
Technical University of Crete
Department of Electronic and Computer Engineering

Techniques for Simulating Quantum Computers

by
Koufogiannakis Christos

This thesis is submitted in partial fulfillment of requirements for the
Diploma Degree in Electronic and Computer Engineering

Committee: Samoladas Vasilis (supervisor)

 Dollas Apostolos
 Petrakis Euripides

June 2004

i

Abstract

The first algorithm of practical interest that takes advantage of quantum
mechanics was proposed by Peter Shor in 1994. Shor described a polynomial time
quantum algorithm for factoring integers. Factoring is considered to be a hard
problem for classical computers. Indeed, the efficiency of the famous public-key
cryptosystem RSA is based on the assumption that classical computers cannot factor
big integers fast. On the other hand a quantum computer would be able to break the
RSA system relatively easy. A number of quantum algorithms have been proposed
since 1994, like Grover’s algorithm for database search, quantum cryptography and
quantum teleportation.

Unfortunately, current technology makes it impossible to build large scale
quantum computers to run these algorithms. This is a great roadblock for those who
want to test their algorithms or those who want to write new quantum algorithms.
Therefore, the only way to test quantum algorithms is by simulating them on classical
computers. However, the exponential state explosion makes quantum simulation a
difficult task for classical computers. In this thesis we describe how Binary/Algebraic
Decision Diagrams (BDDs, ADDs) can be used to simulate quantum circuits, and
especially Shor’s algorithm.

ii

Acknowledgements

I would like to thank,

my supervisor, Prof. Vasilis Samoladas, for introducing me to the subject of quantum
computing and providing me with many constructive conversations.

my professors and my friends at the Technical University of Crete for their assistance
and their comments during my studies.

iii

Contents

Abstract i

1. Introduction to Quantum Computing 1

1.1 The Bra/Ket Notation. 2

1.2 Tensor Products. 2

1.3 Quantum Bit. 4

1.4 Multiple Qubits. 5

1.5 Entanglement. 6

1.6 Single Qubit Gates. 7

1.7 Controlled Gates. 9

1.8 No-cloning Theorem. 11

1.9 Measurement. 11

1.10 Quantum Circuits. 13

1.11 Reversibility and Scratch Space. .16

1.12 Quantum Parallelism. .17

2. Fast Factorization 19

2.1 Quantum Fourier Transform. 19

2.2 Reduction of Factoring to Order Finding. 21

2.3 Finding the order. 23

2.4 Example: Factoring 15. . 25

2.5 Quantum Circuits for Modular Exponentiation. 26

2.6 Semi-classical Fourier Transform. 28

iv

3. Simulating Quantum Computer 30

3.1 The Main Difficulties. 30

3.2 Related Work. 31

4. Binary Decision Diagrams 34

4.1 Reduced Ordered Binary Decision Diagrams. 34

4.2 Algebraic Decision Diagrams. 37

4.3 Matrix Operations with ADDs. 39

4.4 Efficiency of the ADD representation. 41

5. Simulating Shor’s Algorithm Using ADDs 44

5.1 Implementing ADDs. 44

5.2 Simulating Arbitrary Quantum Circuits. 46

5.3 Simulating Shor’s Algorithm. 51

5.4 Experimental Results. 53

6. Conclusions and Future Work 59

6.1 Overview of the work presented. 59

6.2 Immediate work ahead. 59

6.3 Quantum programming languages. 60

6.4 Improving ADDs. 60

References 62

List of Tables 65

List of Figures 66

1

Chapter 1

Introduction to Quantum
Computing

Richard Feynman [1] observed in 1982 that it seems to be extremely difficult for a
classical computer to simulate efficiently how a quantum system evolves in time. He also
noted that, if we had a computing device that uses quantum effects, then this simulation
could be made efficiently. Thus, he indirectly suggested that a quantum computer may be
more efficient than any classical one.

It wasn’t until 1994, when Peter Shor [2] described a polynomial time quantum
algorithm for factoring integers, that Feynman’s suggestion became stronger than ever.
Two years later, Lov Grover [3] developed a technique for searching an unstructured list
of items, which gives a polynomial speedup over classical computers. These two
algorithms are the most remarkable in the pile of quantum algorithms, which has been
developed during the last decade.
 This chapter targets to introduce the reader in the fundamental principles of
quantum computation. We do not deal with the details of how a quantum computer is
physically constructed. The reader is supposed to have just a basic knowledge of linear
algebra and boolean logic.

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 2

1.1 The Bra/Ket Notation

As we will see shortly, quantum states are represented by vectors; therefore, we need a
compact notation for state vectors. Dirac [4] introduced the so called Bra/Ket notation
where the ket x is used to describe the column vectors and the bra x denotes the
complex conjugate transpose of x . The most commonly used vectors are









=

0
1

0 (1.1)

 







=

1
0

1 (1.2)

The inner product of vectors x and y is represented by

yx or yx (1.3)

The inner product of two vectors is a complex number. Two nonzero vectors are
orthogonal if and only if the result of their inner product is 0. For example vectors 0
and 1 are orthogonal

[] 01001
1
0

0110 =⋅+⋅=







= (1.4)

The outer product of vectors x and y is represented by

yx (1.5)

The outer product of two n-element vectors is an n by n matrix, i.e.

[] 







=








=

00
10

10
0
1

10 (1.6)

1.2 Tensor Product

Now, we describe the tensor product (⊗), a matrix operation which is primitive to
describe quantum systems mathematically. Suppose we have an m by n matrix A and a k
by p matrix B. Then, the tensor product, also called the Kronecker product, of A and B is
defined as

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 3



















=⊗

BaBaBa

BaBaBa
BaBaBa

BA

mnmm

n

n

K

MOMM

K

K

21

22221

11211

(1.7)

We see that the result is an mk by np matrix. We can give an example for (1.7)



















=



















⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅

=





















































=







⊗









32282421
24201815
161487
121065

84748373
64546353
82728171
62526151

87
65

4
87
65

3

87
65

2
87
65

1

87
65

43
21

If n = 1 and p = 1, then A and B are vectors, therefore, the tensor product is
defined for vectors as well. We can give a simple example



















=



















⋅
⋅
⋅
⋅

=



























⋅









⋅

=







⊗









8
6
4
3

42
32
41
31

4
3

2

4
3

1

4
3

2
1

If we use the Bra/Ket notation for vectors, then the symbol ⊗ can be omitted



















=







⊗








=⊗=

0
0
0
1

0
1

0
1

0000

For the tensor product, the following hold

BDACDCBA ⊗=⊗⊗))(((1.8)
CBCACBA ⊗+⊗=⊗+)((1.9)
CABACBA ⊗+⊗=+⊗)((1.10)

)(BAabbBaA ⊗=⊗ (1.11)

Notice that the tensor product does not commute i.e.

0110 ≠ .

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 4

1.3 Quantum Bit

The bit is the fundamental component of classical computation and classical information.
We can describe the properties of a bit either by adopting a mathematical point of view or
by describing it as a real system. The former perspective indicates that a bit has a state -
either 0 or 1-, while the latter treats the bit as a voltage, where 0 Volts may correspond to
0 and 5 Volts may correspond to 1, supposed we are talking for TTL logic. The
description of bits as mathematical objects gives as the freedom to build a general theory
of computation and information which is independent of any specific physical realization.
Thus, at the rest of this paper we are not going to deal with the way a classical or a
quantum computer is physically implemented.
 The quantum analogue of the classical bit is called quantum bit, or qubit for short.
Just as a classical bit has a state, a qubit has also a state. Two possible states for a qubit
are the states 0 and 1 , which correspond to the states 0 and 1 for a classical bit. The
difference between bits and qubits is that a qubit can be in a state which is a linear
combination of 0 and 1 , often called superposition

10 βψ += a (1.12)

We can rewrite (1.12) using (1.1) and (1.2)









=

β
ψ

a (1.13)

The numbers a and β are called amplitudes and are complex numbers such that

1|||| 22 =+= βψψ a (1.14)

We know that we can examine a bit at any time to determine whether it is in the
state 0 or 1. Remarkably, we cannot examine a qubit to determine its quantum state, that
is, the values of a and β . Instead, when we examine a qubit we get either the result 0 with
probability 2|| a , or the result 1 with probability 2|| β . This explains why (1.14) holds,
since probabilities must sum to one. The action of examining a qubit is called
measurement and after it, the qubit collapses to either the state 0 or 1 depending on
the result of the measurement. For example, suppose that we have a qubit in the state

1
2

10
2

1 +

Measuring this state will give the result 0 with probability %50
2

1
2

= or the result 1

with equal probability. Now let’s say that the outcome of the measurement was 1, then,
the qubit collapses to the state 1 .

The quantum bit can be defined more formally as a two-dimensional Hilbert
space H2. The space H2 is equipped with a fixed basis { }1,0=B , a so-called

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 5

computational basis. States 0 and 1 are called basis states. A general state of a single

quantum bit is a vector 







β
a having unit length, i.e. 1|||| 22 =+ βa .

1.4 Multiple Qubits

Suppose we have two classical bits, then there would be four possible states, 00, 01, 10
and 11. A system of two quantum bits is a four dimensional Hilbert space 224 HHH ⊗=
with computational basis { }11,01,10,00=B . We can write

000,000 == , 011,010 == , etc. The state vector describing the two qubits is

11100100 11100100 aaaa +++=ψ (1.15)

Similar to the case for one qubit, the measurement result x (= 00, 01, 10, 11) occurs with
probability 2|| xa , with the state of the qubits after the measurement being x . The
condition that probabilities sum to one is expressed by the normalization condition

1|||||||| 2
11

2
10

2
01

2
00 =+++ aaaa (1.16)

For a multiple qubit system, we could measure just a subset of the qubits. Let’s
say that we want to measure the first qubit of the two qubit system described by (1.15).
Then the probability to measure 0 is 2

01
2

00 |||| aa + , leaving the post-measurement state

2
01

2
00

0100 0100

aa

aa

+

+
=ψ (1.17)

The probability to measure 1 is 2

11
2

10 |||| aa + and the post-measurement state is

2
11

2
10

1110 1110

aa

aa

+

+
=ψ (1.18)

The denominators in both (1.17) and (1.18) are used so that the normalization condition
still holds for the post-measurement states.
 Finally, we can make the notation even simpler if we write 000 = , 101 = ,

210 = , 311 = . We can now rewrite (1.15)

∑
=

=+++=
3

0
3210 3210

x
x xaaaaaψ (1.19)

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 6

Using this notation, an n-qubit system is a Hilbert space n

n

HHHH n
⊗=⊗⊗= 2222 44 344 21

L

having computational basis { }12...,,1,0 −= nB . The state of an n-qubit system is
the unit-length vector

∑
−

=

=
12

0

n

x
x xaψ (1.20)

so it is required that

 ∑
−

=

=
12

0

2 1
n

x
xa (1.21)

A group of qubits is called quantum register, just like a group of classical bits.

1.5 Entanglement

Suppose we have a quantum system in state ψ and another quantum system in state φ .
Then the state of the combined system is given by the tensor product φψ ⊗ . For

example if we have two qubits, each in the state 1
2

10
2

1 + , then the state of the

combined two qubit system is

=







+⊗+








+⊗=








+⊗








+ 1

2
10

2
11

2
11

2
10

2
10

2
11

2
10

2
11

2
10

2
1

()1110010021 +++=

We say that a system in the state ()11100100
2
1 +++ is decomposable, since it can be

expressed as the tensor product of its subsystems. However, there exist quantum systems,
which are in a state that cannot be written as the tensor product of their subsystems. For
example the two qubit state ()1100

2
1 + is not decomposable. To see this, assume on

the contrary, that

() () () 1110010010101100
2

1
110110001010 bababababbaa +++=+⊗+=+

for some complex numbers 0a , 1a , 0b , 1b . But then

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 7











=
=
=
=

0
0

21
21

10

01

11

00

ba
ba
ba
ba

which is impossible.

Such states are called entangled and are responsible for many surprises in quantum
computation and quantum information. In fact these states make quantum systems differ
from classical ones. To see a characteristic property of entangled states, let’s look to what
happens if we measure the first qubit of the state ()1100

2
1 + , which is known as Bell

state. There are two possible results: 0 with probability ½, leaving the post-measurement
state 00=ϕ , and 1 with probability ½, leaving the post-measurement state 11=ϕ .
Measuring now the second qubit will always give the same result as the measurement of
the first qubit. It was John Bell, who first noticed that measurement correlations in a Bell
state are stronger than those in a classical system.

1.6 Single Qubit Gates

We have seen how a quantum state is described, but we have not yet mentioned how we
construct a desirable state. First, we must accept that a quantum computer is capable of
initializing qubits to either the state 0 or 1 . The simpler operation on a classical bit is
the NOT gate which flips the value of the bit. We can define an analogous operation for a
quantum bit. A perfect candidate is an operation which takes the state 0 to 1 and vice
versa. Suppose we define a two by two matrix X









=

01
10

X (1.22)

Now let’s multiply X with 0 and 1 separately

1
1
0

0
1

01
10

0 =







=
















=X (1.23)

0
0
1

1
0

01
10

1 =







=
















=X (1.24)

From equations (1.23) and (1.24) we see that matrix X represents the operation we want,
and thus it is known as the quantum NOT gate. In fact this operation acts linearly, that is,
it takes the state 10 ba + to the state 01 ba +

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 8









=
















=








a
b

b
a

b
a

X
01
10

(1.25)

We can symbolize the above transformation as

0110 baba X +→+ (1.26)

It follows that since the state of a single qubit is represented by a two row vector,

the operators must be represented by 2x2 matrices. Are there any other constraints on
what matrices can be used as quantum gates? We should consider that in the resulting
state, the normalization condition 1|||| 22 =+ βa should still hold. It turns out that this
property is satisfied when the matrix U describing a single qubit quantum gate is unitary,
that is

IUUUU == †† (1.27)

where †U is the adjoint of U (obtained by transposing and then complex conjugating U)
and I is the two by two identity matrix. We can easily confirm that X is unitary









=
















==

10
01

01
10

01
10†† XXXX

This unitarity constraint is the only constraint on quantum gates. The fact that each
operator U is unitary means that we can construct another operator †U which performs
the reverse operation. To make clear, suppose that we apply a quantum gate U to a state
ψ taking the state φ . We can go back to state ψ if we apply †U to φ

ψψψψψ

φ

==→→ IUUU UU ††

43421
(1.28)

Another very important quantum gate is the Hadamard gate









−

=
11

11
2

1H (1.29)

which is unitary, since †HH = and IH =2 . This gate creates a state of equal
superposition when it acts on the basis states

1
2

10
2

1
1
1

2
1

0
1

11
11

2
10 +=








=
















−

=H (1.30)

1
2

10
2

1
1

1
2

1
1
0

11
11

2
11 −=








−

=















−

=H (1.31)

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 9

The resulting states are said to be in an equal superposition because the probability to
measure 0 is the same as the probability to measure 1. A brief description of some
important quantum gates follows









=

10
01

I 1010 baba I +→+ (1.32)









−

=
10

01
Z 1010 baba Z −→+ (1.33)








 −
=

0
0
i

i
Y 1010 aibiba Y +−→+ (1.34)









=

i
S

0
01 1010 biaba S +→+ (1.35)









= 4/0

01
πie

T 1010 4/πiT beaba +→+ (1.36)

We can use the outer product to describe quantum gates. For example, 10 is the

transformation that maps 1 to 0 and 0 to 







0
0 . Similarly, 01 maps 0 to 1 and

1 to 







0
0 . For example









=








+








=+=

01
10

01
00

00
10

0110X (1.37)









=








+








=⋅+=

ii
iS

0
01

0
00

00
01

1100 (1.38)

1.7 Controlled Gates

Suppose we have a two qubit system. We want to apply a quantum gate to the second
qubit, depending on the value of the first qubit. For example, we want to apply the
quantum NOT gate on the second qubit only if the first qubit is in the state 1 . In fact,
such a gate does exist and is called controlled-Not or CNOT for short. CNOT is described
by the matrix



















=

0100
1000
0010
0001

CNOT (1.39)

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 10

It is easy to verify that CNOT performs the transformation

0000 → , 0101 → , 1110 → , 1011 → (1.40)

We see that the first qubit remains unchanged, while, the second qubit is flipped only
when the first qubit is in the state 1 . The above action can be summarized as

ABABA ⊕→ ,, (1.41)

where }1,0{, ∈BA and ⊕ is addition modulo two, or else the XOR of A and B. The first
qubit, A , is called control qubit and the second qubit, B , is called target qubit.
 Generally, if we have a single qubit quantum gate U we can construct the
Controlled-U gate, that is, a gate that transforms the second qubit according to U only
when the first qubit is in the state 1 . The Controlled-U gate is described by the matrix









=

U
I

CU
0

0
(1.42)

where I is the two by two identity matrix, U is the two by two gate matrix and “0”
denotes the two by two matrix with all elements zero. Since U is unitary, Controlled-U is
also unitary.
 We can construct gates with more than one control qubit. We will mention only
one multi-controlled quantum gate, a controlled-NOT gate with two control qubits. This
gate is known as Toffoli gate and is described by the matrix

































=

01000000
10000000
00100000
00010000
00001000
00000100
00000010
00000001

Toffoli (1.43)

When we apply the Toffoli gate to a three qubit quantum register, it flips the target qubit
only if both control qubits are in the state 1

ABCBACBA ⊕→ ,,,, (1.44)

The Toffoli gate can be used to simulate the classical NAND gate. Suppose that the input
bits to the classical NAND gate have the values A and B, then if C is 1 in equation (1.44)
then we take the NAND of A and B in the third qubit

ABBAABBABA ¬=⊕→ ,,1,,1,, (1.45)

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 11

The main difference of Toffoli from NAND is that, like every other quantum gate, Toffoli
gate is reversible; therefore, we can “undo” the computation back. Recalling that the
NAND gate is universal, we understand that the Toffoli gate can be used to simulate any
classical gate. Intuitively, the ability of a quantum computer to simulate any classical gate
means that they are at least equivalent to classical computers, in that they can perform the
same computations.

1.8 No-cloning Theorem

We have said that any quantum gate must be unitary. In 1982, Wootters and Zurek [5]
proved that this property implies that unknown quantum states cannot be copied or
cloned. To prove the no cloning theorem we will assume that U is a unitary
transformation that clones, that is

ψψψ ,0, =U (1.46)

for all quantum states ψ . Consider 10 bac += , then by linearity

() 1100100010000, babUaUbaUcU +=+=+= (1.47)

But U is a cloning transformation, that means

()() 111001001010,0, 22 bababababacccU +++=++== (1.48)

Equations (1.47) and (1.48) are not equal, unless ab = 0. This means than we cannot copy
an unknown state 10 ba + , but we can copy the basis states 0 and 1 . For example,
the CNOT gate can copy the basis states, but it cannot copy an unknown state.

1.9 Measurement

We pointed that the evolution of a quantum system is described by unitary
transformations. However, there must also be times, when the quantum system interacts
with the classical world in a way that we can observe the state of the quantum system.
Such an interaction makes the system no longer closed, which entails that it is not
necessarily subject to unitary evolution. Measuring a quantum state is a non-unitary
transformation indeed.
 Quantum measurements are described by a collection {Mm} of measurement
operators. The index m refers to the outcome of the measurement that may occur. If the

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 12

state of the quantum system is ψ before the measurement, then the probability that
result m occurs is

 ψψ mm MMmp †)(= (1.49)

and the post-measurement state is

ψψ

ψψ

mm

mm

MM

M
mp

M
†)(

= (1.50)

The constraint that probabilities must sum to one is translated into the completeness
equation

IMM
m

mm =∑ † (1.51)

A simple but very important example is the measurement of a single qubit system

which is in the state 10 ba +=ψ . We can define the measurement operators using the
outer product

 







==

00
01

000M (1.52)

 







==

10
00

111M (1.53)

It is easy to see that 0M and 1M satisfy the completeness equation. The probability of
obtaining the measurement result 0 is

[] 2**
0

†
0 00

01
00
01

)0(a
b
a

baMMp =























== ψψ (1.54)

and the probability to measure 1 is

[] 2**
1

†
1 10

00
10
00

)1(b
b
a

baMMp =























== ψψ (1.55)

The post-measurement states for these two cases are

0
0

1
00
011

)0(
0

a
aa

ab
a

ap
M

=







=
















=

ψ
(1.56)

1
01

10
001

)1(
1

b
b

bbb
a

bp
M

=







=
















=

ψ
(1.57)

It can be proved that multipliers like aa can be effectively ignored, so states (1.56) and
(1.57) are equivalent to 0 and 1 respectively.

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 13

When measuring on the computational basis, the measurement operators for
measuring the n qubits of an n-qubit system are

xxM x = ,]12,0[−∈ nx (1.58)

A more interesting situation is when we want to measure a subset of the qubits of a
quantum register. Suppose we have a register that is the result of combining three smaller
registers, and its state is

{

}

{

qubits
q

qubits
n

qubits
p

zym=ψ (1.59)

If we want to measure the n qubits of register y , the measurement operators are

qp IxxIM x 22
' ⊗⊗= (1.60)

where kI 2 is the identity matrix of dimension 2k.

1.10 Quantum Circuits

People who design classical circuits use special symbols for the basic boolean gates.
Moreover they use these symbols to design more complex circuits on the paper. The idea
is adopted for quantum computers too. First, we have to create symbols for the basic
gates, the single qubit gates described above, and then we will use them to build bigger
circuits. A single qubit gate is denoted by a box which has the name of the gate. For
example, if we apply the gate U to a qubit which has initial state ψ , we can symbolize
the process like

ψ ψU

Figure 1.1: Applying the gate U to a qubit which has initial state ψ

where the gate U is applied from left to right.
We are ready to give a symbol for the controlled-U gate which acts on a two qubit

system which is in state ψ








ψ ψCU









Figure 1.2: Applying the controlled-U gate to a two qubit state ψ

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 14

The qubit with the black dot is the control qubit, while the other is the target qubit.
Because of the importance of the controlled-NOT gate, it has a special symbol








ψ ψCNOT









Figure 1.3: Controlled-NOT gate

We can introduce a new two qubit gate which swaps the states of the two bits,

a b

b a

≡

a

b

b

a

Figure 1.4: SWAP gate

The corresponding matrix for the SWAP gate is



















=

1000
0010
0100
0001

SWAP (1.61)

We need a way to represent the action of measuring a qubit in a circuit. This operation
converts a single qubit into a probabilistic classical qubit M. The classical bit is
distinguished from a qubit by drawing it as a double line wire,

ψ

Figure 1.5: Measurement symbol

We can make the circuit representation more compact adopting the following
equivalences

H

H
{n qubits ≡ {n qubits nH ⊗ ≡ nH ⊗n

M

Figure 1.6: Shorter representation for multiple Hadamard gates

≡

Figure 1.7: Shorter representation for Identity gate

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 15

In a circuit with gates acting on more than one qubit, the corresponding gate
matrix results from the tensor product of the single qubit gates. For example, the matrix
for the overall circuit of Figure 1.6 is

43421 L
n

n HHH ⊗⊗=⊗ (1.62)

We may have more than one gate applied on one qubit. In this case we put all the

gates on the same “wire”, with the one on the left acting first. The corresponding matrix
is the product of all matrices that act on the qubit. Let see a small example,

ψ ψSXH ≡

Figure 1.8: A series of gates acting on the same qubit

SXHU = (1.63)

Our final example includes three qubits and a number of quantum gates, in an
attempt to present all the cases which have been discussed previously. We give the circuit
and then the corresponding matrix,

H

X

S

Z

H

X

ICNOT ⊗ XHI ⊗⊗ HZS ⊗⊗ CNOTX ⊗

Figure 1.9: A three qubit circuit

))()()((ICNOTXHIHZSCNOTXU ⊗⊗⊗⊗⊗⊗= (1.64)

In (1.64) U is an 8x8 matrix. Generally speaking, a gate for n qubits has dimension 2n by
2n.

There are some features of classical circuits that are not allowed in quantum
circuits. First, there is no feedback form one part of the circuit to another; quantum
circuits are acyclic. Second, the operation of classical circuits known as FANIN is not
allowed for quantum circuits. Third, the inverse operation, FANOUT, is also not allowed,
for, quantum mechanics forbid the copying of a qubit.

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 16

1.11 Reversibility and Scratch space

We can construct a quantum circuit to compute the function f(x),

fUx)(xf

Figure 1.10: A possible transformation to compute f(x)

Unfortunately, this approach doesn’t work for all functions. The constraint that quantum
transformations are reversible makes the circuit of Figure 1.10 valid only when f(x) is
one to one, that is, function f -1(x) exists. In simpler words, we must be able to find the
original input x , by “uncomputing” the result)(xf . Of course, only a few functions
are one to one, so we must find a way to evaluate all the functions reversibly. The idea is
to have two distinct registers. One should store the input and the other should store the
output. Indeed, this is the way to compute functions using quantum circuits,

x

y
fU

)(xfy⊕

x

Figure 1.11: Computing f(x) reversibly

If we initialize y in the state 0 , then)()(0)(xfxfxfy =⊕=⊕ , which means that the
second register holds the result f(x). This transformation is summarized as

)(,0, xfxxU f = (1.65)

It is common for transformations Uf to use some temporary qubits as scratch
space for their calculations. These temporary qubits, also known as ancilla qubits, are
initialized to 0 , but may end in any state)(xg (g for garbage) after Uf is applied. In the
case that Uf uses ancilla qubits, Figure 1.11 can be changed to Figure 1.12

x
0 fU)(xf

x

0)(xg

Figure 1.12: Computing f(x) using scratch space

In a chain of transformations that all use scratch space, we will end with a big number of
qubits that store garbage. Fortunately, C. Bennett ([6, 7]) proposed two tricks to “erase”
these qubits, in order to reuse them later. The first trick requires one more register,

)(,0,0,)(),(),(,0),(),(,0,0,0,
†

4,2 xfxxfxgxfxxgxfxx ff UCNOTU → →→ (1.66)

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 17

The second step is a form of copying, by applying bitwise controlled-NOT gates between
the qubits of the second and the fourth register. The last step is the application of the
inverse transformation of Uf.

The second trick introduces a way to write the output of the function f(x) in the
input register, provided that it is an invertible function. Then there exists the

transformation 1−f
U ,

)(,0, 11 xfxx f
U − → − (1.67)

which can be used in the following way

0),(),()(,0,
†

1 xfxxfxfxx ff
USwapU  → →→ − (1.68)

Thus, we can save even more space in the case f(x) is invertible.

1.12 Quantum Parallelism

Suppose we have a transformation Uf that computes the function f(x). This transformation
is linear, that is, if the input is in a superposition then it is applied to all basis states. In
this way, quantum computers can evaluate the function f(x) for many different values of x
simultaneously. This unique feature of quantum computers is called quantum parallelism
and together with entanglement is exploited by almost all quantum algorithms. Only two
steps are required to take the advantage of quantum parallelism. Starting with all the
input qubits in the state 0 , we apply the Hadamard gate to each of the n input qubits, to
create an equal superposition in the input register

n2
1 ∑

−

=

12

0

n

x
x (1.69)

Then we apply Uf to get a superposition of all 2n possible results of f(x)

∑∑
−

=

−

=

=









⊗







 12

0

12

0

)(,
2
10

2
1 nn

x
n

x
nf xfxxU (1.70)

Figure 1.13 depicts the circuit that performs these two steps

CHAPTER 1. INTRODUCTION TO QUANTUM COMPUTING 18

0
fU ∑

−

=

 12

0

)(,
2

1 n

x
n

xfx
n⊗0 nH ⊗

Figure 1.13: Computing f(x) for all possible inputs

We will use the Toffoli gate to simulate the classical AND gate as a trivial
example for quantum parallelism. Figure 1.14 shows the quantum circuit for the AND
function.

0

b

a a

b

ba ∧

Figure 1.14: Simulating the classical AND gate using a Toffoli gate

First, we create an equal superposition in the two input qubits

() () ()110100010000
2
1010

2
110

2
1000)(+++=⊗+⊗+=⊗⊗ IHH (1.71)

We are going to apply the Toffoli gate to the state (1.71),

() ()111100010000
2
1110100010000

2
1 +++=+++Toffoli (1.72)

The resulting superposition contains the result of the AND gate for all possible inputs. In
other words, it can be view as the truth table for the conjugation. In the final state, the
input registers are entangled with the output register. Measuring the third qubit, would
project the input qubits in the states for which the function produces a result equal to the
result of measurement. For example, the measurement outcome is 1, then the post-
measurement state would be 111 .

To sum up, quantum parallelism gives us the opportunity to compute all the
possible values of a function f(x) by evaluating the function only once. This is an amazing
feature indeed, but how can we take advantage of the final state which is in a
superposition of all possible results? Measuring the final state gives only one result,
which is equivalent to what a classical computer can do. We need something cleverer if
we want to score more, using quantum parallelism. Such an idea is presented in the next
chapter, where we describe an algorithm for fast factorization.

19

Chapter 2

Fast Factorization

Many people have tried to find efficient algorithms for integer factorization during the
last three decades. The most efficient classical algorithm known today is called number
field sieve. To find the prime factorization of an n-bit integer, this algorithm requires

))log(exp(3/23/1 nnΘ operations, which is exponential in the size of the number being
factored. It is assumed that it would be impossible to find a fast classical algorithm for
factorization. Indeed, the safety of the famous public key cryptographic system RSA is
based on this assumption. In 1994, Peter Shor [2] described an algorithm, which can
factor an integer using)logloglog(2 nnnΟ operations. That is, a quantum computer can
factor a number exponentially faster than the best know classical algorithm.
 In this chapter we describe the quantum Fourier transform, which is the main
gear of Shor’s algorithm. Then we describe how factoring is reduced to order finding and
how a quantum computer can solve this problem. A short description of the appropriate
quantum circuits follows. Finally, we show a way to implement the quantum Fourier
transform semi-classically.

2.1 Quantum Fourier Transform

It is common in mathematics and computer science to solve a problem by transforming it
into another problem. One such transformation is the discrete Fourier transform (DFT),

CHAPTER 2. FAST FACTORIZATION 20

which takes as input a vector of complex numbers, 110 ,,, −Nxxx K , where N is a fixed
parameter, and it outputs a vector of complex numbers 110 ,,, −Nyyy K , defined by

∑
−

=

⋅⋅⋅≡
1

0

/21 N

j

Nkji
jk ex

N
y π (2.1)

The quantum Fourier transform (QFT) is a variant of DFT where N is a power of 2. The
QFT on a computational basis { }1...,,1,0 −= NB is defined to be a linear operator
with the following action on the basis states,

ke
N

j
N

k

NkjiQFT ∑
−

=

⋅⋅⋅→
1

0

/21 π (2.2)

The action of QFT on an arbitrary state may be written

kyjx
N

k
k

QFT
N

j
j ∑∑

−

=

−

=

→
1

0

1

0
(2.3)

where the amplitudes yk are the DFT of the amplitudes xj.

When acting on an n-qubit state the QFT can be implemented efficiently by the
following quantum circuit

2R 1−nR nR

2−nR 1−nR

2R
M MM M

Figure 2.1: The circuit which implements the QFT

where the top wire acts on the most significant qubit and the gate Rk denotes the unitary
rotation transformation

 







= kik e

R 2/20
01
π (2.4)

The corresponding 2n by 2n matrix for the QFT has elements

njki

n
ejkF 2/2

2
1),(⋅⋅⋅= π , where k, j = 0, 1, …, 2n-1 (2.5)

We can count the number of gates that is used by the circuit. We apply a Hadamard and
n-1 conditional rotations on the first qubit - a total of n gates. On the second qubit we

CHAPTER 2. FAST FACTORIZATION 21

apply one Hadamard and n-2 conditional rotations – a total of n-1 gates. Continuing in
this way and counting the n/2 Swap gates, we see that the total number of gates is

)(
2

2
2

)1(
2

2
2

1

nnnnnnin n

i
Θ=+=++=+∑

=
(2.6)

The best classical algorithm for computing the DFT on 2n elements is the Fast Fourier
Transform (FFT) which uses)2(nnΘ gates. That is, a classical computer needs
exponentially more operations to compute the Fourier transform than the quantum
computer. Fourier transform is a key ingredient for many applications, like signal
processing, so the exponential speedup sounds terrific. However, the amplitudes in a
quantum computer cannot be directly accessed by measurement. This is more or less the
same problem that prevents us from taking advantage from quantum parallelism. In the
next session we describe how quantum parallelism and QFT can be combined to create a
polynomial time factoring algorithm.
 In fact this algorithm uses the inverse QFT which is implemented by the
following circuit

3R nR

1−nR

2R

2−nR

2R

Figure 2.2: The circuit which implements the inverse QFT

The qubit swapping is not necessary, for, at the end of the algorithm all the qubits are
measured and we can swap the bits of the measured value classically.

2.2 Reduction of Factoring to Order Finding

For positive integers a and N, a<N, with no common factors, the order of a modulo N is
defined to be the least positive integer, r, such that ar = 1(mod N). In other words, the
order of a modulo N is the period of the function

Naxf x mod)(= (2.7)

We are now going to see how we can factor an integer N when we know the period of
function (2.7). First, we suppose that N is the product of powers of distinct prime integers

CHAPTER 2. FAST FACTORIZATION 22

ke
k

ee pppN L21
21= (2.8)

Then we randomly choose an integer 1≠a , a<N. If 1),gcd(>= Nam then m is a
nontrivial factor of N, therefore we can find the rest of the factors by dividing N by m. If
m = 1, assume that r is the order of a modulo N. Then

)(mod1 Na r ≡ (2.9)

which means that N divides 1−ra . If r is even, we can factorize 1−ra as

)1)(1(1 2/2/ +−=− rrr aaa (2.10)

Since N divides 1−ra , it should share a factor with 12/ −ra or with 12/ +ra or with
both. We can easily extract this factor by using Euclid’s algorithm for finding the greatest
common divisor of two numbers.
 Of course, we must guarantee that this is not a trivial factor. This happens when

12/ ±ra are multiples of N, so the greatest common divisor of these numbers with N is N.
Fortunately, it is not so likely that N divides 12/ ±ra , as we will demonstrate soon. First,
N cannot divide 12/ −ra , since this would imply that

)(mod12/ Na r ≡ (2.11)

which is impossible, because it redefines the order of a to be r/2. However, it can still
happen that N divides 12/ +ra and does not share any factor with 12/ −ra , that is

)(mod12/ Na r −≡ (2.12)

To sum up, the reduction of factoring fails only when the order of a modulo N is odd or
when equation (2.12) holds. It can be shown that if the procedure is applied with a
random a, yields a factor of N with probability at least 1211 −− k , where k is the number
of different prime divisors of N in equation (2.8). A brief sketch of the proof follows.

If ir is the order of ()ie
ipa mod , then r is the least common multiple of all ir .

Consider the largest power of 2 dividing each ir . If they are all 1, then r is odd, so the
algorithm fails. The same happens when they are all equal and larger than 1, because
(2.12) holds since ()ie

i
r pa mod12/ −≡ for every i. These are the only two cases that the

algorithm fails. The Chinese remainder theorem [12] says that choosing an ()Na mod at
random is the same as choosing for each i a number ()ie

ii pa mod at random. The
multiplicative group ()epmod for any odd prime power ep is cyclic [12], so for any odd

prime power ie
ip , the probability is at most ½ of choosing an ia , having any particular

power of two as the largest divisor of its order ir . Therefore, each of the powers of 2 has
at most probability ½ to agree with the previous ones, so all k of them agree with
probability at most 121 −k . This means that there is at least a 1211 −− k chance that we

CHAPTER 2. FAST FACTORIZATION 23

have chosen a good ()Na mod . The only constraint is that N is odd and not a prime
power, that is

 λpN ≠ (2.13)

If N is even, then we can immediately say that 2 is a factor of N. If N is a prime power,
there exist efficient classical methods to find p and λ in (2.13).
 What about if the numbers 12/ ±ra are so large that they cannot be manipulated
efficiently? Fortunately, divisibility by N is a periodic property with period N, so upon
estimation of r we can use Na r mod)1(2/ ± instead of 12/ ±ra . Furthermore, very rapid
algorithms for modular exponentiation are known.

2.3 Finding the order

We are going to describe the quantum part of Shor’s algorithm which is used to find the
order of a modulo N. First we find mM 2= , such that 22 2NMN <≤ . It is common to
use LM 22= , where L is the number of bits of N. The algorithm uses two quantum
registers one of size m qubits and the other of size L qubits. We initialize the two registers
in the state

 10 (2.14)

Initializing the second register in 1 helps us to compute Na x mod as we describe in
section 2.4. Next, we apply the Hadamard gate to each qubit of the first register to create
the superposition

∑
−

=

1

0
11 M

x
x

M
(2.15)

Then we compute the function Naxf x mod)(= , using as input the first register and
storing the result in the second

∑
−

=

1

0
mod1 M

x

x Nax
M

(2.16)

Since this function is periodic, with period r, we can write (2.16) again as

∑∑
−

= =

+
1

0 0

1 r

l

s

k

lalkr
M

(2.17)

where s is the greatest integer for which Mlrs <+⋅ . The next step is to apply the
inverse QFT to the first register to get

CHAPTER 2. FAST FACTORIZATION 24

∑∑ ∑
−

= =

−

=

+⋅⋅⋅1

0 0

1

0

)(211 r

l

s

k

l
M

p

M
lrkpi

ape
MM

π

∑∑ ∑
−

=

−

= =

⋅⋅⋅⋅⋅⋅⋅

=
1

0

1

0 0

221 r

l

M

p

l
s

k

M
rkpi

M
lpi

apee
M

ππ

(2.18)

In fact, what QFT does is to leave nonzero amplitudes only to integers that are multiples

of
r

M . If r doesn’t divide M, then most of the amplitude is attached to integers close to

multiples of
r

M . This means that the first register is in a state ∑
q

q r
Mqc .

Following, we measure the first register to get an outcome

r
Mqp = , for some q. (2.19)

Most of the time, q and r will be relatively prime, which means that reducing the fraction







=

r
q

M
p to its lower terms will yield a fraction whose denominator is the period r. For

this purpose, we perform the continued fraction expansion of
M
p to find the convergents

i

i

q
p

. The smallest iq for which)(mod1 Na iq ≡ , if such iq exists, is candidate to be the

order of a modulo N.
The continued fraction expansion of a real number is a way to describe it in terms

of integers, using expressions of the form

 []

n

n

a

a
a

aaaa

1
1

1
1,,,

2

1

010

+
+

+
+≡

K

K (2.20)

For example,

2
11

11

12

12

2
3
11

12

12

3
21

12

12

3
5
12

12

5
32

12

5
13
12

13
52

13
31

+
+

+
+=

+
+

+=

+
+

+=
+

+=
+

+=+=+=

CHAPTER 2. FAST FACTORIZATION 25

The mth convergent, m < n, to (2.20) is defined to be []m
m

m aaa
q
p

,,, 10 K= . The

continued fractions algorithm can be computed efficiently by a classical computer using
the following equations

21

21

11

101

0

00

1
1

−−

−−

+=
+=

=
+=

=
=

nnnn

nnnn

qqaq
ppap

aq
aap

q
ap

(2.21)

The algorithm finishes after a finite number of steps for a rational number. This is the

case for the number
M
p . If p and M are k bit integers the continued fraction expansion

can be computed using)(3kΟ operations.

2.4 Example: Factoring 15

An example is necessary, so we are going to use Shor’s algorithm to factor N = 15. First,
we have to choose a random number smaller than N that has no common factors with N,
for example a = 7. We initialize two registers of 8 and 4 bits respectively. Then we apply
the Hadamard transformation to the first register to get the state

[] 125510
16
11

16
11

256
1 255

0

1256

0
+++== ∑∑

=

−

=

K
xx

xx

The next step is to compute the modular exponentiation

[]K++++++=∑
=

7514133427110
16
115mod7

16
1 255

0x

xx

We can now apply the inverse QFT to the first register, but for clarity we will do an extra
step which is not necessary. Since the second register is not used again, we can measure
it. The measurement gives 1, 7, 4 or 13. Suppose that it gives 4. Entanglement indicates
that the measurement leaves the first register in a superposition of basis vectors k for
any k < 255 such that 7k mod 15 = 4. The state is now

[] 4141062
8
1

K++++

CHAPTER 2. FAST FACTORIZATION 26

The sharp-eyed reader may have noticed that the order r = 4 is “stored” in the
superposition of the first register. However, as mentioned before, we cannot just measure
it, because that will only give a single number. We cannot even copy the state, to measure
it several times, so we need something cleverer. What we need is the inverse QFT which
when applied to the first register produces the state

[]1921286402
1 +++

Measuring the first register will give 0, 64, 128 or 192 with probability ¼. Suppose we
obtain 64. Then the continued fraction expansion of 25664 gives 41 , so r = 4 is the
order of 7 modulo 15. We can apply the ideas mention in section 2.2, to get

Possible factor = 3)15,17gcd(2/4 =−

Possible factor = 5)15,17gcd(2/4 =+

Measuring 0, means that we cannot apply the continued fraction algorithm. Measuring
128 gives r = 2, which is not the correct order. Thus, it is a good idea to try some small
multiples of r like 2r and 3r. Measuring 192 gives the correct order 4.

2.5 Quantum Circuits for Modular Exponentiation

We have purposely avoided mentioning how we can evaluate the modular exponential

Na x mod using quantum circuits, which is the dominant part of Shor’s algorithm. The
simplest way is to have a circuit that multiplies by a a total of x-1 times and then taking
the modulo N. Fortunately, there is a trick called repeated squaring, that speeds up the
computation. If x is an L-bit number, we can use its binary expansion to write

()∏
−

=

∑
==

−

=

1

0

2
2

1

0

L

i

xxx ii
L

i

i
i

aaa (2.22)

Moreover

() 222 1−

=
ii

aa (2.23)

which means that Na
i

mod2 can be computed by squaring
12 −i

a . The pseudo-code
describing the process of computing Na x mod is

For i = 0 to L-1, if xi = 1 then Multiply Na
i

mod2 (2.24)

The if… then statement can be computed using controlled gates. If have a gate

),(NkOMULN that multiplies with k and then takes the modulo N

CHAPTER 2. FAST FACTORIZATION 27

),(Nk
OMULN

y ()Nky mod⋅

Figure 2.3: Operator for modulo N multiplication

then the circuit for Shor’s algorithm is depicted by the following figure

),(Na
OMULN

),(2 Na
OMULN

),(4 Na
OMULN

K
),(

12 Na

OMULN
L −

M M

1

0

0

0

0

Figure 2.4: Circuit implementing Shor’s algorithm

Notice that the register which stores the result of modular exponentiation is initialized in
1 , not 0 . Moreover, the order in which we apply the OMULN gates doesn’t matter,

since the same product is produced. We have to explain how the OMULN operator is
implemented. If y is an M-bit integer, using its binary notation we have

[]∑∑
==

=⋅






=⋅
M

i

i
i

M

i

i
i NkyNkyNyk

00

)(mod2)(mod2)(mod (2.25)

The product)(mod Nyk ⋅ can be computed by the pseudo-code

For i = 0 to M-1, if yi = 1 then ADD Nki mod2 (2.26)

Once again, the if… then statement is implemented using controlled gates. The modular
addition is computed by the following operator

),(Nm
OADDN

y ()Nmy mod+

Figure 2.5: Operator for modulo N addition

Combining the ideas of equations (2.25) and (2.26) we see that the OMULN operator can
be constructed by chaining M controlled-OADDN gates. The OADDN gate can be
implemented using a multiplexed modulo adder which implements the following pseudo-
code

CHAPTER 2. FAST FACTORIZATION 28

If (N – m>y) ADD m else ADD m-N (2.27)

The multiplexed adder uses a comparator and its result qubit controls which number is to
be added. In fact, the above description only captures the basic ideas of how we can build
the quantum circuit for modular exponentiation. David Beckman et al. [13] describe in
full detail how to implement such a circuit, using the appropriate number of ancilla
qubits and erasing garbage (see section 1.11). It turns out that if the number N to be
factored is L-bits, the modular exponentiation circuit uses 2L+1 ancilla qubits, which
together with the L qubits of the register that stores the result, make a total of 3L+1.
Supposing that we use 2L qubits in the first register of Shor’s algorithm we need 5L+1
qubits to factor an L-bit integer. In the next section we describe a way to reduce this
number to 3L+2, that is, we use only one qubit in the first register to compute the inverse
QFT.

2.6 Semi-classical Fourier Transform

Griffiths and Niu [14] pointed out that the measurements of the qubits of the first register
in Shor’s algorithm can be performed before the controlled rotations. Moreover, we can
replace the quantum controlled rotations with semi-classically controlled rotations. This
means that the control qubit is measured and if the outcome is 1, the rotations are done
quantumly. We give a simple example to make things clearer. Suppose that we have only
three qubits in the first register of Shor’s algorithm. Then the corresponding circuits is

3R

2R

2R

),(2 Na
OMULN

),(4 Na
OMULN

1

0

0

0

),(Na
OMULN

2M

1M

0M

Figure 2.6: Running Shor’s algorithm with just three qubits

What Griffiths and Niu say is that the top qubit can be measured before applying gates A
and C. Only if the outcome of the measurement is 1 we apply gates A and C. Following
this procedure we can use just one control qubit. Suppose a scenario where the circuit of
Figure 2.6 gives 02 =M , 11 =M , 00 =M . Shor’s algorithms is equivalently
implemented by the following circuit

CHAPTER 2. FAST FACTORIZATION 29

),(2 Na
OMULN

),(4 Na
OMULN

1
),(Na

OMULN

0

0 1

02 =M 11 =M 00 =M
2R

0

Figure 2.7: Running Shor’s algorithm using the semi-classical QFT

We see that we apply only gate B of Figure 2.6, since only the second measurement gives
an output 1. After a measurement of 1, the control qubit collapses in the state 1 , so we
have to transform it back to state 0 before continuing. This is the purpose of the
quantum Not gate in Figure 2.7. The binary number 2010012 ==MMM is the outcome
p (see equation (2.19)) when measuring the first register of Shor’s algorithm. Using just
one control qubit not only saves space, but it may also reduce the number of rotation
gates, since they are only applied after a measurement of 1. The overhead of Not gates for
reinitializing the state to 0 is negligible.

30

Chapter 3

Simulating Quantum Computers

Current technology allows us to build quantum computers with just a few qubits. In
addition, these quantum computers are not very stable, so they cannot be used to run
quantum algorithms which require many qubits. Simulation on a classical computer can
instead be used to test quantum algorithms, but this also turns out to be a difficult task. In
this chapter we describe the main reasons why this task is difficult and then we mention
the related work on simulating quantum computers.

3.1 The Main Difficulties

We have seen in section 1.4 that the state of an n-qubit system is described by a vector
which has 2n elements. The naïve approach of storing each element of the state vector
needs)2(nΟ space and time to be manipulated. Furthermore, an n-qubit operator is
described by a 2n by 2n matrix. Storing each element, the whole matrix requires space

)2(2nΟ . Therefore, a simulator that stores every amplitude of the state vector and every
element of each operator would require exponential (in the number of qubits) time and
memory, which in turn means that simulation would be possible only for a small number
of qubits. Another problem is entanglement which makes it impossible to consider each

CHAPTER 3. SIMULATING QUANTUM COMPUTERS 31

qubit as an independent system. Thus, we cannot simulate the actions on each qubit and
then combine the results.
 We have to find ways to compress the state vectors and the operators’ matrices. A
simple solution is storing only nonzero amplitudes or/and avoiding storing the same
amplitudes more than once, similar to the ways described in literature to store sparse
matrices. However, some datastructures for storing compressed matrices have to be
uncompressed before using them, which is still a major problem. An efficient simulator
should use a datastructure that keeps the matrices and vectors compressed, and performs
operations on them quickly and without using excessive space.

3.2 Related Work

The need for quantum computer simulators has been translated into a number of available
simulators. J. Wallace [16, 17] has described a number of quantum simulators, but only a
few implementations are still functional. The following table shows some of the
simulators that can be found in [17]

Name Description
QuBit QuBit is a library to support Quantum Superpositions in C++
Quantum-
Entanglement-0.31 QM-like entanglement of variables in Perl

OpenQUACS

OpenQUACS is an Open-source general-purpose Quantum
Computer Simulator written in the Maple programming
language. It comes as a precompiled Maple library or Maple
source and has a full tutorial included

QuCalc
QuCalc is a library of Mathematica functions whose purpose is to
simulate quantum circuits and solve quantum computation
problems

OpenQubit 0.2.0
C++ quantum computer simulator which aims to demonstrate
Shor's algorithm, and its efficiency on a quantum computer.
Current development version is NewSpin 0.3.3a

QCL
QCL (Quantum Computation Language) is a high level,
architecture independent programming language for quantum
computers

Q-gol 3 A high-level programming language to allow researchers to
describe quantum algorithms

Table 3.1: Some of the simulators that can be found in [17]

A very important work comes from B. Omer [18] who has implemented a
procedural language for quantum programming. The idea behind it is that when a
quantum computer is going to be constructed, we should have a programming language
to program it. The programming language is called QCL and it treats operators as
functions. QCL includes many concepts of traditional programming languages like

http://www.ifost.org.au/~gregb/q-gol/index.html
http://tph.tuwien.ac.at/~oemer/qcl.html
http://www.ennui.net/~quantum/
http://crypto.cs.mcgill.ca/QuCalc/
http://www.gl.umbc.edu/~cmccub1/quacs/quacs.html
http://search.cpan.org/search?dist=Quantum-Entanglement
http://search.cpan.org/search?dist=Quantum-Entanglement
http://www.bluedust.com/qubit

CHAPTER 3. SIMULATING QUANTUM COMPUTERS 32

variables, control structures and functions but it is also equipped with quantum
properties. Since no quantum computer is available yet to be programmed, QCL’s
interpreter is connected with a C++ library that simulates the action of a quantum
computer, called QCLIB [19]. This library stores only nonzero amplitudes of the state
vector using a hash table and a linear array. A basevector is mapped onto a hashtable
using a hash function to get a pointer (if any exist) to the array entry where the amplitude
for this basevector is stored. In this way, QCLIB achieves O(1) complexity for finding
and inserting a basevector’s amplitude. For matrices which represent unitary operators,
QCLIB stores only the nonzero elements of each row in an array of linear lists. QCL is
enriched with simulation code for several algorithms like Shor’s and Grover’s. Although
the main concept behind QCL is quantum programming, it can be easily used as a
simulator. QCL can simulate efficiently a small number of qubits and can run Shor’s
algorithm to factor up to about 10-11 bit numbers depending on the available memory.
However, it has several weaknesses, e.g. applying the Hadamard gate to each qubit of a
23-qubit register consumes excessive memory.

M

()xhash
M M

L

L

Figure 3.1: Datastructures used by QCL to represent vectors and matrices

S. Bettelli [20] proposes another approach for quantum programming. Actually,

he implements libquantum, a C++ library for quantum programming which treats
operators as objects. This library produces a stream of bytecode which can be used to
drive a quantum device or can be passed to a quantum simulator. Like QCL, a simulator
acts like a quantum computer to run the program. Once again, applying the Hadamard
gate to a 25-qubit register over-consumes the free memory. Some other works are
available for quantum programming ([21], [22]), but they are still in a theoretical level, so
there is no way to use them for simulation.

The efforts described above target quantum programming, not quantum
simulation. Several programs exist that can be used for quantum simulation. For example,
we can use Matlab or Octave, which are designed to maneuver matrices and vectors and
are capable of performing matrix multiplications and tensor products. Unfortunately, it
turns out that they are not so efficient in simulating quantum circuits, since they usually
run out of memory for circuits with more than 12-14 qubits. National Institute of
Standards and Technology [23] provides source code and examples for QCSim quantum
computer simulator. QCSim does not compress matrices and vectors, and its creators
mention that it can only allocate up to 13 qubits. Surely, this number of qubits is not
enough for factoring big integers using Shor’s algorithm.

CHAPTER 3. SIMULATING QUANTUM COMPUTERS 33

A simulator that uses a more sophisticated way to represent state vectors and
operators is QuIDDPro [24, 25]. This simulator uses a variant of Algebraic Decision
Diagrams (ADDs) called Quantum Information Decision Diagrams, which achieve quick
simulation of quantum circuits combined with low memory consumption. The final
version of QuIDDPro is not available yet, but results show that QuIDDPro can simulate
Grover’s algorithm faster and with much less memory than Matlab and Octave. The low
memory usage allows QuIDDPro to be able to simulate circuits with many qubits. Our
work uses Algebraic Decision Diagrams too, so we are going to describe them in detail in
the next chapter.

34

Chapter 4

Binary Decision Diagrams

In this chapter we are going to describe the main properties of Binary Decision Diagrams
(BDDs) and ways to manipulate them. Then we present Algebraic Decision Diagrams
(ADDs), a variant of BDDs, which are used to represent matrices. Finally, we describe
how to perform matrix multiplications and tensor products using ADDs and the
corresponding time complexity.

4.1 Reduced Ordered Binary Decision Diagrams

Binary Decision Diagrams were introduced by Lee [26] in 1959 and later by Akers [27].
Bryant [28] eliminated redundancy from BDDs by formulating some limitations and
algorithms to manipulate them, ending up in a more powerful datastructure called
Reduced, Ordered, BDD (ROBDD). A ROBDD is a datastructure which represents a
boolean function),,,(10 nxxxf K using a directed acyclic graph. The graph has vertices
of two types, terminals and non-terminals. Each non-terminal, also called internal, vertex
of the graph is associated with a variable xi, and has outdegree 2. One outgoing edge
(usually represented by a solid line) denotes the assignment of 1 (or true) to variable xi
and the other (dashed line) denotes the assignment of 0 (or false). Terminal vertices, also
called external, are not associated with any variable; they have outdegree 0 and store a

CHAPTER 4. BINARY DECISION DIAGRAMS 35

boolean value of either 0 or 1. A BDD is reduced and ordered when the following
conditions hold:

1. There is no internal vertex v with its two outgoing edges pointing to the same
vertex u.

2. There are no vertices v and u such that the subgraphs rooted at v and u are
isomorphic.

3. Condition 2 implies that there are no terminal vertices with the same value.

4. If xi is the associated variable of a vertex and if xj and xm are the variables of

the vertices pointed by its edges then i < j and i < m. This means that while
we are traversing a path of the graph we should always meet variables with
higher indexes.

Let see the BDD representing the Boolean function 1010),(xxxxf +=

Figure 4.1: BDDs for function 1010),(xxxxf +=

Figure 4.1a shows the unreduced BDD of 1010),(xxxxf += . Using condition 3 we
reduce the three identical terminal vertices into one, to get Figure 4.1b. Here we see that
there exists one vertex which violates condition 1 so the graph can be reduced even more.
Figure 4.1c shows the ROBDD for 1010),(xxxxf += . Translating the ROBDD starting
from top and moving down, we can say:

If variable x0 is 1 then the function evaluates to 1, else if variable x1 is 1 then the
function evaluates to1, else it evaluates to 0.

Each non-terminal vertex of a ROBDD expresses an if…then…else statement. If

the value of the corresponding variable is 1 traversal takes the then edge, otherwise it
takes the else edge. Traversing a ROBDD using a variable assignment ends in a terminal
vertex. This vertex contains the value to which the function evaluates for this specific
variable assignment. The then edge is also known as high and the else edge is also known
as low.

Bryant described some very important algorithms for manipulating ROBDDs,
which make them so practical. The most important algorithm is called REDUCE and as it
is denoted by its name, it takes as input a BDD and return its equivalent ROBDD. We
have to say that each function),,,(10 nxxxf K has a unique ROBDD. For example, the

CHAPTER 4. BINARY DECISION DIAGRAMS 36

transformation of the BDD in Figure 4.1a to that in the Figure 4.1c is the action of
REDUCE. Bryant showed that if |G| is the number of vertices in the BDD to be reduced,
then REDUCE has time complexity ()GG logΟ . The only restriction on the input BDD
is that it should obey to condition 4.

Another operation on ROBDDs that is extremely useful is APPLY. APPLY takes
as input two ROBDDs representing functions),,,(101 nxxxf K and),,,(102 nxxxf K

together with an operator <op> and produces a ROBDD which represents 21 fopf >< .
Before describing how APPLY works we have to give the notation to be used. For a
vertex v which is associated with variable xi, index(v) = i. The high and low edges of a
vertex v point to vertices low(v) and high(v) respectively. A terminal vertex v has value
val(v). To apply the operator <op> to the functions represented by graphs with roots v
and u, we must consider several cases. First, if both v and u are terminal vertices then the
result graph consist of a terminal vertex having value val(v) <op> val(u). Now suppose
that at least one of the two vertices is non-terminal. APPLY is implemented by a recursive
traversal of the two ROBDD operands. For every pair of vertices visited during the
traversal, it produces a non-terminal vertex using the rules of the following figure

Figure 4.2: The recursive rules used by APPLY when at least one vertex is non-terminal

The algorithm does not have to evaluate a given pair of subgraphs more than once. We
can use a structure, i.e. a hash table, where we keep entries of the form (v, u, k) which
means that the result of APPLY on the subgraphs rooted by vertices v and u is a graph
rooted by vertex k. In addition, if the algorithm is applied to two vertices where one is a
terminal vertex with a controlling value, then it can return immediately a terminal vertex
with this value. The controlling value for boolean AND is 0, while the controlling value
for boolean OR is 1. The produced graph is not reduced, so APPLY has to call REDUCE
at the end. If the number of vertices of the input ROBDDs are 1G and 2G , then the time

complexity of APPLY is ()21 GGΟ . An example follows to illustrate the steps described
above

31321),,(xxxxxf ⋅= 32321),,(xxxxxf ⋅= 321321),,(xxxxxxf ⋅⋅=

Figure 4.3: ()31 xx ⋅ OR ()32 xx ⋅ = 321 xxx ⋅⋅

CHAPTER 4. BINARY DECISION DIAGRAMS 37

Another important operation on ROBDDs is RESTRICT. This operation restricts
the vertices associated with a specific variable to their low or high children. In other
words, RESTRICT assigns the value 0 or 1 to a variable xi in the function represented by
the ROBDD. The operation can be easily implemented by traversing the ROBDD and
changing the pointer to vertices v with variables xi to point to low(v) or high(v). The
complexity of RESTRICT is ()GΟ . Of course, we have to call REDUCE to get the final
restricted ROBDD. If B is a ROBDD then we denote the restriction xi = 1 of B as

ixB and
its restriction xi = 0 as

ix
B . Figure 4.4a shows the original ROBDD B. Figure 4.4b shows

1x
B and Figures 4.4c,d show

1xB before and after REDUCE.

Figure 4.4: (a) Original ROBDD, (b) Restricted by x1 = 0, (c) Restricted by x1 = 1,
(d) Reducing the BDD of (c)

4.2 Algebraic Decision Diagrams

Algebraic Decision Diagrams [29] extend ROBDDs by allowing terminal vertices to
store any numerical value. Thus, an ADD can represent a function),,,(10 nxxxf K which
evaluates to any numerical value. The variables xi still take values from the boolean
domain {0,1}. The following figure shows the ADD for the function

11010 35),(xxxxxf +=

Figure 4.5: ADD for 11010 35),(xxxxxf +=

CHAPTER 4. BINARY DECISION DIAGRAMS 38

We have to mention that the variable ordering is of key importance for the size of the
BDD. For example, the function 00110 35),(xxxxxf += is represented by the ADD

Figure 4.6: ADD for 00110 35),(xxxxxf +=

which has less vertices than that of the Figure 4.5. This means that if we have a function
xxyyxf 35),(+= we achieve better compression if we assign x0 to x and x1 to y, than

assigning x0 to y and x1 to x. Finding the best variable ordering is a coNP-complete
problem. However, we can find a quit good variable ordering for most problems based on
our experience and just a few experimental results.
 We are going to use ADDs to represent matrices and vectors. We can write the
row and column indexes of a matrix using their binary representation and then use each
bit of this representation as a variable of the function which represents the matrix. For
example if R0 is the row index and C0 is the column index, R0, C0 = {0, 1}, then the
matrix

0

0

1
0

10

R
dc
ba

C








 (4.1)

can be represented by the function 0000000000),(CdRCcRCRbCRaCRf +++= .
Supposing that variable R0 precedes C0, the ADD for matrix (4.1) is

Figure 4.7: ADD representing matrix (4.1)

Let’s move to a more complex example. Suppose we have the matrix produced by the
tensor product of two Hadamard matrices,

CHAPTER 4. BINARY DECISION DIAGRAMS 39

10

10

11
10
01
00

1111
1111
1111

1111
11100100

21
2121

2121
2121

2121

RR

CC

HH



















−−
−−
−−=









−
⊗









−
=⊗ (4.2)

The function that represents this matrix has four variables; therefore we have to decide
for the variable ordering before giving the corresponding ADD. We choose the
interleaved variable ordering, that is R0, C0, R1, C1, …,Rn, Cn. Thus, the ADD representing
the matrix (4.2) is

0R

0C

1R1R

1C1C

Figure 4.8: ADD representing the matrix (4.2)

The interleaved variable ordering is demonstrated to be efficient for representing certain
rectangular matrices [30] and offers great compression for matrices that have regular
block sub-matrices, which is a usual feature of the tensor product [25].
 We have skipped mentioning that ADDs represent only matrices or vectors, which
have a dimension that is a power of 2. If that’s not the case, the matrix has to be padded
with zeros. Fortunately, all state vectors and operators in quantum mechanics do have a
dimension that is a power of 2. There is another variant of BDD that can represent
matrices, called Multi-Terminal Binary Decision Diagram (MTBDD) [30]. A MTBDD is
almost identical to an ADD, so it can be used instead. We have used ADDs for our
implementation, but MTBDDs can be used to provide the same efficiency.

4.3 Matrix Operations with ADDs

We have seen how an ADD can represent a matrix, but as said in section 3.1 we need
efficient ways to manipulate a compressed matrix datastructure. It turns out that an ADD
can perform the basic matrix operations without having to be uncompressed. First, we

CHAPTER 4. BINARY DECISION DIAGRAMS 40

can use APPLY to perform element-wise operations, like matrix addition and subtraction,
by setting the op argument to + or -.

A recursive algorithm for matrix multiplication is also available [29]. Suppose
that the ADD K(R,C) represents a matrix K which has row variables Ri and column
variables Ci. We want to multiply ADD A(x,z) with ADD B(z,y). Notice that the definition
of matrix multiplication demands that the column variables of A agree with the row
variables of B. Let u be the variable of least index in either A or B. Then the recursive
action of the algorithm is the following

1. if u is zi then

))),,(*),(()),,(*),(((),(*),(+= yzBzxAyzBzxAAPPLYyzBzxA uuuu

2. if u is either xi or yi then

=),(*),(yzBzxA u

),(*),(yzBzxA uu),(*),(yzBzxA uu

Figure 4.9: The second recursive option for matrix multiplication using ADDs

We see that in every step, the algorithm restricts exactly one variable; therefore the
algorithm always proceeds to smaller ADDs. If A and B become terminal vertices v and u,
then A*B returns a terminal vertex with value val(v) * val(u). Moreover, if A or B is a
terminal vertex that has value 0, then we can immediately return a terminal vertex with
value 0. The algorithm does not require uncompressing the matrices, but it has to keep
trace of the missing z variables. That is, while we are traversing the ADDs, we count the
missing z variables, and then we multiply the result by zgmis sin#2 . If A(x,z) and B(z,y)
have 1G and 2G vertices respectively, then the time complexity of multiplication is

()()2
21 GGΟ . Practically, we can reduce the runtime of the algorithm by not multiplying

the same pair of vertices more than once, an idea which is also used in APPLY. The
resulting ADD is not reduced, so we have to call REDUCE.

Next, we need an algorithm to implement tensor products. Tensor product BA⊗
can be easily implemented using ADDs. Recalling equation (1.7), we see that each
element of A is multiplied with B. But the elements of matrix A are stored in the terminal
vertices. If we change any pointer to terminal vertices of ADD A to point to the root of a
new instance of ADD B, then we are almost done. If ADD A has n row and n column
variables, we must add n to each variable of B. Moreover, we have to multiply the
terminals of each instance of B with the value of the corresponding terminal vertex of A.
An example should make things clear

CHAPTER 4. BINARY DECISION DIAGRAMS 41

0R

0C

⊗ 0R

0C

0R

0C

1C 1C

1R 1R

Figure 4.10: Tensor product of matrices represented by ADDs

Once again, REDUCE is necessary, because the resulting ADD may have redundant
vertices. The algorithm requires traversing A to find all the terminal vertices, and then
traverse B to find its terminal vertices too, and perform the required variable shifting
simultaneously. If A has k terminal vertices and a total of 1G vertices, and B has 2G

vertices, then the tensor product BA⊗ has time complexity ()21 GkG +Ο . Generally, k

is ()1GΟ , so () ()2121 GGGkG Ο=+Ο . Practically, k is usually 2 or 3 so the

complexity can be ()21 GG +Ο , which is linear in the size of the two operands. An
improvement can be made in the case where the terminal vertex of A has value 0. Then
we have to do nothing for this terminal.

4.4 Efficiency of the ADD representation

The complexities of the various operations on ADDs seem quit good provided that the
sizes of the operands are not big. That is, if the sizes of the ADD operands are polynomial
in the number of qubits, then the aforementioned operations can be performed efficiently.
Although it is impossible to know the size of an ADD representing an arbitrary matrix,
we can check the sizes of the most important ones. First, we need to know how many
vertices are used by an ADD to represent a basis state x of n qubits. It turns out that
using the interleaved variable ordering such an ADD has exactly n+2 vertices. The
following figure shows the ADD representing the state vector

00000000000 10 =⊗

CHAPTER 4. BINARY DECISION DIAGRAMS 42

1R

0R

9R
O

Figure 4.11: ADD representing the state vector 100 ⊗

Moreover, a state in an equal superposition of arbitrary many qubits is represented by an
ADD which has a single terminal vertex.
Figure 4.12 shows the ADD for the identity matrix I

0R

0C 0C

0

1

Figure 4.12: ADD representing the 2x2 identity matrix

Larger identity matrices are produced by repeated tensoring. To create the tensor product
II ⊗ we have to replace the terminal vertex which has value 1 in Figure 4.12 with a

whole ADD I

CHAPTER 4. BINARY DECISION DIAGRAMS 43

0R

0C 0C

0R

0C 0C

Figure 4.13: Unreduced ADD representing the 4x4 identity matrix produced by II ⊗

The ADD of Figure 4.13 is not reduced, since there are two terminal vertices with value
0. After this reduction, the ADD for II ⊗ should have 3 more vertices than the ADD for
I. Following this sequence, we find that the ADD for nI ⊗ has 3n+2 vertices. Similarly,
the ADD for the gate nH ⊗ has 4n vertices. We have just seen that some of the most basic
matrices and vectors can be represented with ADDs that have size linear in the number of
qubits. Of course, these matrices are ideal to be represented by ADDs, since they have
many common sub-matrices and only a few different elements, that is, only a few
terminal vertices for their ADDs. Still, they affirm the belief that ADD is a good
datastructure for simulating quantum computers. Results from simulating Grover’s
algorithm using ADDs [25] have also boosted to this direction. In the next chapter we
describe the results of simulating Shor’s algorithm using ADDs.

44

Chapter 5

Simulating Shor’s Algorithm
Using ADDs

In this chapter we describe the details of our implementation for simulating Shor’s
algorithm. Then we present some experimental results and discuss conclusions and ideas
for future works.

5.1 Implementing ADDs

There are a few BDD or ADD packages which provide an interface to manipulated BDDs.
The most advanced is maybe CUDD [31] which is used by QuIDDPro [24, 25]. These
packages can reduce the implementation overhead, since they have implemented the
algorithms described in chapter 4. However, they are not specialized in quantum
computer simulation, so we have to change some of their features. For example, CUDD
does not support complex values in the terminal vertices. QuIDDPro faces this problem
by storing the complex values in a table and keeping the table indexes of the appropriate
complex values in the terminal vertices. We decided to implement everything from
scratch, because we wanted to specialize our code for quantum computer simulation.

CHAPTER 5. SIMULATING SHOR’S ALGORITHM USING ADDs 45

Furthermore, this approach gave as the opportunity to deepen into the properties of ADDs
and their relation to quantum computers.

Our simulator is written in C++ and includes two major classes. One represents a
vertex of the ADD and the other represents an ADD. Following Bryant’s [28] suggestion
for what a vertex structure should store, our vertex class has the following members

Type Comments
index unsigned

short
variable index

low unsigned
long

low child

high unsigned
long

high child

id unsigned
long

unique identifier

mark boolean mark to avoid
visiting the vertex
more than once in
a traversal

val complex value of terminal
vertices

Table 5.1: Member variables of Vertex class

First, we have to say that each ADD keeps its vertices in a table of vertices. Thus, a
vertex can store the table indexes of its low and high children rather than keeping
pointers to them. The id variable is unique for each vertex and it is mainly used by
REDUCE. Mark is used when traversing a graph, to avoid visiting the same vertices more
than once by marking them as true. Val stores the complex value of a terminal vertex and
a trivial value for non-terminal vertices. Last but not least, the index variable indicates the
variable’s index. Indexing starts from 1 and following the interleaved variable ordering,
we have the correspondence

dex 1 2 3 4 2n
1

orresponding
ow or column

variable
R0 C0 R1 C1 Rn

Table 5.2: variable – index correspondence

An n qubit operator is described by a 2n x 2n matrix which needs n row and n column
variables to be indexed using an ADD, a total of 2n variables. This means that an
unsigned short integer is enough to store the index. A way to distinguish terminal vertices
is to store k+1 as their index, where k = 2n is the total number of variables. It is possible
to have two different classes for vertices, one for terminals and one for non-terminals.
This approach may save a little space since non-terminal vertices should not have a value
and terminals should not have children, but it would add implementation overhead. In
addition, the results indicate that the memory saving would be minor.
 The second class implements an ADD and includes the following member
variables to manipulate it

CHAPTER 5. SIMULATING SHOR’S ALGORITHM USING ADDs 46

Type Comments
root unsigned

long
table
index of
the root
vertex

number_of_vertices unsigned
long

number of
vertices

number_of_variables unsigned
short

total
number of
variables

number_of_row_vars unsigned
short

number of
row
variables

number_of_terminals unsigned
long

number of
terminal
vertices

table_size unsigned
long

size of the
table that
stores the
vertices

table vertex * table
where the
vertices
are stored

Table 5.3: Member variables of ADD class
The pointer table points to the first element of the table where vertices are stored. This
table has available space for table_size vertices, which is limited to unsigned long (232-1)
vertices. This size is big enough, since the aforementioned algorithms for an ADD with
more than 232-1 elements would be extremely inefficient. The memory for the table is
allocated using malloc and then increased or decreased using realloc. An ADD has
number_of_vertices vertices which cannot be greater than table_size. Variable root stores
the table index, where the root vertex is stored. Finally, the variable number_of_variables
stores the total number of variables and number_of_row_vars stores the number of row
variables. These two variables help us to determine the type of matrix which is
represented by this ADD, i.e. row vector, column vector or matrix. Suppose that

N = number_of_variables/2 and
X = number_of_row_vars

then we have the following cases

number_of_row_vars = 0 number_of_row_vars ≠ 0
odd number_of_variables - column vector (2X x 1)
even number_of_variables row vector (1 x 2N) matrix (2N x 2N)

Table 5.4: Finding the type of the matrix which is represented by the ADD class

CHAPTER 5. SIMULATING SHOR’S ALGORITHM USING ADDs 47

Our code creates some important matrices, like the Hadamard gate, Not gate,
identity matrix, state vectors 0 , 1 and the like. For example, our implementation

stores the state vector 0 as









=

0
1

0

Figure 5.1: Using the ADD class to represent the state vector 0

5.2 Simulating Arbitrary Quantum Circuits

We have implemented all the algorithms described in chapter 4 as member
functions of the ADD class, together with some extra functions that build special vectors
or matrices. Although our code targets Shor’s algorithm, it can be used for simulating
arbitrary quantum circuits. To give a brief description of some member functions that can
be used for quantum circuit simulation, suppose that X, I are the names of the classes
representing the Not gate, and the identity matrix. For each function we provide a short
example.

-apply(ADD * add1, ADD * add2, const char op)

ADD result;
 result.apply(&I, &X, ‘+’);
 // result becomes the ADD which represents the matrix I + X

-tensor(ADD *add1, ADD *add2)
ADD result;

 result.tensor(&I, &X);
// result becomes the ADD which represents the matrix XI ⊗

-mult(ADD *add1, ADD *add2)
ADD result;

 result.mult(&I, &X);

CHAPTER 5. SIMULATING SHOR’S ALGORITHM USING ADDs 48

// result becomes the ADD which represents the matrix XI ⋅

-copy(ADD *add1)
ADD cp;

 cp.copy(&X);
// cp becomes the same ADD as the ADD X

-state(unsigned long i, unsigned short number_of_qubits)
ADD sv;

 sv.state(3, 7);
// sv becomes the ADD which represents the state vector 31100000 =

-identity(unsigned short number_of_qubits)
ADD ident;
ident.identity(10);
// ident becomes the ADD which represents the matrix 10⊗I

-hadamard(unsigned short number_of_qubits)
ADD had;
had.hadamard(5);
// had becomes the ADD which represents the matrix 5⊗H

-vector_adjoint()
ADD vec;
vec.state(0,1);
vec.vector_adjoint();
// vec becomes the ADD which represents the matrix 0

-print_matrix()
 X.print_matrix();
 // it will print 0 1
 // 1 0

-measure_one_qubit(unsigned short qubit)
ADD sv;
sv.state(0, 5);
int k;
k = sv.measure_one_qubit(3);
// k has the outcome (0 or 1) of measuring the fourth qubit of the state vector
// represented by the ADD sv. The most significant qubit is the qubit 0.

CHAPTER 5. SIMULATING SHOR’S ALGORITHM USING ADDs 49

-measure_qubits(unsigned short from, unsigned short to)
ADD sv;
sv.state(0, 10);
double k;
k = sv.measure_qubits(3, 6);
// k has the outcome of measuring qubits 3, 4, 5, 6 of the state vector
// represented by the ADD sv. Notice that if we measure more than 32 qubits
// then the result might be too big to be stored in an integer.

-CU(unsigned short c, unsigned short t, ADD *U, unsigned short number_of_qubits);
ADD ctrl_not;

 ctrl_not.CU(2, 4, &X, 10);
 // The ADD ctrl_not represents the controlled-NOT gate for a ten qubit circuit
 // where the control qubits is qubit #2 and the target qubits is qubit #4.

-CCU(unsigned short c1, unsigned short c2, unsigned short t, ADD *U, unsigned short
 number_of_qubits)

ADD ctrl2_not;
 ctrl2_not.CCU(1, 2, 4, &X, 10);
 // The ADD ctrl2_not represents the controlled-NOT gate for a ten qubit circuit
 // where the control qubits are qubits #1 and #2, and the target qubits is qubit #4.

-Swap(unsigned short qubit1, unsigned short qubit2, unsigned short number_of_qubits)
ADD swap_gate;

 swap .Swap(3, 5, 10);
 // The ADD swap_gate represents the Swap gate for a ten qubit circuit which
 // swaps qubits #3 and #5

We can mention a few details about how these functions are implemented. The
algorithms for the first three functions were described in chapter 4. Functions state,
identity and hadamard produce their result by repeatedly tensoring i , I or H. We can do

a trick to make these computations faster. Since 2/2/ nnn III ⊗⊗⊗ ⊗= and
2/2/ nnn HHH ⊗⊗⊗ ⊗= , we can compute half of the tensor products and then tensor the

result by itself. For large n we may partition the computation to four or even more steps.
Having an ADD representing a state vector ψ , we can easily convert it to an

ADD representing its dual (adjoint) ψ . This can be done by changing the row variables
to column variables and complex conjugating the values of the terminal vertices.

CHAPTER 5. SIMULATING SHOR’S ALGORITHM USING ADDs 50









=

0
1

0 []010 =

Figure 5.2: Using vector_adjoint on an ADD representing 0

Measuring a qubit seems to be more interesting. Suppose that we have a quantum
register in the state

{

}

{

qubits
q

qubit

qubits
p

zix

1

=ψ (5.1)

The probability of getting 0 when we observe register i is given by the equation (1.49)
and it is

 ψψ qpqp MMp 0
†

0)0(= (5.2)
where

 qpqp
qp IMIIIM ⊗⊗⊗⊗ ⊗⊗=⊗⊗= 00 00 (5.3)

Our code can easily create the identity matrices of equation (5.3) using function identity
and then tensor them with the built-in ADD that represents the measurement operator

0M . Since both 0M and kI ⊗ are diagonal matrices, their tensor product is also a
diagonal matrix. Moreover, the only nonzero element of matrix (5.3) is 1, which is not a
complex number. That means that the adjoint of matrix (5.3) is equal to itself, and their
product is still matrix (5.3)

qpqp MM 0
†

0 = (5.4)

 qpqpqp MMM 00
†

0 =⋅ (5.5)

We can rewrite (5.2) using (5.5)

ψψ qpMp 0)0(= (5.6)

Equation (5.6) is easily computed using the functions described above, since we can use
identity and tensor to create the measurement operator, then we multiply it with the state
vector and finally we multiply the result with the adjoint of the state vector which is taken
by vector_adjoint. Having calculated the probability to measure 0, we call a random
number generator to take a value in the range [0, 1]. If this value is less than or equal to
p(0) we consider that the measurement outcome is 0, else it is 1. Next, we have to create
the post-measurement state which is given by (1.50). If the measurement’s outcome was
0 then the post-measurement state is

CHAPTER 5. SIMULATING SHOR’S ALGORITHM USING ADDs 51

)0(
0

p

M qp ψ
(5.7)

The numerator has already been computed as part of equation (5.6), so the only thing
needed for (5.7) is to divide the terminal vertices of the ADD representing the numerator
with the square root of the probability p(0). If the measurement outcome was 0 then the
post-measurement state is

)0(1)1(

11

p

M

p

M qpqp

−
=

ψψ
(5.8)

which means that we have to create the measurement operator qpM 1 , multiply the state
vector with it, and then divide with the square root of the probability. To measure
multiple qubits we can measure each qubit separately and then sum the appropriate
powers of 2, depending on the measurement outcomes.
 Finally, we have to describe how we implement the controlled gates. If we have
an ADD that represents the gate U, then the overall gate of Figure 5.3 can be built by the
following code

ADD gate;
 gate.CU(k, k + 1 + n, &U, k + 1 + n + p + q)

Figure 5.3: Creating the matrix for a controlled gate
The first step is to build gate G which is fairly easy

UIG n ⊗= ⊗ (5.9)

Following, we have to create the ADD for the controlled-G gate CG. This gate is describe
by the matrix









=

+⊗

G
I

CG
pn

0
0)(

(5.10)

Having the ADDs for)(pnI +⊗ and G we can construct the ADD for matrix (5.10)

CHAPTER 5. SIMULATING SHOR’S ALGORITHM USING ADDs 52

)(pnI +⊗

Figure 5.4: Unreduced ADD representing matrix (5.10)

The ADDs for)(pnI +⊗ and G in Figure 5.4 have to be variable-shifted, that is, we have to
add 2 in each variable index. The last step for creating the overall gate is trivial

qk ICGIoverall ⊗⊗ ⊗⊗= (5.11)

The same ideas can be used to create ADDs that represent controlled gates with multiple
control qubits. Furthermore, we can create the Swap gate using three controlled-NOT
gates as shown in Figure 1.4.

5.3 Simulating Shor’s Algorithm

We have already described some features of our implementation that can be used for
simulating arbitrary quantum circuits. However, our main goal is to discover how
efficiently these features can be used to simulate Shor’s algorithm. Shor’s algorithm
includes two main parts. The first is the quantum circuit for modular exponentiation and
the other is the quantum Fourier transform. In section 2.5 we gave a brief description of
how we can implement the quantum circuit for modular multiplication. Beckman et al
[13] present in full detail how to build such a circuit. Just think that we have a classical
circuit that calculates the modular multiplication. This circuit is built with AND, OR,
NOT, NAND and XOR gate. In section 1.7 we showed that we can construct an equivalent
quantum circuit by replacing these gates with only controlled-NOT gates. This means that
our quantum circuit for modular exponentiation is implemented using only controlled not
gates. It turns out that these controlled not gates may have up to four control qubits. We
described the process of creating a controlled gate in the previous section. The modular
multiplication circuit uses thousands of such gates, so their construction time would add a
serious time overhead. Fortunately, the number of different controlled-NOT gates that are
used is much smaller. Thus, when we create such a gate we store it, just in case it is used
in the future. The disadvantage is that we need memory to store these gates, but hopefully
the amount of memory used is immaterial when compared to the speedup that it offers.
 Concerning the QFT, we inherited the semi-classical approach that was presented
in section 2.6. The only point that is worth mentioning is that we replaced the chains of
rotation matrices with just one matrix. Recall that a rotation matrix has the form

CHAPTER 5. SIMULATING SHOR’S ALGORITHM USING ADDs 53









ae0

01
(5.12)

Then a series of rotation matrix multiplications can be replaced by a single rotation
matrix

 







=
































+++ dcbadcba eeeee 0

01
0

01
0

01
0

01
0

01
(5.13)

That is, instead of multiplying the control qubit of the QFT with several rotation matrices
in a row, we replace them with just one rotation matrix which performs the same rotation.
 The last thing that needs to be explored is the order of multiplications. To give a
sense of this problem, consider that we want to apply the Hadamard and the NOT gate to
a single qubit which is in the state ψ . The resulting state is

ψXH (5.14)

A simulator can perform the multiplications of (5.14) in two different ways

() ()ψψψ XHHXXH == (5.15)

The simulation of Shor’s algorithm includes thousands of matrix multiplications, which
entails a huge number of possible multiplication orderings. It turns out that the order of
multiplications is very important for the efficiency of the simulator. For example, we may
multiply many controlled-Not matrices to create the modulo multiplier OMULN (section
2.5) which is used in modular exponentiation, and then multiply it with the state vector.
This approach proved extremely inefficient. Thus, we focused on multiplying the state
vector with smaller modules, like the modular adder OADDN, which was much faster.
We continued the process of creating smaller modules and then multiplying them with
the state vector until we reached the point where each module was a single controlled-
NOT gate. Multiplying the state vector with every single gate turned to be faster and less
memory consuming than creating any intermediate matrix and then multiplying it with
the state vector.

5.4 Experimental Results

We have simulated Shor’s algorithm to factor various integers. Here we present how fast
these simulations ran and how much memory they consumed. In order to judge the
efficiency of our simulator we also present the same results for QCL Recall that Shor’s
algorithm has to choose a random number a co-prime to the number N that we want to
factor. For each pair of such numbers a and N the algorithm computes the order r of a
modulo N, which is the period of the function Naxf x mod)(= . The following results
were taken on a PC with an AMD Athlon XP 2400+ CPU and 512 MB RAM, running
Linux. The C++ compiler was g++ 3.3.1

CHAPTER 5. SIMULATING SHOR’S ALGORITHM USING ADDs 54

N # bits
of N a r TQCL

(sec)
TADDs
(sec)

MEMQCL
(MByte)

MEMADDs
(MByte)

1553 =⋅ 4 13 4 0.007 0.5 0.95 1.6
2173 =⋅ 5 2 6 0.025 2 1 2.1
33113 =⋅ 6 17 10 0.17 6 1.2 2.9
77117 =⋅ 7 9 15 0.6 27 1.9 4.1
1431311 =⋅ 8 61 30 2.3 52 4.9 5.7
2992313 =⋅ 9 226 44 12 72 16.9 7.8
7133123 =⋅ 10 687 66 75 307 64.9 10.8

11473731 =⋅ 11 662 90 - 648 - 14.2
22576137 =⋅ 12 858 90 - 985 - 18.2
51837371 =⋅ 13 1298 126 - 2033 - 22.7
1054112783 =⋅ 14 995 126 - 3104 - 28.6
18209139131 =⋅ 15 972 130 - 4085 - 35.1
46031241191 =⋅ 16 3132 190 - 8551 - 42.7

Table 5.5: Indicative time and memory required to factor numbers of various bit-lengths
 using QCL and ADDs

Notice that QCL was unable to factor integers of 11 bits or more, because it ran out of
memory. Therefore, we can compare it with our simulator only for relatively small
inputs. As expected, QCL is always faster than ADDs because it uses a faster
datastructure. However, as the input becomes larger, the gap between the two simulators
becomes smaller. That is, while QCL is about 70 times faster than ADDs when factoring
a 5-bit number, it is just 4 times faster when factoring a 10-bit number. The following
plots help us to visualize the results. Unfortunately, the results for QCL are limited to
factoring up to 10-bit integers.

Time

1

10

100

1000

10000

100000

1000000

10000000

4 5 6 7 8 9 10 11 12 13 14 15 16

bits of N

m
se

c QCL
ADDs

Figure 5.5: The time in msec that was required to run Shor’s algorithm

Judging from Figure 5.5, the simulation of factoring integers which are longer than 16-
bits will take several hours. However, such a simulation seems to be possible with ADDs,
since they keep memory usage in a very low level.

CHAPTER 5. SIMULATING SHOR’S ALGORITHM USING ADDs 55

Memory Usage

0

10

20

30

40

50

60

70

4 5 6 7 8 9 10 11 12 13 14 15 16

bits of N

M
By

te QCL
ADDs

Figure 5.6: The amount of memory that was required to run Shor’s algorithm

While QCL demands excessive amounts of memory when factoring an integer of 11 bits
or more, ADDs require an amount of memory that is almost linear in the bit-length of the
number to be factored.
Our simulator applies each gate directly to the state vector without keeping any
intermediate results. The next table shows the number of vertices of the ADDs which
stored the state vector at the end of each simulation, together with the total number of
matrix multiplications (operations) that were performed

N # bits
of N

qubits
used by

Shor’s algor.
a r

Max vertices
for the ADD of
the state vector

operations

1553 =⋅ 4 14 13 4 31 3880
2173 =⋅ 5 17 2 6 90 8415
33113 =⋅ 6 20 17 10 169 14530
77117 =⋅ 7 23 9 15 288 24711
1431311 =⋅ 8 26 61 30 636 37046
2992313 =⋅ 9 29 226 44 1037 54963
7133123 =⋅ 10 32 687 66 1727 75524

11473731 =⋅ 11 35 662 90 2524 100600
22576137 =⋅ 12 38 858 90 2805 131200
51837371 =⋅ 13 41 1298 126 4241 165920
1054112783 =⋅ 14 44 995 126 4572 216465
18209139131 =⋅ 15 47 972 130 5048 261274
46031241191 =⋅ 16 50 3132 190 7862 320955

Table 5.6: Number of vertices for the state vector at the of each simulation and the total
 number of operations

It is important to repeat that using the ideas described in chapter 2, our simulator uses
3L+2 qubits to factor an L-bit integer. That is, we have a state vector of 3L+2 qubits,

Out of memory

CHAPTER 5. SIMULATING SHOR’S ALGORITHM USING ADDs 56

which is a vector with 232 +L complex values. Thus, the number of vertices for the state
vector remains relatively low even for large inputs.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

14 17 20 23 26 29 32 35 38 41 44 47 50

qubits

#
Ve

rti
ce

s
of

th
e

st
at

e
ve

ct
or

Figure 5.7: Number of vertices of the ADDs storing the state vectors at the end of
 simulation

A vertex class needs 36 bytes to be stored; therefore it is easy to see how much memory
is used by the state vector and the controlled-NOT cache. For instance, in the case of
factoring 5183 the state vector is stored in approximately 153364241 ≈⋅ Kbytes. During
the computations, the size of the state vector may be a little bigger, but not more than a
few hundred extra vertices. That means that the rest 22 MB that are required by the
simulator are mainly used to store controlled-NOT gates. Thus, we can greatly reduce the
memory usage of our simulator by not caching the controlled-NOT gates of the modular
exponentiation circuit, but this would be significantly slower.
 Table 5.6 also shows the total number of operations that were performed by our
simulator. The major part of these operations is produced by the modular exponentiation
circuit, which is the bottleneck of the simulation. Unfortunately, if we want to simulate
everything that a quantum computer would do to simulate Shor’s algorithm, we have to
apply all these gates.

CHAPTER 5. SIMULATING SHOR’S ALGORITHM USING ADDs 57

0

50000

100000

150000

200000

250000

300000

350000

14 17 20 23 26 29 32 35 38 41 44 47 50

qubits

#
Q

ua
nt

um
O

pe
ra

to
rs

Figure 5.8: Number of quantum operators applied to the state vector

It is maybe more interesting to see how fast these operations are performed.

0

1

2

3

4

5

6

7

8

9

14 17 20 23 26 29 32 35 38 41 44 47 50

qubits

op
er

at
io

ns
/m

se
c

Figure 5.9: Speed of operations

We see that the speed of matrix multiplications is reduced rapidly as the input becomes
bigger. This is more or less expected, since a large number to be factored requires a
bigger ADD for the state vector and bigger matrices to represent gates. Furthermore, the
efficiency of matrix multiplication using ADDs is greatly affected by the size of the
operand ADDs. This also explains the following two figures, which show that starting
with a small state vector’s ADD, the first 30% of matrix multiplications are quit fast, but
gradually this ADD becomes big and the performance of matrix multiplication is reduced.

CHAPTER 5. SIMULATING SHOR’S ALGORITHM USING ADDs 58

0

2

4

6

8

10

12

14

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

% of execution

m
se

c/
op

er
at

io
n

38 qubits
35 qubits
32 qubits
29 qubits

Figure 5.10: Cost of operations vs % of execution during the simulation

0

0.5

1

1.5

2

2.5

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% of execution

op
er

at
io

ns
/m

se
c

38 qubits

35 qubits

32 qubits

29 qubits

Figure 5.11: Speed of operations during the simulation

The last thing that is worth mentioning is that the runtime of simulation is dramatically
affected by the order r of a modulo N. The next table shows the results of simulating the
factoring of 1147 (11 bits) for various random a.

a r T
(sec)

MEM
(MByte)

Max vertices for
the ADD of the

state vector
714 6 56 12.3 193
1048 9 140 13.1 289
192 18 150 13.5 548

CHAPTER 5. SIMULATING SHOR’S ALGORITHM USING ADDs 59

861 30 210 13.5 898
623 60 250 13.7 1713
662 90 648 14.2 2524
351 180 700 14.4 4864

Table 5.7: Using the simulator to factor 1147 with various random numbers a

We see that smaller orders lead to a smaller ADD for the state vector which entails
smaller execution times. The algorithm calculates the function Naxf x mod)(= for all
x, and stores the results in a superposition in the state vector. Thus, a smaller order
means less possible outcomes for f(x), which is translated in less nonzero elements in the
state vector. The number a is chosen randomly and its order is what we are looking for,
so we can’t know a priori if it is a “good” a. However, a bad selection means slower
simulation, but not excessive memory usage, so we can be sure that the simulation will
end normally.

6 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

700

order r

se
c

Factoring 1147

Figure 5.12: Time to factor 1147 vs order of a modulo N

60

Chapter 6

Conclusions and Future Work

6.1 Overview of the work presented

We described how ADDs can be used to simulate quantum computers and focused on
simulating Shor’s algorithm. We present the results of factoring up to 16-bit integers
using 50 qubits which is impossible for other simulators. Of course, our simulator can
factor even bigger integers, since ADDs achieve a great compression for both state
vectors and operators, which helps us to simulate circuits with many qubits. Execution
time is still a problem, but we have to accept that it is not the easiest thing in the world to
simulate a system with huge state vectors. Furthermore, someone who wants to simulate
an important quantum circuit may have no problem to wait for several hours, even days,
but he would surely have a problem if he cannot simulate the circuit at all.

6.2 Immediate work ahead

As previously mentioned, we implemented the simulator from scratch without using any
BDD package or library. Thus, a little more code tuning may be needed to improve
several parts of the code. Although we do not expect miracles, it is possible to achieve a
small time improvement. We can also change some things concerning the ADDs
themselves, i.e. we can choose and test a different variable ordering. Our main purpose is

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 61

to make the REDUCE and matrix multiplication algorithms faster. While simulating
Shor’s algorithm, our simulator spends most of its time running these two algorithms. For
the matrix multiplication algorithm we can test various hash table techniques and sizes.
 An interesting idea is to find a way to create the ADD for the state vector

∑
−

=

1

0
mod1 M

x

x Nax
M

without using the modular exponentiation circuit, which is

responsible for the huge number of operations. Then, we can apply the semi-classical
QFT to this state vector to get the final result. In this way, we simulate a quantum
algorithm rather than a quantum circuit. This is desirable in many situations, when we
want to test a new quantum algorithm, or a new idea, but we just don’t care yet for the
circuit which implements it.

Finally, if our simulator is to be used for simulating arbitrary quantum circuits, it
would be wise to supply it with a friendlier interface. One approach is to implement a
command line interface. Another approach is to implement a GUI. A command line
interface is usually more flexible than a GUI, but the later helps us to visualize a quantum
circuit. In the next section we discuss one more option for providing an interface for the
simulator.

6.3 Quantum programming languages

It is obvious that quantum hardware would be useless without a way to program it.
Although we have no such hardware available yet, we do have the experience of
programming a classical computer. Based on this experience several people try to
implement quantum programming languages, which incorporate classical ideas together
with quantum properties. Several compilers, interpreters and libraries for quantum
programming exist, but no quantum computer is available to test them. Since quantum
programming is a new field, we need ways to use quantum languages in order to
understand and develop their unique features. The solution is to use a simulator of a
quantum computer, which runs the quantum program. Therefore, instead of creating a
new interface for our simulator, we can integrate the ADD representation into a quantum
programming language. This way, any algorithms implemented for this quantum
language will run without any change using our simulator, and users won’t have to learn
one more tool. Furthermore, it will be possible to use the quantum language to run
algorithms with many qubits.

6.4 Improving ADDs

It has been showed that ADD is an efficient datastructure for simulating quantum
computers. However, to make simulation more efficient we have to introduce a variant of
ADD that is designed explicitly for quantum simulation. One idea is to increase the
number of children for internal vertices. Moreover, we may change terminal vertices to

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 62

store not only complex values, but something more “interesting”. For example, they may
store a pointer to another ADD together with a complex number, which implements the
tensor product. It is also worth the effort to explore ways for parallelizing the simulation,
to make it faster when using many processors. To achieve this, we can change the
algorithms described in chapter 4, but we can also change the nature of ADDs to favor
parallel processing. It is not sure if any of these approaches can work efficiently, but
results prompt us to specialize ADDs even more for quantum simulation.

63

References
[1] Feynman R. (1982)

 Simulating physics with computers
 International Journal of Theoretical Physics 21, 6&7, 467-488

[2] Shor P.W. (1994)
 Algorithms for quantum computation: discrete log and factoring

Proceedings of the 35th Annual IEEE Symposium on Foundations of Com. Science

[3] Grover L. K. (1996)
 A fast quantum mechanical algorithm for database search
 In Proceedings of the 28th Annual ACM Symposium on the Theory of Computing

 (Philadelphia, Pennsylvania, 22-24 May 1996), pp. 212-219

[4] Dirac P. (1958)
 The Principles of Quantum Mechanics (4th ed.)

Oxford University Press

[5] Wootters W.K. and Zurek W.H (1982)
 A single quantum cannot be cloned

 Nature 299, 802

[6] Bennet C.H. (1973)
 IBM J. Res. Develop. 17,525

[7] Bennet C.H. (1989)
 SIAM J. Comput. 18, 766

[8] Josef Gruska (1999)

 Quantum Computing
 McGraw-Hill

[9] Nielsen M.A. and Chuang I.L. (2000)
 Quantum Computation and Quantum Information
 Cambridge University Press

[10] Rieffel E. and Polak W. (2000)

 An Introduction to Quantum Computing for Non-Physicists
 ACM Computing Surveys, Vol. 32, No. 3, September 2000, pp. 300-335

[11] Hirvensalo M. (2001)
 Quantum Computing
 Natural Computing Series – Springer

[12] Knuth D. (1981)
 The Art of Computer Programming, Vol. 2: Seminumerical Algorithms
 Addison-Wesley

64

[13] Beckman D. et al (1996)
 Efficient networks for quantum factoring

Phys. Rev. A 54, pp. 1034-1063
 arXiv:quant-ph/9602016

[14] Griffiths R.B. and Niu C.-S (1995)
 Semi-classical Fourier Transform for Quantum Computation

 Phys. Rev. Lett. 76 (1996) 3228-3231
 arXiv:quant-ph/9511007

[15] Mosca M. and Ekert A. (1998)
 The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum

 Computer
 Proceedings of the 1st NASA International Conference on Quantum Computing
 and Quantum Communication, Palm Springs, USA, Lecture Notes in Computer
 Science 1509 (1999), 174-188.
 arXiv:quant-ph/9903071

[16] Wallace J. (2001)
 Quantum Computer Simulators
 Partial Proc. of the 4th Int. Conference CASYS 2000, D. M. Dubois (Ed.),
 International
 Journal of Computing Anticipatory Systems, volume 10, 2001, pp. 230-245

[17] Wallace J. (2002)
 Quantum Computer Simulators
 http://www.dcs.ex.ac.uk/~jwallace/simtable.htm

[18] Omer B. (2003)
 Structured quantum programming

 http://tph.tuwien.ac.at/~oemer

[19] Omer B. (1996)
 Simulation of Quantum Computers

 http://tph.tuwien.ac.at/~oemer/papers.html

[20] Bettelli S. (2003)
 Toward an architecture for quantum programming
 arXiv:quant-ph/0103009

[21] Zuliani P. (2001)
 Quantum Programming PhD thesis, University of Oxford,

 http://web.comlab.ox.ac.uk/oucl/work/paolo.zuliani/pzthesis.ps.gz

[22] Blaha S. (2002)
 Quantum Computers and Quantum Computer Languages: Quantum Assembly

 Language and Quantum C Language
 arXiv:quant-ph/0201082

http://tph.tuwien.ac.at/~oemer
http://tph.tuwien.ac.at/~oemer
http://tph.tuwien.ac.at/~oemer
http://www.dcs.ex.ac.uk/~jwallace/simtable.htm

65

[23] National Institute of Standards and Technology (2003)
 QCSim
 http://hissa.nist.gov/~black/Quantum/qcsim.html

[24] Viamontes G.F., Rajagopalan M, Markov I.L. and Hayes J.P. (2002)
 Gate-Level Simulation of Quantum Circuits

 arXiv:quant-ph/0208003

[25] Viamontes G.F., Markov I.L. and Hayes J.P. (2003)
 Improving Gate-Level Simulation of Quantum Circuits

 arXiv:quant-ph/0309060

[26] Lee C.Y (1959)
 Representation of Switching Circuits by Binary Decision Programs
 Bell System Technical Journal, Vol 38, pp. 985-999

[27] Akers S.B. (1978)
 Binary Decision Diagrams
 IEEE Transactions on Computers, Vol. C-27, No. 6, pp. 509-516

[28] Bryant R. (1986)
 Graph-Based Algorithms for Boolean Function Manipulation
 IEEE Transactions on Computers, Vol. C-35-8, pp 677-691

[29] Bahar R.I. et al (1997)
 Algebraic Decision Diagrams and their Applications
 Journal of Formal Methods in System Design, Vol. 10

[30] Clarke E., Fujita M., McGeer P.C., McMillan K., Yang J.
 Multi-Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix

 Representation
 IWLS ’93, pp.6a1-15

[31] Somenzi F. (1998)
 CUDD: CU Decision Diagram Package, ver. 2.3.0
 University of Colorado at Boulder

http://hissa.nist.gov/~black/Quantum/qcsim.html

66

List of Tables

3.1 Some of the simulators that can be found in [17] . 31

5.1 Member variables of Vertex class. .45

5.2 variable – index correspondence. 45

5.3 Member variables of ADD class. .45

5.4 Finding the type of the matrix which is represented by the ADD class. 46

5.5 Indicative time and memory required to factor numbers of various
 bit-lengths using QCL and ADDs. 53

5.6 Number of vertices for the state vector at the of each simulation and the
 total number of operations. 55

5.7 Using the simulator to factor 1147 with various random numbers a. 58

67

List of Figures

1.1 Applying the gate U to a qubit which has initial state ψ 13

1.2 Applying the controlled-U gate to a two qubit state ψ 13

1.3 Controlled-NOT gate. 14

1.4 SWAP gate. 14

1.5 Measurement symbol. 14

1.6 Shorter representation for multiple Hadamard gates. 14

1.7 Shorter representation for Identity gate. 14

1.8 A series of gates acting on the same qubit. 15

1.9 A three qubit circuit. 15

1.10 A possible transformation to compute f(x). 16

1.11 Computing f(x) reversibly. 16

1.12 Computing f(x) using scratch space. 16

1.13 Computing f(x) for all possible inputs. 18

1.14 Simulating the classical AND gate using a Toffoli gate. 18

2.1 The circuit which implements the QFT. 20

2.2 The circuit which implements the inverse QFT. 21

2.3 Operator for modulo N multiplication. 27

2.4 Circuit implementing Shor’s algorithm. 27

2.5 Operator for modulo N addition. 27

2.6 Running Shor’s algorithm with just three qubits. 28

2.7 Running Shor’s algorithm using the semi-classical QFT. 29

3.1 Datastructures used by QCL to represent vectors and matrices. 32

68

4.1 BDDs for function 1010),(xxxxf += . 35

4.2 The recursive rules used by APPLY when at least one vertex is
non-terminal. 36

4.3 ()31 xx ⋅ OR ()32 xx ⋅ = 321 xxx ⋅⋅ . 36

4.4 (a) Original ROBDD, (b) Restricted by x1 = 0, (c) Restricted by x1 = 1,
(d) Reducing the BDD of (c) . 37

4.5 ADD for 11010 35),(xxxxxf += . 37

4.6 ADD for 00110 35),(xxxxxf += . 38

4.7 ADD representing matrix (4.1). 38

4.8 ADD representing the matrix (4.2). 39

4.9 The second recursive option for matrix multiplication using ADDs. 40

4.10 Tensor product of matrices represented by ADDs. 41

4.11 ADD representing the state vector 100 ⊗ . 42

4.12 ADD representing the 2x2 identity matrix. 42

4.13 Unreduced ADD representing the 4x4 identity matrix produced by II ⊗ . 43

5.1 Using the ADD class to represent the state vector 0 46

5.2 Using vector_adjoint on an ADD representing 0 . 49

5.3 Creating the matrix for a controlled gate. 50

5.4 Unreduced ADD representing matrix (5.10). .51

5.5 The time in msec that was required to run Shor’s algorithm. 54

5.6 The amount of memory that was required to run Shor’s algorithm. 54

5.7 Number of vertices of the ADDs storing the state vectors at the end of

simulation. 55

5.8 Number of quantum operators applied to the state vector. 56

5.9 Speed of operations. 56

69

5.10 Cost of operations vs % of execution during the simulation. 57

5.11 Speed of operations during the simulation. 57

5.12 Time to factor 1147 vs order of a modulo N. 58

