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Abstract 
 

The first algorithm of practical interest that takes advantage of quantum 
mechanics was proposed by Peter Shor in 1994. Shor described a polynomial time 
quantum algorithm for factoring integers. Factoring is considered to be a hard 
problem for classical computers. Indeed, the efficiency of the famous public-key 
cryptosystem RSA is based on the assumption that classical computers cannot factor 
big integers fast. On the other hand a quantum computer would be able to break the 
RSA system relatively easy. A number of quantum algorithms have been proposed 
since 1994, like Grover’s algorithm for database search, quantum cryptography and 
quantum teleportation. 

Unfortunately, current technology makes it impossible to build large scale 
quantum computers to run these algorithms. This is a great roadblock for those who 
want to test their algorithms or those who want to write new quantum algorithms. 
Therefore, the only way to test quantum algorithms is by simulating them on classical 
computers. However, the exponential state explosion makes quantum simulation a 
difficult task for classical computers. In this thesis we describe how Binary/Algebraic 
Decision Diagrams (BDDs, ADDs) can be used to simulate quantum circuits, and 
especially Shor’s algorithm. 
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1

Chapter 1 
 

Introduction to Quantum 
Computing 
 

Richard Feynman [1] observed in 1982 that it seems to be extremely difficult for a 
classical computer to simulate efficiently how a quantum system evolves in time. He also 
noted that, if we had a computing device that uses quantum effects, then this simulation 
could be made efficiently. Thus, he indirectly suggested that a quantum computer may be 
more efficient than any classical one. 

It wasn’t until 1994, when Peter Shor [2] described a polynomial time quantum 
algorithm for factoring integers, that Feynman’s suggestion became stronger than ever. 
Two years later, Lov Grover [3] developed a technique for searching an unstructured list 
of items, which gives a polynomial speedup over classical computers. These two 
algorithms are the most remarkable in the pile of quantum algorithms, which has been 
developed during the last decade. 
 This chapter targets to introduce the reader in the fundamental principles of 
quantum computation. We do not deal with the details of how a quantum computer is 
physically constructed. The reader is supposed to have just a basic knowledge of linear 
algebra and boolean logic. 
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1.1 The Bra/Ket Notation 
 
As we will see shortly, quantum states are represented by vectors; therefore, we need a 
compact notation for state vectors. Dirac [4] introduced the so called Bra/Ket notation 
where the ket x is used to describe the column vectors and the bra x denotes the 
complex conjugate transpose of x . The most commonly used vectors are 
 









=

0
1

0 (1.1) 

 







=

1
0

1 (1.2) 

 
The inner product of vectors x and y is represented by  
 

yx or yx (1.3) 
 

The inner product of two vectors is a complex number. Two nonzero vectors are 
orthogonal if and only if the result of their inner product is 0. For example vectors 0
and 1 are orthogonal 

[ ] 01001
1
0

0110 =⋅+⋅=







= (1.4) 

 
The outer product of vectors x and y is represented by  
 

yx (1.5) 
 
The outer product of two n-element vectors is an n by n matrix, i.e. 
 

[ ] 







=








=

00
10

10
0
1

10 (1.6) 

 

1.2 Tensor Product 
 
Now, we describe the tensor product (⊗ ), a matrix operation which is primitive to 
describe quantum systems mathematically. Suppose we have an m by n matrix A and a k
by p matrix B. Then, the tensor product, also called the Kronecker product, of A and B is 
defined as 
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

















=⊗

BaBaBa

BaBaBa
BaBaBa

BA

mnmm

n

n

K

MOMM

K

K

21

22221

11211

(1.7) 

 
We see that the result is an mk by np matrix. We can give an example for (1.7) 
 



















=



















⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅

=





















































=







⊗









32282421
24201815
161487
121065

84748373
64546353
82728171
62526151

87
65

4
87
65

3

87
65

2
87
65

1

87
65

43
21

If n = 1 and p = 1, then A and B are vectors, therefore, the tensor product is 
defined for vectors as well. We can give a simple example 
 



















=



















⋅
⋅
⋅
⋅

=



























⋅









⋅

=







⊗









8
6
4
3

42
32
41
31

4
3

2

4
3

1

4
3

2
1

If we use the Bra/Ket notation for vectors, then the symbol ⊗ can be omitted 
 



















=







⊗








=⊗=

0
0
0
1

0
1

0
1

0000

For the tensor product, the following hold 
 

BDACDCBA ⊗=⊗⊗ ))(( (1.8) 
CBCACBA ⊗+⊗=⊗+ )( (1.9) 
CABACBA ⊗+⊗=+⊗ )( (1.10) 

 )( BAabbBaA ⊗=⊗ (1.11) 
 
Notice that the tensor product does not commute i.e.  
 

0110 ≠ .
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1.3 Quantum Bit 
 
The bit is the fundamental component of classical computation and classical information. 
We can describe the properties of a bit either by adopting a mathematical point of view or 
by describing it as a real system. The former perspective indicates that a bit has a state -
either 0 or 1-, while the latter treats the bit as a voltage, where 0 Volts may correspond to 
0 and 5 Volts may correspond to 1, supposed we are talking for TTL logic. The 
description of bits as mathematical objects gives as the freedom to build a general theory 
of computation and information which is independent of any specific physical realization. 
Thus, at the rest of this paper we are not going to deal with the way a classical or a 
quantum computer is physically implemented.  
 The quantum analogue of the classical bit is called quantum bit, or qubit for short. 
Just as a classical bit has a state, a qubit has also a state. Two possible states for a qubit 
are the states 0 and 1 , which correspond to the states 0 and 1 for a classical bit. The 
difference between bits and qubits is that a qubit can be in a state which is a linear 
combination of 0 and 1 , often called superposition 
 

10 βψ += a (1.12)  

We can rewrite (1.12) using (1.1) and (1.2) 
 









=

β
ψ

a (1.13) 

 
The numbers a and β are called amplitudes and are complex numbers such that 
 

1|||| 22 =+= βψψ a (1.14) 
 

We know that we can examine a bit at any time to determine whether it is in the 
state 0 or 1. Remarkably, we cannot examine a qubit to determine its quantum state, that 
is, the values of a and β . Instead, when we examine a qubit we get either the result 0 with 
probability 2|| a , or the result 1 with probability 2|| β . This explains why (1.14) holds, 
since probabilities must sum to one. The action of examining a qubit is called 
measurement and after it, the qubit collapses to either the state 0 or 1 depending on 
the result of the measurement. For example, suppose that we have a qubit in the state 

 

1
2

10
2

1 +

Measuring this state will give the result 0 with probability %50
2

1
2

= or the result 1 

with equal probability. Now let’s say that the outcome of the measurement was 1, then, 
the qubit collapses to the state 1 .

The quantum bit can be defined more formally as a two-dimensional Hilbert 
space H2. The space H2 is equipped with a fixed basis { }1,0=B , a so-called 
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computational basis. States 0 and 1 are called basis states. A general state of a single 

quantum bit is a vector 







β
a having unit length, i.e. 1|||| 22 =+ βa .

1.4 Multiple Qubits 
 
Suppose we have two classical bits, then there would be four possible states, 00, 01, 10 
and 11. A system of two quantum bits is a four dimensional Hilbert space 224 HHH ⊗=
with computational basis { }11,01,10,00=B . We can write 

000,000 == , 011,010 == , etc. The state vector describing the two qubits is 
 

11100100 11100100 aaaa +++=ψ (1.15) 
 
Similar to the case for one qubit, the measurement result x (= 00, 01, 10, 11) occurs with 
probability 2|| xa , with the state of the qubits after the measurement being x . The 
condition that probabilities sum to one is expressed by the normalization condition 
 

1|||||||| 2
11

2
10

2
01

2
00 =+++ aaaa (1.16) 

For a multiple qubit system, we could measure just a subset of the qubits. Let’s 
say that we want to measure the first qubit of the two qubit system described by (1.15). 
Then the probability to measure 0 is 2

01
2

00 |||| aa + , leaving the post-measurement state 
 

2
01

2
00

0100 0100

aa

aa

+

+
=ψ (1.17) 

 
The probability to measure 1 is 2

11
2

10 |||| aa + and the post-measurement state is 
 

2
11

2
10

1110 1110

aa

aa

+

+
=ψ (1.18) 

 
The denominators in both (1.17) and (1.18) are used so that the normalization condition 
still holds for the post-measurement states.  
 Finally, we can make the notation even simpler if we write 000 = , 101 = ,

210 = , 311 = . We can now rewrite (1.15) 
 

∑
=

=+++=
3

0
3210 3210

x
x xaaaaaψ (1.19) 
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Using this notation, an n-qubit system is a Hilbert space n

n

HHHH n
⊗=⊗⊗= 2222 44 344 21

L

having computational basis { }12...,,1,0 −= nB . The state of an n-qubit system is 
the unit-length vector 

∑
−

=

=
12

0

n

x
x xaψ (1.20) 

 
so it is required that 

 ∑
−

=

=
12

0

2 1
n

x
xa (1.21) 

A group of qubits is called quantum register, just like a group of classical bits. 
 

1.5 Entanglement 
 
Suppose we have a quantum system in state ψ and another quantum system in state φ .
Then the state of the combined system is given by the tensor product φψ ⊗ . For 

example if we have two qubits, each in the state 1
2

10
2

1 + , then the state of the 

combined two qubit system is 
 

=







+⊗+








+⊗=








+⊗








+ 1

2
10

2
11

2
11

2
10

2
10

2
11

2
10

2
11

2
10

2
1

( )1110010021 +++=

We say that a system in the state ( )11100100
2
1 +++ is decomposable, since it can be 

expressed as the tensor product of its subsystems. However, there exist quantum systems, 
which are in a state that cannot be written as the tensor product of their subsystems. For 
example the two qubit state ( )1100

2
1 + is not decomposable. To see this, assume on 

the contrary, that  
 

( ) ( ) ( ) 1110010010101100
2

1
110110001010 bababababbaa +++=+⊗+=+

for some complex numbers 0a , 1a , 0b , 1b . But then  
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









=
=
=
=

0
0

21
21

10

01

11

00

ba
ba
ba
ba

which is impossible.  
 
Such states are called entangled and are responsible for many surprises in quantum 
computation and quantum information. In fact these states make quantum systems differ 
from classical ones. To see a characteristic property of entangled states, let’s look to what 
happens if we measure the first qubit of the state ( )1100

2
1 + , which is known as Bell 

state. There are two possible results: 0 with probability ½, leaving the post-measurement 
state 00=ϕ , and 1 with probability ½, leaving  the post-measurement state 11=ϕ .
Measuring now the second qubit will always give the same result as the measurement of 
the first qubit. It was John Bell, who first noticed that measurement correlations in a Bell 
state are stronger than those in a classical system. 
 

1.6 Single Qubit Gates 
 
We have seen how a quantum state is described, but we have not yet mentioned how we 
construct a desirable state. First, we must accept that a quantum computer is capable of 
initializing qubits to either the state 0 or 1 . The simpler operation on a classical bit is 
the NOT gate which flips the value of the bit. We can define an analogous operation for a 
quantum bit. A perfect candidate is an operation which takes the state 0 to 1 and vice 
versa. Suppose we define a two by two matrix X









=

01
10

X (1.22) 

 
Now let’s multiply X with 0 and 1 separately 
 

1
1
0

0
1

01
10

0 =







=
















=X (1.23) 

0
0
1

1
0

01
10

1 =







=
















=X (1.24) 

 
From equations (1.23) and (1.24) we see that matrix X represents the operation we want, 
and thus it is known as the quantum NOT gate. In fact this operation acts linearly, that is, 
it takes the state 10 ba + to the state 01 ba +
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







=
















=








a
b

b
a

b
a

X
01
10

(1.25) 

 
We can symbolize the above transformation as 
 

0110 baba X +→+ (1.26) 

 
It follows that since the state of a single qubit is represented by a two row vector, 

the operators must be represented by 2x2 matrices. Are there any other constraints on 
what matrices can be used as quantum gates? We should consider that in the resulting 
state, the normalization condition 1|||| 22 =+ βa should still hold. It turns out that this 
property is satisfied when the matrix U describing a single qubit quantum gate is unitary, 
that is 

IUUUU == †† (1.27) 
 
where †U is the adjoint of U (obtained by transposing and then complex conjugating U)
and I is the two by two identity matrix. We can easily confirm that X is unitary 
 









=
















==

10
01

01
10

01
10†† XXXX

This unitarity constraint is the only constraint on quantum gates. The fact that each 
operator U is unitary means that we can construct another operator †U which performs 
the reverse operation. To make clear, suppose that we apply a quantum gate U to a state 
ψ taking the state φ . We can go back to state ψ if we apply †U to φ

ψψψψψ

φ

==→→ IUUU UU ††

43421
(1.28) 

 
Another very important quantum gate is the Hadamard gate 
 









−

=
11

11
2

1H (1.29) 

 
which is unitary, since †HH = and IH =2 . This gate creates a state of equal 
superposition when it acts on the basis states 
 

1
2

10
2

1
1
1

2
1

0
1

11
11

2
10 +=








=
















−

=H (1.30) 

 

1
2

10
2

1
1

1
2

1
1
0

11
11

2
11 −=








−

=















−

=H (1.31) 
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The resulting states are said to be in an equal superposition because the probability to 
measure 0 is the same as the probability to measure 1. A brief description of some 
important quantum gates follows 
 









=

10
01

I 1010 baba I +→+ (1.32) 









−

=
10

01
Z 1010 baba Z −→+ (1.33) 








 −
=

0
0
i

i
Y 1010 aibiba Y +−→+ (1.34) 









=

i
S

0
01 1010 biaba S +→+ (1.35) 









= 4/0

01
πie

T 1010 4/πiT beaba +→+ (1.36) 

 
We can use the outer product to describe quantum gates. For example, 10 is the 

transformation that maps 1 to 0 and 0 to 







0
0 . Similarly, 01 maps 0 to 1 and 

1 to 







0
0 . For example 









=








+








=+=

01
10

01
00

00
10

0110X (1.37) 

 









=








+








=⋅+=

ii
iS

0
01

0
00

00
01

1100 (1.38) 

 

1.7 Controlled Gates 
 
Suppose we have a two qubit system. We want to apply a quantum gate to the second 
qubit, depending on the value of the first qubit. For example, we want to apply the 
quantum NOT gate on the second qubit only if the first qubit is in the state 1 . In fact, 
such a gate does exist and is called controlled-Not or CNOT for short. CNOT is described 
by the matrix 

 



















=

0100
1000
0010
0001

CNOT  (1.39) 
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It is easy to verify that CNOT performs the transformation 
 

0000 → , 0101 → , 1110 → , 1011 → (1.40) 
 

We see that the first qubit remains unchanged, while, the second qubit is flipped only 
when the first qubit is in the state 1 . The above action can be summarized as 
 

ABABA ⊕→ ,, (1.41) 
 

where }1,0{, ∈BA and ⊕ is addition modulo two, or else the XOR of A and B. The first 
qubit, A , is called control qubit and the second qubit, B , is called target qubit. 
 Generally, if we have a single qubit quantum gate U we can construct the 
Controlled-U gate, that is, a gate that transforms the second qubit according to U only 
when the first qubit is in the state 1 . The Controlled-U gate is described by the matrix 
 









=

U
I

CU
0

0
(1.42) 

 
where I is the two by two identity matrix, U is the two by two gate matrix and “0” 
denotes the two by two matrix with all elements zero. Since U is unitary, Controlled-U is 
also unitary. 
 We can construct gates with more than one control qubit. We will mention only 
one multi-controlled quantum gate, a controlled-NOT gate with two control qubits. This 
gate is known as Toffoli gate and is described by the matrix 
 

































=

01000000
10000000
00100000
00010000
00001000
00000100
00000010
00000001

Toffoli  (1.43) 

When we apply the Toffoli gate to a three qubit quantum register, it flips the target qubit 
only if both control qubits are in the state 1

ABCBACBA ⊕→ ,,,, (1.44) 
 
The Toffoli gate can be used to simulate the classical NAND gate. Suppose that the input 
bits to the classical NAND gate have the values A and B, then if C is 1 in equation (1.44) 
then we take the NAND of A and B in the third qubit 
 

ABBAABBABA ¬=⊕→ ,,1,,1,, (1.45) 
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The main difference of Toffoli from NAND is that, like every other quantum gate, Toffoli 
gate is reversible; therefore, we can “undo” the computation back. Recalling that the 
NAND gate is universal, we understand that the Toffoli gate can be used to simulate any 
classical gate. Intuitively, the ability of a quantum computer to simulate any classical gate 
means that they are at least equivalent to classical computers, in that they can perform the 
same computations. 
 

1.8 No-cloning Theorem 
 
We have said that any quantum gate must be unitary. In 1982, Wootters and Zurek [5] 
proved that this property implies that unknown quantum states cannot be copied or 
cloned. To prove the no cloning theorem we will assume that U is a unitary 
transformation that clones, that is 
 

ψψψ ,0, =U (1.46) 
 

for all quantum states ψ . Consider 10 bac += , then by linearity 
 

( ) 1100100010000, babUaUbaUcU +=+=+= (1.47) 
 
But U is a cloning transformation, that means  
 

( )( ) 111001001010,0, 22 bababababacccU +++=++== (1.48) 
 

Equations (1.47) and (1.48) are not equal, unless ab = 0. This means than we cannot copy 
an unknown state 10 ba + , but we can copy the basis states 0 and 1 . For example, 
the CNOT gate can copy the basis states, but it cannot copy an unknown state.  

1.9 Measurement 
 
We pointed that the evolution of a quantum system is described by unitary 
transformations. However, there must also be times, when the quantum system interacts 
with the classical world in a way that we can observe the state of the quantum system. 
Such an interaction makes the system no longer closed, which entails that it is not 
necessarily subject to unitary evolution. Measuring a quantum state is a non-unitary 
transformation indeed. 
 Quantum measurements are described by a collection {Mm} of measurement 
operators. The index m refers to the outcome of the measurement that may occur. If the 
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state of the quantum system is ψ before the measurement, then the probability that 
result m occurs is 

 ψψ mm MMmp †)( = (1.49) 
 
and the post-measurement state is 
 

ψψ

ψψ

mm

mm

MM

M
mp

M
†)(

= (1.50)  

 
The constraint that probabilities must sum to one is translated into the completeness 
equation 

IMM
m

mm =∑ † (1.51) 

 
A simple but very important example is the measurement of a single qubit system 

which is in the state 10 ba +=ψ . We can define the measurement operators using the 
outer product 

 







==

00
01

000M (1.52) 

 







==

10
00

111M (1.53) 

 
It is easy to see that 0M and 1M satisfy the completeness equation. The probability of 
obtaining the measurement result 0 is 
 

[ ] 2**
0

†
0 00

01
00
01

)0( a
b
a

baMMp =























== ψψ (1.54) 

 
and the probability to measure 1 is 
 

[ ] 2**
1

†
1 10

00
10
00

)1( b
b
a

baMMp =























== ψψ (1.55) 

 
The post-measurement states for these two cases are 
 

0
0

1
00
011

)0(
0

a
aa

ab
a

ap
M

=







=
















=

ψ
(1.56) 

1
01

10
001

)1(
1

b
b

bbb
a

bp
M

=







=
















=

ψ
(1.57) 

 
It can be proved that multipliers like aa can be effectively ignored, so states (1.56) and 
(1.57) are equivalent to 0 and 1 respectively.  
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When measuring on the computational basis, the measurement operators for 
measuring the n qubits of an n-qubit system are 
 

xxM x = , ]12,0[ −∈ nx (1.58) 
 
A more interesting situation is when we want to measure a subset of the qubits of a 
quantum register. Suppose we have a register that is the result of combining three smaller 
registers, and its state is 

{

}

{

qubits
q

qubits
n

qubits
p

zym=ψ (1.59) 

 
If we want to measure the n qubits of register y , the measurement operators are 
 

qp IxxIM x 22
' ⊗⊗= (1.60) 

 
where kI 2 is the identity matrix of dimension 2k.

1.10 Quantum Circuits 
 
People who design classical circuits use special symbols for the basic boolean gates. 
Moreover they use these symbols to design more complex circuits on the paper. The idea 
is adopted for quantum computers too. First, we have to create symbols for the basic 
gates, the single qubit gates described above, and then we will use them to build bigger 
circuits. A single qubit gate is denoted by a box which has the name of the gate. For 
example, if we apply the gate U to a qubit which has initial state ψ , we can symbolize 
the process like  

ψ ψU

Figure 1.1: Applying the gate U to a qubit which has initial state ψ

where the gate U is applied from left to right. 
We are ready to give a symbol for the controlled-U gate which acts on a two qubit 

system which is in state ψ








ψ ψCU









Figure 1.2: Applying the controlled-U gate to a two qubit state ψ
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The qubit with the black dot is the control qubit, while the other is the target qubit. 
Because of the importance of the controlled-NOT gate, it has a special symbol 
 








ψ ψCNOT









Figure 1.3: Controlled-NOT gate 
 
We can introduce a new two qubit gate which swaps the states of the two bits, 

 
a b

b a

≡

a

b

b

a

Figure 1.4: SWAP gate 
 

The corresponding matrix for the SWAP gate is 
 



















=

1000
0010
0100
0001

SWAP  (1.61) 

 
We need a way to represent the action of measuring a qubit in a circuit. This operation 
converts a single qubit into a probabilistic classical qubit M. The classical bit is 
distinguished from a qubit by drawing it as a double line wire, 
 

ψ

Figure 1.5: Measurement symbol 
 

We can make the circuit representation more compact adopting the following 
equivalences 
 

H

H
{n qubits ≡ {n qubits nH ⊗ ≡ nH ⊗n

M

Figure 1.6: Shorter representation for multiple Hadamard gates 
 

≡

Figure 1.7: Shorter representation for Identity gate 
 



CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 15  

 

In a circuit with gates acting on more than one qubit, the corresponding gate 
matrix results from the tensor product of the single qubit gates. For example, the matrix 
for the overall circuit of Figure 1.6 is   

 

43421 L
n

n HHH ⊗⊗=⊗ (1.62) 

 
We may have more than one gate applied on one qubit. In this case we put all the 

gates on the same “wire”, with the one on the left acting first. The corresponding matrix 
is the product of all matrices that act on the qubit. Let see a small example, 
 

ψ ψSXH ≡

Figure 1.8: A series of gates acting on the same qubit 
 

SXHU = (1.63) 
 

Our final example includes three qubits and a number of quantum gates, in an 
attempt to present all the cases which have been discussed previously. We give the circuit 
and then the corresponding matrix, 

 

H

X

S

Z

H

X

ICNOT ⊗ XHI ⊗⊗ HZS ⊗⊗ CNOTX ⊗

Figure 1.9: A three qubit circuit 
 

))()()(( ICNOTXHIHZSCNOTXU ⊗⊗⊗⊗⊗⊗= (1.64) 
 
In (1.64) U is an 8x8 matrix. Generally speaking, a gate for n qubits has dimension 2n by 
2n.

There are some features of classical circuits that are not allowed in quantum 
circuits. First, there is no feedback form one part of the circuit to another; quantum 
circuits are acyclic. Second, the operation of classical circuits known as FANIN is not 
allowed for quantum circuits. Third, the inverse operation, FANOUT, is also not allowed, 
for, quantum mechanics forbid the copying of a qubit. 
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1.11 Reversibility and Scratch space 
 
We can construct a quantum circuit to compute the function f(x), 
 

fUx )(xf

Figure 1.10: A possible transformation to compute f(x)

Unfortunately, this approach doesn’t work for all functions. The constraint that quantum 
transformations are reversible makes the circuit of Figure 1.10 valid only when f(x) is 
one to one, that is, function f -1(x) exists. In simpler words, we must be able to find the 
original input x , by “uncomputing” the result )(xf . Of course, only a few functions 
are one to one, so we must find a way to evaluate all the functions reversibly. The idea is 
to have two distinct registers. One should store the input and the other should store the 
output. Indeed, this is the way to compute functions using quantum circuits,  
 

x

y
fU

)(xfy⊕

x

Figure 1.11: Computing f(x) reversibly 
 

If we initialize y in the state 0 , then )()(0)( xfxfxfy =⊕=⊕ , which means that the 
second register holds the result f(x). This transformation is summarized as 
 

)(,0, xfxxU f = (1.65) 
 

It is common for transformations Uf to use some temporary qubits as scratch 
space for their calculations. These temporary qubits, also known as ancilla qubits, are 
initialized to 0 , but may end in any state )(xg (g for garbage) after Uf is applied. In the 
case that Uf uses ancilla qubits, Figure 1.11 can be changed to Figure 1.12 

x
0 fU )(xf

x

0 )(xg

Figure 1.12: Computing f(x) using scratch space 
 

In a chain of transformations that all use scratch space, we will end with a big number of 
qubits that store garbage. Fortunately, C. Bennett ([6, 7]) proposed two tricks to “erase” 
these qubits, in order to reuse them later. The first trick requires one more register, 
 

)(,0,0,)(),(),(,0),(),(,0,0,0,
†

4,2 xfxxfxgxfxxgxfxx ff UCNOTU → →→ (1.66) 
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The second step is a form of copying, by applying bitwise controlled-NOT gates between 
the qubits of the second and the fourth register. The last step is the application of the 
inverse transformation of Uf.

The second trick introduces a way to write the output of the function f(x) in the 
input register, provided that it is an invertible function. Then there exists the 

transformation 1−f
U ,

)(,0, 11 xfxx f
U − → − (1.67) 

 
which can be used in the following way 
 

0),(),()(,0,
†

1 xfxxfxfxx ff
USwapU  → →→ − (1.68) 

 
Thus, we can save even more space in the case f(x) is invertible.  
 

1.12 Quantum Parallelism 
 
Suppose we have a transformation Uf that computes the function f(x). This transformation 
is linear, that is, if the input is in a superposition then it is applied to all basis states. In 
this way, quantum computers can evaluate the function f(x) for many different values of x
simultaneously. This unique feature of quantum computers is called quantum parallelism 
and together with entanglement is exploited by almost all quantum algorithms. Only two 
steps are required to take the advantage of quantum parallelism. Starting with all the 
input qubits in the state 0 , we apply the Hadamard gate to each of the n input qubits, to 
create an equal superposition in the input register 
 

n2
1 ∑

−

=

12

0

n

x
x (1.69) 

 
Then we apply Uf to get a superposition of all 2n possible results of f(x)

∑∑
−

=

−

=

=









⊗







 12

0

12

0

)(,
2
10

2
1 nn

x
n

x
nf xfxxU (1.70) 

 

Figure 1.13 depicts the circuit that performs these two steps  
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0
fU ∑

−

=

 12

0

)(,
2

1 n

x
n

xfx
n⊗0 nH ⊗

Figure 1.13: Computing f(x) for all possible inputs 
 

We will use the Toffoli gate to simulate the classical AND gate as a trivial 
example for quantum parallelism. Figure 1.14 shows the quantum circuit for the AND 
function. 
 

0

b

a a

b

ba ∧

Figure 1.14: Simulating the classical AND gate using a Toffoli gate 
 

First, we create an equal superposition in the two input qubits 
 

( ) ( ) ( )110100010000
2
1010

2
110

2
1000)( +++=⊗+⊗+=⊗⊗ IHH (1.71) 

 
We are going to apply the Toffoli gate to the state (1.71), 
 

( ) ( )111100010000
2
1110100010000

2
1 +++=+++Toffoli  (1.72) 

 
The resulting superposition contains the result of the AND gate for all possible inputs. In 
other words, it can be view as the truth table for the conjugation. In the final state, the 
input registers are entangled with the output register. Measuring the third qubit, would 
project the input qubits in the states for which the function produces a result equal to the 
result of measurement. For example, the measurement outcome is 1, then the post-
measurement state would be 111 .

To sum up, quantum parallelism gives us the opportunity to compute all the 
possible values of a function f(x) by evaluating the function only once. This is an amazing 
feature indeed, but how can we take advantage of the final state which is in a 
superposition of all possible results? Measuring the final state gives only one result, 
which is equivalent to what a classical computer can do. We need something cleverer if 
we want to score more, using quantum parallelism. Such an idea is presented in the next 
chapter, where we describe an algorithm for fast factorization.  
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Chapter 2 
 

Fast Factorization 

Many people have tried to find efficient algorithms for integer factorization during the 
last three decades. The most efficient classical algorithm known today is called number 
field sieve. To find the prime factorization of an n-bit integer, this algorithm requires 

))log(exp( 3/23/1 nnΘ operations, which is exponential in the size of the number being 
factored. It is assumed that it would be impossible to find a fast classical algorithm for 
factorization. Indeed, the safety of the famous public key cryptographic system RSA is 
based on this assumption. In 1994, Peter Shor [2] described an algorithm, which can 
factor an integer using )logloglog( 2 nnnΟ operations. That is, a quantum computer can 
factor a number exponentially faster than the best know classical algorithm.   
 In this chapter we describe the quantum Fourier transform, which is the main 
gear of Shor’s algorithm. Then we describe how factoring is reduced to order finding and 
how a quantum computer can solve this problem. A short description of the appropriate 
quantum circuits follows. Finally, we show a way to implement the quantum Fourier 
transform semi-classically. 
 

2.1 Quantum Fourier Transform 

It is common in mathematics and computer science to solve a problem by transforming it 
into another problem. One such transformation is the discrete Fourier transform (DFT), 
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which takes as input a vector of complex numbers, 110 ,,, −Nxxx K , where N is a fixed 
parameter, and it outputs a vector of complex numbers 110 ,,, −Nyyy K , defined by 
 

∑
−

=

⋅⋅⋅≡
1

0

/21 N

j

Nkji
jk ex

N
y π (2.1) 

 
The quantum Fourier transform (QFT) is a variant of DFT where N is a power of 2. The 
QFT on a computational basis { }1...,,1,0 −= NB is defined to be a linear operator 
with the following action on the basis states, 
 

ke
N

j
N

k

NkjiQFT ∑
−

=

⋅⋅⋅→
1

0

/21 π (2.2) 

 
The action of QFT on an arbitrary state may be written  
 

kyjx
N

k
k

QFT
N

j
j ∑∑

−

=

−

=

→
1

0

1

0
(2.3) 

 
where the amplitudes yk are the DFT of the amplitudes xj.

When acting on an n-qubit state the QFT can be implemented efficiently by the 
following quantum circuit 

 

2R 1−nR nR

2−nR 1−nR

2R
M MM M

Figure 2.1: The circuit which implements the QFT 
 
where the top wire acts on the most significant qubit and the gate Rk denotes the unitary 
rotation transformation 

 







= kik e

R 2/20
01
π (2.4) 

 
The corresponding 2n by 2n matrix for the QFT has elements 
 

njki

n
ejkF 2/2

2
1),( ⋅⋅⋅= π , where    k, j = 0, 1, …, 2n-1 (2.5) 

 
We can count the number of gates that is used by the circuit. We apply a Hadamard and 
n-1 conditional rotations on the first qubit - a total of n gates. On the second qubit we 
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apply one Hadamard and n-2 conditional rotations – a total of n-1 gates. Continuing in 
this way and counting the n/2 Swap gates, we see that the total number of gates is  
 

)(
2

2
2

)1(
2

2
2

1

nnnnnnin n

i
Θ=+=++=+∑

=
(2.6) 

 
The best classical algorithm for computing the DFT on 2n elements is the Fast Fourier 
Transform (FFT) which uses )2( nnΘ gates. That is, a classical computer needs 
exponentially more operations to compute the Fourier transform than the quantum 
computer. Fourier transform is a key ingredient for many applications, like signal 
processing, so the exponential speedup sounds terrific. However, the amplitudes in a 
quantum computer cannot be directly accessed by measurement. This is more or less the 
same problem that prevents us from taking advantage from quantum parallelism. In the 
next session we describe how quantum parallelism and QFT can be combined to create a 
polynomial time factoring algorithm.  
 In fact this algorithm uses the inverse QFT which is implemented by the 
following circuit 
 

3R nR

1−nR

2R

2−nR

2R

Figure 2.2: The circuit which implements the inverse QFT 
 
The qubit swapping is not necessary, for, at the end of the algorithm all the qubits are 
measured and we can swap the bits of the measured value classically.  
 

2.2 Reduction of Factoring to Order Finding 

For positive integers a and N, a<N, with no common factors, the order of a modulo N is 
defined to be the least positive integer, r, such that ar = 1(mod N). In other words, the 
order of a modulo N is the period of the function  
 

Naxf x mod)( = (2.7) 
 
We are now going to see how we can factor an integer N when we know the period of 
function (2.7). First, we suppose that N is the product of powers of distinct prime integers 
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ke
k

ee pppN L21
21= (2.8) 

 
Then we randomly choose an integer 1≠a , a<N. If 1),gcd( >= Nam then m is a 
nontrivial factor of N, therefore we can find the rest of the factors by dividing N by m. If 
m = 1, assume that r is the order of a modulo N. Then  
 

)(mod1 Na r ≡ (2.9) 
 

which means that N divides 1−ra . If r is even, we can factorize 1−ra as 
 

)1)(1(1 2/2/ +−=− rrr aaa (2.10) 
 

Since N divides 1−ra , it should share a factor with 12/ −ra or with 12/ +ra or with 
both. We can easily extract this factor by using Euclid’s algorithm for finding the greatest 
common divisor of two numbers. 
 Of course, we must guarantee that this is not a trivial factor. This happens when 

12/ ±ra are multiples of N, so the greatest common divisor of these numbers with N is N.
Fortunately, it is not so likely that N divides 12/ ±ra , as we will demonstrate soon. First, 
N cannot divide 12/ −ra , since this would imply that 
 

)(mod12/ Na r ≡ (2.11) 
 
which is impossible, because it redefines the order of a to be r/2. However, it can still 
happen that N divides 12/ +ra and does not share any factor with 12/ −ra , that is 
 

)(mod12/ Na r −≡ (2.12) 
 

To sum up, the reduction of factoring fails only when the order of a modulo N is odd or 
when equation (2.12) holds. It can be shown that if the procedure is applied with a 
random a, yields a factor of N with probability at least 1211 −− k , where k is the number 
of different prime divisors of N in equation (2.8). A brief sketch of the proof follows. 

If ir is the order of ( )ie
ipa mod , then r is the least common multiple of all ir .

Consider the largest power of 2 dividing each ir . If they are all 1, then r is odd, so the 
algorithm fails. The same happens when they are all equal and larger than 1, because 
(2.12) holds since ( )ie

i
r pa mod12/ −≡ for every i. These are the only two cases that the 

algorithm fails. The Chinese remainder theorem [12] says that choosing an ( )Na mod  at 
random is the same as choosing for each i a number ( )ie

ii pa mod  at random. The 
multiplicative group ( )epmod  for any odd prime power ep is cyclic [12], so for any odd 

prime power ie
ip , the probability is at most ½ of choosing an ia , having any particular 

power of two as the largest divisor of its order ir . Therefore, each of the powers of 2 has 
at most probability ½ to agree with the previous ones, so all k of them agree with 
probability at most 121 −k . This means that there is at least a 1211 −− k chance that we 
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have chosen a good ( )Na mod . The only constraint is that N is odd and not a prime 
power, that is  

 λpN ≠ (2.13) 
 

If N is even, then we can immediately say that 2 is a factor of N. If N is a prime power, 
there exist efficient classical methods to find p and λ in (2.13).  
 What about if the numbers 12/ ±ra are so large that they cannot be manipulated 
efficiently? Fortunately, divisibility by N is a periodic property with period N, so upon 
estimation of r we can use Na r mod)1( 2/ ± instead of 12/ ±ra . Furthermore, very rapid 
algorithms for modular exponentiation are known. 
 

2.3 Finding the order 
 
We are going to describe the quantum part of Shor’s algorithm which is used to find the 
order of a modulo N. First we find mM 2= , such that 22 2NMN <≤ . It is common to 
use LM 22= , where L is the number of bits of N. The algorithm uses two quantum 
registers one of size m qubits and the other of size L qubits. We initialize the two registers 
in the state 

 10 (2.14) 
 

Initializing the second register in 1 helps us to compute Na x mod as we describe in 
section 2.4. Next, we apply the Hadamard gate to each qubit of the first register to create 
the superposition 

∑
−

=

1

0
11 M

x
x

M
(2.15) 

 
Then we compute the function Naxf x mod)( = , using as input the first register and 
storing the result in the second 
 

∑
−

=

1

0
mod1 M

x

x Nax
M

(2.16) 

 
Since this function is periodic, with period r, we can write (2.16) again as 
 

∑∑
−

= =

+
1

0 0

1 r

l

s

k

lalkr
M

(2.17) 

 
where s is the greatest integer for which Mlrs <+⋅ . The next step is to apply the 
inverse QFT to the first register to get 
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(2.18) 

 
In fact, what QFT does is to leave nonzero amplitudes only to integers that are multiples 

of 
r

M . If r doesn’t divide M, then most of the amplitude is attached to integers close to 

multiples of 
r

M . This means that the first register is in a state ∑
q

q r
Mqc .

Following, we measure the first register to get an outcome  
 

r
Mqp = , for some q. (2.19) 

 
Most of the time, q and r will be relatively prime, which means that reducing the fraction 







=

r
q

M
p to its lower terms will yield a fraction whose denominator is the period r. For 

this purpose, we perform the continued fraction expansion of 
M
p to find the convergents 

i

i

q
p

. The smallest iq for which )(mod1 Na iq ≡ , if such iq exists, is candidate to be the 

order of a modulo N.
The continued fraction expansion of a real number is a way to describe it in terms 

of integers, using expressions of the form 

 [ ]
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For example, 
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The mth convergent, m < n, to (2.20) is defined to be [ ]m
m

m aaa
q
p

,,, 10 K= . The 

continued fractions algorithm can be computed efficiently by a classical computer using 
the following equations 
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=
+=

=
=

nnnn

nnnn

qqaq
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aq
aap

q
ap

(2.21) 

 
The algorithm finishes after a finite number of steps for a rational number. This is the 

case for the number 
M
p . If  p and M are k bit integers the continued fraction expansion 

can be computed using )( 3kΟ operations.  
 

2.4 Example: Factoring 15 
 
An example is necessary, so we are going to use Shor’s algorithm to factor N = 15. First, 
we have to choose a random number smaller than N that has no common factors with N,
for example a = 7. We initialize two registers of 8 and 4 bits respectively. Then we apply 
the Hadamard transformation to the first register to get the state 
 

[ ] 125510
16
11

16
11

256
1 255

0

1256

0
+++== ∑∑

=

−

=

K
xx

xx

The next step is to compute the modular exponentiation 
 

[ ]K++++++=∑
=

7514133427110
16
115mod7

16
1 255

0x

xx

We can now apply the inverse QFT to the first register, but for clarity we will do an extra 
step which is not necessary. Since the second register is not used again, we can measure 
it. The measurement gives 1, 7, 4 or 13. Suppose that it gives 4. Entanglement indicates 
that the measurement leaves the first register in a superposition of basis vectors k for 
any k < 255 such that 7k mod 15 = 4. The state is now 
 

[ ] 4141062
8
1

K++++
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The sharp-eyed reader may have noticed that the order r = 4 is “stored” in the 
superposition of the first register. However, as mentioned before, we cannot just measure 
it, because that will only give a single number. We cannot even copy the state, to measure 
it several times, so we need something cleverer. What we need is the inverse QFT which 
when applied to the first register produces the state 
 

[ ]1921286402
1 +++

Measuring the first register will give 0, 64, 128 or 192 with probability ¼. Suppose we 
obtain 64. Then the continued fraction expansion of 25664 gives 41 , so r = 4 is the 
order of 7 modulo 15. We can apply the ideas mention in section 2.2, to get  
 

Possible factor = 3)15,17gcd( 2/4 =−

Possible factor = 5)15,17gcd( 2/4 =+

Measuring 0, means that we cannot apply the continued fraction algorithm. Measuring 
128 gives r = 2, which is not the correct order. Thus, it is a good idea to try some small 
multiples of r like 2r and 3r. Measuring 192 gives the correct order 4.  
 

2.5 Quantum Circuits for Modular Exponentiation 
 
We have purposely avoided mentioning how we can evaluate the modular exponential 

Na x mod  using quantum circuits, which is the dominant part of Shor’s algorithm. The 
simplest way is to have a circuit that multiplies by a a total of x-1 times and then taking 
the modulo N. Fortunately, there is a trick called repeated squaring, that speeds up the 
computation. If x is an L-bit number, we can use its binary expansion to write 
 

( )∏
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=
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==
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=

1

0
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1

0
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i

xxx ii
L

i

i
i

aaa (2.22) 

Moreover  

( ) 222 1−

=
ii

aa (2.23) 
 

which means that Na
i

mod2 can be computed by squaring 
12 −i

a . The pseudo-code 
describing the process of computing Na x mod  is 
 

For i = 0 to L-1, if  xi = 1 then Multiply Na
i

mod2 (2.24) 
 
The if… then statement can be computed using controlled gates. If have a gate 

),( NkOMULN  that multiplies with k and then takes the modulo N
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),( Nk
OMULN

y ( )Nky mod⋅

Figure 2.3: Operator for modulo N multiplication 
 

then the circuit for Shor’s algorithm is depicted by the following figure 
 

),( Na
OMULN

),( 2 Na
OMULN

),( 4 Na
OMULN

K
),(

12 Na

OMULN
L −

M M

1

0

0

0

0

Figure 2.4: Circuit implementing Shor’s algorithm 
 

Notice that the register which stores the result of modular exponentiation is initialized in 
1 , not 0 . Moreover, the order in which we apply the OMULN gates doesn’t matter, 

since the same product is produced. We have to explain how the OMULN operator is 
implemented. If y is an M-bit integer, using its binary notation we have 
 

[ ]∑∑
==

=⋅



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

=⋅
M

i

i
i

M

i

i
i NkyNkyNyk

00

)(mod2)(mod2)(mod  (2.25) 

 
The product )(mod Nyk ⋅ can be computed by the pseudo-code 
 

For i = 0 to M-1, if yi = 1 then ADD Nki mod2 (2.26) 
 
Once again, the if… then statement is implemented using controlled gates. The modular 
addition is computed by the following operator 
 

),( Nm
OADDN

y ( )Nmy mod+

Figure 2.5: Operator for modulo N addition 
 

Combining the ideas of equations (2.25) and (2.26) we see that the OMULN operator can 
be constructed by chaining M controlled-OADDN gates. The OADDN gate can be 
implemented using a multiplexed modulo adder which implements the following pseudo-
code 
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If (N – m>y) ADD m else ADD m-N (2.27) 
 
The multiplexed adder uses a comparator and its result qubit controls which number is to 
be added. In fact, the above description only captures the basic ideas of how we can build 
the quantum circuit for modular exponentiation. David Beckman et al. [13] describe in 
full detail how to implement such a circuit, using the appropriate number of ancilla 
qubits and erasing garbage (see section 1.11). It turns out that if the number N to be 
factored is L-bits, the modular exponentiation circuit uses 2L+1 ancilla qubits, which 
together with the L qubits of the register that stores the result, make a total of 3L+1. 
Supposing that we use 2L qubits in the first register of Shor’s algorithm we need 5L+1 
qubits to factor an L-bit integer. In the next section we describe a way to reduce this 
number to 3L+2, that is, we use only one qubit in the first register to compute the inverse 
QFT.

2.6 Semi-classical Fourier Transform 
 
Griffiths and Niu [14] pointed out that the measurements of the qubits of the first register 
in Shor’s algorithm can be performed before the controlled rotations. Moreover, we can 
replace the quantum controlled rotations with semi-classically controlled rotations. This 
means that the control qubit is measured and if the outcome is 1, the rotations are done 
quantumly. We give a simple example to make things clearer. Suppose that we have only 
three qubits in the first register of Shor’s algorithm. Then the corresponding circuits is  
 

3R

2R

2R

),( 2 Na
OMULN

),( 4 Na
OMULN

1

0

0

0

),( Na
OMULN

2M

1M

0M

Figure 2.6: Running Shor’s algorithm with just three qubits 
 
What Griffiths and Niu say is that the top qubit can be measured before applying gates A 
and C. Only if the outcome of the measurement is 1 we apply gates A and C. Following 
this procedure we can use just one control qubit. Suppose a scenario where the circuit of 
Figure 2.6 gives 02 =M , 11 =M , 00 =M . Shor’s algorithms is equivalently 
implemented by the following circuit 
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),( 2 Na
OMULN

),( 4 Na
OMULN

1
),( Na

OMULN

0

0 1

02 =M 11 =M 00 =M
2R

0

Figure 2.7: Running Shor’s algorithm using the semi-classical QFT 
 

We see that we apply only gate B of Figure 2.6, since only the second measurement gives 
an output 1. After a measurement of 1, the control qubit collapses in the state 1 , so we 
have to transform it back to state 0 before continuing. This is the purpose of the 
quantum Not gate in Figure 2.7. The binary number 2010012 ==MMM is the outcome 
p (see equation (2.19)) when measuring the first register of Shor’s algorithm. Using just 
one control qubit not only saves space, but it may also reduce the number of rotation 
gates, since they are only applied after a measurement of 1. The overhead of Not gates for 
reinitializing the state to 0 is negligible. 
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Chapter 3 
 

Simulating Quantum Computers 

Current technology allows us to build quantum computers with just a few qubits. In 
addition, these quantum computers are not very stable, so they cannot be used to run 
quantum algorithms which require many qubits. Simulation on a classical computer can 
instead be used to test quantum algorithms, but this also turns out to be a difficult task. In 
this chapter we describe the main reasons why this task is difficult and then we mention 
the related work on simulating quantum computers.  
 

3.1 The Main Difficulties 

We have seen in section 1.4 that the state of an n-qubit system is described by a vector 
which has 2n elements. The naïve approach of storing each element of the state vector 
needs )2( nΟ space and time to be manipulated. Furthermore, an n-qubit operator is 
described by a 2n by 2n matrix. Storing each element, the whole matrix requires space 

)2( 2nΟ . Therefore, a simulator that stores every amplitude of the state vector and every 
element of each operator would require exponential (in the number of qubits) time and 
memory, which in turn means that simulation would be possible only for a small number 
of qubits. Another problem is entanglement which makes it impossible to consider each 
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qubit as an independent system. Thus, we cannot simulate the actions on each qubit and 
then combine the results.  
 We have to find ways to compress the state vectors and the operators’ matrices. A 
simple solution is storing only nonzero amplitudes or/and avoiding storing the same 
amplitudes more than once, similar to the ways described in literature to store sparse 
matrices. However, some datastructures for storing compressed matrices have to be 
uncompressed before using them, which is still a major problem. An efficient simulator 
should use a datastructure that keeps the matrices and vectors compressed, and performs 
operations on them quickly and without using excessive space.  
 

3.2 Related Work 

The need for quantum computer simulators has been translated into a number of available 
simulators. J. Wallace [16, 17] has described a number of quantum simulators, but only a 
few implementations are still functional. The following table shows some of the 
simulators that can be found in [17] 
 
Name  Description 
QuBit  QuBit is a library to support Quantum Superpositions in C++ 
Quantum-
Entanglement-0.31  QM-like entanglement of variables in Perl 

OpenQUACS  

OpenQUACS is an Open-source general-purpose Quantum 
Computer Simulator written in the Maple programming 
language. It comes as a precompiled Maple library or Maple 
source and has a full tutorial included  

QuCalc  
QuCalc is a library of Mathematica functions whose purpose is to 
simulate quantum circuits and solve quantum computation 
problems  

OpenQubit 0.2.0  
C++ quantum computer simulator which aims to demonstrate 
Shor's algorithm, and its efficiency on a quantum computer. 
Current development version is NewSpin 0.3.3a  

QCL  
QCL (Quantum Computation Language) is a high level, 
architecture independent programming language for quantum 
computers  

Q-gol 3  A high-level programming language to allow researchers to 
describe quantum algorithms 

Table 3.1: Some of the simulators that can be found in [17] 
 

A very important work comes from B. Omer [18] who has implemented a 
procedural language for quantum programming. The idea behind it is that when a 
quantum computer is going to be constructed, we should have a programming language 
to program it. The programming language is called QCL and it treats operators as 
functions. QCL includes many concepts of traditional programming languages like 

http://www.ifost.org.au/~gregb/q-gol/index.html
http://tph.tuwien.ac.at/~oemer/qcl.html
http://www.ennui.net/~quantum/
http://crypto.cs.mcgill.ca/QuCalc/
http://www.gl.umbc.edu/~cmccub1/quacs/quacs.html
http://search.cpan.org/search?dist=Quantum-Entanglement
http://search.cpan.org/search?dist=Quantum-Entanglement
http://www.bluedust.com/qubit
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variables, control structures and functions but it is also equipped with quantum 
properties. Since no quantum computer is available yet to be programmed, QCL’s 
interpreter is connected with a C++ library that simulates the action of a quantum 
computer, called QCLIB [19]. This library stores only nonzero amplitudes of the state 
vector using a hash table and a linear array. A basevector is mapped onto a hashtable 
using a hash function to get a pointer (if any exist) to the array entry where the amplitude 
for this basevector is stored. In this way, QCLIB achieves O(1) complexity for finding 
and inserting a basevector’s amplitude.  For matrices which represent unitary operators, 
QCLIB stores only the nonzero elements of each row in an array of linear lists. QCL is 
enriched with simulation code for several algorithms like Shor’s and Grover’s. Although 
the main concept behind QCL is quantum programming, it can be easily used as a 
simulator. QCL can simulate efficiently a small number of qubits and can run Shor’s 
algorithm to factor up to about 10-11 bit numbers depending on the available memory. 
However, it has several weaknesses, e.g. applying the Hadamard gate to each qubit of a 
23-qubit register consumes excessive memory.  
 

M

( )xhash
M M

L

L

Figure 3.1: Datastructures used by QCL to represent vectors and matrices 
 
S. Bettelli [20] proposes another approach for quantum programming. Actually, 

he implements libquantum, a C++ library for quantum programming which treats 
operators as objects. This library produces a stream of bytecode which can be used to 
drive a quantum device or can be passed to a quantum simulator. Like QCL, a simulator 
acts like a quantum computer to run the program. Once again, applying the Hadamard 
gate to a 25-qubit register over-consumes the free memory. Some other works are 
available for quantum programming ([21], [22]), but they are still in a theoretical level, so 
there is no way to use them for simulation.  

The efforts described above target quantum programming, not quantum 
simulation. Several programs exist that can be used for quantum simulation. For example, 
we can use Matlab or Octave, which are designed to maneuver matrices and vectors and 
are capable of performing matrix multiplications and tensor products. Unfortunately, it 
turns out that they are not so efficient in simulating quantum circuits, since they usually 
run out of memory for circuits with more than 12-14 qubits. National Institute of 
Standards and Technology [23] provides source code and examples for QCSim quantum 
computer simulator. QCSim does not compress matrices and vectors, and its creators 
mention that it can only allocate up to 13 qubits. Surely, this number of qubits is not 
enough for factoring big integers using Shor’s algorithm.  
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A simulator that uses a more sophisticated way to represent state vectors and 
operators is QuIDDPro [24, 25]. This simulator uses a variant of Algebraic Decision 
Diagrams (ADDs) called Quantum Information Decision Diagrams, which achieve quick 
simulation of quantum circuits combined with low memory consumption. The final 
version of QuIDDPro is not available yet, but results show that QuIDDPro can simulate 
Grover’s algorithm faster and with much less memory than Matlab and Octave. The low 
memory usage allows QuIDDPro to be able to simulate circuits with many qubits. Our 
work uses Algebraic Decision Diagrams too, so we are going to describe them in detail in 
the next chapter.  
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Chapter 4 
 

Binary Decision Diagrams 

In this chapter we are going to describe the main properties of Binary Decision Diagrams 
(BDDs) and ways to manipulate them. Then we present Algebraic Decision Diagrams 
(ADDs), a variant of BDDs, which are used to represent matrices. Finally, we describe 
how to perform matrix multiplications and tensor products using ADDs and the 
corresponding time complexity.  
 

4.1 Reduced Ordered Binary Decision Diagrams 

Binary Decision Diagrams were introduced by Lee [26] in 1959 and later by Akers [27]. 
Bryant [28] eliminated redundancy from BDDs by formulating some limitations and 
algorithms to manipulate them, ending up in a more powerful datastructure called 
Reduced, Ordered, BDD (ROBDD). A ROBDD is a datastructure which represents a 
boolean function ),,,( 10 nxxxf K using a directed acyclic graph. The graph has vertices 
of two types, terminals and non-terminals. Each non-terminal, also called internal, vertex 
of the graph is associated with a variable xi, and has outdegree 2. One outgoing edge 
(usually represented by a solid line) denotes the assignment of 1 (or true) to variable xi
and the other (dashed line) denotes the assignment of 0 (or false). Terminal vertices, also 
called external, are not associated with any variable; they have outdegree 0 and store a 
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boolean value of either 0 or 1. A BDD is reduced and ordered when the following 
conditions hold: 
 

1. There is no internal vertex v with its two outgoing edges pointing to the same  
vertex u.

2. There are no vertices v and u such that the subgraphs rooted at v and u are 
isomorphic.  

 
3. Condition 2 implies that there are no terminal vertices with the same value. 
 
4. If xi is the associated variable of a vertex and if xj and xm are the variables of 

the vertices pointed by its edges then i < j and i < m. This means that while 
we are traversing a path of the graph we should always meet variables with 
higher indexes.  

 
Let see the BDD representing the Boolean function 1010 ),( xxxxf +=  

Figure 4.1: BDDs for function 1010 ),( xxxxf +=  

Figure 4.1a shows the unreduced BDD of 1010 ),( xxxxf += . Using condition 3 we 
reduce the three identical terminal vertices into one, to get Figure 4.1b. Here we see that 
there exists one vertex which violates condition 1 so the graph can be reduced even more. 
Figure 4.1c shows the ROBDD for 1010 ),( xxxxf += . Translating the ROBDD starting 
from top and moving down, we can say: 
 

If variable x0 is 1 then the function evaluates to 1, else if variable x1 is 1 then the 
function evaluates to1, else it evaluates to 0. 

 
Each non-terminal vertex of a ROBDD expresses an if…then…else statement. If 

the value of the corresponding variable is 1 traversal takes the then edge, otherwise it 
takes the else edge. Traversing a ROBDD using a variable assignment ends in a terminal 
vertex. This vertex contains the value to which the function evaluates for this specific 
variable assignment. The then edge is also known as high and the else edge is also known 
as low.

Bryant described some very important algorithms for manipulating ROBDDs,
which make them so practical. The most important algorithm is called REDUCE and as it 
is denoted by its name, it takes as input a BDD and return its equivalent ROBDD. We 
have to say that each function ),,,( 10 nxxxf K has a unique ROBDD. For example, the 
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transformation of the BDD in Figure 4.1a to that in the Figure 4.1c is the action of 
REDUCE. Bryant showed that if |G| is the number of vertices in the BDD to be reduced, 
then REDUCE has time complexity ( )GG logΟ . The only restriction on the input BDD 
is that it should obey to condition 4. 

Another operation on ROBDDs that is extremely useful is APPLY. APPLY takes 
as input two ROBDDs representing functions ),,,( 101 nxxxf K and ),,,( 102 nxxxf K

together with an operator <op> and produces a ROBDD which represents 21 fopf >< .
Before describing how APPLY works we have to give the notation to be used. For a 
vertex v which is associated with variable xi, index(v) = i. The high and low edges of a 
vertex v point to vertices low(v) and high(v) respectively. A terminal vertex v has value 
val(v). To apply the operator <op> to the functions represented by graphs with roots v
and u, we must consider several cases. First, if both v and u are terminal vertices then the 
result graph consist of a terminal vertex having value val(v) <op> val(u). Now suppose 
that at least one of the two vertices is non-terminal. APPLY is implemented by a recursive 
traversal of the two ROBDD operands. For every pair of vertices visited during the 
traversal, it produces a non-terminal vertex using the rules of the following figure 

 

Figure 4.2: The recursive rules used by APPLY when at least one vertex is non-terminal 
 

The algorithm does not have to evaluate a given pair of subgraphs more than once. We 
can use a structure, i.e. a hash table, where we keep entries of the form (v, u, k) which 
means that the result of APPLY on the subgraphs rooted by vertices v and u is a graph 
rooted by vertex k. In addition, if the algorithm is applied to two vertices where one is a 
terminal vertex with a controlling value, then it can return immediately a terminal vertex 
with this value. The controlling value for boolean AND is 0, while the controlling value 
for boolean OR is 1. The produced graph is not reduced, so APPLY has to call REDUCE 
at the end. If the number of vertices of the input ROBDDs are 1G and 2G , then the time 

complexity of APPLY is ( )21 GGΟ . An example follows to illustrate the steps described 
above 

31321 ),,( xxxxxf ⋅= 32321 ),,( xxxxxf ⋅= 321321 ),,( xxxxxxf ⋅⋅=

Figure 4.3: ( )31 xx ⋅ OR ( )32 xx ⋅ = 321 xxx ⋅⋅  
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Another important operation on ROBDDs is RESTRICT. This operation restricts 
the vertices associated with a specific variable to their low or high children. In other 
words, RESTRICT assigns the value 0 or 1 to a variable xi in the function represented by 
the ROBDD. The operation can be easily implemented by traversing the ROBDD and 
changing the pointer to vertices v with variables xi to point to low(v) or high(v). The 
complexity of RESTRICT is ( )GΟ . Of course, we have to call REDUCE to get the final 
restricted ROBDD. If B is a ROBDD then we denote the restriction xi = 1 of B as 

ixB and 
its restriction xi = 0 as 

ix
B . Figure 4.4a shows the original ROBDD B. Figure 4.4b shows 

1x
B and Figures 4.4c,d show 

1xB before and after REDUCE.

Figure 4.4: (a) Original ROBDD, (b) Restricted by x1 = 0, (c) Restricted by x1 = 1, 
(d) Reducing the BDD of (c) 

 

4.2 Algebraic Decision Diagrams 

Algebraic Decision Diagrams [29] extend ROBDDs by allowing terminal vertices to 
store any numerical value. Thus, an ADD can represent a function ),,,( 10 nxxxf K which 
evaluates to any numerical value. The variables xi still take values from the boolean 
domain {0,1}. The following figure shows the ADD for the function 

11010 35),( xxxxxf +=

Figure 4.5: ADD  for 11010 35),( xxxxxf +=
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We have to mention that the variable ordering is of key importance for the size of the 
BDD. For example, the function 00110 35),( xxxxxf +=  is represented by the ADD 

Figure 4.6: ADD for 00110 35),( xxxxxf +=  

which has less vertices than that of the Figure 4.5. This means that if we have a function 
xxyyxf 35),( += we achieve better compression if we assign x0 to x and x1 to y, than 

assigning x0 to y and x1 to x. Finding the best variable ordering is a coNP-complete 
problem. However, we can find a quit good variable ordering for most problems based on 
our experience and just a few experimental results.  
 We are going to use ADDs to represent matrices and vectors. We can write the 
row and column indexes of a matrix using their binary representation and then use each 
bit of this representation as a variable of the function which represents the matrix. For 
example if R0 is the row index and C0 is the column index, R0, C0 = {0, 1}, then the 
matrix  

 

0

0

1
0

10

R
dc
ba

C








 (4.1) 

 
can be represented by the function 0000000000 ),( CdRCcRCRbCRaCRf +++= .
Supposing that variable R0 precedes C0, the ADD for matrix (4.1) is  
 

Figure 4.7: ADD representing matrix (4.1)

Let’s move to a more complex example. Suppose we have the matrix produced by the 
tensor product of two Hadamard matrices, 
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The function that represents this matrix has four variables; therefore we have to decide 
for the variable ordering before giving the corresponding ADD. We choose the 
interleaved variable ordering, that is R0, C0, R1, C1, …,Rn, Cn. Thus, the ADD representing 
the matrix (4.2) is 
 

0R

0C

1R1R

1C1C

Figure 4.8: ADD representing the matrix (4.2)

The interleaved variable ordering is demonstrated to be efficient for representing certain 
rectangular matrices [30] and offers great compression for matrices that have regular 
block sub-matrices, which is a usual feature of the tensor product [25].  
 We have skipped mentioning that ADDs represent only matrices or vectors, which 
have a dimension that is a power of 2. If that’s not the case, the matrix has to be padded 
with zeros. Fortunately, all state vectors and operators in quantum mechanics do have a 
dimension that is a power of 2. There is another variant of BDD that can represent 
matrices, called Multi-Terminal Binary Decision Diagram (MTBDD) [30].  A MTBDD is 
almost identical to an ADD, so it can be used instead. We have used ADDs for our 
implementation, but MTBDDs can be used to provide the same efficiency.   
 

4.3 Matrix Operations with ADDs 

We have seen how an ADD can represent a matrix, but as said in section 3.1 we need 
efficient ways to manipulate a compressed matrix datastructure. It turns out that an ADD 
can perform the basic matrix operations without having to be uncompressed. First, we 
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can use APPLY to perform element-wise operations, like matrix addition and subtraction, 
by setting the op argument to + or -.  

A recursive algorithm for matrix multiplication is also available [29]. Suppose 
that the ADD K(R,C) represents a matrix K which has row variables Ri and column 
variables Ci. We want to multiply ADD A(x,z) with ADD B(z,y). Notice that the definition 
of matrix multiplication demands that the column variables of A agree with the row 
variables of B. Let u be the variable of least index in either A or B. Then the recursive 
action of the algorithm is the following 

 
1. if u is zi then  

))),,(*),(()),,(*),(((),(*),( += yzBzxAyzBzxAAPPLYyzBzxA uuuu

2.   if u is either xi or yi then 
 

=),(*),( yzBzxA u

),(*),( yzBzxA uu),(*),( yzBzxA uu

Figure 4.9: The second recursive option for matrix multiplication using ADDs 
 
We see that in every step, the algorithm restricts exactly one variable; therefore the 
algorithm always proceeds to smaller ADDs. If A and B become terminal vertices v and u,
then A*B returns a terminal vertex with value val(v) * val(u). Moreover, if A or B is a 
terminal vertex that has value 0, then we can immediately return a terminal vertex with 
value 0. The algorithm does not require uncompressing the matrices, but it has to keep 
trace of the missing z variables. That is, while we are traversing the ADDs, we count the 
missing z variables, and then we multiply the result by zgmis sin#2 . If A(x,z) and B(z,y)
have 1G and 2G vertices respectively, then the time complexity of multiplication is 

( )( )2
21 GGΟ . Practically, we can reduce the runtime of the algorithm by not multiplying 

the same pair of vertices more than once, an idea which is also used in APPLY. The 
resulting ADD is not reduced, so we have to call REDUCE.

Next, we need an algorithm to implement tensor products. Tensor product BA⊗
can be easily implemented using ADDs. Recalling equation (1.7), we see that each 
element of A is multiplied with B. But the elements of matrix A are stored in the terminal 
vertices. If we change any pointer to terminal vertices of ADD A to point to the root of a 
new instance of ADD B, then we are almost done. If ADD A has n row and n column 
variables, we must add n to each variable of B. Moreover, we have to multiply the 
terminals of each instance of B with the value of the corresponding terminal vertex of A.
An example should make things clear 
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0R

0C

⊗ 0R

0C

0R

0C

1C 1C

1R 1R

Figure 4.10: Tensor product of matrices represented by ADDs 

Once again, REDUCE is necessary, because the resulting ADD may have redundant 
vertices. The algorithm requires traversing A to find all the terminal vertices, and then 
traverse B to find its terminal vertices too, and perform the required variable shifting 
simultaneously. If A has k terminal vertices and a total of 1G vertices, and B has 2G

vertices, then the tensor product BA⊗ has time complexity ( )21 GkG +Ο . Generally, k

is ( )1GΟ , so ( ) ( )2121 GGGkG Ο=+Ο . Practically, k is usually 2 or 3 so the 

complexity can be ( )21 GG +Ο , which is linear in the size of the two operands. An 
improvement can be made in the case where the terminal vertex of A has value 0. Then 
we have to do nothing for this terminal.  
 

4.4 Efficiency of the ADD representation  
 
The complexities of the various operations on ADDs seem quit good provided that the 
sizes of the operands are not big. That is, if the sizes of the ADD operands are polynomial 
in the number of qubits, then the aforementioned operations can be performed efficiently. 
Although it is impossible to know the size of an ADD representing an arbitrary matrix, 
we can check the sizes of the most important ones. First, we need to know how many 
vertices are used by an ADD to represent a basis state x of n qubits. It turns out that 
using the interleaved variable ordering such an ADD has exactly n+2 vertices. The 
following figure shows the ADD representing the state vector 

00000000000 10 =⊗
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1R

0R

9R
O

Figure 4.11: ADD representing the state vector 100 ⊗

Moreover, a state in an equal superposition of arbitrary many qubits is represented by an 
ADD which has a single terminal vertex. 
Figure 4.12 shows the ADD for the identity matrix I

0R

0C 0C

0

1

Figure 4.12: ADD representing the 2x2 identity matrix 
 

Larger identity matrices are produced by repeated tensoring. To create the tensor product 
II ⊗ we have to replace the terminal vertex which has value 1 in Figure 4.12 with a 

whole ADD I
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0R

0C 0C

0R

0C 0C

Figure 4.13: Unreduced ADD representing the 4x4 identity matrix produced by II ⊗

The ADD of Figure 4.13 is not reduced, since there are two terminal vertices with value 
0. After this reduction, the ADD for II ⊗ should have 3 more vertices than the ADD for 
I. Following this sequence, we find that the ADD for nI ⊗ has 3n+2 vertices. Similarly, 
the ADD for the gate nH ⊗ has 4n vertices. We have just seen that some of the most basic 
matrices and vectors can be represented with ADDs that have size linear in the number of 
qubits. Of course, these matrices are ideal to be represented by ADDs, since they have 
many common sub-matrices and only a few different elements, that is, only a few 
terminal vertices for their ADDs. Still, they affirm the belief that ADD is a good 
datastructure for simulating quantum computers. Results from simulating Grover’s 
algorithm using ADDs [25] have also boosted to this direction. In the next chapter we 
describe the results of simulating Shor’s algorithm using ADDs.
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Chapter 5 
 

Simulating Shor’s Algorithm 
Using ADDs 

In this chapter we describe the details of our implementation for simulating Shor’s 
algorithm. Then we present some experimental results and discuss conclusions and ideas 
for future works. 
 

5.1 Implementing ADDs 

There are a few BDD or ADD packages which provide an interface to manipulated BDDs.
The most advanced is maybe CUDD [31] which is used by QuIDDPro [24, 25]. These 
packages can reduce the implementation overhead, since they have implemented the 
algorithms described in chapter 4. However, they are not specialized in quantum 
computer simulation, so we have to change some of their features. For example, CUDD 
does not support complex values in the terminal vertices. QuIDDPro faces this problem 
by storing the complex values in a table and keeping the table indexes of the appropriate 
complex values in the terminal vertices. We decided to implement everything from 
scratch, because we wanted to specialize our code for quantum computer simulation. 
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Furthermore, this approach gave as the opportunity to deepen into the properties of ADDs 
and their relation to quantum computers. 

Our simulator is written in C++ and includes two major classes. One represents a 
vertex of the ADD and the other represents an ADD. Following Bryant’s [28] suggestion 
for what a vertex structure should store, our vertex class has the following members  
 

Type Comments 
index unsigned 

short 
variable index 

low unsigned 
long 

low child 

high unsigned 
long 

high child 

id unsigned 
long 

unique identifier 

mark boolean mark to avoid 
visiting the vertex 
more than once in 
a traversal 

val complex value of terminal 
vertices 

Table 5.1: Member variables of Vertex class 
 
First, we have to say that each ADD keeps its vertices in a table of vertices. Thus, a 
vertex can store the table indexes of its low and high children rather than keeping 
pointers to them. The id variable is unique for each vertex and it is mainly used by 
REDUCE. Mark is used when traversing a graph, to avoid visiting the same vertices more 
than once by marking them as true. Val stores the complex value of a terminal vertex and 
a trivial value for non-terminal vertices. Last but not least, the index variable indicates the 
variable’s index. Indexing starts from 1 and following the interleaved variable ordering, 
we have the correspondence  
 

dex 1 2 3 4 2n
1

orresponding 
ow or column 

variable 
R0 C0 R1 C1 Rn

Table 5.2: variable – index correspondence 
 

An n qubit operator is described by a 2n x 2n matrix which needs n row and n column 
variables to be indexed using an ADD, a total of 2n variables. This means that an 
unsigned short integer is enough to store the index. A way to distinguish terminal vertices 
is to store k+1 as their index, where k = 2n is the total number of variables. It is possible 
to have two different classes for vertices, one for terminals and one for non-terminals. 
This approach may save a little space since non-terminal vertices should not have a value 
and terminals should not have children, but it would add implementation overhead. In 
addition, the results indicate that the memory saving would be minor.  
 The second class implements an ADD and includes the following member 
variables to manipulate it 
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Type Comments
root unsigned 

long 
table 
index of 
the root 
vertex 

number_of_vertices unsigned 
long 

number of 
vertices 

number_of_variables unsigned 
short 

total 
number of 
variables 

number_of_row_vars unsigned 
short 

number of 
row 
variables 

number_of_terminals unsigned 
long 

number of 
terminal 
vertices 

table_size unsigned 
long 

size of the 
table that 
stores the 
vertices 

table vertex * table 
where the 
vertices 
are stored 

Table 5.3: Member variables of ADD class 
The pointer table points to the first element of the table where vertices are stored. This 
table has available space for table_size vertices, which is limited to unsigned long (232-1) 
vertices. This size is big enough, since the aforementioned algorithms for an ADD with 
more than 232-1 elements would be extremely inefficient. The memory for the table is 
allocated using malloc and then increased or decreased using realloc. An ADD has 
number_of_vertices vertices which cannot be greater than table_size. Variable root stores 
the table index, where the root vertex is stored. Finally, the variable number_of_variables 
stores the total number of variables and number_of_row_vars stores the number of row 
variables. These two variables help us to determine the type of matrix which is 
represented by this ADD, i.e. row vector, column vector or matrix. Suppose that  
 

N = number_of_variables/2 and 
X = number_of_row_vars 

then we have the following cases 
 

number_of_row_vars = 0 number_of_row_vars ≠ 0
odd number_of_variables - column vector (2X x 1)
even number_of_variables row vector (1 x 2N) matrix (2N x 2N)

Table 5.4: Finding the type of the matrix which is represented by the ADD class 
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Our code creates some important matrices, like the Hadamard gate, Not gate, 
identity matrix, state vectors 0 , 1 and the like. For example, our implementation 

stores the state vector 0 as  
 









=

0
1

0

Figure 5.1: Using the ADD class to represent the state vector 0

5.2 Simulating Arbitrary Quantum Circuits 
 

We have implemented all the algorithms described in chapter 4 as member 
functions of the ADD class, together with some extra functions that build special vectors 
or matrices. Although our code targets Shor’s algorithm, it can be used for simulating 
arbitrary quantum circuits. To give a brief description of some member functions that can 
be used for quantum circuit simulation, suppose that X, I are the names of the classes 
representing the Not gate, and the identity matrix. For each function we provide a short 
example. 
 
-apply(ADD * add1, ADD * add2, const char op)

ADD result; 
 result.apply(&I, &X, ‘+’); 
 // result becomes the ADD which represents the matrix I + X 
 

-tensor(ADD *add1, ADD *add2)
ADD result; 

 result.tensor(&I, &X); 
// result becomes the ADD which represents the matrix XI ⊗

-mult(ADD *add1, ADD *add2)
ADD result; 

 result.mult(&I, &X); 
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// result becomes the ADD which represents the matrix XI ⋅

-copy(ADD *add1)
ADD cp; 

 cp.copy(&X); 
// cp becomes the same ADD as the ADD X

-state(unsigned long i, unsigned short number_of_qubits)
ADD sv; 

 sv.state(3, 7); 
// sv becomes the ADD which represents the state vector 31100000 =

-identity(unsigned short number_of_qubits)
ADD ident; 
ident.identity(10); 
// ident becomes the ADD which represents the matrix 10⊗I

-hadamard(unsigned short number_of_qubits)
ADD had; 
had.hadamard(5); 
// had becomes the ADD which represents the matrix 5⊗H

-vector_adjoint() 
ADD vec; 
vec.state(0,1); 
vec.vector_adjoint(); 
// vec becomes the ADD which represents the matrix 0

-print_matrix() 
 X.print_matrix(); 
 // it will print  0 1 
 //            1 0 
 

-measure_one_qubit(unsigned short qubit)
ADD sv; 
sv.state(0, 5); 
int k; 
k = sv.measure_one_qubit(3); 
// k has the outcome (0 or 1) of measuring the fourth qubit of the state vector 
// represented by the ADD sv. The most significant qubit is the qubit 0. 
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-measure_qubits(unsigned short from, unsigned short to)
ADD sv; 
sv.state(0, 10); 
double k; 
k = sv.measure_qubits(3, 6); 
// k has the outcome of measuring qubits 3, 4, 5, 6 of the state vector  
// represented by the ADD sv. Notice that if we measure more than 32 qubits 
// then the result might be too big to be stored in an integer.  

 

-CU(unsigned short c, unsigned short t, ADD *U, unsigned short number_of_qubits);
ADD ctrl_not; 

 ctrl_not.CU(2, 4, &X, 10); 
 // The ADD ctrl_not represents the controlled-NOT gate for a ten qubit circuit 
 // where the control qubits is qubit #2 and the target qubits is qubit #4. 
 

-CCU(unsigned short c1, unsigned short c2, unsigned short t, ADD *U, unsigned short  
 number_of_qubits)

ADD ctrl2_not; 
 ctrl2_not.CCU(1, 2, 4, &X, 10); 
 // The ADD ctrl2_not represents the controlled-NOT gate for a ten qubit circuit 
 // where the control qubits are qubits #1 and #2, and the target qubits is qubit #4. 
 

-Swap(unsigned short qubit1, unsigned short qubit2, unsigned short number_of_qubits)
ADD swap_gate; 

 swap .Swap(3, 5, 10); 
 // The ADD swap_gate represents the Swap gate for a ten qubit circuit which 
 // swaps qubits #3 and #5 
 

We can mention a few details about how these functions are implemented. The 
algorithms for the first three functions were described in chapter 4. Functions state,
identity and hadamard produce their result by repeatedly tensoring i , I or H. We can do 

a trick to make these computations faster. Since 2/2/ nnn III ⊗⊗⊗ ⊗= and 
2/2/ nnn HHH ⊗⊗⊗ ⊗= , we can compute half of the tensor products and then tensor the 

result by itself. For large n we may partition the computation to four or even more steps. 
Having an ADD representing a state vector ψ , we can easily convert it to an 

ADD representing its dual (adjoint) ψ . This can be done by changing the row variables 
to column variables and complex conjugating the values of the terminal vertices.  
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Figure 5.2: Using vector_adjoint on an ADD representing 0

Measuring a qubit seems to be more interesting. Suppose that we have a quantum 
register in the state 

 
{

}

{

qubits
q

qubit

qubits
p

zix

1

=ψ (5.1) 

 
The probability of getting 0 when we observe register i is given by the equation (1.49) 
and it is 

 ψψ qpqp MMp 0
†

0)0( = (5.2) 
where  

 qpqp
qp IMIIIM ⊗⊗⊗⊗ ⊗⊗=⊗⊗= 00 00 (5.3) 

 
Our code can easily create the identity matrices of equation (5.3) using function identity 
and then tensor them with the built-in ADD that represents the measurement operator 

0M . Since both 0M and kI ⊗ are diagonal matrices, their tensor product is also a 
diagonal matrix. Moreover, the only nonzero element of matrix (5.3) is 1, which is not a 
complex number. That means that the adjoint of matrix (5.3) is equal to itself, and their 
product is still matrix (5.3) 

qpqp MM 0
†

0 = (5.4) 

 qpqpqp MMM 00
†

0 =⋅ (5.5) 
 
We can rewrite (5.2) using (5.5) 
 

ψψ qpMp 0)0( = (5.6) 
 
Equation (5.6) is easily computed using the functions described above, since we can use 
identity and tensor to create the measurement operator, then we multiply it with the state 
vector and finally we multiply the result with the adjoint of the state vector which is taken 
by vector_adjoint. Having calculated the probability to measure 0, we call a random 
number generator to take a value in the range [0, 1]. If this value is less than or equal to 
p(0) we consider that the measurement outcome is 0, else it is 1. Next, we have to create 
the post-measurement state which is given by (1.50). If the measurement’s outcome was 
0 then the post-measurement state is  
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)0(
0

p

M qp ψ
(5.7) 

 
The numerator has already been computed as part of equation (5.6), so the only thing 
needed for (5.7) is to divide the terminal vertices of the ADD representing the numerator 
with the square root of the probability p(0). If the measurement outcome was 0 then the 
post-measurement state is  

 
)0(1)1(

11

p

M

p

M qpqp

−
=

ψψ
(5.8) 

 
which means that we have to create the measurement operator qpM 1 , multiply the state 
vector with it, and then divide with the square root of the probability. To measure 
multiple qubits we can measure each qubit separately and then sum the appropriate 
powers of 2, depending on the measurement outcomes.  
 Finally, we have to describe how we implement the controlled gates. If we have 
an ADD that represents the gate U, then the overall gate of Figure 5.3 can be built by the 
following code  
 

ADD gate; 
 gate.CU(k, k + 1 + n, &U, k + 1 + n + p + q) 

Figure 5.3: Creating the matrix for a controlled gate 
The first step is to build gate G which is fairly easy 
 

UIG n ⊗= ⊗ (5.9) 
 
Following, we have to create the ADD for the controlled-G gate CG. This gate is describe 
by the matrix 
 









=

+⊗

G
I

CG
pn

0
0)(

(5.10) 

 
Having the ADDs for )( pnI +⊗ and G we can construct the ADD for matrix (5.10) 
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)( pnI +⊗

Figure 5.4: Unreduced ADD representing matrix (5.10)

The ADDs for )( pnI +⊗ and G in Figure 5.4 have to be variable-shifted, that is, we have to 
add 2 in each variable index. The last step for creating the overall gate is trivial 
 

qk ICGIoverall ⊗⊗ ⊗⊗= (5.11) 
 
The same ideas can be used to create ADDs that represent controlled gates with multiple 
control qubits. Furthermore, we can create the Swap gate using three controlled-NOT 
gates as shown in Figure 1.4.

5.3 Simulating Shor’s Algorithm 
 
We have already described some features of our implementation that can be used for 
simulating arbitrary quantum circuits. However, our main goal is to discover how 
efficiently these features can be used to simulate Shor’s algorithm. Shor’s algorithm 
includes two main parts. The first is the quantum circuit for modular exponentiation and 
the other is the quantum Fourier transform. In section 2.5 we gave a brief description of 
how we can implement the quantum circuit for modular multiplication. Beckman et al 
[13] present in full detail how to build such a circuit. Just think that we have a classical 
circuit that calculates the modular multiplication. This circuit is built with AND, OR,
NOT, NAND and XOR gate. In section 1.7 we showed that we can construct an equivalent 
quantum circuit by replacing these gates with only controlled-NOT gates. This means that 
our quantum circuit for modular exponentiation is implemented using only controlled not 
gates. It turns out that these controlled not gates may have up to four control qubits. We 
described the process of creating a controlled gate in the previous section. The modular 
multiplication circuit uses thousands of such gates, so their construction time would add a 
serious time overhead. Fortunately, the number of different controlled-NOT gates that are 
used is much smaller. Thus, when we create such a gate we store it, just in case it is used 
in the future. The disadvantage is that we need memory to store these gates, but hopefully 
the amount of memory used is immaterial when compared to the speedup that it offers.  
 Concerning the QFT, we inherited the semi-classical approach that was presented 
in section 2.6. The only point that is worth mentioning is that we replaced the chains of 
rotation matrices with just one matrix. Recall that a rotation matrix has the form  
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Then a series of rotation matrix multiplications can be replaced by a single rotation 
matrix  

 
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(5.13) 

 
That is, instead of multiplying the control qubit of the QFT with several rotation matrices 
in a row, we replace them with just one rotation matrix which performs the same rotation. 
 The last thing that needs to be explored is the order of multiplications. To give a 
sense of this problem, consider that we want to apply the Hadamard and the NOT gate to 
a single qubit which is in the state ψ . The resulting state is  
 

ψXH  (5.14) 
 

A simulator can perform the multiplications of (5.14) in two different ways 
 

( ) ( )ψψψ XHHXXH ==  (5.15) 
 

The simulation of Shor’s algorithm includes thousands of matrix multiplications, which 
entails a huge number of possible multiplication orderings. It turns out that the order of 
multiplications is very important for the efficiency of the simulator. For example, we may 
multiply many controlled-Not matrices to create the modulo multiplier OMULN (section 
2.5) which is used in modular exponentiation, and then multiply it with the state vector. 
This approach proved extremely inefficient. Thus, we focused on multiplying the state 
vector with smaller modules, like the modular adder OADDN, which was much faster. 
We continued the process of creating smaller modules and then multiplying them with 
the state vector until we reached the point where each module was a single controlled-
NOT gate. Multiplying the state vector with every single gate turned to be faster and less 
memory consuming than creating any intermediate matrix and then multiplying it with 
the state vector.  
 

5.4 Experimental Results 

We have simulated Shor’s algorithm to factor various integers. Here we present how fast 
these simulations ran and how much memory they consumed. In order to judge the 
efficiency of our simulator we also present the same results for QCL Recall that Shor’s 
algorithm has to choose a random number a co-prime to the number N that we want to 
factor. For each pair of such numbers a and N the algorithm computes the order r of a
modulo N, which is the period of the function Naxf x mod)( = . The following results 
were taken on a PC with an AMD Athlon XP 2400+ CPU and 512 MB RAM, running 
Linux. The C++ compiler was g++ 3.3.1 
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N # bits 
of N a r TQCL 

(sec) 
TADDs 
(sec) 

MEMQCL 
(MByte) 

MEMADDs 
(MByte) 

1553 =⋅ 4 13 4 0.007 0.5 0.95 1.6 
2173 =⋅ 5 2 6 0.025 2 1 2.1
33113 =⋅ 6 17 10 0.17 6 1.2 2.9
77117 =⋅ 7 9 15 0.6 27 1.9 4.1 
1431311 =⋅ 8 61 30 2.3 52 4.9 5.7 
2992313 =⋅ 9 226 44 12 72 16.9 7.8 
7133123 =⋅ 10 687 66 75 307 64.9 10.8 

11473731 =⋅ 11 662 90 - 648 - 14.2 
22576137 =⋅ 12 858 90 - 985 - 18.2 
51837371 =⋅ 13 1298 126 - 2033 - 22.7 
1054112783 =⋅ 14 995 126 - 3104 - 28.6 
18209139131 =⋅ 15 972 130 - 4085 - 35.1 
46031241191 =⋅ 16 3132 190 - 8551 - 42.7 

Table 5.5: Indicative time and memory required to factor numbers of various bit-lengths  
 using QCL and ADDs 
 
Notice that QCL was unable to factor integers of 11 bits or more, because it ran out of 
memory. Therefore, we can compare it with our simulator only for relatively small 
inputs. As expected, QCL is always faster than ADDs because it uses a faster 
datastructure. However, as the input becomes larger, the gap between the two simulators 
becomes smaller. That is, while QCL is about 70 times faster than ADDs when factoring 
a 5-bit number, it is just 4 times faster when factoring a 10-bit number. The following 
plots help us to visualize the results. Unfortunately, the results for QCL are limited to 
factoring up to 10-bit integers.  
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Figure 5.5: The time in msec that was required to run Shor’s algorithm 
 
Judging from Figure 5.5, the simulation of factoring integers which are longer than 16-
bits will take several hours. However, such a simulation seems to be possible with ADDs,
since they keep memory usage in a very low level.  
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Figure 5.6: The amount of memory that was required to run Shor’s algorithm 

While QCL demands excessive amounts of memory when factoring an integer of 11 bits 
or more, ADDs require an amount of memory that is almost linear in the bit-length of the 
number to be factored.  
Our simulator applies each gate directly to the state vector without keeping any 
intermediate results. The next table shows the number of vertices of the ADDs which 
stored the state vector at the end of each simulation, together with the total number of 
matrix multiplications (operations) that were performed 
 

N # bits 
of N

# qubits 
used by 

Shor’s algor.
a r

Max vertices 
for the ADD of 
the state vector 

# operations 

1553 =⋅ 4 14 13 4 31 3880 
2173 =⋅ 5 17 2 6 90 8415 
33113 =⋅ 6 20 17 10 169 14530 
77117 =⋅ 7 23 9 15 288 24711 
1431311 =⋅ 8 26 61 30 636 37046 
2992313 =⋅ 9 29 226 44 1037 54963 
7133123 =⋅ 10 32 687 66 1727 75524 

11473731 =⋅ 11 35 662 90 2524 100600 
22576137 =⋅ 12 38 858 90 2805 131200 
51837371 =⋅ 13 41 1298 126 4241 165920 
1054112783 =⋅ 14 44 995 126 4572 216465 
18209139131 =⋅ 15 47 972 130 5048 261274 
46031241191 =⋅ 16 50 3132 190 7862 320955 

Table 5.6: Number of vertices for the state vector at the of each simulation and the total  
 number of operations 
 
It is important to repeat that using the ideas described in chapter 2, our simulator uses 
3L+2 qubits to factor an L-bit integer. That is, we have a state vector of 3L+2 qubits, 

Out of memory
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which is a vector with 232 +L complex values. Thus, the number of vertices for the state 
vector remains relatively low even for large inputs.  
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Figure 5.7: Number of vertices of the ADDs storing the state vectors at the end of 
 simulation 

 
A vertex class needs 36 bytes to be stored; therefore it is easy to see how much memory 
is used by the state vector and the controlled-NOT cache. For instance, in the case of 
factoring 5183 the state vector is stored in approximately 153364241 ≈⋅ Kbytes. During 
the computations, the size of the state vector may be a little bigger, but not more than a 
few hundred extra vertices. That means that the rest 22 MB that are required by the 
simulator are mainly used to store controlled-NOT gates. Thus, we can greatly reduce the 
memory usage of our simulator by not caching the controlled-NOT gates of the modular 
exponentiation circuit, but this would be significantly slower. 
 Table 5.6 also shows the total number of operations that were performed by our 
simulator. The major part of these operations is produced by the modular exponentiation 
circuit, which is the bottleneck of the simulation. Unfortunately, if we want to simulate 
everything that a quantum computer would do to simulate Shor’s algorithm, we have to 
apply all these gates. 
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Figure 5.8: Number of quantum operators applied to the state vector 
 
It is maybe more interesting to see how fast these operations are performed. 
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Figure 5.9: Speed of operations 

We see that the speed of matrix multiplications is reduced rapidly as the input becomes 
bigger. This is more or less expected, since a large number to be factored requires a 
bigger ADD for the state vector and bigger matrices to represent gates. Furthermore, the 
efficiency of matrix multiplication using ADDs is greatly affected by the size of the 
operand ADDs. This also explains the following two figures, which show that starting 
with a small state vector’s ADD, the first 30% of matrix multiplications are quit fast, but 
gradually this ADD becomes big and the performance of matrix multiplication is reduced.   
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Figure 5.11: Speed of operations during the simulation 
 
The last thing that is worth mentioning is that the runtime of simulation is dramatically 
affected by the order r of a modulo N. The next table shows the results of simulating the 
factoring of 1147 (11 bits) for various random a.

a r T
(sec) 

MEM 
(MByte) 

Max vertices for 
the ADD of the 

state vector 
714 6 56 12.3 193 
1048 9 140 13.1 289 
192 18 150 13.5 548 
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861 30 210 13.5 898 
623 60 250 13.7 1713 
662 90 648 14.2 2524 
351 180 700 14.4 4864 

Table 5.7: Using the simulator to factor 1147 with various random numbers a 
 
We see that smaller orders lead to a smaller ADD for the state vector which entails 
smaller execution times. The algorithm calculates the function Naxf x mod)( = for all 
x, and stores the results in a superposition in the state vector.  Thus, a smaller order 
means less possible outcomes for f(x), which is translated in less nonzero elements in the 
state vector. The number a is chosen randomly and its order is what we are looking for, 
so we can’t know a priori if it is a “good” a. However, a bad selection means slower 
simulation, but not excessive memory usage, so we can be sure that the simulation will 
end normally.  
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Chapter 6 
 

Conclusions and Future Work 
 

6.1 Overview of the work presented 
 
We described how ADDs can be used to simulate quantum computers and focused on 
simulating Shor’s algorithm. We present the results of factoring up to 16-bit integers 
using 50 qubits which is impossible for other simulators. Of course, our simulator can 
factor even bigger integers, since ADDs achieve a great compression for both state 
vectors and operators, which helps us to simulate circuits with many qubits. Execution 
time is still a problem, but we have to accept that it is not the easiest thing in the world to 
simulate a system with huge state vectors. Furthermore, someone who wants to simulate 
an important quantum circuit may have no problem to wait for several hours, even days, 
but he would surely have a problem if he cannot simulate the circuit at all.  
 

6.2 Immediate work ahead 
 
As previously mentioned, we implemented the simulator from scratch without using any 
BDD package or library.  Thus, a little more code tuning may be needed to improve 
several parts of the code. Although we do not expect miracles, it is possible to achieve a 
small time improvement. We can also change some things concerning the ADDs 
themselves, i.e. we can choose and test a different variable ordering. Our main purpose is 
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to make the REDUCE and matrix multiplication algorithms faster. While simulating 
Shor’s algorithm, our simulator spends most of its time running these two algorithms. For 
the matrix multiplication algorithm we can test various hash table techniques and sizes. 
 An interesting idea is to find a way to create the ADD for the state vector 

∑
−

=

1

0
mod1 M

x

x Nax
M

without using the modular exponentiation circuit, which is 

responsible for the huge number of operations. Then, we can apply the semi-classical 
QFT to this state vector to get the final result. In this way, we simulate a quantum 
algorithm rather than a quantum circuit. This is desirable in many situations, when we 
want to test a new quantum algorithm, or a new idea, but we just don’t care yet for the 
circuit which implements it. 

Finally, if our simulator is to be used for simulating arbitrary quantum circuits, it 
would be wise to supply it with a friendlier interface. One approach is to implement a 
command line interface. Another approach is to implement a GUI. A command line 
interface is usually more flexible than a GUI, but the later helps us to visualize a quantum 
circuit. In the next section we discuss one more option for providing an interface for the 
simulator.  
 

6.3 Quantum programming languages 
 
It is obvious that quantum hardware would be useless without a way to program it. 
Although we have no such hardware available yet, we do have the experience of 
programming a classical computer. Based on this experience several people try to 
implement quantum programming languages, which incorporate classical ideas together 
with quantum properties. Several compilers, interpreters and libraries for quantum 
programming exist, but no quantum computer is available to test them. Since quantum 
programming is a new field, we need ways to use quantum languages in order to 
understand and develop their unique features. The solution is to use a simulator of a 
quantum computer, which runs the quantum program. Therefore, instead of creating a 
new interface for our simulator, we can integrate the ADD representation into a quantum 
programming language. This way, any algorithms implemented for this quantum 
language will run without any change using our simulator, and users won’t have to learn 
one more tool. Furthermore, it will be possible to use the quantum language to run 
algorithms with many qubits. 
 

6.4 Improving ADDs 

It has been showed that ADD is an efficient datastructure for simulating quantum 
computers. However, to make simulation more efficient we have to introduce a variant of 
ADD that is designed explicitly for quantum simulation. One idea is to increase the 
number of children for internal vertices. Moreover, we may change terminal vertices to 
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store not only complex values, but something more “interesting”. For example, they may 
store a pointer to another ADD together with a complex number, which implements the 
tensor product. It is also worth the effort to explore ways for parallelizing the simulation, 
to make it faster when using many processors. To achieve this, we can change the 
algorithms described in chapter 4, but we can also change the nature of ADDs to favor 
parallel processing. It is not sure if any of these approaches can work efficiently, but 
results prompt us to specialize ADDs even more for quantum simulation. 
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