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Introduction 
 
 
Many applications dealing with textual information require classification of 
words into semantic classes (concepts). A natural language understanding 
module, which is embedded in advanced computer dialogue agents, requires 
knowledge of semantic classes. For example, during a human-machine 
dialogue interaction, the human’s audio stream is passed on to a speech 
recognizer. The audio stream is transcribed to a string of text by the automatic 
speech recognizer. Then this string is passed on to a computer dialogue agent, 
which is responsible for the extraction of the information contained in the 
utterance. The subject of our work is the extraction of semantic concepts from 
text using an automatic procedure.  
 
Manually constructing semantic classes is a tedious and time-consuming task. 
Moreover, it requires expert knowledge. An inexperienced developer may 
omit important components for each semantic class. The lexical information 
is not specific to any domain. Rather, the entries attempt to capture what 
applies to the language at large, or represent specialized senses in a 
disjunctive manner. Note that semantic lexical knowledge is most sensitive 
to domain changes. Unlike syntactic constraints, semantic features tend to 
change as the word is used in different ways for different domains. All 
these reasons raise the need for an automatic procedure. 
 
Our effort, for meaning identification, relied on the hypothesis that words 
that appear in similar lexical contents are semantically similar. The lexical 
environment was the only text’s feature we explored. In some sense, our 
approach tried to discover the meaning, which is hidden in a flexible use of 
natural language, without the use of strict syntactic rules.  
 
The first step in designing an understanding module for a domain is to obtain 
a corpus of transcribed utterances. We have mainly worked on a single 
domain, ATIS, which is an air reservation system. The used unannotated 
corpus is composed of transcribed human requests taken from a human-
machine spoken dialogue interaction over the telephone network. The used 
ATIS corpus is a relatively small homogeneous corpus. The term 
“homogeneous” means that in the transcribed requests there is no 
expressional complexity and the used vocabulary is limited to the purpose of 
the provided service.  
 
The proposed iterative procedure consists of three main steps to auto-
inducing classes. First, a “lexical phraser” groups words in a single lexical 
unit. Second, a “semantic generalizer” maps words (and concepts) to 
concepts. Lastly, a “corpus parser” re-parses the corpus using the classes 
generated by the semantic generalizer. The lexical phraser uses the notion of 
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mutual information. The semantic generalizer uses four different metrics for 
semantic distance.        
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The phenomenon of natural language  
 
 
The concept of culture covers all those skills and ways of life that are 
transmitted by interpersonal communication and tradition. It includes many 
different aspects of the life of people, their knowledge and language, their 
religion, beliefs and laws, their customs, rituals and arts, their tools, foods, 
and other means getting a living. 
The changes in human life in the last 10 000 years have certainly been 
tremendous, both in quantity and quality. People who had achieved the 
power of communication by symbolic means can reasonably ascribe this 
explosion to the exploitation of the new favorable climatic conditions. Words 
reflect the ability to discuss the properties of the objects and events that are 
not present, and so to extend the range of actions to meet the future. 
The capacity to embody information in records outside the body provides a 
proof about the rate’s acceleration of evolutionary change. With language and 
writing we have an extra-corporeal information store. Written records are, 
like all other tools, an artificial substitute for a function that was previously 
performed in the body. As has happened with other tools the invention of the 
capacity to make extra-somatic memory records in written codes has led 
eventually to an understanding of the code in the body. 
The inventions of language and writing were the essential tools, if we may 
call them, with which all the others were produced, and led to Bronze, Iron 
and Machine ages. Yet the acquisition of a store of information has not been 
by any means uninterrupted. Periods of advance, such as those of the 
Chinese, Sumerians, Minoans and Greeks have been followed by stagnation 
in the increase of knowledge, or its loss, as in Barbarian Europe after the fall 
of the Romans [21]. 
  
The study of human language is particularly a study of human knowledge, 
which may be considered as a ‘cognitive system’. Cognitive systems are based 
on the interaction of experience and the organism’s ability of constructing and 
dealing with it, combined with the determinants of maturation and cognitive 
growth. Experience and knowledge are separated by a gap which expresses 
the essence of the Plato’s intellectually exciting problem: “How we can know 
so much given that we have such limited evidence?” [22]. 
 
Researchers in the field of neuropsychology note that the natural language is 
an uncompleted attempt of meaning signaling and remains uncompleted 
forever! A lot of times the matter that is being said is totally different from the 
matter that is not being said. In other words, natural language often speaks 
using the silence, which is transformed into allusion during the speech 
procedure [23].   
 The phrase ‘know so much’ appeared in the previous question lies in the fact 
that the human in every aspect of his activity uses a knowledge background 
well formed through history, ignoring how this knowledge was gained. On 
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the other hand his lifetime is too short to be able to construct the whole 
evidence’s schema. Plato’s problem seems on the surface to be contradictory, 
but suggests the following challenging approach. The answer is to identify the 
principles, often hidden in a noisy environment, and extract some sense of 
meaningful patterns. 
 
 An empiricist corpus-based approach is found in the work of American 
structuralists. Generally it was a noticeable attempt of exploring the methods 
that can model the language’s structure automatically, without computer 
implementation.  The empiricist approach to natural language processing 
denotes that the study of language’s structure is accomplishable by defining a 
language model and inducing the several parameters by using statistics to a 
large collection of texts. 
 
 The aim of the linguistic science is to discover and describe the inner 
structure and the functionality of the linguistic phenomenon, as is expressed 
in conversations, writing and other media. In order to achieve this aim the 
linguistic community has proposed several sets of rules, which sketch the 
framework of linguistic expressions. This approach became rigorous as 
linguists tried to explore more sophisticated grammars. The linguistic 
community ignored an important fact. People tend to adjust the grammatical 
rules to their communicative needs. Simply, people choose the easiest way in 
order to communicate. 
 
 It is more reasonable to study further the creativity of language use, rather 
than focusing only in strict grammatical rules. Adopting this approach we can 
ask,” What are the most common patterns that occur in language use? “.  
Statistics can provide the useful tools for this aim. British linguist coined: 
“You should know a word by the company it keeps”. Probability theory is the 
scientific field that can implement this statement. Statistical language 
processing suggests the use of corpora with regard to the textual context, in 
order to situate language in a real world context. 
     
 Zipf’s law gives an example of a surprising and interesting natural 
phenomenon. Harvard linguistics professor George Kingsley Zipf observed 
that the frequency of the k-th most common word in a text is roughly 
proportional to 1/k. He justified his observations in a book titled “Human 
behavior and the principle of least effort” published in 1949. Principle of least 
effort states that people will act so as to minimize their probable average rate 
of (present or future) work. This reminds us the fact that people try to find the 
easiest way to satisfy their communicative needs. While Zipf's rationale has 
largely been discredited, the principle still holds, and others have afforded it a 
sounder mathematical basis [2]. 
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1   Why we need statistics? 
 
 
 This chapter introduces some basic material on probability and statistics   
required for the understanding of our work. These definitions play central 
role in corpora processing since through their interpretation and 
implementation, epitomize the meaningful data. This ability can be compared 
with a dive in a deep and foggy lexical environment that results in discovery 
of the treasure of meaning. Corpora can be large collections of texts written by 
any editor or transcribed human-human, human –computer dialogues. 
 Obviously the desired meaning is hidden inside of each word. Also each 
word can be viewed as a distinct event which whenever it occurs, it transmits, 
in a sense, some general information. The notion of “word” in linguistics is 
denoted by the term “lexeme”. Thus a lexeme is the minimal unit of language, 
which has a semantic interpretation and embodies a distinct cultural concept. 
Furthermore the extracted knowledge can be broader if we study a larger 
lexical field that consists of more than one lexeme. A single lexeme can be a 
“lexical unit”, but in writing it is very common, more than one lexemes to 
behave as a lexical unit. So, is there any difference between lexeme and lexical 
unit or not? Cruse distinguishes lexemes from lexical units. The former are the 
items listed in the lexicon, or ideal dictionary of a language. A lexeme 
corresponds to a particular word or word form, and can be associated with 
indefinitely many senses. The latter are form-meaning complexes with stable 
and discrete semantic properties, and the meaning component is called a 
sense, corresponding to the intuitive notion of sense. So bank is a lexeme, 
while bank-financial institution and bank-edge of a river are lexical units. We 
will see that for our work this approach does not propose clear criteria for 
establishing Cruse’s distinction. We underline only the fact that it is myopic 
policy to isolate word from its lexical environment. It is reasonable to claim 
that a word preserves a kind of relationship with its neighboring words, in 
some way.  Still the concept of “neighbor” remains abstract. We can guess 
correctly that it is worthless to treat a whole sentence as a single lexical unit 
that expresses a very specific meaning. Therefore, few consecutive words may 
form a lexical unit with a particular meaning. In such case we are sure that 
each word contains an amount of information about the other words of the 
lexical unit. This means that the probability of one word’s appearance is not 
independent. In the opposite case the consecutive words would not form a 
lexical unit with a comprehensive meaning. These considerations trigger off 
the thought to find an alternative, single lexeme in order to express the same 
meaning that the whole lexical unit does. But still we need a metric to 
estimate the precision of this idea.  Additionally we cannot ignore the fact that 
a certain matter can be said or written using more than one lexical unit. 
Practically this is interpreted to the fact that people use many different lexical 
units to express approximately the same concept. So it is important to explore 

 14 



the semantic relationship between the lexical units of a corpus regardless of 
their place in the text.   
 
1.1   Counting Words 
 
Probability theory deals with predicting how likely it is that an event will take 
place. There are two interesting views of probabilities: 
The objectivist view states that probabilities are real aspects of the world that 
can be measured by relative frequencies of outcomes of experiments. In 
contrast, according to the subjectivist view, probabilities are descriptions of an 
observer's degree of belief or uncertainty rather than having any external 
significance. These contrasting views are also referred to as Frequentist vs. 
Byesian. Both views are relevant for linguistics; yet, the laws of probability 
theory remain the same under both interpretations. 
Probabilities are based on counting things. But, in our case what these things 
are? Statistical language processing requires computation of word 
probabilities. These probabilities are computed by counting words or lexical 
units in a training corpus.   The classical definition of probability, as given by 
Pascal is: “The probability of an event x is computed as the relative frequency 
with which x occurs in a sequence of n identical experiments “. So, the 
probability of a word w is the relative frequency with which x occurs in the 
corpus. 
 

p(w) = occurrences of word w  
number of words 

            (1.1.a) 

 
The role of punctuation marks    
 
Suppose that we have to count the words of the following sentence from 
Shakespeare’s Hamlet and compute the probability of the word “God”. 
 
 “Oh God, I could be bounded in a nutshell and count myself a 
king of infinite space.” 
 
If we count punctuation marks as words, the sentence has totally 19 words 
and the p(“God”) = 1/19.  If we do not count punctuation marks as words, the 
sentence has totally 17 words and the P(“God”) = 1/17. 
Whether we count punctuation marks as words depends on the task. Tasks 
such as grammar checking or author-identification must treat punctuation 
marks as words because in these cases the location of the punctuation is 
important. Usually corpora of spoken language do not have punctuation 
marks. In our work we used corpora of spoken language without punctuation 
marks. 
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1.2   N-grams 
 
In the introduction of this chapter, we mentioned the significance of 
considering consecutive words through a probabilistic model.  This model 
proposes the assignment of probabilities to strings of words. Based on this 
method we can easily compute the probability of an entire sentence or predict 
the next word in a sequence. 
The simplest probabilistic version of this model allows every word have the 
same probability of following every other word. A more robust model let 
every word follow every other word, with the appearance of the following 
word to be depended on its normal frequency of occurrence. We still consider 
the individual relative frequency of each word. The following example based 
on real data can verify the precision of this simplistic approach. 
Brown corpus has 1 000 000 words. The word “the” occurs 69 971 times in the 
corpus and the word “rabbit” occurs 11 times. Thus the probabilities are 0.07 
and 0.00001 for the words “the” and “rabbit”, respectively. 
Suppose that we have just read this part of a sentence: 
 “Just then, the white    ”. 
Furthermore suppose that we are curious about what the next word will be. If 
we use the simple model, we will conclude that the word “the” is the most 
possible word to follow “white”. But this seems totally false because there is 
no meaning in the sentence “Just then, the white the”. Doubtless the sentence 
“Just then, the white rabbit” sounds more reasonable. 
This example shows that the computation of the probability of word 
sequences must use the conditional probability of a word given the previous 
word. Particularly that means that the probability of a word given the 
previous one is higher than its probability otherwise. 
   

1.2.1   Conditional probability and independence 
 
The notion of conditional probability can be considered as a kind of updated 
probability of an event given some knowledge. The probability of an event 
before gaining additional knowledge is referred to as the prior probability of 
the event. The new probability of the event estimated using the additional 
knowledge is called posterior probability of the event.  The event of interest is 
formed by the occurrences of a word in the corpus. Using symbol Ω we 
denote the sample space, which is discrete, having finite number of elements. 
The sample space, which corresponds to a corpus, includes all the occurrences 
of each distinct word of the corpus. That is, the sample space Ω includes all 
the events of the corpus. 
For instance, assume a small corpus:  “A tiny corpus tiny”.  
Ω = {occurrence of the word “A”, 
occurrence of the word “tiny”, 
occurrence of the word “corpus”, 
occurrence of the word “tiny” for second time} 
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The event of the occurrence of “tiny” in the corpus is denoted as tiny and is: 
 
tiny = {occurrence of the word “tiny”,  
            occurrence of the word “tiny” for second time}  
 
We define the probability of the occurrence of the word “tiny” according to 
(1.1.a) as: 
 

p(tiny) = |t , iny| 
|Ω| 

 
where |tiny| is the number of elements in the set tiny and |Ω| is the number 
of elements in the probability space Ω. Thus, p(Ω) = 1. 
So the probability of the event tiny, p(tiny), is: 
 

P(tiny) =  |t  = 2/4  iny| 
|Ω| 

 
For the general case: 
 

P(event) =  |event             (1.1.b) | 
|Ω| 

 
Each event we consider is a subset of Ω.   
 
The conditional probability of a word w2 assuming that word w1 has occurred 
( p(w1) > 0 ), denoted p(w2|w1), equals 
     

p(w2|w1) = ∩2 1

1

p(w w )
p(w )

          (1.2) 

 
Multiplying through, this becomes 
 

p(w2|w1)p(w1) =             (1.3) ∩2p(w w )1

 
Rearranging (1.2) gives 
 

p(w1|w2) = ∩1 2

2

p(w w )
p(w )

            (1.4) 

 
We can do the conditionalization either way because set intersection is 
symmetric, w2∩w1 = w1∩w2. 
 
Solving (1.4) for p(w2∩w1) = p(w1∩w2) and plugging in to (1.2) gives   
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p(w2|w1) = 2 1 2

1

p(w ) p(w |w ) 
p(w )

            (1.5) 

 
Two words w1, w2 are independent each other if p(w2∩w1) = p(w2)p(w1). 
If p(w1) not equals zero, is equivalent to write that p(w2) = p(w2|w1) because is 
known that w1 does not affect the probability of w2. 
 

1.2.2   Unsmoothed N-grams 
 
Conditional probability and independence can be the basis for computing the 
probability of a string of words. 
A string of words can be represented as w1,w2,…,wn-1,wn or w1n.  
Assuming the occurrence of each word in the corpus as an independent 
occurrence, we can write the probability of a string of words as follows: 
 

p(w1,w2,…,wn-1,wn)   or   p(w1n)            (1.6) 
 

Using the chain rule of probability we represent p(w1n) as: 
 
p(w1n) = p(w1) p(w1|w2) p(w3| w12)… p(wn| w1n-1) 

            = ∏ p(w
=

n

k 1
k| w1k-1)            (1.7)                                    

                
Since there is not any easy way for computing the probability of a word given 
all the previous words, an alternative solution for this task is to find a 
satisfactory approximation. The bigram model proposed for solving this 
difficulty, assumes that the probability of a word depends only on the 
previous word. In other words, p(wn|w1n-1) is approximated by the 
conditional probability of the word that preceded p(wn|wn-1). This 
approximation is referred as a Markov assumption. Markov models are 
probabilistic models, which predict a future event without knowing a lot of 
things about the past. In the case of bigram (first order Markov model) 
models they need to know only the preceding word. 
It is obvious that the trigram (second order Markov model) model looks two 
words into the past. Generalizing bigrams and trigrams, N-grams are resulted 
by which the probability of a word given all the previous words can be 
approximated by the probability given only the previous N words. 
                                       
                                        

p(wn|w1n-1) ≈ p(wn|  )            (1.8) n 1
n N 1w −

− +

 
For a bigram grammar, p(w1n) can be found by substituting (1.8) into (1.7): 
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p(w1n)  ≈ ∏ p(w
=

n

k 1
k|wk-1)            (1.9) 

                                                           
 
 
 
A practical problem: numerical underflow 
 
Since probabilities are less than 1, the product of multiplication of many 
probabilities is too small. To avoid computational problems it is better to take 
the logarithm of each probability.  
In practice many programs for language modeling perform all calculations in 
the log space, like the CMU Statistical Toolkit [16].    
 
There is one more detail to be mentioned. Trying to compute the probability 
of a sentence, i.e. w1 w2 w3 w4 w5, using the bigram model according to (1.9), is 
clear that we have to multiply the bigam probabilities. But there is no past for 
the first word, w1, of the sentence. In order to face this trouble we can adopt a 
special pseudo-word, <s>, meaning “start of sentence”: 
 
P(w1 w2 w3 w4 w5) = P(w1|<s>) P(w2| w1) P(w3| w2) P(w4| w3) P(w5| w4) 
 
In the same case when we use trigram probabilities two pseudo-words, <s1> 
and <s2>, must be used. 
 
Recalling (1.1.b), the way that N-grams can be trained is simply by counting 
and normalizing the event of interest. In other words, we use some training 
corpus, and find the count of a particular N-gram and divide the count by the 
sum of all the N-grams that have the same first word: 
 
  
 

p( | ) = nw  n-1
 n-N+1w

∑
 n-1

n n-N+1
 n-1
 n-N+1w

C(w  w )
C(w  w)

             (1.10) 

 
Since the sum of all bigram counts that have, as first word the word wn-1, is 
equal to the unigram count for the word wn-1, equation (1.10) can be simplified 
as follows: 
 

p( | ) =  nw  n-1
 n-N+1w

 n-1
n n-N+1

 n-1
 n-N+1

C(w  w )
C(w )

            (1.11) 

 
Function C(.), presented in the two last equations, means “take the count of ”. 
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The ratio, that results from equations (1.10) and (1.11), is called relative 
frequency.  
 
The whole picture about N-grams probabilities  
 
Any particular training corpus has limited sentences, so some N-grams are 
possible not to be presented in the corpus. The consequence is that the N-
gram model assigns zero probability to these N-grams. Also, using only 
relative frequencies to estimate N-grams probabilities might produce poor 
estimates when the counts are too small. This major problem raises the need 
to find a way of reevaluating zero probability and low probability N-grams 
and assigning them non-zero values.  
This way is called smoothing. 
 
Dealing with corpora: a sensitive issue 
 
An N-gram model is trained on a corpus in order to produce the N-grams 
probabilities. An important issue is that the training corpus must be carefully 
designed in such way that preserving a representative sample of the task of 
interest. If the training corpus is specific task oriented may not generalize 
properly to new sentences. On the other hand, if the training corpus is too 
general the probabilities may not capture sufficiently the nature of the 
domain. Additionally, if we intend to construct our own training corpus using 
smaller, completed corpora, the resulting corpus needs to be balanced, which 
means to be proportional to some predefined criterion of importance. 
Furthermore suppose we are given a representative and balanced corpus in 
order to train and test a language model. The proper way to treat the given 
data is to divide the data into a training set and a test set. The training set is 
the field where the statistical parameters would be trained and the test set is 
about to be used for computing the probabilities. 
 
1.3   Smoothing 
 
It was mentioned that a problem of underestimating the probability of N-
grams is possible to occur when we use N-gram model, caused to the finite 
nature of the training corpus. Our goal is to assign a non-zero probability to 
zero probability N-grams. 
 

 1.3.1   Add-One Smoothing 
 
This algorithm suggests to take the bigram counts and before normalizing 
them to probabilities, to add one to all the counts. This algorithm is very 
simple and in practice does not perform well. However is an introduction to 
the concept of smoothing that is implemented much better by other 
algorithms.  
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Considering the unsmoothed maximum likelihood estimate of the unigram 
probability: 
 

p(wx) = 
∑

x

i
i

c(w )
c(w )

 

           =
xc(w )

N
 

 
 , where N is the total number of word tokens in the training corpus. 
 
The basic idea of smoothing relies on the c’s adjustment. The adjusted count 
for add-one smoothing is defined by adding one to the count c and then 
multiplying by the factor N/(N+V), which is a normalization factor. Then the 
adjusted count is: 
 

ci* = 
i(c  +1) N 

(N+V)
            (1.12) 

 
, where V is the vocabulary size of the training corpus. 
                                                                   
Equation (1.12) can be turned into probabilities pi* by dividing by the total 
number of word tokens.  
 

pi* =
i(c  +1)  

(N+V)
  

 
Applying this useful baseline to the equation (1.11), the add-one-smoothed 
probability for a bigram is defined as: 
 

p*(wn| w n-1 ) =  
n-1 n

n-1

(c(w  w ) +1)  
(c(w ) + V)

            (1.13) 

 
An alternative view of smoothing: actually a smoothing algorithm discounts 
some non-zero counts. This is a way to find the probability mass, which will 
be assigned to the zero counts. An alternative way to refer to lowered counts 
c* is to define a discount ratio dc: 
 

dc = 
c*
c

            (1.14) 

 
The choice of value “one” which is added to the each count c is arbitrary. This 
affects the probability mass that is moved near the zero value. A solution to 
this problem is the choice of smaller values regarding the situation. 
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Generally add-one smoothing produces poor estimates. It has been showed 
by Gale and Church that variances of the counts produced by this smoothing 
algorithm are worse than those produced by unsmoothed Maximum 
Likelihood Estimation method. 
 

1.3.2   Witten - Bell Discounting 
 
This method of discounting is much better than Add-One smoothing and is 
commonly used in language modeling toolkits such as CMU Statistical 
Toolkit. 
 
 The algorithm is referred as Method C, a method initially introduced by 
Alistair Moffat. Ιn [18], Witten and Bell surveyed and compared several 
approaches to the zero-frequency problem that have been used in text 
compression systems. Witten and Bell described the zero-frequency problem 
in the case of adaptive word coding assuming a coding scheme in which the 
encoder reads the next word of text, searches for it in a list and transmits an 
index extracted from the list in place of the word. If the next word is not 
appeared in the list, a special code, called escape code, must be transmitted 
followed by the unknown word. This new word is added to the encoder and 
decoder’s lists in case it appears again. According to this method each word is 
assigned an associated frequency. The computing of probability of the escape 
character, by estimating the likelihood of a novel word occurring, can solve 
the zero-frequency problem.  
 
Similarly, a novel N-gram could then be assigned the probability of seeing it 
for the first time. The basic idea behind this conception is to “use the count of 
things we have seen once to help estimate the count of things we have never 
seen ” 
       
We can compute the probability of seeing a novel N-gram by counting the 
number of times we saw N-grams for the first time in the training corpus. The 
count of the first-time seen N-grams is simply the number of N-gram types 
we have already seen. 
Hence we can estimate the total probability mass of all the zero N-grams by 
dividing the number of N –gram types we have seen with the sum of number 
of tokens and the number of N –gram types we have seen:   
 

=
∑

0: ii c
 pi*  = 

T
N + T

            (1.15) 

 
, where T is the N-gram types we have already seen and N is the number of 
tokens.                          
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Probability given by (1.15) is the total probability of unseen N-grams. This 
“amount of probability” needs to be divided in order to assign a part of it to 
each zero N-gram. A simple compromise is to divide equally. Letter Z denotes 
the total number of N-grams with count zero. So the equal share of the 
probability mass is:  
 

pi* = 
T

Z(N + T)
            (1.16) 

 
The probability of all the seen N-grams is given by the equation: 
 

pi* = 
ic

N + T
,   if ci>0            (1.17) 

 
Extending the Witten-Bell discounting to bigrams, the type-counts are 
conditioned on some history. The probability of seeing for first time a bigram 
wn-1 wn is equivalent to the probability of seeing a new bigram starting with 
the word wn-1. 
According to the equation (1.15) the probability of a bigram wx wi we have not 
seen is: 
  

=
∑

: ( ) 0ixi c w w
p*( wi|wx) = 

x

x x

T(w )  
N(w ) + T(w )

            (1.18) 

                                                                               
 
,where T(wx) is the number of bigram types on the previous word wx we have 
already seen and N(wx) is the number of bigram tokens on the previous word 
wx.  
 
Distributing the probability mass of the equation (1.18) among all the unseen 
bigrams, we get:                                                                                                
 

p*( wi|wi-1) = 
i-1

i-1 i-1

T(w )    
Z(w  )  ( N + T(w ) )

    if  c(wi-1wi)=0            (1.19) 

 
,where Z(wi-1 ) is the total number of bigrams with wi-1 as the first word, that 
have count zero.  
 
For the non-zero bigrams, we parameterize T on the history: 
 

p*( wi|wx) = 
x i

x x

c(w w )
c(w ) + T(w )

     if  c(wi-1wi)>0            (1.20) 
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1.3.3   Good-Turing Discounting 
 
A slightly more complex algorithm than the Witten-Bell algorithm is the 
Good-Turing discounting. The central idea underlying Good-Turing 
smoothing is the re-estimation of the probabilistic mass, which is assigned to 
N-grams with zero or low counts, by looking at the number of N-grams with 
higher counts. This algorithm is suitable for a corpus with large vocabulary 
that provides large number of observations. 
The first step is to examine Nc, the frequencies of different frequencies (also 
referred as count-counts). In other words, we calculate the number of N-
grams that occur c times. The number of N-grams that occur c times is called 
the frequency of frequency c. 
 
A “non-conditional” discounting 
 
In the previous method we conditioned the smoothed bigram probabilities on 
the previous word. It is also possible to treat the bigrams as a unit by 
discounting, not the conditional probability p(wi|wx), but the joint probability 
p(wxwi). This different kind of discounting is often used for the Good-Turing 
discounting. 
 
Under of this idea to smoothing the joint probability of bigrams, Nc is the 
number of bigrams b of count c.   
A smoothed count c* is give by the following equation: 

 

c* = 
c+1

c

(c+1) N
N

            (1.21) 

 
Applying this equation in the case of bigrams that never occurred we have: 
 

c*0 = 
1

0

(0+1) N
N

 

 

Equation (1.21) highlights the key concept of the Witten-Bell discounting: use 
the count of things we have seen once (N1) to estimate the count of things we 
have never seen. 
 
A reasonable question 
 
One may ask: “Which is the number of unseen bigrams?” 
Since the total number of bigrams is V 2, the number of bigrams we have not 
seen, N0, is V 2 minus all the bigrams we have seen. 
 
It has been proved that the Good-Turing smoothing makes the assumption 
that the distribution of each bigram is binomial. 
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In real applications the discounted estimate c* is not used for all counts c. For 
some threshold k, the correct version of equation (1.21) is: 
 
  

c* = 
c+1 c k+1 1

k+1 1

(c+1) (N  / N ) - ( c(k+1) (N ) / N  ) 
1 - ((k+1) (N ) / N )

            (1.22)  

 
1.4   Backoff 
 
So far the algorithms we have presented have all made use of the frequency of 
an N-gram and have tried to compute the best estimate of its probability. In 
general N-grams that never appeared or appeared only few times, were given 
the same estimate. A reasonable extension of the previous methods 
(smoothing) is to try to build better estimates by looking at the frequency of 
the (N-1)-grams found in the N-gram. 
 
If (N-1)-grams, found in the N-gram, are appeared rarely, then a low estimate 
is given to the N-gram. Otherwise, N-grams with (N-1)-grams of moderate 
frequency are given a higher probability estimate.  This issue grounded in a 
more general discussion deals with combining multiple probability estimates 
making use of different models. That is, if there are no examples of a 
particular trigram, let’s say wn-2wn-1wn, the computation of p(wn|wn-1wn-2) can 
be achieved through the use of the bigram probability p(wn|wn-1). In the same 
manner, if we have no examples of wn-1wn in order to compute p(wn|wn-1), we 
can use the unigram probability p(wn). 
 
In the backoff model, as described above, an N-gram model is built based on a 
(N-1)-gram model. We only look to a lower-order N-gram if we have no 
examples of a higher-order N-gram. 
So the backoff model for the trigram wi-2wi-1wi is: 
 
 
case 1:     c(wi-2wi-1wi) > 0 
 

p (wi|wi-2wi-1) = p (wi|wi-2wi-1) 
 
case 2:     c(wi-2wi-1wi) = 0 and c(wi-1wi) > 0                                    (1.23) 
 

p (wi|wi-2wi-1) = α1 p (wi|wi-1) 
 
case 3:     otherwise 
 

p (wi|wi-2wi-1) = α2 p (wi) 
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The α values are weighting factors, which ensure that the result of the 
equation (1.23) is a true probability. 
 
For the general case the form of backoff is: 
  
^
p ( ) =  (   nw | 1

1+
-
-

n
Nnw

~
p nw | 1

1+
-
-

n
Nnw )

                                + θ(p( )).α  ( )          (1.24)                 nw | 1
1+

-
-

n
Nnw

^
p nw | 1-

2+-
n

Nnw
 
The θ notation indicates a binary function that selects a lower-order model 
only if the higher-order model produces a zero probability. 
 

If x = 0 then θ(x) = 1, else θ(x) = 0            (1.25) 
 
Each p(.) is a Maximum Likelihood Estimation. 
 
1.5   A clever combination: Backoff and Discounting 
 
Previously, we have used discounting methods to find how much probability 
mass to assign to unseen events, assuming that they were equally probable. 
Combining discounting with backoff we can distribute this probability more 
cleverly. It is important to understand the role of α values in equation (1.24). 
The α values are weighting factors, which ensure that the result of the 
equation (1.24) is a true probability. 
 
Consider the following example, which shows how backoff can lead to 
probability greater than 1:  
Using relative frequencies, ∑ p(w

ji,
n|wiwj) = 1, which means that the 

probability of a word wn over all N-gram contexts equals to 1. If we use 
backoff in this case, adopting a lower order model, the probability of wn will 
be greater than 1. So, discounting must be applied to backoff model. 
 
Thus, the correct form of equation (1.24) is: 
 
^
p ( ) =  (   nw | 1

1+
-
-

n
Nnw

~
p nw | 1

1+
-
-

n
Nnw )

                                + θ(p( )).α(  ( )          (1.26)     nw | 1
1+

-
-

n
Nnw 1

1+
-
-

n
Nnw )

^
p nw | 1-

2+-
n

Nnw
 
~
p  (.) stands for the discounted MLE probabilities: 
 

~
p  (  = nw | 1

1+
-
-

n
Nnw ) − +

− +

n
n N 1

n N 1
1

c*(w  )
c(w  )

            (1.27) 

 

 26 



Function α represents the amount of probability mass, which must be 
distributed from an N-gram to an (N-1)-gram: 
 

α( = nw | 1
1+

-
-

n
Nnw )

−
− +

−
− +

∑

∑

~
n 1

n n N 1
β

~
n 1

n n N 2
β

1-  p(w |w )
 

1-  p(w |w )
            (1.28) 

 
, where β denotes wn : c(  > 0. 1

1+
-
-

n
Nnw )

 
For example, a trigram form of the backoff model is: 
 
case 1:     c(wi-2wi-1wi) > 0 
 

^
p  (wi|wi-2 wi-1) =  (w

~
p i|wi-2 wi-1) 

 
case 2:     c(wi-2wi-1wi) = 0 and c(wi-1wi) > 0                                    (1.29) 
 

^
p  (wi|wi-2 wi-1) = α( )  (w1n

2nw -
-

~
p i|wi-1) 

case 3:     otherwise 
 

^
p  (wi|wi-2 wi-1) = α(wn-1) 

~
p  (wi) 

 
A last comment 
 
Probability estimates can change suddenly in adding more data when the 
backoff algorithm selects a different order of N-gram model on which to base 
the estimate, but in general backoff works well in practice. 
 
1.6 Summary 
 
In this chapter we introduced some basic material on probability and 
statistics. Also we explained the term “corpus”, the notion of “lexical unit” 
and the reason for which probability theory pays a central role in corpora 
processing. Next we saw the use of N-grams in natural language modeling. 
Through the study of smoothing we learned how to assign a non-zero 
probability to zero probability N-grams. The backoff model it was a case 
where an N-gram model was built based on (N-1)-gram model, when there 
were no examples of a particular N-gram. Lastly, the combination of 
smoothing and backoff showed how to distribute cleverly the probability 
mass to unseen events. Generally this chapter is very important for the 
understanding of the next chapters where some concepts from the 
information theory are presented. Moreover, the used CMU toolkit put into 
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practice many issues that were referred in chapter 1, such as the Witten-Bell 
discounting.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                            

 28 



2 Elements of information theory 
 
 
In the previous chapter we saw that it is possible to use several N-grams in 
order to build a language model. Each N-gram embodies a particular amount 
of information, which can be used for several tasks. The concept of 
information is invaluable for natural language processing since is the 
fundamental element for the evaluation of language model. Also it can 
discover important properties of a given text that can lead us to useful 
observations. Recall from chapter 1 that in some cases we need to find these 
co-occurring lexical units that behave as a single unit and treat them in the 
next procedures as a single unit. This can be achieved by studying the relation 
between the co-occurring words from the information view of point. 
 
2.1   Entropy   
 
Natural language is a kind of information source. A script of natural language 
can be viewed as a stochastic process, which consists of a sequence of words. 
The distribution of the next word is highly dependent o the previous words. 
There is a great deal of variability and uncertainty in natural language. 
Entropy is a measure of information. Alternatively entropy is can be 
considered as a measure of “uncertainty” of a random variable [17]. 
 
For example, suppose that we have a set of possible events in a given text that 
is the set of the occurrences of some words. Their probabilities of occurrence 
are: p1,p2,…,pn. Concerning which event will occur, entropy H(p1,p2,…,pn), is 
the measure of how much “choice” is involved in the selection of the event. 
This measure it is reasonable to have the following properties: 
 
1. H is continuous in the pi. 
 
2. If all the probabilities of occurrence are equal, pi = 1/n, then H is a 

monotonic increasing function of n. If there are more possible events with 
equal pi, there is more “choice” or “uncertainty”. 

 
 
3. If a choice is divided into choices, the original H is the weighted sum of 

the individual values of H. This property is illustrated in the following 
figure: 
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Figure 2.1: Breaking down a choice into two choices 
 
In this case H(1/2,1/3,1/6) = H(1/2, 1/2) + 1/2H(2/3,1/3) 

 
 
 

The form of H, which satisfies these three properties, is: 
 

H = - k p∑ i log pi            (2.1) 
 
, where k is a positive constant. 
 
The entropy in the case of two possible events with probabilities p1 and q1=1-
p1 is: 
 

H = -(p1 log p1 + q1 log q1) 
 

 
  

Figure 2.2: Entropy in the case of two possible events 
 
Since in our work we manipulate lexical units, we establish a discrete random 
variable W that ranges over the set of words, which is the vocabulary V, and 
that has a probability function p(w). 
 
The entropy H(W) of a discrete variable W is defined as:   
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H(W) = -  p(w)∑

∈Vw
 log p(w)           (2.2) 

 
It is easily understood that p(w) is the probability of occurrence of lexical unit 
w in the corpus, calculated by the methods presented in the previous chapter. 
So the entropy of the lexical unit is: 
 

H(w) = - p(w) log p(w)  
 

If the log is to the base 2 and the resulting units are called binary digits, as 
suggested by J.W. Tukey. If the base 10 is used, the resulting units are 
expressed in decimal digits. Making a simple calculation we find that a 
decimal digit is about 3.3 bits: 
 

log2 x = log10 x / log10 2 
    = 3.32 log10 x 

 
Generally if the base of the logarithm is α, the entropy is denoted as Hα(X). 
 
Entropy has a number of interesting properties: 
 
1. H >= 0.  
Entropy is zero if and only if all pi are equal, except one having the value 
unity. In such case the uncertainty is vanished.  
2. H is a maximum when all pi are equal. For n possible events, Hmax = log n. 
This situation is the most uncertain.  
 
3. Joint Entropy: extending the definition of entropy to a pair of lexical units, 
w1, w2, the joint entropy H(w1, w2) is:  
  

H(w1, w2) = - p(w1,w2) log p(w1,w2)            (2.3) 
 
, where p(w1,w2) is the joint probability of w1 and w2. 

It is easily proved that 
 

H(w1, w2) <= H(w1) + H(w2)            (2.4) 
 
The uncertainty of a joint event is less than or equal to the sum of the 
individual uncertainties. The equality holds only if the two lexical units are 
independent (p(w1,w2) = p(w1) p(w2) ). 
 
4. If p(w1) < p(w2) and decrease p(w2), increasing p(w1) an equal amount so that 
p(w1) and p(w2) are more nearly equal, then H increases. 
 
5. Conditional Entropy: the conditional entropy H(w2|w1) is defined as:  
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H(w2|w1) = - p(w1,w2) log p(w2|w1)            (2.5) 

 
The conditional entropy measures how uncertain we are of the possible 
occurrence of lexical unit w2 when we know w1. 
 
6. Combining equations (2.3) and (2.5) we have: 
  

H(w1) + H(w2)  ≥ H(w1, w2) =  H(w1) + H(w2|w1)            (2.6) 
 

Thus 
 

H(w2) ≥ H(w2|w1) 
 

The knowledge of w1 never increases the uncertainty of w2.  
 
A variant of entropy: Perplexity 
 
Perplexity is a metric for the evaluation of a language model. If a language 
model is trained on a training set, perplexity measures how well the model 
matches the test set. Perplexity is defined as: 
 

PP = 2H            (2.7) 
 
with H being the entropy a sequence of words. We focus to a sequence of 
words, and not to a single variable, because is more reasonable to consider the 
natural language to be composed of sequences of words. 
For a sequence of words W = { w0,w1,w2,…,wn } we can have a variable, which 
ranges over these words. The entropy of this variable is computed as: 
 

H(w0,w1,w2,…,wn) = - p(W∑ 1n) log p(W1n)            (2.8) 
                                                         W1n Є V 
 
Also, the entropy rate is defined as the entropy of this sequence divided by 
the number of words. 
 
Perplexity can be viewed as the weighted average number of choices a 
random variable has to make. In other words, with respect to Figure 2, 
perplexity is the probabilistic approximation of the average branching factor.  
Generally, the perplexity is an indicator of the task difficulty and the 
linguistic constraint implied by a model trained on a specific text domain.  
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2.2   Mutual Information 
 
Recall the information that conditional entropy provides: the amount of 
uncertainty (or certainty) about the possible occurrence of an event, if we are 
given the previous event. In our work the event is thought as the occurrence 
of a lexical unit.  
 
Consider the following familiar event: 
Imagine a reader who reads in the newspaper an article about the 
international computer market and he meets the word “Hewlet”. 
Automatically he expects “Packard” to be the following word.  
The reader's expectation seems to be completely reasonable, since the “Hewlet 
Packard” company has a distinguished position in the computer market. So, it 
is not likely the word “Hewlet”, to be followed by other word rather than 
word “Packard”, in a computer related article. If we want to use more formal 
expression, we can say that the conditional entropy of this pair results to a 
very low uncertainty. 
 
This word association is a linguistic phenomenon, which can be discovered by 
statistical processing. For this processing an association metric is needed.  
 
If two lexical units (words), w1 and w2, have probabilities p(w1) and p(w2), then 
their mutual information, ,MI(w1, w2), is defined to be: 
 

  

MI.(w1,w2) = log p(w1, w2) 
p(w1) p(w2)

             (2.9) 

 
 
Since words w1 and w2 are individual elements, the calculated association 
between them is referred as point-wise mutual information. 
   
In practice point-wise mutual information compares the joint probability of w1 
and w2 (the probability of seeing w1 and w2 together) with the probabilities of 
observing w1 and w2 independently. If w1 and w2 are strongly associated, then 
the joint probability p(w1, w2) will be much greater than p(w1)p(w2), and MI(w1, 
w2) > 0. If there is no interesting dependence between w1 and w2, then p(w1, w2) 
≈ p(w1)p(w2) and consequently MI(w1, w2) ≈ 0. Lastly, if there is no relationship 
between w1 and w2, then p(w1,w2) will be much less than p(w1)p(w2), and MI(w1, 
w2) < 0.  
 
Average point-wise mutual information  
 
Point-wise mutual information is sensitive to marginal probabilities p(w1) and 
p(w2). It tends to give higher results as p(w1) and p(w2) decrease, 
independently of the distribution of their co-occurrence. To avoid this 

 33 



“sensitivity” a weighted measure of mutual information can be used, which is 
called average point-wise mutual information: 
 

MIav.(w1,w2) = p(w1, w2) log p(w1, w2) 
p(w1) p(w2)

            (2.10) 

 
2.3   Relation between entropy and mutual information 
          
The mutual information (or average point-wise mutual information) is the 
reduction in the uncertainty of one random variable due to the knowledge of 
the other. Obviously, mutual information is closely related with the concept 
of entropy. 
 
Consider two random variables X and Y ranging over V, with a joint 
probability mass function p(x,y) and marginal mass functions p(x) and p(y). 
We can rewrite the definition of mutual information as: 
 

MI(X,Y) = p(x,y) log∑
∈Vyx, )y(p)x(p

)y,x(p
   

               = p(x,y) log∑
∈Vyx, )x(p

)y|x(p
 

               =  - p(x,y) log(x)   + p(x,y) log(x|y)     ∑
∈Vyx,

∑
∈Vyx,

               =  - p(x,y) log(x)   - (- p(x,y) log(x|y)) ∑
∈Vyx,

∑
∈Vyx,

               = H(X) –H(X|Y) 
 
 
 
 
 
                                                      H(X,Y)                                                     
                             H(X|Y) 
                                     
 
 
 
 
 
                 H(X)                          MI(X,Y)                                  H(Y)         
 
                                                                           H(Y|X)  

  

 
Figure 2.3:   Relationship between entropy and mutual information 
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Therefore the mutual information MI(X,Y) is the reduction in the uncertainty 
of X due to the knowledge of Y. By symmetry, it also follows that:  
 

MI(X,Y) = H(Y) – H(Y|X) 
 
Since H(X,Y) = H(X) + H(Y|X), we have : 
 

MI(X,Y) = H(X) – H(Y) – H(X,Y) 
 
Finally, we can write: 
 

MI(X,X) = H(X) – H(X|X) = H(X) 
 

The mutual information of a random variable with itself is the entropy of the 
random variable. This is the reason that entropy sometimes is called “self-
information”.  
 
All these results are expressed in figure 2.3. 
 
 
2.4   Summary 
 
In this chapter we viewed the natural language as a kind of information 
source.  We considered the written natural language as a stochastic process 
that consists of a sequence of words. This consideration embodies variability 
and uncertainty. Next, we introduced the fundamental concept of entropy as 
a measure of information or as a measure of “uncertainty “. The entropy has a 
number of interesting properties. Through the study of these properties we 
defined the joint entropy and the conditional entropy, which can be applied to 
corpus processing providing valuable information about consecutive lexical 
units. Finally, we saw the concept of mutual information as a measure of 
word association. In corpus processing, mutual information can be a tool for 
identifying the words that tend to occur, almost, together. Mutual information 
has a central role to the implementation of our system, since is used by the 
component of lexical phraser in order to generate chunks, as we will see in 
chapter 4. 
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3 Contextual word similarity   
 
 
The concept of word similarity was traditionally captured within thesauri. A 
thesaurus is a lexicographic resource that specifies semantic relationships 
between words, listing for each word related words such as synonyms, 
hyponyms and hypernyms. Thesauri have been used to assist writers in 
selecting appropriate words and terms and in enriching the vocabulary of a 
text. To this end, modern word processors provide a thesaurus as a built in 
tool. 
The area of information retrieval has provided a new application for word 
similarity in the framework of query expansion. Good free-text retrieval 
queries are difficult to formulate since the same concept may be denoted in 
the text by different words and terms. Query expansion is a technique in 
which a query is expanded with terms that are related to the original terms 
that were given by the user, in order to improve the quality of the query. 
Various query expansion methods have been implemented, both by 
researchers and in commercial systems that rely on manually crafted thesauri 
or on statistical measures for word similarity. 
Word similarity may also be useful for disambiguation and language 
modeling in the area of NLP and speech processing. Many disambiguation 
methods and language models rely on word co-occurrence statistics that are 
used to estimate the likelihood of alternative interpretations of a natural 
language utterance (in speech or text). Due to data sparseness, though, the 
likelihood of many word co-occurrences cannot be estimated reliably from a 
corpus, in which case statistics about similar words may be helpful. 
Consider for example the following utterances, which may be confused by a 
speech recognizer.  
 
      a. The bear ran away. 
      b. The pear ran away. 
 
A typical language model may prefer the first utterance if the word co-
occurrence bear ran was encountered in a training corpus while the 
alternative co-occurrence pear ran was not. However, due to data sparseness 
it is quite likely that neither of the two alternative interpretations was 
encountered in the training corpus. In such cases information about word 
similarity may be helpful. Knowing that bear is similar to other animals may 
help us collect statistics to support the hypothesis that animal names can 
precede the verb ran. On the other hand, the names of other fruits, which are 
known to be similar to the word pear, are not likely to precede this verb in 
any training corpus. This type of reasoning was attempted in various 
disambiguation methods, where the source of word similarity was either 
statistical or a manually crafted thesaurus. 

 36 



It should be noted that while all the applications mentioned above are based 
on some notion of “word similarity” the appropriate type of similarity 
relationship might vary. A thesaurus intended for writing assistance should 
identify words that resemble each other in their meaning, like aircraft and 
airplane, which may be substituted for each other. For query expansion, on 
the other hand, it is also useful to identify contextually related words, like 
aircraft and airline, which may both, appear in relevant target documents. 
Finally, co-occurrence-based disambiguation methods would benefit from 
identifying words that have similar co-occurrence patterns. These might be 
words that resemble each other in their meaning, but may also have opposite 
meanings, like increase and decrease [24]. 
 
In this chapter, we consider theoretical and computational properties of 
several functions measuring the similarity between distributions. We refer to 
these functions as distance functions and, in one case, as similarity functions.  
 
Definition of “distance function” 
 
A metric space is a set X together with a function d (called a “metric” or 
“distance function”) which assigns a real number d(x,y) to every pair x,y ∈ X 
satisfying the properties: 
 

1. d(x,y) ≥ 0 and d(x,y) = 0  x=y, 
2. d(x,y)= d(y,x), 
3. d(x,y)+ d(y,x) ≥ d(x,z) 
 

The last property is called the “triangle inequality” because it says that the 
sum of two sides of a triangle is at least as big as the third side. 
 
 3.1   Kullback-Leibler (KL) distance 
 
We define the function D(q||r) as 
 

D(q||r) = q(y)log
∈Υ
∑
y r(y)

q(y)
            (3.1)                                                                

 
Function (3.1) goes by many names in the literature, including information 
gain, relative entropy, cross entropy, and Kullback Leibler distance. Kullback 
himself refers to the function as information for discrimination, reserving the 
term “divergence" for the symmetric function (D(q||r) + D(r||q) . We will 
use the name “Kullback-Leibler (KL) distance” throughout this thesis. The KL 
distance is a standard information-theoretic measure of the dissimilarity 
between two probability mass functions. It is not a metric in the technical 
sense, for it is not symmetric (D(q||r) ≠ D(r|| q)) and does not obey the 
triangle inequality  
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Since the KL distnace is 0 when the two distributions are exactly the same and 
greater than 0 otherwise, it is a measure of dissimilarity. This yields an 
intuitive explanation of why we should not expect the KL divergence to obey 
the triangle inequality: dissimilarity is not transitive.  
 
What motivates the use of the KL divergence, if it is not a true distance 
metric? 
  
Let Y be a random variable taking values in Y. Suppose we are considering 
exactly two hypotheses about Y: Y is distributed according to q(Hq), and Y is 
distributed according to r(Hr). Based on Bayes’ rule, the posterior probabilities 
of the two hypotheses are written as: 
 

p(Hq|y) = 
)y(r)H(p)y(q)H(p

)y(q)H(p
rq

q

+
 

 
and 

 

p(Hr|y) = 
)y(r)H(p)y(q)H(p

)y(r)H(p
rq

r

+
 

 
 
Taking logs of both equations and subtracting: 
 

log
)y(r
)y(q

 = log
)H(p
)H(p

y|r

y|q
 - log

)H(p
)H(p

r

q
 

 

We can therefore consider log
)y(r
)y(q

 to be the information y supplies for 

choosing Hq and Hq. D(q||r) is then the average information for choosing Hq 
over Hq. So, the KL distance measures the dissimilarity between two 
distributions, since the greater their divergence is, the easier it is, on average, 
to distinguish between them.  
 
Using a bigram language model, the KL distance between two words (lexical 
units), w1 and w2, is measured as the distance between the two conditional 
distributions p(v|w1) and p(v|w2) over the vocabulary V (v ∈ V): 
 

D(w1,w2) ≡ D(p1||p2)            (3.2) 
 
,where p1 ≡ p(v| w1) and p2 ≡ p(v| w2). 
 
Combining equations (x.1) and (x.2) we can write: 
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D(w1,w2) = p(v|w
∈
∑
v V

1) log
)w|v(p
)w|v(p

2

1

            (3.3) 

 
D(w1,w2) defined only if p(v| w2) is greater than 0 whenever p(v|w1) is. This 
condition does not hold in general when using the Maximum Likelihood 
Estimator (MLE), where the estimate for p(v| w2) is 0 when freq(v| w2)=0. This 
forces using a smoothed estimator which assigns non-zero probabilities for all 
p(v| w2) even when freq(v| w2)=0. However, having zero association values 
gives a computational advantage, which cannot be exploited when using the 
KL distance as a similarity measure. Moreover, the need to use a smoothing 
method both complicates the implementation of the word similarity method 
and may introduce an unnecessary level of noise into the data. The 
Information-Radius distance remedies this problem.    
  
In order to calculate the similarity between two lexical units according to their 
lexical environment, we have to take into account left and right contexts. Let’s 
consider a word w with its neighbors in a word sequence 
 

. . .    v1,L   w   v1,R   . . . 
 

with v1,L representing the word in the left context and v1,R representing the 
word in the right context. Two probability distributions are calculated, p(v1,L| 
w) and p(v1,R| w), for the left and right contexts respectively. The right-context 
bigrams are calculated using the usual word order, and the left-context 
bigrams are calculated with a reversed-order training corpus.  
 
In order to estimate the similarity of two words, w1 and w2, we need the sum 
of the symmetric left and right context-depended distances [5]. So, the total 
distance between the probability distributions for w1 and w2 is : 
 

DLR(w1,w2) = D12L + D21L  + D12R + D21R            (3.4) 
 

According to equation (3.3) : 
 

D12L = p
∈

∑
v1,L V

1L(v1,L|w1) log
L

1 1,L 1
L

2 1,L 2

p (v |w )
p (v |w )

            (3.5.a)    

D21L = p
∈

∑
v1,L V

2L(v1,L|w2) log
L

2 1,L 2
L

1 1,L 1

p (v |w )
p (v |w )

            (3.5.b) 

D12R = p
∈

∑
v1,R V

1R(v1,R|w1) log
R

1 1,R 1
R

2 1,R 2

p (v |w )
p (v |w )

            (3.5.c) 

D21R = p
∈

∑
v1,R V

2R(v1,R|w2) log
R

2 1,R 2
R

1 1,R 1

p (v |w )
p (v |w )

            (3.5.d) 
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The Kullback-Leibler distance is unbounded since it includes ratios whose 
denominators may approach zero. This has the consequence that a few terms 
can dominate the calculation of the KL distance. This is an important issue the 
case of language modeling for new domains for which here are limited 
training data and the statistics can be rather poor, with only one or two 
observations for some extant N-grams.  This raises the need to use other 
bounded metrics, which are described next. 
 
3.2   Information-Radius (Shannon-Jensen) distance 
 
The Information-Radius (IR) distance is similar to the KL distance but is 
bounded because the denominator for the logarithmic ratio is the average of 
the two probabilities being considered, and is defined as:   
 

IR(q||r) = q(y)log∑
Υ∈y r(y))(q(y)½

q(y)
+

             (3.6)  

 
By definition ½(q(y)+r(y)) is greater than 0. Therefore IR distance, unlike KL 
distance, does not impose any constraints on the input data. Estimates that 
approach zero can be used directly [5]. It can be shown that IR(q||r) ranges 
between 0 and log2. 
 
Calculating the similarity of two words, w1 and w2, taking into account the 
symmetric left and right context-depended distances, we write: 
 

IRLR(w1,w2) = IR12L + IR21L  + IR12R + IR21R            (3.7) 
 
As in previous metric, we define the four terms as follows: 
 

IR12L = p
∈

∑
v1,L V

1L(v1,L|w1) log
L

1 1,L 1
L L

1 1,L 1 2 1,L 2

p (v |w )
½(p (v |w )+p (v |w ))

     (3.8.a)    

IR21L = p
∈

∑
v1,L V

2L(v1,L|w2) log
L

2 1,L 2
L L

2 1,L 2 1 1,L 1

p (v |w )
½( p (v |w )+p (v |w ))

    (3.8.b) 

IR12R = p
∈

∑
v1,R V

1R(v1,R|w1) log
R

1 1,R 1
R R

1 1,R 1 2 1,R 2

p (v |w )
½ (p (v |w )+p (v |w ))

  (3.8.c) 

IR21R = p
∈

∑
v1,R V

2R(v1,R|w2) log
R

2 1,R 2
R R

2 1,R 2 1 1,R 1

p (v |w )
½ (p (v |w )+p (v |w ))

 (3.8.d) 
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3.3   Manhattan-norm (L1) distance  
 
If we think of probability mass functions as vectors, so that distribution p is 
associated with the vector (p(y1), p(y2),….., p(yN)) in < RN, then we can measure 
the distance between distributions. This metric can be viewed as a geometric 
distance and also, is a true metric metrics, as the name “norm” suggests. 
 
The Manhattan distance is defined as: 
 

MN(q,r) =  |q(y) – r(y)|            (3.9)  ∑
Υ∈y

 
The Manhattan-norm distance is the absolute value of the difference between 
two distributions and is closely related with the Euclidean distance, as is 
shown schematically by the following figure:  
                                           

 
Figure 3.1: Manhattan-norm and Euclidean distance. 

 
 
Clearly, MN(q,r) = 0 if and only if q(y) = r(y) for all y. Moreover, it has shown 
that MN(q,r) has an upper bound of two. Interestingly, MN(q,r) bears the 
following relation, to D(q||r): 
 

MN(q,r) = ( D(q||r). 2 ln b )½ 
 

,where b is the base of the logarithm used in the distance D(.). Consequently, 
convergence in KL distance implies convergence in the Manhattan-norm 
distance. 
 
The similarity of two words, w1 and w2, is calculated as the sum of the 
symmetric left and right context-depended distances: 
 

MNLR(w1,w2) = MN(12)L + MN(12)R            (3.10) 
 

The Manhattan-norm distance is symmetric since MN12 ≡ MN21 [5]. The two 
terms of the equation (3.10) are defined as: 
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MN(12)L = | p

∈

∑
v1,L V

1L(v1,L|w1) - p2L(v1,L|w2)|            (3.11.a)             

MN(12)R = | p
∈

∑
v1,R V

1R(v1,R|w1) - p2R(v1,R|w2)|            (3.11.b)  

 
3.4   Vector Product similarity (cosine measure) 
 
This geometric metric is a similarity measure, rather than a difference 
measure. It is related to the angle between two vectors; the “closer” two 
vectors are, the smaller the angle between them.  
 

VP(q,r) = ∈

∈ ∈

∑

∑ ∑
v V

2 2

v V v V

q(y)r(y)

q(y) r(y)  
             (3.12) 

 

 
 

Figure 3.2: Angle between vectors. In our work each vector is a sequence of 
bigram probabilities. 

 
 
Notice that the cosine measure is an inverse distance function, in that it 
achieves an upper bound of 1 when q(y) = r(y) for all y, and is zero when the 
supports of q and r are disjoint. For all the other distances described above, it 
is just the opposite: they are zero if and only if q(y) = r(y) for all y, and are 
greater than zero otherwise. 
 
As before, the similarity between w1 and w2 is calculated as the sum of the 
symmetric left and right context-depended distances: 
 

VPLR(w1 ,w2) = VP12L + VP12R            (3.13) 
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The Vector Product similarity is symmetric, as Manhattan distance, since VP12 

≡ VP21 [5]. The two terms of the equation (3.13) are defined in the following 
equations (3.14.a and 3.14.b): 
 

VP12L = ∈

∈ ∈

∑

∑ ∑

L L
1 1,L 1 2 1,L 2

v1,L V
L 2 L

1 1,L 1 2 1,L 2
v v1,L V 1,L V

p (v |w ) p (v |w )

2p (v |w ) p (v |w )
 

 

VP12R= ∈

∈ ∈

∑

∑ ∑

R R
1 1,R 1 2 1,R 2

v1,R V
R 2 R

1 1,R 1 2 1,R 2
v v1,R V 1,R V

p (v |w )p (v |w )

2p (v |w ) p (v |w )
 

 
 

In the following table we summarize some properties of the described metrics 
for comparative purposes:  

 

Measure Bounded Range of 
values 

Measure of 
similarity/dissimilarity 

Symmetric 

KL No 0. . .∞ Dissimilarity No 
IR Yes 0. . .4log2 Dissimilarity No 

MN Yes 0. . .4 Dissimilarity Yes 
VP Yes 0. . .2 Similarity Yes 

 
Table 3.1: Four metrics for context supported word similarity. 

 
 

3.5   Our approach 
 
The main purpose of our work is, firstly, to use these metrics in order to infer 
from a given text the similarity between two lexical units and using an 
iterative procedure, to cluster similar units that are able to form a semantic 
class [5]. Our approach examines the lexical environment in which the lexical 
units appear, using statistics provided by a trained language model. The 
detailed procedure is described in the next chapter. 
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3.6   An extension of similarity measures: document–oriented                          
approach 
 

Search engines, such as Google, allow the users to search based on keyword 
or other criteria. However, sometimes one may have a document that is 
exactly what is needed, but additional sources are needed. It would very 
convenient to find additional similar websites without having to determine 
the keywords and searching on a search engine. Document matching could 
also be used by doctors to find other diseases with similar symptoms or by 
biologists to match different types of bacteria. 
 
As is standard in Information Retrieval, each document is represented by a 
vector, which specifies how many times each word occurs in the document 
(the word frequencies). These counts are weighted to reflect the importance of 
each word. The weighting is the inverse of the log of the number of 
documents each word occurs in (the inverse document frequency). This vector 
of weighted counts is called a "bag of words" representation. Words from a 
specific list of "stop words" are not included in the representation. Also, 
words, which occur in few documents, are removed from the document 
representation, because they are too infrequent. 
 
A popular measure of similarity for text clustering is the cosine of the angle 
between two vectors (Vector Product distance). An important property is that 
the cosine measure does not depend on the length. This allows documents 
with the same composition, but different totals to be treated identically which 
makes this the most popular measure for text documents.     
 
3.7 Inducing semantic classes: the need for an automatic 
approach  
 
Manual methods for word grouping suffer from disadvantages when 
compared with the automatic corpus-based approach: 
 
1. All entries of a semantic group must be encoded by hand, which requires 
manual effort. 
 
2. Changes to lexical entries may necessitate the careful examination and 
potential revision of other related entries in order to maintain the 
consistency of the whole list of semantic groups.  
 
3. Most dictionaries emphasize the syntactic features of 
words, such as part of speech, number, and form of complement. Even when 
dictionary designers try to focus on the semantic component of lexical knowl-
edge, the results have not yet been fully satisfactory. 
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 4. The lexical information is not specific to any domain. Rather, the entries 
attempt to capture what applies to the language at large, or represent special-
ized senses in a disjunctive manner. Note that semantic lexical knowledge is 
most sensitive to domain changes. Unlike syntactic constraints, semantic fea-
tures tend to change as the word is used in a different way in different 
domains. This inherent property of natural language was mentioned in the 
introduction of this work, indicating the trend of human to adjust the use of 
language according to a “least effort model”, in order to communicate more 
easily, especially in spoken natural language. 
 
5. Time-varying information, that is, the currency of words, compounds, and 
collocations, is not adjusted automatically. 
 
6. The validity of any particular entry depends on the assumptions made by 
the particular lexicographers who compiled that entry. In contrast, an 
automatic system can be more thorough and impartial, since it bases its 
decisions on actual examples drawn from the corpus. 
 
An automatic corpus-based system for lexical knowledge extraction offsets 
these disadvantages of static human-constructed knowledge bases by 
automatically adapting to the domain “sublanguage”. Its disadvantage is 
that while it offers potentially higher recall, it is generally less precise than 
knowledge bases carefully constructed by human lexicographers. This 
disadvantage can be alleviated if human experts in a post-editing phase 
modify the output of the automatic system [3].  
 
3.8   Summary  
 
The main subject of this chapter is the contextual word similarity. In other 
words we tried to find how the similarity between words that occur in a 
corpus could be measured, according to their lexical environment (the lexical 
context of the corpus).  During our study we decided to take into account the 
left and the right contexts. The left context can be taken by reversing the 
corpus. Next, we studied four different metrics for the computation of the 
similarity between words: Kullback-Leibler distance, Information-Radius 
distance, Manhattan-norm distance and Vector Product similarity. The first 
three metrics are measures of dissimilarity, while the last metric is a measure 
of similarity. The study of these metrics was based in bigram language model. 
These metrics will be used by the component of semantic generalizer during 
an iterative procedure, in order to induce groups of words that occur in the 
same lexical environment, as we will see in the next chapter. Such groups can 
form semantic classes since conceptually similar words tend to occur in the 
same lexical environment. Finally, we saw the advantages of an automatic 
procedure of inducing semantic classes. 
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4 Experimental procedure 
 
 
In this chapter we describe the several steps for the automatic induction of 
semantic classes. Our work was strongly based in the procedure that is 
proposed in [5]. The whole implementation was done, mainly, in Perl. The 
clustering algorithm presented in 4.4.2 was implemented in Python. The 
required N-gram statistics were calculated by the CMU toolkit [16]. A brief 
description of the CMU toolkit, as well as some comments about Perl, can be 
found in the Appendix.  
 
4.1   Calculating the required statistics 
 
The first step in designing an understanding module, contained in a dialogue 
agent, is to obtain a corpus of transcribed utterances. We have worked on a 
single domain, ATIS, which is an air reservation system. The used 
unannotated corpus is composed of transcribed human requests (utterances) 
taken from a human-machine spoken dialogue interaction over the telephone 
network. 
 
The used ATIS corpus is a small homogeneous corpus. The term 
“homogeneous” means that in the transcribed requests there is no 
expressional complexity and the used vocabulary is limited to the purpose of 
the provided service. In contrast, the Wall Street Journal (WSJ) is a collection 
of financial news articles, consisting of very long sentences written by 
professional editors on various topics. 
 
The training sentences are the source of knowledge, which is used to train the 
statistical parameters of the language model. We used the 1996 version of the 
CMU toolkit to calculate the N-gram statistics. We decided to use this toolkit 
for many reasons. Firstly, the desired statistics are calculated in a minimal 
processing time, since in CMU’s 1996 version, code’s optimization techniques 
have been implemented. Secondly, the toolkit provides a lot of options in 
several parameters presented in Appendix. Moreover, by keeping the CMU 
toolkit as a reference toolkit, pieces of code that were written for other 
applications, also based on CMU, can be reused in slightly different future 
projects. 
 
The statistics calculated by the CMU toolkit are used by the following system. 
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4.2   Short description of the system 
 
The proposed procedure for automatically inducing semantic classes works 
iteratively.  Iterating continues until a reasonable number of classes is 
reached. 
 
The system consists of three main components:  
 

(a) a lexical phraser 
(b) a semantic generalizer  
(c) a corpus parser 
 

Each component directs its output to the input of the component, which 
follows, as shown schematically in Figure 4.1. 
 
 
 
 

Lexical 
Phraser 

 
 

 
 

Semantic  
Generalizer 

 
 

 
 

Corpus 
Parser 

 
 
 
 

Figure 4.1: Iterative procedure for the auto-induction of semantic classes. 
 
Firstly, the lexical phraser groups words in single lexical units. Next, the 
semantic generalizer generates rules that map words (and concepts) to 
concepts corresponding to semantic classes. In the final step, a corpus parser 
reparses the corpus, using the rules that were generated by the semantic 
generalizer. Then, the described procedure is repeated. 
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4.3   Lexical Phraser 
 
The actual output of lexical phraser is a list of the most commonly co-
occurring lexical units. The lexical phraser search over all consecutive words 
and groups them into phrases, using an association measure.  The mission of 
this component is to find the lexical entities that co-occur often. In other 
words, it has to identify the associated individual lexical units within the 
lexical environment that can behave as an individual unit. For example, in the 
travel domain words such as “KANSAS” and “CITY” co-occur often. It is 
obvious that they are associated through a close lexical relation and they are 
able to behave as an individual unit in the lexical environment. Thus, it is 
critical to treat these words as a single one. Working with machine-readable 
texts, this can be done by eliminating the white space between them, or by 
substituting it with a predefined special symbol. (This idea can be applied in 
the cases where the white space is used in order to separate words within 
sentences). So, frequently co-occurring lexical units are chunked into a single 
phrase (chunk) as follows: 
 
KANSAS CITY => KANSASCITY 
or 
KANSAS CITY => KANSAS_CITY 
or 
KANSAS CITY => KANSAS<>CITY 
 
The used special symbol indicating the chunking action does not play any 
particular role, but obviously, in the above example, the last two 
transformations are more comprehensive than the first one.  In our work we 
used the symbol “<>” to indicate the grouping of two lexical units into a 
single one. Up to this point we have established a notation indicating the form 
a chunk. The next step is to substitute the chunks, provided by the component 
of lexical phraser, to the original corpus. Assume that the lexical phraser 
associates the word pairs WOULD,LIKE and SAN,JOSE. Also consider the 
following sentences from the original corpus, where these four words are 
occurred: 
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. . . 
 
  I WOULD LIKE AN EARLY MORNING FLIGHT TODAY FROM LOS     
 ANGELES TO CHARLOTTE 
. . . 
 
 LIST AMERICAN AIRLINES FLIGHTS FROM MILWAUKEE TO SAN JOSE        
. . . 
 

 
Figure 4.2: A part of the original corpus. 

 
 
According to the results of the lexical phraser, the chunks WOULD<>LIKE 
and SAN<>JOSE must substitute the patterns «WOULD LIKE» and «SAN 
JOSE», as is shown in the following figure: 
 
. . . 
 
  I WOULD<>LIKE AN EARLY MORNING FLIGHT TODAY FROM LOS     
 ANGELES TO CHARLOTTE 
. . . 
 
 LIST AMERICAN AIRLINES FLIGHTS FROM MILWAUKEE TO             
 SAN<>JOSE 
 . . . 
 

Figure 4.3: A part of the transformed corpus according to the chunks. 
 
Hierarchical Phrasing: However, there are a lot of cases where a reasonable 
chunk consists of more than two words. In such cases we must ensure that the 
lexical phraser is able to associate the proper words and form the correct 
chunk. This task is quite difficult, since the lexical phraser has to capture the 
exact count of words; neither less nor more. This need introduces the idea to 
permit the lexical phraser to operate on its own output inducing a hierarchical 
phrasing. 
 
A representative example is the chunk “J<>F<>K”, an airport’s name. In the 
AtisTrain corpus the three letters are separated by two white spaces. 
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J<>F<>K 
 
 
                                         J<>F                                           K 
 
                            J                            F 

 
 

Figure 4.4: An example of hierarchical phrasing. The chunk J<>F<>K is 
formed after the second iteration of lexical phraser. 

 
The previous example shows how the chunk J<>F<>K is formed. After the 
first iteration of lexical phraser, letters “J” and “F” are grouped into a single 
lexical unit. Furthermore, a second iteration is needed to group “J<>F” and 
“K” to the correct chunk. Sometimes, chunks consisting of three words are 
likely to be formed completely, during the first operation. However, our 
study showed that more reasonable chunks are obtained if the lexical phraser 
operates more than one time.      
 
The transformed corpus is then given as input to the CMU toolkit in order to 
calculate the appropriate statistics. Figure 4.5 presents schematically the 
iterative operation of lexical phraser. 
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   Original                      CMU                      Statistics 
   Corpus                    Toolkit 
 
 
 
 
                                                Lexical  
                                                Phraser 
 
 
 
 
                                               Chunks 
 
 
 
 
 
 
 
 Transformed corpus 
(according to chunks) 
 
 
 
 
 
 
                                                                         
                                         Second/k-th iteration of lexical phraser: 
                                         Repeat the preceding procedure using 
                                         the transformed corpus, instead of the  
                                         original/(k-1)-th transformed corpus. 
 
 
 
Figure 4.5: Multiple iterations of lexical phraser. At the end of iteration the 

corpus is transformed according to the resulting chunks. 
 
 
As is shown in Figure 4.5, initially we use the CMU toolkit to build a bigram 
language model (unigram probability, unigram backoff and bigram 
probability are calculated). The lexical phraser uses these results in order to 
associate the several lexical units calculating the mutual information between 
them. At the end of the iteration we retain the n chunks with the largest 
mutual information. Then the previously used corpus is transformed 
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according to the n chunks. Lastly, the lexical phraser can repeat the same 
procedure based on the updated corpus (the language model is retrained), 
inducing new chunks. Otherwise, the updated corpus is passed to the 
component of semantic generalizer that follows. 
 
The results produced by the CMU toolkit: In the following figure we present 
a representative part of the .arpa file which is generated by the CMU toolkit, 
containing the required statistics for the calculation of the mutual 
information. 
 
######################################################### 
## Copyright (c) 1996, Carnegie Mellon University, Cambridge University, 
## Ronald Rosenfeld and Philip Clarkson 
######################################################### 
. . . . . . . . . . . . . . . . . 
p(wd2|wd1) = if(bigram exists) p_2(wd1,wd2) 
                          else              bo_wt_1(wd1)*p_1(wd2) 
All probs and back-off weights (bo_wt) are given in log10 form. 
. . . . . . . . . . . . . . . . . 
\1-grams: 
p_1     wd_1 bo_wt_1 
\2-grams: 
p_2     wd_1 wd_2 bo_wt_2 
\1-grams: 
. . . . . . . . . . . . . . . . . 
-2.8061 AIRPORT -0.3163 
-3.0791 AIRPORTS -0.3822 
-3.9822 ALASKA -0.4736 
. . . . . . . . . . . . . . . . . 
\2-grams: 
. . . . . . . . . . . . . . . . . 
-0.0039 LAS VEGAS 0.0036 
-0.1761 LAST FLIGHT -0.2573 
-0.5006 LATE AFTERNOON -0.1022 
. . . . . . . . . . . . . . . . . 
 
Figure 4.6: A sample from .arpa file produced by CMU toolkit. Notice that 

probabilities (left column) and backoff weights (right column) are given in 
log10 form. Witten Bell discounting method was applied. 

 
As said before, each time the corpus is being transformed, an updated .arpa 
file must be generated. The only “tricky” point of this file is the fact that the 
probabilities and backoff weights are given in log10 form. In order to get the 
desired value we simply apply an “antilog” function. For example, the 
probability of the bigram “LAS VEGAS” is 10-0.0039.  
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Mutual Information: For measuring word association, we used the 
information theoretic concept of mutual information, as is expressed in a 
weighted, point-wise form by the following equation: 
 
  

MI(w1,w2)=½(p(w1,w2)+p(w2,w1))log
1 2 1 2 F 2 1 B

1 2

( p(w ,w |λ ) + p(w ,w |λ ) )
p(w ) p(w )

       (4.1)         

,where λF denotes the usual text order and λB denotes the reversed text order. 
In general, p(w1,w2) = p(w2,w1). However for estimating p(w1,w2) we use 
p(w1|w2) p(w2) or p(w2|w1) p(w1), according to λB and λF  respectively.     
Equation (4.1) is similar with (2.10). The only difference between them is that 
the equation (2.10) takes into account only the left contexts. Equation (4.1) is a 
form of mutual information that is computed according left and right 
contexts. In the next paragraphs we will show how this can be implemented. 
The joint probability of two consecutive words, p(w1,w2), is calculated through 
the chain rule.  
 
In [10], a different approach is applied for the estimation of joint probabilities 
regarding the calculation of mutual information. For a pair of words w1 and 
w2 the joint probability is estimated by counting the number of times that w1 is 
followed by w2 in a window of x words, fx(w1 ,w2), and normalizing by the size 
of corpus. (For example for expressions such as, w1 and w2, the size of window 
equals to three.) The window size parameter allows a search at different 
scales. Smaller window sizes identify fixed expressions and other relations 
that hold over short ranges. Larger window sizes highlight semantic concepts 
and other relationships that hold over larger scales. 
 
In our work we used a window of one value for two main reasons: (a) the 
training sentences are characterized by limited length, and (b) the primary 
mission of the lexical phraser is to form chunks that will replace their 
members in later iterations within the corpus, ensuring that the chunk will 
behave as an individual lexical unit.  
 
Equation (4.1) is a symmetric version of mutual information. As noted in 
chapter 2, mutual information, in an initial form, is defined to be:  

MI(w1,w2) = log
1 2

1 2

p(w ,w )  
p(w ) p(w )

. Joint probabilities are supposed to be 

symmetric: p(w1,w2) = p(w2,w1), and thus, mutual information is also 
symmetric: MI(w1,w2) = MI(w2,w1).  
 
Let’s consider the initial form of mutual information as an association ratio 
between two lexical units. Technically, this association ratio is not symmetric, 
since f(w1 ,w2),used for the calculation of p(w1,w2), encodes linear precedence. 
(Recall that f(w1 ,w2)denotes the number of times that w1 appears before w2.) In 
order to use a symmetric form of the association ratio, according to the nature 
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of mutual information, we introduce in equation (4.1) the term p(w2,w1), which 
encodes the reverse precedence than p(w1,w2) does. Practically, reversing the 
training corpus and training a second bigram language model through CMU 
toolkit, we calculate the required statistics.    
In particular, the lexical phraser is the implementation of the equation (4.1). 
As was mentioned, at the end of chunker’s iterations the n chunks with the 
largest mutual information are retained.   
 
 
1st iteration                                                     2nd iteration 
 
OH  OH  
T  T 
SIX  SIX 
ONE  ONE 
DETROIT  BETWEEN 
BETWEEN  DETROIT 
LA  GUARDIA 
LOVE  FIELD 
SALT  LAKE 
LAS  VEGAS 
OAKLAND  AND 
AND  OAKLAND 
T  W 
KANSAS  CITY 
ID  LIKE 
TAMPA  IN 
IN  TAMPA 
LAKE  CITY 
LOS  ANGELES 
AND  DETROIT 
DETROIT  AND 
J  F 
WESTCHESTER  COUNTY 
AND  WASHINGTON 
 

 
J<>F  K 
 WOULD  LIKE 
ROUND  TRIP 
GIVE  ME 
TYPE  OF 
U  S 
D  C 
GROUND  TRANSPORTATION 
CANADIAN  AIRLINES 
FEBRUARY  TWENTY 
T<>W  A 
WITH  STOPOVERS 
IT  COST 
TWENTY  THREE 
THREE  TWENTY 
THE  CHARLOTTE 
CHARLOTTE  THE 
COLUMBUS  OHIO 
AN  EARLY 
STOPOVER  IN 
AND  AND 
TRIP  AIRFARE 
FIVE  SLASH 
FLIGHT  SHOULD 

 
Figure 4.7: Top chunks in descending order. The chunker iterated twice. 
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The lexical phraser can operate on its output during later iterations. As is 
shown in Figure 4.7, “J<>F<>K” and “T<>W<>A” are induced completely at 
the end of second iteration. Having described the general functionality of 
lexical phraser, a critical question arises concerning the output list: how many 
candidate chunks should be selected?  It is clear that in the lower positions of 
the list, the association between the lexical units is less tight, in contrast to 
higher positions. The answer is subject to careful observations through 
experimentation. As noted in [5], 20 to 40 is a reasonable number for small 
corpora. If we select, for example, fewer than 10 chunks, certain commonly 
co-occurring lexical units, such as “WOULD LIKE”, will not be combined. 
More than 50 chunks may cause so many nested chunks that even an entire 
sentence can be transformed to a chunk. This fatal situation is more likely in 
corpora containing sentences of short length.    
 
4.4    Semantic Generalizer 
 
The next step is the induction of semantic classes. The semantic generalizer 
has as input the transformed corpus according to the induced chunks. As in 
the case of lexical phraser the required statistics are taken from the .arpa file.  
The output of the lexical phraser is a long list of semantically similar pairs of 
lexical units. 
  
Transformed                           CMU                 Statistics                             
     Corpus                         Toolkit 
 
 
 
             Semantic 
                                                       Generalizer 
 
 
 
 
  

Left Member Right Member Distance/Similarity 
Score 

LexicalUnitA LexicalUnitB xxx 
LexicalUnitC LexicalUnitD xxx 
LexicalUnitB LexicalUnitE xxx 
LexicalUnitA LexicalUnitG xxx 

… … … 

Figure 4.8: The output of the semantic generalizer. 
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4.4.1   The criterion of similarity  
 
In order to construct the list of semantically similar pairs we apply a 
dissimilarity /similarity measure. Each member of the pair is semantically 
related with the other member, in a degree expressed by the corresponding 
dissimilarity /similarity score. 
 
Our hypothesis is that the words, which occur in the same bigram lexical 
context, have similar semantic meanings.  
 
Context thresholding: We used a context threshold of three. A context 
threshold of three means that a word is not considered for merging into 
semantic group unless it occurs in the corpus at least three times with two 
other words in the right and left contexts. This eliminates singletons, such as 
cases where the human subject uses a single word to answer a system query. 
In general, context thresholding restricts candidates to those words well 
represented in a broader lexical context.  
    
This list reflects the only available source of knowledge to us, since the 
dissimilarity /similarity measure takes into account the lexical environment 
where lexical units occur, without part of speech tagging.  
In some sense, the functionality of the applied dissimilarity /similarity metric 
is very close in spirit to the pattern matching. 
 
We used the following dissimilarity/similarity measures: 
 

(a) Kullback-Leibler distance (KL) 
(b) Information-radius distance (IR) 
(c) Manhattan- norm distance (MN) 
(d) Vector product similarity (VP) 
 

They were calculated taking into account the left and right context, as is noted 
in equations 3.5(a-d), 3.8(a-d), 3.11(a-b) and 3.14(a-b), respectively. In order to 
get right context’s statistics, we reversed the corpus and we trained the 
corresponding bigram language model. 
  
We can say that the implementation of those metrics is the core of the 
semantic generalizer. In the next chapter we compare them based on some 
experimental results. 
 

4.4.2   Grouping semantically similar lexical units 
 

At first glance, the format of list does not propose a direct criterion for 
clustering. However, an initial idea is to find a common feature among the 
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pairs. Hence, pairs, which have the same member, can be clustered into the 
same semantic class. 
The algorithm for the clustering works as follows: 
   
[Step 1]. take the  first pair from the list 
 
[Step 2]. create the first class and put the members of the first pair into this 
class 
 
[Step 3]. take the next pair from the list and do: 
 
(i). if none of members is included in the previous class/es, then create a new 
class and include both of them in it. Return to step 3 if the last pair of list is 
not taken else stop. 
(ii). if the pair has only one member that is included in a class, then put the 
other member into this class if is not included in any of the previous classes. 
Return to step 3 if the last pair of list is not taken else stop. 
(iii) if both of members are included in a class, then ignore this pair. Return to 
step 3 if the last pair of list is not taken else stop. 
 
The proposed algorithm groups semantically similar lexical units as is shown 
in Figure 4.9. 
 
 
 
Class 1: INDIANAPOLIS TAMPA MILWAUKEE PHOENIX CINCINNATI 
CHARLOTTE 
  
Class 2: NEED WANT 
                                                                                                         <City name> 
. . . 
                                                                            <Desire> 
 
 

Figure 4.9: The format of output of the proposed clustering algorithm. 
 
The derived clusters are given a label, which indicates the current number of 
the class, since there are no available sources for semantic labeling (the actual 
label we used in our work is of the form “cx1classx2c”, where x1 indicates the 
number of system’s iteration and x2 indicates the number of class). This fact 
underlines the nature of our work for automatic induction of semantic classes. 
Class 1 can be viewed as set of lexical units, which belong to the concept of 
“city name”. Similarly, Class 2 expresses, in some sense, the general concept 
of “desire”. 
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The clustering algorithm may group wrongly a lexical unit in cluster due to 
step 3(ii). That happens usually when the algorithm examines a pair that is 
positioned away from the top of the output list. 
 
 
Class 1: CLEVELAND COLUMBUS CINCINNATI MEMPHIS TRAVEL 
BOSTON  
 
Class 2: MONDAY THURSDAY WEDNESDAY                                           Error!  
 
. . . 
 

 
Figure 4.10: An example of wrong clustering 

 
 
Figure 4.10 illustrates an example of wrong clustering. Obviously the word 
“TRAVEL” does not belong semantically to the semantic class “city name”.  
 
“Trust only your neighbors”- Definition of search margin: While we are 
constructing a cluster we can limit our search to the nearest pairs. This means 
that the clustering algorithm will examine the candidate pairs, which are 
within a predefined range of list’s lower positions, from the last grouped 
word’s position. We call this range “search margin”. The next example shows 
how this range affects the construction of clusters.  
 
 
                 . . .                                                             . . . 

CINCINNATI DETROIT                      IR: 0.231492506721816 
 (a) MONDAY THURSDAY                     IR: 0.231715752157010 

LOS<>ANGELES MILWAUKEE        IR: 0.231998019613667 
CHARLOTTE KANSAS<>CITY         IR: 0.232050765660882 
KANSAS<>CITY MIAMI                    IR: 0.232503755374886 
LOS<>ANGELES MIAMI                   IR: 0.233608747640751 
LOS<>ANGELES TORONTO            IR: 0.233629201619797 
MONDAY WEDNESDAY                   IR: 0.234408159206775 
MIAMI PHOENIX                                IR: 0.235043491532542 

                  . . .                                          (b)             . . . 
 
 
Figure 4.11: Constructing the class that corresponds to the concept of “day 
name”. In case (a) search margin = 3. In case (b) search margin = 7. 
 
Assume that the clustering algorithm examines the pair “MONDAY 
THURSDAY” presented in Figure 4.11 and executes step 3(i). A new class is 
created consisting of “MONDAY” and “THURSDAY”. In case (a), the 
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algorithm is allowed to examine the lower part of the list, searching up to the 
pair “KANSAS<>CITY MIAMI”. Thus the resulting class is not changed. In 
case (b) the search margin is extended up to the pair “MIAMI PHOENIX”. 
This extension adds the word “WEDNESDAY” to the class, since step 3(ii) is 
executed. This constraint favors the precision of our system but decreases the 
system’s recall. In the next chapter we present several quantitative results 
concerning the impact of search margin to system’s performance.   
 
The described algorithm is based only in a simple observation regarding the 
same member that two pairs may have. The quantity and quality of the 
resulting classes depends on the size of the list. Generally the pairs, which are 
near to the top of the list, are composed of lexical units that are strongly 
related. In contrast, the lower pairs in the list have more poor semantic 
relationship. The balancing art is to have a large list of pairs in order to derive 
enough semantic classes, preserving at the same time their semantic 
homogeny. To achieve this goal, six clusters were generated per iteration. 
 
 “Check the selected neighbors”: In order to preserve the semantic 
homogeny of the derived classes, especially when the search margin is large, 
we adopted a criterion that removes the dissimilar members from each class. 
It is described in the next paragraph 4.4.3.  
 

4.4.3   Checking the members of each class 
 
An important issue is to find a criterion to filter out the “idle lexical units”, 
which, for some reason, are included in an almost homogenous derived class. 
The term “idle lexical unit” refers to a lexical unit, which has not strong 
semantic relationship with the other members of the same class. This idea 
preserves the semantic compactness of the semantic classes. So, the criterion, 
which provides the entry of a lexical unit to the semantic class, must ensure 
that the lexical unit is located near to the semantic centroid of the class. A way 
to form such a criterion for each member of the class is to find its semantic 
distance from the average semantic score of the other class members. If this 
distance is greater than a defined threshold, then the member must be 
removed from the class. 
 
Assume a semantic class C = { x1, x2,…, xn }.  
For each i = 1…n we calculate: 
 

D1 = = = +
∑ ∑

n n

k l
k 1 l k 1

dist(x  x  )

½n(n-1)
            (4.2) 
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D2 =  =
∑

n

k i
k 1

dist(x  x  )

(n-1)
            (4.3) 

          
 
The dist function denotes the semantic distance between xk and xi, which is 
calculated by the measure used to construct the list of pairs. It is obvious that 
the distance when k = i , equals to zero because is the distance between two 
instances of the same lexical unit. 
 
For example D1 and D2 for x3, which is included in class C1 = { x1, x2, x3, x4, x5 }, 
are: 
 
D1 = [(dist(x1 x2)+dist(x1 x4)+dist(x1 x5)) + (dist(x2 x4)+dist(x2 x5)) + dist(x4 x5)] / 10 
and 
D2 = (dist(x1 x3)+dist(x2 x3)+dist(x4 x3)+(dist(x5 x3)) / 4 
 
An intuitive interpretation of D’s: D1 provides a relative average estimation 
about the semantic closeness of all class’ members with x3 to be excluded. 
Additionally, D2 gives an average estimation regarding the semantic distance 
between x3 and the residue members. In the following paragraphs we will see 
how we can combines the D values in order to build a compact background 
for our system.   
 
When the KL, IR and MN are used as similarity measures, a member is 
removed from a class if D2 > m D1. 
When the VP is used as a similarity measure, a member is removed from a 
class if D1 > m D2. 
 
Experiments showed that satisfactory results are achieved if constant m 
ranges around 5.  
 

4.4.4   Checking the compactness of each class 
 
Another critical issue is the estimation of the quality of each class if it is 
viewed as a core that consists of several semantically related lexical units. 
Intuitively this can be compared to the atom’s structure. It is important to 
guarantee tight bonds between the lexical units in order to have classes with 
semantically compact core.   
 
For each class having n members, included in a set, S, we define a 
compactness rate, Comp.rate : 
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Comp.rate  = ∈

∈

∑
∑

1( i )
i S

2( i )
i S

D

D
            (4.4) 

 
The compactness rate for each class is the rate of the sum of members’ D1 to 
the sum of members’ D2. D1 and D2 are computed by equations (4.2) and (4.3), 
respectively. 
 
This rate provides a relative estimation about the semantic compactness of the 
class. Our experimental experience suggests that classes with Comp.rate > 1=p 
must be ignored.   
 

4.4.5   Merging classes 
     
Due to the nature of the clustering algorithm it is possible some lexical units 
that express the same concept, to be clustered in distinct classes. For example 
consider the following classes that were induced after the first operation:  
 
c1class1c*LAYOVER STOPOVER  
c1class2c*EARLIEST LATEST  
c1class3c*FIND RENT  
c1class4c*ALSO BE 
c1class5c* INDIANAPOLIS TAMPA MILWAUKEE PHOENIX CINCINNATI  
c1class6c* CHARLOTTE PITTSBURGH DALLAS MINNEAPOLIS 
 
It is obvious that “c1class5c” and “c1class6c” express the same concept. Thus, 
it is more reasonable to merge these classes before the next iteration. In 
general the merging of classes, which were induced during the same iteration, 
provides some advantages: 
 
(a) it is provided a more precise, realistic representation of the corresponding 
meaning since the lexical units that express the same meaning are not 
included in discrete groups.  
(b) the merging eliminates the need of computation of the similarity between 
the merged classes at the next iteration. 
(c) considering the first advantage, the statistics that are calculated at the 
beginning of the next iteration are more sufficient. So, during the next 
iteration, the chunker and the semantic generalizer can perform computations 
using more reliable data. 
 
The key idea for merging classes deals with measuring a similarity distance 
between them. The distance between two classes, D1,2, is defined to be the 
average distance between their members. 
 

 61 



Suppose that we have the classes: c1class1c = {x1, x2} and c1class2c = {y1, y2, y3}. 
The distance between them is calculated as: 
 
D1,2 = [(dist(x1 y1)+dist(x1 y2)+dist(x1 y3)) + (dist(x2 y1)+dist(x2 y2)+dist(x3 y3))] / 6 
 
The dist function is the dissimilarity/similarity measure, which is used by the 
semantic generalizer. 
 
Now, we are able to define a rate, Mergethr., for merging classes. We will use 
the distance D2, introduced in equation (4.3). D2(i) characterize every induced 
class, i, indicating, in some sense, the semantic density of its members. It is 
calculated as the sum of its members’ D2 divided by their count. This 
threshold is defined as: 
 

Mergethr. = ½
2,1

)2(2)1(2

D
DD +

            (4.5) 

 
Through multiple experimental tests, we concluded that the appropriate 
merging is taken place between classes if they have Mergethr. greater than 
(0.7=c) + q. The q value is a constant that is depended on the changing of the 
N-gram statistics during system’s iterations. Initially equals to zero. We found 
that reasonable results are obtained if it is incremented by 0.075 per iteration.  
 
In our example, classes “c1class5c” and “c1class6c” were appeared to have 
Mergethr. >  0.7 + 0. Consequently their members were grouped into a single 
cluster, forming a new class: 
 
c1class(56)7c*INDIANAPOLIS TAMPA MILWAUKEE PHOENIX 
CINCINNATI CHARLOTTE PITTSBURGH DALLAS MINNEAPOLIS. 
 
The numbers, which are between parentheses, indicate the participating 
classes. These classes are not considered anymore during the remaining 
procedure. The eventual set of induced classes is presented in the next 
paragraph.   
 
 

4.4.6   After the end of first operation: what follows 
 

Here are the final results generated by the semantic generalizer’s first 
operation: 
 

c1class1c*LAYOVER STOPOVER  
c1class2c*EARLIEST LATEST  
c1class3c*FIND RENT  
c1class4c*ALSO BE  
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c1class(56)7c*INDIANAPOLIS TAMPA MILWAUKEE PHOENIX 
CINCINNATI CHARLOTTE PITTSBURGH DALLAS MINNEAPOLIS 
 
Clearly the amount of induced semantic classes and their members is not 
sufficient. Consequently the corpus must be reparsed and the whole 
experimental procedure must be repeated. This operation is performed by the 
third component, as is shown in Figure 4.1. 
 
4.5    Reparsing the corpus 
 
The corpus is reparsed after the semantic generalization (induction of 
semantic classes). All instances (members) of each of the classes are replaced 
with the appropriate class. Let’s summarize the gradient transformations that 
are taken place in a sentence included the ATIS corpus, up to this point (until 
the end of the first operation of the semantic generalizer): 
 
1. The original sentence taken from the corpus is: 
“I WOULD LIKE TO FIND A FLIGHT FROM CHARLOTTE TO LAS VEGAS 
THAT MAKES A STOP IN SAINT LOUIS” 
2. The lexical phraser chunked the words: LAS,VEGAS and SAINT,LOUIS. So 
the referred sentence is changed to:   
“I WOULD<>LIKE TO FIND A FLIGHT FROM CHARLOTTE TO 
LAS<>VEGAS THAT MAKES A STOP IN SAINT<>LOUIS” 
3. The semantic generalizer induced the following classes: 
c1class1c*EARLIEST LATEST  
c1class2c*ALSO BE  
c1class3c*WANT WOULD<>LIKE  
c1class5c*INDIANAPOLIS TAMPA SAINT<>LOUIS PHOENIX 
KANSAS<>CITY CINCINNATI CHARLOTTE MINNEAPOLIS 
LAS<>VEGAS  c1class6c*BURBANK NASHVILLE  

The sentence of step 2 is transformed as follows: 
“I c1class3c TO FIND A FLIGHT FROM c1class5c TO c1class5c THAT MAKES 
A STOP IN c1class5c” 
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        to  
                                                                                              Lexical Phr. 
 
                                                                                                 Transformed corpus 
                                                                                                        according to 
                                                                                                      induced classes 
 
 Transformed corpus 
according to chunks 
 
 
  
 Corpus 
                                                                Parser   
 
 
     Induced 
semantic classes 
 
 

Figure 4.12: The corpus is reparsed after semantic generalization. 
 
 
As is illustrated in Figure 4.12 the last step is performed by the component of 
corpus parser. Then, the “updated” corpus is given, as input, to the lexical 
phraser, as the iterative demands. The chunks that were not classified into 
semantic groups are negated as single lexical entities and they do not occur 
such as in the corpus, which is given to the lexical phraser. In other words, the 
special symbol “<>” is replaced by the white space.  
 
In order to have a specific view of the above statements we present the total 
induction of semantic classes for five iterations: 
 
c1class1c*EARLIEST LATEST  
c1class2c*ALSO BE  
c1class3c*WANT WOULD<>LIKE  
c1class6c*BURBANK NASHVILLE  
c1class(45)7c*INDIANAPOLIS TAMPA MILWAUKEE PHOENIX 
KANSAS<>CITY CINCINNATI DALLAS MINNEAPOLIS LOS<>ANGELES  
c2class1c*COLUMBUS c1class6c CLEVELAND  
c2class2c*LAS<>VEGAS MIAMI  
c2class3c*LONG<>BEACH ONTARIO  
c2class4c*PAUL PETERSBURG  
c2class5c*FIND RENT  
c2class6c*OAKLAND WESTCHESTER<>COUNTY  
c3class1c*TORONTO c2class2c  
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c3class6c*EIGHTH SIXTH  
c3class(45)7c*MONTREAL TORONTO CHARLOTTE DETROIT  
c3class(23)8c*CHICAGO DETROIT MEMPHIS TRAVEL c2class3c BOSTON 
PITTSBURGH NEWARK c2class1c  
c4class1c*MONDAY THURSDAY WEDNESDAY  
c4class2c*FRANCISCO JOSE  
c4class3c*HOUSTON c3class1c SALT<>LAKE<>CITY ORLANDO TACOMA 
SEATTLE  
c4class4c*LOUIS c2class4c  
c4class5c*NEED c1class3c  
c4class6c*NONSTOP RETURN  
c5class1c*BALTIMORE SAINT<>c4class4c ATLANTA  
c5class2c*SATURDAY c4class1c  
c5class3c*FOUR NINE  
c5class4c*U<>S<>AIR c1class2c  
c5class5c*EVENING MORNING  
c5class6c*CAR LAYOVER 
 
It is obvious that a class can be a member of a posterior class. For example 
class “c3class1c” has as member the class “c2class2c”. This makes “c3class1c” 
to have totally three members: “LAS<>VEGAS”, “MIAMI” and “TORONTO”. 
Also, notice the structure of “SAINT<>c4class4c” which is included in 
“c5class1c”. 
If we follow a backward direction we can see that “c4class4c” includes 
“PAUL”, “PETERSBURG” and “LOUIS”. Since the word “SAINT” is chunked 
with “c4class4c”, the final members of “c5class1c” are: “SAINT<>PAUL”, 
“SAINT<> PETERSBURG” and “SAINT<>LOUIS”.    
 
4.6   The need for evaluation 
 
The number of system’s iterations is a critical issue being under discussion, as 
well as other parameters such as the number of selected chunks. Moreover a 
comparison between the referred metrics can lead to useful conclusions. The 
most appropriate way to estimate the optimal values of these parameters is to 
make several tests evaluating the system’s precision and recall each time. This 
discussion is the main subject of the following chapter.  
 
4.7   Summary 
 
In this chapter we described the several steps for the implementation of our 
system, which is performing the automatic induction of semantic classes. Our 
system’s development was strongly based on the procedure, which is 
presented in [5]. The implementation was done, mainly, in Perl. As 
experimental corpus we used transcribed utterances from the ATIS domain. 
Next, we used the CMU toolkit in order to build a bigram language model. 
This model provided the required statistics for the computations that our 
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system done. The system works iteratively, inducing semantic classes at the 
end of each iteration, and consists of three main components: (a) a lexical 
phraser, (b) a semantic generalizer and (c) a corpus parser. The lexical phraser 
groups words in a single lexical (and concepts) according to their weighted 
point-wise mutual information. The next component, semantic generalizer, 
computes one of the four semantic metrics, KL, MN, IR and VP, and generates 
rules that map words (and concepts) to concepts using a clustering algorithm. 
This is done because we assumed that words that occur in the same bigram 
lexical context, have similar semantic meanings. Also we used a context 
threshold of three. The semantic generalizer, generates six semantic classes 
per iteration. Moreover, we tried to apply some methods in order to preserve 
the semantic homogeny of each class and to merge semantically similar 
classes that were generated during the same iteration. In the final step, a 
corpus parser reparses the corpus and replaces all the instances of each 
semantic class with the name of the appropriate class. According to these 
changes the CMU toolkit computes the new statistics and the whole 
procedure is repeated, since, as we mentioned earlier, the system works 
iteratively.    
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5   Evaluation 
 
 
The final step in our work is the assessment of the quality of the output of the 
system we built. That is, we must measure how well our system induced the 
semantic classes. The answer to this important question can be a useful guide 
concerning the accurate understanding of several “aspects” of our system. In 
the next paragraphs we will specify the nature of these aspects.  
 
In early work on NLP, the system builders themselves assessed the quality of 
the output of the system. If the output seemed good, then the system was 
judged a success. In general this approach is not very effective. Recent interest 
has been focused on the rigorous evaluation of NLP systems. Two widely 
used techniques for evaluation is to use statistical methods or to use the 
human judgment [1]. In the last case, usually the human judge must be an 
expert in the domain of interest. For example, in [5], five non-expert, human 
subjects were used in order to evaluate the quality of semantic classes that 
were induced by each of the different metrics (KL, IR, MN, VP). They were 
high-school students employed at Bell Labs for summer practice.  
 
5.1 Train and test data 
 
Our experimental corpus is based on the training and test sets of the ATIS 
(Air Travel Information System) domain. ATIS is a common task in the ARPA 
(Advanced Research Project Agency) Speech and Language Program in the 
USA.  Both sets consists of transcribed human queries where callers phoned 
in order to make flight reservations and retrieve several information about the 
flights and airports, like the fare types and even if an airport provides 
limousine service. During the experimental procedure, in the data there were 
no punctuation marks. Obviously the ATIS domain is specific because the 
caller uses a limited vocabulary in order to be informed precisely. The train 
data consists of 1705 sentences (19208 words). The test data were included in 
a file named AtisTest94 consisting of 445 sentences (5027 words). However, 
the train data can be used for the task of the evaluation. Also, we must remind 
that both train and test data were not part-of-speech tagged. Sample sentences 
for the two sets are presented in the appendix. 
 
 
5.2   Evaluation using precision and recall 
  

5.2.1   Definition of precision and recall 
 
In our work in order to evaluate the induced semantic classes we used a 
statistical approach using the notion of “precision” and “recall”, through a 
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Perl script. The system’s accuracy is based on how many of the induced 
classes are actually semantically correct [1]. For the needs of our study it can 
by assessed by a “precision” measure: 
 

Precision = 
classes induced  allin members of # 

 classes induced  allin memberscorrect  of #
            (5.1) 

 
Additionally, the proportion of the target items that the system selected is 
defined using a “recall” measure [2]. In our work, “recall” is defined as: 
 

Recall = 
text test  in occured memberscorrect  of # 

 classes induced  allin memberscorrect  of #
            (5.2) 

 
The above definitions raise a reasonable question: how a “correct member” is 
defined? 
 
Firstly, we must recall from the previous chapter that an induced semantic 
class is a group consisting of lexical units without a true conceptual label. The 
next step is to examine each member of this class and decide if it is “correct” 
or not. That is, if it belongs to this class or not. 
 

5.2.2   Hand-labeled semantic classes 
 
 In order to perform this examination we used a given collection of 
conceptually hand-labeled semantic classes, constructed for the ATIS domain. 
Actually this collection is a set of files. Each file’s name describes the concept 
that a class represents. The file’s contents are the lexical units that are 
assumed to belong to the corresponding class. For each induced class we used 
one labeled semantic class from this collection in order to make the required 
comparisons. 
 
For example the file named “month” express the concept of month and 
consists of those lexical units that are appropriate for forming the 
corresponding class: JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, 
JULY, AUGUST, SEPTEMBER, OCTOBER, NOVEMBER and DECEMBER.   
 
We used totally 32 files, which cover 32 different concepts. The files’ names 
are presented in the appendix with a representative example of their contents.  
 
 An induced class was assumed to express the same concept as the selected 
labeled class if the majority (>50%) of its elements was occurred also in the 
labeled class. So, for an induced class satisfying the criterion of majority, a 
member was considered as “correct” if it was appeared also in the labeled 
class. If so, the enumerator of equation (5.1) was increased by one. The 
collection of labeled semantic classes is presented in the Appendix.  
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The denominator of equation (5.2) is referred to the common lexical units 
between the collection of labeled semantic classes and the test text.  
 
5.3   Varying parameters  
 
As was mentioned in the previous chapter, our system has many parameters 
that can take several values. It is an important issue the experimentation with 
their possible combinations. In this way the cases where the system achieves 
satisfactory results can be identified. These parameters are summarized in the 
following table: 
 
 

Description of the parameter Parameter’s 
abbreviation 

Number of system’s iterations SysIt 
Number of chunker’s iterations ChuIt 
Number of chunks that are selected at each system’s 
iteration 

#Ch 

The used semantic metric SemMs 
Number of pairs of semantically related lexical units 
that are selected at each system’s iteration 

#Pairs 

The constant m used during the removal of a 
member from a class 

m 

The value of p in Comp.rate  computed by equation 
(4.3) during the checking of the compactness of 
semantic classes 

p 

The value of c and q in Mergethr computed by 
equation (4.4) during the merging of classes 

c, q 

The value of search margin used in the grouping of 
semantically similar lexical units 

SchMrg 

 
Table 5.1:  System’s parameters 

 
Obviously there are a lot of possible combinations between the mentioned 
parameters, which require an extremely long computational time. Our 
experimental experience provided to us some kind of estimation regarding 
the range in which we must perform the evaluation for each parameter. 
Taking these facts into account, in the following paragraphs we tried to 
evaluate our system using some representative parameter’s values that give 
the best results, which can be achieved.     
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5.4   Varying the search margin 
 
The main purpose of the following figures is to illustrate the impact of the 
search margin (SchMrg) to the precision and recall. Also useful conclusions 
can be reached about the optimal number of selected chunks (#Ch) and the 
number of chunker’s iterations (ChuIt) for each iteration of the system. The 
numbers contained in the legend denote the number of chunker’s iterations. 
 
The following table contains the parameters that were kept constant: 

 

SysIt SemMs #Pairs m p c   q 
11 IR 150 5 1 0.7 0.075 

 
 
The following plot shows the precision when the search margin is equal to 
five. This means, for each class, that the clustering algorithm examined the 
candidate pairs, which were at the five lower positions, from the last grouped 
word’s position.   
 

 
Figure 5.1: Precision for search margin=5 
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Generally, our experimental experience suggests that this value for the search 
margin provides sufficient results. We evaluated the results for four different 
numbers of iterations of the chunker, which are presented in the legend. 
Moreover, we studied the results for six different numbers of chunks that 
were kept at each system’s iteration. As we can see, 30 chunks were too few 
and the resulting precision is poor. On the other hand, 35 and 40 chunks per 
system iteration can increase the precision, which approximates the value of 
85%. Contrarily, more than 45 chunks, were too many and probably caused so 
many nested chunks that entire part of sentences were combined into a single 
chunk.  
 
This plot can also show the impact of the number of chunker’s iterations. It is 
obvious that only one iteration of the chunker did not manage to form enough 
chunks. When the chunker iterated twice, the results were better but slightly 
lower than the desired precision. In contrast, the best results are obtained if 
we allow three iterations of the chunker. 
 
The following plot illustrates the evaluated recall for the same experiment: 
 

 
Figure 5.2: Recall for search margin=5 

 
Indeed, one iteration of the chunker gives also poor recall, as is shown in the 
above plot. As in the case of precision, the highest recall is obtained when we 
have more than two iterations of the chunker. Concerning the number of 
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selected chunks per system’s iteration, the same situation is repeated as 
before. That is, 35 and 40 chunks can ensure sufficient recall. 
 
 
 
 
The next plots show the precision and recall for an unbounded search margin. 
This means that the clustering algorithm has no limits regarding the positions 
between two pairs, which will be grouped in the same class, while is 
examining the list of the candidate pairs. 
 
 
 

 
 

Figure 5.3: Precision for unbounded search margin 
 
Clearly, the unbounded search margin allows the clustering algorithm to 
group into classes many noisy data. This is fatal situation becomes worst for 
more than two iterations of the chunker. The presence of those noisy data, 
grouped in semantic classes, caused the very low, in general, precision and 
forced the system to have an unstable, unreliable behavior.   
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Figure 5.4: Recall for unbounded search margin 

 
The unbounded search margin induced larger, but semantically poorer, 
classes, giving in many cases recall greater than 35%. This is a desirable result, 
but combined with the low precision, makes the unbounded search margin 
inappropriate for our task.  
 
In conclusion, a small value for the search margin can guarantee a stable 
performance for our system and sufficient precision and recall as well. 
Additionally we saw that the chunker provides better results if makes more 
than two iterations, since one or two iterations are not able to form enough 
chunks for the needs of our system. The best results are obtained for 3 
chunker’s iterations for each iteration of the system. Lastly, the presented 
plots suggest that 35 or 40 chunks per system’s iteration can give the best 
possible precision and recall. These conclusions agreed with the 
corresponding results in [5], where the recommended number of chunks is 
between 20 and 40.  
 
  
 
5.5   Comparison of the four semantic metrics 
 
The main purpose of the following four figures is the comparison of the four 
semantic metrics with respect to precision and recall. During the evaluation 
we used five different values for search margin. The zero value denotes the 
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unbounded search margin. The colors contained in the legend denote 
precision and recall. 
 
 
The following table contains the parameters that were kept constant during 
the experimental procedure: 
 

 

SysIt #Pairs m p c   q 
11 150 5 1 0.7 0.075 

 
 

 
 

Figure 5.5: Precision and recall for the four metrics 
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Generally, the bounded metrics perform better than the KL distance, which is 
unbounded. For example the IR distance is expected to have better 
performance than the KL, because the denominator for the IR terms is an 
average of the two probability distributions. Only in the case where SrcMrg=0 
the KL distance gave almost better results compared to the other metrics.  
 
In general, poor precision occur when SrcMrg=0 because larger classes are 
constructed and the statistics begin to be worse during the latter iterations of 
the system. 
 
As is mentioned in [5] about the Travel domain (very similar to ATIS) the KL 
distance gives the poorest precision. This statement is also verified by our 
results. The other metrics give qualitatively the same results.   
 
 
 
  
 
5.6   Merging classes 
 
Recall from 4.4.5 that merging of classes is taking place if the condition 
Mergethr.>c+q is satisfied.  
 

5.6.1   q value 
 
The q value is a variable that is depended on the changing of the N-gram 
statistics during system’s iterations. We found that reasonable results are 
obtained if it is incremented by a constant value per iteration while it is equal 
to zero at the first system’s iteration. That is needed, because the Mergethr  is 
depended on the semantic distance between the members of the classes which 
participate in the procedure of merging. The semantic distance between the 
lexical units generally decreases with increasing the iterations of the system as 
the closest pairs of lexical units are removed from the corpus. Consequently, 
this situation raises the need to increase the threshold for the Mergethr  by a 
small amount per iteration, in order to “follow”, in some sense, the change of 
the statistics. 
 
 The figure below illustrates the precision and recall for q=0.025, 0.050, 0.075, 
0.1, 0.125, 0.150, 0.175, 0.2, 0.225 and 0.25.  
  
The following table contains the parameters that were kept constant: 
 

SysIt ChuIt SemMs m p c SchMrg 
11 2 IR 5 1 0.7 3 
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Figure 5.6: Merging classes. The impact of q value 

 
As we can see in the bars above, the increment of the q can affect the final 
results. That is an indication for the changing of the statistics as the system is 
performing iterations.  
 
Both precision and recall are being favored if the q value ranges between 0.075 
and 0.125. This parameter seems to be promising since it gives precision 
greater than 87% for q=0.125. Thus, it is important to monitor the changing of 
the statistics during the iterations in order to tune sufficiently the parameters 
of the system. 
 
For this experiment the total classes that were formed after merging are few 
(less than ten). This is an explanation for the limited affect of the q to the 
resulting precision and recall. However, this value may be useful in other 
domains where the data are more suitable for merging classes. 
  

5.6.2   c value 
 
In contrast, c is kept constant during the iterations. In the following figure we 
present the impact of c for five different values: 0.5, 0.6, 0.7, 0.8 and 0.9. 
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The following table contains the parameters that were kept constant: 
 

SysIt ChuIt SemMs m p q SchMrg 
11 2 IR 5 1 0.075 3 

 

 
Figure 5.7: Merging classes. The impact of c value 

 
The precision has the highest value when c=0.6 (84.4%). The recall for c=0.7 is 
greater compared to the case of c=0.6. As in the case of q value, the c had not a 
great impact to the results.  
So, we can conclude that these values may have a more noticeable affects in 
semantically broader domains where the need for merging classes is 
increased. However the studied values for c and q can serve as useful 
thresholds for controlling the procedure of merging classes more precisely.  
 
5.7   Checking the compactness of each class 
 

After each iteration every class is being checked regarding its compactness 
value as was defined in equation (4.4). Through experimentation we found 
that the results can be slightly better when a class is ignored if Comp.rate  > p. 
We evaluated the results on ten different values of p: 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 
1.4, 1.5, 1.6 and 1.7. 
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The following table contains the parameters that were kept constant: 
 

SysIt ChuIt SemMs m c q SchMrg 
11 2 IR 5 0.7 0.075 3 

 
 

Figure 5.8: Checking the compactness of each class. The impact of p value 
 
We can observe that the value of precision and recall remains constant for 
p≥0.8 (83.3% and 28.9% respectively). Despite the fact that values greater than 
0.9 are appeared to give same results, it is safer to select for p values near to 
0.9. Hence, value such as 0.9 or 1 can behave as a threshold for this purpose.   
We must note that this method was considered as an additional constraint 
concerning the correctness of the results. Its contribution to the overall results 
cannot be viewed as fundamental in any way. So the role of this idea is 
actually a kind of support. However, introduces an initial proposal about the 
estimation of the quality of each class, during the induction of semantic 
classes at the level of a single system’s iteration.  
 
5.8   Removing a member from a class 
 
In section 4.4.3 we introduce the idea of removing a member from a class if it 
is “located” semantically far from the other members of the class. This idea 
was an attempt to enhance the semantic homogeny of the induced classes. A 
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member is removed from a class if D2 > m D1. We evaluated the results on ten 
different values of m: 3, 4, 5, 6, 7, 8, 9, 10, 11and 12. 
 
 
The following table contains the parameters that were kept constant: 
 
 

SysIt ChuIt SemMs p c q SchMrg 
11 2 IR 1 0.7 0.075 3 

 

 
Figure 5.9: The threshold m for removing a member from a class 

 
The results for the last four values of m are the same (precision=83.3% and 
recall=29.9). We observed that the value of 3 was too small, causing the 
removal of many members. This explains why the precision is higher 
compared to the next values of m. The highest recall is gained for m=4 (30.2%) 
while the precision equals to 82%. When m ranges from 5 to 10 the results are 
the same. It is recommended to make a moderate selection of m, avoiding 
small values (< 3) or values greater than 5. So, good results are ensured if m 
equals to 4 or 5. The idea of removing a member from a class can be applied 
further in cases where too many members are grouped into a semantic class. 
Our experience showed that this method gives interesting results when a class 
has more than five members. In the cases where a class has less than three 
members there is no difference.   
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5.9   How many pairs: introducing a stopping criterion 
 
At each iteration the clustering algorithm operates on a list consisting of 
semantically related pairs of lexical units. In the previous chapters we 
mentioned that the length of this list plays a central role regarding the quality 
of system’s results. The selection of a short list favors the precision of our 
system, while a large list provides greater recall. The following figure 
illustrates how the length of this list (how many pairs are selected during each 
iteration, #Pairs), affects the average semantic distance of the pairs that are 
included into the list. Since the IR metric was applied, which is a dissimilarity 
measure, for each pair we used the inverse of its semantic distance.    
 
The following table contains the parameters that were kept constant: 

 

SysIt ChuIt SemMs m p c q 
1 2 IR 5 1 0.7 0.075 

 

 
Figure 5.10: The changing of semantic distance according to selected 

number of pairs 
 
The average similarity between the pairs is decreased as the number of 
selected pairs grows. It can be said that the average similarity for more than 
200 pairs cannot ensure reliable results. Additionally, a very long list of pairs 
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cannot be accessed up to its lowest pair if a bounded search margin is used. 
On the other hand less than 100 pairs may be too few in order to achieve 
sufficient recall. In the most of the cases of our experiments we used 150 pairs; 
obtaining so, reasonable results. 
 
Automatic selection of the number of pairs for each iteration 
The last figure gives an intuitive estimation regarding the optimal number of 
word pairs. This estimation is essential for each system’s iteration. Instead of 
pre-defining a constant number of pairs for all iterations, we can make, for 
each iteration, a different estimation for this number. This idea forms a 
stopping criterion about the number of pairs, which are selected during each 
iteration. The main characteristic of this technique is that this number is being 
adjusted to the changing of the statistics during the iterations. Using a more 
formal expression, we can say that this point, indicating the optimal number 
of pairs, is located at the point where the derivative of the curve is 
maximized. 
 
5.10   How many chunks: introducing a stopping criterion 
Another critical design issue is the number of chunks that are selected, (#Ch), 
at each iteration. According to [5], fewer than 10 chunks do not allow to 
commonly occurring phrases, such as “WOULD LIKE” to be combined. 
Additionally more than 50 chunks can create many nested chunks. The 
situation of nested chunking can be harmful for restricted domains, such as 
ATIS.  For two chunker’s iterations, the figure that follows shows the average 
mutual information vs the number of selected chunks. 

Figure 5.11: The changing of mutual information according to selected 
number of chunks 
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Indeed, the difference of mutual information between 30 and 50 chunks is 
obvious. However, in some cases more than 50 chunks combined with an 
appropriate search margin can result to sufficient results. Nevertheless, our 
experimental experience suggests that the number of selected chunks must be 
greater than 25 and less than 45.  
 
Automatic selection of the number of chunks for each iteration 
 
The same technique can be applied in selecting for each system’s iteration the 
optimal number of chunks. We can define two regions of the curve taking into 
account its slope. The first region includes, approximately the first forty 
chunks. Clearly, the average mutual information of the first region is higher 
compared to the corresponding mutual information of the second region. As 
before, the point, indicating the optimal number of chunks, is located at the 
point where the transition from first region to second region is occurred. 
 
5.11   Summary 
 
The nature of our work allows to several parameters’ combinations to take 
place. It would be desired a formal mathematical modeling, with respect to 
these parameters and some lexical features, such as vocabulary, size of corpus 
etc. Mainly, our experimental experience was used in order to establish some 
parameters’ values that give sufficient results. We must mention that this 
experience required a lot of hours of experimentation to be acquired. The 
presented evaluation sketched a broader framework, in which the 
performance of the system is “stable”. In general, we obtained results 
quantitatively similar with [5]. We found how much iterations of the chunker 
can give sufficient results, and we identified a reasonable number of chunks 
for each iteration of the system. Also we studied the impact of the search 
margin and we compared the four different semantic metrics. 
 Additionally we proposed the ideas of merging classes that were induced at 
the same iteration, removing a member from a class when is semantically 
“far” from the other members. Lastly we suggested the idea of checking the 
semantic compactness of each class. These proposals were generated through 
the needs of our work while we were developing the system. Moreover, we 
introduced the basis for a stopping criterion about the auto-selection of the 
optimal number of chunks and pairs at each iteration. Also, the same criterion 
can be used in order to determine the iterations of the system in order to 
avoid over-generalization. This issue remains a critical matter under 
discussion in [5]. We hope that our approach will be a starting point for a 
deeper study. 
 
Best results and recommended values for the parameters 
 
The search margin is recommended to have a value equal to five. For this 
value, the highest precision (84.9%) was obtained for 3 chunker’s iterations 
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when 35 chunks were selected per system’s iteration. The highest recall 
(33.3%) was gained for 4 chunker’s iterations when 40 chunks were selected 
per system’s iteration. Thus, 3 is a reasonable number for chunker’s iterations 
at each iteration of the system while 35-40 chunks are selected. Also, 
regarding the four metrics, the IR metric gives the highest precision (84.9%) 
for SchMrg=5. For merging classes the highest precision is given for q=0.125 
(87%). Also, during the same procedure of merging classes the highest 
precision is achieved for c=0.6 (84.4%). Checking the compactness of each 
class the best results are obtained for p=0.9 (precision=83.3%). In the case of 
removing a member from a class the best precision and recall are obtained for 
m=5 (83.2% and 29.9%) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 83 



 
 
 

6   Conclusions and Future Work 
 
 
6.1   Conclusions 
 
The completion of this work raised several valuable conclusions regarding the 
nature of human language and how it can be integrated with the probability 
theory. First of all, we saw that is possible to discover the hidden meaning in 
the natural language without the support of strict grammatical rules. We used 
statistical language processing taking into account only the textual context. 
Based on this consideration we found that the semantic characteristics of text 
can be identified without the use of a part-of-speech tagger. In contrast the 
use of a context thresholding of three favored the results by restricting 
candidate words to those words well represented in a broader lexical content. 
   
Our work was developed according to the proposed procedure, which is 
presented in [5]. The system was implemented in Perl. Working with Perl, we 
discovered that it is a powerful programming language and is strongly 
recommended for rapid prototyping. Perl’s integration of regular expressions 
into the language syntax is particularly powerful for NLP work. 
 
We built a bigram language model using the CMU toolkit. The contribution of 
this toolkit was invaluable due to its speed and to its options. For the 
computations of the probabilities, the toolkit used the Witten-Bell discounting 
combined with backoff.  
 
For the experimental procedure, we used data from the ATIS domain, which 
is semantically homogeneous. The obtained results showed that the quality of 
semantic classes is favored if the used corpus is specific. The transcribed 
utterances of the corpus were short and without sophisticated expressions. 
This fact was the main reason for the low presence of noisy data and generally 
made our work easier. 
 
These tools and data served as a fundamental basis for our work. Next, we 
continued to the implementation of the system. The system consists of three 
main components: (a) a lexical phraser, (b) a semantic generalizer and (c) a 
corpus parser. The system worked iteratively inducing six semantic classes 
per iteration.  
 
We found that the lexical phraser gives sufficient results if it is allowed to 
make more than two iterations at each iteration of the system. Less than two 
iterations are not enough in order to form sufficient number of chunks. On the 
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other hand more than four chunker’s iterations can generate too many 
chunks, causing false substitutions in the corpus. Another critical issue 
regarding the chunker, was the number of chunks that were selected at each 
iteration of the system. According to our experimental experience reasonable 
chunks are obtained for 25 to 40 chunks per system’s iteration. More than 50 
chunks created so many chunks that entire part of sentences were combined 
in a single chunk. The proposed number of chunks is similar with the 
corresponding number suggested in [5]. 
 
Moreover, another important subject is the number of pairs that are examined 
by the clustering algorithm in the semantic generalizer. We found that 
sufficient results are gained if this number ranges between 150 and 180. We 
followed a slightly different approach than [5] about the generation of the 
semantic classes. In [5] each pair is considered as a class and totally five 
semantic classes are generated at each iteration of the system. In our work, we 
allowed to the clustering algorithm to generate six classes per iteration, while 
it is searching the list of pairs according to a search margin. This approach 
speed up the whole procedure and allows each class to have more than two 
members per iteration. This method does not perform well for large values of 
search margin, but if we define a small value for the search margin we can 
avoid the presence of noise. We found that a search margin less than 6 can 
give good results. 
 
The use of the four different semantic metrics showed that the bounded 
metrics in general have better performance than the unbounded metric. The 
KL distance is an unbounded metric and gave poor results compared to the 
other metrics. The best results were obtained by the IR and MN metrics. The 
same conclusions are also stated in [5]. Also, despite the fact that we used 
different method than [5] in order to evaluate the precision of the results, we 
achieved in a lot of cases precision greater than 80% while the corresponding 
precision in [5] is equal to 78.3%. Lastly, all the induced semantic classes, after 
11 iterations of the system, had 125 members, approximately, while in [5] the 
number of members is equal to 110. 
 
We tried to introduce some additional constraints in order to improve the 
quality of the results, despite the fact that they are not mentioned in [5]. These 
constraints were implemented by three methods: removal of “idle” members 
from classes, merging of classes and checking the compactness of each class. 
These ideas did not improve remarkably the precision and the recall, but we 
believe that if they applied in a semantically broader domain, they will show 
greater positive impact.  
 
Finally we introduced the idea of a stopping criterion. This idea is also 
suggested in [5] and is about the number of iterations of the system. We 
found that this criterion can be extended in order to determine, in addition, 
the optimal number of chunks and pairs that at selected at each iteration. We 
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suggest that this can be found by studying the changing of mutual 
information and the used semantic distance during the iterations. Our goal is 
to build robust mathematical model for this criterion by approximating the 
curve that describes this changing.  
 
       
   
6.2 Future work 
 
Our work is based in a considerable mathematical background combined 
with several empirical estimations that were acquired during the 
experimental procedure. This fact allows to several alternative approaches to 
take place concerning the used measures of similarity as well as for the 
empirical estimations about some constants. Also, preprocessing methods can 
be applied to the given corpus.  

6.2.1   Preprocessing 
 
In [10] the notion of mutual information is adopted in order to define the 
proposed measure that estimates word association norms. In our work, the 
lexical phraser is the responsible module for this task. It uses the given corpus 
and the derived statistics by the CMU toolkit. But, the given corpus is used 
directly without any preprocessing. The idea for preprocessing is noticeable 
in [10] and is divided in two parts: 
 
Preprocessing with a parser: Hindle has found it helpful to preprocess the 
corpus with the Fidditch parser to identify associations between verbs and 
arguments [15]. For example, consider the triple subject/verb/object.  Hindle 
computed the mutual information between a verb and its object by counting 
how often the verb and its object were found in the same triple and dividing 
by chance. 
According to [2] this parser is an example of a broader kind of parsing, called 
“partial parsing”. Partial parsing can refer to various levels of detail of 
syntactic analysis. The simplest partial parses are limited to finding the noun 
phrases of a sentence. More sophisticated approaches assign grammatical 
functions to noun phrases and give partial information on attachments, for 
example, “ this noun phrase is attached to another phrase to he right”. The 
Fidditch parser does not use any tagger because it predates the widespread 
availability of taggers. Moreover, in [10] is suggested that, in order to measure 
syntactic constraints, it may be useful to include some part of speech 
information. 
Preprocessing with a part of speech tagger: The widespread use of tagging is 
founded on the belief that many NLP applications will benefit from 
syntactically disambiguated text. Given this ultimate motivation for part-of-
speech tagging, it is surprising that there seem to be more papers on stand-
alone tagging than on applying tagging to a task of immediate interest [2]. 
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Church and Hanks in [10] found that interesting contrasts were identified 
between verbs associated with a following preposition to/in and verbs 
associated with a following infinitive marker to/to, if every word in corpus 
was tagged with a part of speech.  
 
Most applications require partial tagging after part of speech tagging. 
However, in many systems, a partial parser is built on the top of a tagger. In 
these cases, the partial tagging is accomplished by way of regular expression 
matching over the output of the tagger. An important use of tagging in 
conjunction with partial parsing is for lexical acquisition. 

 
On the other hand, in [5] the precision of induced classes is appeared to be 
independent of the POS, in the cases where extant thresholds for bigram and 
trigram context were required. Despite this fact, the combined use of corpus’ 
preprocessing and context thresholding, seems to be promising. 

 

6.2.2   Migrating from bigrams to trigrams 
 
In [5] is mentioned that there are some cases where the bigram context is too 
local to capture semantic similarity. This phenomenon was very common in 
the case of WSJ, which is a large, homogeneous corpus. In the case of ATIS 
corpus, a specific domain, this phenomenon was observed in the case of pair 
{airport, seventeenth} in the “noun cluster”. For these words the most 
common lexical context was: {… the (airport or seventeenth) </s>}. The use of 
trigram context instead of bigrams context was proposed in order to improve 
the precision of auto-induced classes. At best, the trigram statistics only 
improved performance by a few percent. It is likely that the used WSJ was too 
small and the extant trigram counts were too few to make much of a 
difference. We conclude that the use of trigram statistics gives qualitative 
results. However, it is recommended to exploit the trigrams statistics in the 
future, if our training corpus is large enough. 
  

6.2.3   Other measures of word similarity 
 
Many different statistical tests have been proposed to measure the strength of 
word similarity in natural language texts. These tests attempt to measure 
dependence between words by using statistics taken from a corpus. Through 
this work we have made use of four different measures of similarity: 
Kullback-Leibler, Information-radius, L1 norm and Vector product. However, 
many other measures for word similarities exist. Tan et al. in [12] present a 
comparative study with 21 different measures. We suspect that the 
experimentation with some other measures would be challenging, at least. 
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6.2.4   Improvements on clustering algorithm 
 
Soft clustering 
 
Indubitably, the clustering algorithm plays a central role concerning the form 
of the induced classes. As was described, a number of classes are derived per 
iteration. Each lexical unit is a member of a specific class. That is, it is not 
allowed to participate in any other class. This kind of hard clustering, at first 
glance, seems to make our life easier… But consider the following examples, 
focusing on the ambiguous predicate SERVE: 

 
“ WHICH AIRLINES SERVE DENVER?” 
“WHICH ONES SERVE BREAKFAST?” 

 
Our purpose here does not deal with word sense disambiguation. We only 
want to show that a certain lexical unit may belong to more than one semantic 
class. Thus, an attempt of soft clustering may lead to an enriched set of 
semantic classes, favoring the recall of our system. 

 
Merging classes from different iterations 

 
We saw that the system can merge two classes, if a condition is satisfied. This 
holds for classes that were induced during the same iteration. However, many 
times in later iterations, the system induces new classes that could be merged 
with previously induced classes. So, it is desired the availability to merge 
classes induced in different iterations, since the final classes would be broader 
and closer to the representation of real world.    
 
Putting ideas into practice: The ideas presented in 6.4.1 and 6.4.2 can sketch 
an extremely promising framework for future improvement. We can combine 
these ideas while we are trying to minimize a criterion, like perplexity [9]. On 
the other hand, we must note that such ambitious attempt requires a lot of 
processing time (counted, probably, in terms of days).   
 

6.2.5   Porting across domains  
 
The design of dialogue systems for a new domain requires semantic classes to 
be identified and defined. This process could be made easier by importing 
relevant concepts from previously studied domains to the new one. In [5] and 
[25] two methodologies are proposed, based on comparison of semantic 
classes across domains, for determining which concepts are domain-
independent, and which are specific to the new task. The proposed concept-
comparison technique uses a context-dependent distance measurement (i.e. 
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KL) to compare all pairwise combinations of semantic classes, one from each 
domain. The proposed concept-projection method uses a similar metric to 
project a single semantic class from one domain into the lexical environment 
of another.  
 
In general, semantic classes, developed for well-studied domains, could be 
used for a new domain with little modification.  

 
6.2.6 Stemming 
 
Stemming is used especially in Information Retrieval (IR) tasks in which a 
user needs some information, and is looking for relevant documents [1]. The 
user's information need is represented by a query or profile, and contains one 
or more search terms, plus perhaps some additional information such 
importance weights. Hence, the retrieval decision is made, by comparing the 
terms of the query with the index terms (important words or phrases) 
appearing in the document itself. The decision may be binary 
(retrieve/reject), or it may involve estimating the degree of relevance that the 
document has to the query. Unfortunately, the words that appear in 
documents and in queries often have many morphological variants. Thus, 
pairs of terms such as "foxes" and "fox" will not be recognized as equivalent 
without some form of natural language processing.  
In most cases, morphological variants of words have similar semantic 
interpretations and can be considered as equivalent for the purpose of IR 
applications. For this reason, a number of so-called stemming Algorithms, or 
stemmers, have been developed, which attempt to reduce a word to its stem 
or root form. Thus, the key terms of a query or document are represented by 
stems rather than by the original words. This not only means that different 
variants of a term can be conflated to a single representative form – it also 
reduces the dictionary size, that is, the number of distinct terms needed for 
representing a set of documents. A smaller dictionary size results in a saving 
of storage space and processing time. For IR purposes, it doesn't usually 
matter whether the stems generated are genuine words or not – thus, "fox" 
might be stemmed to "fox" – provided that (a) different words with the same 
'base meaning' are conflated to the same form, and (b) words with distinct 
meanings are kept separate.  
Examples of products using stemming algorithms would be search engines 
such as Yahoo and Google, and also thesauruses and other products using 
NLP for the purpose of IR. 
 
Regarding our work, the technique of stemming is recommended for cases 
where the morphological complexity is relatively high. For example, the ATIS 
domain consists of simple utterances and probably the use of stemming will 
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not have a great positive impact. In contrast, for corpora like WSJ this 
technique may become a valuable factor of improvement.    
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Appendix 
 
 

A 
 
A brief description of the CMU Statistical Language 
Modeling Toolkit v2 
 
 
The Carnegie Mellon Statistical Language Modeling (CMU SLM) Toolkit is a 
set of UNIX software tools designed to support language modeling. All of the 
software tools have been written in C. 
 
History 
 
Version 1 of the Carnegie Mellon University Statistical Language Modeling 
toolkit was written by Roni Rosenfeld, and released in 1994. Version 2 was 
released in 1996.  
 
How to install the Toolkit  
 
For “big-endian” machines (eg those running HP-UX, SunOS, Solaris) the 
installation procedure is simple:  
change into the src/ directory and type 
 
make install 
 
The executables will then be copied into the bin/ directory, and the library 
file SLM2.a will be copied into the lib/ directory.  
 
For “little-endian” machines (eg those running Linux, Cygwin) the Makefile 
must be changed. The Makefile is included in the scr directory. A specific line 
must be changed, as follows: 
 
… 
#POSIX_FLAG = -D_INCLUDE_POSIX_SOURCE 
#BYTESWAP_FLAG = -DSLM_SWAP_BYTES 
#FIX_PROT_FLAG  = -D__USE_FIXED_PROTOTYPES__  
… 
 
“#BYTESWAP_FLAG = -DSLM_SWAP_BYTES” must be changed to 
“BYTESWAP_FLAG = -DSLM_SWAP_BYTES”: 
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… 
#POSIX_FLAG = -D_INCLUDE_POSIX_SOURCE 
BYTESWAP_FLAG = -DSLM_SWAP_BYTES 
#FIX_PROT_FLAG  = -D__USE_FIXED_PROTOTYPES__  
… 
 
Then the Toolkit can be installed as before. 
 
In our work we copied these twelve executables into the directory where we 
built the language models.   
 
File formats 
 
Text stream: An ASCII file containing text. It may or may not have markers to 
indicate context cues, and white space can be used freely. ( .text)   
 Word frequency file: An ASCII file containing a list of words, and the 
number of times that they occurred. This list is not sorted; it will generally be 
used as the input to wfreq2vocab, which does not require sorted input. 
(.wfreq)   
 Word n-gram file: ASCII file containing an alphabetically sorted list of n-
tuples of words, along with the number of occurrences  (.w3gram, .w4gram 
etc.)   
Vocabulary file: ASCII file containing a list of vocabulary words. Comments 
may also be included – any line beginning ## is considered a comment. The 
vocabulary is limited in size to 65535 words. (.vocab)   
Context cues file: ASCII file containing the list of words, which are to be 
considered “context cues”. These are words which provide useful context 
information for the n-grams, but which are not to be predicted by the 
language model. Typical examples would be <s> and <p>, the begin sentence, 
and begin paragraph tags. (.ccs)  
Id n-gram file: ASCII or binary (by default) file containing a numerically 
sorted list of n-tuples of numbers, corresponding to the mapping of the word 
n-grams relative to the vocabulary. Out of vocabulary (OOV) words are 
mapped to the number 0.( .id3gram.bin, .id4gram.ascii etc.)   
Binary language model file: Binary file containing all the n-gram counts, 
together with discounting information and back-off weights. Can be read by 
evallm and used to generate word probabilities quickly. ( .binlm )  
ARPA language model file: ASCII file containing the language model 
probabilities in ARPA-standard format. (.arpa)   
Probability stream: ASCII file containing a list of probabilities (one per line). 
The probabilities correspond the probability for each word in a specific text 
stream, with context-cues and OOVs removed. (.fprobs)   
Forced back-off file: ASCII file containing a list of vocabulary words from 
which to enforce back-off, together with either an ‘i’ or an ‘e’ to indicate 
inclusive or exclusive forced back-off respectively. (.fblist) 
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Discounting strategies 
 
Discounting is the process of replacing the original counts with modified 
counts so as to redistribute the probability mass from the more commonly 
observed events to the less frequent and unseen events. If the actual number 
of occurrences of an event E (such as a bigram or trigram occurrence) is c(E), 
then the modified count is d(c(E))c(E), where d(c(E)) is known as the discount 
ratio. The CMU Toolkit supports the following discounting strategies: 

 
1. Good Turing discounting  
2. Witten Bell discounting  
3. Absolute discounting  
4. Linear discounting 
 
The tools  
 
1. text2wfreq 
Input : Text stream  
Output : List of every word which occurred in the text, along with its number 
of occurrences. 
 
2. wfreq2vocab 
Input : A word unigram file, as produced by text2wfreq  
Output : A vocabulary file. 
 
3. text2wngram 
Input : Text stream  
Output : List of every word n-gram which occurred in the text, along with its 
number of occurrences. 
 
4. text2idngram 
Input : Text stream, plus a vocabulary file.  
Output : List of every id n-gram which occurred in the text, along with its 
number of occurrences. 
 
5. ngram2mgram 
 Input : Either a word n-gram file, or an id n-gram file.  
Output : Either a word m-gram file, or an id m-gram file, where m < n. 
 
6. wngram2idngram 
Input : Word n-gram file, plus a vocabulary file.  
Output : List of every id n-gram which occurred in the text, along with its 
number of occurrences, in either ASCII or binary format. 
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7. idngram2stats 
Input : An id n-gram file (in either binary (by default) or ASCII (if specified) 
mode). 
Output : A list of the frequency-of-frequencies for each of the 2-grams, … , n-
grams, which can enable the user to choose appropriate cut-offs, and to 
specify appropriate memory requirements with the –spec_num option in 
idngram2lm. 
 
8. mergeidngram 
Input : A set of id n-gram files (in either binary (by default) or ASCII (if 
specified) format – note that they should all be in the same format, however). 
 
Output : One id n-gram file (in either binary (by default) or ASCII (if 
specified) format), containing the merged id n-grams from the input files. 
 
9. idngram2lm 
Input : An id n-gram file (in either binary (by default) or ASCII (if specified) 
format), a vocabulary file, and (optionally) a context cues file. Additional 
command line parameters will specify the cutoffs, the discounting strategy 
and parameters, etc.  
Output : A language model, in either binary format (to be read by evallm), or 
in ARPA format. 
 
10. binlm2arpa 
Input : A binary format language model, as generated by idngram2lm.  
Output : An ARPA format language model. 
 
11.evallm 
Input : A binary or ARPA format language model, as generated by 
idngram2lm. In addition, one may also specify a text stream to be used to 
compute the perplexity of the language model. The ARPA format language 
model does not contain information as to which words are context cues, so if 
an ARPA format language model is used, then a context cues file may be 
specified as well. 
Output : The program can run in one of two modes: 
compute-PP – Output is the perplexity of the language model with respect to 
the input text stream.  
Validate – Output is confirmation or denial that the sum of the probabilities of 
each of the words in the context supplied by the user sums to one. 
 
12. interpolate 
Input : Files containing probability streams, as generated by the –probs option 
of the perplexity command of evallm. Alternatively these probabilities could 
be generated from a separate piece of code, which assigns word probabilities 
according to some other language model, for example a cache-based LM. This 
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probability stream can then be linearly interpolated with one from a standard 
n-gram model using this tool. 
Output : An optimal set of interpolation weights for these probability streams, 
and (optionally) a probability stream corresponding to the linear combination 
of all the input streams, according to the optimal weights. The optimal 
weights are calculated using the expectation maximization (EM) algorithm. 
 
 
 
 
Typical usage 
 

 
The first step in constructing a language model is to define the model’s vocabulary: 

“ cat trainingCorpus.text | text2wfreq | wfreq2vocab –top 20000 > 
trainingCorpus. vocab ” 

The option “top” defines the amount of the most common words that the 
Toolkit uses. In this example the vocabulary file contains the most common 20 
000 words. 

A context cues files should also be generated: 

“ echo “<s>” > trainingCorpus .ccs ” 
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Language data is viewed by the CMU Toolkit as a stream of words 
interspersed with context cues. Context cues are markers, which indicate 
events such as sentence, paragraph and article boundaries. Useful information 
is provided to the language model through the use of these markers. 

  The next step is to convert the training corpus in to a list of id N-grams : 

“ cat trainingCorpus.text |text2idngram  -vocab trainingCorpus.vocab –buffer 
200 –n 3 > trainingCorpus.id3gram” 

The “-n 3” option means that we are building a trigram model. The “-buffer 
200” option defines the amount of RAM ,in MB, that the Toolkit will grab. 

The last step is to convert the id trigram stream into an ARPA language 
model file: 

 “ idngram2lm –witten_bell –n 3 –vocab trainingCorpus.vocab –context 
trainingCorpus.ccs –idngram trainigCorpus.id3garm -arpa 
trainingCorpus.arpa –cutoffs 1 1 “ 

The discounting method used in the last step is the Witten-Bell discounting. 
Also in order to reduce the size of a language model, infrequent N-grams are 
often removed from the model. Cutoffs define this reduction. For the 1996 H4 
Broadcast News training corpus the size of the language model for cutoffs “0 
0” and “1 1”, was 219 MB and 80 MB respectively.   

Finally, the quality of the language model can be evaluated using a test text. 
With respect to the test text the perplexity of the language model is computed: 

“ evallm –arpa trainingCorpus.test 

   evalm : perplexity –text test.text ” 

For a more detailed description of the CMU SLM Toolkit it is recommended to 
consult the complete manual, which is included to the Toolkit. 
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B 
 
“Scripting” or “Coding”: how to save time   
 
Perl’s integration of regular expressions into the language syntax is 
particularly powerful for NLP work. While we were writing the code for this 
work, sometimes the required code’s processing time was surprisingly large. 
In these cases the first thing we thought, was to translate the script into C, in 
order to achieve faster execution time. In the following paragraphs we give a 
brief explanation why this strategy was rejected:  
   
People often have the idea that automatically translating Perl to C and then 
compiling the C will make their Perl programs run faster, because "C is much 
faster than Perl." 
The Perl interpreter is running your Perl program. You want a C program 
that does the same thing that your Perl program does. A C program to do 
what your Perl program does would have to do most of the same things that 
the Perl interpreter does when it runs your Perl program. There is no reason 
to think that the C program could do those things faster than the Perl 
interpreter does them, because the Perl interpreter itself is written in very fast 
C. 

Suppose your program needs to split a line into fields, and uses the Perl split 
function to do so. You want to compile this to C so it will be faster. This is 
obviously not going to work, because the split function is already 
implemented in C. If you have the Perl source code, you can see the 
implementation of split in the file pp.c; it is in the function named pp_split. 
When your Perl program uses split, Perl calls this pp_split function to do the 
splitting. pp_split is written in C, and it has already been compiled to native 
machine code. 

Now, suppose you want to translate your Perl program to C. How will you 
translate your split call? The only thing you can do is translate it to a call to the 
C pp_split function, or some other equivalent function that splits. There is no 
reason to believe that any C implementation of split will be faster than the 
pp_split that Perl already has. Years of work have gone into making pp_split as 
fast as possible. 

How to save time: Instead of trying to translate your Perl script into C code, it 
is more sufficient to study in depth your needs and optimize your code (avoid 
unnecessary “push”es, use hashes in cases where it is absolutely necessary, 
etc).    
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C 
 

Sample sentences from the ATIS domain 
 
SHOW ME ALL FLIGHTS FROM TORONTO 
SHOW ME MORNING FLIGHTS FROM TORONTO 
SHOW ME ALL NATIONAIR FLIGHTS FROM TORONTO 
SHOW ME ALL NATIONAIR FLIGHTS FROM TORONTO 
SHOW ME ALL CANADIAN AIRLINES FLIGHTS FROM TORONTO 
WHAT CITIES ARE SERVED BY CANADIAN AIRLINES INTERNATIONAL 
WHERE DOES CANADIAN AIRLINES INTERNATIONAL FLY TO 
WHERE DOES CANADIAN AIRLINES INTERNATIONAL FLY 
PLEASE LIST THE EARLIEST LUNCH FLIGHT FROM COLUMBUS TO PHOENIX 
PLEASE LIST THE FLIGHTS FROM CHARLOTTE TO LONG BEACH ARRIVING AFTER 
LUNCH TIME 
WHAT FLIGHTS ARE AVAILABLE FROM DENVER TO BALTIMORE FIRST CLASS ON 
UNITED AIRLINES ARRIVING MAY SEVENTH BEFORE NOON 
WHAT FLIGHT GOES FROM DENVER TO BALTIMORE FIRST CLASS ON UNITED 
AIRLINES ARRIVING ON MAY SEVENTH 
PLEASE LIST THE CHEAPEST FLIGHTS FROM DALLAS TO BALTIMORE ARRIVING ON 
MAY FIFTH MAY SEVENTH 
PLEASE LIST THE CHEAPEST FLIGHT FROM DALLAS TO BALTIMORE ARRIVING ON 
MAY SEVENTH 
WHAT IS THE SMALLEST AIRCRAFT AVAILABLE FLYING FROM PITTSBURGH TO 
BALTIMORE ARRIVING ON MAY SEVENTH 
WHAT IS THE SMALLEST AIRCRAFT THAT FLIES FROM PITTSBURGH TO BALTIMORE 
ARRIVING MAY SEVENTH 
PLEASE LIST THE FLIGHTS FROM PITTSBURGH TO BALTIMORE ARRIVING MAY 
SEVENTH 
PLEASE LIST ALL THE TAKEOFFS AND LANDINGS FOR GENERAL MITCHELL 
INTERNATIONAL 
PLEASE LIST ALL THE ARRIVING AND DEPARTING FLIGHTS FROM GENERAL 
MITCHELL INTERNATIONAL 
LIST THE FLIGHTS THAT ARRIVE AND DEPART FROM GENERAL MITCHELL 
INTERNATIONAL AIRPORT 
PLEASE LIST THE FLIGHTS TAKING OFF AND LANDING ON GENERAL MITCHELL 
INTERNATIONAL AIRPORT 
WHAT FLIGHTS TAKEOFF AND LAND AT GENERAL MITCHELL INTERNATIONAL 
LIST ALL THE FLIGHTS THAT TAKEOFF FROM GENERAL MITCHELL 
INTERNATIONAL 
LIST ALL THE TAKEOFFS AND LANDINGS AT GENERAL MITCHELL AIRPORT 
LIST ALL THE TAKEOFFS AND LANDINGS AT GENERAL MITCHELL 
INTERNATIONAL 
LIST THE TAKEOFFS AND LANDINGS AT GENERAL MITCHELL INTERNATIONAL 
LIST ALL THE TAKEOFFS AND LANDINGS AT GENERAL MITCHELL 
INTERNATIONAL 
SHOW ME THE ONE WAY FLIGHTS FROM DETROIT TO NEW YORK 
SHOW ME THE ONE WAY FLIGHTS FROM DETROIT TO WESTCHESTER COUNTY 
SHOW ME THE MOST EXPENSIVE ONE WAY FLIGHT FROM DETROIT TO 
WESTCHESTER COUNTY 
SHOW ME THE ONE WAY FLIGHT FROM DETROIT TO WESTCHESTER COUNTY WITH 
THE HIGHEST FARE 
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D 
 
An example of induced semantic classes for 11 iterations 
 
c1class1c*LAYOVER STOPOVER  
c1class2c*EARLIEST LATEST  
c1class3c*ALSO BE  
c1class4c*WANT WOULD<>LIKE  
c1class5c*INDIANAPOLIS TAMPA MILWAUKEE PHOENIX KANSAS<>CITY 
CINCINNATI  
c1class6c*FIND RENT  
c2class1c*TORONTO c1class5c  
c2class2c*DALLAS MINNEAPOLIS LOS<>ANGELES  
c2class3c*BURBANK NASHVILLE COLUMBUS CLEVELAND  
c2class4c*GOING J<>F<>K  
c2class5c*LAS<>VEGAS MIAMI  
c2class6c*LONG<>BEACH ONTARIO  
c3class1c*PAUL PETERSBURG  
c3class2c*OAKLAND WESTCHESTER<>COUNTY  
c3class3c*CHICAGO DETROIT  
c3class6c*c2class1c c2class5c  
c3class(45)7c*MEMPHIS TRAVEL c2class6c BOSTON c2class3c PITTSBURGH c2class2c 
NEWARK  
c4class1c*MONDAY THURSDAY WEDNESDAY  
c4class2c*EIGHTH SIXTH  
c4class3c*FRANCISCO JOSE  
c4class4c*HOUSTON c3class6c SALT<>LAKE<>CITY MONTREAL c2class4c 
LA<>GUARDIA ORLANDO  
c4class5c*CHARLOTTE c3class3c BALTIMORE  
c4class6c*LOUIS c3class1c  
c5class1c*c4class4c c4class5c  
c5class2c*NEED c1class4c  
c5class3c*DEPART LEAVE  
c5class4c*NONSTOP RETURN  
c5class5c*ATLANTA SAINT<>c4class6c TACOMA DENVER  
c5class6c*SATURDAY c4class1c  
c6class1c*c5class1c c5class5c  
c6class2c*EVENING MORNING  
c6class3c*FOUR NINE  
c6class4c*U<>S<>AIR c1class3c  
c6class5c*LOVE<>FIELD c3class2c  
c6class6c*EIGHT THREE  
c7class1c*ARRIVE ARRIVES  
c7class2c*AMERICAN NORTHWEST  
c7class3c*FRIDAY SUNDAY c5class6c  
c7class4c*CAN DO  
c7class5c*DEPARTING LEAVING  
c7class6c*SEATTLE c6class1c  
c8class1c*PRICES TYPE<>OF<>AIRCRAFT  
c8class2c*AFTERNOON c6class2c  
c8class3c*BETWEEN FROM  
c8class4c*FIVE c6class6c SIX  
c8class5c*UNITED c7class2c  
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c8class6c*AIRFARE TICKET  
c9class1c*TUESDAY c7class3c  
c9class2c*AIRPORT BACK FLORIDA KNOW  
c9class3c*T<>W<>A c6class4c JULY DELTA  
c9class4c*CALIFORNIA OHIO  
c9class5c*DIEGO c4class3c  
c9class6c*TIMES TOMORROW  
c10class2c*GIVE<>ME LIST  
c10class3c*GET SEE c5class2c  
c10class4c*DAILY c5class4c CONNECTING  
c10class5c*CAR STOP  
c10class(16)7c*L c1class6c TAKE  
c11class1c*AND OR  
c11class2c*c6class5c c7class6c  
c11class3c*DISTANCE FLIGHTS  
c11class4c*AFTER BEFORE AROUND  
c11class5c*CITIES c8class1c AIRCRAFT  
c11class6c*c7class5c c9class3c 
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E 
 
More figures of evaluation  
 

Varying the search margin 
 
The following table contains the parameters that were kept constant: 
 

SysIt SemMs #Pairs m p c   q 
11 IR 150 5 1 0.7 0.075 

 
The numbers in the legend, denote the chunker’s iterations at each iteration of 
the system. 
 

• SchMrg=3 
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• SchMrg=7 

 

 102 



 
 
 
 

• SchMrg=10 
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Comparison of the four semantic metrics 
 
 
 
The following table contains the parameters that were kept constant during 
the experimental procedure: 
 
 

SysIt #Pairs m p c   q 
11 150 5 1 0.7 0.075 

 
 
 
 
 
 
 
 

 104 



 
• ChuIt=4, #Ch=35 

 

 
 
 
 

• ChuIt=3, #Ch=40 
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• ChuIt=4, #Ch=40 
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