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IIepiAnyn

IlepiAnyn

2KOIOg TG napovoag datpiPrg etvat 1 dnpiovpyla evog MPoypAPHRATOg X®PIKIG KAl XPOVIKIG
IIPOOOPOIMONG TOL DOPALAKOL LYOVG evog LOPoPopéa, pe Xpron pebodwv vLIOAOY0TIKNG
vonpoovvng Kat ye@otatiotkav pefodav. Ta Texyvnta Nevpwvika Aiktoa etvat n pébodog oo
emAéxOnxke ya ) xpoviky) mpooopoiwor), kabwg exet amodetybei 1101 otnv PipAoypagia ot n
XPNON TG PEPEl KAAA AIOTENEOPATA X®OPIG TNV AIIAitor] IOADIAOK®V KAl OLOELPETOV
dedopévav etoodov. H pebodooyia tov Kriging akolovdrOnke yia ) xopikt) mpooopoimor) Kat
HAapePPoAT] TOV ATTOTEAEOPATOV TOV TEXVITAOV VEDPOVIKOV dIKTO®V 010 Y®po. ['ta to oovovaouod
TV 6vo avtwv pebodoloylwv ypnotponou|dnke eva cOOTIA ACAPOVLG AOYIKI|G.

To mpato Prijpa mov axolovbeitat otV DPOTEVOPEVT] IPOCEYYION VAl 1] OVANOYT] OADV TV
dabéopmv Sedopevmv. Onotadnmote napdpeTpog propet va oovdebet pe 10 DOATIKO 100{VLY10
pmopet va xpnotpomnowdel oav ODAapdapeTrpog 00000 OTAd TEXVITA VELPOVIKA Oiktod. XtV
napovoa datpiPr] colexOnkav dedopéva kat £yive IPocopoimor) Tov POPALAIKOD LYOLG yia
dvo meployég peletng pa otv Bavapia tg I'eppaviag xat pra oto Maiapt tng moAtteiag
DAoprvta tov HITA. O1 600 avtég mmeployég €Xouv ITOAD S1APOPETIKA XAPAKTIPLOTIKA PeTASy TOVG
KAl yld avto To AOYO I EMLTOXNG IIPOCOHOI®ON TOL LOPADAIKOD DYOLS O AVTEG MIIOPEL va
emPePaiwoet TV adtomotia Tov poviEAov. T ovvexeld Ipoodlopilovtat ot BEATIOTEG XPOVIKEG
DOTEPT)OELG IAPAPETPRDV OIIMG Ol KATAKPINILVIOELG KAt TO DWYOG 1)/ KAt 1] HAPOXT] TRV EMPAVELAKDV
vodT®V.

Axolovbetl 1 IPOCONOI®OT) PE XP1)01] TEXVITOV VEVPOVIKOV OIKTOMV. AVANOYd e TV HEPLOXT)
HEAETNG KAl TA XAPAKIPOTIKA TV Otabéopav  Oedopevov, Ooxipdotkav dapopeg
APXLTEKTOVIKEG, £T01 wote va emhexbel To KatdA\AnAo diktoo yia TV mpooopoimon. ZInv Ip®n
meploxt] HeAEtng OOKIPAOTNKE 1) XPI|On OLOTHHATOS ACAPOVLG AOYIKIG Yid THV €MAOYI| TOV
KATAMNA®V YEITOV®V IOV 0TV OLVEXELA XPNOLHOIIODVTAl amo tov alyopifpo tov kriging. H
ATOTEAEOPATIKOTNTA NG XPL|0ng TG pebodov acagpovg Aoyikrg amodeiybnke ovykpivovrag ta
arrotehéopata tng pefodov pe avTd oL IPOKLIITOLY XWPIG T1) XPL|O1) TS.

Téhog, epappoletar 11 pebodoloyia g mapepPolng pe kriging, pe xpron tpiov Stagopetikmv
Baploypappdatwv oe kabe nepimtmor). Ta amoteAéopata adtodoyovvial pEowm piag oelpag OeKT®V
OPAAPATOg o Oe0OHEVA JLAOTAVPOEVIG EMKDPOONG KAl IIPOoOopileTal T0 mo KATANIAO
Oempn Ko poviého Paprloypdapparog yia kabe meproyn) perétng Sexmprotd. ['a v mpotn meploxr)
pelétng ot Bavapia, kataAAnAotepo Paploypappd 1tav 1o SOVAPOVORLKO e TUar) yida T pila
TOL PEOOD TETPAY®VIKOL o@alpatog (RMSE) ton pe 7.6 103 m. I'ia tv Sevtepn meploxr) peAétng
katalnAotepo Baploypappa rrav 1o ek0etiko pe tiprn yia to Oeiktr) opdlpatrog RMSE ion pe
0.962 m. Baowr| Stagopd 1ov odnyet 0e avtr) TV AIIOKALON OTLG TLEG TOD OPAAPATOS 1)TAV OTL
OtV HIP®TI HIEPUITM®OL] IIPOCOHOIMVETAL 1) OLAPOPA TOL DOPALAIKOD DYPOLS, EV® OTH OEVLTEPT
IIEPLOXT| HEAETNG TIPOCOHOI®VETAL TO DOPALAIKO Lo avto kad avto. H emhoyr) drapopetikmdv
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IlepiAnyn

HAPAPETPOV €§O00D £yve KaOmg Ot MP®T MEPUITOON Ol TIHEG IOV IIPOCOpoIOnKav eiyav
PEYANeG apylkeég Tipég, pe peydln petapAntotnta petadd Tev onpelov pe dedopéva, eve ot
devtepn mepimtwon ta dedopéva  LOPALAKODL VYOLG elxav  OpOLOpOPPEG,  OXeOOV
KAVOVIKOTIOUPEVES, TLES.

I'a myv emPePaimon tov povtélov Kat v motonoinon g axkpifeidag tov, npaypatonou)bnke
avaloon aPePaomrag. Apywkd mpoodloplotnkav Tad OlIOTpATd  EUITIOTOOLVIG  TOV
IAPAPETPOV €EO00D TOV TEXVNTAOV VEDPOVIKOV OIKTO®V epappolovtag v mocootiaia pedodo.
21 ovvexewa peom avalvong Monte Carlo, mpoodtopiotnkav 1 afefatotnta g napapétpov
€§O00L OTNV EKIAldELON] TV TEXVITOV VELPMOVIKOV OWKTO®V PeE T Pop@Pr] Olaotpdtev
extipnong, ald xat n enidpaon tovg ota amotehéopata tov kriging. Xe televtaio otddlo
pedetiOnke n aPePatomra T@V DAPApeTp@Vv e§000L oTlg napapétpovg tov kriging pe xprion
oovletikwv dedopévav. Ta amotedéopata Teov mapandave Otepyaciov £deilfav ot 1
xpnowpomnotovpevy pebodoloyia ntav amoteAeopdartiki), akpPrig xatr otabepr)y wg mPog T
AITOTEAEOPATA KAl TA OPANPATA TG,

H xawvotopta g napovoag d1daktopikr|g dtatpiPrig etvat i avarrtodrn evog povieAov pe Baon ta
dedopéva to omoto pmopel va xprnowponowmdet yia Ty Ipocopoimot) Tov vdpavAwKoD vyovg. To
povtelo avutd pmopet va xpnotpomnowndet yia T X@PKr| Kat Xpovikr IpOPAeyn1) oo 0dpavAkod
VYOG, AMA KAt AAAGV IAPAPETPRDV, XDPIG VA EVAL YVHOOTEG 01 YeMAOY1KEG OLVOr|Keg TOL mediov.
AvT aotod ypnotpomnotodvtat Sedopéva mmov eivat drabéopa yia peydho xpoviko Stdotnpa Kat
elval €OKOAA OtV KATtaypd@n Tovg, On®¢ yla MHapddetypa petempoloykda Oedopeva.
Emupoobétmg n xprion g acapodg AOyIKIg yia TOV IIPOoOIoplopd TV YETOV®V Tov kriging
arotelel Katvotopia Tng MAapovodg epyaciag Kat propet va PBeATiooel Ta AroTeAeopatd Thg
pedodov. H epappoyr) too povtédov oe 600 Stagopetikod yemAoywov vroBabpov meproxég
HPEAETNG, Pa TIPOOYOHATIKI] KAl P KAPOTIKL), AMOOEKVOEL TV AIIOTEAEOHATIKOTITA TOL KAT®
arro Sudgopeg ovvOrKeg.
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Abstract

Abstract

The purpose of this study is to create a spatial and temporal simulation program for the estimation
of the hydraulic heads in an aquifer, using computational intelligence and geostatistical methods.
Artificial neural networks were chosen for the temporal simulation, due to their proven ability,
established in literature. This choice is further reinforced by the fact that their implementation does
not require complex and hard to obtain input data. The methodology was completed by using the
Kriging method for the spatial interpolation of the artificial neural network’ simulation results. A

fuzzy logic system was employed to combine these two methodologies.

The first step in the proposed approach is the collection of all available data. Any parameter related
to the water balance can be used as input parameter for artificial neural networks. In this study,
data were collected and the hydraulic head was simulated for two study areas; one in Bavaria,
Germany and one in Miami, Florida, USA. These two regions have very different characteristics
(geological, climatic and land use) and for this reason the successful simulation of hydraulic head in
these regions can confirm the reliability of the model. Following data collection, the optimum time
lags for parameters such as precipitation and surface water discharge and/or water depth on the

aquifer were determined.

Next, the simulation using artificial neural networks was performed. Depending on the study area
and the characteristics of the available data, several architectures were tested in order to select the
appropriate network architecture for the simulation. For the first study site, for the selection of
suitable neighbors cases with and without the use of a fuzzy logic system were tested, followed by
the Kriging algorithm. In this way, the use the fuzzy logic system was proven to be the more

effective.

Finally, the interpolation of the point hydraulic head estimation was performed by kriging using
three different variogram models in each case. The results are evaluated through a series of cross-
validation results error indicators, in order to determine the most appropriate theoretical variogram
model for each study area. For the first study area in Bavaria, the power-law variogram was the
most appropriate variogram yielding a root mean square error (RMSE) equal to 7.6 - 10* m. For the
second study area in Miami, the most appropriate variogram was the exponential one with error
indicator of RMSE = 0.962 m. The key difference between the two case studies, leading to this
deviation in RMSE values is that, the first case the hydraulic head change per time step was
simulated, while in the second study area the hydraulic head itself was simulated. This difference in
output parameters was due to the dataset involved in every case. In the first study area they were
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large variations in the hydraulic head, while at the second case study, the values of the dataset were

more normalized.

Uncertainty analysis was performed in order to validate the model and verify its accuracy. Initially,
the uncertainty of the hydraulic head simulation attributed to the artificial neural network
simulations was determined by applying the percentile method. Next, using a Monte Carlo analysis,
the output parameter uncertainty derived by the training of the artificial neural networks was
calculated, followed by their respective effect in the output of the kriging. Finally, the uncertainty
of the hydraulic head due to the kriging parameters was studied using synthetic data. The results
of these processes showed that the methodology used was efficient, accurate and stable with regards

to its results and errors.

The innovation of this thesis is the development of a data-based model which can be used to predict
the hydraulic head in an aquifer. This model can then be used for the spatial and temporal simulation
of the hydraulic head or any other parameter, without knowing the geological characteristics of the
study area. Instead data available for a long time and is easy monitor, for example meteorological
data can be used. Moreover, the use of fuzzy logic to determine the kriging neighbors is an innovation
of this study and improves considerably the results. The implementation of the model in two study
areas with different geological background, an alluvial and a karstified, proves its effectiveness under

various conditions.
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Chapter 1

Introduction

1.1 Scope and objective

Water is an important resource, necessary for the development of human life. Groundwater is the
main source of drinking water in the planet, so the study of its quantity and quality is valuable,
offering information important for its management and exploitation. However, the need for a wide
range of data for the study area and for extensive knowledge of the aquifer makes the implementation

of traditional modelling techniques challenging, time-consuming and with high uncertainty.

The objective of this study is the development of an alternative tool for groundwater hydraulic head
simulation that does not make use of conventional modelling techniques and relies on the use of
data which are easy to acquire. The use of machine learning techniques in hydrological studies has
created new opportunities in the development of black-box models, while geostatistics are commonly

used for the spatial interpolation of hydrological parameters.

In the present study, the use of Artificial Neural Networks in combination with the kriging
interpolation method for the temporal and spatial hydraulic head variation in an aquifer is studied.
The further use of machine learning techniques, such as fuzzy logic, which combines computational
results with expert knowledge, for the improvement of initial results was also studied. Finally, the

uncertainty analysis of the proposed methodology is also a main objective of the present study.

1.2 Innovation

The application of machine learning techniques and of geostatistical methods has been thoroughly
tested in the past yielding, in most cases, better results than conventional modelling techniques.
However, this is the first attempt to combine the strengths of these two methodologies, by applying
Artificial Neural Networks and kriging for the temporal and spatial simulation of hydraulic head

respectively. The main advantage of the developed methodology is that it does not require geological
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data and extensive knowledge of the study area. In this way, it is possible to simulate the hydraulic

head variability, only by using meteorological and hydrological data as inputs.

The use of fuzzy logic to interconnect these methodologies is also a novelty, since its use was brought
on to the methodology in order to tackle problems encountered while developing the algorithm.

More specifically, it is the first time fuzzy logic is used for the kriging neighborhood determination.

The development of a Graphical User Interface to accommodate the use of the algorithm resulted
in a fully functional program capable of executing the code with minimal user input and without

the need of programming skills.

For the validation of the methodology, the algorithm was applied to two diverse case studies, the
first one in an alluvial and the second one in a karstic aquifer. The derived simulation results, along
with the uncertainty analysis results, endorse the applicability of the model irrespective of the

geological background.

1.3 Thesis outline

The remainder of the present dissertation is organized as follows:

In Chapter 2, a comprehensive analysis of the methodologies involved is presented. The theoretical
background and the principles for both Artificial Neural Networks (ANN) and Kriging interpolation
are presented along with the overview of adjacent methodologies. Fuzzy logic and error measuring
techniques are also analyzed in this chapter. Furthermore, the application of the involved

methodology individually in hydrological studies is summarized.

In Chapter 3, the developed methodology is presented. The first part describes the ANN training
procedure followed by the fuzzy logic methodology. The evaluation part of the algorithm is
comprised of the Kriging and ANN testing methodologies. The Graphical User Interface developed
to make the application of the algorithm user-friendly, and its functionality are also presented.

Finally, the adopted uncertainty analysis methodology is described.

In Chapter 4, the two study areas where the developed methodology was tested are presented.
Meteorological and hydrological data, as well as the geology and some general information about

each area, are given. Parameters necessary for the development of the ANNs, the final input
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parameters, as well as information about the time lags between the parameters involved and their

effect on the aquifer hydraulic head, are presented.

In Chapter 5, the results of the procedure are analyzed. That includes the ANN training and the
evaluation results, the cross-validation and uncertainty analysis of the algorithm. Results are
presented for a number of representative wells in each case, where ANN training is concerned.
Simulation results for specific prediction points are demonstrated. The same procedure was followed

for both case studies.

In Chapter 6, the conclusions of this research are summarized and evaluated, while in Chapter 7

a series of recommendations along with topics for potential future research are presented.

1.4 Publications

In this chapter the publications in international peer-reviewed journals and international conferences

are presented.

Journal Publications

Tapoglou E., Chatzakis A. and Karatzas G.P. (2015) Comparison of a black-box model to a
traditional numerical model for hydraulic head prediction, Desalination and Water Treatment,
Under Review

Tapoglou E., Karatzas G.P., Trichakis I.C. and Varouchakis E.A. (2014), A spatio-temporal
hybrid neural network - kriging model for groundwater level simulation. Journal of Hydrology, 519,
Part D(0), 3193-3203

Tapoglou E., Trichakis I.C., Dokou Z. and Karatzas G.P. (2013), Groundwater level forecasting
under climate change scenarios using an artificial neural network trained with particle swarm

optimization. Hydrological Sciences Journal Vol. 59(6), 1225-1239.

International Conferences

Aydin Sarikurt D., Yaksi K., Copty N., Tapoglou E., Dokou Z. and Karatzas G. (2015), Cosolvent
Flushing for Remediation of Groundwater Contaminated with DNAPL, T7th International

Conference on Porous Media.
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Tapoglou E., Karatzas G.P., Trichakis I.C. and Varouchakis E.A. (2015), Uncertainty analysis of
a combined Artificial Neural Network - Fuzzy logic - Kriging system for spatial and temporal
simulation of Hydraulic Head. EGU2015-407, EGU General Assembly 2015.

Pantou Th. Tapoglou E. and Karatzas G.P. (2014), Hydraulic head simulation for Messara region,
Crete using Artificial Neural Networks and different training algorithms. 10™ International
Hydrogeological Confess of Greece.

Chatzakis Al., Tapoglou E. and Karatzas G.P. (2014), Groundwater Simulation Using Artificial
Neural Networks (ANNs) and Princeton Transport Code (PTC) - Performance Comparison. 12
International Conference “Protection and Restoration of the Environment — PRE12”. Full paper on
Proceedings pg. 2-8

Tapoglou E., Karatzas G.P., Trichakis I.C. and Varouchakis E.A. (2014), Temporal and Spatial
prediction of groundwater levels using Artificial Neural Networks, Fuzzy logic and Kriging
Interpolation. Geophysical Research Abstracts, Vol. 16, EGU2014-773, EGU General Assembly
2014.

Tapoglou E., Trichakis I.C., Dokou Z. and Karatzas G.P. (2012), Groundwater level forecasting
using an artificial neural network trained with particle swarm optimization. Geophysical Research
Abstracts, Vol. 14, EGU2012-2405, EGU General Assembly 2012.
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Chapter 2

Theoretical Background

2.1 Hydrological modelling

Models are used extensively to describe groundwater physical systems and can assist decision makers
to act effectively. However, an exact model of the natural system is not feasible. A plethora of
modelling techniques has been developed to simulate the natural system within some acceptable

accuracy.

Mathematical modelling has a long history; its roots lie in the natural laws formulated throughout
the years. Parameters involved in these rules must be defined through a calibration process based
on the observed field data. The system description (equations) together with the calibrated
parameters can serve as a model. Due to the formulation of a natural system with approximate
reasoning, an imprecise solution is derived. In formulating the system’s characteristics, restricting
assumptions must be made, so that the process can be dealt with mathematically [Abbott and
Refsgaard, 1996].

Models used for the simulation of an aquifer behavior can be divided into three categories: Physically
based, Conceptual and Data-driven models [ASCE, 2000].

Physically based models use the general principles of the physical processes and describe the natural
system in detail. A prerequisite in using these models is the extensive knowledge of the aquifer
parameters and of the processes taking place within the aquifer. These models commonly use finite
differences and/or finite elements representations of partial differential equations of mass and
momentum. They do not require lengthy time series of hydrometeorological data, but they require
the evaluation of a large number of parameters and initial conditions [Abbott and Refsgaard, 1996].
Conceptual models, often called grey-box models are composed of a series of interconnected storages

representing physical elements in a catchment. Parameters typically represent mean values over the
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entire catchment. The equations used are semi-empirical, but they still lay their basis in physical
processes. They are simple and easy to implement, but they require a large amount of field data for

the calibration process.

Parallel to the advances in mathematical modelling, the technological revolution enabled the
development of a new modelling technique, data-driven models. Taking advantage of the increased
computer speed and of the cheaper data acquisition/storage/transmission, new branches of science
have emerged. One of these, known as machine learning, is primarily concerned with learning
patterns from observed data. Many of the natural systems are not known with sufficient precision
to be modeled accurately. If observed data are available, a model representing the system can be
built by discovering regularities in the data. This is the reason why they are commonly referred to
as black-box models; because they do not take into consideration the processes happening within
the system, but only their result. Depending on their origin they can be divided into three main
groups, namely empirical hydrological methods, statistically based methods and hydroinformatics
based methods [Abbott and Refsgaard, 1996]. These three categories can be distinguished by the

following:

e Empirical hydrological methods lay their basis in empirical methods, but they use a selection
of input-output parameters which are dictated by some physical understanding of the
processes.

e Statistically based methods consist of regression and correlation models, which are used to
determine a relationship between input and output.

e Hydroinformatics is a branch of hydrological sciences that has a strong interest in the use of
machine learning techniques. A hydroinformatics system is defined as an electronic
knowledge encapsulator that models the real process and can be used for the simulation and
analysis of physical, chemical and biological processes in the water for the better
management of the aquatic environment. Over the past ten years such methods have been

used extensively in groundwater modelling.

The classification of the hydrological models is depicted in Figure 2-1.
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Hydrological

Models
A 4 A 4 A 4
Data-Driven Conceptual Physically based
A A 4 A 4
Empirical Methods Statistically based Hydroinformatics

Figure 2-1: Classification of Hydrological models [ASCE, 2000]

2.2 Computational intelligence — Machine learning — Artificial

intelligence

Artificial intelligence (AI) is the field of study that aims at the creation of machines or software
with human-like reasoning and intelligence. The main goals of Al research includes knowledge,
planning, learning, natural language processing, perception and the ability to move and manipulate
objects. The first studies which included AI were developed in the 1950s, however the concept was

introduced a long time before that [Haykin, 1999].

Later on there was a shift in Al research from its biological connection towards providing practical
methods and tools in achieving solutions to engineering problems using the huge amount of data
that is available in many situations [Bhattacharya, 2005]. This new line of research that has
originated from AI has ties with several closely related fields: Computational Intelligence (CI),
Machine Learning (ML) and Soft Computing (SC) [Negneuvitsky, 2005].

These fields overlap in many cases and other classifications of the fields are possible.
Computational intelligence (CI) is a sub-branch of Al, studying adaptive mechanisms to enable
intelligent behavior in complex environments. These mechanisms include Al paradigms that exhibit

an ability to learn and adapt to new situations, to generalize and associate [Engelbrecht, 2007].
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Machine learning (ML) is an interdisciplinary subject, which is enriched with concepts drawn from
diverse fields, such as statistics, information technology, cognitive science, control theory and others,
and is primarily concerned with learning from data. Many natural systems are not known with
sufficient precision to be modelled accurately. If observed data are available then ML can be used
to build a machine representing the system, by discovering regularities in the data [Bhattacharya,
2005]. Numerous research applications of ML have established its importance as a complement to
the traditional physically based modelling. It is presently being integrated with almost all branches

of science as an alternative complementary way of encapsulating knowledge.

Soft Computing (SC) includes methods which are more tolerant to imprecision and uncertain data.
It became a formal area of study in Computer Science in the early 1990s [Zadeh, 1994]. SC techniques
reflects human thinking more closely than traditional techniques, which are based on formal logical
systems [Negnevitsky, 2005; Reddy et al., 2014].

Artificial Neural Networks (ANNs), which are used extensively in this study, overlap these three
categories and are mostly considered as an ML oriented method, while Fuzzy Logic (FL) is mostly
categorized with SC methods. The relationship between Artificial intelligence algorithms is

illustrated in Figure 2-2.

Al

CI: Evolutionary ANN&s
FL computation, Data
Mining Support
Vector
Machines

SC: Probabilistic ML: Regression
computing trees

Figure 2-2: Relationship between Al algorithms
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2.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) were constructed as an attempt to simulate, by mathematical
means, an idealized form of the elementary processing units in the human brain and their
interconnections, signal processing and self-organization capabilities |[Tettamanzi and Tomassini,
2001]. According to Schalkoff [1997], an artificial neural network is “a structure composed of a
number of interconnected units. Each unilt has an input/output characteristic and implements a
local computation or function. The output of any unit is determined by its input/output
characteristics, its interconnection to other units and external inputs. Although ‘hand crafting’ of
the network is possible, the network usually develops an overall functionality through one or more

forms of training”.

2.3.1 Historical overview

Artificial neural networks were first developed by McCulloch and Pitts [1943], who were inspired by
the desire to understand the human brain and to emulate its functionality. By the 1960s the interest
for ANNs was high, until 1969 when Minsky and Papert [1969] showed the limitations of the
Perceptron. The research interest gradually declined until 1982-85 when Rumelhart et al. [1985]
introduced a new theoretical framework for drafting the error propagation algorithm reverse (back
propagation). Since then, artificial neural networks have found application in various fields such as

computer science, electrical engineering, and robotics.

In recent decades, more complex algorithms have been developed and, with the advent of more
powerful computational tools, the application of ANNs has grown in different cases. The ability of
neural networks to recognize relationships between input and output makes it possible to address

complex problems.

2.3.2 Artificial neurons

Neurons are the key component of an ANN. They are elementary units which, when connected, they
construct an ANN.

The first model of a neuron, named Threshold Logic Unit (TLU), was proposed by McCulloch and
Pitts [1943]. A graphical representation of such a unit with n real-valued inputs x;, each associated

with a parameter w;, is presented in Figure 2-3.
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Parameter w; is also known as synaptic weight, in analogy with biological synapses, the functional
contacts between two nerve cells. A TLU performs a weighted sum operation (u) followed by a non-
linear threshold operation (f). The weighted sum is also called the neuron activation and the

thresholding operation is the activation function.

/

Figure 2-3: Artificial neuron model

Mathematically, the operations in one node can be described by Equations 2.1 — 2.2.

n
u= Z Wj%j (2.1)
j=1

y=f (2:2)
2.3.3 Activation functions

Some of the most common activation functions are described below.

The Threshold activation function is described by Equation 2.3.

fw) = {é ZZZ i 8 (2.3)

The graph for the above threshold activation function is presented in Figure 2-4.
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Figure 2-4: Threshold activation function

When using this model, the output of a node is equal to one when the input is positive and zero
otherwise [Krdose and Van Der Smagt, 1993].
The Partially linear activation function is described by Equation 2.4 and a typical representation is

given in Figure 2-5.

1 >+1
, u= >
(w) = ! ! 2.4
fw) = u+2, +E>u>—§ ( )
0 < !
, us=s 2

0.5

/
0 bV

24195 1 05 0 05 1 15 2

Figure 2-5: Partially linear activation function

The Sigmoid is one of the most common activation functions used in ANNs. A characteristic example

of sigmoid activation function is the logistic function described by Equation 2.5.
Sp— (2.
fw = 1+eau '

Parameter a in Equation 2-5 represents the slope of the sigmoid curve (Figure 2-6). The larger the

value of a, the steeper the curve is [Haykin, 1999] .
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Figure 2-6: Sigmoid activation function for different values of parameter a

The sigmoid activation function is suitable in most cases because it is differentiable and it saturates,

that is, it tends asymptotically to zero and one at the extremes.

2.3.4 Networks of artificial neurons

By connecting multiple Threshold Logic Units (TLUs), an interconnected network of neurons can
be constructed. The computational capabilities of such a network are by far more useful than those
of a single neuron. The way in which the neurons are interconnected defines the overall architecture
of the network. Many different network architectures exist but the most important and well-known
one is the feedforward multilayer network architecture, due to its simplicity and computational
capabilities. In feedforward networks, an input pattern is transformed to an output pattern through
a finite series of layers of nodes, some of which may have no connections to the input or output. In

feedforward networks there are no feedback signals, i.e., the signal travels only forward (Figure 2-7).
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Network
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Output
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Input Hidden Output
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Figure 2-7: Typical Artificial Neural Network

The optimal architecture of an ANN has been extensively discussed in the past [Gdomez et al., 2006;

Mirchandani and Cao, 1989] and there is not a universal rule that can be applied in all cases.

2.3.5 ANN training

In order for an ANN to acquire the appropriate synaptic weights w, the training process of the
network must first take place. This procedure implies the incremental modification of the weights
so as to improve a prespecified performance criterion. The adaptation of the weights may take place
in a supervised or unsupervised way.

In supervised learning the network is presented with a set of known input/output pattern pairs.
The learning procedure consists of updating the weights of the training algorithm at each iteration
so that, for a given input, the error measure between the network’s output and the known target
value is reduced. This procedure is mainly used for regression problems. When using unsupervised
learning, an input and the corresponding output are vital, in order to establish a relationship for
the ANN to learn. In this case, there is no feedback provided on whether the given association is
correct or not. It is mainly used for classification problems. In unsupervised learning, the categories
in which data fall within are not known beforehand, and the learning process attempts to find

appropriate categories for them, while in supervised learning these categories are known.
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In the case of regression problem, the use of supervised learning is the most common. In order to
train a network as such, the most common algorithms used are the generalized delta rule and the

backpropagation training algorithms.
Generalized Delta Rule

Generalized Delta Rule (GDR) is a product-learning rule for a feedforward, multi-layer, structured
neural network that uses learning by error correction. Network weights are adjusted to minimise
an error based on a measure of the difference between target and calculated network output. The
learning rule tries to reduce the Mean Squared Error (MSE) averaged over the training set [Krose

and Van Der Smagt, 1993]. The criterion function to be minimized is expressed in Equation 2.6.

m

1
Ew) =5 ) (d; = y)? 26

=1

where d; is the target output, y; the calculated ANN output, m is the number of training sets and
w is the vector of weights and E(w) represents the error with a given set of weights. When training
an ANN using the GDR, the idea is to make a change in weights proportional to the negative of the
derivative of the error as measured on the current pattern with respect to each weight.

Taking the partial derivatives in Equation 2.6 with respect to the weights, the iterative form of the

rule is formulated, as described by Equation 2.7 [Krése and Van Der Smagt, 1993].

wi = wh + p (di — yi) - % 2.7

where u is the learning rate; a parameter that controls the stability and the rate of convergence, x
and w are the input and weight vectors and t and t + 1 are the current and next iteration steps

respectively.
Backpropagation algorithm (BP)

The most commonly used ANN training method is backpropagation. The algorithm of error back
propagation is a general method for calculating the weights of a network with more than one layer.
The aim of the method is to train the weights based on the set of available input-output values,

decreasing at each iteration of the algorithm the output error of the neural network. Initially, each
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input vector propagates through the network and generates an output value. The network output

value is compared with the desired value and the error is calculated. Then, this error propagates

backwards, i.e., from the output level to the input level, and the weights of each synapsis are
modified [Krése and Van Der Smagt, 1993].

The steps of the algorithm are as follows:

AR

Initialize randomly all unit weights in the network.

Apply an input set to the network.

Feed forward the inputs to determine all unit outputs.

Compare unit responses in the output layer with the desired or target response.

Compute and propagate an error sensitivity measure backwards through the network, using

this as the basis for weight correction (Equation 2.7).

6. Minimize the overall error for each training set through unit weight adjustment.

2.3.6

Advantages

Advantages and disadvantages of ANNs

Non linearity: An ANN can be either linear or not depending on the activation
function used. Non linearity can be a great advantage, especially in cases where a
natural procedure is described (such as water level fluctuation).

Input-output mapping: After the training of the network, the user can have an
overview of the correspondence between input and output values, by examining
the neural weights. It is also possible, especially in small networks, to examine
which parameters affect the output more significantly.

Adaptivity: ANNs have the ability to adapt their synaptic weights to
environmental variations. This can be done by retraining the network in order to
incorporate all immerging new trends.

Tolerance in errors: ANNs are tolerant to errors. Their performance will drop
gradually in cases of datasets with extreme values, but they will still be able to
provide a reasonable output.

Very-large-scale Integration (VLSI) implementability: The parallel architecture of
an ANN makes it very fast. This feature makes it ideal for developing applications
with very high technology systems integration [Haykin, 1999].

ANNs can be developed using various training methods and architectures

depending on the application.
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Disadvantages

1. ANNs behave as black boxes so they have limited ability to identify causal
relationships.

2. Depending on the application, they may require great computational resources.

3. They are prone to overfitting.

4. Their development, in terms of architecture, can be empirical with various different
rules in bibliography, and the best possible architecture cannot be easily identified
[Tu, 1996].

2.3.7 ANNSs in hydrology

Machine learning techniques have been used in the past in hydrological studies. An overview of
these techniques and their implementations was presented by See et al. [2007]. Data-driven
hydrological models used in the recent bibliography are also presented in a paper by Solomatine and

Ostfeld [2008].

ANNSs have been used extensively both in surface and groundwater hydrology. The purpose of these

networks is to simulate the water budget, described by Equation 2.8,

AS=1-0+P—EPT+Q 2.8

where AS is the change in aquifer storage, I the inflow to the water basin, O the outflow from the

water basin, P the precipitation, EPT the evapotranspiration and Q the pumping/recharge rate.

Rainfall-runoff processes have been successfully simulated using ANNs together with other
methodologies (principle component analysis, timing error correction) in multiple studies in the past
[Abrahart et al., 2007; Hu et al., 2007]. ANNs have also been used in surface hydrology in order to
forecast floods [Chen et al., 2013], to predict the frequency of floods in a region [Aziz et al., 2014],
and to calculate the flood resistance in existing cities [Cruz et al., 2014].An overview of studies and
methodologies where ANNs have been used with hydrological data was presented by ASCE [2000],
Maier and Dandy [2000] and Govindaraju [2000).

As far as groundwater is concerned, ANNs have been used for diverse purposes. One of the most
common purposes is for the definition of aquifer parameters. Ajmera and Rastogi [2009] used ANNs

together with finite element models so as to solve the inverse problem and calculate the
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transmissivity of an aquifer. On the same note, Samani et al. [2007] used ANNs together with
Principle Component Analysis to define the parameters of an aquifer (storativity, transmissivity
and therefore drawdown). Rizzo and Dougherty [1994] characterized aquifer parameters spatially,
by introducing a new concept, Neural Kriging. In this case the ANN is used as a spatial interpolation
method and the structure of the ANN has many common points with the kriging interpolation
method, hence, the name of the methodology. Banerjee et al. [2011] used ANNs in order to predict
the salinity in an aquifer and to determine a safe pumping rate to maintain an acceptable
groundwater salinity level. Their results were compared with the analytical results of a mathematical
model, as well as with field measurements. They concluded that ANNs can be simpler in their

implementation while being more accurate than mathematical models.

Finally, hydraulic head and hydraulic head change was also the focus of many studies using ANNs.
Various input parameters have been used, including temperature, pumping rate, rainfall and
conductivity [Coppola et al., 2005; Lallahem et al., 2005; Nayak et al., 2006; Tapoglou et al., 2013].
The architecture of ANNs compared to their performance and computational cost, was studied by
Mohanty et al. [2010] and Taormina et al. [2012], using as output parameter the groundwater levels
with hourly time step. Trichakis et al. [2011b] used hydraulic head change instead of hydraulic
head, in order to increase the accuracy of the model. This model was developed in a karstic aquifer,
which is considered highly complex and difficult to simulate with mathematical models. The ANN
model yielded very good simulation results, while the confidence intervals were also calculated for

the prediction by using a bootstrap methodology [Trichakis et al., 2011a; Trichakis et al., 2009].

In some cases the performance of ANNs for hydraulic head simulations was compared with that of
other modelling techniques. Mohanty et al. [2013] compared the performance of an ANN with a
commercial numerical model, MODFLOW, with the ANN model providing better predictions for
the groundwater level over shorter time horizons. In another study [Chatzakis et al., 2014], ANN

performance was compared to the PTC numerical model.

2.4 Geostatistics

Geostatistics is a subcategory of statistics and refers to a collection of statistical techniques
specialized to analyze and interpret spatially referenced data. Spatially referenced data are
represented by triplets (x, y, z) where x and y are the spatial coordinates and z is the value of
interest at location (x, y). Characteristic examples of this kind of data are the elevation of the

piezometric surface over the areal extent of an aquifer [Haan, 2002].
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The problems usually addressed by geostatistics are:

1. Point estimates at locations where measurements are not available

2. Estimates for the areal averages over the entire area or a part of it

3. Estimates of the uncertainty associated with point or areal average estimates
4

The distribution of values over areas of various sizes and locations

Spatial prediction models can be classified based on several aspects. Most importantly they can be
classified according to the amount of statistical analysis included. According to Hengl [2007] two

main categories can be identified:

e Mechanical /Empirical models: For these models arbitrary or empirical parameters are used.
No estimate of the model error is available and usually no strict assumptions about the
variability of a feature exist. Amongst the most known techniques that belong to this
category are Thiessen polygons, and inverse distance interpolation.

e Statistical (Probability) models: In this case, the model parameters are estimated in an
objective way, following the probability theory. The advantage of these models is that the
predictions are accompanied with the estimate of the prediction error. There are at least
three important categories of statistical models, namely, kriging, regression-based models

and Bayesian-based models.

The Kriging interpolation method, which is used in this thesis, belongs to the second category. The

principles of this method are presented in the next section.

2.5 Kriging interpolation

Kriging has been used for many decades as a synonym for geostatistical interpolation. It originated
in the mining industry in the early 1950s as a means of improving ore reserve estimation. The
technique was first published by Krige [1951], but it took almost a decade until the mathematician
Matheron [1963] derived the formulas and basically established the whole field of linear geostatistics.

2.5.1 Estimation

A standard version of kriging is called Ordinary Kriging (OK) where the prediction of a parameter

z at location s, z(s), is based on the model given by Equation 2.9.
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z(s) =pu+e'(s) (2.9)

where p is the constant stationary function (global mean) and &'(s) is the spatially correlated

stochastic part of variation.

The predicted value at point s,, Zpx(S,) is a linear combination of n weighted function values at

nearby sampling points, as given in Equation 2.10.
n
Zok (so) = Z wi(s,) - z(s;) = AT -z (2.10)
i=1

where A is the vector of kriging weights (w;) and z is the vector of n observations at primary

locations.

The kriging weights can be calculated using data at sampling points and constructing the

appropriate variogram.

2.5.2 Variogram

The basic tool in geostatistics is the variogram, which is used to quantify spatial correlations between
observations. Once a mathematical function has been fitted to the experimental variogram, this

model can be used to estimate values at unsampled points.

The novelty that Matheron [1963] and Gandin [1963] introduced to the analysis of point data is the
derivation and plotting of the semivariances. Semivariance is a measure of the dispersion of the
observed data that fall below a target value in the data set [Hengl, 2007]. It represents the difference

between neighboring values and can be calculated using Equation 2.11.

1
y(R) = ZE[(2(sp) = 2(s; + )?] (211)

where z(s;) is the value of target variable at some sampled location and z(s; + h) is the value of
the neighbor at distance s; + h. Suppose that there are n point observations, this yieldsn - (n — 1)/2
pairs for which a semivariance can be calculated. From the known values at various locations

throughout the study area (Figure 2-8 a), it is possible to plot all semivariances versus their
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distances, which will produce a variogram cloud (Figure 2-8 b). Then, for the ease of interpretation,
values are averaged for a standard distance called lag (Figure 2-8 ¢). This comprises the standard
experimental variogram. What it is usually expected in this plot is for semivariances to be smaller
at short distances, and to stabilize at some distance. Values of a specific variable, in this case the

semivariance between data points, are similar at short distances, up to a certain distance where

these values tend to reach a global value.
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Figure 2-8: Steps in variogram model determination [Hengl, 2007

Once the experimental variogram is calculated, it must be fitted to an authorized variogram model
(Figure 2-8 d). Different variogram models, from the more traditional described in the following, to
the more sophisticated like the Spartan and the Matern have been tested over the years. According
to Kitanidis [1997], characteristic variogram models, suitable for hydrological data, are the linear,

exponential, spherical and power-law (Table 2-1).
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Table 2-1: Common authorized variogram models

Model Equation
Linear y(h)=C,+b-h
_h
Exponential y(h) = {Co +Ci[1—e 7], h>0
C, +C; , h=0
1
(C+ 3h 2, 0< h<
| y(h)=<° 27 )G r
Spherical
\ C,+¢, , h>r
Power-Law y(h) = C, + th - h?!

where Cy + C; is the sill, C,is the nugget effect, r is the range of the variogram, th and b are

coefficients and 2H is the Hurst coefficient.

The parameters defined by fitting the theoretical variogram model to the experimental one are:
range, nugget and sill (Figure 2-9). Range is the distance after which data are no longer correlated
and is associated with the distance where the variogram levels off to the sill. The nugget effect is
related to the amount of short range variability in the data and represents the distance at which
the variogram intersects the y-axis. The value must be calculated using the first few empirical
variogram points for the best fit. A nugget that is large relative to the sill is problematic and could
indicate too much noise and not enough spatial correlation. The sill is the total variance where the
empirical variogram appears to level off. Variogram points above the sill indicate negative spatial

correlation, while points below the sill indicate positive correlation.
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Figure 2-9: Characteristic variogram model parameters

The covariance function for different variogram models is given in Table 2-2 [Kitanidis, 1997;

Rasmussen and Williams, 2006].

Table 2-2: Covariance function for different variogram models

Model Equation
D
Linear c(h) = Z bgxgxg
d=1
: h
Exponential c(h) = Ce™r
1
. 3h M
Spherlcal C(h) =|1- E; + T'_3 Cl
Power-law c(h) xh?f,—1<H<0

where d is the number of dimensions (in this case d = 2), x denotes the location is each dimension
x" the location in each dimension of the closest data point and b a parameter different for every

dimension.

The experimental variograms are commonly fitted to the theoretical, by iterative reweighted

nonlinear least square estimation, using as stopping criteria either a sufficiently small step or a small
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function change, reaching a specified number of iterations or reaching some secondary boundary
condition. The main difference between linear and nonlinear fitting is that in linear problems time
complexity is fixed, whereas the solution of nonlinear problems is an iterative process, whose
convergence speed is problem-dependent. Moreover, nonlinear methods generally have more tunable

parameters, than linear ones and hence, lead to a better solution.

Using the estimated variogram, the weights can be calculated such that ¥~ ,A; = 1 and are given

by Equation 2.12.

A=C'-D (2.12)
where A is the vector of weights for i = 1to N and pufor i = N + 1, u is the Lagrange coefficient
associated with the zero-bias constraint (Equation 2.13-a), I' the matrix of covariances between data

points (equation 2.13-b) and D is the vector of covariance between a prediction point and data

points (equation 2.13-c).

©) (c)

(a) C
o y(hi2) y(hin) 1 h
[VM;;] [)’(hm) Co o y(han) 1 ] )):Ehpg
/11 : } ¢ =|v(ha) v(hs) y(hsn) 1 i p=|: |3
w. : : |
h, h, c 1 ¥ (hpn
M 14¢ ; 1) V(l 2) .. 10 COJ 1 J

The function y(+) in equation 2.12-b and ¢ is the variogram and it is used to relate the distance
between observation and prediction points based on the data at the observation points.| Varouchakis

and Hristopulos, 2013b]

The main advantage of statistical spatial prediction techniques, such as kriging, over other types of
prediction and interpolation techniques, is that it can provide the prediction variance of the
estimation. Kriging uses the described procedure in order to minimize the error variance. The error
variance that remains at the end of kriging interpolation can be calculated by Equation 2.14 and it

can be considered as a measure of associated uncertainty of the predicted values.

52 = Z”i y(si—s0)] +u (2.14)
i=1

4
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2.5.3 Kriging in hydrological data

The interpolation technique of Kriging has been applied mostly for the spatial estimation of variables
rather than the temporal, even though applications on spatio-temporal estimations are also common
in recent literature [Snepvangers et al., 2003; Ta "any et al., 2009]. By taking into consideration the
spatial distribution of data, kriging overcomes problems that other interpolation methods, such as
the nearest neighbor method, the distance weighted method and polynomial interpolation may have.
Basic concepts of the Kriging technique and its application to natural phenomena have been
reviewed by the ASCE Task Committee on Geostatistical Techniques in Geohydrology [1990a; b],
while Kitanidis [1997] analyzed the methodology involved when applying kriging to hydrological
data.

Kriging has been used extensively in applications other than the ones it was originally developed for
[Stytz and Parrott, 1993]. As mentioned before, kriging has been used in hydrology and more
specifically in groundwater applications. Delhomme [1978] first presented a series of case studies
where kriging was used in automatic contouring, in measurement network design and other
applications. Aboufirassi and Maririo [1983] and Kumar [2006], amongst others, used various kriging
algorithms to estimate the groundwater level in different areas. The most commonly used kriging
methods are the Ordinary [Yang et al., 2008] and the Universal [Aboufirassi and Maririo, 1985].
Other more accurate kriging methods such as Kriging with external drift and with incorporation of
various parameters in the trend [ Varouchakis and Hristopulos, 2013a] are also widely used. Auxiliary
variables, such as digital elevation models or other geographical and physical parameters, can also
be used in order to improve the accuracy of the estimations [Desbarats et al., 2002]. Different
methods of kriging are compared in Marinoni [2003], while kriging has been compared to other
interpolation methods by Varouchakis and Hristopulos [2013b]. Loukas and Vasiliades [2004] used
kriging, amongst other interpolation techniques, together with machine learning techniques, for the

spatiotemporal drought prediction.

Other than for simulating the hydraulic head in an aquifer [Gundogdu and Guney, 2007], Kriging

has been used for the design and assessment of a groundwater monitoring network [Baalousha, 2010].
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2.6 Fuzzy logic

2.6.1 Theoretical background

Fuzzy logic was first proposed by Zadeh [1965] as a means of representing and manipulating data
that are not precise but rather fuzzy. A fuzzy set is a set without clear or sharp boundaries. Unlike
a conventional (crisp) set (Figure 2-10-A) where an object either belongs or does not belong to the
set, a fuzzy set allows for partial membership (Figure 2-10-B). A fuzzy set is represented by a
membership function, which specifies the degree of membership within the set. A membership
function for a fuzzy set A on the universe of discourse X is defined as pp: X — [0,1], where each

element of X is mapped to a value between 0 and 1.

A. Crisp set

Membership function

Parameter value

B. Fuzzy set

Membership function

Parameter value

Figure 2-10: Typical Crisp and Fuzzy set
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Membership functions allow to graphically represent a fuzzy set [Negnevitsky, 2005]. Because of the
intermediate degrees of membership, a smooth transition from being a member to not being a
member of a property can be achieved. The membership functions most commonly used are
triangular, trapezoidal, Gaussian, generalized bell and sigmoidal Z- and S-functions [Nguyen et al.,

2010].

2.6.2 Building a fuzzy system

The typical process when developing a fuzzy logic system involves four steps: the fuzzification, rule

evaluation, aggregation of rules and defuzzification (Figure 2-11).

Fuzzification
(Determine the degree
of truth for each fuzzy

set)

Rule Evaluation
(Application of truth
values to each rule)

A 4
Aggregation of rule
consequents
(Combination of rule’s
output fuzzy sets to a
single fuzzy set for
each variable)

Defuzzification
(Convert fuzzy output
to a numeric value)

Figure 2-11: Steps of fuzzy logic process

The first step in developing a fuzzy logic system is fuzzification where membership functions must
be appointed to every linguistic function and the degree of truth for each of the fuzzy sets must be

determined. Fuzzy set membership functions may have a variety of shapes (Figure 2-12). However,
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a triangular or trapezoidal shape can often provide an adequate representation of the expert

knowledge.

fuzzy system to respond smoothly.

Membership function Membership function

Membership function

Membership function

Parameter value

Parameter value

Parameter value

Parameter value

uy (2)

One of the key points is to maintain sufficient overlap in adjacent fuzzy sets for the

0, X < a
X - a
,a<x<m
m - a
b—x' m<x<h
b -m
0, X >b
0, X<a|x>d
x-8  acx<h
b -

1, b<x<ec
d—x] c<x<d
d -c¢

0, x> d
d-x

, c<x<d
d-c
1, x<c
0, x<a
X—-a

, a<x<b
b-a

1, Xx>b

Figure 2-12: Membership functions: triangular, trapezoid, R and L functions (from top to bottom)

Predicting patial and temporal changes in groundwater levels using Artificial Neural Networks and Geostatistical methods

27



Theoretical Background

Fuzzy sets, fuzzy rules and procedures must be encoded in order to incorporate fuzzy inference into
expert system. During the fuzzification process takes, every value of a crisp input is mapped to a
set of values expressing the degree to which the input belongs to each of the appropriate fuzzy sets.
The numerical value of each input parameter must be converted into a probability of belonging in a
Linguistic Subset (LS) of the fuzzy set. For example, in Figure 2-13 value v; has probability Mf1 of
belonging to LS1, probability Mf2 of belonging to LS2 and zero probability of belonging to LS3. The

same procedure is applied to all parameters involved.

— LS 1

— LS 2

LS3

M — — — — —

Membership function

Mif-— — — — —

Parameter value

Figure 2-13: Fuzzification process

The next step is the rule evaluation where he truth value for the antecedents of each rule is computed
and applied to the consequents of each rule. If a given rule has multiple antecedents, a fuzzy operator
(e.g., AND or OR) is used to obtain a single number that represents the result of the antecedent
evaluation. This number is then applied to the membership function. To evaluate the disjunction of
the rule antecedents, we use the OR fuzzy operation. The most common operators used in linguistic
fuzzy rules and their mathematical interpretation are presented in Table 2-3, where x and y are the

probabilities calculated by the fuzzification process.

Table 2-3: Common fuzzy operators

Operator Mathematical meaning
x AND y min(x, y)

x ORy max(x,y)

NOT x 1—x
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For example, consider two parameters, parl and par2, whose values can fall into 3 categories each
(L1, L2 and L3 for parl and M1, M2 and M3 for par2) during the fuzzification process. If a rule
states that the outcome is C1 when the parl value belongs to L1 AND par2 value belongs to M3
then the probability that the outcome is C1 can be calculated using the operations in Table 2-3 and
considering as x the probability P(par; = L1) and y the probability P(par, = M3). These
probabilities are numerically defined during the fuzzification process. The final value of the

probability of the outcome being C1 is expressed as: P;; = min[P(par; = L1), P(par, = M3)].

The next step is the aggregation of the rule output, where the results of all the outputs are combined
into a single fuzzy set for each output variable. Figure 2-14 shows how the output of a three-rule

(C1, C2 and C3) system is aggregated into a single fuzzy set for the overall fuzzy output.
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Figure 2-14: Aggregation of fuzzy rules

The last step is the defuzzification of the aggregate fuzzy set, where the fuzzy output set is converted
to a numerical value. Numerous defuzzification methods are presented in the bibliography, the most

popular being the centroid technique, which can be expressed mathematically by the Center of

Predicting patial and temporal changes in groundwater levels using Artificial Neural Networks and Geostatistical methods

29



Theoretical Background

Gravity (COG)[Negneuvitsky, 2005]. The crisp output (COG) of the fuzzy system can be calculated
using Equation 2.15:

_ [pi(x) x dx

~ Ipi(x)dx

where p;(x) is the aggregated membership function and x is the output variable.

CoG (2.15)

A graphical representation of the defuzzification process is presented in Figure 2-15.

Membership function

COG

Output

Figure 2-15: Defuzzification
The initial system should then be evaluated in terms of its results and fine-tuned in order to produce

the optimal results.
2.6.3 Fuzzy logic in relevant applications

Fuzzy logic has been used in the past in multiple hydrological applications. Regression is one of the
main applications, where a loose relation between parameters is known to exist, but only few data
points are available. Bogardi et al. [1982] related the governing flow parameters to geological
parameters so as to be able to describe groundwater flow using limited geological data. Fuzzy rule
systems can replace traditional hydrological modelling tools. Hundecha et al. [2001] and Nayak et

al. [2004] have both used fuzzy logic systems to replace rainfall-runoff models.

30  Predicting spatial and temporal changes in groundwater levels using Artificial Neural Networks and Geostatistical

methods



Theoretical Background

Fuzzy logic has been used with ANNSs, creating Neuro-Fuzzy networks, which incorporate in ANNs
the human-like reasoning style of fuzzy systems by using fuzzy sets and a linguistic model consisting
of a set of IF-THEN fuzzy rules [Nayak et al., 2004; Zounemat-Kermani and Teshnehlab, 2008].
Fuzzy logic has been also used with the Kriging algorithm for the experimental semivariogram

definition [Amini et al., 2005; Rao and Prasad, 1982).

2.7 Measuring model performance

Various techniques can be used to evaluate the performance of the methodology deployed. At a first
level, the training and testing errors derived during ANN training and evaluation together with the
error variance in kriging can provide good initial error estimation. However, in order to get a better
insight into the modeling performance, the leave-one-out cross-validation method was applied. More
specifically, for 10% of the time steps, well locations (for which field data are normally available)
are treated as prediction points and the hydraulic head change is calculated using the kriging
algorithm described above. For the rest 90% of the time steps, the simulation result is equal to
output of the respective ANN. In this way, the error can be estimated for all methods applied.

Different error indicators, defined in Table 2-4, are used in the analysis of the results.

Table 2-4: Cross-validation error indicators

Cross-validation error

o Equation Optimal values
indicators
Root mean squared error RMSE 1 Al . 5 0
(RASE) = N;u (s0) = 2(s)]
Mean absolute error (MAE) MAE = —le (si) — z(sp| 0
N
Bias Bias = Z z*(s)) — z(s;)] 0
i=1
Root -
oo. mean square RMSSE — z z*(s;) Z(Sl) 1
standardized error (RMSSE) N a(sl)

where N: number of samples, z(s;): measured value at point s;, z*(s;): predicted value at point s;, o(s;):

the standard deviation at point s;
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In addition to the training and testing errors, the Nash-Sutcliffe Efficiency (NSE) coefficient was
used to assess ANN efficiency (Equation 2.16):

_ 2?:1[‘10bs(t) - QSim(t)]z

NSE =1 =
Z{EV=1[CI0bs (t) - QObs]z

(2.16)

where q,ps(t) is the observed value at time step t, g (t) is the simulated by the model value at
time step t and g@,ps is the mean observed value over the entire simulation period of length N time

steps.

The NSE coefficient can take values from —0o to 1. An NSE value of 1 (NSE = 1) indicates a perfect
fit between the simulated and observed values of the target output. An NSE value of 0 (NSE = 0)
indicates that the simulated values are as accurate as the mean of the observed values, whereas an
NSE value less than 0 (NSE < 0) indicates a questionable choice of model [Schaefli and Gupta,
2007].

The methodologies described in this chapter have been used successfully in the past for the hydraulic
head simulation of an aquifer. ANNs can provide good results for the temporal simulation of the
hydraulic head, but only for point locations, while kriging has been constructed for the spatial
interpolation of geological parameters. However, to the best of our knowledge the combination of
the above methodologies has not been applied for the spatial and temporal simulation of
groundwater parameters. In the present dissertation, ANNs, kriging and fuzzy logic are employed

for the spatio-temporal simulation of groundwater hydraulic heads.
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Methodology

The methodology followed in this work is described in this chapter. The first step is the development
of a distinct ANN for every data location where hydraulic head data were available. If these results
are going to be used for the spatial and temporal simulation of the hydraulic head, the next step is
to develop a fuzzy logic system in order to define the appropriate neighborhood for every prediction
point involved. When the fuzzy logic system is not used, the range of the corresponding variogram
is used to define the wells that comprise the neighborhood. The final step is the implementation of
the kriging algorithm and the visualization of the results. In this procedure several problems were
encountered and solved in order to develop an integrated simulator suitable for the spatial and
temporal prediction of the hydraulic head in an aquifer. The overall methodology is depicted in

Figure 3-1.

The methodology developed and the parameters involved in the above mentioned steps will be
analyzed in this chapter. The algorithms were created in Visual Basic .NET using Visual Studio
2010, while MATLAB R2013a was used for the visualization of the results through the .NET
interoperability. This resulted in a standalone program, able to run on any computer without
requiring a Visual Studio or MATLAB license, but only the installation of the appropriate MATLAB
libraries (MATLAB Compiler Runtime) which are freely available.
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Figure 3-1: Overall methodology flowchart

3.1 ANN methodology

The first part of the algorithm includes the use of multiple ANNs. Since the capability of ANNs to
simulate aquifer parameters temporally has already been established, only one ANN was trained

and used to evaluate the output parameter at hand.
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3.1.1. ANN architecture

The ANN used throughout this study is a fully connected Multi-layer Perceptron which includes an
input and an output layer as well as one or two hidden layers. The use of more than two hidden
layers is not advised due to the increased computational cost incurred. As mentioned in many cases
in the past [Haykin, 1999; Krdse and Van Der Smagt, 1993], the optimal architecture for an ANN
depends heavily on the application. There is no strict, universal rule that applies to every case
regarding the optimal number of hidden layers or the number of hidden nodes within these layers.
However, some rules have emerged that provide guidelines for choosing an architecture that will
provide an adequately well-trainable network. Mirchandani and Cao [1989] proposed that the
number of hidden nodes (H) in a feedforward neural network depend only on the number of input
training patterns (T). There are conjectures that H is on the order of T — 1 and log,(T). According
to Fine [1999], using three times as many training patterns as network parameters (weights) is
adequate to achieve good generalization. The second rule was applied in this work as it resulted in
an exact number of nodes for both cases of ANNs, with one or two hidden layers. It should be noted
that this choice of number of nodes for an ANN does not yield the optimal results for the network,

in terms of training and testing error, but results in a well-trained network.

The developed ANN was based on a previous network [Trichakis et al., 2011b; Trichakis et al.,
2009] which was heavily modified in order to meet the requirements of the present application, as
well as minimize the required simulation time. Converting the algorithm so as to be able to use
multiple threads, both for the training and the evaluation process, was one major step in this
direction. The input and output methods were also altered in order to accommodate the large

volume of data and provide ease of use.

The available data were divided into two categories for training and testing. Eighty percent (80%)
of the available data were used for the training process and for the estimation of the training error
which reflects the ability of the network to simulate values similar to those it was trained with. The
rest of the data (20%) were used to calculate the testing error between the simulation results
obtained by the trained ANN and the observed field values. This error represents the network’s
ability to simulate values other than the ones used for training and provides an estimation of the

network’s generalization ability.

In order to minimize the possibility of entrapment in local minima, the learning rate was set equal
to 0.01 and the momentum equal to 0.9 for all ANNs throughout this study. In order to avoid the

overtraining of the network, an early stopping criterion with case-dependent numerical value was
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set. The sigmoid activation function was adopted, as it is considered best-suited in describing natural

phenomena.

3.1.2. Input/output parameter definition

ANNSs are black-box models, meaning that they do not take into consideration the entity represented
by a model parameter. In order to be able to derive the optimal simulation output, parameters that
have physical meaning should be used as inputs and outputs. Temporally varied input and output
parameters can be used in an ANN. Parameters that have constant values in the aquifer, like
hydraulic conductivity, will not be used. The influence of such constant parameters is incorporated
to the weights of the ANN. In this way assumptions concerning, mainly, the geology of the study
area, which are very common in classical numerical models, are avoided. The more input parameters

and training sets are available the more accurate the simulation will be.

Water Budget

The water mass balance equation (Equation 3.1).is used as basis in order to determine the input

and output parameters of the ANN architecture:
AS=1—0+P—EPT+Q (3.1)

where A4S is the change in storage of the aquifer, I the inflow to the aquifer, O the outflow from the

aquifer, P the precipitation, EPT the evapotranspiration and Q the pumping/recharge rate.

The inflow to the aquifer can be both from groundwater and surface water bodies. Parameters that
can be used are the hydraulic head of the aquifer, as well as every parameter linked with the quantity
and flow rate of any surface water, which are directly related to the aquifer hydraulic head. In
surface water multiple parameters can be considered, from the discharge of a nearby river and the
water height in a lake, to the surface runoff into the aquifer. All these parameters are directly linked

to the hydraulic head of the groundwater with is the main parameter studied in this research.

The outflow from the aquifer can also be distinguished into surface water outflow and groundwater
outflow. The negative sign can be omitted since it will be incorporated in the neural weights. Any
parameter constant in time should be omitted since there is no pattern for the ANN to discover in

such data.
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Precipitation is one of the main parameters that affect an aquatic system. Any information regarding
rainfall, snowfall or any other form of precipitation should be used and is vital for the design of a
good simulation model. Data from multiple weather stations can be used for this purpose, as well
as several time lags between the event and the reaction of the aquifer, as will be explained later in
this chapter. The use of multiple weather stations is advised in the case of large study areas in
particular, as weather conditions throughout the area may vary significantly. Using more than one
weather stations in and around the study area ensures that the conditions at a prediction point are

taken into consideration.

Evaporation and transpiration can affect the hydraulic head in an aquifer. It may include several
other parameters like the air and soil humidity, the wind speed, hours of sunshine and air and soil
temperature. Each parameter affects the result to a different degree. Therefore, the data available
for every potential input parameter should be evaluated prior to being used in the final ANN which

minimizes the error involved.

Pumping/recharge rate can be one of the main parameters in the water budget. It can affect
significantly the hydraulic head in a region; in some cases, the simulation cannot be successful
without the use of these data. However, these data are not always available, due to either illegal
pumping or missing data. Moreover, the effect of pumping can be incorporated in the neural weights
in the case where the pumping is constant. In any case, the use of these data, when available, can

minimize the simulation error.

The use of the hydraulic head as input to the neural network has been extensively discussed in the
past [Trichakis et al., 2009]. In the present study, the hydraulic head is not considered as input
parameter, because the aim is to use the algorithm to predict the hydraulic head for more than one
day ahead. Both the hydraulic head and the hydraulic head change per time step are considered as
potential ANN output parameters in this work.

Time lag definition

The water supply and water management systems, like regulated channels, are not the only factors
affecting the spatial correlation of water level between monitoring wells. Natural factors can affect
the spatial correlation of the data for the groundwater level. One such natural factor, rainfall, can
be intense and extremely localised. Therefore, distant wells are less likely to show influence from
the same rainfall events. Land use is another factor that could affect correlation. Rainfall-runoff in

urbanised areas is different than in natural settings. In urban settings, pavement and storm sewers
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direct water into streams and channels; in natural settings, rainfall can readily infiltrate into the
soil. Evapotranspiration in urban settings is also likely to be different to the one in a rural area.
Because of the combined effect of all of these factors, correlation of the water level data in distant

wells will generally be small.

Time lag is the time between an event happening (for example a rainfall occurance) and seeing its
effect in the data. It is usually linked with the time that it takes for the water to penetrate the soil
and reach the aquifer. The correlation coefficient between time series A for a parameter and time
series B for the hydraulic head change can be used to determine the optimal lag between the

parameter and the hydaulic head change (Equation 3.2):

S (a-a)-b-5)
>(a—a) {xb-bf

where @ denotes the value of the parameter, b denotes the value of the hydraulic head change and

Correl(A,B)=

(3.2)

a, b are the average values of time series A and B, respectively.

The highest correlation lagged parameters will be used as input to the ANN. Parameters considered
to have time lag include precipitation (rainfall, snowfall etc.) and parameters related to surface
water recharge or discharge (water level in a lake or river, flow rate etc.). More than one time lags
can have approximately equal correlation coefficient between an input parameter and the hydraulic
head change. Moreover, using consecutive days with high correlation coefficients can describe the

full effect of the parameter to the hydraulic head.

List of possible input parameters

Based on the analysis above, input parameters of interest for the ANN simulation are:
e Pumping rates
e Recharge rates
e Surface water discharge/depth (various time lags)
e Precipitation (various time lags)
e Temperature
e Humidity
e  Wind speed
e Hours of sunshine

e Hydraulic head at nearby locations or at different time steps
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As mentioned before, the accuracy of the simulation improves when data are available for a great
variety of parameters. In the case that sufficient data are not available for a parameter that
significantly affects the water budget, the methodology must be applied with caution and the results
must be cross-checked at every step. The overall error of the system provides an indication of the

suitability of the methodology for a particular application.

3.1.3. ANN training and performance evaluation

After collecting the data and defining the appropriate time series to be used, the training and

evaluation of the networks takes place.

An ANN was trained using the backpropagation algorithm for each of the spatial points with
hydraulic head data available. The Root Mean Squared Error (RMSE) was used as an indicator of

the error in the ANN training process:

1
E= ZEP = EZ(dp —yP)? (3.3)
14 14

where E is the error, p the input pattern, dP the observed hydraulic head change, and yP the

simulated hydraulic head change.

Following the training of all ANNs, the network performance is evaluated for unknown sets of input-
output values. A set of spatially distributed time series for the hydraulic head change is generated
by the simulation, one time series for every point location.

A maximum of 10,000 epochs was used for the training of every ANN, in order to achieve good

training, and avoid overtraining. The final set of weights following training is used for the evaluation

process.

3.1.4. ANN training and evaluation flowchart

The ANN training and evaluation algorithm is described by the flowchart presented in Figure 3-2.
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Figure 3-2: ANN training and evaluation flowchart
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The training and evaluation algorithms have been described in detail in Chapter 2. When training
the ANNS, the first step is to import the general information for the ANNs construction, which
include the number of wells/data points. For each one of the data points the appropriate input and
output values are imported and then used for the ANN training. The final results (trained synaptic
weights) and information concerning the quality of the training process (training and testing error)

are reported n text files.

When the evaluation process takes place, again the first step is to import the general information
concerning the construction of the ANNs. Next, the synaptic weights defined through the training
process are imported and used for the hydraulic head simulation at each data location separately.
The process succeeding network evaluation is described in Chapters 3.2 and 3.3. The final outputs

of the ANN temporal simulation are saved in text files.

3.2 Determining prediction points

3.2.1. Delaunay triangles

A kriging algorithm is used for the spatial simulation of the hydraulic head a kriging algorithm is
used. The kriging algorithm is iterated at each time step of the simulation, in order to evaluate the
hydraulic head change at locations where no data are available. The specific locations at which
predictions were evaluated are nodes of a grid constructed for the study area. This constructed grid
is rectilinear grid, and all observation points fall exactly at grid nodes. The grid nodes at which
observation data are not available are the prediction points. In order to exclude from the simulation
grid nodes that fall far outside the study area and far from any observation point, Delaunay triangles
were created from the known data locations. Nodes that fell outside the area covered by at least one
triangle were not taken into account. The rule which is used for eliminating grid points is depicted
in Figure 3-3. The red dots represent data points, form which the Delaunay triangles are drawn.
Grid points that fall within these triangles (green dots) are considered prediction points, while grid

points that does not belong to any triangle (blue dots) are excluded from the simulation.
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Figure 3-3: Prediction point construction

3.2.2. K-fold cross-validation

Cross-validation is a technique for assessing how a predictive model will generalize or perform to an
independent data set. Cross-validation involves partitioning a dataset into complementary subsets,
performing the analysis on one subset and validating on the other set. In k-fold cross-validation, the
original dataset is randomly partitioned into k subsets. Of the k subsets, a single subset is used as
validation data and the remaining k-1 subsets as training data. The cross-validation process is

repeated k times, with a different subset used as validation data every time

In the cases under study in this dissertation, k-fold cross-validation was used to compare the
observed values with the values obtained from the ANN simulation and the values obtained with
kriging interpolation from neighboring data points. Specifically, for every data point, for 10% of the
time steps, the observed in that point data were ignored, and the algorithm follows as if the data
point does not exists. This means that ANN simulated values of the appropriate data locations are
used and the predicted value is calculated following the kriging methodology. In this way three
values are available for that data point and time step: the observed in the field, the ANN simulated
value and the kriging interpolated. At the end of the process, the kriging interpolated values are
compared to the observed and ANN simulated values, in order to derive an independent measure of
performance. This means that the error values are not acquired or affected by the training process
and the points where they came from are treated as nonexistent, hence providing an unbiased

measurement of the error.
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3.2.3. Determining prediction points flowchart

The procedure followed in order to determine the prediction points taking into account both

Delaunay triangles and k-fold cross validation is described in Figure 3-4.
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Figure 3-4: Flowchart for determining prediction points
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In order to define the prediction points the following procedure is followed. First all the data points
are imported to the algorithm. Using these points, a rectilinear grid is created, in which all data
points falls exactly in a grid point. The next step is to create Delauney triangles correcting the data
points. All grid points are then checked and only the ones that fall within a triangle are considered
prediction points. At the end of this procedure all the prediction points are gathered and are saved,

together with their coordinates.

In order to implement the cross-validation part of the algorithm, all prediction points are checked
if they are a data point as well. If they are not then the procedure followed in Chapters 3.4 and 3.4
is followed. If a prediction point is also a data point then a random number between 0 and 1 is
generated for each step. If this number is smaller than 0.1 (10% probability) then the output of the
respective ANN is used, while otherwise the procedure in Chapters 3.3 and 3.4 is followed, as if the
prediction point was not also a data point. The algorithm checks if it is the last time step and

prediction point, and if this algorithm is terminated.

3.3 Fuzzy logic methodology

Ffuzzy logic was used determine the appropriate neighbors for each prediction point used in the
kriging algorithm. To this end, the fuzzy logic system combines the ANN simulation error and the

proximity of the sampling points to the prediction points.

3.3.1. Developing the fuzzy logic system

The hydraulic head change at each grid node at every time step can be calculated by the kriging
algorithm. However, it is best if only wells near the prediction point and with small ANN error are
used. A fuzzy logic algorithm was applied to combine the results for the distance between the
prediction and observation points with the average ANN error ((training error + testing error)/2)
of the specific ANN/data point. Parameter values were divided into three categories, small, average
and large, and the membership functions were developed according to expert opinion for each of the

two parameters.

The membership functions for distance used in the fuzzification process are shown in Figure 3-5 for
the small, average and large categories, t;5(x), t14(x) and pq;(x), respectively. The respective
membership functions for the average ANN error, u,s(x), tpq(x) and py;(x), are also shown in

Figure 3-5. Note that slightly greater emphasis is given to the distance compared to the error. This
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is apparent the ANN error fuzzification diagram in Figure 3 5, where (s) property value is 1 for a

range of error values, while for the distance it is only 1 for a specific value.
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Figure 3-5: Examples of fuzzification and defuzzification diagrams

Next, a set of appropriate rules was applied in order to define the possibility of every set of

parameters being good, adequate or bad. The set of three rules applied in this study is as follows:

Rule 1: If the distance is small and the error is small, then the well is considered as good
for the specific prediction point (pg(x) = pysnzs(x) = minimum{u,s(x), uzs(x)})
Rule 2: If the distance is average or the error is average, then the well is considered as

adequate for the specific prediction point (pg (X) = tygu2q () = maximum {y;,(x), toq (%)})
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o Rule 3: If the distance is large or the error is large, then the well is considered as bad for

the specific prediction point (pp(x) = p1u21(x) = maximum{p,;(x), 121 (x)})

where pg(x), pa(x) and pp(x) represent the extent to which well x is considered good, adequate

and bad, respectively. These rules are summarized in Table 3-1.

Table 3-1: Set of rules used in fuzzy logic

Distance
Small Average Large
Small Good Adequate Bad
Error
Average Adequate Adequate Bad
Large Bad Bad Bad

It should be pointed out that these rules are treating each one of good/adequate/bad categories
differently. This means that for a well to be considered as good, both the error and the distance
should be small. On the other hand, if the distance or the error is large, then it is sufficient to

practically minimize the probability of this well being used by the kriging algorithm.

The next step was the aggregation of the rule outputs, that is, the unification of the outputs of all
rules into a single fuzzy set. The input of the aggregation process is the list of the clipped consequent
membership functions and the output is one fuzzy set for each output variable. In this case the

probability of well x being an appropriate neighbor.

Fuzzification helps evaluate the rules, the final output of the system should be a crisp value. This
is achieved through the defuzzification process (third graph in Figure 3-5). The centroid technique
appears to provide consistent defuzzification results. It is a well-balanced method, which is sensitive
to the height and width of the total fuzzy region as well as to the sparse singletons [Negnevitsky,
2005].This way, only the best well locations, the wells with the highest x values, which can also be

expressed as an appropriateness percentage, are used by the kriging algorithm.

Tuning the fuzzy system to derive the appropriate results may involve executing a number of actions
[ Negneuvitsky, 2005]:

o Review model input and output variables and if required redefine their range.
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o Review the fuzzy sets and if required define additional sets on the universe of discourse. The
use of wide fuzzy sets can cause the fuzzy system to perform roughly.

o Provide sufficient overlap between neighboring sets. Although there is no method to
determine the optimum amount of overlap, it is suggested that triangle-to-triangle and
trapezoid-to-triangle fuzzy sets should overlap between 25 and 50% of their bases [Cox,
1999].

o Review the existing rules and if required add new rules to the rule base

e [Examine the rule base for opportunities to write hedge rules to capture the pathological
behavior of the system

e Adjust the rule execution weights

e Revise shapes of the fuzzy sets. In most cases, fuzzy systems are highly tolerant of a shape
approximation and thus a system can still behave well even when the shapes of the fuzzy

set, are not precisely defined.

3.3.2. Fuzzy logic flowchart

After the determination of the prediction points, the procedure described by the flowchart in Figure
3-6 takes place. When the fuzzy logic system is not used the procedure is bypassed. Otherwise, when
the fuzzy logic system is used, the fuzzification, rule propagation and defuzzification processes take

place.

First all distances between a prediction point and a data point is calculated. For each data point
the fuzzification of its distance from the prediction point and its ANN training and testing error
takes place, using the corresponding graphs. The application of the fuzzy rules in these values is the
next step, followed by the defuzzification process. All data points’ probability values are sorted and
the best data points are reported back to the main part of the algorithm. This procedure is repeated

for al prediction. When the last prediction point neighbors are defined, the process is terminated.
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3.4 Kriging methodology

3.4.1. Variogram determination

The first step in the applied kriging algorithm is the determination of the variogram. Since a large
number of variograms are constructed, one for each prediction point and time step, it is important
to automate the procedure. The following procedure was iterated at each algorithm step for the

variogram determination.

First, the distances between all data points are calculated. The maximum and minimum distances
are identified and ten classes are defined between these values. Then, taking all possible pairs of
points i and j, the following are calculated for each class of distance:

1. the number of pairs present in the class,

2. the average distance in the class, and,

. 1 2
3. the average square increment 3 (Zi - Zj) .

The graph of the semivariance versus distance comprises the experimental variogram. Special
attention should be given to the number of pairs within each class. If the number of pairs in any
class is less than thirty, the classes should be rearranged so as to accommodate this rule. In our case

we choose the neighborhood size accordingly so as to fulfill this rule, as explained in Section 3.4.2.

The next step is to fit the experimental variogram to an authorized variogram model. The variogram
models that are going to be tested for performance are the ones listed in Table 2.1. The selected
variograms are expected to provide good results in hydrological data [Kitanidis, 1997]. Non-linear
Least Square Fitting was performed, using the AlgLib library for Visual Basic .NET [Bochkanov
and Bystritsky, 2011]. Non-linear methods generally have more tunable parameters than linear ones
and their convergence speed is problem-dependent, since they are iterative processes. With AlgLib
it is possible to set various stopping criteria for the fitting process such as sufficiently small step
between iterations, small function change between iterations and specified number of iterations.
Moreover, it is possible to set secondary constraints like intervals of possible parameter values. In
this way the final variogram parameters set the theoretical variogram model as close as possible to
the experimental variogram. It is common practice not to use all classes created in the previous step
in order to increase the accuracy of the fitted variogram. For this reason, only the first nine classes

were used.
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3.4.2. Neighborhood selection

The determination of the appropriate neighborhood depends on whether the fuzzy logic system is
used or not. In the case where the fuzzy logic system is used, the procedure described in Section 3.3
applies and only a specific number of wells is used. This number should be chosen carefully so as to

allow for the 30 pairs per class in the variogram determination process.

In the case where the fuzzy logic system is not used, then the selection of the appropriate neighbors
depends on the distance between the prediction point and the data points. Only data points that

fall within the range of the variogram are used.

3.4.3. Parameter value evaluation

After choosing the most appropriate neighbors, using either of the methods described above, the
evaluation of the parameter value at the prediction point takes place. The first step in this process
is to use the derived variogram model to compute the vector of distances between the prediction
point and the data points within the neighborhood. This vector is often symbolized with D and has

the form shown in Equation 3.4:

P’(hpl)]

|V(hp2)|
D= : (3.4)

¥ (hpn)
1

where hy,; the distance between the prediction point and the it" data point, nis the total number

of data points in the neighborhood.

The covariance matrix is also constructed by a applying the variogram to the distances between the
data points in the neighborhood. The matrix is often symbolized with € and the form described by
Equation 3.5

0 y(hi2) y(hin) 1
[V(hu) 0 o y(hen) 1

C = V(h31):y(h32) . V(hsn) 1 (3.5)

¥ () Y (nz)
1 1 1

I___I
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The next step is to multiply the inverted matrix C with vector D, in order to obtain the vector A
of weight factors w, which is applicable to the current output only. The last row of the w vector it
the Lagrange multiplier. Finally, the predicted value (Z) at a specific prediction point for a given
time step is acquired by summing the products of the weighting factors and the parameter values

at chosen data points (Equation 3.6).
n
2= w2 (3.6)
i=1

This process is repeated for every prediction point and every time step.

3.4.4. Kriging flowchart

In order to evaluate the hydraulic head in the prediction points using the kriging interpolation, the
procedure described in Figure 3-7 was followed. After the prediction point construction and the
definition of the appropriate neighbors for every point separately, either using the fuzzy logic system
or not, for every time step and for every prediction point, the next procedure is followed. First the
experimental variogram is constructed, followed by its fitting to a variogram model. Using equations
3.4 and 3.5 the covariance matrix C and vector D are constructed and the finally the parameter at
hand is simulated. After simulating the hydraulic head in all the time steps and for all prediction

points, the results are passed on to MATLAB for the final visualization.
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Figure 3-7: Kriging interpolation flowchart

52 Predicting spatial and temporal changes in groundwater levels using Artificial Neural Networks and Geostatistical

methods



Methodology

3.5 Graphical User Interface

A Graphical User Interface (GUI) was designed and developed in order to facilitate the use of the
algorithm. The use of the interface and the procedure followed to execute the algorithm are described

and explained in the following sections.

3.5.1. Input files definition

The import of the files with the appropriate input data, depending on the problem is the first step
in the execution of the algorithm. The path to the folder where all the input files are located is
identified in the GUI window that appears when the execution of the program begins (Figure 3-8).
The generated output files are also stored in the same folder. Next, the desired operation is selected
from two options: ANN training and evaluation. In the case where the ANNs have already been
trained, one can select to perform evaluation only, otherwise ANN training should be performed
first.

Insert path of et files:  C:\Users\Karatzas4ab 1\Desktop

Perform Training of ANNs: v

Perform Evaluation with ANNs and Kriging: ¥

Figure 3-8: Introductory GUI window

The next window in the program execution (Figure 3-9) allows for the loading the files necessary
for ANN training.
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Note: The appropriate files must be in the path specified in
the previous step 1!l

See Structure of
needed files

’ ‘ Load data ’ ‘

Number of wells  Number of iterations  Number Hidden nodes  Number of training sets

Cumrent wells being trained

Figure 3-9: ANN Training window

The ‘see structure of needed files” button in the ANN training window provides assistance regarding
the proper structure of the files. The window shown in Figure 3-10 appears for assistance with the

structure of the different import files.
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Total number of layers in the network, Number of hidden noder in leyer
1, 2 and 3, number of input units, number of output units, number of
epochs, number of wells in the study region, number of wellz in Kniging
neighborhood, number of treming sets, number of evalustion sets

Types

Type id of input pas and lnput
sppropriste time lag)

neural{# of well)

d{input parameter name)

hhc{# of well) — specified in the p

Timesenes of the hydeaudic head change per time step fer the well
specified in the parenteses

e ]

Figure 3-10: Help in identitying the appropriate files

The first file that must be imported prior to ANN training is file ‘neural init.txt’, which contains

all the information about the structure of the ANNs and other general information.
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File Edit Format View Help

0 if 1 then
4 Number
20,15,10 Number
8 Number
Number
Number
Number
Number
Number
Number
Number

train, if 0 evaluate
f layers startinﬁ from 1 includinc
idden Tlayer

units in each
input units
output units
maximum epochs
data points
prediction points (updated also
wells in the neighborhood
training sets

evaluation sets

Ln11, Col 33

Figure 3-11: Neural init.txt file structure

File Neural init.txt has the structure shown in Figure 3-11. A value of 0 in the first line indicates
that the ANNs are used for evaluation while a value 1 indicates that ANN training is performed
first, followed by evaluation. This value is updated according to the selection made in the
introductory window. The number of layers, including input, output and hidden layers, is set in the
second file line, while the number of hidden nodes (units) per hidden layer is set in the third line. If
data for more layers are written in the third line, they are ignored by the algorithm and only the
data concerning the number of layers declared in the second line are used. The number of input and
output units is declared in lines 4 and 5, respectively. The number of epochs, of data points and of
prediction points is declared in lines 6-8. The number of prediction points is also updated after the

first step of the evaluation process, and is not taken into account during the training process.

3.5.2. Training

Multiple files are imported after the ANN training process begins. The first of these files is types.txt,
which contains information regarding the range (maximum value - minimum value) of all possible

input parameters (eg. rainfall from different meteorological stations, temperature etc.). A typical

example of this file is presented in Figure 3-12.
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File Edit Format View Help

48|
95.
60.
54.
31

64.
51.

302
324
260
294
289

Figure 3-12: Types.txt input file

The next set of input files refers to the input parameters of each ANN separately. Each file is named
neural followed by the ID number of the well corresponding to the ANN, starting from well No. 1.
For example, the information in file neurall.txt shown in Figure 3-13 concerns the input parameters

for the corresponding ANN. More specifically, the first column of the file records the ID number of

File Edit Format View Help
Munchen_+0
Munchen_-1
Hohenpeibenberg_+0
Kempten_+0
Munchen_temp
Landshut_-1
Landshut_-2

Lenggries_-1

Figure 3-13: neurall.txt example file

The next set of files essential for the execution of the algorithm is the set of files containing the

input parameter time series. The name of these files starts with d followed by the name of the input
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parameter. For example, Figure 3-14 shows the structure of file dMunchensu_+1.txt containing the

surface water level time series for the Munich station and for time lag +1 day.

Lnl, Coll

Figure 3-14: Sample file containing the time series for the surface water level parameter (dMunchensu_ +1.txt)

The last set of files necessary for the training process is the set of files containing the output
parameter values, in this case hydraulic hear or hydraulic head change observed in the field. Note
that hydraulic head change is the desired output for each ANN. Each file is named HHC followed
by the ID number of the data point, as shown for the sample file for data point No.1 in Figure 3-15.

File Edit Format View Help
|-0. 00656
0

-0.00583
-0.00136
-0.00281
0

0
-0.0076
-0.0024
0
0.01271
0.01917
0.00552
-0.0074
-0.00677

4 2

Lnl, Coll

Figure 3-15: HHC1.txt representing the desired output for well No. 1

After loading all the necessary files the main part of the training process can take place. The window
displayed during the training process is shown in Figure 3-16. The code is multithreaded with three
ANNSs being trained simultaneously. The ID number of the wells being currently trained, the
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percentage of completed wells, as well as the values of some basic parameters set by the user are

displayed in the window.

& ANNs Training

Note: The appropriate files must be in the path specified in
the previous step Il

needed files

] ‘ Load data ’ ‘

See Structure of ’

Number of wells  Number of iterations  Number Hidden nodes  Number of training sets

64 10000 20 15

Curmrent wells being trained

3 24 45

Figure 3-16: Training process window

The files containing the synaptic weights of each ANN are generated automatically upon termination
of the training process are named the neural weights followed by the ID number of the data point.

A sample file for data point No. 22 is shown in Figure 3-17.
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File Edit Format View Help

-0.219366729259491
0.483303764380158
-0.370467643406992
0.145785472597699
-0.779630772404607
-0.559019139512062
-0.051704482789876
0.210674933986217
-0.424613874412923
0.0963216423988342
0.399672383907685
-0.270749502354483
1.02982444122748
-0.19123511711038
0.810498282140531

4

Lnl, Coll

Figure 3-17: Typical form of file neural_weights_ 22.txt

3.5.3. Evaluation

The files generated by the training process are necessary for the evaluation process One additional
file, wells.txt, with records for the coordinates and the initial hydraulic head for each data point

(well) must be created by the user (Figure 3-18).

File Edit Format View Help

4486690 5361420 432.26656
4459730 5344740 482.54771
4453220 5345910 488.44
4485450 5347800 471.55929
4496140 5342770 498.52521
4475670 5350110 463.81322
4470640 5363130 444.48645
4465290 5365540 448.20958
4486150 5362630 432.48
4478520 5355480 453.09
4439060 5333570 529.2
4466780 5355260 457.91
4499260 5374510 401.5561
4511260 5378370 385.06676
5378870 393.44

¢

Lnl, Coll

Figure 3-18: Typical structure of wells.txt

The next step in the process is to determine the prediction points. The x and y normalized
coordinates for the prediction points are recorded in file p_points.txt. The structure of a typical

such file is presented in Figure 3-19.
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-
:‘] p_points - Notepad = ' =
File Edit Format View Help
0 0.42436287 x and y normalized coordinates -
0.042739498 0.30878342 A
0.042739498 0.31057595 =
0.042739498 0.3465825
0.042739498 0.4108799
0.042739498 0.42436287
0.042739498 0.43971631
0.042739498 0.46286338
0.042739498 0.48445172
0.071718962 0.2425376
0.071718962 0.27605019
0.071718962 0.30878342
0.071718962 0.31057595
0.071718962 0.3465825
0.071718962 0.4108799
0.071718962 0.42436287 2
< | T | ¥
Ln 36, Col 24
D

Figure 3-19: Typical structure of p_ points.txt

The evaluation process window is shown in Figure 3-20. Prior to the execution of the evaluation
process, the user must select the type of variogram model to be used, as well as whether the fuzzy
logic system will be used or not. The red dots on the window graph represent prediction points for
which the hydraulic head has already been evaluated, while the blue dots represent prediction points

for which the hydraulic head has yet to be evaluated.

Note: All files produced by the training process should be in the specified path. as
well as wells_txt which includes the coordinates of the wells

Parameters

Variogram type:

) Exponential Use of Fuzzy Logic system
@ Powerdaw

() Linear

E

Figure 3-20: Evaluation process window
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ANN evaluation at data points is performed first; the results in terms of hydraulic head or hydraulic
head change are recorded in files named fitness  followed by the data point ID number (Figure

3-21).

|-0.00306235836758734
-0.00309552243194117
-0.0028393793616267
-0.00287144487925528
-0.00277565941679575
-0.00289510552364697
-0.00292672681067524
-0.00306820507580408
-0.00300285003200751
-0.00309413523095642
.000924148222184173
.00399475736283317
.00308247954744001
.00252466877818636
.0034366055944598

Figure 3-21: Fitness_36.txt file structure

Following the completion of the evaluation process, two types of files are generated for every
prediction point: the file with the hydraulic head or hydraulic head change (named HH__ followed
by the prediction point ID number) and the file with the corresponding error variance (named

er_variance__ followed by the prediction point ID number) (Figure 3-22).

File Edit Format View Help File Edit Format View Help

.0609245310927629 (4] .00461614666112957
.0634539190261939 T .00347655685562167
.0634030611587452 .00332269043482321
.0633042859019773 .00342222247370815
.062683956109091 .0032907582918736

.0625528469606767 .00330236305350188
.0628029379661542 .00313837494525458
0631381193953506 .00343631431314792
.0631631609355493 .00352327180476848
.0638791333432758 .00338922857749314
067960616467483 .00342920228029374
.0670674459212422 .0033984170080884

.0646844675698371 .00313249306850453
.0637446838667603 .00353608256337834
.0649331899865094 .0040914637023793

CO0O0O0OO0O0O0O0O0OO0OO000O
OCO0O000O000000O0O0OT

-~

b

Lnl, Coll ([l Ln1l, Coll

Figure 3-22: Hydraulic head change and error variance output files

Finally, the cross-validation results are recorded in file cross_ val.txt, which includes the prediction

point ID number, the data point ID number, the time step at which cross-validation was performed,
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the simulation value obtained by the ANN, the simulation value obtained by kriging interpolation,

the field measurement value and the error variance (Figure 3-23).

Number of Prediction point

Number of time step

Number of data point
-0.01188071645161282 value from Kriging Interpolation
-0.0148243120017032 value from ANN Evaluation
-0.01083 Field value
0.00117655149064958 Error variance

-0.00730480214133506
-0.0145092859092605
-0.00898
0.00124175617716296
1

4

Ln16, Col 3

Figure 3-23: cross_ val.txt file structure

Information for the variograms constructed at time steps 1, 500 and 1000 is stored in file
Variogram.txt. This information includes the variogram lags constructed, the number of distance
pairs within each lags, the average square increment and the average distance value of the lag, as
described in Figure 3-24.

File Edit Format View Help

2 Number of prediction point

1 Number of time step

47 Number of distance pairs within the 1st lag
0.0199451907115302 Average square increment

0.0731974107851007 Average distance

67 Number of distance pairs within the 2nd lag
|0.0102802994123899

0.17868508108962

90

0.00820886964648124

0.284172751394139

60

0.0111682256167235

0.389660421698659

78

4

Ln 28, Col 3

Figure 3-24: Variogram.txt file structure

In the case where the fuzzy logic system is used, another file, named neighbor.txt, becomes available.
This file contains the ID number of the wells used for every prediction point and its structure can

be seen in Figure 3-25.
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File Edit Format View Help

1 Number of prediction point
55 Id number of 1st well used
Id number of Pnd well used

Ln3, Col17

Figure 3-25: neighbor.txt file structure

3.5.4. Results presentation

In the final step of the algorithm, Visual Studio communicates with MATLAB and passes through
the vectors required for the visualization of the simulation results. When the simulation output is
hydraulic head change, graph triplets similar to the one shown in Figure 3-26 are generated for
every time step. The top graph represents hydraulic head (evaluated using the initial hydraulic head
measurement values), the middle graph represents hydraulic head change and the bottom graph
represents error variance. When the simulation output is hydraulic head, the graph for hydraulic
head change is not illustrated in the figure. These consecutive figures are used by MATLAB to

generate an .mp4 file with the temporal variations of the parameters.
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Hydraulic Head/ Hydraulic Head Change/Error Variance in step 48
1 T , .

==

—-— 800

AR ==
03 - = i 600
0 1 L 1
0 0.2 04 0.6 0.8 1 =

Figure 3-26: Visualization of results

When the uncertainty of the system is examined with the Bayesian Kriging methodology, as

described later in Section 3.6.2, the output file Uncertainty.txt is generated. In this case the upper

and lower 95% limits of the prediction intervals are recorded, as shown in Figure 3-27.

File Edit Format View Help

67

1245
0.0312081783063675
0.169437982978236
-0.140799498994373
67

1246
0.0369028612505369
0.169194683928936
-0.193232444877232
67

1247
0.0219277910535792
0.115957628332148
-0.144451296607921
67

4

Number of prediction point
Number of time step

‘real’ simulated value
Upper 5% 1limit

Lower 5% 1limit

Ln 488025, Col 34

Figure 3-27: Uncertainty.txt file structure
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In the most general case, the execution of the program implementing the proposed methodology
involves three stages: ANN training, evaluation of simulation results and of other measures of
interest, and uncertainty analysis. The files required as input at each stage and the files generated

as output from each stage are summarized in Figure 3-28.

Training Evaluation Kriging parameter uncertainty
e Neural init.txt o Wells.txt « Input/output files of
e Types.txt o Input/output files of training
o Neural#.txt training o Input files of evaluation
o d_parameter_ timelag.txt ¢ Output ¢ Output
o HHC#- txt e p__points.txt o Uncertainty.txt
« Qutput o Fitness_ #.txt
e Neural _weights_ #.txt o HH_ #.txt
eer_variance_ #£.txt
e cross_ val.txt
o Variogram.txt
o Neighbor.txt

Figure 3-28: Summary of input and output files at different stages of the program execution

3.6 Uncertainty methodology

In order to evaluate the performance of the algorithm under different conditions, an uncertainty

analysis was performed both for ANN training and for the kriging methodology.

3.6.1. ANN training

ANN predictions may suffer from uncertainty due to inaccuracies in the training set, such as noisy
or incomplete, noncharacteristic time series. Uncertainty can also be attributed to the limitations of

the model and of the training algorithm.

Conventionally, a single ANN is trained and, after training, the ANN parameters remain fixed. Such
an ANN is a deterministic model where a given input data vector will always produce a specific
output value. In order to evaluate the effect of the single ANN training performed to the output,

two uncertainty calculation methodologies were implemented.
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Monte Carlo method

The Monte Carlo methodology can be used for calculating of ANN model uncertainty to the output
of ANNs. Monte Carlo methods are computer based techniques for brute force numerical simulation
of probabilistic processes and can be summarized in the following steps:

e For the set of input variables, generate a large number of sets of random numbers that
have statistical properties similar to those of the real-world variables. If there are actual
measurements describing the variables, it is also possible to randomly pick among the
measured values, as an approximation to the distribution underlying the particular values
that were measured.

e (Calculate the output variable for each set of values for the input variables generated in the
first step.

e Examine the distribution of the simulated values of the output parameter to determine
features of interest, e.g. prediction intervals

e The process is repeated several times to test whether the results are sensitive to the
particular random values that have been generated. The number of repetitions necessary to
achieve a particular level of precision is problem-dependent. The greater the number of
iterations, the greater the accuracy of the prediction intervals; however, the computational

costs may be enormous for a large number of iterations.

In order to investigate the uncertainty in the predictions of the ANNs, the algorithm was executed
multiple times with random initial values for the neural weights and random training and testing
sets. All the random number generators were set to choose a random integer number with uniform
distribution. The derived results were used to determine the percentile confidence intervals for the

output parameter meaning the hydraulic head or hydraulic head change per time step.

Percentile Confidence Intervals (CI)

In this approach, the large number of simulated values for the parameter of interest are ordered
from smallest to largest. The 90% Confidence Interval (CI) is then computed by just identifying the
lower confidence limit as the 5% percentile and the upper confidence limit as the 95" percentile. This
leaves 90% of the simulated parameter estimates within this range while dividing the remaining 10%
of the simulated values equally into the upper and lower tails. The advantage of this method is that
it does not make any distributional assumptions; it does not even require the distribution to be
symmetric. However, evaluating the CI using this methodology can be less accurate than it could

be using other methodologies, but still it is one of the most commonly used ways to compute a CI.
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In order to use this methodology to evaluate one ANNs output CIs, the difference between the real
and the simulated output values is calculated for every time step. These values represent the range
of the absolute error in the simulation results. After sorting the error values, the 5* and 95%
percentile values are identified, representing the upper and lower 5% CI limits of the absolute error.
By adding these values to all simulation results for the specific ANN, the 5% upper and lower limit

of the timeseries prediction is calculated.

3.6.2. Kriging predictions

Two different methodologies were used to evaluate the uncertainty of the kriging algorithm

predictions: one based on the Monte Carlo method and one based on Bayesian Kriging.

Monte Carlo method

The results of the Monte Carlo method applied to ANN training in the previous section were used
in this case. More specifically, the multiple different training results (different neural weights) were
used for the evaluation of the hydraulic head, resulting in multiple different values for every time
step and for every prediction point. Using the 5% and 95" percentile we are able to determine the

90% prediction interval.

Bayesian Kriging

The process of interpolating spatial data using kriging can be realized in two steps. The covariance
function/semivariogram is determined first, followed by kriging interpolation. In the classical
approach, the assumption that the model parameters are known is made and the uncertainty in the
calculation of these parameters is considered as minimal. The purpose of Bayesian Kriging is to

quantify the uncertainty in the covariance estimation.

Using Bayes’ theorem, the a posteriori distribution of a parameter can be obtained from the
parameter a priori distribution and from parameter measurements. A prediction value for the
parameter value can be obtained from the a posteriori distribution. In this way, a model “averaging”

over the unknown model parameters is performed.

However, when using spatial data, the a priori distribution cannot be calculated easily. In Bayesian

Kriging [Pilz and Spdck, 2008], the a posteriori distribution of the parameters involved
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(semivariogram and/or transformation parameters) is specified by means of simulations, reflecting

the uncertainty of the parameters.

Bayesian Kriging method uses artificial data to test how different kriging parameters can affect the
kriging interpolation results. The first in this approach is to calculate the variogram by fitting the
theoretical variogram model to the experimental data, following the steps described in Section 3.4.
Next, the covariance matrix C is constructed by using the derived kriging parameters and the
covariance function of the variogram model. By decomposing, in this case Cholesky decomposition,
the covariance matrix (Equation 3.7) and multiplying the triangular matrix U with the vector of
random numbers R it is possible to construct a vector of random but correlated with the initial

parameters values (Equation 3.8).

ur-u=c (3.7)

Rc=R-U (3.8)

These correlated random values have the same statistical characteristics with the initial data
observed in the field. These random values are then fitted to a variogram model and the parameter
value at any location (for which parameter data is unavailable) is estimated using kriging. After
constructing several correlated random value vectors, the 90% prediction intervals of the simulated

parameter (either hydraulic head or hydraulic head change) can be calculated.
This methodology has in its roots in Bayesian statistics since the simulated ANN values are used
for the initial variogram construction, acting as prior knowledge, while the posterior distribution of

the simulated parameter reflects the uncertainty due to the covariance estimation and hence the

kriging parameters [Pilz and Spock, 2008].

3.6.3. Uncertainty flowcharts

The flowcharts followed in both cases of uncertainty analysis are shown in Figure 3-29.
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Figure 3-29: Flowcharts for Uncertainty analysis: (a) Monte Carlo and (b) Bayesian Kriging
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In order to define the ANN training uncertainty the procedure followed is as follows. For a
predefined number of realizations, the training dataset and the initial values of synaptic weights
values are defined randomly. One ANN is trained for each monte carlo iterations. After completing
all monte carlo iterations for all data points, the simulation using one set of trained ANNs and
Kriging takes place. The simulation results are the sorted and the 95" and 5% percentiles are stored.
After completing this procedure for all monte carlo simulations, for all time steps and prediction

points, the results are passed to the MATLAB for visualization.

In Bayesian Kriging interpolation, an initial simulation, as described in Figure 3.7 is followed. After
the first initial variogram fitting, using the parameters (sill and range) calculated and the covariance
function the corresponding matrix is calculated. This matrix is decomposed and multiplied with a
matrix containing random values. A new variogram is then fitted to the new samples of the matrix.
This process is repeated for all iterations for all time steps and for all data points. The results for
every time step and prediction point are sorted and the 95™ and 5% percentiles are identified. The

results are reported back to the main algorithm and saved in text files.
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Chapter 4

Study area

The proposed methodology was applied for the simulation of the hydraulic head change/hydraulic
head in two different case studies. The two study areas were selected with diverse characteristics in
order to illustrate the flexibility of the proposed methodology. In the first case the methodology is
applied to a rural, large area in Bavaria, Germany, and in the second case to an urban, small scale
area in Miami, Florida, USA. Data for different parameters were used in each case based on the
particular characteristics of the study area and depending on data availability. In both cases a daily
time step was used to simulate the water lever in the aquifer. In this chapter, the geology and
climate of the two study areas are presented. Moreover, the available meteorological and
hydrogeological data were analyzed in order to determine the appropriate ANN structure for every

case.
4.1 First Case Study — Bavaria, Germany

4.1.1. General information

The first study area (Figure 4-1) where the proposed algorithm was tested is located in the southern
part of Germany, in Bavaria, and covers approximately 7800 km? The study area includes a large
rural part as well as the city of Munich. The elevation in the study area varies from 500 m in the
northern part to 950 m in the southern part. The Isar River flows through the study area, as well
as its tributaries Amper and Wurm. The Isar River has a total length of 291 km and a mean
discharge of 173 m*/s. Various studies on both the quantity and the quality of groundwater in the
region have been conducted over the years and a spring monitoring network has been developed
[Bender et al., 2001; Heinrichs and Udluft, 1999]. Moreover, the Bavarian State Office for the
Environment (Bayerische Landesamt fur Umwelt - BLfU) has participated in numerous studies
concerning both surface and ground water in the region. For example, Blomenhofer et al. [2012]
studied the effects of climate change on water balance and groundwater while also investigating the

long-term behavior of groundwater levels and spring discharges [Blomenhofer et al., 2011].
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Figure 4-1: Area of Study [Google Earth]

Geology

The geology of the study area is dominated by loose sediments, like gravel, sands and clays, which
accumulated in continental environments over the past 15 million years. Deposition took place in
fluvial as well as glacial sedimentary settings. Floodplains, alluvial fans and glacial sander terraces
were formed by and subjected to repeated phases of weathering and erosion. More specifically,
Molasse deposits (Neogene) and Glacial and post-glacial gravel deposits (Quaternary) are the main
geological formations in the region. The stratigraphy around Munich is presented in Figure 4-2 and

the geology of the study area in Figure 4-3 [Bauer et al., 2009)].
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Figure 4-3: Geology of the 1 study area [Bauer et al., 2009]

The subsurface of Munich represents a multiple aquifer system that is closely related to the
lithostratigraphy. Basically, an upper rather homogenous aquifer is situated within the Quaternary
gravel deposits which must be distinguished from groundwater occurring in granular soils of the
Neogene Molasse. Furthermore, karstic groundwater occurs in Jurassic limestones that underlay the
Molasse in more than 2 km depth. A simplified sketch of the alluvial ground is presented in Figure
4-4. The permeability in the study area can be characterized as low to medium, ranging from 10°

to 10* cm?
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Figure 4-4: Simplified sketch of the alluvial ground in the study area [Bauer et al., 2009]
Climate

Deutscher Wetterdienst (DWD), Germany’s National Meteorological Service, is the source for the
climate data used in this case study. The reference period for the data is from 1981 to 2010. The
data were obtained from the MUENCHEN-STADT (WST) meteorological station at latitude 48°
10", longitude 11° 33" and elevation 515.2 m. The selected station, located in the center of the study

area, is ideal to provide an overview of the climatic conditions in the study area.

The annual temperature ranges from -5° C to 23° C. Only in extreme conditions the temperature
falls below -12° C or rises above 29° C. During winter, the temperature is usually below 0° C, while
January is characterized as the coldest month with an average temperature of 0.3° C. In spring the
temperature rises gradually from March until late May. Summer generally runs from late May
through August with maximum temperatures above 20° C. The hottest month is the month of July,
with an average temperature of 19.4° C (Figure 4-5).
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Figure 4-5: Average precipitation and average high and low temperature at Munich weather station

The average annual rainfall in Munich is 944 mm. Showers and thunderstorms that occur in late
spring and summer contribute by far the largest amount of precipitation than the rest of the time
periods. This behavior is typical for areas with humid continental climate. The highest average
monthly precipitation of 131 mm occurs in June, while the lowest average monthly precipitation of
52 mm occurs in February. The month having the most rainfall is June with 13.8 mm on average,
while the month with the less rainfall is February (8.6 mm). The average monthly precipitation

(mm) is depicted in Figure 4-5.

4.1.2. Available data

The available data for this study area included the daily time series for temperature, precipitation,
wind speed, relative humidity, snowfall and the hours of daily sunshine for nine (9) meteorological
stations in or around the study area. Daily discharge and water level across the Isar River for fifteen
(15) monitoring stations is also available. Daily hydraulic head measurements were available for
sixty-four (64) wells in the study area, while incomplete hydraulic head time series were available
for two more wells. The data cover the time period from 1/11/2008 to 31/10/2012 (1460 days - time
steps). The data regarding water levels used in this study were acquired through the Bavarian State
Office for the Environment (Bayerische Landesamt fiir Umwelt — BLfU), while the meteorological

data from the German National Meteorological Service (Deutscher Wetterdienst — DWD).
Some parameters, such as relative humidity, wind speed and daily sunshine, were disqualified from
being input parameters from the outset. Due to the very low correlation coefficient between these
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parameters and hydraulic head change, they are expected to increase the complexity of the ANNs
without improving the results. In previous work [Chatzakis et al., 2014], it was shown that snowfall
as an input parameter does not improve the results of the ANNs, due to long sequences of
consecutive time steps with zero value and due to high values of time lags involved. For this reason,
snowfall was also not considered as ANN input parameter in this study. The rest of the parameters
were examined in order to determine the most appropriate monitoring stations and the optimal time
lags, using the correlation coefficient. The data from some of the monitoring stations, both
meteorological and surface water, were not used as ANN inputs due to the poor correlation between
hydraulic head and the data parameter. Finally, data from seven (7) meteorological stations
(Miinchen, Hohenpeibenberg, Kempten, Augsburg, Regensburg, Oberstdorf, Stotten), from five (5)
surface water monitoring stations (Freising, Landshut Birket, Lenggries, Minchen, Puppling) and
from sixty-four (64) data points (wells) were used. The locations of the final input parameter stations
and the data points (outputs) are depicted in Figure 4-6. The two data points with incomplete data

time series were used for the validation of the algorithm.
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Figure 4-6: (a) Weather and surface water monitoring stations (b) Data points
4.1.3. ANN structure/Kriging implementation

The most appropriate input parameters for every well/ANN are determined by taking into
consideration the well’s proximity to the monitoring station, and the statistical characteristics of
the parameter data. Some hydrological input parameters appear to have a time lag with respect to
the hydraulic head change which is the output parameter. To determine the optimal time lag for
each input parameter, various values of time lag between the parameter and the hydraulic head

change were tested. Finally, the input parameters to the artificial neural network were selected from
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the parameters with the best correlation coefficient. More specifically, for temperature, the time
series from the Munich weather station was used because it was the best correlated for all wells. As
for rainfall, for each ANN, data from the two meteorological stations with the best correlation
codfficient were used. In total, four inputs for rainfall were used for rainfall, the two best correlated
time lags (consecutive days) for each meteorological station [Chatzakis et al., 2014; Tapoglou et al.,
2014].
The same procedure was followed for the surface water level parameter and its monitoring stations.
The stations with the three best correlation coefficients were used as input parameters for each case.
In summary, each ANN has eight (8) inputs parameters:

e four (4) rainfall inputs (two best lags for each of the two stations with the best correlation)

e one (1) temperature input from the Munich station

e three (3) surface water level inputs (two stations, best lags)

The hydraulic head change in the well per time step is the output parameter for every ANN.

As mentioned in Section 3.1.1, 80% of the available data are used for ANN training and the
remaining 20% for testing the network. Two possible architectures were tested based on the rule
by Fine [1999] stating that using three times as many training samples as network parameters is
adequate to achieve good generalization. For a data set consisting of 1168 training samples, an ANN
with approximately 390 weights can achieve good generalization. The weights are calculated during
the training process. The number of weights in the network depends on the network architecture,
more specifically, on the number of layers and nodes. If the nodes are arranged in a single hidden
layer, then a network with 43 hidden nodes (Architecture 1), as shown in Figure 4-7, has the desired
total number of weights. If the nodes are arranged in two hidden layers, 20 hidden nodes in the first
layer and 11 hidden nodes in the second layer (Architecture 2) will ensure an acceptable total

number of weights.
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Figure 4-7: ANN structure with a single hidden layer for the first study area

As far as the kriging implementation is concerned, the number of neighbors for each prediction point
was set to thirty, in order to satisfy the rules discussed in Chapter 3. In the case where fuzzy logic
is not used, the neighborhood for each prediction point was selected based on the distance between
the prediction point and the sampling points. Otherwise, when fuzzy logic is used, the appropriate
neighborhood is determined based on both this distance and the ANN simulation error, as described
in Section 3.1. Furthermore, three different variogram models, linear, exponential and power-law,

were tested in order to determine the most appropriate variogram for the particular study area.
4.2 Second Case Study — Miami Dade County, Florida, USA

4.2.1. General information

The second study area is located in Miami-Dade County, Florida, USA. In contrast to the previous
study area, this is an urban area with most of the wells inside or around the city of Miami. The

study area covers approximately 1460 km? (Figure 4-8).
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Figure 4-8: Second study area, Miami Dade county (Google maps Engine)

It is a coastal area with elevation that varies from 0 m in the east to 5 m in the west and it is part
of the Biscayne aquifer. The Biscayne aquifer is one of the most productive aquifers in the world; it
is unconfined and shallow with the average hydraulic head often being less than 1 m. It extends
from table water a couple meters thick at the west to as much as 45 m thick near the east coast. It
consists of very porous limestone with large pores created by secondary dissolution (Figure 4-9).
Due to characteristics like large permeability, proximity to the landscape and its location (in an
urban area with industrial growth) the Biscayne aquifer is very susceptible to pollution [Fish and
Stewart, 1991].

Predicting patial and temporal changes in groundwater levels using Artificial Neural Networks and Geostatistical methods

81



Study area

o
A 8883 A
WEST 222 323 EAST
EVERGLADES ™ ™ g [% s = o o
40 @ NATIONAL 2 8 £ ofF @< - 40
Peat Py PARK 8 88 ki 83
and 8 Peat 33 v = 5 E
marl, 2 an \‘\\ || / =
SEA LEVEL e | SEALEVEL
(NGVD29) T | | [ (NevD29)
ANASTASIA
FORMATION _|
40 G-3790 Sj | .0
& -
3 , 3
L -80- Upper clastic unit of Li and | an L
4 G-3303 Tamiami Fermation Y z
- ] -
a i
% TAMIAMI FORMATION G-3312 %
E 120 | 120 E
5 5
< I
-160 L 160
Lower clastic unit of
e Tamiami Fomation
_,_.—-—-'—"'_'_____—'PF “““““““““ — l‘_,/'
200 ——— | 200
PEACE RIVER cl' ? 1|0 MILES
FORMATION I T T
5
240 (1] 10 KILOMETERS 240

EXPLANATION
HYDROLOGIC UNITS
—— —--- FORMATION CONTACT-

[ BISCAYNE AQUIFER o when oo
[ SEMICONFINING UNIT

[ GRAY LIMESTONE AQUIFER

[ INTERMEDIATE CONFINING UNIT

Figure 4-9: Hydrogeological section showing schematics of geological formations, aquifer and semipermeable units
[Cunningham et al., 2003]

Geology

As analyzed by USGS [2014], geologically, the study area is dominated by Miami limestone and Key
Largo Limestone. The highly porous and permeable Miami Limestone forms much of the Biscayne
Aquifer of the surficial aquifer system. Key Largo Limestone is highly porous and permeable and is
part of the Biscayne Aquifer of the surficial aquifer system. The dissolution of these rocks has also
formed Karst in the Pleistocene limestone. The geology of the southern Florida peninsula is depicted

in Figure 4-10.
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Figure 4-10: Geology of Southern Florida Peninsula (data provided by USGS)

Climate

The climatological information mentioned below is acquired through the National Climatic Data
Center of the National Oceanic and Atmospheric Administration (NOAA) of the USA. The region
where the study area is located has tropical monsoon climate with hot and humid summers and
short warm winters. The annual temperature ranges from 60° F (15.5° C) in the winter to around
90° F (32.2° C) in the summer. The wet season begins early in May and usually ends mid-October.
During this period, the temperature is in the mid-80s to low 90s, accompanied with high humidity.

Thunderstorms, hurricanes and rainfalls are common during this period.
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Figure 4-11: Average maximum and minimum Temperature and precipitation in Florida for 2013

The distribution of the average monthly maximum and minimum temperatures, along with the
average monthly rainfall for the year 2013 is displayed in Figure 4-11. May and June, followed by
September, were by far the wettest months of the year. The temperature is all year round at the

same level, with the exceptions on February and March when they drop for about 10° F.

4.2.2. Available data

The data available for this study area included the daily time series for maximum, minimum and
average soil and air temperatures, precipitation at 2 m, wind speed, humidity and hours of daily
sunshine from two (2) meteorological stations in or near the study area. Daily discharge and water
level in water bodies from four (4) monitoring stations were also available. Daily hydraulic head
measurements were available for 30 wells in the study area. The data cover the time period from
25/4/2010 to 22/2/2014 (1400 days - time steps). The data regarding water levels were acquired
through United States Geological Survey (USGS), while the meteorological data from the National
Climatic Data Center of the National Oceanic and Atmospheric Administration (NOAA).

As in the first case study, not all parameters for which data were available were considered in the
ANN development. Wind speed and hours of daily sunshine as well as the maximum and minimum
soil and air temperatures were considered of minimum importance and were not used. Regarding
surface water, data from only three of the monitoring stations were available; two of the stations
provided the data for the water level and the third for the river discharge. The locations of the
surface water monitoring stations (a), of the hydraulic head monitoring stations (b) and of the

meteorological stations (c) are depicted in Figure 4-12.
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Figure 4-12: (a) Surface water monitoring stations, (b) Hydraulic head monitoring stations and (c¢) Meteorological

stations

4.2.3. ANN structure/Kriging implementation

Following the same procedure as in the first study area, we concluded in the following input

parameters for the ANNs:

Precipitation from two meteorological stations (three lags)
Soil temperature

Air temperature

Humidity

Surface water level from two stations (two lags)

Discharge from one station (best lag)

Since the aquifer is shallow, some parameters which were not considered in the case of the first

study area, such as humidity and soil temperature, have greater significance in this case. Moreover,

due to the smaller size of this second study area, there was no need to use data from more than two

stations, even though data may have been available.
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Contrary to the first case study, the output parameter for each ANN is the hydraulic head in the
well per time step, instead of the hydraulic head change considered in the first case. This is due to
the small values of the hydraulic head which result in very small changes in the hydraulic head per

time step.

Taking into account the nine (9) input parameters and one output parameter, the 1100 available
training sets and the rule of Fine [1999] two architectures were examined: the first of a single hidden
layer with 32 hidden nodes (Architecture 1) and the second of two hidden layers with 17 and 12
hidden nodes in the first and second layer, respectively (Architecture 2). ANN Architecture 2 for

the study area is shown in Figure 4-13.
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Figure 4-13: ANN structure with two hidden layers for the second study area

For this case study, the neighborhood size was also tested when using the fuzzy logic system. Taking
into consideration the limitations described in Chapter 3, three neighborhood sizes were considered
for 15, 20 and 25 neighbors.

Similarly to the first case study, the linear, exponential and power-law variogram models were tested

in order to determine the most appropriate for the data at hand.
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Chapter 5

Results

The developed methodology was applied to two case studies with the appropriate modifications
necessary to accommodate the specific characteristics of the different study areas. The simulation
results for each study area, as well as various tests conducted in order to achieve the optimal results,

are presented in this chapter.

For the case study in Bavaria, the dataset included information for a considerable number of
observation wells (64) and meteorological data. The results concerning ANN training are presented
first, followed by the results for fuzzy logic and kriging. Uncertainty results for ANN training and

for the Kriging parameters are presented last.

For the case study in the Miami-Dade County, data for fewer observation wells (30) were available,
but for a greater variety of parameters. This study area presents a higher degree of complexity due
to the karstic aquifer present and due to the fact that it is entirely in an urban area. In the case of
this study area, the fuzzy logic system was tested based on the improvements observed as a result
of its use in the previous case study. Results for ANN training and kriging as well as the uncertainty

results are presented.

5.1 First Case Study — Bavaria

The time lags for the rainfall and surface water level parameters must be studied first. The time
lags for these parameters were computed for each data point separately. For rainfall, time lags
between 0 and 15 days were tested, while for the surface water level, the time lags tested were
between -3 and 3 days. Negative time lags were tested in the case of surface water level, because
the river may supply the aquifer with water, but it is also possible that the aquifer supplies the river
with water. In the end, the time lags used varied from 0 to 5 days for rainfall and from -1 to 1 for
surface water level, while the average value for time lag was 1 day for rainfall and 0 days for surface
water level. Due to the large extent of the study area and the difference in land use and geology

between the monitoring stations and each data point, data from several monitoring stations were
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used, due to the large dimension size and the difference and use and geology structures between the

measuring station and the data point. The meteorological data from the Munchen, Hohenpeibenberg,

Kempten and Augsburg stations were used in most of the cases, while for the surface water data,

the Landshut Birket and Munchen stations were the most commonly used. The correlation

coefficient for the data time series used varied from 0.2 to 0.8.

Results are presented in the sequel for five representative wells. The selected wells represent five

error categories, as explained in Section 4.1.3. For these representative wells, the most appropriate

time lags for precipitation are presented in Table 5-1 and for surface water level in Table 5-2. For

precipitation, the best correlation coefficient value for every well and the respective monitoring

station, which determine the data time series used by the ANN are presented in Figure 5-1. The

same information for surface water level is presented in Figure 5-2.

Table 5-1: Time lags used for precipitation for the five representative wells

) 1st station 2nd station 3rd station

nrnjilezr Name Time Correlation Name Time  Correlation Name Time Correlation

lag coefficient lag coefficient lag coefficient

60 Augshurg 0 0.4 Kempten 0 0.5 Oberstdorf 0,1 0.46,0.45
55 Stotten 1 0.42 Augsburg 0,1 0.62,0.57 Kempten 1 0.33
58 Augsburg 0 0.44 Kempten 0,1 0.49, 0.45 Oberstdorf 0 0.47
64 Hohenpeibenberg 0,1 0.55,0.49 Kempten 0 0.54 Oberstdorf 0 0.61
44 Munchen 0,1 0.44,0.39 Hohenpeibenberg 0 0.39 Augsburg 0 0.36
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Figure 5-1: Best correlation coefficient values for used meteorological stations. From left to right and top to bottom:

Munchen, Hohenpeibenberg, Kempten, Augsburg, Regensburg and Oberstdorf and Stotten

Table 5-2: Time lags used for surface water level for the five representative wells

1st station

2nd station

3rd station

Well number Time Correlation Time  Correlation Time Correlation
Name Name Name
lag coefficient lag coefficient lag coefficient

60 Landshut Birket -1 0.4 Lenggries  0,-1 0.42-0.39

55 Landshut Birket  1,0,-1 0.44-0.41-0.36

58 Landshut Birket -1 0.51 Lenggries 0 0.46 Munchen -2 0.48

64 Landshut Birket -1 0.35 Lenggries -1 0.2 Munchen 0 0.29

44 Landshut Birket 0,-1,-2 0.70-0.69-0.63
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Figure 5-2: Best correlation coefficient values for used surface water level monitoring stations. From left to right and
top to bottom: Landshut Birket, Munchen, Lenggries and Freising-Puppling

5.1.1. ANN results

Sixty-four (64) ANNs, one for each data point, were implemented using the input parameters
described in Section 4.1 for each of the two different architectures. Recall that Architecture 1 has a
single hidden layer with 43 nodes and Architecture 2 has two hidden layers, the first with 20 and
the second with 11 nodes. Results for the training and testing RMSE values (average, maximum

and minimum values) for the two architectures are presented in Table 5-3

Table 5-3: Statistical characteristics for the two ANN architectures under consideration

RMSE (m) Architecture 1 Architecture 2
Average Training Error 1.503 - 10 1.492-107*
Average Testing Error 1.872-1074 1.832-1074

Maximum Training Error 7.754-107% 7.601-107*
Maximum Testing Error 7.195-107* 7.045-107*
Minimum Training Error 1.545- 1075 1.636 - 1075
Minimum Testing Error 4.747-1075 4.708 - 1075
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Architecture 2 yielded better results than Architecture 1 in terms of training and testing errors,

except for the case of minimum training error. The performance of Architecture 2 was overall better

and will be used henceforth.

Results for the training and testing errors for every ANN, that is for every data point (well), are

presented in Table 5-4.

Table 5-4: ANN training and testing error results (Architecture 2)

Training Testing
Well # Error (m) Error (m)

1.43 - 10 2.08 - 10
2 1.20 - 10 1.15 - 10
3 1.15 - 10 1.21-10*
4 7.52 - 107 9.38 - 10
5 1.06 - 10 1.2710
6 7.39 - 107 2.11-10*
7 9.40 - 10° 1.28 - 10
8 4.96 - 10 6.17-10°
9 1.56 - 10 5.19 - 10
10 6.00 - 10° 7.27 - 107
11 4.96 - 104 4.28 - 10
12 1.15 - 10 1.11-10*
13 6.19 - 107 8.93 - 107
14 9.01-10° 7.22-10°
15 8.91- 107 1.38 - 10
16 1.38 - 10 2.34 - 107
17 1.56 - 10~ 2.90 - 10
18 8.06 - 10 7.02-10°
19 8.58 - 10° 1.26 - 10"
20 6.32 - 10° 9.07 - 10°
21 4.66 - 10 1.54 - 10
22 1.15 - 107 1.92 - 107
23 7.43-10° 1.02 - 10
24 8.98 - 10° 1.04 - 10
25 7.41-10° 1.62 - 107
26 9.23 - 10° 6.82 - 10°
27 1.83 - 10+ 2.09 - 10*
28 1.67 - 10 2.18 - 10
29 2.51-10° 6.34 - 10°
30 5.35 - 10* 7.05 - 10+
31 9.69 - 10~ 1.63-10*
32 4.37 - 104 4.07 - 104

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52

1.11 -
1.46 -
2.63 -
1.03 -
8.94 -
1.43-
8.76 -
4.12 -
8.96 -
6.27 -
1.39 -
3.01 -
7.60 -
4.48 -
2.37 -
1.90 -
1.25 -
9.56 -
1.66 -
7.42 -
1.74 -
6.72 -
1.64 -
8.76 -
3.04 -
1.72 -
7.95 -
6.35 -
4.60 -
545 -

1.08 -

104
10"
10"
104
10°
10"
10°
104
10°
10°
104
10"
104
104
10"
104
104
10°
104
10°
10
10°
10°
10°
10"
104
10°
10°
10°
10°
10°
10

1.31 -
597 -
3.82 -
1.26 -
7.7 -
1.62 -
1.44 -
3.95 -
8.71 -
1.12 -
1.30 -
3.28 -
5.46 -
5.75 -
2.67 -
2.36 -
1.53 -
1.25 -
1.39 -
2.17 -
1.89 -
7.85
1.01 -
1.52 -
2.55 -
1.56 -
8.77 -
105
107
105
S 104
104

N = Ot Ot
S O ot N
= © Ot ©

10
10°
10
10
10°
10
10
10
10°
10
10
10
10
10
10
10
10
10
10
10
10
10°
10
10
10
10
10°
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Since the presentation of the results for all 64 wells may not be very practical and insightful, the
results were organized according to the testing error performance in five categories and results will
be presented for one representative well from each category. The five categories and the wells in
each category are distinguished by color Table 5-4. The training and testing errors as well as the
Nash-Sutcliffe Efficiency coefficient for the representative well of each category are presented in
Table 5-5.

Table 5-5: Statistical characteristics for the representative wells

Nash—Sutcliffe
Well # Training RMSE (m) Testing RMSE (m)

Efficiency
60 3.35-10° 4.71-10° 0.59
55 1.64 - 10° 1.01-10* 0.58
58 1.72 - 10 1.56 - 10 0.52
64 1.08 - 10 2.01- 10" 0.48
44 3.01-10* 3.28 - 10* 0.61

The testing error follows the training error closely in most cases, which means that the ANNs are

not overtrained and that they have good overall generalization ability.

In theory, one would expect for the NSE coefficient to have values close to 1, which indicates a
perfect fit between observed and simulated values. However, a model intended to simulate the
fluctuations around a relatively constant mean value can only achieve high NSE values if it explains
small time-scale fluctuations very well [Schaefli and Gupta, 2007]. Since the available data exhibit
a constant fluctuation around zero, it is not possible to achieve high values for NSE. The derived
NSE values can be characterized as satisfactory according to the classification of Moriasi et al.
[2007]. It is also worth pointing out that in most cases the NSE decreases as the testing error
increases, as expected, except for well No. 44. This can be attributed to the statistical characteristics
of the hydraulic head change time series at well No. 44. More specifically, the small hydraulic head
changes and the low mean value, compared to the rest of the wells, resulted in a smaller fraction in
the second part of the NSE equation and hence in larger NSE value. Moreover, this dataset did not
contain any outliers, as opposed to the rest of the time series examined. From previous studies,
outliers are known to result in small NSE values [Criss and Winston, 2008; Legates and McCabe,
1999].
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The observed and simulated hydraulic head change values versus time (one day time step) for the
five representative wells are shown in Figure 5-3. The simulated versus observed values for the

training and testing datasets are also presented in Figure 5-4.

Well 60 Well 55
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Figure 5-3: Observed and simulated hydraulic head change versus time for the five representative wells
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Figure 5-4: Simulated versus observed hydraulic head change values for the training and testing datasets

In both cases and for all five representative wells, the simulated values follow the observed values
closely. For the five representative case, the average difference between observed and simulated
values varies from 6.24 - 10 to 4.13 - 10* m. However, in some cases some outlier points tend to be

underestimated.

5.1.2. Kriging results

The next step in the methodology is the implementation of the kriging algorithm. The use (or not)
of the fuzzy logic system must be studied first. In both cases, three variogram models were tested;
the linear, the exponential and the power-law. As described in Chapter 3, for each prediction point
and for every time step, a new experimental variogram is fitted to the theoretical model. A typical

fitting of experimental data to different theoretical variogram models is presented in Figure 5-5.
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Figure 5-5: A typical case of experimental data fitting to three different theoretical variogram models

The data points for which complete hydraulic head data were not available were used for the

verification of the model. The results for these two data points are presented in Figure 5-6
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Figure 5-6: Observed and simulated hydraulic head change values for locations with incomplete data

In the first case, the average difference between observed and simulated values was equal to 1.04 - 10

4 m. The minimum difference between observed and simulated values was equal to 1.66 - 10° m and
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the maximum equal to 0.206 m, with this order of error magnitude occurring only once. The average
error variance was equal to 4.71 - 10* m. In the second case, the average difference between observed
and simulated values was equal to 5.62 - 10° m, the minimum difference equal to 1.41 - 10" m and

the maximum equal to 0.14 m. The average error variance in this case was 2.58 - 10* m.

In order to evaluate the appropriateness of the fuzzy logic system, another tool was developed that
illustrates, for a given prediction point, the neighborhood defined by the fuzzy logic system and the
neighborhood defined when the fuzzy logic system is disabled. The tool makes use of the information
contained in output file neighbor.txt. The two neighborhoods for the 1000™ prediction point are
illustrated in Figure 5-7.
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Figure 5-7: Neighborhood for the 1000" prediction point, with and without the use of the fuzzy logic system

5.1.3. Cross-validation results

Leave-one-out cross-validation was performed in all cases, by assuming that an observation point
was a prediction point for the 10% of the time steps. When the fuzzy logic system was used, the
data from 30 neighbors were used to compute the value of hydraulic head change at a prediction

point with kriging interpolation. When the fuzzy logic system was not used, the neighbors were
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determined by the variogram range. Three error indicators, Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE) and Bias, were calculated in order to determine the most appropriate

variogram model.
Without fuzzy logic inference
The values of the error indicators for the case without fuzzy logic inference are summarized in Table

5-6.

Table 5-6: Cross-validation error for three variogram models without the use of fuzzy logic

Variogram type RMSE (m) MAE (m) Bias (m)
Linear 5.38 - 10* 2.01-10* -1-10°

Exponential 3.00 - 10" 3.50 - 10 -8.44-10%

Power-law 2.24-10° 1.30 - 10* -8.85 - 10

According to all three error indicators, the power-law variogram is the most appropriate for the

data at hand. The linear variogram was the second best and the exponential was last.
With Fuzzy logic inference

The values of the error indicators for the case with fuzzy logic inference are presented in Table 5-7.

Table 5-7: Cross-validation error for three variogram models with the use of fuzzy logic

Variogram type RMSE (m) MAE (m) Bias (m)
Linear 2.18 - 107 1.41- 107 1.64 - 10
Exponential 5.57 - 107 1.94 - 107 -2.46 - 10%
Power-law 1.95 - 102 1.33 - 102 -2.05-10°

The power-law variogram is again the most appropriate variogram, as was in the case without fuzzy

logic inference.

The cross-validation error variance for the three variogram models is presented in Table 5-8.

Table 5-8: Cross-validation error variance for different variogram models

) Error variance
Variogram type

Minimum Maximum Average

Linear 3.37-107 8.13- 10 2.41-10*
Exponential 4.37 - 107 8.53 - 10 3.70 - 10
Power-law 2.26 - 107 4.12 - 107 1.90-10*
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The power-law variogram with the fuzzy logic system yielded the best result for all the cases studied.
In similar studies, non-differentiable variograms such as the power-law performed better than
differentiable variograms [ Varouchakis and Hristopulos, 2013a]. This can be attributed to the water
deposition-removal process that takes place in the aquifer. This process can be characterized as a
fractional Brownian motion-like random field which has a power-law variogram function. Therefore,

the power-law variogram was able to simulate better the aquifers motion.

Results for Kriging interpolated versus ANN simulated cross-validation values are presented in
Figure 5-8 for two cases of the ANN simulation model, with and without kriging interpolation. It
should be noted that in the case of kriging the results summarize two different errors, one introduced
by ANN simulation and one by kriging interpolation. This is also the reason why these results are

slightly worse than the results of ANN simulation alone.
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Figure 5-8: Kriging interpolated versus ANN simulated cross-validation values
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The final spatial output of the model for five different time steps (1, 365, 730, 1095, and 1460) is
presented in Figure 5-9. Three graphs are presented for every time step corresponding to hydraulic
head (top), hydraulic head change (middle) and error variance (bottom). For the conversion of the
hydraulic head change to hydraulic head, the simulated hydraulic head change per day was added
to the initial hydraulic head value observed in the field on the first day of simulation. The initial
hydraulic head for the prediction points was determined by kriging from the known initial values at

data points.
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Figure 5-9: Hydraulic head, hydraulic head change and error variance for five different time steps

100 Predicting spatial and temporal changes in groundwater levels using Artificial Neural Networks and Geostatistical

methods



Results

It should be noted that the higher values for error variance in the southern part of the study area
are due to the lack of observation points in this area. Due to the high initial hydraulic head values,
varying from 900 m in the southern part of the study area to 400 m in the northeastern part, it is
not possible to observe the variability of the hydraulic head between the different time steps. This
simulation can be characterized as successful, since it was possible to depict the spatial and temporal
variations of hydraulic head and hydraulic head change having at the same time small cross-

validation error and error variance [Tapoglou et al., 2014].

5.1.4. Uncertainty results

In In order to assess the performance of the developed algorithm, uncertainty analysis was performed
using the procedures described in Section 3.6. The first part of this section concerns uncertainty in
ANN training and its effect on the model results, while the second part concerns uncertainty in the

variogram parameters.

ANN prediction confidence intervals

The 90% confidence intervals for the hydraulic head change were obtained as follows. The first step
in this methodology is to calculate, the difference between the real and the simulated output values
for every time step. These values represent the range of the absolute error in the simulation results.
After sorting the error values the 5™ and 95" percentile values are identified, representing the upper
and lower 90% CI limits of the absolute error. By adding these values to all simulation results for
the specific ANN, the 5% upper and lower limit of the timeseries prediction is calculated. The 90%
confidence interval of the predictions together with the simulated and real values of the hydraulic

head for the five representative wells are presented in Figure 5-10.
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Figure 5-10: 90% Confidence intervals for hydraulic head change ANN simulation at representative wells

The width of the confidence intervals for the five representative wells is presented in Table 5-9.

102 Predicting spatial and temporal changes in groundwater levels using Artificial Neural Networks and Geostatistical

methods



Results

Table 5-9: Percentile methodology confidence intervals for five representative wells

Confidence interval

width (m)

Well number

60 0.049
55 0.031
58 0.052
64 0.137
44 0.023

Uncertainty in hydraulic head change due to ANN training

To examine the uncertainty in ANN training and its effect on the simulation results, 150 simulation
runs were performed using different training and testing datasets as well as different initial random

values for the neural network weights. The range of training and testing errors derived from the 150

simulation runs for each of the 64 ANNs (wells) is presented in Figure 5-11.
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Figure 5-11: Training and testing error range for uncertainty analysis of training in all 64 wells

The range of the training error is small in most cases; however, there are cases where the range is
relatively large, e.g., wells no. 40, 59. The testing error range is wider than the training error range

for all wells.

The uncertainty in results for the hydraulic head change for the five representative wells are

demonstrated in Figure 5-12.
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Figure 5-12: Uncertainty results for the five representative wells (the observed values are marked in red and the 90%

prediction intervals in blue)

As can be observed from the results in Figure 5-12 | in most cases, the observed values fall within
the 90% prediction interval for the hydraulic head change obtain with the ANN simulation. As the

training error increases, the percentage of observed values that fall outside the 90% prediction
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interval grows. This percentage for the five wells representing different training error categories is

reported in Table 5-10.

Table 5-10: Percentage of observed values outside the 90% prediction interval for representative wells

percentage of observed values
Well number i y o
outside 90% prediction interval

60 0.8
55 5
58 7.3
64 9.1
44 17

The results from the 150 simulation runs performed to test ANN training were used with kriging
interpolation to determine the overall model uncertainty for the power-law variogram in the case
where fuzzy logic is used. The kriging part of the algorithm was executed 150 times, with randomized
initial values each time, in order to derive the overall model uncertainty. Results for the 90%

prediction intervals for five prediction points are presented in Figure 5-13.
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Figure 5-13: Hydraulic head uncertainty after Kriging interpolation at five prediction points

The average prediction interval width for prediction points 500, 1000, 1500, 2000 and 2500 is
presented in Table 5-11.
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Table 5-11: Average prediction width for five different prediction points

Prediction point PI width (m)
500 0.05
1000 0.083
1500 0.077
2000 0.056
2500 0.062

Uncertainty in hydraulic head change due to kriging parameters

The effect of kriging parameter uncertainty was also studied following the procedure described in
Section 3.6. Five hundred (500) different data samples and, hence, 500 different variograms were
constructed for every prediction point and time step. Uncertainty results were derived for the linear
variogram model and with use of fuzzy logic. Even though the linear model was second best choice
to the power-law model, the latter was not used due to the fact that it does not have a fixed
covariance function. The 90% prediction intervals together with the predicted value using the initial

ANN simulation results for five prediction points are presented Figure 5-14.
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Figure 5-14: Uncertainty in hydraulic head change due to uncertainty in kriging parameters for five prediction points
using Bayesian kriging

The use of the developed algorithm can be characterized as successful, since both cross-validation
error had small values compared to the nature of the results and the uncertainty of the results was

within reasonable range. In Table 5-12 the average range for every prediction point is presented.
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Table 5-12: Prediction intervals for hydraulic head change due to uncertainty in kriging parameters

Prediction point Average PI width (m)
600 0.14
1000 0.04
1500 0.012
2000 0.037
2500 0.012

5.2 Second Case Study — Miami-Dade County

The purpose of the developed algorithm’s implementation in a second study area had as a purpose
to verify the applicability of the model. The second study area was in a shallow aquifer in Miami-
Dade County, Florida, USA. The geology of this study area is also complicated, as well as the land

use, making the simulation of the aquifer challenging.

5.2.1. ANN results

The first step of the methodology is to determine the appropriate time lags for meteorological and
surface water input parameters. In the case of precipitation, the most appropriate time lags varied
from 0 to 3 days with the most common being 0 and 1 day. In the case of surface water, only 0 and
1 day lags were used both for surface water level and discharge. The correlation coefficient for the
data time series used varied from 0.3 to 0.7. For the rest of the input parameters, soil and air

temperature and humidity, time lag is not apparent and the value of the simulation day was used.

Data were available for thirty (30) wells in the study area. Results will be presented for three wells
(no. 11, 3, 18), each representative of a category of wells with similar behavior. For the three
representative wells, the time lags for the precipitation data, as well as the corresponding correlation

coefficients are summarized in Table 5-13.

Table 5-13: Time lag and corresponding correlation coefficient values for precipitation for three representative wells

Station 420 Station 440
Well
Time Time
number Correlation Correlation
lag lag

11 0 0.46 0,1 0.36,0.4
3 1 0.37 0,1 0.39,0.33
18 1,2 0.32,0.33 1 0.3
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The most appropriate time lags for surface water level were 0 and 1 days from station USGS
02289500 for all wells, while for discharge 1 day time lag from station USGS 022907647 was the
most appropriate for all wells. The correlation coefficient varied from 0.2, in the worst case, to 0.8

in limited best cases.

Recall that two ANN architectures were considered in this case study; Architecture 1 with one
hidden layer of 32 nodes and Architecture 2 with two hidden layers, the first with 17, the second
with 12 nodes (Section 4.2.3). The average, maximum and minimum RMSE values for the ANN

training and testing errors are summarized in Table 5-14.

Table 5-14: Training and testing RMSE for the two ANN architectures under consideration

RMSE (m) Architecture 1 Architecture 2
Average Training Error 1.16:1073 6.63-107
Average Testing Error 1.20-1073 7.92:1074

Maximum Training Error 2.19:103 1.78-1073
Maximum Testing Error 3.42-1073 2.98-1073
Minimum Training Error 2.46-104 2.23-104
Minimum Testing Error 2.63-104 1.26-104

The training and testing RMSEs are smaller for Architecture 2, not only in terms of average,
maximum and minimum values, but also when comparing the results for each well individually.
Thus, Architecture 2 with the two hidden layers will be used henceforth. The average value of the
Nash-Sutcliffe efficiency coefficient is equal to 0.62, while the maximum value is equal to 0.71 and
the minimum to 0.56. These values are considerably higher than the corresponding values derived
for the first case study in Bavaria, due to the fact that, in this case, it is the hydraulic head that is
simulated and not the hydraulic head change. However, the fact that it is impossible to achieve high
NSE values when the simulated parameter takes small values still applies in this case, hence, it is

not possible to achieve as high values as would have been expected.

The ANN training and testing RMSE errors for all wells are presented in Table 5-15. The wells are
divided into three categories, depending on the training error. The wells are divided into three
categories, according to training error. The three categories and the wells in each category are
distinguished by color in Table 5-15.
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Table 5-15: ANN training and testing error results (Architecture 2)

Well Training Testing Error

number error (m) (m)

2 1.08 - 103 1.14 - 10°

10 8.98 - 10 1.30 - 10°

15 1.03 - 103 8.20 - 10*
16 1.78 - 10 2.98 - 10°

18 1.11-10% 6.23 - 10*

20 1.31-10% 1.80 - 10°

25 1.09 - 10 1.41-10%

28 1.23- 103 9.39 - 101

The training and testing errors as well as the Nash-Sutcliffe Efficiency coefficient for the three

representative wells are presented in Table 5-16.

Table 5-16: Statistical characteristics for the representative wells of the second case study

Training Error  Testing Error

Well number NSE
(m) (m)

2.77E-04 3.13E-04 0.69

5.68E-04 4.19E-04 0.65

18 1.11E-03 6.23E-04 0.58
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For the three representative wells, the observed and simulated hydraulic head values are plotted

against time (daily time step) in Figure 5-15.
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Figure 5-15: Observed and simulated hydraulic head versus time for the representative wells (from top to bottom:
wells no.11, 3 and 18)

For all three well categories, the algorithm was capable of simulating adequately the real hydraulic
head values observed in the field. However, there were some cases where extreme values could not
be simulated accurately, and simulation results could only capture the general trend of the physical
system. The simulated versus observed hydraulic head for the three representative wells is presented

in Figure 5-16.
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Figure 5-16: Simulated versus observed hydraulic head for three representative wells (from top to bottom: wells
no. 11, 3 and 18)

As would be expected, there is a noticeable difference in performance between the ANN categories
(Figure 5-16). For the first category, the results are very close to the y=x line which represents the
perfect fit. For the second category, more values are further away from the y=x line, and for the
last category, even more simulated values part from the observed, while it was not possible for four
values to be adequately simulated, since they are positioned far for the y=x line. These values

represent four outliers found in the observed data.

5.2.2. Kriging results

After training one ANN for each data point, the implementation of the kriging part of the algorithm
takes place. As described in Chapter 3, a new experimental variogram is fitted to the theoretical

model for each prediction point and for every time step. In this second study area, only the case
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with the use of fuzzy logic was considered and the size of the neighborhood was put to test. The
initial neighborhood was set to 20 data points and for the variogram model with the best results
this assumption was tested. The number of 20 neighbors was initially chosen so as to be able to
construct a dependable variogram, which will follow the rule stated in Chapter 3 that at least 30

distance pairs must be apparent for every distance lag.

The variogram models fitted to the data at hand and then evaluated for their performance was the
linear, the exponential and the power-law. The evaluation was performed through leave one out

cross-validation, as described in Chapter 3, for the 10% of the data points and time steps.

5.2.3. Cross-validation results

The fuzzy logic system was used in this case study. The values of the error indicators for three
different variogram models are presented in Table 5-17. A neighborhood size equal to 20 neighbors

was considered in all variogram cases.

Table 5-17: Cross-validation error indicators

RMSE (m) MAE (m) Bias (m)

Linear 1.14 0.89 -0.0485
Exponential (20) 0.962 0.7047 0.0499
Power 0.98 0.7422 0.0446

The values of the error indicators are some orders of magnitude larger than the values of the same
indicators computed for the first case study. This is due to the fact that, in this case, the hydraulic
head is simulated and not the hydraulic head change. Of the three variogram models, the exponential

variogram had the best results for the error indicators and the linear the worst.

In order to study the effect of the neighborhood size on the simulation results, the algorithm was
also executed for exponential variogram and for the cases of 15 and 25 neighbors in the kriging
neighborhood. The results for the error indicators for the exponential variogram and different

neighborhood sizes are presented in Table 5-18.

Table 5-18: Error indicators for different neighborhood sizes

Number of

neighbors RMSE (m) MAE (m) Bias (m)
15 1.2262 0.95 -0.079
20 0.962 0.7047 0.0499
25 1.15 0.86 -0.056
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Values of neighborhood size smaller than 15 neighbors were not tested because the constraint of
having at least 30 pairs per distance class was often violated at variogram construction. For
neighborhood size greater than 25 neighbors, the advantage of using the fuzzy logic system was

eliminated, so the case of 20 neighbors was adopted in the rest of the results computations.

Results for the average error variance are presented in Table 5-19 for the variogram models and

kriging neighborhoods discussed above.

Table 5-19: Error variance for different variogram models and neighborhood sizes

) Error

Variogram type ]
variance

Exponential (15) 0.76

Exponential (20) 0.21

Exponential (25) 0.39

Linear 0.86

Power-law 0.97

The cross-validation results for ANN and Kriging versus observed data are presented in Figure 5-17.
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Figure 5-17: Cross validation Kriging and ANN results versus Observed data

In Figure 5-17 , note that the results for ANN simulation with kriging are closer to the y=x line
than the ANN results alone, implying that it is possible for the kriging algorithm to improve the

ANN results. The improvement of the ANN results is also reflected on the error indicators. More

116 Predicting spatial and temporal changes in groundwater levels using Artificial Neural Networks and Geostatistical

methods




Results

specifically, The RMSE, NSE and MAE values of the data used for the cross validation, both only
using ANNs and ANNs together with kriging are presented in Table 5-20.

Table 5-20: Error indicators for cross-validation values

ANN and
ANN o
kriging
NSE 0.58 0.8
MAE (m) 0.59 0.41
RMSE (m) 0.77 0.49

The simulation results for the hydraulic head in the study area are presented in Figure 5-18 for four
different time steps: 1, 500, 1000, 1396 days.

Hydraubc Head in 1 step

803 8035 904 8045 805 8055

Hydraulic Head in 1396 step

803 80.35 804 8045 805 8055

903 8035 904 8045 805 0055

Figure 5-18: Simulated hydraulic head for time steps 1, 500, 1000, 1396

Characteristic statistical measures for the simulation results are summarized in Table 5-21.
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Table 5-21: Statistical measures for the simulation results for the second study area

Category Average Maximum Minimum

Training Error (m) 6.63 - 10™ 1.7-10° 2.23- 10"

Testing Error (m) 7.92 10" 2.98 - 10 1.26 - 10

Kriging Error Variance 0.2 1.6 8.24 - 10°
Cross-Validation Error (RMSE) 0.962

The simulation can be characterized as successful, especially taking into consideration the
complexity of the natural system.

Temporal changes in the water-level in the Biscayne aquifer can be caused by numerous factors,
such as the El Nino and the La Nina events, changes in the canal operation, the installation of new
infrastructure, changes in water management practices and changes in land use. Since the aquifer is
shallow, these parameters affect the hydraulic head heavily and are usually unpredictable making

the simulation of the hydraulic head a difficult process.

5.2.4. Uncertainty results
ANN prediction confidence intervals
The 90% confidence intervals for the hydraulic head were obtained in a manner similar to the one
described in Section 3.6.1 for the first case study. The results for the three representative wells are
presented in Figure 5-19. The percentiles’ values together with the confidence interval width are

presented in Table 5-22.

Table 5-22: Lower and upper 5% percentiles for three characteristic wells

Upper 5%  PI width (m)
Lower 5% (m)

(m)
Well 11 -0.43 0.75 1.18
Well 3 -0.59 0.56 1.15
Well 18 -0.58 0.71 1.29
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Figure 5-19: 90% confidence intervals for hydraulic head ANN simulation

While the 90% confidence intervals were constructed using the training dataset, this doesn’t
necessarily mean that the testing data will always fall within these intervals as well. In most cases,
the observed values fall within the 90% confidence interval of the ANN prediction for hydraulic
head, especially in the case of wells no. 3 and no. 18. There are a few exceptions in the case of well
no. 11, and more specifically for the lowest observed values, which do not fall within the prediction.
The coverage of these intervals with respect to the observed values was 82% for well 11, 75% for
well 3 and 79% for well 18.

Uncertainty in hydraulic head change due to ANN training

In order to evaluate the uncertainty in ANN training, 300 simulation runs were performed for
different training and testing datasets, as well as different initial random neural weights. The range

of the training and testing errors for each of the thirty wells in the study area is presented in Figure
5-20.
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Figure 5-20: Training and testing error range for 30 ANNs (wells)

In most cases, the training error range is smaller than the testing error range, as would have been
expected. The uncertainty results for the hydraulic head for the three representative wells, along

with the observed hydraulic head values, are presented, in Figure 5-21.
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Figure 5-21: Uncertainty in hydraulic head due to uncertainty in ANN training for three representative wells (the
observed values are marked in red and the prediction range in blue)
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In most cases, the observed values fall within the prediction interval calculated by the Monte Carlo
simulation of ANN training. A small percentage of observed values falls outside the prediction
interval limits (Table 5-23). This percentage is small for the well category represented by well no.
11 and increases for the other two well categories, without, however, compromising the reliability
of the model.

Table 5-23: Percentage of observed values outside the 90% prediction interval

percentage of observed
Well Number values outside the 90%

prediction interval

11 5.5
3 9.1
18 11.2

The average width of the prediction intervals for each one of the representative wells are presented
in Table 5-24.

Table 5-24: Average prediction intervals width for three representative wells

Average PI
Well number

width (m)
11 0.153
3 0.243
18 0.452

By comparing the prediction intervals widths for the two different methodologies (Table 5-24and
Table 5-22)is can be noted that the uncertainty derived for the training of the ANNs is only a small
fraction of the model uncertainty calculated through the percentile methodology. This may also be

attributed to the coarse nature of calculations in the percentile methodology.

The kriging part of the algorithm was executed for each of the 300 networks trained and prediction
intervals were derived for every prediction point. The prediction intervals for prediction points 150,
300, 450 and 600 are presented in Figure 5-22.
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Figure 5-22: Hydraulic head prediction interval for four prediction points

More specifically, for the prediction points presented in Figure 5-22 the average width of the 90%
prediction intervals are presented in

Table 5-25.

Table 5-25: Average prediction intervals width for three representative prediction points-ANN training

Average PI
Prediction point )
width (m)
200 0.25
400 0.86
600 1.424
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Uncertainty in hydraulic head change due to kriging parameters

The effect of kriging parameter uncertainty was studied, similarly to the first case study. As in the
previous case, 500 different data samples and 500 different variograms were constructed for every
prediction point and time step. Uncertainty results were derived for the algorithm with use of fuzzy
logic and for the exponential variogram model. The 90% prediction intervals together with the
prediction derived from the ANN simulated values for three prediction points are presented in Figure
5-23 (simulation results from observed data are marked in red, while the range of the predictions

from constructed data is marked in blue).
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Figure 5-23: Uncertainty in hydraulic head change due to kriging parameters for three prediction points

The average prediction interval width for each one of the three representative prediction points is
reported in Table 5-26.
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Table 5-26: Average prediction intervals width for three representative prediction points-Kriging parameter

uncertainty
Average PI
Prediction point
width (m)
200 1.35
400 2.32
600 3.5

In all cases the uncertainty of the results derived from using the described methodology can be
characterized as adequate, hence the model is reliable and can be used successfully for the hydraulic

head simulation in an aquifer.
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Chapter 6

Conclusions

In the present dissertation, artificial intelligence tools and geostatistical methodologies were
combined in order to simulate the hydraulic head in an aquifer both spatially and temporally. The
first part of the algorithm that was developed includes the use of artificial neural networks for the
temporal simulation of the hydraulic head. Artificial neural networks have been proven to be
effective for this task in the past by using only readily available data such as meteorological data,
hydraulic head values and surface water data. Any parameter linked to the water budget and not
being constant throughout the simulation time can be used. The main advantage of ANNs over
conventional modelling is the fact that they do not require geological data, which can be hard and
costly to acquire. Various ANN architectures were tested in order to determine the most appropriate
network, which was different for the two case studies. At the same time, the time lag between some

parameters and their effect on the aquifer was also considered in order to optimize the results.

For the spatial simulation of the hydraulic head, the kriging interpolation methodology was applied.
Different theoretical variogram models were tested for kriging in order to select the most appropriate
one. In order to evaluate the performance of each variogram cross-validation was performed for the
performance evaluation of each variogram. For 10% of the time steps, at prediction points which
were also data points, the real measurements at the point were not taken into consideration, but
the simulation continued and the value at the point was calculated as if it were not a data point.
In this way, three values were available for this specific point; the observed (real) value, the value
obtained through ANN simulation and the value obtained through ANN simulation and kriging.
Various error indicators were calculated using these data in order to provide for the best possible

choice of variogram model.

It became apparent, in the early stages of the algorithm development, that data points modeled by
ANNs with large training and testing errors affected significantly the simulation results at nearby
prediction points. For this reason, a fuzzy logic system was developed to determine the appropriate

neighbors for every prediction point and tested. The fuzzy logic system takes into consideration
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both the ANN training and testing errors, and also the distance between a prediction point and the
data points. The use of this system was proven to be helpful and to improve the cross-validation

results.

The algorithm was developed in Visual Studio 2010/2013 in VB .NET, while for the visualization
of the results MATLAB was used through the .NET interoperability. In order to reduce the runtime
necessary for each simulation the algorithm was designed with multithreading capabilities. A
Graphical User interface was developed in order to be user friendly. The final results of the
simulation are provided to the user in the form of hydraulic head/hydraulic head change and error
variance in an .mp4 file. Several text files containing all other intermediate simulation results are

also provided.

The model was implemented for two case studies; one in Bavaria, Germany and one in Miami-Dade
County, in Florida, USA. There are numerous differences between these two study areas, from the
overall size of the area, to the geology and to the land use. Using the algorithm for two such diverse

cases can put to test the general applicability of the algorithm.

The results for both case studies in terms of root mean squared error can be characterized as good.
The lowest RMSE value was equal to 7.6 - 10° m for the first case study and equal to 0.962 m for
the second case study. A key difference leading to this deviation in error values was that hydraulic
head change was simulated in the first case and hydraulic head in the second. This difference in
output parameters was due to the dataset involved in every case. In the first study area they were
large variations in the hydraulic head, while at the second case study, the values of the dataset were
more normalized. In both cases, the performance of the algorithm was considered adequate,

especially when taking into consideration the complexity of the second case study.

In order to evaluate the overall performance of the algorithm, uncertainty analysis was performed
from various aspects. Firstly, the simulation results of the ANN were analyzed and the 90%
confidence intervals for the predicted values were calculated using the percentile bootstrap
methodology. Secondly, the training uncertainty of the ANNs was studied. Multiple executions of
training were performed for all ANNs using each time different training and testing datasets and
different initial random values for the neural weights. The results of every execution were then used
in kriging interpolation and the final prediction interval at every prediction point was calculated.
The last output uncertainty calculated was the one attributed to the kriging parameters. In this

case synthetic data were created, having the same statistical characteristics of the ANN simulation
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results. By creating numerous variogram models using these data, the uncertainty in hydraulic head

change due to the kriging parameters can be calculated.

For both study areas, all the calculated prediction intervals were within an acceptable range, hence
the simulation model can be characterized as successful. Percentile methodology resulted in wide
confidence intervals for the parameters studied, due to the coarse nature of the methodology
involved. The uncertainty attributed to the ANN training, both for the ANN simulation and the
kriging results was within reasonable range. Finally, the uncertainty in hydraulic head change due

to the kriging parameters was low, hence the model can be characterized as reliable.

The developed model is a user friendly algorithm for the hydraulic head simulation. Using easy to
acquire data, it can successfully simulate the output parameter, hydraulic head change or hydraulic
head per time step, having small simulation cross-validation error and narrow uncertainty intervals
for the output parameter. The results derived for both cases studies proved that the developed
model can be successfully in different geological backgrounds and different study area sizes. The
applicability of the model is not limited to the hydraulic head simulation, but it can be extended to
other groundwater parameters that vary spatially and temporally, such as the concentration of a

pollutant in groundwater.
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Chapter 7

Further research

For the further verification of the model, it would be advisable to implement it in a study area with
more spatially distributed validation points. Moreover, the use of the developed algorithm for the
simulation of parameters other than the hydraulic head can be an interesting application. The
concentration of a chemical substance can be an example of such application. Any parameter that
varies spatially and temporally can be simulated by the algorithm, provided that long time series of

data are available.

In order to further improve the results, various modifications can be realized. The training process
of the ANNs can be altered, optimizing their architecture. This can be done by clustering the wells
with available data into categories with same optimal ANN architecture, instead of using one
common architecture for all the wells. In recent literature, it is stated that Support Vector Machines
can yield better results than ANNs, without having at the same time any parameters to adjust.
Since a large volume of data is necessary for the spatial and temporal simulation, it would be very
helpful to link the developed code with database functionality. A good example would have been
the use of SQL since its functionality can be linked to Visual Studio. Finally, the correlation analysis
can be incorporated to the developed algorithm. As mentioned in previous chapters, the definition
of the appropriate time lag for some parameters is of great importance. Incorporating this procedure
and using its results, after a revision from the user concerning the final parameters used, as a
preparatory step of the algorithm can reduce the overall time necessary for the model to run and

can make the use of the program easier for inexperienced users.

Another possibility could be the determination of the velocity field in the study area, through the
application of natural laws (Dupuit and Darcy’s law, depending on the aquifer) to the simulation
results. The use of the developed algorithm for the inverse problem is also an interesting possibility.
In this case the algorithm can assist conventional models in the definition of aquifer parameters

such as hydraulic conductivity and porosity.
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