number of channels 14 (plus CMS/DRL references)

Channel locations (10-20 system) AF3 AF4 F3 F4 F7 F8 FC5 FC6 P7 P8 T7 T8 O1 O2

Sampling method Sequential sampling, single ADC

Sampling rate 128Hz (2048Hz internal)

Resolution 16 bits (14 bits effective) 1 LSB = 1.95 µV

Bandwidth 0.2 - 45Hz, digital notch filters at 50Hz and 60Hz

Dynamic range (input referred) 256 mVpp

Coupling mode AC coupled

Connectivity Proprietary wireless, 2.4GHz band

Battery type Li-poly, 12 hrs

Impedence measurement Contact quality using patented system

7.3.2 GSR apparatus

The GSR apparatus designed exploits the arduino physical computing platform 4. As shown in

Fig. 7.4 the hardware part basically consists of an arduino board connected to a simple circuit.

On the software side a program was developed and uploaded to the arduino board which takes

care of reading the GSR values and make them accessible to the computer in digital format

in a rate of 50 readings per second. GSR was measured using electrodes placed inside Velcro

straps on the distal phalanx of both the forefinger and middle finger of the left hand.

4http://arduino.cc/en/

http://arduino.cc/en/
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(a) (b)

Figure 7.5: Screenshots of the affective evaluation studio replaying previously recorded sessions.
(a) Standard edition. The two main components depicted are the video and affective plot (see
Fig 7.6) widgets. The vertical blue line indicates the playing position in the affective data
corresponding to video frame displayed. The user can click on any position of the plot to move
in that particular moment in the video stream or vice versa using the video slider. The two
widgets in the right of the video widget display the 14 electrode contact quality and the user
face expression widget. (b) Research edition. Offers additional EEG processing capabilities
such as EEG plot (found below affective plot) and single channel analysis plot and spectrogram
(shown when selecting specific channel). It also provides real time scalp plots (next to video
widget) which show EEG power distribution for selected spectrum bands animated through
time.

7.3.3 Affective Evaluation Studio

A dedicated tool was developed to collect in real time, data from the Emotiv device (affective

and EEG), the GSR system and a video camera. Screenshots of the affective studio are shown

in Fig 7.5 for the standard and research versions of the Emotiv SDK respectively5. The tool was

used to capture, record, replay and analyze evaluation sessions of the multimodal interaction

system6. A short list of its capabilities include:

• In capture mode, it captures data from Emotiv device, GSR system and video camera.

This is useful for the examiner to check and resolve any problems such as the correct

contcact quality of Emotiv or GSR before starting the recording of a new session.

• In recording mode, affective, EEG, GSR and video data are all concurrently saved while

also been displayed for the duration of the interaction session. Again the real time

5A video demonstration of the tool functionality is available on line at
http://www.youtube.com/user/holystone74

6Actually it was developed as a general purpose tool that can be used for the evaluation of any interaction
system and beyond e.g. music listening, video trailer evaluation, etc.

http://www.youtube.com/user/holystone74
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Figure 7.6: Example session (OM scenario) annotated in the affective plot. Annotation projects
the multimodal’s system’s log file information (turn duration, input type, etc) onto the affected
data of a recorded session. The five affective metrics (excitement, long term excitement,
engagement, frustration and meditation) provided by EPOC are depicted, along with the
GSR values (black horizontal line oscillating around 0.4) in the [0-1] space. The software
automatically annotates the plot showing all interaction turns. A turn is the time period
between two thick vertical lines; each dotted vertical line separates a turn into the inactivity
and interaction periods. Only fill turns have background color. That color is red for speech
turns and blue for GUI turns. The whole interaction period is defined between first and last
vertical line.

information is used by the examiner to ensure for the correctness of the each recording

session.

• In play mode, data are displayed, annotated and analyzed (e.g. affective annotations

and EEG spectrograms and scalpmaps - see Fig 7.5(b)) offering valuable insights for the

course of an interaction session.

The tool serves as a valuable tool for inspecting in detail how users interact with the system.

7.3.4 Participants and Procedure

For this evaluation study, eight healthy right handed graduate university students partici-

pated. They were all briefly introduced to the nature of the experiment. After wearing the

Emotiv headset and the GSR apparatus, they were asked to take a comfortable position and

instructed to avoid excess movements. All five multimodal interaction modes were used during

the evaluation (SO, GO and three MM ones). Participants tried all different systems at least

once in order to get familiar with the systems before starting the evaluation scenarios. For the

evaluation scenarios, four different two way trip scenarios were used, that is a total of 20 (5

systems × 4 scenarios) sessions per user. Some of the participants opted for evaluating all 20

sessions while some for only 15. Note that in contrast with previous evaluations, users were
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(a) (b)

Figure 7.7: (a) Schematic flowchart for Independent Component Analysis (ICA) data decom-
position and back-projection [7]. (b) ICA components accounting for eye blinks, lateral eye
movements (EOG), ECG and EMG [7].

advised to speak one concept per turn (in case of speech usage) in order to collect as many

turns as possible.

7.3.5 Artifact removal using ICA

One important problem in EEG analysis is that the recorded EEG signal might be heavily

affected by various always present and unavoidable artifacts such as these caused by eye move-

ments, eye blinks and muscle activity. Such signals are mixed with the real brain activity

causing a noisy EEG signal at most locations. The Emotiv SDK preprocesses and appro-

priately filters data depending on the type of detections. Although the exact procedure is

disclosed it apparently uses minimal filtering for the expressive detections (allowing to detect

face expressions). Affective and cognitive detections on the other hand are designed to filter

out most noise artifacts and different preprocessing techniques are applied for each one. Nev-

ertheless, because Emotiv is targeted at real time interaction it makes it very difficult to use

more advanced artifact removal techniques that can be effectively used only in batch mode

(after all EEG samples have been acquired).

From initial analysis contacted on the collected data it was found that excitement and

engagement metrics may be affected by high noise artifacts such as that caused by tense jaw

movements during speech interaction. GUI interaction sessions usually lack such noisy affective

metrics patterns. Thus, in order to be able to compare GUI and speech parts of interaction,

it was decided to spend some effort to clean the EEG signal of such artifacts.

Various techniques have been developed in identifying and correcting such artifacts. A

common approach used in the past was for experts to identify such artifacts in the time

domain and then just reject portions of the EEG signal affected. This methodology may still

apply in cases when EEG recordings and nature of experiments are based on large number
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of repetitive trials (commonly with fixed time period called epochs). However deleting whole

epochs contaminated by artifacts may not be applicable to other types of experiments such as

for the evaluation sessions used in this thesis.

The solution chosen for EEG artifact removal is based on ICA (Independent Comparing

Analysis) [132]. Fig 7.7(a) shows the outline of the procedure. Scalp data are unmixed to

independent components called activations. These activations can be examined either in time

domain or as scalp maps (Fig 7.7(b)), a representation that also reveals topological distribution

of spectral properties of EEG sensor locations. The transformation matrix W mapping from

scalp to components data can then be used in reverse to obtain the original scalp data. What

this procedure offers is that independent components representation unmixes the signals al-

lowing for easier artifact detection but also rejection procedure, since components identified as

artifacts can be removed (just rejected) and by inverse transforming to scalp domain, artifact

clean data can be obtained.

Thus, the main task of the examiner is to identify certain components that account for

known types of artifacts as shown in Fig 7.7(b). Eye based artifacts are always present, since

both eye movements and blinks are unavoidable. As shown in the Fig.7.7(b) (IC4 component),

eye blinks cause abrupt voltage change in the prefrontal area locations. Lateral eye movements

are also possible to identify, since they have characteristic properties (component IC1). The

source of noise can be attributed to the potential difference between the cornea and the retina,

which is called corneo-retinal dipole. Eye movements yield an increased potential in electrodes

towards which the eyes are rotated and decreased potentials in the opposing electrodes. Heart

activity is also a common source of interference and is more evident in the left back area the

scalp area (component IC5).

Muscle artifacts are also very common and difficult to identify because of the variety of

possible sources and spectrum properties; this is the reason why users during experiments

are advised to reduce excess movements to a minimum. Sources of muscle artifacts may be

caused by various parts of the body such as limb or even finger movements, head movements,

face expressions, jaw and tongue movements (glossokinetic artifacts). For example, finger and

hand movements are evident in sensorimotor cortex (refer to Fig 7.1(a)) and are exploited in

BCI (brain computer interface) systems to detect real or even imaginary movements. Other

sources of artifacts include EEG sensor displacements known as electrode pops which cause

abrupt impedance changes and thus cause sharp voltage changes in the EEG signal. Mains

interference at 50 or 60 Hz may also heavily contaminate the EEG signals, so notch filters are

usually applied at these frequencies.

Once these artifacts are identified they can be rejected to yield artifact clean scalp data.

For this purpose the EEGLAB [7] software toolbox was used. For each evaluation session

recorded the raw EEG data were analyzed using the ICA technique. By examining the ICA
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(a) (b)

Figure 7.8: (a) The 14 ICA components of a sample session shown as scalp maps. (b) IC3 is
an eye blink artifact component and will be rejected.

activations, artifacts were identified and rejected from the data resulting EEG data with much

less noise. These artifact clean data were used to produce new affective metrics 7.

Results of an artifact rejection procedure for a GUI-only evaluation session are shown

in Fig.7.8 and Fig.7.9. Fig.7.8(a) shows the 14 ICA activations produced, represented as

scalp maps. This representation reveals the relative EEG signal power spectrum of various

EEG sensors which can help the examiner to find out known patterns of artifacts or other

activity by visual inspection. Because the order of components corresponds to the amount

each components contributes to variance of the EEG signal, candidates components for artifact

rejection are usually at the leading positions of the scalp array 8. For example, component

IC3 is similar to a typical eye blink artifact, since component power is located in the two

electrodes above the eyes, as shown in Fig.7.8(b). In that figure in addition to the scalp plot,

there is a spectrogram and a power spectrum plot. Although the data are continuous they are

artificially epoched for a time period for 130 msecs and analyzed. The plot clearly reveals four

eye blinks (the four red stripes) in the course of the evaluation, thus the component can safely

be removed from the data.

Shown in Fig.7.9(a) is the time course of the 14 ICA components for the same evaluation

session. The three first components apparently account for artifacts since they contain high

levels of noise compared to the rest 11 components. The IC1 accounts for a typical eye-

movement artifact containing 6 events; IC3 accounts for eye blink component with 4 events.

Fig.7.9(b) shows the original noisy scalp data. Notice how the six eye movements and blinks

confound the scalp data. These artifacts are evident in the first and last signals of Fig.7.9(b)

7Although this functionality was not provided by the Emotiv SDK.
8According to EEGLAB manual, the scale in the scalp plot uses arbitrary units. The scale of the component’s

activity time course (shown in Fig.7.9[a]) also uses arbitrary units. However, the component’s scalpmap values
multiplied by the component activity time course is in the same unit as the data, that is µV.
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(a)

(b)

(c)

Figure 7.9: (a) The 14 ICA (IC1 - IC14) components of the same session plotted against
time. (b) Original scalp data containing artifacts. (c) Scalp data after rejection of three first
components (artifacts). Note that all signals are displaced in the y − axis to allow better
viewing.

which correspond to frontal and prefrontal locations (AF3, F7, F3, FC5 on the left side FC6,

F4, F8, AF4 on the right side); eye movements show opposite polarity for left and right sides

for the eye movement artifact. The clean data (after removing the first three ICA components)

are shown in Fig.7.9(c). As shown clearly, removing artifactual ICA components results more

reliable data to work with.
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7.4 Results

To illustrate the results, some example evaluation sessions are reported first as shown in

Fig. 7.10. The figure shows the first five evaluation sessions of a single participant (usr4)

including all five different systems (evaluated in the order plotted). Explanation of an an-

notated affective plot was detailed earlier in Fig. 7.6. Note that GSR values are reported in

microSiemens and are rescaled to 0-1 space in order to be fitted to the same plot along affective

metrics9. Also note that although EEG data have a constant sampling rate of 128Hz, affective

metrics have a rate of around 12Hz; the detections are event-driven and their sample rates

depend on the number of expressive and cognitive events. This means that affective metrics

have low temporal resolution compared to EEG. The three affective metrics more relevant to

this study are frustration, excitement and engagement. Since all scenarios are two way and

users spoke one concept per speech turns, a total of eight fill turns are needed; thus evaluations

with more than eight fill turns in Fig. 7.10 denote one or more erroneous inputs.

Fig. 7.10(a) shows the GO session. Note that affective metrics have a generally smooth

plot, except for turns 7 and 8. As shown in turn 7, frustration raises high after user realizes

he entered the wrong value in the previous turn. Note how it immediately decreases after the

dashed line (interaction starts) of the same turn. In turn 8, frustration raises after the dashed

line. The user seems to be confused about which value to select; when selected, frustration

and later excitement start decreasing again. Fig. 7.10(b) shows a CT session. Since no errors

occur, the plot has again smooth lines. Note how both frustration and excitement are less than

0.5 for the duration of the session.

Fig. 7.10(c) shows an OM session. Due to a couple of speech recognition errors and user

confusion there is an evident variability for frustration at these points. Note however, how

using GUI input to fix the error in turn 5 results in a rapid decrement of frustration; this is

a pattern found frequently in the whole evaluation set. Similar to previous session, the MS

session shown in Fig. 7.10(d) shows raising of frustration when speech errors occur or user

is confused about system’s response. Again frustration rapidly decreases when user corrects

errors as shown in the two GUI input turns. Fig. 7.10(e) is the SO session. Due to many

speech errors or user confusion, these variations in both frustration and excitement happen a

lot of times; again, this is found frequently across the whole evaluation set.

Examining the GSR values across the five sessions, one can find differences during each

session but also between them. GSR is 0.53 microSiemens for GO session and slightly increases

during the end of the CT session. It is mostly constant for the OM session and increases to

0.59 by the end of the MS session for which more errors happened. The increase of GSR values

continues even after the end of MS and the start of the SO session. As a result the SO session

9Actual values are a multiplication of 10 compared to ones plotted.
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(a)

(b)

(c)

(d)

(e)

Figure 7.10: Sample evaluation sessions for usr4 (a)GO (b)CTT (c)OM (d)MS (e)SO
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starts with a GSR value of 0.62 and reaches the levels of 0.65 at the end of the session. A

possible explanation for these changes is that as the number of errors increases the difficulty

and the effort needed by the user to finish the sessions yield an arousal and cognitive load

increase which in turn seem to increase resulting GSR values as well.

(a)

(b)

Figure 7.11: Additional example evaluation sessions (a) user 7 MT session (b) user 8 CT
session

Figure 7.11 shows two more examples sessions for two more users. Figure 7.11(a) shows

a representative session of usr7. This user has the lowest overall speech WER and was very

confident in using speech. Notice how smooth is the plot for all the affective metrics and that

levels of both excitement and frustration are low. Figure 7.11(b) shows an example session for

usr8. What is interesting about this user is the way engagement changes through the turns.

As can be seen in this example (but also in user’s rest sessions), engagement rises at the start

of each turn, reaching a highest value (usually near the interaction time - dashed line) and

then decreases to reach the lowest point near the end of the turn.

It would also be useful to examine how affective metrics relate to input type and the

different interaction systems. Table 7.1 shows the mean and standard deviation for the three

affective metrics according to input type (GUI or speech); the last row shows the overall

(GUI and speech) results. Notice that for both excitement and frustration speech input has

higher levels compared to GUI input by 5% and 6% respectively. This happens because as

shown previously in the affective plots, speech recognition errors cause both frustration and

excitement changes. For engagement on the other hand, GUI input has slightly higher levels.

Overall results, show that engagement levels are higher and have less variance compared with
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Table 7.1: Affective metrics and turn input type
Input type engagement excitement frustration

mean std mean std mean std

GUI 0.79 0.11 0.45 0.19 0.51 0.17

Speech 0.76 0.11 0.50 0.19 0.57 0.19

overall 0.76 0.11 0.48 0.19 0.56 0.19

Table 7.2: Affective metrics and interaction system (plus input type)

Input type engagement excitement frustration

mean std mean std mean std

GO 0.78 0.11 0.44 0.19 0.50 0.15

CT (GUI input) 0.79 0.11 0.43 0.17 0.50 0.18

CT (speech input) 0.78 0.10 0.47 0.17 0.57 0.19

CT (overall) 0.78 0.10 0.46 0.17 0.56 0.19

OM (GUI input) 0.80 0.11 0.44 0.19 0.52 0.21

OM (speech input) 0.76 0.11 0.47 0.17 0.58 0.19

OM (overall) 0.77 0.11 0.46 0.18 0.57 0.19

MS (GUI input) 0.80 0.12 0.46 0.20 0.54 0.21

MS (speech input) 0.76 0.10 0.47 0.17 0.58 0.19

MS (overall) 0.77 0.11 0.47 0.18 0.57 0.19

SO 0.73 0.12 0.54 0.21 0.59 0.20

frustration and excitement.

Table 7.2 shows the mean and standard deviation for the three affective metrics for each

of the five interaction modes. For the three multimodal modes, results are presented per input

(GUI/speech) and overall (independent of input type, that is both GUI and speech input).

Engagement for SO system is lower compared to all other systems; note that for all three

MM modes GUI input has slightly higher engagement compared to speech input as shown in

the previous table. Excitement is much higher for SO compared to GO system (0.54 & 0.44

respectively). Multimodal modes as a mixture of SO and GO systems have average excitement

values lying between these two values and closer to that of GO. Similarly, for frustration, SO

values are much higher compared to GO system (0.59 & 0.50 respectively) while multimodal

modes have average values of around 0.57.

Table 7.3 shows the mean and standard deviation for the three affective metrics for all eight

users. Notice the differences between users. For example usr7 has by far the lowest excitement

and frustration levels (ASR WER 6%) while usr8 with the higher WER, has the highest levels

for excitement and second highest for frustration.
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Table 7.3: Users affective metrics
User engagement excitement frustration

mean std mean std mean std

usr1 0.80 0.09 0.51 0.20 0.61 0.18

usr2 0.74 0.09 0.47 0.15 0.54 0.19

usr3 0.82 0.14 0.51 0.24 0.55 0.20

usr4 0.73 0.10 0.45 0.17 0.54 0.19

usr5 0.79 0.09 0.46 0.19 0.54 0.19

usr6 0.79 0.07 0.46 0.14 0.56 0.17

usr7 0.75 0.10 0.38 0.16 0.44 0.13

usr8 0.71 0.12 0.54 0.21 0.58 0.18

7.5 Discussion

The recent release of the Emotiv device allowed developers and researchers outside of the

neuroscience community to exploit EEG technology. In the context of HCI research, several

demonstrations and research efforts have emerged mostly towards using the device as a BCI

modality. For example, interfaces that exploit either expressive or cognitive events (such as

P300 ERP) as a communication channel to control a robot, or to dial a phone contact [133].

Although verification and validation of such efforts is relatively straightforward, validation

of Emotiv’s affective metrics is way more difficult because quantification of emotional states

is an open research question. The development of these metrics according to the company10

exploited both EEG and a large number of other biosignals; subjective evaluations, labeling

by experts and cross validation procedures were employed for the development of the metrics.

According to the company the affective detections depend on the distribution and relative

intensity of specific frequency bands, as well as some custom features based on fractal signal

analysis. These are passed to a classifier system to detect specific deflections, are low-pass

filtered and the outputs are self-scaled to adjust to each user’s range of emotion.

Incorporation of biosignals such as GSR or EEG in the user experience design provides a rich

amount of data not previously available. Yet the correct association of these data to underlying

emotional or cognitive state is a challenging endeavour for the research community. Even for

the simpler of the above modalities, the GSR, interpretation of measurements is a difficult task.

For example although it is known from various independent studies that there is correlation

between both arousal and cognitive load with skin conductance levels, accessing exactly how

these parameters affect the resulting measurements is not well understood. Also, validating

the results provided by other EEG studies in other domains and different conditions may not

even be possible as the complexity and the number of factors affecting the measurements may

10http://emotiv.com/forum/messages/forum4/topic1262/message7401
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be overly large. This of course is mostly manifested in the case of EEG, since the human brain

is the most complex organ known.

Clinical neuroscience EEG studies usually take place in a completely controlled and strict

environment in order to isolate certain cognitive phenomena they seek to study and minimize

the effect of external factors. To achieve this they also minimize any sources of excessive EEG

noise such as these resulting from muscle artifacts. Thus the validity of these studies can be

verified relative easily. An important research question is whether the transferability of such

results in complex uncontrolled real life scenarios, such as the evaluation of complex interfaces

used in this thesis can be verified.

These two issues, namely validity of affective metrics and their use in complex settings make

evaluation a challenging task. For example, it was found from this preliminary study that both

excitement and frustration may increase in the case of speech errors or user confusion (recall

affective plot examples). However there are also times when such fluctuations in affective

metrics (especially in frustration and excitement) might not relate to e.g., a speech errors or

to exhibit different patterns (e.g. cases when a lot of speech errors takes place in a row). This

is to be expected however since a lot of cognitive processes takes place at the same time in the

brain. Nevertheless, as shown clearly in the previous tables, there are differences in frustration

and excitement between both input type (GUI/speech) and interaction modes (especially for

SO and GO).

7.6 Future work

Although the affective metrics collected for the evaluation of multimodal system have shown

to reveal valuable insights there are a number of future directions utilizing the EEG signal

and the work already presented here to clean and process Emotiv’s data that could potentially

provide even more insight.

One interesting idea would be the investigation of error related negativity [134] potentials

(ERNs). These are ERPs that are elicited when a participant realizes he has performed some

kind of error. Their elicitation although complex could potentially be exploited for the de-

tection of user’s error response. It could then be used by an adaptive system to offer help or

guidance on solving the error, provide alternative modality and so on.

Attention in a multimedia system could also provide additional insights. Although visual

attention alone could be investigated using an eye-tracker, it would be interesting to research

how user attention is divided between audio and visual channels in the multimodal system.

Crossmodal attention and multisensory integration are in the forefront of neuroscience research

and are topics of study that could benefit the multimodal research community too.

Another important attribute that could be investigated is cognitive load which relates to
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the perceived mental effort. For example, a complicated interface would pose high demands of

mental effort for the user to handle and should have higher cognitive load levels. In the case

of the systems designed in this thesis, it would be useful to identify if there are any cognitive

load differences between the different types of systems (GO/SO/MM) or between modalities

for both input (speech/touch) and output (speech and vision). For this purpose a cognitive

metric could be designed by the development of a classifier exploiting data from the n-back

experiment as noted earlier.

7.7 Conclusions

Although until recently typical evaluation procedures such as objective (e.g. task completion

times, error rates) and subjective (questionnaires) provided a basic tool for interaction design-

ers, these techniques lack the ability to give more in-depth insight of the quality of interaction.

Incorporation of user affective state and other cognitive features such as attention or cogni-

tive load can prove valuable tools in both the evaluation and design of interaction systems.

For example a video game with higher levels of engagement or excitement would enhance the

interaction experience and thus be preferred by the users. Likewise a web application that is

simple and easy to use (low levels of cognitive load) would be more popular than a complex

and difficult to use one.

Use of physiological channels such as GSR, EEG, eye-traking (a method to detect user’s

visual attention) and their elaborated interpretation can potentially prove invaluable for the

design process.



Chapter 8

Conclusions

This chapter presents a summary of the work performed and discusses its general implications

for multimodal interaction design. Section 8.1 presents a short summary of the previous

chapters highlighting the most important points. A list of the work items accomplished through

this research is outlined in section 8.2. The main results of this work are presented and discussed

in section 8.3. The chapter concludes with some possible future work at section 8.4.

8.1 Summary

Chapter 3 showcases how to design and build information-filling multimodal systems combin-

ing speech and GUI (e.g. pen or touch) input. From the interaction design standpoint, the

main focus is on identifying and exploiting the synergies between the modalities and on the in-

vestigation of a variety of multimodal interaction modes in addition to “Click-to-Talk”, namely

“Open-Mike” and “Modality-Selection”. The system architecture of a system that allows both

unimodal and multimodal interaction and can be used across different platforms such as PCs,

PDAs and mobiles is also examined.

In Chapter 4 the methodology used for evaluating the system is presented with a focus

on the evaluation metrics used. Some of these metrics are standard objective metrics used

in dialogue systems such as task completion ratio, number of turns and turn duration times.

These metrics can be additionally measured per user, scenario or context. One important

improvement is the break down of turn duration times into inactivity and interaction times

which allows to separate system output processing by user from user input, in order to better

study differences between the various interaction modes. In addition two new metrics were

devised for the investigation of two important research questions, namely the relation of input

modality choice to unimodal efficiency (relative modality efficiency) and the measurement of

the combined synergies in multimodal interaction modes (multimodal synergy).
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In Chapter 5 the two unimodal and three multimodal form-filling systems on the desktop

and PDA environments are evaluated and compared in terms of efficiency and user satisfaction.

Context statistics and the “relative modality efficiency” metric reveal input modality patterns

and their relation to modality efficiency. The latest clearly shows how context and interac-

tion mode affects input selection and reveals a non-linear abrupt switch from GUI to speech

modality when GUI input becomes less efficient (speech overuse). User statistics highlight the

differences in usage patterns and high variability in terms of unimodal efficiency and prefer-

ences towards modalities and interaction modes. Multimodal synergy showcases how during

multimodal interaction users exploited the synergies in a degree that helped them improve

their performance compared to unimodal interaction.

In Chapter 6, a more detailed investigation of individual user behavior is provided with

emphasis on two important factors that affect modality usage and related to speech modality,

namely speech verbosity and speech error correction patterns. A statistical model for predicting

input modality selection is described, evaluated and discussed.

Chapter 7 investigated the use of affective evaluation. Skin conductance and EEG data were

collected and analyzed. The data exploited the Emotiv Epoc neuroheadset and a custom made

GSR apparatus. Emotiv’s affective metrics such as frustration, engagement and excitement

revealed some interesting results. More advanced techniques such as the design of a cognitive

load metric could be employed in the future to gain even more insight that could be helpful in

multimodal interaction design.

8.2 Work items accomplished

The motivation for the work described in this dissertation was to overcome the limited input

methods found in mobile devices, by using speech as an additional modality, in order to build

more efficient, robust and natural interfaces that advance the state of the art and offer improved

user interaction experience. Towards that end several steps had to be undertaken, research

questions investigated and aims attained. The following list summarizes the series of steps

undertaken:

• Identify and exploit the combined modality synergies in the design of multimodal inter-

action modes.

• Investigate multimodal turn taking and modality mix by designing three different mul-

timodal interaction modes.

• Design and implement a system that allows both unimodal and multimodal interaction

and can be used across different platforms such as PCs, PDAs and mobile devices.
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• Develop a methodology for the evaluation of such systems with metrics that will help

investigate input modality selection patterns and synergies.

• Study and analyze user evaluation results to compare the various interaction modes and

identify user behavior patterns.

• Investigate usage patterns and devise a statistical model for prediction of input modality

selection.

• Employ physiological signals such as skin conductance and EEG to evaluate the designed

systems in terms of affective metrics.

8.3 Results

The detailed evaluation of unimodal and multimodal interaction modes yielded some results

that can help us better understand human-machine interaction for multimodal dialogue sys-

tems. Here are some important conclusions from the analysis:

• Synergies between the speech and GUI interaction modalities exist in multimodal in-

terfaces; Visual feedback (GUI output), input modality choice (selection of most effi-

cient/effective modality) and error correction, all play important role. When properly

incorporated in the design process of multimodal interaction systems they can yield sig-

nificantly higher interface efficiency and user satisfaction.

• The design of the multimodal interface (turn taking and default input modality) can

affect user behavior e.g. users selected input modality based on unimodal efficiency

considerations more frequently in “Modality-Selection” compared to “Open-Mike” mode

(excessive use of speech).

• Compared to unimodal modes, multimodal interaction modes are almost always better

in terms of shorter interaction times due to input modality choice and error correction

synergies; however they may show increased inactivity times due to modality selection

overhead.

• Unimodal efficiency clearly affects input modality choice. When changing the relative

efficiency of the input modality in multimodal interfaces, user input modality usage also

changes; users tend to use the most efficient modality but biases also exist, especially

towards the speech modality. This is highlighted by the non-linear abrupt switch from

GUI to speech modality when GUI input becomes less efficient. Generally the modality

selection choice by users becomes more clear as the difference in unimodal efficiency

between modalities increases and may become blurry as the difference approaches zero.
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• As shown using all evaluation metrics (objective, relative modality efficiency, synergy)

there is a great variability between users, in terms of unimodal performance, exploitation

of synergies, behavior patterns (e.g. speech verbosity, overrides) and preferences towards

certain modalities or systems. This makes modality and user behavior prediction in

general a difficult task; however such an effort could potentially yield more adaptive

interfaces.

• Affective evaluation revealed that speech recognition errors and user confusion may result

higher levels of frustration and/or excitement. These differences are also found between

input type (GUI/speech) and interaction modes. These results along with further explo-

ration of more affective and cognitive attributes such attention or cognitive load could

provide valuable insights for the interaction design process.

8.4 Future work

A possible future step is to evaluate the interaction systems for varying levels of unimodal

interface efficiency. In the current evaluation it was possible to control the GUI input efficiency

(as it relates to attribute size) but not speech efficiency. A possible solution to controlling

speech recognition error rates is to use to WOZ (Wizard of Oz) method resulting error free

recognition or additive noise resulting high WER. Also, in the current evaluation there was

a clear difference in unimodal efficiency between the two modalities, especially for the long

attributes (where speech much faster) and a less clear one for the short ones.

In addition the evaluation scenarios were balanced, since the number of long and short

attributes was almost the same. This made relative clear for users which modality to use; it

would be interesting to investigate what would happen if un-balanced scenarios were used or

unimodal efficiency difference became very small .Through these experiments multiple mea-

surement points for modality usage, unimodal and multimodal interface efficiency will be ob-

tained; these results could help to better understand the relationship between efficiency, user

satisfaction and input modality usage in a broader range of situations.

Although the detailed objective evaluation metrics used for the study of user behavior have

revealed a great deal of information, they are only the results of inner cognitive processing

and emotional states taking place during evaluation. Incorporation of such knowledge could

greatly advance the understanding of usage patterns in multimodal interaction. The affective

evaluation performed indicated some interesting results in terms of affective metrics such as

frustration, engagement and excitement. Yet more work towards this direction (section 7.6)

could potentially reveal even more insights and guidelines for multimodal interface design and

also help in designing a better adaptive model.



Appendix A

Multimodal system design and

implemenation details

A.1 Evolution of the original system to a multimodal platform

The initial system that was used as a base for the development of the multimodal system

described in this thesis was the Bell Labs Communicator Spoken Dialogue System. The original

Communicator uses the BLSTIP [117] telephony platform and thus speech interaction could

take place only through a phone. To further develop and explore multi-modality features on

the Communicator, a highly flexible audio platform was designed and implemented which can

be run on both desktop computers and mobile devices. The dialogue system (often used the

term backend to describe it) could also be used with a text I/O interface (keyboard) and a first

version of a GUI had been implemented (that is the GUI parser/intepreter already existed).

Thus the steps that had to be taken to transform the initial system to a fully functional

multimodal platform was to:

• Build a high performance audio platform (audio playing/recording) for various platforms.

• Integrate the audio platform with the backend, the speech synthesizer and recognition

components thus turning the dialogue system to a fully functional Spoken Dialogue Sys-

tem again.

• Improve the initial GUI view and port it to other GUI toolkits for various platforms.

• The design and the implementation of the multimodal interaction modes.

The fourth item is alreadyt described in Chapter 3. In the next sections the audio platform

is described and the porting of the system to the two portable devices.
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A.2 Audio platform

The audio code was implemented using Open Sound System (OSS) the default audio driver

untill Linux kernel version 2.4 (newer versions use ALSA as the default audio driver but also

allow for an emulation layer for OSS). Since the code for capturing and playing audio should

take place in a heavily multithreading environment (GUI, several network sockets, control

logic, etc) a high performance audio related code had to be written in order to satisfy two

requirements. First no audio samples should be lost and second the CPU time needed for

interfacing to audio should be in the range of a few msecs per second. To achieve this, a

simple yet elegant solution that was devised was to transfer (read/write) data between the

audio device buffer and the application buffer in interval periods exactly propotional to data

generation/consumption rate. This way no samples are ever lost (no way of having buffer

over-run/under-run) and and processing time is minimal (a few msces instead of blocking

I/O).

The native version of the audio platform can be run in Linux based PCs but also the Zaurus

Linux PDA. Since, it is implemented in C while the rest system is implemented in Java, JNI

(Java Native Interface) was used to call native methods and transfer data between the C and

Java parts of the code. To be able to address the issue of using the system to more devices,

the audio platform was also implemented using JMF (Java Media Framework). This allowed

to run the audio platform to all three major desktop platforms (Linux, Mac OS, Windows).

Although the audio platform could run natively on the PDA device, one important issue

was how to be able to achieve both recording and playing at the same time using just the one

audio jack found in the device (audio I/O is done through stereo headset). This functionality

known as barge-in, is needed for example when the user starts speaking at the system, while

the TTS is still active, in which case the TTS should stop. To achieve this the solution given

was to exploit the stereo support of the jack and being able to open the audio device for

both recording and playing simultaneously by using a separate channel in mono mode for each

functionality (e.g. left for recording, right for playing).

The audio controller interfaces with the speech recognition and synthesis components

through network sockets acting as a proxy to the Spoken Dialogue System. The SDS text

output is sent through the audio controller to the FreeTTS speech synthesizer and the pro-

duced samples are sent back to the audio device for rendering. Likewise audio samples from

the audio device are sent to the Bell Labs recognizer and the recognition result is sent to the

SDS component. Voice activity detection (VAD) is used (when enabled) to only send speech

samples to the recognizer only after voice detection is done, e.g. in “Open-Mike” mode (in that

case the Speech button turns from yellow color to red to indicate the VAD event to the user).

In case no speech is detected in a short time period, no samples are sent to the recognizer at all
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and the SDS input becomes null, causing it to proceed to a new turn. The VAD implemented

is based on the spectral energy of the signal and had an overall good performance in practice.

A.3 Porting the system to mobile devices

The two mobile devices used in the evaluation of the thesis are the Zaurus Linux PDA and the

iPod touch from Apple. In this section some more details are provided for these two devices

and the porting and implementation details.

A.3.1 Zaurus Linux PDA

The PDA device used was the Zaurus SL-5500 (Collie), the first popular Linux PDA, released

outside Japan in 2001. It is based on the Intel SA-1110 StrongARM processor running at 206

MHz, has 64 MB of RAM and 16MB Flash, a built-in keyboard, CompactFlash (CF) slot,

Secure Digital (SD) slot, and infrared port. WiFi could only be used with an external wireless

CF card. A second Zaurus device SL-5000D, a developer edition of the SL-5500, containing just

32 MB of RAM was also available (this one was won in an interational software development

contest).

Porting the whole system to the PDA

An initial thought was trying to port the whole system code base to the device. Since the system

was written in Java (J2SE 1.2) with some parts (parsers and audio platform) implemented in

C, the port of the Swing GUI to AWT GUI toolkit was needed in order to be compatible

with the J2ME CDC based java virtual machine available in the PDA device. From the three

different java virtual machines available for Zaurus (Jeode, SUN CDC and IBM’s J9) and the

various available ROMs (Operating System variants that can flashed to the device) the only

combination that worked was J9 with TK1 ROM.

Despite the intense code optimization (ranging from source code optimization to code

obfuscation) in order to provide a distribution of the the system as fast as possible and with

minimal size (to fit to the space and limited RAM size of the device) the system became

fully functional but with a slow interaction compared to Desktop environment. Thus the

configuration of only running the speech recognition and synthesis components remotely, with

all rest dialogue system and I/O channels (GUI/audio) running locally on the device was

abandoned. To achieve comparable to desktop performance, a new configuration needed that

would move the dialogue system (which was the most resource demanding part) remotely on

a PC and only run the GUI and audio channels to the device.

1http://www.thekompany.com/embedded/rom/
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The client-server GUI protocol approach

Since the GUI is built automatically and refreshed in each turn from the dialogue component

(which should be now run remotely) and the java version running on the PDA device did

not support remote method invocation (RMI a java implementation of remote procedure call

- RPC) the whole communication between the server (dialogue manager) and remote client

(GUI running on the PDA) was implemented as a custom communication protocol. This proxy

like approach allowed to transparently call remote methods between the two sides thus making

possible the deployement of a remote GUI interface to compatible devices. Transforming

the tightly integrated GUI component to an independent process running remotely had the

advantage that porting the system to a new device only required the port of the GUI view.

Additionaly the whole system could be run in a standalone or client-server mode with just a

change of a configuration variable.

To achieve this, two different actions needed. First the original GUI related code was split to

two parts; one was the view creation part (GUI controller) and the other the GUI view (toolkit)

specific one (e.g. Swing/AWT view). This allowed to have different GUI view implementations

with the exactly same GUI controller (recall the MVC pattern). The second step was to split

the GUI controller in two parts; the first (GUI frontend) running on the device and the second

(GUI backend) running on the server side. The plroxy-like protocol implementation employed

multi-threading network techniques in order to allow for asynchronous two way communication

between the two sides.

Following is a small part of the definition of the proxy protocol used. Methods calls have

been substituted by request IDs; the code interpreting the request is responsible for also passing

the needed arguments and then calling the original code on each side (GUI front-end or GUI

back-end); all this is done completely transparently.

...

public static final byte OPERATION_CONTEXT_GET_TITLE = 13;

public static final byte OPERATION_EFORM_GET_SCORE = 14;

public static final byte OPERATION_EFORM_GET_SCORES = 15;

public static final byte OPERATION_PROTOTYPE_TREE_GET_BY_EFORM_SCORE = 16;

public static final byte OPERATION_AGENDA_IS_STATE_ACTIVE = 17;

public static final byte OPERATION_AGENDA_GET_CURRENT_ACT = 18;

public static final byte OPERATION_AGENDA_GET_CONTEXT_FOR_ACT = 19;

public static final byte OPERATION_AGENDA_FILL = 20;

public static final byte OPERATION_SEMANTICS_GET_CONTEXT = 21;
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Figure A.1: The Zaurus Linux PDA device. The GUI is operated with a stylus and both
virtual and hardware keyboard are available for use.

public static final byte OPERATION_SEMANTICS_SET_CONTEXT = 22;

...

A.3.2 iPod touch

The iPod touch, a device running iPhone OS 2.2 (and thus with same UI and interaction

methods with the iPhone device) was used as the second mobile device. It features a ARM11

620 MHz CPU, with 128 MB RAM, 8 GB storage, built-in wifi and a 320X480 touch screen.

In contrast with the Zaurus PDA which follows a desktop-like GUI interface and is controlled

via a stylus the iPhone uses a touch interface optimized for simple finger gestures operations

on the screen (refer to section 2.6.2).

Thus instead of the precise pointing of the stylus on PDAs, the larger less precise footprint

of finger on the screen has certain implications in the design of the screen components. For

example, in contrast with the traditional form views in desktop-like GUIs for which both the

field labels and components that contain the fields values (e.g. combo-box) can been fit in a

single view, the corresponding form in the iPhone requires a two level view hierarchy. The

main (top) view (a table-view according to iPhone terminology) holds just the field labels and

the corresponding selected value in each table row (see Fig. 3.4(a)). By touching each row,

a new detailed (two-level) view containing all the possible values the user can select from, is

shown (Fig. 3.4(b)). A navigation bar indicates the depth level in the hierarchy; after the user

scrolls and selects the desired value the detailed view dissapears and the main view is shown

again.

Thus porting the system to the iPhone required effort in both redesigning the GUI according

to iPhone HCI guidelines but also the implementation of the new GUI with a different set of

tools and developing environments (use of Objective-C programming language, developing with
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XCode environment on MAC OS X operating system). Apart from the view code part, the

client-side proxy protocol (GUI frontend) had to be re-implemented, since it was decided to

exploit the protocol designed during the Zaurus porting process. Issues such as cross-compiling

and endianess had to be addressed since the new GUI front-end was written in C instead of

Java. Again both the GUI frontend and view code was multi-thtreaded in order to allow for

both asynchronous two way communication and for the relaying of all GUI related methods to

view’s main drawing thread.



Appendix B

Evaluation and additional results

This Appendix provides additional material relating to evaluation results not included in the

main manuscript. In section B.1 the evaluation scenarios are described in detail. Section B.2

contains additional evaluation results for the relative modality efficiency metric.

B.1 Evaluation Scenarios

The five evaluation scenarios used are summarized next anD are also shown in the following five

tables. Note that only attribute values in bold are the ones required, since the rest information

has been inputed to the system during the previous turns. e.g. Quantas in second leg of second

scenario has been inputed during the first leg. The five scenarios are:

• From Las-Vegas to Miami on July 10th in the morning with Northwest airlines.

• From Orlando to Boston on July 9th in the morning using Quantas airlines. Return on

July 10th in the evening.

• From Miami to Vienna on July 6th in the morning using United airlines. Return on July

7th in the evening. Reserved hotel is Four Seasons.

• From Tucson to Phoenix on July 6th in the morning using Southwest airlines. Return

on July 8th, anytime. Car rental of a wagon type car from Budget.

• From Tucson to Orlando on July 6th in the morning using TWA airlines. Next flight to

Phoenix on July 14th, anytime. Return to Tucson on July 16th in the evening.

126
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Scenario 1 - One way trip

Departure City Arrival City Departure Date Departure Time Airline

Las-Vegas Miami July 10 Morning Northwest

Scenario 2 - Round trip

Departure City Arrival City Departure Date Departure Time Airline

Orlando Boston July 9 Morning Quantas

Boston Orlando July 10 Evening Quantas

Scenario 3 - Round trip with hotel resrervation

Departure City Arrival City Departure Date Departure Time Airline

Miami Vienna July 6 Morning United

Vienna Miami July 7 Evening United

Arrival City Arrival Date Departure Date Hotel Name

Vienna July 6 July 7 Four Seasons

Scenario 4 - Round trip with car resrervation

Departure City Arrival City Departure Date Departure Time Airline

Tuscon Phoenix July 6 Morning Southwest

Phoenix Tuscon July 8 Anytime Southwest

Arrival City Arrival Date Departure Date Car Type Car Company

Phoenix July 6 July 8 Station Wagon Budget

Scenario 5 - Three-way trip

Departure City Arrival City Departure Date Departure Time Airline

Tuscon Orlando July 6 Morning TWA

Orlando Phoenix July 14 Anytime TWA

Phoenix Tuscon July 16 Evening TWA
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B.2 Relative modality efficiency for inactivity and interaction

times

In this section more detailed results concerning relative modality efficency for inactivity and

interaction times are provided in Fig. B.1 and Fig. B.2 respectively.
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Figure B.1: Speech modality usage (QUs) as a function of relative speech modality efficiency -
inactivity times are shown. (a) context averaged over users and interaction modes (4 points).
(b) interaction mode averaged over users and contexts (3 points). (c) combined data points
for interaction modes and contexts over users (12 points). (d) user averaged over contexts and
interaction modes (8 points). (e) combined data points for users and context over interaction
modes (32 points). (f) combined data points for modes and users over contexts (24 points).
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Figure B.2: Speech modality usage (QUs) as a function of relative speech modality efficiency -
interaction times are shown. (a) context averaged over users and interaction modes (4 points).
(b) interaction mode averaged over users and contexts (3 points). (c) combined data points
for interaction modes and contexts over users (12 points). (d) user averaged over contexts and
interaction modes (8 points). (e) combined data points for users and context over interaction
modes (32 points). (f) combined data points for modes and users over contexts (24 points).
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