
Peer-to-Peer Techniques for Web

Information Retrieval and Filtering

Peer-to-Peer Techniques for Web Information Retrieval and Filtering

Christos Tryfonopoulos

Ph.D. Thesis, Department of Electronic and Computer Engineering

Technical University of Crete, July 2006

Copyright c© 2006 Christos Tryfonopoulos. All Rights Reserved.

A digital version of this thesis can be downloaded from http://www.library.tuc.gr/.

Peer-to-Peer Techniques for Web Information

Retrieval and Filtering

Christos Tryfonopoulos

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in

Electronic and Computer Engineering

Doctoral Committee

Professor Stavros Christodoulakis, Thesis Supervisor

Associate Professor Manolis Koubarakis, Thesis Supervisor

Assistant Professor Vasilis Samoladas, Member

Technical University of Crete

2006

Acknowledgements

I am greatly indebted to my supervisor, Manolis Koubarakis for his belief in me and

his unending support throughout the years of my PhD. His enthusiasm and desire

for perfection was an inspiration for me. I will always consider him a friend and a

valuable source of advice.

I would also like to thank the members of my doctoral committee, Stavros

Christodoulakis, Vasilis Samoladas, Peter Triantafillou, Evaggelia Pitoura, Timos

Sellis and Euripides G.M. Petrakis for their comments and suggestions on improve-

ments and extensions of this work.

Special thanks go the rest of my colleagues in the group, Stratos, Erietta and

Matoula for being good workmates, but most importantly close friends. Stratos

has proofread many of my papers, provided insightful comments and suggestions to

improve this work and was more than somebody could ask for a colleague.

Words cannot always express the feelings for special persons that make your life

meaningfull. Persons that are a stand in difficult personal moments and a relief

after long working hours and work-spoiled weekends. Paraskevi, a heartfull thanks

for your endless love and support to all my decisions.

Special thanks go to my family for their love and encouragement throughout all

my life endeavors. Their courage in life and their strength in difficulties was an extra

motivation for this effort.

The good times spent with Costas, Nikos, Sotiris, Amalia, Stamatis, Georgia

and Petros made this thesis an easier task. A big thanks for your indispensable

friendship and for making every occasion spent with you a special one.

Throughout this thesis I received financial support from the Technical University

of Crete, from the Greek Ministry of Education through the Heraclitus fellowship

program, and from European Commission FP6/IST/FET programme Evergrow. I

would like to thank all the people in these institutions for these research grants.

To my father, for his uneven struggle...

Abstract

M uch information of interest to humans is today available on the Web. Peo-

ple can easily gain access to information but at the same time, they have

to cope with the problem of information overload. Consequently, they have to rely

on specialised tools and systems designed for searching, querying and retrieving

information from the Web. Currently, Web search is controlled by a few search en-

gines that are assigned the burden to follow this information explosion by utilising

centralised search infrastructures. Additionally, users are striving to stay informed

by sifting through enormous amounts of new information, and by relying on tools

and techniques that are not able to capture the dynamic nature of the Web. In this

setting, peer-to-peer Web search seems an ideal candidate that can offer adaptivity

to high dynamics, scalability, resilience to failures and leverage the functionality of

the traditional search engine to offer new features and services.

In this thesis, we study the problem of peer-to-peer resource sharing in wide-area

networks such as the Internet and the Web. In the architecture that we envision,

each peer owns resources which it is willing to share: documents, web pages or

files that are appropriately annotated and queried using constructs from informa-

tion retrieval models. There are two kinds of basic functionality that we expect this

architecture to offer: information retrieval and information filtering (also known as

publish/subscribe or information dissemination). The main focus of our work is on

providing models and languages for expressing publications, queries and subscrip-

tions, protocols that regulate peer interactions in this distributed environment and

indexing mechanisms that are utilized locally by each one of the peers.

Initially, we present three progressively more expressive data models,WP , AWP

and AWPS, that are based on information retrieval concepts and their respective

query languages. Then, we study the complexity of query satisfiability and en-

tailment for models WP and AWP using techniques from propositional logic and

computational complexity.

Subsequently, we propose a peer-to-peer architecture designed to support full-

fledged information retrieval and filtering functionality in a single unifying frame-

work. In the context of this architecture, we focus on the problem of information

filtering using the model AWPS, and present centralised and distributed algorithms

for efficient, adaptive information filtering in a peer-to-peer environment. We use

two levels of indexing to store queries submitted by users.

The first level corresponds to the partitioning of the global query index to dif-

ferent peers using a distributed hash table as the underlying routing infrastructure.

Each node is responsible for a fraction of the submitted user queries through a map-

ping of attribute values to peer identifiers. The distributed hash table infrastructure

is used to define the mapping scheme and also manages the routing of messages be-

tween different nodes. Our set of protocols, collectively called DHTrie, extend the

basic functionality of the distributed hash table to offer filtering functionality in

a dynamic peer-to-peer environment. Additionally, the use of a self-maintainable

routing table allows efficient communication between the peers, offering significantly

lower network load and latency. This extra routing table uses only local information

collected by each peer to speed up the retrieval and filtering process.

The second level of our indexing mechanism is managed locally by each peer,

and is used for indexing the user queries the peer is responsible for. In this level

of the index, each peer is able to store large numbers of user queries and match

them against incoming documents. We have proposed data structures and local

indexing algorithms that enable us to solve the filtering problem efficiently for large

databases of queries. The main idea behind these algorithms is to store sets of words

compactly by exploiting their common elements using trie-like data structures. Since

these algorithms use heuristics to cluster user queries, we also consider the periodic

re-organisation of the query database when the clustering of queries deteriorates.

Our experimental results show the scalability and efficiency of the proposed al-

gorithms in a dynamic setting. The distributed protocols manage to provide exact

query answering functionality (precision and recall are the same as those of a cen-

tralised system) at a low network cost and low latency. Additionally, the local

algorithms we have proposed outperform solutions in the current literature. Our

trie-based query indexing algorithms proved more than 20% faster than their coun-

terparts, offering sophisticated clustering of user queries and mechanisms for the

adaptive reorganisation of the query database when filtering performance drops.

Contents

List of Tables v

List of Figures vi

List of Abbreviations x

1 Introduction 1

1.1 Problem Statement 1

1.2 Solution Outline 3

1.3 Contributions 5

1.4 Thesis Structure 7

2 Related Research 9

2.1 Peer-to-Peer Networks 9

2.1.1 Three Influential Peer-to-Peer Systems 11

2.1.2 Super-Peer Networks 15

2.1.3 Distributed Hash Tables 16

2.2 Applications of Peer-to-Peer Networks 28

2.3 Information Retrieval in Peer-to-Peer Networks 29

2.3.1 Information Retrieval in Unstructured Peer-to-Peer Networks 29

2.3.2 Information Retrieval in Super-Peer Networks 31

2.3.3 Information Retrieval in Structured Peer-to-Peer Networks 32

2.4 Information Filtering 36

2.4.1 Information Filtering in Information Retrieval, Databases and

Distributed Systems 37

2.4.2 Information Filtering in Peer-to-Peer Networks 39

2.5 Conclusions 41

3 Data Models and Query Languages Based on Information Retrieval 43

3.1 The Models WP and AWP 46

3.2 Extending AWP with Similarity 52

3.3 Satisfiability and Entailment in WP 55

3.4 Satisfiability and Entailment in AWP 64

3.5 Similar Models 65

3.5.1 Word Patterns and Proximity Operators 66

3.5.2 Other Operators from Information Retrieval 67

3.6 Conclusions 68

4 An Architecture for Peer-to-Peer Web Search 69

4.1 The LibraRing Architecture 70

4.2 Extensions to the Chord API 73

4.3 The LibraRing Protocols 74

4.3.1 Client Join 74

4.3.2 Client Connect/Disconnect 75

4.3.3 Resource Indexing 75

4.3.4 Submitting an One-Time Query 76

4.3.5 Publish/Subscribe Functionality 77

4.3.6 Notification Delivery 78

4.3.7 Super-Peer Join/Leave 78

4.4 Conclusions 79

5 Protocols for Distributed Information Filtering 81

5.1 The DHTrie Protocols 82

5.1.1 The Subscription Protocol 84

5.1.2 The Publication Protocol 85

5.1.3 The Notification Protocol 90

5.1.4 Frequency Cache 91

5.2 Experimental Evaluation 92

5.2.1 Varying Network Size 94

5.2.2 Varying the FCache Size 97

5.2.3 Effect of FCache Training 100

5.2.4 Varying the Document Size 103

5.2.5 Varying the Type of Queries 106

5.2.6 Varying the Desired Recipients List Size in the Hybrid Algo-

rithms 108

5.2.7 Summing Up 109

5.3 Load Balancing 110

5.3.1 Balancing the Filtering Load 111

5.3.2 Balancing the Routing Load 113

5.3.3 Balancing the Query Load 114

5.4 Conclusions 116

6 Local Filtering Algorithms 117

6.1 Filtering Algorithms for AWP 118

6.1.1 The Algorithm BestFitTrie 119

6.1.2 Other Filtering Algorithms 123

6.2 Reorganisation of Queries 124

6.3 Filtering Algorithms for AWPS 128

6.4 Experimental Evaluation 129

6.4.1 Varying the Database Size 132

6.4.2 Varying the Matching Percentage 134

6.4.3 Varying the Document Size 136

6.4.4 Updating the Query Database 136

6.4.5 Incorporating Ranking Information 138

6.4.6 Reorganisation of Queries 141

6.4.7 Summary of Results 144

6.5 Indexing Using Tries 145

6.6 Conclusions 146

7 Conclusions 149

7.1 Summary 149

7.2 Contributions 151

7.3 Open Problems 152

7.3.1 Rich Query Languages 152

7.3.2 Approximate Information Filtering 152

7.3.3 Load Balancing 153

List of Tables

5.1 Parameters varied in experiments and their descriptions 94

6.1 Identifying subsets of words(wpi) with respect to S = {words(wpi), i =

0, . . . , 5} 120

6.2 Some characteristics of the NN corpus 130

6.3 Some attribute characteristics of the corpus documents 130

6.4 Parameters varied in experiments and their descriptions 132

List of Figures

2.1 An example of the Napster P2P system 12

2.2 An example of the Gnutella P2P system 13

2.3 An example of a super-peer network 15

2.4 An example of a lookup operation over a Chord ring with m=6 18

2.5 An example of query routing in a CAN DHT with d=2 20

4.1 The architecture of LibraRing 71

5.1 Pub/sub functionality for a pure P2P architecture over a structured

overlay 83

5.2 An example of the iterative method 87

5.3 An example of the recursive method 88

5.4 An example of the hybrid method 90

5.5 Performance in terms of message traffic for various network sizes 95

5.6 Total document processing cost 96

5.7 Performance in terms of publication latency for various network sizes 97

5.8 Message traffic at the DHT for different FCache sizes 98

5.9 Number of messages sent by utilising the FCache, for different FCache

sizes 99

5.10 Publication latency for different FCache sizes 100

5.11 Performance of the DHT for different levels of FCache training 101

5.12 Number of messages sent by utilising the FCache, for different levels

of FCache training 102

5.13 Publication latency for different levels of FCache training 102

5.14 Message traffic at the DHT for documents of different size 103

5.15 Increase rate in message traffic with respect to document size for each

algorithm 104

5.16 Latency for documents of different size 105

5.17 Increase rate in latency with respect to document size for each algorithm106

5.18 Message cost to index a query in the network 106

5.19 Latency in indexing a query in the network 107

5.20 Message traffic when varying the recipient list size in the hybrid al-

gorithms 108

5.21 Latency when varying the recipient list size in the hybrid algorithms 109

5.22 Average number for filtering requests 113

5.23 Routing load for the first 10K nodes 114

5.24 Query load for the first 10K nodes 115

6.1 BestFitTrie vs. PrefixTrie for the atomic queries of Table 6.1 123

6.2 Profile insertions and re-organisation achieved by ReTrie 126

6.3 Pseudocode for algorithm ReTrie 127

6.4 Effect of the query database size in filtering time 133

6.5 Performance in terms of throughput for the algorithms of Section 6.1 133

6.6 Space requirements for the trie-based algorithms 134

6.7 Average % increase in filtering time for a 20% increase in the number

of matching queries 135

6.8 Query insertion time for different query database sizes 137

6.9 Incorporating word frequency information into the trie-based algo-

rithms, and its effect in filtering time 139

6.10 Performance of LCWTrie in comparison to the two faster filtering

algorithms 140

6.11 Memory requirements of ranking variations of BestFitTrie and Pre-

fixTrie 141

6.12 Filtering time for different clustering thresholds 142

6.13 Performance of algorithm ReTrie for different clustering thresholds

and sets of documents 143

List of Abbreviations

P2P Peer-to-Peer

DHT Distributed Hash Table

WP Word Pattern

AWP Attribute Word Pattern

AWPS Attribute Word Pattern with Similarity

VSM Vector Space Model

LSI Latent Semantic Indexing

XML eXtensible Markup Language

TTL Time-To-Live

CAN Context Addressable Network

SDI Selective Dissemination of Information

LS Load-Shedding

DL Digital Library

Chapter 1

Introduction

T his thesis addresses the problem of offering scalable, adaptive, efficient, full-

fledged information retrieval and filtering functionality in a peer-to-peer envi-

ronment. In this introductory chapter, we define the problem, highlight our approach

and present our contributions.

1.1 Problem Statement

Much information of interest to humans is today available on the Web. People

can easily gain access to information but at the same time, they have to cope with

the problem of information overload. Consequently, they have to rely on specialised

tools and systems designed for searching, querying and retrieving information from

the Web. Currently, Web search is controlled by a few search engines that are

assigned the burden to follow this information explosion1 by utilising centralised

search infrastructures. Additionally, users are striving to stay informed by sifting

through enormous amounts of new information, and by residing on tools and tech-

niques that are not able to capture the dynamic nature of the Web. In this setting,

peer-to-peer (P2P) Web search seems an ideal candidate that can offer adaptivity

to high dynamics, scalability, resilience to failures and leverage the functionality of

the traditional search engine with new features and services.

1Google alone indexed 11.2 billion web pages in November 2005, and 25.2 billion in May 2006.
Google no longer publishes the number of indexed pages; these numbers were the search results
for the query “∗ ∗”, which retrieves web pages containing any two words.

2 Chapter 1 : Introduction

In P2P systems a very large number of autonomous computing nodes (the peers)

pool together their resources and rely on each other for data and services. P2P

networks have emerged as a natural way to share data, and have been popularised

by applications such as file and cycle sharing, IP telephony etc. At the same time,

P2P systems pose new challenges in designing distributed systems that go beyond

the file sharing paradigm to full-fledged content search and Web search functionality.

In this thesis, we focus on the problem of P2P resource sharing in wide-area networks

such as the Internet and the Web. In the architecture that we envision, each peer

owns resources which it is willing to share: documents, web pages or files which are

appropriately annotated and queried using constructs from Information Retrieval

models. There are two kinds of basic functionality that we expect this architecture

to offer: information retrieval (IR) and information filtering (IF) (also known as

publish/subscribe or information dissemination). In an IR scenario a user poses a

query (e.g., ”I am interested in papers on bio-informatics”) and the system returns a

list of pointers to matching resources. In an IF scenario, a user posts a subscription

(or profile or continuous query) to the system to receive notifications whenever

certain events of interest take place (e.g., when a paper on bio-informatics becomes

available).

When trying to design and implement such a system there are several technical

challenges that have to be faced. In this thesis, we look into the following four

fundamental questions in the design of a distributed resource sharing system and

provide state of the art solutions to each one of them:

• What are appropriate architectures to support IR and IF functionality in a

P2P environment?

• What is an appropriate data model and a respective query language to an-

notate and query resources offered by the peers? Can it be designed in a

principled and formal way?

• What are the protocols that regulate peer interactions and allow for the afore-

mentioned functionality? Can we provide scalability and efficiency without

sacrificing retrieval effectiveness?

1.2 : Solution Outline 3

• What are the local indexing algorithms that will allow each peer to manipulate

large numbers of retrieval and filtering requests efficiently?

The rest of this thesis provides answers to the above questions and presents orig-

inal results that advance the state of the art in each of the problems posed. Put

together, our results form a framework for designing and implementing a distributed

resource sharing system that supports information retrieval and filtering function-

ality using the P2P paradigm, and provide machinery that outperforms the best

solutions found in the relevant literature.

1.2 Solution Outline

In this section, we provide an outline of our answers to the technical questions

posed previously and argue that our approach provides interesting, state of the art

solutions to each one of these fundamental challenges.

In the architecture we propose, nodes can implement any of the following types of

services: super-peer service, provider service and client service. Nodes implementing

the super-peer service (super-peers) form the message routing layer of the network.

Each super-peer is responsible for serving a fraction of the clients by storing doc-

uments, indexing continuous queries, matching them against incoming (published)

documents and creating notifications. The super-peers run a Distributed Hash Ta-

ble (DHT) protocol which is an extension of Chord. A node implementing the client

service (client) connects to the network through a single super-peer node, which is

its access point. Clients can connect, disconnect or even leave the system silently at

any time. Clients are information consumers: they can pose one-time queries to re-

ceive relevant resources, subscribe to resource publications with continuous queries

and receive notifications about published resources (e.g., documents) that match

their interests. Finally, the provider service (provider) is implemented by informa-

tion sources that want to expose their contents to the clients of the system. A node

implementing this service connects to the network through a super-peer which is its

access point. To be able to implement this service, an information source creates

meta-data for the documents it stores using an appropriate data model and pub-

4 Chapter 1 : Introduction

lishes it to the rest of the network using its access point. Although our protocols are

tailored for a two-tier architecture, our ideas can be easily applied in a pure P2P

environment.

In the context of the proposed architecture, our main focus is on providing models

and languages for expressing publications and subscriptions, protocols that regulate

super-peer interactions and query indexing mechanisms that are utilized by each

one of the super-peers.

The chosen data model and query language will have a serious effect on the DHT

protocols, as the DHT is the layer in which publications, queries and subscriptions

are indexed. We use a well-understood attribute-value model, called AWPS, that is

based on named attributes with free text as value interpreted under the Boolean and

VSM (or LSI) models. The query language of AWPS allows Boolean combinations

of comparisons A op v, where A is an attribute, v is a text value and op is one of the

operators “equals”, “contains” or “similar” (“equals” and “contains” are Boolean

operators and “similar” is interpreted using the VSM or LSI model). We present a

formal account ofAWPS and its subsetsWP andAWP , and answer some standard

questions from a logic and complexity perspective.

In the context of these models, we show how to provide IR and IF functionality

by using an extension of the Chord DHT. To achieve this, we have designed and

implemented a set of protocols, collectively called DHTrie, that extend the Chord

protocols assuming that publications and subscriptions are expressed in the model

AWPS. Additionally, we showed experimentally that local data structures and

simple routing optimisations can make a big difference in a DHT environment. The

experiments showed that our protocols are scalable: the number of messages needed

to publish a document and notify interested subscribers remains almost constant

as the network grows. Moreover, the increase in message traffic shows little sensi-

tivity to the increase in document size. Since probability distributions associated

with publication and query elements are expected to be skewed in such a scenario,

achieving a balanced load among the nodes becomes an important problem. Thus,

we studied important cases of load balancing for DHTrie and presented a new algo-

rithm, based on the idea of load-shedding, which is also applicable to the standard

1.3 : Contributions 5

DHT lookup problem.

In the architecture described above, clients subscribe to their access points with

continuous queries that express their information needs, and providers expose their

content using an appropriate meta-data model. Each super-peer is responsible for

storing the queries so that whenever a resource is published, the continuous queries

satisfying it are found and notifications are sent to the appropriate clients. A facet

of this work deals with the filtering problem that needs to be solved efficiently by

each super-peer: Given a database of continuous queries db and a document d, find

all queries q ∈ db that match d. We have proposed data structures and indexing

algorithms that enable us to solve the filtering problem efficiently for large databases

of queries expressed in the model AWP , which is the Boolean subset of AWPS and

is based on named attributes with values of type text, and word proximity operators.

The algorithms presented here are used in combination with the algorithms of SIFT

[210] that handle VSM queries to index the AWPS queries each peer is responsible

for.

The main idea behind the local indexing algorithms is to store sets of words

compactly by exploiting their common elements. In algorithm PrefixTrie, which is

a modification of the most efficient indexing algorithm proposed in the literature,

a query is considered as a sequence of words sorted in lexicographic order, and a

trie is used to store queries compactly by exploiting common prefixes. Our proposed

algorithm, coined BestFitTrie, constitutes an improvement over PrefixTrie. BestFit-

Trie keeps the main idea behind PrefixTrie but (a) handles the words contained in

a query as a set rather than as a sorted sequence and (b) searches exhaustively the

forest of tries to discover the best place to store a new query. This allows BestFitTrie

to achieve better clustering of the queries and thus smaller filtering times. Finally

we propose algorithm ReTrie, which improves over BestFitTrie by considering the

periodic re-organisation of the query database.

1.3 Contributions

Early work in information retrieval and filtering over P2P networks focused on

unstructured protocols (such as Gnutella and FastTrack). With the advent of dis-

6 Chapter 1 : Introduction

tributed hash tables, a new wave of systems, that supported either kind of func-

tionality by using the DHT as the routing substrate, appeared [10, 11, 35, 100, 171,

184, 187, 189]. Our work is the first approach in this area that makes the following

important contributions:

• It studies the theory of modelsWP andAWP and focuses on questions related

to satisfiability and entailment. These results have been published in [126].

• It shows how to support information retrieval and filtering functionality in a

single unifying framework, using a DHT as the routing infrastructure. The

results of this work are presented in [202].

• Contrary to other approaches in the area, this is the first work that aims

for exact query answering (precision and recall are the same as those of a

centralised system), while adopting a distributed architecture that provides

scalability and efficiency benefits. These results have been published in [197,

199, 202]

• It extends the Chord protocols with pub/sub functionality, providing a tun-

able approach that targets low latency and low network load at the same time.

In the same context it demonstrates the effectiveness of additional routing in-

formation, based on local interactions, in lowering message traffic and latency.

These results have been published in [196, 201, 203].

• It proposes a solution of the local filtering problem that outperforms solutions

in the current literature. Our trie-based query indexing algorithms are 20%

faster than their counterparts, offering sophisticated clustering of user queries

and mechanisms for the adaptive reorganisation of the query database when

filtering performance drops [106, 125, 200].

• It applies these ideas in a digital library (DL) scenario and shows how to use

the P2P paradigm to design future DLs. The results of this work are presented

in [202].

To summarise the above, our approach offers a complete, state of the art suite of

concepts, algorithms and tools that advance the state of the art and allow building a

1.4 : Thesis Structure 7

distributed resource sharing system. This suite provides (i) data models and query

languages for resource annotation and querying, (ii) scalable distributed protocols

to support full-fledged retrieval and filtering functionality and (iii) efficient local

indexing mechanisms. All these techniques have been applied to the digital library

domain, in an effort to design and build a scalable, self-organising, low-maintenance

architecture for DLs based on the P2P paradigm.

Distributed IR as studied here can benefit from techniques of traditional IR,

distributed systems and networking (especially P2P networks), databases and dis-

tributed AI. Architectures and distributed protocols discussed in this work, advance

the state of the art in the field towards self-organising approaches that are suitable for

dynamic settings, and offer benefits such as adaptivity and failure resilience. These

early efforts for full-fledged P2P information retrieval try to harness the properties

of loosely coupled components to leverage the applicability of traditional IR.

Although many of the issues in this thesis were tackled with an IR perspective in

mind, their application is not restricted to this domain. Content-based multicasting

over structured overlays and load balancing in the presence of skewed item distribu-

tions are two examples of problems that are also interesting from a P2P perspective

and this thesis makes a contribution to them. P2P research is lately dominated by

endeavours to build new types of applications that will use overlay networks as their

architectural paradigm. P2P Web search and P2P digital libraries are certainly two

of the dominant and most interesting applications in this strand of research and this

work lies within these efforts.

1.4 Thesis Structure

This thesis is comprised of seven chapters, the first being the current introductory

chapter. The rest of the thesis is organised as follows. Chapter 2 positions the thesis

with respect to related work by reviewing literature in the fields of P2P systems,

information retrieval and information filtering. Chapter 3 presents the IR-based data

models and the associated query languages that were used in this thesis and studies

questions related to satisfiability and entailment in these models. Chapter 4 presents

our P2P architecture, while Chapter 5 focuses on the case of information filtering

8 Chapter 1 : Introduction

and presents an in-depth investigation of the pub/sub protocols that regulate peer

interactions. Chapter 6 studies the filtering problem at each one of the peers and

proposes data structures and algorithms that solve it efficiently. Finally, Chapter

7 summarises the achievements of this thesis and indicates directions for future

research.

Chapter 2

Related Research

I n this chapter we provide an overview of previous research which is relevant

to the topics of this thesis. Initially, we focus on architectural aspects of P2P

networks, and present a comprehensive survey of P2P networks, ranging from un-

structured approaches to super-peers and structured overlays. Then, we present

related work in the areas of IR and IF using P2P networks.

2.1 Peer-to-Peer Networks

In P2P systems a very large number of autonomous computing nodes (the peers)

pool together their resources and rely on each other for data and services. P2P

networks have emerged as a natural way to share data. Popular systems such as

Napster1 (now in a commercial service), Gnutella2, Freenet3, Kazaa4, Morpheus5

and others have made this model of interaction popular. Ideas from P2P computing

can also be applied to other distributed applications beyond data sharing such as

Grid computation (e.g., SETI@Home6 or DataSynapse7), collaboration networks

1http://www.napster.com
2See http://www.limewire.com for one of the various clients implementing the Gnutella pro-

tocol or its variations.
3http://freenet.sourceforge.net
4http://www.kazaa.com
5http://www.musiccity.com
6http://www.setiathome.ssl.berkeley.edu
7http://www.datasynapse.com

10 Chapter 2 : Related Research

(e.g., Groove8), IP telephony (e.g., Skype9) and even new ways to design Internet

infrastructure that supports sophisticated patterns of communication and mobility

[181].

P2P networks are typically distinguished into three different classes according

to their topology: unstructured networks, structured networks and hierarchical net-

works. In unstructured networks all peers are equal and form an overlay network

with no restrictions on topology and no centralised source of information. Gnutella

is considered the prototypical symmetric or unstructured P2P network. Since its

original proposal, the inefficiencies of this basic Gnutella protocol have carefully

being studied and various proposals for more efficient search in unstructured P2P

networks are now in the literature (see [204] for a recent comparison). Structured

networks, on the other hand, have a regular topology, e.g. rings or hypercubes,

and were devised as a remedy for the routing and object location inefficiencies of

unstructured networks. DHTs are a prominent class of structured overlays that at-

tempt to solve the object lookup problem by offering some form of distributed hash

table functionality: assuming that data items can be identified using unique nu-

meric keys, DHT nodes cooperate to store keys for each other. Finally, hierarchical

networks partition the nodes into two sets: super-peers and clients. In a super-peer

system, all super-peers are equal and have the same responsibilities. Each super-peer

serves a fraction of the clients and keeps indices on the resources of those clients.

Super-peers interact by following a protocol of their choice (e.g., a symmetric one

like Gnutella, a structured one like Napster10 or a DHT protocol). Clients can run

on user computers and resources (e.g., files in a file-sharing application) are kept

at client nodes. Clients are equal to each other since the software running at each

client node is equivalent in functionality. Clients learn about resources by querying

super-peers and download resources directly from other clients.

In the rest of this section we discuss the first three systems that popularized the

P2P paradigm: Napster, Gnutella and Freenet and introduce super-peer networks.

8http://www.groove.net
9http://www.skype.com

10Napster can also be seen as a structured P2P system: each node has well-defined information
about other nodes in the system [25]. However, centralized systems such as Napster have well-
understood problems of scalability and resilience.

2.1 : Peer-to-Peer Networks 11

Finally, we briefly survey some known DHTs and focus on Chord, an early influential

DHT that forms the basis of our work.

2.1.1 Three Influential Peer-to-Peer Systems

The common goal of the three pioneer systems, Napster, Gnutella and Freenet, was

to facilitate the discovery and sharing of files (e.g., images, audio and video) among a

large set of peers (user computers) located at the “edge of the Internet”. The files to

be shared are stored at the peers, and after being discovered by an interested party,

they are downloaded using a protocol similar to HTTP. But beyond this basic goal,

there are important differences among the three systems regarding the metadata

kept at each network node, the topology of the P2P network, the placement of the

shared files, the routing algorithms for queries and replies, the degree of privacy

offered to its users, etc.

Napster

In Napster (shown in Figure 2.1), a large cluster of dedicated servers owned by the

respective company maintains a metadata index that keeps track of active peers,

descriptions of the files they are willing to share, and certain quality of service

parameters such as bandwidth and duration of the connection. Peers (clients!)

connect to the system by connecting to one of these dedicated servers and publish

a description of the files they want to share with other peers. Peer queries are sent

to their selected server which returns a list of matching files, the address of the

peer which has each file, and other important information known about the peer

(e.g., bandwidth as reported by the peer). Peers can then directly download selected

files from the peer of their choice. Thus, Napster is a hybrid P2P system [214]

with some client-server features (register, publish, query) and a single P2P feature

(download). Napster is also a structured P2P system: each node has well-defined

information about other nodes in the system [25]. However, centralised systems such

as Napster have well-understood problems of scalability and resilience (so one has

to use techniques such as indexing for scalability and replication for resilience [89]).

12 Chapter 2 : Related Research

peer

peer
peer

peer

super

peer

metadata

index

download

Figure 2.1: An example of the Napster P2P system

Gnutella

On the opposite end of the spectrum of decentralization, Gnutella (shown in Fig-

ure 2.2) has a symmetric protocol and no centralized servers. Each node in a

Gnutella network is a peer that can act as a client and as a server at the same

time. Gnutella peers form an overlay network by setting up connections to peers of

their choice. Addresses for connecting to the Gnutella network initially can be found

by the interested user (e.g., by consulting web pages such as gnutellahosts.com

or router.limewire.com). Gnutella offers primitives ping and pong for discovering

parts of the network and facilitate its maintenance while peers enter and leave the

system.

To discover a file, a Gnutella source node issues a query such as “I am interested

in MPEGs with video-clips of Jennifer Lopez” to its neighbors with whom it has

open connections. The query is accompanied by a time-to-live (TTL) counter that

specifies how many hops this query is allowed to travel in the Gnutella network. Each

node that receives this request processes it using its local file collection and returns

URLs pointing to matching files to the requesting node. Then, this node decrements

the TTL counter of the request by one. If the value of the TTL counter is greater

than 0, then this node forwards the query to its neighbours. This process is repeated

and eventually more pointers to matching files are returned to the source of the

2.1 : Peer-to-Peer Networks 13

peer

peer
peer

peer

peer

peer

peer
 peer
 second level neighbor

peer
 first level neighbor

peer
 query issuing peer

download

Figure 2.2: An example of the Gnutella P2P system

request. Thus, Gnutella uses the classical flooding technique known from Computer

Networks [36] for routing queries. Replies reach the source node by travelling along

the reverse path followed by the query, as a node precessing a request in a Gnutella

network does not know the identity of the source node issuing this request. However,

the privacy of information requesters and providers is not really protected in any

serious way (e.g., Gnutella messages contain IP addresses, and URLs are returned

to information requesters so that they can retrieve the files they desire).

Gnutella is considered the prototypical symmetric or unstructured P2P network.

Since its original proposal, the inefficiencies of this basic Gnutella protocol have care-

fully being studied and various proposals for more efficient search in unstructured

P2P networks are now in the literature (see [204] for a recent comparison).

Freenet

Freenet is a P2P network of nodes connected to each other for the purpose of sharing

information in the form of data files [56]. Like Gnutella, Freenet keeps a completely

decentralised architecture which ensures scalability, robustness and fault-tolerance.

At the same time, Freenet invests effort in ensuring the survivability of published

information, the adaptability to usage patterns and the protection of the anonymity

of information providers, consumers and holders (these features are what distinguish

Freenet from Napster and Gnutella).

Every Freenet user runs a node that provides the network with some storage

14 Chapter 2 : Related Research

space. To add a file, a user sends the network a message containing the file and an

assigned location-independent globally unique identifier (GUID) which is computed

using a SHA-1 [153] secure hashing function. Each GUID consists of two parts: a

content-hash key which is obtained by hashing the contents of the file and it is used

for low-level data storage, and a signed-subspace key intended for higher-level human

use like traditional filenames.

To retrieve data, a user of Freenet sends to the network a request message and

the GUID of the file. Whenever a node receives a request, checks its local data-store

first. If the file is found, the node returns it to the requester together with a tag

identifying itself as the holder. If the file is not found, the routing table is consulted,

one of the neighbour nodes with the closest matching key is chosen, and the request

is forwarded to it. This is a basic difference with the Gnutella algorithm: Gnutella

does not perform heuristic search and would send the query to all neighbour nodes.

When the data file is finally found, it is returned to the requester via the same path.

Additionally, intermediate nodes save an entry in their routing table associating the

requested key with the data source. Depending on their distance from the holder,

each node might also cache a local copy of the data file.

The anonymity of a file producer is ensured by having intermediate nodes oc-

casionally altering the holder tags to point to themselves as data holders. This

does not compromise discovery of the file later because the identity of the true data

holder is kept at the node’s routing table and routing tables are never revealed.

The anonymity of an initiator of a query is also ensured since a node cannot know

whether its neighbour node is the one interested in the results of the query or is

simply forwarding a message.

Each data request in Freenet is given a TTL count (like in Gnutella), which is

decremented at each node the request goes through successfully in order to reduce

message traffic. To prevent requests from going into an infinite loop, Freenet assigns

a unique identifier to each request so that a node will never forward a request that

goes through it for a second time.

Insert messages follow the same procedure that a request message for that file

would follow, thus routing tables are updated in the same way and files are stored

2.1 : Peer-to-Peer Networks 15

peer

peer
peer

peer

super

peer

peer

peer

peer

super

peer

peer

peer

super

peer

download

Figure 2.3: An example of a super-peer network

in exactly the nodes where queries will go looking for them [56].

2.1.2 Super-Peer Networks

One approach to deal with the scalability of Gnutella-like systems is to introduce a

hierarchy of peers (as shown in Figure 2.3): super-peers (or ultra-peers, or hubs) and

clients (or simply peers). This was the approach pioneered by the P2P platform

Fast-Track and is being used in deployed systems such as Kazaa, Morpheus and

new versions of Gnutella. In a super-peer system, all super-peers are equal and have

the same responsibilities. Each super-peer serves a fraction of the clients and keeps

indices on the resources of those clients. Super-peers interact by following a protocol

of their choice (e.g., a symmetric one like Gnutella, a structured one like Napster

or a DHT protocol). Clients can run on user computers, and resources (e.g., files in

a file-sharing application) are kept at client nodes. Clients are equal to each other

since the software running at each client node is equivalent in functionality. Clients

learn about resources by querying super-peers and download resources directly from

other clients.

The issues involved in the design and implementation of super-peer systems

have recently been studied in academia as well. One of the first works to study

16 Chapter 2 : Related Research

the characteristics of super-peer networks and present the performance tradeoffs

associated with them was [212]. Super-peers are generally either volunteers that

want to offer their extra resources to the community or are chosen and “promoted”

by some mechanism (e.g., a gossiping mechanism as in [110]). The nice properties

of super-peer networks made then an attractive architectural solution adopted by

a number of systems and research proposals such as Edutella [149], P2P-DIET

[54, 106] and also [130, 132, 168].

2.1.3 Distributed Hash Tables

The success of P2P protocols and applications, such as Napster and Gnutella, moti-

vated researchers from the distributed systems, networking and database communi-

ties to look more closely into the core mechanisms of these systems and investigate

how these could be supported in a principled way. This quest gave rise to a new wave

of distributed protocols, collectively called distributed hash tables, that were aimed

primarily at the development of P2P applications [1, 15, 97, 135, 165, 173, 180].

DHTs are structured P2P systems, which attempt to solve the following look-up

problem:

Let X be some data item stored at some distributed dynamic network

of nodes. Find data item X.

The core idea in all DHTs is to solve this look-up problem by offering some form

of distributed hash table functionality: assuming that data items can be identified

using unique numeric keys, DHT nodes cooperate to store keys for each other (data

items can be actual data or pointers). Implementations of DHTs offer a very simple

interface consisting of two operations:

• put(ID, item). This operation inserts item with key ID and value item in

the DHT.

• get(ID). This operation returns a pointer to the DHT node responsible for

key ID.

2.1 : Peer-to-Peer Networks 17

Although the DHTs available in the literature differ in their technical details, all

of them address the following central questions:

• How do we map keys to nodes? Keys and nodes are identified by a binary

number. Keys are stored at one or more nodes with identifiers “close” to the

key identifier in the identifier space.

• How do we route queries for keys? Any node that receives a query for key k,

returns the data item X associated with k if it owns k, otherwise it forwards

k to a node with identifier “closer” to k using only local information.

• How do we deal with dynamicity? DHTs are able to adapt to node joins, leaves

and failures and update routing tables with little effort.

The answers to the above questions can give us a good high-level categorization of

existing DHTs [17, 25]. Although the effort of [6] is on providing a reference model

to unify different P2P approaches, it makes a good job on distinguishing six basic

concepts common on all structured overlays that can be used to categorise them.

Among these concepts routing strategy, maintenance, identifier space management

verify our categorisation schema based on the previously asked questions. Here we

discuss the most popular DHTs and present variants and other hybrid approaches

that try to harness the benefits of both unstructured and structured networks.

Scalable Distributed Data Structures

The roots of DHTs are traced back to hashing algorithms and protocols over clusters,

in work conducted some years ago in the area of distributed data structures and

databases. That time the term Scalable Distributed Data Structures (SDDS) was

coined by the Litwin and colleagues in [129] to introduce a class of data structures

used in a distributed environment. Although the principles of SDDS and DHTs are

the same, the application area of the two approaches is very different, since DHTs

were designed and deployed in highly dynamic environments with loosely coupled

components. On the other hand, Linear Hashing (LH) [128] was initially designed for

a single site of a multiprocessor environment with shared memory. In this setting,

18 Chapter 2 : Related Research

Finger Table

N8+1 N14

N8+2 N14

N8+4 N14

N8+8 N21

N8+16 N32

N8+32 N42

N1

N8

N14

N21

N32

N38

N42

N48

N51

N59

Finger Table

N42+1 N48

N42+2 N48

N42+4 N48

N42+8 N51

N42+16 N59

N42+32 N14

lookup(54)

Figure 2.4: An example of a lookup operation over a Chord ring with m=6

LH provides a hashing method that allows the address space to grow or shrink

dynamically and allows disk files to change size dynamically without deterioration

in space utilisation or access time. Its extension, LH* [129] can accommodate any

number of clients and servers and allows a file to extend to any number of sites.

It does not require a central coordinator and records can be located at a constant

number of hops independently of the number on sites.

Chord

Chord [180, 182] uses a variation of consistent hashing [112] to map keys to nodes.

In the consistent hashing scheme each node and data item is assigned an m-bit

identifier, where m should be large enough to diminish the possibility of different

items hashing to the same identifier (a cryptographic hash function such as SHA-

1 is used). The identifier of a node can be computed by hashing its IP address.

For data items, we first decide a key and then hash it to obtain an identifier. For

example, in a file-sharing application the name of the file can be the key (this is

an application-specific decision). Identifiers are ordered in an identifier circle (ring)

modulo 2m i.e., from 0 to 2m− 1. Figure 2.4 shows an example of an identifier circle

with 64 identifiers (m = 6) and 10 nodes.

Keys are mapped to nodes in the identifier circle as follows. Let H be the

consistent hash function used. Key k is assigned to the first node which is equal

or follows H(k) clockwise in the identifier space. This node is called the successor

2.1 : Peer-to-Peer Networks 19

node of identifier H(k) and is denoted by successor(H(k)). We will often say that

this node is responsible for key k. For example in the network shown in Figure 2.4,

a key with identifier 30 would be stored at node N32. In fact node N32 would be

responsible for all keys with identifiers in the interval (21, 32].

If each node knows its successor, a query for locating the node responsible for

a key k can always be answered in O(N) steps where N is the number of nodes

in the network. To improve this bound, Chord maintains at each node a routing

table, called the finger table, with at most m entries. Each entry i in the finger table

of node n, points to the first node s on the identifier circle that succeeds identifier

H(n)+2i−1. These nodes (i.e., successor(H(n)+2i−1) for 1 ≤ i ≤ m) are called the

fingers of node n. Since fingers point at repeatedly doubling distances away from

n, they can speed-up search for locating the node responsible for a key k. If the

finger tables have size O(log N), then finding a successor of a node n can be done

in O(log N) steps with high probability [180].

To simplify joins and leaves, each node n maintains a pointer to its predecessor

node i.e., the first node counter-clockwise in the identifier circle starting from n.

When a node n wants to join a Chord network, it finds a node n′ that is already

in the network using some out-of-band means, and then asks n′ to help n find

its position in the network by discovering n’s successor [182]. Every node runs a

stabilization algorithm periodically to learn about nodes that have recently joined

the network. When n runs the stabilization algorithm, it asks its successor for the

successor’s predecessor p. If p has recently joined the network then it might end-up

becoming n’s successor. Each node n periodically runs two additional algorithms

to check that its finger table and predecessor pointer is correct [182]. Stabilization

operations may affect queries by rendering them slower (because successor pointers

are correct but finger table entries are inaccurate) or even incorrect (when successor

pointers are inaccurate). However, assuming that successor pointers are correct

and the time it takes to correct finger tables is less than the time it takes for the

network to double in size, one can prove that queries can still be answered correctly

in O(log N) steps with high probability [182]. In [180] the details of the Chord

protocols for node joins and leaves, stabilisation and fault-tolerance are provided.

20 Chapter 2 : Related Research

adjacent zones

Figure 2.5: An example of query routing in a CAN DHT with d=2

To deal with node failures and increase robustness, each Chord node n maintains

a successor list of size r which contains n’s first r successors. This list is used when

the successor of n has failed. In practice even small values of r are enough to achieve

robustness [182]. If a node chooses to leave a Chord network voluntarily then it

can inform its successor and predecessor so they can modify their pointers and,

additionally, it can transfer its keys to its successor. It can be shown that with high

probability, any node joining or leaving a Chord network can use O(log2 N) messages

to make all successor pointers, predecessor pointers and finger tables correct [180].

CAN

The concept of a Content-Addressable Network (CAN) is introduced in [165], where

a distributed infrastructure that provides hash table functionality is introduced. In

CAN, a Cartesian coordinate space consisting of d dimensions is partitioned into

zones. Each node n is responsible for one zone and maintains information about

zones that are adjacent to his. As in any DHT, the coordinate space is used to store

key-value pairs. To store a pair (k, v), the key k is hashed using a uniform hash

function H() to produce a point p in the coordinate space such that p = H(k). The

corresponding pair is then stored in the node that is responsible for the zone within

which point p lies.

If a node n wants to retrieve a key-value pair (k, v), the same deterministic

2.1 : Peer-to-Peer Networks 21

hash function H() is used to produce a point p in the coordinate space such that

p = H(k). If p does not lie in n’s zone or in any of the zones of its immediate

neighbours, the request must be routed through the overlay network until it reaches

node n′ that owns the zone within p lies. Message forwarding takes O(d d
√

N), where

N is the number of nodes in the network, if a greedy routing approach that sends

the message to the neighbour closest to the target zone is utilised. With d = log N ,

each node can be reached in O(log N) hops and the routing table in each node takes

O(log N) space.

To join CAN, a node n picks a random point p in the coordinate space (e.g.,

produced by hashing its IP address and port number), and contacts node n′ that is

responsible for the zone within p lies. Upon contact, node n′ splits its zone in half

and assigns one half to n. The key-value pairs lying in the zone to be handed over

are also transferred to n. Splitting of zones is done by assuming a zone ordering

and applying a round robin algorithm so that zones can be re-merged when nodes

leave. Departures or failures of nodes are handled in a similar way by merging zones

of the failed neighbours. Additionally node joins and leaves are cheaper compared

to other DHT approaches (e.g., Chord) since the number of neighbours a node

maintains depends only on the dimensionality of the coordinate space and not on

the number of nodes in the system.

[165] mentions various optimisation to tackle important problems appearing in

CAN. These optimisations include the incorporation of multiple coordinate spaces

to deal with data availability, the use of multiple hash functions and peers per zone

to deal with fault-tolerance, and the use of improved routing metrics to deal with

routing efficiency. An extension of CAN that tackles the problem of application-

level multicast is presented in [166], where multicast functionality can scale to large

groups of nodes at trivial extra cost due to the CAN infrastructure.

Pastry

In [162] a distributed algorithm for accessing resources in an overlay network is

presented by Plaxton and colleagues. This algorithm uses suffix-based hypercube

routing to efficiently locate a resource by utilising routing tables of small size stored

22 Chapter 2 : Related Research

in each node in the network.

Pastry [173] uses a version of Plaxton’s algorithm as the core of its routing

mechanism, modified appropriately to be used in a dynamic environment. Assuming

a network of N nodes, a routing table stored at node n contains log N rows of entries.

Each entry of a row k stores the IPs of those nodes, the identifier of which shares

the same k bits with the identifier of n, but is different in bit k +1. Should there be

more nodes that satisfy this criterion that a row is intended to store, a proximity

metric is used to select the nodes closer to n. Apart from the routing table, a Pastry

node also contains a neighborhood set and a leaf set. The neighborhood set contains

contact information about the nodes closest to n, whereas the leaf set contains the

numerically closest to n larger and smaller identifiers in equal percentage.

A message in Pastry is routed using prefix-based routing contrary to Plaxton’s

algorithm and Tapestry described shortly in the next section. Message forwarding

in Pastry is done as follows. The node checks its leaf set to see if the key falls in this

range. If so, the message is forwarded to the node with an identifier that is closest

to the key. If not, the routing table is used and the receiver is the node that shares

a common prefix with the key by at least one more digit. In special cases where

no such entry is available in the routing table, the message is forwarded to another

node only if it is numerically closer to the key than the current node and shares a

prefix with the key at least as long as the current node. If the routing tables and leaf

sets are correct, the expected number of hops to route a request to the responsible

node is at most dlog2b Ne, where b is an algorithm parameter typically set to 4.

Tapestry

Tapestry [98] bears many resemblances to Pastry and its routing mechanism is also

modelled after Plaxton’s algorithm, with the main differences focusing on adaptabil-

ity, fault-tolerance and other optimisations. Routing is suffix-based and failures are

detected using timeouts and a heartbeat mechanism. Contrary to Plaxton’s work,

Tapestry assigns multiple roots (responsible nodes) for each resource by concate-

nating seed values (e.g., 1, 2, 3) with resource identifiers. Also, to incorporate fault

tolerance, Tapestry maintains multiple neighbors per routing table entry. Finally, a

2.1 : Peer-to-Peer Networks 23

distinguishing feature of Tapestry is its ability to take node proximity into account.

As a message travels around the network, it is preferable to be routed through nodes

that are close (from the physical network point of view) to each other.

Support for dynamic insertion/deletion of resources and protocols for join/departure

of nodes and support for mobile resources is also provided by Tapestry. A dynamic

environment makes the join/leave operations more complex, since proximity has to

be taken into account. A detailed description of these features is out of the scope of

this survey and the interested reader is referred to [98].

P-Grid

P-Grid [1, 3, 7] is a routing infrastructure based on a distributed search trie. Nodes

in P-Grid are self-organised into a distributed trie by pairwise interactions, allowing

the data structure to adapt to different key distributions. Each node holds a part

of the distributed trie, and its position is determined by a bit string that represents

the information the node is responsible for. Prefix-based routing is utilised to locate

a data item stored at a node. To facilitate routing, each node maintains a reference

to at least one other node that is responsible for the other part of the trie at the

same level. When a search request is issued there are two possibilities for each node;

either the node is responsible itself for forwarding the request to the next level, or

the request has to be forwarded to another peer responsible for the other part of the

trie at the same level.

One of the key characteristics of P-Grid is its ability to modify the routing infras-

tructure depending on the key distribution, using path extension or retraction. This

results to the modification of the shape of the underlying (virtual) trie, achieving

uniform load distribution for nodes. Prefix and range search in this DHT approach

is easy to do due to the trie organisation of the underlying network [65].

Other DHTs

In this section, a number of Chord variants and other DHT approaches are presented.

Kademlia [139] uses consistent hashing of keys and nodes to place them in a metric

24 Chapter 2 : Related Research

space. Key-value pairs are stored in nodes with identifiers that are close to the

identifier of the key, using the XOR value of the identifiers as the distance metric.

This offers a different notion of closeness, which makes the distance between any

two nodes symmetric. This results in allowing the node to chose its neighbours from

a set of available choices, which in turn benefits routing (by reducing e.g., latency)

and fault tolerance. Fault tolerance is also supported by avoiding timeouts to detect

failed nodes.

Viceroy [135] maintains a constant-degree, logarithmic approximation of a but-

terfly network [99] for routing. A Viceroy network contains three sets of links: (i)

links for a Chord-like ring, coined general ring, where a node is connected to its

ancestor and predecessor, (ii) links for a level ring, where nodes at the same level

are connected in a ring and (iii) butterfly links, where two “down” links and one

“up” link that connect a node with lower and upper level nodes are utilised. This

constant degree (7 links) routing table achieves routing in a logarithmic number of

hops, which made Viceroy the first DHT to achieve this. For a node join, O(1) nodes

need to change their state and parallel joins and leaves can be handled effectively.

However nodes failures and fault tolerance in general in a constant degree network

are open issues.

Koorde [111] is a Chord variant that inherits the simplicity of Chord and uses de

Bruijn graphs [66] to route messages in a logarithmic number of hops by maintaining

constant-degree routing tables. Like Chord, Koorde uses consistent hashing to map

keys to nodes. The Koorde approach embeds de Bruijn graphs on a sparsely pop-

ulated identifier ring (since way less than 2128 nodes are online each moment) and

uses only 2 links per node n; the successor of n and the first node in the de Bruijn

graph that n belongs to. One of the major contributions of Koorde is the tunable

performance of hop counts per query that depends of the out-degree for each node.

Symphony [136] uses a probabilistic approach to form a Chord-like distributed

data structure. The probability of a link between two nodes in Symphony is inversely

proportional to the distance between them. Simulation results show that the system

scales well for large number of nodes and updates are relatively cheap, providing an

interesting alternative to previously proposed routing schemes.

2.1 : Peer-to-Peer Networks 25

Systems that try to harness the benefits of both unstructured and structured net-

works have also been proposed. Kelips [94] is a super-peer network that uses a DHT

approach to organise nodes into affinity groups. Each node maintains information

about all other nodes in the group (a prohibitively high cost for large network) and

one node from each one of the other groups. Gossiping algorithms (in the spirit of

[8, 70, 108, 109, 144, 205]) are used for maintaining network information. Similarly

Yappers [87] uses a Gnutella-like network and consistent hashing for key storage.

Nearby nodes construct small DHTs and these DHTs form an unstructured network.

In this way, complete reorganisation of the overlay is avoided and topology changes

have a local effect, while the performance of the Gnutella protocol is improved. Fi-

nally SPROUT [138] proposes a DHT routing algorithm that is based on social links

to leverage trust in an structured P2P network.

HyperCuP [177] offers a P2P topology that features a logarithmic network diam-

eter without relying on uniform hash functions. It organises nodes in a hypercube

graph with a tunable base b that is used to adjust the node’s out-degree and net-

work diameter. Nodes are able to join and leave at any time, and other nodes in the

network take up their place to complete the hypercube graph. This design offers ef-

ficient broadcast and search functionality especially for multi-point search, contrary

to other DHT approaches that need specialised algorithms to achieve multicasting

[102, 166].

DKS(N, k, f) [15] is a family of routing infrastructures using three parameters

(N - the maximum number of nodes, k - the search arity and f - the degree of

fault-tolerance) to create an instance of an overlay network. As the authors state,

DKS(N, k, f) can be seen as a generalisation of Chord that however does not use

the active correction mechanism, but rather rely on correction-on-use. Since active

correction mechanisms have been shown to be a significant percentage of the message

load incurred by a DHT, considering out-of-date routing entries as the normal situa-

tion rather than an abnormality is a promising research direction. In DKS(N, k, f)

the lack of active correction of nodes’ routing tables is based on the observation that

the data insertion and lookup messages are sufficient in number so that they can be

used to carry out the maintenance of the overlay as well.

26 Chapter 2 : Related Research

Another feature that makes DKS(N, k, f) a Chord generalisation is the arity

used in the distributed search mechanism. The search arity k is used to divide the

search space in k equal parts. The larger the search arity is, the larger are the

routing table entries of the nodes and thus the smaller the lookup length. When

k = 2, the data structures and the lookup performance are similar to those of Chord.

All DHT designs proposed over the last few years assumed a non-hierarchical

structure of the overlay. Starting from this observation, [88] proposes Canon, a

hierarchical DHT that tries to combine the benefits of both flat and hierarchical

designs. The Canon paradigm offers the same routing facilities as a standard flat

DHT, while at the same time provides efficient multicasting, fault isolation and

better adaptation to the underlying network. To show the benefits of Canon, the

authors apply their design to four popular DHTs and produce their hierarchical

versions which they name after a grotesque paraphrasing of their original names.

Some research has recently been directed to DHT systems that are resilient to

failures; either these failures are random or directed from an adversary that possesses

some knowledge of the system state. A simple approach with logarithmic linkage,

load and dilation, which can guarantee that almost all nodes can locate almost all

items under hostile situations, is presented in [147]. In this work random failures and

random spam generation (a node generating arbitrarily false versions of a requested

data item) are addressed. The authors however do not address the problem of

adversarial node deletion. In [77] this problem is addressed through the adoption

of a butterfly network. In this work a network that is resistant to the deletion of a

constant fraction of the nodes is described, giving guarantees that most of the nodes

will be able to access a large percentage of the data. The authors report that such

a network is able to operate even if half of the nodes go down.

Tornado [101] is a capability-aware DHT design that accommodates for node

heterogeneity. Each node according to its computational capacity and willingness

to contribute decides the number of data item sets (called virtual homes) to store.

Based on a distributed k-ary search tree, Tornado offers O(logk N) lookup time,

with N being the number of nodes in the network. A notion of node quality is

also introduced, by the distinction between “good” and “bad” peers which is mainly

2.1 : Peer-to-Peer Networks 27

made upon the resources they are willing to contribute.

Most of the approaches of DHTs discussed here use some form of hashing to

give nodes and data a unique identity; in practise an overlay graph in the form of

a metric space is built and both data and nodes are placed in this space. Based

on this placement, a resource is assigned to a node using some mapping scheme.

A cryptographic hash function offers a uniformly populated overlay space and a

uniform assignment of resources to nodes. While this is a desirable property, it

has the disadvantage of destroying locality, that is an important feature in many

applications. Some DHT-based approaches have considered this problem [38, 161,

194] and resorted to solutions such as order-preserving hashing. Another strand of

research was taken by two independent approaches; SkipNet [96] based on skip lists

and [22] based on skip graphs. Skip lists are augmented ordered linked lists with

forward links to allow for skipping large parts of the list while searching. They are

a probabilistic data structure with efficiency comparable to that of a binary tree.

SkipNet builds a trie of skip lists that are organised as a ring (the last item in the

list points to the first). SkipNet favours path locality by ensuring that the traffic

within a domain travels only in nodes that belong to this domain. Additionally

each node stores its own data, which preserves locality. [22] proposes a similar

distributed data structure where node additions and deletions can be done in time

that is logarithmic to the size of the graph. The properties of skip lists and the lack

of a hashing mechanism provides data locality and range query support is inherent

in these approaches.

A distributed trie approach is presented in [84], where the keys are maintained

in a trie that is distributed among the nodes. Stale resources are updated by pig-

gybacking appropriate information on query massages that travel the network, thus

coping only with resources that are requested often. Nodes learn system state by

local interaction and system converges to an accurate network map. However stale

views of peers may result in broadcasting of a lookup message to a large fraction of

nodes in the network.

28 Chapter 2 : Related Research

2.2 Applications of Peer-to-Peer Networks

The P2P computing paradigm has been proposed and used for a number of

diverse applications in many scientific areas. File sharing and IP telephony are def-

initely two of the most prominent examples of such applications that made the P2P

computing model popular to the crowds and also to the scientists. Grid computa-

tion was also a popular application of P2P computing advertised by projects such

as SETI@Home and DataSynapse. Moving on a different direction, DHash [63] pro-

poses the use of a structured P2P network to implement an alternative to the DNS

service, and in the same spirit Overlook [191] and [26] use the P2P paradigm to

provide distributed name services. Network performance measurements are another

interesting application scenario built on top of P2P networks. In [179] a distributed

system for network performance monitoring is proposed, and peers distributed all

over the world are used to provide measurements increasing the network coverage

of any manually selected set of measurement points.

The success of file sharing brought to light an interesting application that received

attention from various research communities in the world. Distributed information

(or resource) management emerged as an interesting research area that could benefit

from the P2P paradigm. The idea behind this class of applications was simple yet

fundamental; peers make their resources available to the network and the users query

the network to retrieve resources that match their interests. Resources can be data

that use a specific data model (relational, RDF, XML) or services (described using

an appropriate service description language). In this work we put our focus in the

problem of distributed resource sharing and in our case the data shared by the peers

are documents and document metadata represented with some appropriate data

model, and users query the network using a query language based on IR concepts.

Building such a system involves a number of important issues that need to be

addressed, with system architecture and data model to be two of the most important

design parameters. In the following sections we survey related research on systems

that use an IR-based data model to represent their resources and categorise these

approaches using their architectural choices.

2.3 : Information Retrieval in Peer-to-Peer Networks 29

2.3 Information Retrieval in Peer-to-Peer Networks

In this section, we survey related work in the context of information retrieval in

P2P networks. Early works in the area involve IR on top of unstructured networks,

but with the emergence of DHTs, solutions that exploit the routing efficiency of

such networks have appeared.

P2P networks seem to be an interesting architectural solution for large scale

information retrieval systems due to inherent features such as autonomy, scalability

and fault-tolerance. Work in the area of P2P IR [27, 155, 156] focuses on building

efficient mechanisms that can support advanced retrieval models and languages in

the dynamic setting of a P2P system.

2.3.1 Information Retrieval in Unstructured Peer-to-Peer

Networks

Early work in information retrieval over P2P networks focused on unstructured

protocols (such as Gnutella and FastTrack). In this area of work, the query issued

by the user floods the network with a time-to-live (TTL) restriction, and answers

are collected and returned to the querying peer. This approach has the obvious

inefficiency of probing a large set of peers unrelated to (or with a few information

about) the query.

Keyword Search

Some of the early efforts to support IR functionality on top of unstructured P2P

systems focused on simple keyword search. In [213], selective query forwarding

based on aggregated statistics is examined, and a heuristic that takes into account

the number of answers returned from each peer is reported to provide the most

promising results. In this heuristic, the query is forwarded to the top k peers that

returned the most results in the last ten queries. In the same philosophy, [219]

proposes a similar technique, but with the usage of simpler peer statistics and with

a focus on the quality of the returned results, unlike [213] where the focus is more

30 Chapter 2 : Related Research

on the quantitative aspect.

To improve efficiency in locating rare items in unstructured networks, [57] uses

associations inherent to everyday life (e.g., champagne and caviar are often bought

together) to built associative overlays. In this architecture probing of peers irrelevant

to a query is avoided by grouping similar peers into clusters and routing queries

about rare items to the most relevant cluster. Although many works have considered

improving existing distributed IR algorithms and adapting them to the P2P setting,

the work of [218] showed that topology-aware techniques that take advantage of the

network characteristics can improve the accuracy and performance of current IR

techniques.

Vector Space Model

Advances in query routing in unstructured networks lead the research community

to adopt more sophisticated data models and query languages. In PIRS [216] the

authors use careful propagation of metadata information in a Gnutella-style network

to be able to answer VSM queries in highly dynamic environments. Thus, PIRS tries

to improve query result quality and scalability by treating metadata as an dynamic

resource managed by all the peers in the system. This is achieved through careful

metadata collection, heuristic distribution among the peers and IR-style ranking.

In a more recent work [215], the authors try to reveal how individual characteristics

(such as churn, metadata quality etc.) of current P2P systems affect the quality of

the returned results. Thus, they consider different ranking functions and metadata

description techniques and measure the effectiveness of each combination.

The PlanetP [64] system uses a variation of tf/idf to decide what nodes should

be contacted to answer a query. To facilitate this, each peer actively disseminates

its inverted index using compact summaries acquired through a Bloom filter and

a gossiping algorithm to advertise its contents to the network. [146] reports that

although PlanetP works well for moderately-sized P2P networks, it is not scalable

to big network sizes with churn. This is because the number of summaries grows

linearly to the number of peers in the network, and churn makes summary gossiping

even more bandwidth-consuming. Thus, [146] proposes Rumorama, a framework

2.3 : Information Retrieval in Peer-to-Peer Networks 31

where a PlanetP network is divided to subnetworks, and a peer queries representa-

tives of each subnetwork to get an answer set. A similar approach that tries to create

clusters of nodes with similar interests is presented in [164], where a distributed peer

clustering mechanism is proposed as one of the layers of a multi-layered P2P archi-

tecture. In this context, each peer uses a local clustering algorithm to cluster its

resources and uses the clusters’ centroids as its description of interests. Message

walks are then used to create clusters of similar peers and user queries are for-

warded to nodes within a cluster. Similarly the creation of groups of peers using the

probability to answer the same set of queries is studied in [158], while in [120] peer

clustering is achieved by comparing Bloom filter summaries of XML documents, and

the clustering information is used for path query answering.

2.3.2 Information Retrieval in Super-Peer Networks

Another class of P2P systems over which IR functionality has been developed is

super-peer systems discussed in Section 2.1.2. Here we survey some interesting

approaches.

Keyword Search

In super-peer networks, initial work on keyword search was proposed by modify-

ing Sun’s JXTA Framework. In JXTA Search [206], an extension of the current

JXTA framework that accommodates distributed information routing, is presented.

A JXTA Search network is a hierarchical P2P network that consists of super-peers

responsible for query routing, and clients that are either information providers or in-

formation consumers. In JXTA Search, information providers publish their content

in the form of query descriptions they are capable (and willing) to answer, while

information consumers submit queries to the network and these queries are routed

appropriately to all interested providers.

32 Chapter 2 : Related Research

Vector Space Model

Digital library scenarios were the dominant application used to develop hierarchical

full-text query services. In [131] the authors study the problem of content-based

retrieval in distributed digital libraries focusing on resource selection and document

retrieval. They propose to use a 2-level hierarchical P2P network where digital

libraries (called leaf nodes) are clients that cluster around directory nodes that form

an unstructured P2P network in the second level of the hierarchy. In the same spirit,

[168] investigates robustness issues in networks where directory replication but no

data replication are available, while [132] examines result merging algorithms that

can be utilised by hubs. In a more recent paper [130] the authors define the concept of

neighborhood in hierarchical P2P networks and use this concept to devise a method

for super-peer selection and ranking. In a similar fashion, [114, 115] propose an

architecture for IR based clustering of peers in semi-collaborating overlay networks.

Top-k Query Processing

A strand of work that represents a more qualitative approach to the retrieval of

relevant documents over structured overlays is taken by considering top-k retrieval

and PageRank utilisation in a P2P setting. Since users are generally not interested

in large answer sets, and generally prefer a small ordered set of the most relevant

answers to a query, [29, 150] proposes a super-peer network especially designed for

decentralised top-k retrieval. This functionality is made possible through the use of

local rankings and a rank merging algorithm. Finally, [55] proposes a Personalised

PageRank in a P2P setting and uses this algorithm to improve the selection of

neighbors in neighbor-based searches.

2.3.3 Information Retrieval in Structured Peer-to-Peer Net-

works

[95] was one of the early papers setting the research agenda for P2P complex query

processing on top of DHTs. The authors discuss the ability to build information

retrieval functionality over text databases on top of structured overlays, while iden-

2.3 : Information Retrieval in Peer-to-Peer Networks 33

tifying the need for a DHT-agnostic API that will facilitate the portability of appli-

cations built on top of such overlays. In a similar spirit, [127] discusses the feasibility

of Web search in a P2P environment and estimates the difficulty of the problem.

The authors revisit known techniques and optimisations from different research areas

and apply them to the DHT setting. They conclude that, obviously, naive imple-

mentations of Web search are not to be considered effective, and that a combination

of optimisations is necessary.

Keyword Search

Supporting keyword search in a structured overlay did not receive much attention

from the research community. The reasons for that were that such functionality

was straightforward to implement on top of a DHT, and that researchers started

looking into more sophisticated data models and query languages trying to harness

the advantages of DHTs. A straightforward approach to support keyword searching

in P2P networks is presented in [171]. Each node in the network is responsible for

a specific keyword through the DHT hash function. The authors focus on multiple

keyword queries and use a combination of optimisation techniques including Bloom

filters, virtual hosts, caching and incremental results to reduce network traffic and

balance the load among the peers.

Vector Space Model

A significant number of approaches tried to support VSM on top of structured over-

lays. Meteorograph [100] was one of the early papers to deal with the problem of

similarity search over structured P2P networks. The authors devise a home-brewed

structured overlay network, called Tornado [101], and describe how to support sim-

ilarity search and ranked search in a linear hash addressing space overlay. In this

work the authors also discuss the load balancing issues associated with such an

approach and propose initial solutions. Another approach focusing more on archi-

tectural issues of building a P2P search engine was ODISSEA [184]. In ODISSEA

a two tier architecture is adopted, where the lower tier nodes of the system are

implemented on top of Pastry DHT. These nodes provide the search middleware

34 Chapter 2 : Related Research

that is responsible for bringing together the upper tier nodes, namely update clients

and query clients. This system was one of the first attempts to utilise a DHT in a

super-peer environment.

While most of related papers utilise a DHT to route the queries to appropriate

peers, Minerva [35] follows a different approach. In Minerva the structured overlay

offers a conceptually global, but physically distributed directory, that maintains IR-

style statistics and quality of service information. This information is exploited by

querying peers, and most relevant ones according to database selection algorithms

[33] are contacted. Emphasis is on peer autonomy and several extensions have been

proposed. These extensions take into account overlap between peers’ documents

[34, 142] to improve database selection, and provide algorithms for the distribution

of data and processing to cope with the problem of load balancing [141].

Latent Semantic Indexing

Since much of research was focused on the VSM model, other approaches that coped

with the rather popular Latent Semantic Indexing (LSI) model appeared. In these

efforts, researchers focused on extracting feature vectors from documents to allow the

retrieval of relevant documents even though some of the query keywords do not exist

in them. This approach has been followed to alleviate problems with polysemy11

and synonymity12 observed with exact keyword matching. pSearch [188, 189] was

the first P2P system that used LSI to reduce the feature vectors of the documents.

In pSearch the authors propose the usage of a multi-dimensional CAN to efficiently

distribute document indices in the P2P network. In [175] a similar approach is

proposed, and Chord DHT is used to index the documents and route the queries to

appropriate peers. In this work the authors claim that scalability issues of pSearch

are improved, since their approach is independent of corpus size, while all types of

data (documents, images, music files etc.) can be queried, given that a meaningful

feature extraction method for this type of data exists.

11Word with Greek roots, meaning that a single word has multiple meanings
12Word with Greek roots, meaning that multiple words have the same meaning

2.3 : Information Retrieval in Peer-to-Peer Networks 35

Distributed PageRank

Ranking of a page based on link structure and hub/authority computation is an

important technique that has boosted search engines’ effectiveness. Two prominent

examples of determining the “importance” of a page are HITS [116] and Google’s

PageRank algorithm [39]. The need for such techniques in a P2P setting has driven

work in this area. Early work presented in [2] has identified the problem of cen-

tralised approaches to ranking and presented a ranking algebra as a formal frame-

work for ranking computation. They show that the use of only local information can

approximate PageRank that is based on global information, making it an appealing

approach for a P2P-based search engine. Moreover, [176] presents a distributed im-

plementation of the PageRank algorithm in a P2P environment that also supports

incremental computation of PageRank values as new documents are inserted into the

system. Then the authors integrate their algorithm with existing P2P search algo-

rithms for both structured and unstructured networks, and propose an incremental

search algorithm that uses their distributed PageRank in a DHT environment. The

same year with the work presented above, another approach [178] to distributed

PageRank computation was presented in a different forum. The authors use struc-

tured overlays as the routing infrastructure to support distributed page ranking and

introduce a method for indirect transmission to reduce communication overhead be-

tween the different page “rankers”. Their approach is reported to converge to the

ranks computed by the centralised counterpart, while convergence time depends on

network characteristics.

Top-k Query Processing

Important qualitative techniques such as top-k query processing could not avoid

receiving attention from the research community. In an elegant approach to the

problem, a framework coined KLEE [140], designed to support distributed top-k

algorithms for wide-area networks, is put forward. In this framework the authors

describe how to utilise a fixed number of communication phases to achieve smaller

response times in a distributed environment. One of the main contributions of the

36 Chapter 2 : Related Research

KLEE approach is the flexibility to trade-off execution cost and result quality by

using approximation techniques in a P2P setting.

Other Approaches

The usage of DHTs as the routing substrate for P2P IR has also been introduced

to the domain of digital libraries. Recent proposals include OverCite [183] and [28].

OverCite proposes a distributed alternative for the scientific literature digital library

CiteSeer13, using a DHT infrastructure to harness distributed resources (storage,

computational power, etc.). The claim behind OverCite is that due to resource

limitations of CiteSeer a wide variety of useful features are not supported. Paper

[28] argues that IR techniques need collection-wide information and proposes an

indexing scheme that deals with the storage, the distribution and the computation

of such information in federated library collections.

Architectural issues for P2P information retrieval are discussed in [5], where the

authors develop a generic architecture of such a system to favor reusability of system

components and (eventually) interoperability of different solutions. The architecture

of such a system is decomposed into four components and each layer uses operations

of the layer(s) underneath to perform its own operations.

Most of the work on P2P IR has primarily concentrated on the efficient distri-

bution of the index to the peers and on result quality, with the goal of eventually

distributing Google [91]. Global statistics such as document frequency are assumed

to be available in most of the settings. [117] studies the feasibility of collecting

and maintaining such statistics in a DHT environment and introduces optimisation

techniques to improve the performance of the overlay network.

2.4 Information Filtering

Information Retrieval and Information Filtering (or selective dissemination of in-

formation or publish/subscribe) are often referred as two sides of the same coin [30].

Although many of the underlying issues are similar in retrieval and filtering, since

13http://citeseer.ist.psu.edu

2.4 : Information Filtering 37

in both cases a document needs to be matched against an information need, the

design issues, the techniques and algorithms devised to increase filtering efficiency

differ significantly. In this section we present initial work on IF from the IR commu-

nity and summarise important approaches from database and distributed systems

researchers. Finally, we focus on research conducted in IF for P2P networks.

2.4.1 Information Filtering in Information Retrieval, Data-

bases and Distributed Systems

Historically, work on selective dissemination of information started by a 1958 article

of Luhn [133], where a “Business Intelligence System” is described. In his concept,

individual users would have their interests described in profiles, and a text selection

system would produce lists of new documents that would allow users to choose

between ordering a new document or not. At that day, the selection module was

described using the terms selective dissemination of new information. The term

information filtering was coined later by Denning in [71], where he described the

need to filter incoming mail messages to sort them in order of urgency. Here we

will discuss only the papers that are more relevant to our work and mainly those

referring to content filtering (now commonly referred as content-based filtering).

Early approaches to information filtering by IR researchers focused mainly on

appropriate representations of user interests [145] and on improving filtering effec-

tiveness [103]. In [145] behaviour monitoring and a substring indexing method is

proposed in order to decide which documents are of interest to the user. In [103]

filtering is addressed using ensemble methods from machine learning, where combi-

nations of strategies are explored as a means to increase filtering effectiveness. Other

approaches include statistical filtering systems such as LSI-SDI [80], that uses the

LSI method to filter incoming documents.

One of the first papers in this area to address performance is [31], where an

information filtering system capable of scaling up to large filtering tasks is described.

The authors assume a server that receives documents at a high rate, and propose

algorithms that support vector space queries by improving the algorithm SQI of

38 Chapter 2 : Related Research

[210]. InRoute [41] was another influential system based on inference networks with

emphasis on filtering efficiency. InRoute creates documents and query networks and

uses belief propagation techniques to filter incoming documents. Other works in

the area mainly focus on adaptive filtering [40, 220] and how vector space queries

and their dissemination thresholds are adapted based on documents processed in

the past.

Apart from the statistical filtering approaches described above, filtering systems

based on the Boolean model have also been developed. A representative example is

LMDS [217], that uses least frequent trigrams to allow for fast processing of incoming

documents. In LMDS, profiles are indexed under the least frequent trigram, whereas

documents are represented as a sequence of trigrams. At filtering time a table lookup

determines which profiles match the incoming document. Since false positives may

occur, a second stage is necessary to determine the actual matches.

News filtering [61, 86] is also an active research area closely related to IF. In

this context however the focus is on in personalisation, duplicate elimination (or

information novelty) and freshness of the results shown to the user, whereas in our

context we emphasise information quality, scalability and efficiency.

Most of the work on information filtering in the database literature has its ori-

gins in the paper [81] which also used the term selective dissemination of informa-

tion. Their preliminary work on the system DBIS appears in [19]. The term pub-

lish/subscribe system, which comes from distributed systems, has also been used in

this context by database researchers. Another influential system is SIFT [209, 211]

where publications are documents in free text form and queries are conjunctions of

keywords. SIFT was the first system to emphasize query indexing as a means to

achieve scalability in pub/sub systems [209]. Later on, similar work concentrated

on pub/sub systems with data models based on attribute-value pairs and query lan-

guages based on attributes with arithmetic and string comparison operators (e.g.,

Le Subscribe [75], the monitoring subsystem of Xyleme [151] and others). [43] is

also notable because it considers a data model based on attribute-value pairs but

goes beyond conjunctive queries – the standard class of queries considered by other

systems [75]. Subscription summarisation to support pub/sub functionality was also

2.4 : Information Filtering 39

a prominent example of the pre-DHT era, with works such as [193]. In the context

of XML data management [121], recent work has concentrated on publications that

are XML documents and queries that are subsets of XPath or XQuery (e.g., XFilter

[18], YFilter [73], Xtrie [48] and xmltk [92]). All these papers discuss sophisticated

filtering algorithms based on indexing queries.

In the area of distributed systems and networks various pub/sub systems have

been developed over the years. Researchers have utilized here various data mod-

els based on channels, topics and attribute-value pairs (exactly like the models of

the database papers discussed above) [45]. The latter systems are called content-

based like in the IR literature, as attribute-value data models are flexible enough

to express the content of messages in various applications. The query languages

of these systems are based on Boolean combinations of arithmetic and string oper-

ations. Work in this area has concentrated not only on filtering algorithms as in

the database papers surveyed above, but also on distributed pub/sub architectures

[12, 45]. SIENA [45] is probably the most elegant example of a system to be devel-

oped in this area. SIENA uses a data model and language based on attribute-value

pairs and demonstrates how to express notifications, subscriptions and advertise-

ments in this language.

2.4.2 Information Filtering in Peer-to-Peer Networks

The core ideas of SIENA have recently been used by our group in the pub/sub

systems DIAS [123] and P2P-DIET [104, 125, 154]. In some sense, the approach

of DIAS and P2P-DIET puts together prominent ideas from the database and dis-

tributed systems tradition in a single unifying framework. Another important con-

tribution of P2P-DIET is that it demonstrates how to support, by very similar

protocols, the traditional ad-hoc or one-time query scenarios of typical super-peer

systems [212] and the pub/sub features of SIENA [45].

With the advent of distributed hash-tables (DHTs) such as CAN, Chord and

Pastry, a new wave of pub/sub systems based on DHTs has appeared. Scribe [174]

is a topic-based publish/subscribe system based on Pastry. Hermes [160] is similar

40 Chapter 2 : Related Research

to Scribe because it uses the same underlying DHT (Pastry) but it allows more

expressive subscriptions by supporting the notion of an event type with attributes.

Each event type in Hermes is managed by an event broker which is a rendezvous

node for subscriptions and publications related to this event. Related ideas appear

in [186] and [190]. PeerCQ [90] is another notable pub/sub system implemented on

top of a DHT infrastructure. The most important contribution of PeerCQ is that

it takes into account peer heterogeneity and extends consistent hashing [112] with

simple load balancing techniques based on appropriate assignment of peer identifiers

to network nodes.

Meghdoot [93] is a recent pub/sub system implemented on top of a CAN-like

DHT. Meghdoot supports an attribute-value data model and offers new ideas for

the processing of subscriptions with range predicates (e.g., the price is between 20

and 40 Euros) and load balancing. A P2P system with an attribute-value data

model similar to Meghdoot (utilized in the implementation of a pub/sub system for

network games) is Mercury [37, 38]. Supporting a rich set of queries in the context

of a pub/sub system is also the target of PastryStrings [11], that utilises prefix-based

routing to facilitate both numerical and string queries.

New approaches that use a DHT as the routing infrastructure to build filtering

functionality for more IR-based models and languages have recently been intro-

duced. pFilter [187] is the closest system to the ideas presented in this thesis. It

uses a hierarchical extension of CAN [165] to filter unstructured documents and

relies on multi-cast trees to notify subscribers. VSM and LSI can be used to match

documents to user queries. By comparing pFilter with the proposals of this the-

sis, we can see that we have a more expressive data model and query language,

and do not need to maintain multi-cast trees to notify subscribers. However, the

multi-cast trees of pFilter take into account network distance something that we

do not consider at all in this thesis. We also consider load balancing issues that

are not studied in pFilter. Finally, regarding routing, it would be interesting to

compare experimentally a hierarchical extension of our work with the hierarchical

routing protocols of pFilter. Finally, supporting prefix and suffix queries in string

attributes is the focus of the DHTStrings system [10], which utilises a DHT-agnostic

2.5 : Conclusions 41

architecture to develop algorithms for efficient multi-dimensional event processing.

2.5 Conclusions

In this chapter, related literature on P2P systems was surveyed, starting with

three pioneer systems that popularised the P2P paradigm, and concluding with an

extensive survey of the state of the art in structured overlays. Subsequently, we

reviewed work carried out at the intersection of information retrieval/filtering and

P2P systems.

In the next chapters we present our contributions to each one of the techni-

cal challenges posed in Section 1.1. The next chapter concentrates on presenting

three progressively more expressive data models and query languages designed using

concepts from IR, and focuses on model-theoretic questions for the logics of those

models.

42 Chapter 2 : Related Research

Chapter 3

Data Models and Query

Languages Based on Information

Retrieval

I n this chapter we study three well-known data models of IR [24] and digital

libraries [49–51], which we have calledWP , AWP andAWPS in [123–125, 200,

202, 203]. Variations of these models are in use in most deployed digital libraries,

text extenders for relational database systems, search engines and P2P systems

for information retrieval and filtering, and have also been used for annotating and

querying resources in the context of this work. Chapters 4 and 5 will show how

to process queries expressed in AWPS on top of DHTs, while Chapter 6 presents

the local data structures used for indexing AWP queries. The main contribution of

the chapter is the study of the complexity of query satisfiability and entailment for

models WP and AWP using techniques from propositional logic and computational

complexity. The results of this chapter have been published in [126].

Data model WP is based on free text and its query language is based on the

Boolean model for word patterns. Word patterns are formulas that enable the ex-

pression of constraints on the existence, non-existence or proximity of words in a

text document. Data model AWP extends WP with named attributes with free

text as values. The query language of AWP is also a simple extension of the query

44
Chapter 3 : Data Models and Query Languages Based on

Information Retrieval

language of WP so that attributes are included. Finally, the model AWPS extends

AWP by introducing a “similarity” operator in the style of modern IR, by resorting

to well-known IR tools such as VSM or LSI [24].

Models such as WP that are based on word patterns were introduced in the

early days of IR and have been implemented in many digital library systems in

wide use today [24]. Word patterns are also used in (a) all current search engines,

(b) advanced IR models such as the model of proximal nodes [148] which allows

proximity operators between arbitrary structural components of a document (e.g.,

paragraphs or sections), and (c) recent full-text extensions to XML-based languages

e.g., TeXQuery [20].

The model AWP has been recently used in our systems DIAS and P2P-DIET

[106, 123, 200]. DIAS [123] is a distributed alert service for digital libraries which

utilises a P2P architecture and protocols similar to that of the event dissemina-

tion system SIENA [44]. It uses WP and AWP as an expressive data model and

query language for textual information. P2P-DIET [106] is the ancestor of DIAS

and uses AWP as a metadata model for describing and querying digital resources.

Centralised filtering algorithms especially designed for model AWP are discussed

in detail in Chapter 6. Finally, AWPS is used in the DHT-based P2P systems

DHTrie, discussed in Chapter 5 and [203], and LibraRing, presented in Chapter 4

and [202].

In the database literature, word patterns have been studied by Chang and col-

leagues in the context of integrating heterogeneous digital libraries [49–51]. The

model AWP is essentially the model of [50] but with a slightly different class of

word patterns. Text extensions of commercial relational database products (e.g.,

Oracle 10g) also offer full support for word patterns.

Even though many deployed systems are using WP and AWP and many papers

have appeared on their variations, only [49–51, 123, 124] have studied in depth the

logical foundations of these data models. As we have previously discussed in [124], we

would like to develop information retrieval and filtering systems in a principled and

formal way. With this motivation and the architectures of [106, 123, 200, 202, 203]

in mind, we have posed the following requirements for models and languages to be

45

used in information retrieval and filtering systems [124]:

1. Expressiveness. The languages for documents and queries must be rich enough

to satisfy the demands of information consumers and the capabilities of infor-

mation providers.

2. Formality. The syntax and semantics of the proposed models and languages

must be defined formally.

3. Computational efficiency. The following problems should be defined formally

and algorithms must be provided for their efficient solution (keeping in mind

that there will be a trade-off with the expressiveness requirement):

(a) The satisfiability problem: Deciding whether a query can be satisfied by

any document at all.

(b) The satisfaction problem: Deciding whether a document satisfies a query.

(c) The retrieval problem: Given a collection of documents D and an incom-

ing query q, find all documents d ∈ D that satisfy q.

(d) The filtering problem: Given a collection of queries Q and an incoming

document d, find all queries q ∈ Q that satisfy d.

(e) The entailment problem: Deciding whether a query is more or less “gen-

eral” than another.

In this work we define formally the models WP , AWP and AWPS and concen-

trate on model-theoretic questions for the logics of WP and AWP that have been

ignored so far. Additionally in the context of this thesis, we provide centralised and

distributed algorithms for the filtering problem (see Chapters 6 and 5 respectively

and also papers [200, 203]). We study the model theory of WP and AWP and

especially questions related to satisfiability and entailment. We show that the satis-

fiability problem for queries in WP and AWP is NP-complete and the entailment

problem is coNP-complete. We also discuss cases where these problems can be

solved in polynomial time. Our results are original and complement the studies of

[50, 124] where no such complexity questions were posed.

46
Chapter 3 : Data Models and Query Languages Based on

Information Retrieval

In the next sections we introduce the models WP , AWP and AWPS and

explain our formal data modeling perspective. Sections 3.3 and 3.4 present our

complexity results on satisfiability and entailment, while Section 3.5 briefly presents

other data models (and systems) related to the ones studied here. The last section

summarises the results presented and concludes the chapter.

3.1 The Models WP and AWP
Let us start by presenting the data model WP and its query language. WP has

been inspired by [49]. It assumes that textual information is in the form of free text

and can be queried by word patterns (hence the acronym for the model).

We assume the existence of a finite alphabet Σ. A word is a finite non-empty

sequence of letters from Σ. We also assume the existence of a (finite or infinite) set

of words called the vocabulary and denoted by V . A text value s of length n over

vocabulary V is a total function s : {1, 2, . . . , n} → V . In other words, a text value

s is a finite sequence of words from the assumed vocabulary and s(i) gives the i-th

element of s. | s | will denote the length of text value s (i.e., the number of words in

it).

We now give the definition of word pattern. We assume the existence of a set of

(distance) intervals I = {[l, u] : l, u ∈ N, l ≥ 0 and l ≤ u}∪{[l,∞) : l ∈ N and l ≥
0}. Let i be an interval in I. We will denote the left-endpoint (respectively right-

endpoint) of i by inf (i) (respectively sup(i)).

Definition 1 Let V be a vocabulary. A word pattern over vocabulary V is a formula

in any of the following forms:

1. w, where w is a word of V.

2. w1 ≺i1 · · · ≺in−1 wn, where w1, . . . , wn are words of V and i1, . . . , in−1 are

intervals of I.

3. ¬φ, φ1 ∨ φ2 or φ1 ∧ φ2, where φ, φ1 and φ2 are word patterns.

Example 1 The following are word patterns:

3.1 : The Models WP and AWP 47

constraint ∧ (optimisation ∨ programming)

¬algorithms ∧ ((complexity ≺[1,5] satisfaction) ∨ (complexity ≺[1,8] filtering))

Operators ≺i are called proximity operators and are generalizations of the tradi-

tional IR operators kW and kN [49]. Proximity operators are used to capture the

concepts of order and distance between words in a text document. They can be used

to construct formulas of WP that we will call proximity word patterns (Case 2 of

Definition 1). The proximity word pattern w1 ≺[l,u] w2 stands for “word w1 is before

w2 and is separated by w2 by at least l and at most u words”. The interpretation

of proximity word patterns with more than one operator ≺i is similar.

Traditional IR systems have proximity operators kW and kN where k is a natural

number. The proximity word pattern wp1 kW wp2 stands for “word pattern wp1

is before wp2 and is separated by wp2 by at most k words”. In our work this can

be captured by wp1 ≺[0,k] wp2. The operator kN is used to denote distance of at

most k words where the order of the involved patterns does not matter. In WP the

expression wp1 kN wp2 can be approximated by wp1 ≺[0,k] wp2∨wp2 ≺[0,k] wp1. [49]

gives an example (page 23) that demonstrates why these two expressions are not

equivalent given the meaning of operator kN . The example involves a text value

and word patterns with overlapping positions in that text value hence the difference.

The development of proximity word patterns in [49–51] follows closely the IR

tradition, i.e., operators kW and kN (already mentioned above) are used together

with the boolean operators AND and OR. These operators can be intermixed in

arbitrary ways (e.g., ((w1 AND (w2 (8W) w3)) (10W) w4) where w1, w2, w3, w4 are

words is a legal expression), and the result of their evaluation on document databases

is defined in an algebraic way. WP opts for an approach which is more in the spirit

of Boolean logic, allows negation and carefully distinguishes word patterns with and

without proximity operators. This leads to a simpler language because cumbersome

(and not especially useful) constructions such as the above are avoided. In the spirit

of Boolean logic, an atomic word pattern (i.e., a word or a proximity word pattern)

allows us to distinguish between text values: those that satisfy it, and those that do

not. Boolean operators are then given their standard semantics.

48
Chapter 3 : Data Models and Query Languages Based on

Information Retrieval

In addition to the above operators, WP allows the expression of simple order

constraints between words using operators ≺[0,∞]. Order constraints of the form

≺[0,∞] between various text structures are also present in more advanced text model

proposals such as the model of proximal nodes of [148].

Definition 2 A word pattern will be called positive if it does not contain negation.

A word pattern will be called proximity-free if it does not contain formulas of the

form w1 ≺i1 · · · ≺in−1 wn. A word pattern will be called conjunctive if it does not

contain disjunction and negation.

Example 2 The following are positive word patterns:

satisfiability,

local ∧ search ∧ algorithms,

information ∧ (retrieval ∨ dissemination),

logic ≺[0,1] computational ≺[0,0] complexity

The first three are proximity-free word patterns. The first, second and fourth word

pattern is conjunctive.

Definition 3 Let V be a vocabulary, s a text value over V and wp a word pattern

over V. The concept of s satisfying wp (denoted by s |= wp) is defined as follows:

1. If wp is a word of V then s |= wp iff there exists p ∈ {1, . . . , |s|} such that

s(p) = wp.

2. If wp is a proximity word pattern of the form w1 ≺i1 · · · ≺in−1 wn then s |= wp

iff there exist p1, . . . , pn ∈ {1, . . . , |s|} such that, for all j = 2, . . . , n we have

s(pj) = wj and pj − pj−1 − 1 ∈ ij−1.

3. If wp is of the form ¬wp1, wp1 ∧ wp2, wp1 ∨ wp2 or (wp1) then s |= wp is

defined exactly as satisfaction for Boolean logic.

A word pattern wp is called satisfiable if there is a text value s that satisfies it.

Otherwise, it is called unsatisfiable.

3.1 : The Models WP and AWP 49

Example 3 The word patterns of Examples 1 and 2 are satisfiable. Word patterns

¬programming ∧ (constraint ≺[0,0] programming),

(constraint ≺[0,0] programming) ∧ ¬(constraint ≺[0,2] programming)

are unsatisfiable.

Definition 4 Let wp1 and wp2 be word patterns. We will say that wp1 entails wp2

(denoted by wp1 |= wp2) iff for every text value s such that s |= wp1, we have

s |= wp2. If wp1 |= wp2 and wp2 |= wp1 then wp1 and wp2 are called equivalent

(denoted by wp1 ≡ wp2).

Example 4 Word pattern constraint ∧ programming entails word pattern constraint.

Word pattern

optimization ∧ (constraint ≺[0,0] programming)

entails constraint ≺[0,10] programming.

Finally, word patterns

constraint ≺[0,4] programming,

constraint ∧ (constraint ≺[0,4] programming)

are equivalent.

Proposition 3.1.1 Let wp1 and wp2 be two word patterns. wp1 |= wp2 iff wp1 ∧
¬wp2 is unsatisfiable.

Let us close this section by pointing out that proximity word patterns have been

considered as atomic formulas of WP (Definition 1) because, in general, negation

cannot be moved inside a proximity word pattern as in the case of Boolean operators.

The interested reader can be persuaded by trying to do this for the following formula:

¬(luxurious ≺[0,3] hotel ≺[0,3] beach)

50
Chapter 3 : Data Models and Query Languages Based on

Information Retrieval

If we restrict our attention to proximity formulas with a single proximity operator,

this restriction can easily be lifted. For example, the word pattern

¬(luxurious ≺[0,3] hotel)

is equivalent to the following:

¬luxurious ∨ ¬hotel ∨ hotel ≺[0,∞] luxurious ∨ luxurious ≺[4,∞] hotel

Let us now use the machinery of WP to define data model AWP . The new

concept of AWP is the concept of attribute with value free text (in the acronym

AWP , the letter A stands for “attribute”).

We assume the existence of a countably infinite set of attributes U called the

attribute universe. A document schema D is a pair (A,V) where A is a subset of

the attribute universe U and V is a vocabulary. A document d over schema (A,V)

is a set of attribute-value pairs (A, s) where A ∈ A, s is a text value over V , and

there is at most one pair (A, s) for each attribute A ∈ A.

Example 5 The following is a document over schema ({AUTHOR, TITLE, ABSTRACT},V):

{ (AUTHOR,“John Brown”),

(TITLE,“Local search and constraint programming”),

(ABSTRACT ,“In this paper we show that . . . ”) }

The syntax of the query language of AWP is given by the following recursive

definition.

Definition 5 A query over schema (A,V) is a formula in any of the following

forms:

1. A w wp, where A ∈ A and wp is a word pattern over V (this is read as “A

contains word pattern wp”).

2. A = s, where A ∈ A and s is a text value over V.

3.1 : The Models WP and AWP 51

3. ¬φ, φ1 ∨ φ2, φ1 ∧ φ2, where φ, φ1 and φ2 are queries.

Example 6 The following is a query over the schema shown in Example 5:

AUTHOR w Brown ∧
TITLE w search ∧ (constraint ≺[0,0] programming)

Definition 6 Let D be a document schema, d a document over D and φ a query

over D. The concept of document d satisfying query φ (denoted by d |= φ) is defined

as follows:

1. If φ is of the form A w wp then d |= φ iff there exists a pair (A, s) ∈ d and

s |= wp.

2. If φ is of the form A = s then d |= φ iff there exists a pair (A, s) ∈ d.

3. If φ is of the form ¬φ1 then d |= φ iff d 6|= φ1. Similarly for ∧ and ∨.

Example 7 The query of Example 6 is satisfied by the document of Example 5.

Proposition 3.1.2 Let A be an attribute and wp1, wp2 be word patterns. Then, the

following equivalences hold:

1. ¬A w wp ≡ A w ¬wp

2. A w (wp1 ∧ wp2) ≡ (A w wp1) ∧ (A w wp2)

3. A w (wp1 ∨ wp2) ≡ (A w wp1) ∨ (A w wp2)

4. ¬(A w (wp1 ∧ wp2)) ≡ (¬A w wp1) ∨ (¬A w wp2)

5. ¬(A w (wp1 ∨ wp2)) ≡ (¬A w wp1) ∧ (¬A w wp2)

Definition 7 A query is called atomic if it is of the form A = t where t is a text

value, or A w wp where wp is a word or a proximity word pattern. A query is called

conjunctive if it does not contain disjunction.

52
Chapter 3 : Data Models and Query Languages Based on

Information Retrieval

Example 8 The following queries are atomic:

AUTHOR = “James Brown”, T ITLE w search,

ABSTRACT w constraint ≺[0,0] programming

Proposition 3.1.3 Every query is equivalent to a Boolean combination of atomic

queries.

Proof: Use the first three equivalences of Proposition 3.1.2 repeatedly.

3.2 Extending AWP with Similarity

Let us now define our third data model AWPS and its query language. AWPS
extends AWP with the concept of similarity between two text values (the letter S
stands for similarity). The idea here is to have a “soft” alternative to the “hard”

operator w. This operator is very useful for queries such as “I am interested in

papers that have the term local search in their title” which can be written in AWP
as

TITLE w (local ≺[0,0] search)

but it might not be very useful for queries “I am interested in papers about the use

of local search techniques for the problem of test pattern optimisation”.

The desired functionality can be achieved by resorting to an important tool

of modern IR: the weight of a word as defined in the Vector Space Model (VSM)

[24, 137, 207]. In VSM, documents (text values in our terminology) are conceptually

represented as vectors. If our vocabulary consists of n distinct words then a text

value s is represented as an n-dimensional vector of the form (ω1, . . . , ωn) where ωi is

the weight of the i-th word (the weight assigned to a non-existent word is 0). With a

good weighting scheme, the VSM representation of a document can be a surprisingly

good model of its semantic content in the sense that “similar” documents have very

close semantic content. This has been demonstrated by many successful IR systems

3.2 : Extending AWP with Similarity 53

[24] or database systems adopting ideas from IR (see for example, WHIRL [58])1.

In VSM, the weight of a word is computed using the heuristic of assigning higher

weights to words that are frequent in a document and infrequent in the collection

of documents available. This heuristic is made concrete using the concepts of word

frequency and the inverse document frequency defined below.

Definition 8 Let wi be a word in document dj of a collection C. The term frequency

of wi in dj (denoted by tfij) is equal to the number of occurrences of word wi in dj.

The document frequency of word wi in the collection C (denoted by dfi) is equal to

the number of documents in C that contain wi. The inverse document frequency of

wi is then given by idfi = 1
dfi

. Finally, the number tfij · idfi will be called the weight

of word wi in document dj and will be denoted by ωij.

At this point we should stress that the concept of inverse document frequency

assumes that there is a collection of documents which is used in the calculation. In

Chapters 4, 5 and 6 we assume that for each attribute A there is a collection of

text values CA that is used for calculating the idf values to be used in similarity

computations involving attribute A (the details are given below). CA can be a

collection of recently processed text values as suggested in [76, 211].

We are now ready to define the main new concept in AWPS, the similarity of

two text values. The similarity of two text values sq and sd is defined as the cosine

of the angle formed by their corresponding vectors2:

sim(sq, sd) =
sq · sd

‖sq‖ · ‖sd‖ =

∑N
i=1 wqi

· wdi√∑N
i=1 w2

qi
·∑N

i=1 w2
di

(3.1)

1Sometimes in IR systems (or systems adopting ideas from IR) word stems, produced by some
stemming algorithm [163], are forming the vocabulary instead of words. Additionally, stopwords
(e.g., “the”) are eliminated from the vocabulary. These important details have no consequence for
the theoretical results of this work, but it should be understood that our approaches presented in
Chapters 4, 5 and 6 utilise these standard techniques.

2The IR literature gives us several very closely related ways to define the notions of weight and
similarity [24, 137, 207]. All of these weighting schemes come by the name of tf · idf weighting
schemes. Generally a weighting scheme is called tf · idf whenever it uses word frequency in a
monotonically increasing way, and document frequency in a monotonically decreasing way.

54
Chapter 3 : Data Models and Query Languages Based on

Information Retrieval

By this definition, similarity values are real numbers in the interval [0, 1].

Let us now proceed to give the syntax of the query language for AWPS. Since

AWPS extends AWP , a query in the new model is given by Definition 5 with one

more case for atomic queries:

• A ∼k s where A ∈ A, s is a text value over V and k is a real number in the

interval [0, 1].

Example 9 The following are some queries in AWPS using the schema of Example

5:

TITLE ∼0.6 “Local search techniques for constraint optimisation problems”,

(AUTHOR w (John ≺[0,2] Smith)) ∧
(TITLE ∼0.9 “Temporal constraint programming”),

T ITLE ∼0.9 “Sequence alignment using dynamic programming”

We now give the semantics of our query language, by defining when a document

satisfies a query. Naturally, the definition of satisfaction inAWPS is as in Definition

6 with one additional case for the similarity operator:

• If φ is of the form A ∼k sq then d |= φ iff there exists a pair (A, sd) ∈ d and

sim(sq, sd) ≥ k.

The reader should notice that the number k in a similarity predicate A ∼k s

gives a relevance threshold that candidate text values s should exceed in order to

satisfy the predicate. This notion of relevance threshold was first proposed in an

information filtering setting by [80] and later on adopted by [211]. The reader is

asked to contrast this situation with the typical information retrieval setting where

a ranked list of documents is returned as an answer to a user query. This is not

a relevant scenario in an information filtering system because very few documents

(or even a single one) enter the system at a time, and the system needs to make a

decision whether they will be forwarded or not to interested users.

A low similarity threshold in a predicate A ∼k s might result in many irrelevant

documents satisfying a query. This not only decreases user satisfaction, but also

3.3 : Satisfiability and Entailment in WP 55

causes extra network traffic due to the creation of many notification messages (as

discussed in detail in Chapters 4 and 5).On the other hand a high similarity thresh-

old would result in very few documents (or even no documents at all) achieving

satisfaction, which deprives user of potentially useful information. Relevance feed-

back techniques and recent techniques from adaptive IR [47] can be used to adjust

this threshold and achieve better user satisfaction. However this lies beyond the

focus of this thesis, which is the performance aspects of the retrieval and filtering

problem, and thus it is not explored in any way

Example 10 The first query of Example 9 is likely to be satisfied by the document

of Example 5 (of course, we cannot say for sure until we know the idf factors so

that the exact weights can be calculated). The second query is not satisfied, since the

author specified in the query does not match the document’s author. Moreover the

third query is unlikely to be satisfied since the only common word between the query

and Example 5 is the word “programming”.

3.3 Satisfiability and Entailment in WP
An instance of the satisfiability problem for proximity-free word patterns can

be considered as an instance of the satisfiability problem for Boolean logic (SAT)

and vice versa (by interchanging the roles of words and Boolean variables). Thus,

we have to consider only any complications that might arise due to proximity word

patterns.

In what follows, we will need the binary operation of concatenation of two text

values.

Definition 9 Let s1 and s2 be text values over vocabulary V. Then, the concatena-

tion of s1 and s2 is a new text value denoted by s1s2 and defined by the following:

1. |s1s2| = |s1|+ |s2|

2. s1s2(x) =





s1(x) for all x ∈ {1, . . . , |s1|}
s2(x− |s1|) for all x ∈ {|s1|+ 1, . . . , |s2|+ |s1|}

.

56
Chapter 3 : Data Models and Query Languages Based on

Information Retrieval

We will also need the concept of the empty text value which is denoted by ε and has

the property |ε| = 0. The following properties of concatenation are easily seen:

1. (s1s2)s3 = s1(s2s3), for all text values s1, s2 and s3.

2. sε = εs = s for every text value s.

The associativity of concatenation allows us to write concatenations of more than

two text values without using parentheses.

The following variant of the concept of satisfaction captures the notion of a

set of positions in a text value containing exactly the words that contribute to the

satisfaction of a positive proximity-free word pattern. This variant is used in Lemma

3.3.1 below and in Proposition 3.3.1.

Definition 10 Let V be a vocabulary, s a text value over V, wp a positive proximity-

free word pattern over V, and P a subset of {1, . . . , |s|}. The concept of s satisfying

wp with set of positions P (denoted by s |=P wp) is defined as follows:

1. If wp is a word of V then s |=P wp iff there exists x ∈ {1, . . . , |s|} such that

P = {x} and s(x) = wp.

2. If wp is of the form wp1 ∧ wp2 then s |=P wp iff there exist sets of positions

P1, P2 ⊆ {1, . . . , |s|} such that s |=P1 wp1, s |=P2 wp2 and P = P1 ∪ P2.

3. If wp is of the form wp1 ∨ wp2 then s |=P wp iff s |=P wp1 or s |=P wp2.

4. If wp is of the form (wp1) then s |=P wp iff s |=P wp1.

We also need the following notation. Let P be a subset of the set of natural

numbers N, and x ∈ N. We will use the notation P + x to denote the set of natural

numbers {p + x : p ∈ P}.

Lemma 3.3.1 Let s and s′ be text values, wp be a positive proximity-free word

pattern and P ⊆ {1, . . . , |s|}. If s |=P wp then ss′ |=P wp and s′s |=P+|s′| wp.

Positive proximity-free word patterns are satisfiable as we show below.

3.3 : Satisfiability and Entailment in WP 57

Proposition 3.3.1 If wp is a positive proximity-free word pattern then wp is sat-

isfiable. In fact, there exists a text value s0 such that

1. |s0| ≤ | wp | · ops(wp), where ops(wp) is the number of operators of wp (or 1

if wp has no operators).

2. Every word of s0 is a word of wp.

3. s0 |={1,...,|s0|} wp.

Proof: The proof is by induction on the structure of wp.

Base case: Let wp be a word w ∈ V . In this case, wp is satisfiable because we

can form a text value s0 such that s0 |={1} w where |s0| = 1 and s0(1) = w. The

conclusion of the lemma is now obviously satisfied.

Inductive step: Let wp be a positive proximity-free word pattern of the form

wp1 ∧wp2, and assume that the inductive hypothesis holds for wp1 and wp2. Then,

we can form text values s1
0 and s2

0 such that s1
0 |={1,...,|s1

0|} wp1 and s2
0 |={1,...,|s2

0|} wp2.

Then, from Lemma 3.3.1 we have

s1
0s

2
0 |={1,...,|s1

0|} wp1

and

s1
0s

2
0 |={1,...,|s2

0|}+|s1
0| wp2.

Finally, from Definition 10 we have

s1
0s

2
0 |={1,...,|s1

0|,|s1
0|+1, ...,|s1

0|+|s2
0|} wp1 ∧ wp2

as required. It is also easy to see that

∣∣s1
0s

2
0

∣∣ =
∣∣s1

0

∣∣ +
∣∣s2

0

∣∣ ≤

| wp1 | · ops(wp1) + | wp2 | · ops(wp2) <

58
Chapter 3 : Data Models and Query Languages Based on

Information Retrieval

[ops(wp1) + ops(wp2)] · | wp | < ops(wp) · | wp |.

The ∨ case is done similarly.

Obviously, proximity word patterns are also satisfiable.

Proposition 3.3.2 Let wp be a proximity word pattern of the form w1 ≺i1 · · · ≺in−1

wn. Then, wp is satisfied by the text value s = w1z1 · · · zn−1wn where zl, l =

1, . . . , n− 1 are text values of the following form. If inf (il) > 0 then zl is formed by

inf (il) successive occurrences of the special word # which is not contained in wp.

Otherwise, if inf (il) = 0 then zl is the empty text value ε.

Moreover, any text value satisfying a proximity word pattern is of a very special

form.

Proposition 3.3.3 Let wp be a proximity word pattern of the form w1 ≺i1 · · · ≺in−1

wn. If s |= wp then s is of the form.

s = ? · · · ?︸ ︷︷ ︸
i0 times

w1 ? · · · ?︸ ︷︷ ︸
i1 times

w2 · · · wn−1 ? · · · ?︸ ︷︷ ︸
in−1 times

wn ? · · · ?︸ ︷︷ ︸
in times

where 0 ≤ i0, i1 ∈ i1, . . ., in−1 ∈ in−1, 0 ≤ in and each occurrence of the symbol ?

represents an arbitrary (and not necessarily the same) word.

Example 11 Let us consider the proximity word pattern

wp = constraint ≺[0,0] programming ≺[0,∞] methods.

It is easy to verify that text value “many applications use constraint programming

algorithms and methods to solve interesting problems” (a) is of the form set by

Proposition 3.3.3 and (b) satisfies word pattern wp.

Finally, we show that any positive word pattern is satisfiable.

Proposition 3.3.4 If wp is a positive word pattern then wp is satisfiable.

3.3 : Satisfiability and Entailment in WP 59

Proof: We will construct a text value t such that t |= wp. If wp contains m

proximity word patterns φ1, . . . , φm, text value t is of the form s0s1 · · · sm where:

• s0 is a sequence formed by the juxtaposition of all words appearing in wp in

any order, and

• for every j = 1, . . . ,m, sj is a text value, formed as in Proposition 3.3.2, such

that sj |= φj.

Lemma 3.3.2 Let wp1 and wp2 be proximity word patterns of the following form:

wp1 = a1 ≺i1 · · · ≺in−1 an and

wp2 = b1 ≺j1 · · · ≺jm−1
bm

Word pattern wp1 entails wp2 iff the following conditions hold:

Condition 1 Word pattern wp2 is equal to ap1 ≺j1 · · · ≺jm−1
apm, where 1 ≤ p1 <

· · · < pm ≤ n.

Condition 2 For every v = 1, . . . , m− 1, we have:

inf (jv) ≤ inf (ipv) + · · ·+ inf (ipv+1) + pv+1 − pv − 1

sup(jv) is





≥




sup(ipv) + · · ·+
sup(ipv+1)+

pv+1 − pv − 1




if all sup(ipv), . . . ,

sup(ipv+1) are

different than ∞

∞ otherwise

Proof: The “if” case is obvious. For the “only if” part, let us assume that wp1 |=
wp2 holds. We will prove that wp2 is of the form set by the lemma. The proof is in

three steps.

60
Chapter 3 : Data Models and Query Languages Based on

Information Retrieval

Step 1 (Condition 1) We will first prove that the words of wp2 are a subset of

the words in wp1, i.e.,

{b1, . . . , bm} ⊆ {a1, . . . , an}.

By contradiction, let us assume that there exists a word bv, 1 ≤ v ≤ m, of wp2

such that bv 6∈ {a1, . . . , an}. Let us now consider text value τ defined as:

τ = a1 # · · ·#︸ ︷︷ ︸
i1 times

a2 · · · an−1 # · · ·#︸ ︷︷ ︸
in−1 times

an (3.2)

where # is a special word which is not contained in wp1 and wp2 and i1 ∈
i 1, . . . , in ∈ in. It is easy to verify that τ satisfies wp1 but, since τ does not

include word bv, it does not satisfies wp2. Thus, we have wp1 6|= wp2 which

contradicts our initial assumption.

Step 2 (Condition 1) We will now prove that the words of wp1 that appear in

wp2 actually appear in the same order as they do in wp1, i.e., word pattern

wp2 = ap1 ≺j 1
· · · ≺j m−1

apm , where 1 ≤ p1 < · · · < pm ≤ n. By contradiction,

let us assume that there exist two distinct words bv = apv and bv′ = apv′ ,

1 ≤ v < v′ ≤ m, of wp2 such that pv ≥ pv′ . In other words,

wp1 = a1 ≺i1 · · · ≺ipv′−1

apv′ ≺ipv′
· · · ≺ipv−1

apv ≺ipv
· · · ≺in−1 an,

wp2 = ap1 ≺j 1
· · · ≺j v−1

apv ≺j v
· · · ≺j v′−1

apv′ ≺j v′ · · · ≺j m−1
apm .

It is easy to verify that text value τ (defined in Equation 3.2) satisfies wp1 but

it does not satisfies wp2; a contradiction.

Step 3 (Condition 2) Finally, we will prove that for every v = 1, . . . , m − 1, we

3.3 : Satisfiability and Entailment in WP 61

have:

inf (j v) ≤ inf (i pv) + · · ·+ inf (i pv+1) + pv+1 − pv − 1

sup(j v) is





≥




sup(i pv) + · · ·+
sup(i pv+1)+

pv+1 − pv − 1




if all sup(i pv), . . . ,

sup(i pv+1) are

different than ∞

∞ otherwise

By contradiction, let us assume that there exists a subformula apv ≺j v
apv+1

of wp2 such that

inf (j v) > inf (i pv) + · · ·+ inf (i pv+1) + pv+1 − pv − 1 (3.3)

From Step 2, word patterns wp1 and wp2 are of the following form:

wp1 = a1 ≺i1 · · · ≺ipv−1

apv ≺ipv
· · · ≺ipv+1−1

apv+1 ≺ipv
· · · ≺in−1 an,

wp2 = ap1 ≺j 1
· · · ≺j v−1

apv ≺j v

apv+1 ≺j v+1
· · · ≺j m−1

apm .

62
Chapter 3 : Data Models and Query Languages Based on

Information Retrieval

Let us now construct a text value τ ′ defined as:

τ ′ = a1 # · · ·#︸ ︷︷ ︸
i1 times

a2 · · ·

apv # · · ·#︸ ︷︷ ︸
ipv times

apv+1 · · ·

apv+1−1 # · · ·#︸ ︷︷ ︸
ipv+1−1 times

apv+1 · · ·

an−1 # · · ·#︸ ︷︷ ︸
in−1 times

an

(3.4)

where # is a special word which is not contained in wp1 and wp2, and for every s,

1 ≤ s ≤ n − 1, is = inf (i s) holds. It is easy to verify that τ ′ satisfies wp1. Notice

that between words apv and apv+1 in τ ′ there are exactly inf (i pv)+ · · ·+ inf (i pv+1)+

pv+1 − pv − 1 words. Therefore, since Expression 3.3 holds, τ ′ does not satisfy the

subformula apv ≺j v
apv+1 of wp2 and thus, it does not satisfy wp2. Thus, we have

wp1 6|= wp2 which contradicts our initial assumption.

The proof involving sup(j v) is similar. It differs only in the way we construct

text value τ ′ (Expression 3.4) and specifically in the values of i1, . . . , in−1. We now

require that i1 ∈ i 1, . . . , in−1 ∈ in−1 and for every s, pv ≤ s ≤ pv+1, we define:

is =





sup(i s) if sup(i s) is different than ∞
sup(j v) + 1 otherwise

Proposition 3.3.5 Let wp1 and wp2 be proximity word patterns with n and m words

respectively. Deciding whether wp1 |= wp2 can be done in O(n + m) time.

Let SAT (WP) denote the satisfiability problem for formulas of WP . The fol-

lowing two propositions show that the problems SAT and SAT (WP) are equivalent

under polynomial time reductions.

Proposition 3.3.6 SAT is polynomially reducible to SAT (WP).

3.3 : Satisfiability and Entailment in WP 63

Proof: Trivial by considering propositional variables to be words.

Proposition 3.3.7 SAT (WP) is polynomially reducible to SAT.

Proof: Let φ be a formula of WP . We transform φ into an instance φ′ of SAT as

follows. We start with φ′ being φ (words of φ play the role of propositional variables

in φ′). Then, we substitute each proximity word pattern wp of φ′ by a brand new

propositional variable vwp. Finally, we conjoin to φ′ the following formulas:

• vwp =⇒ w, for each proximity word pattern wp and word w of wp.

• vwp1 =⇒ vwp2 , for each pair of proximity word patterns wp1, wp2 such that

wp1 |= wp2.

The above steps can be done in polynomial time because entailment of proximity

word patterns can be done in polynomial time (Proposition 3.3.5). It is also easy

to see that φ is a satisfiable formula of WP iff φ′ is a satisfiable formula of Boolean

logic. Then, the result holds.

Propositions 3.3.6 and 3.3.7 have the following corollary.

Corollary 3.3.1 Deciding whether a word pattern is satisfiable is a NP-complete

problem. Deciding whether a word pattern entails another is a coNP-complete prob-

lem.

Let us close this section by pointing out that satisfiability and entailment of

conjunctive word patterns can be done in PTIME.

Proposition 3.3.8 The satisfiability and entailment problems for conjunctive word

patterns can be solved in polynomial time.

Proof: This is easy to see given Proposition 3.3.5.

64
Chapter 3 : Data Models and Query Languages Based on

Information Retrieval

3.4 Satisfiability and Entailment in AWP
Let SAT (AWP) denote the satisfiability problem for queries of AWP . The fol-

lowing two propositions show that the problems SAT and SAT (AWP) are equiva-

lent under polynomial time reductions.

Proposition 3.4.1 SAT is polynomially reducible to SAT (AWP).

Proof: Let φ be an instance of SAT (i.e., a Boolean formula). For every proposi-

tional variable p in φ introduce an attribute Ap. Then, substitute every occurrence

of p in φ by Ap = “true” to arrive at an instance ψ of SAT (AWP). Obviously, φ is

satisfiable iff ψ is satisfiable.

Proposition 3.4.2 SAT (AWP) is polynomially reducible to SAT.

Proof: Let φ be a query of AWP . Using Proposition 3.1.2, φ can easily be trans-

formed into a formula θ which is a Boolean combination of atomic queries. This

transformation can be done in time linear in the size of the formula.

The next step is to substitute in θ atomic formulas A = s and A w wp (where wp

is a word or a proximity word pattern) by propositional variables pA=s and pAwwp

respectively to obtain formula θ′. Finally, the following formulas are conjoined to θ′

to obtain ψ:

1. If A = s1 and A = s2 are conjuncts of θ′ and s1 6= s2 then conjoin pA=s1 ≡
¬pA=s2 .

2. If A = s and A w wp are conjuncts of θ′ and s |= wp then conjoin pA=s =⇒
pAwwp.

3. If A = s and A w wp are conjuncts of θ′ and s 6|= wp then conjoin pA=s =⇒
¬pAwwp.

4. If A w wp1 and A w wp2 are conjuncts of θ′ and wp1 |= wp2 then conjoin

pAwwp1 =⇒ pAwwp2 .

3.5 : Similar Models 65

The above step can be done in polynomial time because satisfaction and entailment

of word patterns in θ can be done in polynomial time. The result for satisfaction

is obvious and the result for entailment is from Proposition 3.3.5. It is also easy to

see that φ is a satisfiable query iff ψ is a satisfiable formula of Boolean logic. Then,

the result holds.

Propositions 3.4.1 and 3.4.2 have the following corollary.

Corollary 3.4.1 Deciding whether a query of AWP is satisfiable is a NP-complete

problem. Deciding whether a query of AWP entails another is a coNP-complete

problem.

The following proposition shows that, as in the case of WP , satisfiability and

entailment of conjunctive queries in AWP can be done in PTIME. This is good

news given that conjunctive AWP queries are typically utilized in implementations

such as [106, 123, 202].

Proposition 3.4.3 The satisfiability and entailment problems for conjunctive AWP
queries can be solved in polynomial time.

To obtain a more accurate picture of the tractable vs. intractable classes of

queries in AWP one can profitably utilize such results from the propositional satis-

fiability literature. For example, it is easy to see now that each tractable class C of

SAT formulas has a corresponding class C ′ of tractable formulas of WP or AWP
if the 2-variable propositional formulas used in the proofs of Propositions 3.3.7 and

3.4.2 belong to C (e.g., this holds for C being the class of propositional formulas

with at most two variables using the tractability of 2-SAT).

3.5 Similar Models

In this section we discuss related research which is specific to this chapter and

was not covered in Chapter 2. Since formal analysis based on logic and complexity

as done in this chapter is not common in Information Retrieval research, this section

briefly surveys other data models (and systems) related to the ones studied in this

work.

66
Chapter 3 : Data Models and Query Languages Based on

Information Retrieval

3.5.1 Word Patterns and Proximity Operators

To the best of our knowledge, the papers by Chang and colleagues [49–51], the

present chapter and paper [126] are the only comprehensive formal treatments of

proximity word patterns in the literature.

Search engines use models similar toWP and AWP . The most common support

for word patterns in search engines includes the ability to combine words using the

Boolean operators ∧,∨ and ¬. However, search engines support a version of negation

in the form of binary operator AND-NOT which is essentially set difference, and

therefore safe in the database-theoretic sense of the term [9]. For example, a search

engine query wp1 AND-NOT wp2 will return the set of documents that satisfy

wp1 minus these that satisfy wp2. Note also that the previous work of [49] has not

considered negation in its word pattern language but has considered negation in the

query language which supports attributes (the one that corresponds to our model

AWP).

Proximity operators are a useful extension of the concept of “phrase search” used

in current search engines. Limited forms of proximity operators have been offered

in the past by various search engines of the pre-Google era (e.g., Altavista had

an operator NEAR which meant word-distance 10, Lycos had an operator NEAR

which meant word-distance 25, and Infoseek used to have a more sophisticated

facility). Google supports proximity by the use of operator “∗” which, when used

between two keywords, specifies a minimum distance of one word between them

(multiple occurrences of ∗ can also be used to specify a larger minimum distance).

The search engine Exalead3 has an operator NEAR which returns documents that

contain given keywords in a vicinity of a fixed number of words, but no ordering of

words is supported.

The need to change their index structures and the high computational cost of

proximity search, is probably the reason that makes current search engines to limit

proximity support to less general operators compared to those used in models WP

3Exalead (http://www.exalead.com/) is a search engine developed in France. We mention it
here because Exalead is involved in the Quaero project launched in Europe in the summer of 2005
as the European response to Google.

3.5 : Similar Models 67

and AWP .

Proximity operators have also been implemented in other systems such as free-

WAIS [159] and INQUERY [42]. There are also advanced IR models such as the

model of proximal nodes [148] with proximity operators between arbitrary structural

components of a document (e.g., paragraphs or sections). Data models and query

languages for full-text extensions to XML e.g., TeXQuery [20] is the most recent

area of research where proximity operators have been used.

Proximity word patterns can also be viewed as a particular kind of order con-

straints in the sense of constraint networks [68] and databases [169]. There are many

papers that discuss algorithms and complexity of various kinds of order constraints

e.g., gap-order constraints [170] or temporal constraints [69, 122]. The algorithms

and complexity results regarding WP can also be viewed as a contribution to this

research area.

3.5.2 Other Operators from Information Retrieval

The data model AWP discussed in Section 3.1 complements recent proposals for

representing and querying textual information in publish/subscribe systems [43, 44]

by using linguistically motivated concepts such as word and traditional IR oper-

ators (instead of strings and operators such as string containment [43, 44]). The

methodology and techniques of this work can be used to study the complexity of

satisfiability and entailment for the subscription query language of [43] and we ex-

pect the complexity results to be similar.

In Section 3.2 we have extended the model AWP by introducing a “similarity”

operator based on the IR vector space model [24]. The similarity concept of the new

model AWPS has in the past been used in database systems with IR influences

(e.g., WHIRL [58]) and more recently in XML-based query languages e.g., ELIXIR

[53], XIRQL [85] and XXL [192].

68
Chapter 3 : Data Models and Query Languages Based on

Information Retrieval

3.6 Conclusions

In this chapter we presented the models WP , AWP and AWPS that will be

used later in Chapters 4, 5 and 6. We studied the model theory of WP and AWP
focusing on questions related to satisfiability and entailment. We showed that the

satisfiability problem for queries in WP and AWP is NP-complete and the entail-

ment problem is coNP-complete. We also discussed cases where these problems can

be solved in polynomial time.

In the next chapter, we present a P2P architecture to support retrieval and

filtering functionality, discuss the basics of the API to support this architecture and

present the protocols that orchestrate the peers.

Chapter 4

An Architecture for Peer-to-Peer

Web Search

I n this chapter we present an architecture that is able to support full-fledged

Web information retrieval and filtering in a single unifying framework. This

architecture is based on ideas from traditional distributed IR and recent work on

P2P networks. Our architecture, called LibraRing (from the words library and ring),

is hierarchical like the ones in [115, 130] but uses a DHT to achieve robustness, fault-

tolerance and scalability in its routing and meta-data management layer. DHTs are

the second generation structured P2P overlay networks devised as a remedy for the

known limitations of earlier P2P networks such as Napster and Gnutella (see Section

2.1 for literature related to P2P systems and DHTs).

As we have already said in Section 1.1, there are two kinds of basic func-

tionality that we expect this architecture to offer: information retrieval and pub-

lish/subscribe. In an IR scenario, a user can pose a query (e.g., “I am interested

in papers on bio-informatics”) and the system returns information about matching

resources. In a pub/sub scenario, a user posts a subscription to the system to receive

notifications whenever certain events of interest take place (e.g., when a paper on

bio-informatics becomes available).

The main components of our architecture are super-peers, clients and providers.

Providers are used to expose the content of information sources to the network, while

70 Chapter 4 : An Architecture for Peer-to-Peer Web Search

clients are used by information consumers. Super-peers form an overlay network

that offers a robust, fault-tolerant and scalable means for routing messages and

managing resource meta-data and queries. The main architectural contribution of

our work is the extension of the DHT Chord protocols [180] with IR and pub/sub

functionality in the context of a super-peer network. To validate our approach, we

apply it in a DL environment and discuss the protocols for offering retrieval and

filtering functionality in a two-tier architecture. Although the protocols we present

here are tailored for a super-peer architecture, our ideas can be easily applied in a

pure P2P environment, as we will show in Chapter 5. The results of this chapter

have been published in [202].

The data models and query language we will choose will have a serious effect

on the DHT protocols because the DHT is the layer in which publications, queries

and subscriptions live (are indexed). In the rest of this chapter, we assume that

publications and subscriptions will be expressed using model AWPS, presented in

the previous chapter.

The research presented in this chapter is a continuation of our previous work on

the DL information alert architecture DIAS [123] and the system P2P-DIET [104–

106]. The main difference of the current work from [105, 123] is the definition of an

architecture for content-based web search and brand new protocols that are exten-

sions of DHTs and are able to support retrieval and filtering tasks in a distributed

environment.

The organisation of this chapter is as follows. In Section 4.1 we discuss the

proposed architecture and an application scenario based on digital libraries. Sub-

sequently, Section 4.2 discusses some useful extensions to the Chord API, while

Section 4.3 presents the LibraRing protocols. Finally, Section 4.4 summarises our

approach and concludes the chapter.

4.1 The LibraRing Architecture

A high-level view of the LibraRing architecture is shown in Figure 4.1. Nodes

can implement any of the following types of services: super-peer service, provider

4.1 : The LibraRing Architecture 71

C

C

SP

SP

SP
SP

SP

LibraRing

Protocol

SP

CiteSeer

P

Springer

DL

ACM

DL

Elsevier

DL

Science Campus

DL

user

Other Networks

e.g. OverCite

C

P

P

Integration

resource

publication

query /

answer

continuous query

notification

request resource/

send resource

?

user
user

Figure 4.1: The architecture of LibraRing

service and client service.

Super-peer service. Nodes implementing the super-peer service (super-peers)

form the message routing layer of the network. Each super-peer is responsible for

serving a fraction of the clients by storing continuous queries and resource publica-

tions, answering one-time queries, and creating notifications. The super-peers run a

DHT protocol which is an extension of Chord. The role of the DHT in LibraRing is

very important. First of all, it acts as a rendezvous point for information producers

(providers) and information consumers (clients). Secondly, it serves as a robust,

fault-tolerant and scalable routing infrastructure. When the number of super-peers

is small, each node can easily locate others in a single hop by maintaining a full

routing table. When the super-peer network grows in size, the DHT provides a

scalable means of locating other nodes. Finally, by serving as a global metadata

index that is partitioned among super-peers, the DHT facilitates the building of a

distributed metadata repository that can be queried efficiently.

Client service. Nodes implementing the client service are called clients. A

client connects to the network through a single super-peer node, which is its access

point. Clients can connect, disconnect or even leave the system silently at any

time. Clients are information consumers: they can pose one-time queries and receive

72 Chapter 4 : An Architecture for Peer-to-Peer Web Search

answers, subscribe to resource publications and receive notifications about published

resources that match their interests. If clients are not on-line, notifications matching

their interests are stored by their access points and delivered once clients reconnect.

Resource requests are handled directly by the client that is the owner of the resource.

Provider service. This service is implemented by information sources that

want to expose their contents to the clients of LibraRing. A node implementing the

provider service (provider) connects to the network through a super-peer which is

its access point. To be able to implement this service, an information source should

create meta-data for the resources it stores using data model AWPS, and publish

it to the rest of the network using its access point.

As an example of an application scenario, let us consider a university with 3 ge-

ographically distributed campuses (Arts, Sciences and Medicine) and a local digital

library in each campus (see Figure 4.1). Each campus maintains its own super-peer,

which provides an access point for the provider representing the campus digital li-

brary, and the clients deployed by users. A university might be interested in making

available to its students and staff, in a timely way, the content provided by other

publishers (e.g., CiteSeer, ACM, Springer, Elsevier). Figure 4.1 shows how our ar-

chitecture can be used to fulfill this requirement. An integration layer is used to

unify different types of DLs. At this level, we also expect to see observer modules

(as in [76]) for information sources that do not provide their own alerting service.

This modules will query the sources for new material in a scheduled manner and

inform providers accordingly.

Wrappers of heterogeneous sources of information are also able to expose the

content of the wrapped sources by implementing a provider service. As also shown

in Figure 4.1, integration software build to provide a common view of heterogeneous

content sources will be able to publish the content of its sources to the rest of

LibraRing network. Additionally, content repositories such as CiteSeer or Google

Scholar can use one or multiple provider services to publish their content to the rest

of the network. Interoperability with other networks (e.g. OverCite [183]) serving a

similar purpose is a desirable feature in the design of any future digital library. In

the context of this work however we do not explore this dimension in any way. Some

4.2 : Extensions to the Chord API 73

nice ideas in the field of interoperability of DHTs have been recently presented in

[6].

The above distributed resource sharing scenario appears in many application ar-

eas beyond digital libraries (e.g., financial trading or e-commerce where incoming

information and queries/profiles might refer to prices, news dissemination where

incoming information and queries/profiles are textual, service notification where

incoming information and queries/profiles are defined in an appropriate service de-

scription language). In this work we are especially concerned with textual infor-

mation, and concentrate on the protocols that regulate peer interactions in the

architecture described earlier.

4.2 Extensions to the Chord API

To facilitate message sending between nodes we will use the function send(msg, I)

to send message msg from some node to node successor(I), where I is a node iden-

tifier. Function send() is similar to Chord function lookup(I) [180], and costs

O(logN) overlay hops for a network of N nodes. When function send(msg, I) is

invoked by node S, it works as follows. S contacts S ′, where id(S ′) is the greatest

identifier contained in the finger table of S, for which id(S ′) ≤ I holds. Upon re-

ception of a send() message by a node S, I is compared with id(S). If id(S) < I,

then S just forwards the message by calling send(msg, I) itself. If id(S) ≥ I, then

S processes msg since it is the intended recipient.

Our protocols described in Section 4.3 also require that a node is capable of

sending the same message to a group of nodes. This group is created dynamically

each time a resource publication or a query submission takes place, so multicast

techniques for DHTs such as [16] are not applicable. The obvious way to handle

this over Chord is to create k different send() messages, where k is the number of

different nodes to be contacted, and then locate the recipients of the message in an

iterative fashion using O(k log N) messages.

We have also designed and implemented function multiSend(msg, L), where L is

a list of k identifiers, that can be used to send message msg to the k elements of L in a

74 Chapter 4 : An Architecture for Peer-to-Peer Web Search

recursive way. When function multiSend() is invoked by node S, it works as follows.

Initially S sorts the identifiers in L in ascending order clockwise starting from id(S).

Subsequently S contacts S ′, where id(S ′) is the greatest identifier contained in the

finger table of S, for which id(S ′) ≤ head(L) holds, where head(L) is the first

element of L. Upon reception of a multiSend() message, by a node S, head(L)

is compared with id(S). If id(S) < head(L), then S just forwards msg by calling

multiSend() again. If id(S) ≥ head(L), then S processes msg since this means

that it is one of the intended recipients contained in list L (in other words, S is

responsible for key head(L)). Then S creates a new list L′ from L in the following

way. S deletes all elements of L that are smaller or equal to id(S), starting from

head(L), since S is responsible for them. In the new list L′ that results from these

deletions, we have that id(S) < head(L′). Finally, S forwards msg to node with

identifier head(L′) by calling multiSend(msg, L′). This procedure continues until

all identifiers are deleted form L.

4.3 The LibraRing Protocols

In this section we describe in detail the way clients, providers and super-peers join

and leave the network. We also describe resource publication and query submission

protocols. We use functions key(n), ip(n) and id(n) to denote the key, the IP address

and the identifier of node n respectively. Keys for nodes are generated by hashing

a concatenation of their IP address, port number and the timestamp of their first

connection. Node identifiers are used by super-peers to define their position in the

DHT, and are generated using the cryptographic hash function H() utilised by the

routing infrastructure and their IP address and port. Keys are used for uniquely

identifying nodes, while identifiers are used for participating in the structure overlay.

4.3.1 Client Join

The first time that a client C wants to connect to the LibraRing network, it has to

follow the join protocol. C must find the IP address of a super-peer S using out-of-

band means (e.g., via a secure web site that contains IPs for the super-peers that are

4.3 : The LibraRing Protocols 75

currently online). C sends to S message NewClient(key(C), ip(C)) and S adds C

in its clients table (CT), which is a hash table used for identifying the peers that use

S as their access point. key(C) is used to index clients in CT , while each CT slot

stores contact information about the client, its status (connected/disconnected) and

its stored notifications1. Additionally, S sends to C an acknowledgement message

AckNewClient(id(S)). Once C has joined, it can use the connect/disconnect

protocol (to be described below) to connect and disconnect from the network.

Providers use a similar protocol to join a LibraRing network.

4.3.2 Client Connect/Disconnect

When a client C wants to connect to the network, it sends a message Connect-

Client(key(C), ip(C), id(S)) to its access point S. If key(C) exists in the CT of

S, C is marked as connected and stored notifications are forwarded to it. If key(C)

does not exist in CT , this means that S was not the access point of C the last time

that C connected (Section 4.3.7 discusses this case).

When a client C wants to disconnect, it sends a message DisconnectClient(key(C), ip(C))

to its access point S. S marks C as disconnected in its CT without removing infor-

mation related to C, since this information will be used to create stored notifications

for C while C is not online (see Section 4.3.6).

Providers connect to and disconnect from the network in a similar way.

4.3.3 Resource Indexing

When a provider P decides to index a resource, metadata for this resource are

created, and sent in the network where they will be indexed at the responsible

nodes, while the resource itself remains at the provider. This section describes the

indexing of the metadata of a resource in the overlay.

A resource is indexed in three steps. In the first step a provider P constructs a

1Notifications created for C while it was not online, and are stored in order to be delivered upon
connection. These ideas originally appeared in system P2P-DIET [104–106] and are also briefly
discussed in Section 4.3.6.

76 Chapter 4 : An Architecture for Peer-to-Peer Web Search

publication p = {(A1, s1), (A2, s2), . . . , (An, sn)} (the resource description) and sends

message PubResource(key(P), ip(P), key(p), p) to its access point S.

In step two, S forwards p to the appropriate super-peers as follows. Let D1, . . . , Dn

be the sets of distinct words in s1, . . . , sn. Then p is sent to all nodes with iden-

tifiers in the list L = {H(wj) : wj ∈ D1 ∪ · · · ∪ Dn}. The protocol guarantees

that L is a superset of the set of identifiers responsible for queries that match p.

Subsequently, S removes duplicates and sorts L in ascending order clockwise start-

ing from id(S). In this way we obtain less identifiers than the distinct words in

D1 ∪ · · · ∪ Dn, since a super-peer may be responsible for more than one words

contained in the document. Having obtained L, S indexes p by creating mes-

sage msg =IndexResource(ip(P), key(P), ip(S), key(p), p), and calling function

multiSend(msg, L).

Finally, in the third step, each super-peer S ′ that receives this message stores p

in an inverted index that will facilitate matching against one-time queries that will

arrive later on at S ′.

To facilitate faster publication removal and update S stores the IP addresses and

identifiers of all the super-peers indexing publications that belong to its providers.

This information is found from the acknowledgement messages sent by the super-

peers that index each publication.

4.3.4 Submitting an One-Time Query

In this section we show how to answer one-time queries containing Boolean and

vector space atomic queries or only vector space atomic queries. The first type of

queries is always indexed under its Boolean part. Let us assume that a client C wants

to submit a query q of the form
∧m

i=1 Ai = si ∧
∧n

i=m+1 Ai w wpi ∧
∧k

i=n+1 Ai ∼ai
si.

The following three steps take place. In step one, C sends to its access point S

message SubmitQ(key(C), ip(C), key(q), q).

In the second step, S randomly selects a single word w contained in any of the

text values s1, . . . , sm or word patterns wpm+1, . . . , wpn and computes H(w) to ob-

tain the identifier of the super-peer storing publications that can match q. Then, it

4.3 : The LibraRing Protocols 77

sends message msg =PoseQuery(ip(C), key(C), ip(S), key(q), q) by calling func-

tion send(msg,H(w)).

If q is of the form An+1 ∼a1 s1 ∧ ... ∧ An ∼an sn then step two is modified as

follows. Let D1, . . . , Dn be the sets of distinct words in s1, . . . , sn. q has to be sent

to all super-peers with identifiers in the list L = {H(wj) : wj ∈ D1∪· · ·∪Dn. To do

so, S removes duplicates, sorts L in ascending order clockwise starting from id(S)

and sends message msg =PoseQuery(ip(C), key(C), ip(S), key(q), q) by calling

multiSend(msg,L).

In step three, each super-peer that receives a one-time query q, matches it against

its local publication store to find out which providers have published documents that

match q and delivers answers as discussed in Section 4.3.6.

4.3.5 Publish/Subscribe Functionality

This section describes how to extend the protocols of Sections 4.3.4 and 4.3.3 to

provide pub/sub functionality. To index a continuous query cq the one-time query

submission protocol needs to be modified. The first two steps are identical, while

the third step is as follows. Each super-peer that receives cq, stores cq in its local

continuous query data structures to match it against incoming publications. A

super-peer S uses a hash table to index all the atomic queries of cq, using as key the

attributes A1, . . . , Ak. To index each atomic query, three different data structures

are also used: (i) a hash table for text values s1, . . . , sm, (ii) a trie-like structure that

exploits common words in word patterns wpm+1, . . . , wpn, and (iii) an inverted index

for the most “significant” words in text values sn+1, . . . , sk. S ′ utilises these data

structures at filtering time to find quickly all continuous queries cq that match an

incoming publication p. This is done using an algorithm that combines BestFitTrie

(described in detail in Chapter 6 and also in [200]) and SQI [211].

To index a resource, the protocol of Section 4.3.3 needs to be extended. The

first two steps are identical, while in the third step, each super-peer that receives

p matches it against its local continuous query database using the algorithms Best-

FitTrie and SQI.

78 Chapter 4 : An Architecture for Peer-to-Peer Web Search

To facilitate faster continuous query removal and update S stores the IP ad-

dresses and identifiers of all the super-peers indexing continuous queries that belong

to its clients. This information is found from the acknowledgement messages sent

by the super-peers that index each continuous query.

4.3.6 Notification Delivery

Assume a super-peer S that has to deliver a notification n for a continuous query cq

to client C. S creates message msg =Notification(ip(P), key(P), pid(p), qid(cq)),

where P is the provider that published the matching resource and sends it to C.

If C is not online, then S sends msg to S ′, where S ′ is the access point of C,

using ip(S ′) associated with cq. S ′ stores msg, to deliver it to C upon reconnec-

tion. If S ′ is also off-line msg is sent to the successor(id(S ′)), by calling function

send(msg, successor(id(S ′))). Answers to one-time queries are handled in a simi-

lar way. In case that more that one answers or notifications have to be delivered,

function multiSend() is used.

4.3.7 Super-Peer Join/Leave

To join the LibraRing network, a super-peer S must find the IP address of another

super-peer S ′ using out-of-band means. S creates message NewSPeer(id(S), ip(S))

and sends it to S ′ which performs a lookup operation by calling lookup(id(S)) to

find Ssucc = successor(id(S)). S ′ sends message AckNewSPeer(id(Ssucc), ip(Ssucc))

to S and S updates its successor to Ssucc. S also contacts Ssucc asking its prede-

cessor and the data that should now be stored at S. Ssucc updates its predecessor

to S, and answers back with the contact information of its previous predecessor,

Spred, and all continuous queries and publications that were indexed under key k,

with id(S) ≤ k < id(Spred). S makes Spred its predecessor and populates its index

structures with the new data that arrived. After that S populates its finger table

entries by repeatedly performing lookup operations on the desired keys.

When a super-peer S wants to leave LibraRing network, it constructs message

DisconnectSPeer(id(S), ip(S), id(Spred), ip(Spred), data), where data are all the

4.4 : Conclusions 79

continuous queries, published resources and stored notifications of off-line peers that

S was responsible for. Subsequently, S sends the message to its successor Ssucc and

notifies Spred that its successor is now Ssucc. Clients that used S as their access point

connect to the network through another super-peer S ′. Stored notifications can be

retrieved through successor(id(S)).

4.4 Conclusions

We have presented an architecture especially designed for textual information

retrieval and filtering that uses a variation of the Chord DHT as its routing infras-

tructure. We have defined an API that is used in the context of this architecture

and enables the efficient dissemination of the available resources to the participating

peers. Finally, we have presented a suite of protocols that define the behaviour of

the three types of peers that populate the system.

In the next chapter we put our focus on the filtering problem, and design effi-

cient and scalable algorithms that support pub/sub functionality in a distributed,

dynamic environment. The reader interested for work on the retrieval case is re-

ferred to the Section 2.3, where different architectures and models for P2P IR are

surveyed.

80 Chapter 4 : An Architecture for Peer-to-Peer Web Search

Chapter 5

Protocols for Distributed

Information Filtering

I n the previous chapter, we presented an architecture that unifies information

retrieval and filtering using a DHT as the routing substrate, and discussed

the protocols that regulate peer interactions and provide this kind of functionality.

In this chapter, we focus on the case of information filtering and present an in-

depth investigation of the pub/sub protocols, collectively called DHTrie, that extend

the Chord protocols with pub/sub functionality assuming that publications and

subscriptions are expressed in the model AWPS. The results of this chapter have

been published in [196, 197, 199, 201, 203].

In a pub/sub environment publications typically involve contacting a large set

of nodes. To achieve this in an efficient and scalable way, we have designed and

implemented three methods that target low network traffic and low latency. In

combination with these methods, we introduce a simple routing table that uses only

local information and manages to reduce network traffic to a factor of 9. We jus-

tify our solution by evaluating the DHTrie protocols experimentally in a distributed

digital library scenario with hundreds of thousands of nodes and millions of user

profiles. Our experiments show that the DHTrie protocols are scalable: the number

of messages it takes to publish a document and notify interested subscribers remains

almost constant as the network grows, while publication latency is kept low. More-

82 Chapter 5 : Protocols for Distributed Information Filtering

over, the increase in message traffic shows little sensitivity to increase in document

size.

Since probability distributions associated with publication and query elements

are expected to be skewed in typical pub/sub scenarios, achieving a balanced load

is an important problem. We study three important cases of load balancing for

DHTrie, namely query, routing and filtering load balancing, and present a new

algorithm which is also applicable to the standard DHT look-up problem.

This chapter consists of four sections. Section 5.1 presents the pub/sub protocols

and discusses the use of an extra routing table, named FCache, that reduces net-

work traffic using only local information available at each node. Section 5.2 presents

an extensive experimental evaluation of the protocols, while Section 5.3 studies the

problem of load balancing and proposes a new algorithm that is evaluated experi-

mentally. Finally, Section 5.4 summarises our results and concludes the chapter.

5.1 The DHTrie Protocols

We implement pub/sub functionality by a set of protocols called the DHTrie

protocols (from the words DHT and trie). The DHTrie protocols use two levels of

indexing to store queries submitted by clients. The first level corresponds to the par-

titioning of the global query index to different nodes using DHTs as the underlying

infrastructure. Each node is responsible for a fraction of the submitted user queries

through a mapping of attribute values to node identifiers. The DHT infrastructure

is used to define the mapping scheme and also manages the routing of messages

between different nodes. The set of protocols that regulate node interactions are

described in the next sections.

The second level of our indexing mechanism is managed locally by each node

and is used for indexing the user queries the node is responsible for. In this level,

each node uses a hash table to index all the atomic queries contained in a complex

query by using their attribute name as the key. For each atomic Boolean query, the

hash table points to a trie-like structure that exploits common words and a hash

table that indexes text values in equalities. Additionally, for atomic VSM queries

5.1 : The DHTrie Protocols 83

peer

DHTrie

Protocols

CiteSeer

Springer

DL

ACM

DL

Elsevier

DL

Science Campus

DL

user

Other Networks

e.g. OverCite

Integration

resource

publication

continuous query

notification

request resource/

send resource

?

user

peer

peer

peer

peer

Figure 5.1: Pub/sub functionality for a pure P2P architecture over a structured overlay

an inverted index for the most “significant” query words is used as in [211]. The

details of local indexing are presented in the next chapter and also in [200].

VSM relies on term frequencies (tf) and inverse document frequencies (idf) to

compute the vector representation of a text value. The computation of idf in an

IR or pub/sub scenario needs global statistical information. [64] has shown that in

IR scenarios it is enough to have an approximation of the exact idf values. In [188]

each peer uses a set of randomly chosen peers to collect such statistics and merge

the results to create an approximation of the global idf values. These statistics are

updated periodically using sampling. Recent approaches have revisited the problem

of distributed statistics maintenance. Minerva [34] assigns each vocabulary term

to a node using consistent hashing and devises a heartbeat algorithm that updates

word statistics collected at each node. Furthermore, [28] deals with the problem of

bulk documents insertions and statistics maintenance in digital library environments

and [134] uses highly discriminative keys to reduce postings lists in peers. It is still

an open problem how to achieve this in a pub/sub scenario, although the ideas of

[28, 34, 64, 188] are relevant in this context as well. We are currently working on

this problem and expect to report our results in the future.

In this chapter we will focus on the first level of indexing and the protocols

that regulate node interactions. Nodes in our scenario can be super-peers that

84 Chapter 5 : Protocols for Distributed Information Filtering

participate in the hierarchical architecture of Figure 4.1 discussed in the previous

chapter, or peers in a structured overlay without hierarchical distinctions between

them as in the architecture shown in Figure 5.1. Thus the protocols presented here

are extensions and improvements of the general protocols for providing the filtering

functionality presented in Section 4.3 and can be applied on any type of overlay

network (hierarchical or not) implemented over Chord. Finally we have to note that

the local indexing algorithms used in each node and their experimental evaluation

are thoroughly discussed in the next chapter and also in [200, 211].

5.1.1 The Subscription Protocol

Let us assume that a node P wants to submit a query q that contains atomic queries

with equality, containment (i.e., Boolean atomic queries) and similarity (i.e., VSM

atomic queries) operators of the form:

A1 = s1 ∧ ... ∧ Am = sm ∧
Am+1 w wpm+1 ∧ ... ∧ An w wpn ∧
An+1 ∼an+1 sn+1 ∧ ... ∧ Ak ∼ak

sk

To do so, P randomly selects a single word w contained in any of the text val-

ues s1, . . . , sm or word patterns wpm+1, . . . , wpn and computes H(w) to obtain the

identifier of the node that will be responsible for query q. Then P creates message

FwdQuery(id(P), ip(P), qid(q), q), where qid(q) is a unique query identifier as-

signed to q by P and ip(P) is the IP address of P . This message is then forwarded

in O(logN) steps to the node with identifier H(w) using the routing infrastruc-

ture of the DHT. This forwarding is done using the DHT lookup function to locate

successor(H(w)), which is then directly contacted by P . In this way, queries of this

type are always indexed under their Boolean part to save message traffic, since they

need to be stored at a single node. Notice also that both id(P) and ip(P) need to

be sent to the node that will store the query to facilitate notification delivery.

When P wants to submit a query q of the form An+1 ∼a1 s1 ∧ ... ∧ An ∼an sn

(i.e., with a VSM part only), it sends q to all nodes in the list L = {H(wj) :

wj ∈ D1 ∪ · · · ∪Dn}, where D1, . . . , Dn are the sets of distinct words in text values

5.1 : The DHTrie Protocols 85

s1, . . . , sn. In contrast to queries with a Boolean part, queries with a VSM part only

need to be stored in all the nodes computed as above in order to ensure correctness

of the filtering process. Sending the same message to more than one recipients is

discussed in detail in the next section, where publication forwarding poses the same

problem.

When a node P ′ receives a message FwdQuery containing q, it stores q using

the second level of our indexing mechanism. P ′ uses a hash table to index all the

atomic queries of q, using as key the attributes A1, . . . , Ak. To index each atomic

query, three different data structures are also used: (i) a hash table for text values

s1, . . . , sm, (ii) a trie-like structure that exploits common words in word patterns

wpm+1, . . . , wpn, and (iii) an inverted index for the most “significant” words in text

values sn+1, . . . , sk. P ′ utilises these data structures at filtering time to find quickly

all queries q that match an incoming publication p. This is done using an algorithm

that combines algorithms BestFitTrie [200] and SQI [211]. The details of local

storage and indexing are discussed thoroughly in Chapter 6 and [200].

5.1.2 The Publication Protocol

Resource publication protocols presented here are extensions and modifications of

the general protocols presented in Section 4.3.5. Here we revisit the protocols with-

out the need to support a hierarchical architecture and propose optimisations to

network traffic and publication latency.

Publication of a resource involves sending the same message to a group of nodes

that is not known a priori. To tackle this problem we have designed and implemented

three methods: (i) the iterative method, which is the standard way to contact a num-

ber of different nodes over Chord, (ii) the recursive method, which creates a single

message with all the recipients contained in a sorted list and works its way around the

identifier space until all recipients have been contacted, and (iii) the hybrid method

which uses machinery from the two previous methods to optimise network traffic and

latency. Work presented on a technical report [102] has considered variations of the

first two methods and tried to present the tradeoff between implementing multicast

86 Chapter 5 : Protocols for Distributed Information Filtering

functionality at different levels of the DHT architecture. This approach however

tackled content-based multicast from a physical network viewpoint, and focused on

network-centric metrics. Thus the results of the report are not directly applicable

to our scenario, where overlay hops and publication latency is in question.

The publication protocol essentially involves sending the same message to a group

of other nodes, namely those that are responsible for the distinct words contained

in the text values of the different attributes of p. In this way, when a node P wants to

publish a resource, it first constructs a publication p = {(A1, s1), (A2, s2), . . . , (An, sn)}
(the resource description). Let D1, . . . , Dn be the sets of distinct words in s1, . . . , sn.

Then, publication p has to be propagated to all nodes responsible for identifiers in

the list

L = {H(wj) : wj ∈ D1 ∪ · · · ∪Dn}. (5.1)

The subscription protocol guarantees that L is a superset of the set of identifiers

responsible for queries that match p. To propagate publication p in the DHT, P

removes duplicates from L and sorts it in ascending order clockwise starting from

id(P). In this way we obtain at most as many identifiers as the distinct words in

D1 ∪ · · · ∪ Dn, since a node may be responsible for more than one of the words

contained in the document. Contacting all the nodes responsible for the keys in list

L is method specific and is described below in detail.

The Iterative Method

Each node P that uses the iterative method to contact the recipients in list L, con-

structs a message FwdResource(id(P), pid(p), p, id(P ′)) for each identifier id(P ′)

contained in L, where pid(p) is a unique metadata identifier assigned to p by P .

Then it utilises the lookup() procedure provided by Chord to locate node P ′ and

sends it the FwdResource(id(P), pid(p), p, id(P ′)) message. This is repeated for

all the identifiers in L in an iterative way. Using this method, P needs O(h log N)

messages, where h is the number of different nodes to be contacted. Figure 5.2 illus-

trates graphically the publication of a resource to three recipients using the iterative

5.1 : The DHTrie Protocols 87

FwdResource(id(P),pid(p),p,id(P1))

FwdResource(id(P),pid(p),p,id(P2))

FwdResource(id(P),pid(p),p,id(P3))

P1

P2

P3

Figure 5.2: An example of the iterative method

method.

The Recursive Method

Using the iterative method has an obvious disadvantage; the same routing request

is asked over and over of the same node, causing high network traffic. This is the

reason for designing the recursive method. The idea behind the recursive method is

to pack messages together and exploit other nodes’ routing tables to reduce network

traffic. Publishing a resource using the recursive method is as follows.

Having obtained L, P creates a message FwdResource(id(P), pid(p), p, L),

where pid(p) is a unique metadata identifier assigned to p by P , and sends it to

node with identifier equal to head(L) (the first element of L). This forwarding is

done by the following recursive way: message FwdResource is sent to a node P ′,

where id(P ′) is the greatest identifier contained in the finger table of P , for which

id(P ′) ≤ head(L) holds.

Upon reception of a message FwdResource by a node P , head(L) is checked.

If id(P) < head(L) then P just forwards the message as described in the previous

paragraph. If id(P) ≥ head(L) then P makes a copy of the message, since this

means that P is one of the intended recipients contained in list L (in other words P

is responsible for key head(L)). Subsequently, the publication part of this message

88 Chapter 5 : Protocols for Distributed Information Filtering

FwdResource(id(P),pid(p),p,{id(P1),id(P2),id(P3)})

P1

P2

P3

Figure 5.3: An example of the recursive method

is matched with the node’s local query database using the algorithms described

in detail in Chapter 6 and the appropriate subscribers are notified. Additionally

list L is modified to L′ in the following way. P deletes all elements of L that are

smaller than id(P) starting from head(L), since all these elements have P as their

intended recipient. In the new list L′ that results from these deletions we have that

id(P) < head(L′). This happens because in the general case L may contain more

than one node identifiers that are managed by P (these identifiers are all located

in ascending order at the beginning of L). Finally, P forwards the message to node

with identifier head(L′). Figure 5.3 presents the publication of a resource to three

recipients using the recursive method.

The Hybrid Method

The idea behind the recursive method is to pack messages together and exploit other

nodes’ routing tables to reduce network traffic. This however comes at the cost of

high latency. If the recipients list is long, then the last recipient has to wait for

a long time until he is notified about the publication, which in turn causes delays

in the notification of the interested subscribers. The iterative method on the other

hand tries to optimise latency since no recipients lists are used and the delay to

deliver a message is logarithmic in the size of the network. This of course comes at

the price of high network traffic as it will be shown in Section 5.2.

5.1 : The DHTrie Protocols 89

To tackle this tradeoff, we designed and implemented a hybrid approach that

tries to combine the benefits of the two previous methods. The idea behind the

hybrid method is to design a tunable alternative that will provide fast delivery of

messages at low network cost. To achieve this, we use smaller recipients lists and

messages sent in an iterative way. The hybrid method works as follows.

Having obtained L, node P then uses it to create recipients lists, of size at least

S−δ and at most S +δ, where S is a tunable parameter called desired recipients list

size and δ is the tolerance factor, used to force the creation of lists with size close

to S (because of the nature of the algorithm creating lists with size exactly S is not

always possible). In this way the number of lists created is at least hmin = |L|/(S+δ)

and at most hmax = |L|/(S − δ). Each entry id(P ′) in the finger table of P is used

to create one or more lists in the following way. Consider two consecutive entries in

the finger table of P , say id(P ′) and id(P ′′). Starting from id(P ′), P scans L and

collects all the recipients with identifier greater than id(P ′) and smaller than id(P ′′)

to create list L1. If |L1| < S− δ, P continues to scan L for recipients with identifier

greater than id(P ′′) until S − δ ≤ |L1| ≤ S + δ. On the other hand if |L1| > S + δ

then list L1 is divided to lists with size S. This process continues for all the entries

in the finger table of P or until list L is empty. Typically finger entries with higher

index number have more than one lists associated with them (remember that entries

in the finger table of a node points to exponentially increasing distances away from

the node, which means that typically the distance between the i − 1-th and i-th

entry is shorter than the distance between the i-th and i + 1-th entry).

For each one of the lists L1 . . . Lh created by the above procedure, a message Fw-

dResource(id(P), pid(p), p, Li), with 1 ≤ i ≤ h, is constructed and is iteratively

sent to head(Li). Since each message contains a list of recipients, the recursive

method is used to forward the message to the rest of the nodes in list Li. This usage

of short recipients lists together with the iterative way of sending these lists justifies

the hybrid nature of the algorithm. As we will show in Section 5.2, this method

manages to minimise latency while keeping message traffic low. This is achieved by

creating small recipients lists that exploit routing information located in the finger

table of the message initiator. A simpler approach to the hybrid algorithm would be

90 Chapter 5 : Protocols for Distributed Information Filtering

FwdResource(id(P),pid(p),p,{id(P1)})

FwdResource(id(P),pid(p),p,{id(P2),id(P3)})

P1

P2

P3

Message send using

the
iterative method

Message send using

the
recursive method

Figure 5.4: An example of the hybrid method

to split the initial list L to a number of smaller fixed size lists according to S, but

this would not allow us to use the routing information from the finger table of the

message initiator. Figure 5.4 illustrates graphically the publication of a resource to

three recipients using the hybrid approach.

Finally, notice that the publication (and also the subscription) protocol indexes

equalities using a single word contained in the text value, contrary to the standard

way that would index the entire text value in the DHT. This is done to avoid sending

extra network messages for each publication to discover matching equalities. False

positives that may occur are resolved locally at each node (as discussed in Chapter

6), thus relieving the network of significant messaging overhead.

5.1.3 The Notification Protocol

When a message FwdResource containing a publication p of a resource arrives

at a node P , the queries matching p are found by utilising its local index structures

and using the algorithms described in detail in Chapter 6.

Once all the matching queries have been retrieved from the database, P creates

notification messages of the form QNotification(l(r)) and contacts all the nodes

that their queries where matched against p using their IP address associated with

the query they submitted. If a node P ′ is not online when P tries to notify it about

5.1 : The DHTrie Protocols 91

the published resource, the notification message is sent to the successor(P ′). In this

way P ′ will be notified the next time it logs on the network. To utilise the network

in a more efficient way, notifications can also be batched and sent to the subscribers

when traffic is expected to be low.

5.1.4 Frequency Cache

In this section we introduce an additional routing table that is maintained in each

node. This table, called frequency cache (FCache), is used to reduce the cost of

publishing a resource. Using the protocols described earlier, each node is responsible

for handling queries that contain a specific word. When a resource r with h distinct

words is published by node P , P needs to contact at most h other nodes which will

match the incoming resource against their local query databases. This procedure

costs O(h log N) messages for each resource published at P . Since some of the words

will be used more often at published resources, it is useful to store the IP addresses

of the nodes that are responsible for queries containing these words. This allows P

to reach in a single hop the nodes that are contacted more often.

FCache is a hash table used to associate each word that appears in a published

document with a node IP address. It uses a word w as a key, and each FCache

entry is a data structure that holds an IP address. Thus, whenever P needs to

contact another node P ′ that is responsible for queries containing w, it searches its

FCache. If FCache contains an entry for w, P can directly contact P ′ using the IP

stored in its FCache. If w is not contained in FCache, P uses the standard DHT

lookup protocol to locate P ′ and stores contact information in FCache for further

reference. Using FCache, the cost of processing a published resource p is reduced to

O(v+(h−v) log N), where v is the number of words of p contained in FCache. Notice

that the construction and maintenance of FCache comes at no extra message cost

and node routing information is discovered only when needed. In the experiments

presented in the next section we discuss good choices for FCache size (see Section

5.2.2).

The extra cost involved with FCache is possible cache misses because of network

92 Chapter 5 : Protocols for Distributed Information Filtering

dynamicity. In an FCache miss, the node needs to utilise the routing infrastructure

at the cost of O(logN) messages to locate a node. However, the new contact infor-

mation is used to update the FCache entry for future reference. Misses are most

likely to occur for infrequent words, since nodes responsible for storing queries with

frequent words will be contacted repeatedly.

5.2 Experimental Evaluation

To carry out the experimental evaluation of the protocols described in the previ-

ous section, we needed metadata for incoming resources, as well as user queries. For

the model AWPS considered in this work there are various document sources that

one could consider: TREC corpora, metadata for papers on various publisher Web

sites (e.g., ACM or IEEE), electronic newspaper articles, articles from news alerts

on the Web (e.g., http://www.cnn.com/EMAIL) etc. However, it is rather difficult

to find user queries except by obtaining proprietary data (e.g., from CNN’s news or

Springer’s journal alert system).

For our experiments we use 10426 documents downloaded from CiteSeer1 and

used also in [74, 195, 200, 202, 203]. The documents are research papers in the

area of Neural Networks and we will refer to them as the NN corpus2. Because no

database of queries was available to us, our queries are synthetically generated by

exploiting 2000 documents of the corpus. The remaining 8426 documents are used

to generate publications.

Each query q has two parts: (i) a Boolean part which consists of at most 4

conjuncts that are atomic Boolean queries of the form A w wp, where wp is a

conjunction of at most 4 words or proximity formulas, and (ii) a VSM part which

consists of at most 3 conjuncts of the form A ∼k s, where s is a text value. Each

atomic Boolean query of the form A w wp is generated using the methodology of

[195, 200, 202, 203]. We set A to be title, authors, abstract or body with

some probability. Then, we set wp to a conjunction of words or proximity formulas

1http://citeseer.ist.psu.edu
2We would like to thank Evangelos Milios and his group at Dalhousie University for providing

us the original Neural Network Corpus.

5.2 : Experimental Evaluation 93

obtained from technical terms mined from the document corpus. Each atomic VSM

query of the form A ∼k s is generated as follows. We set A to be title, abstract

of body with some probability. Then, we choose randomly a corpus document and

set s equal to the title, abstract or some part of the body field depending of our

earlier choice of A. Finally, we set k to a value between [0.3, 0.7] using the uniform

distribution.

We have implemented and experimented with six variations of the DHTrie proto-

cols. The first one, named It, utilises the iterative method in the publication proto-

col and does not use FCache. The second algorithm, named ItC, utilises again the

iterative method and also an FCache, and is intended to show the effect of FCache

when using the iterative method in the publication protocol. The third algorithm,

named Re, utilises the recursive method in the publication protocol but does not

use the FCache. ReC uses the recursive method and FCache and shows a significant

improvement regarding network utilisation compared to the rest of the algorithms.

Finally, the algorithms Hy and HyC use the hybrid method described in Section

5.1 and target low latency in the publication of a document and in the indexing of a

vector space query. Algorithm Hy does not utilise an FCache, whereas HyC does.

All the algorithms and the DHTrie simulator were implemented in C/C++.

To carry out each experiment described in this section, we execute the following

steps. Initially the network is set up by assigning keys to nodes. These keys are

calculated using the SHA-1 cryptographic hash function and randomly created IP

addresses and ports. After the network is set up, we create 5 million user queries

and distribute them among the nodes using the protocol described in Section 5.1.1.

In the experiments described in this section, we are mainly interested in the per-

formance of the six different algorithms in terms of network traffic and latency to

publish a document. To measure network traffic, we publish the corpus documents

at different nodes and record the network activity. According to the publication

protocol, the number of posted queries does not affect the cost for publishing a

document in the network. It only affects the matching time for the local filtering

algorithms and the number of matching notifications produced (the higher the num-

ber of posted queries, the higher the number of matching notifications produced).

94 Chapter 5 : Protocols for Distributed Information Filtering

Parameter Description

N # of nodes in the system

Q # of queries assigned to nodes

Cs # of entries in FCache

Ct # of publications used to train
FCache

W average # of words per published
document

SF split factor (used for load balancing)

T split threshold (used for load balanc-
ing)

S size of recipients list (used in hybrid
method)

δ tolerance factor (used in hybrid
method)

Table 5.1: Parameters varied in experiments and their descriptions

Publication latency is measured in number of messages as follows. For each docu-

ment published, we record the longest chain of messages needed until the publication

reaches all the intended recipients. As we will show in the experiments, algorithms

It and ItC have the lowest latency since all publication messages are sent in parallel

(but with high cost in network traffic). On the other hand, algorithms Re and ReC

show the worst performance in publication latency due to the recursive way they

use to contact the responsible nodes (although we will show that network traffic

is significantly reduced). Finally, algorithms Hy and HyC are a tradeoff between

the previous algorithms, trying to reduce latency (by parallelising messages up to a

certain extent) but at the same time keep the message traffic low. Table 5.1 sum-

marises the parameters used in the experiments. Next to each graph we show later,

a table containing the baseline values for these parameters is provided.

5.2.1 Varying Network Size

The first set of experiments that we conducted to evaluate our protocols targeted the

performance of the algorithms in terms of message traffic and publication latency

for different network sizes. In this experiment, we randomly selected 100 documents

(with 5415 words average size) from the NN corpus and used them as incoming

5.2 : Experimental Evaluation 95

0

500

1000

1500

2000

2500

3000

3500

10
 20
 30
 40
 50
 60
 70
 80
 90
 100

of nodes (x1000)

of

 m
es

sa
ge

s/
do

cu
m

en
t

It/4
 ItC
 Re
 ReC
 Hy
 HyC

Parameter Value

N 10K-100K

Q 5M

Cs 30K

Ct 10K

W 5415

SF -

T -

S 50

δ 5

Figure 5.5: Performance in terms of message traffic for various network sizes

publications by randomly assigning each one to a publisher node. In each one of the

10 different runs, each document was assigned to a different node. Having published

the documents, we recorded the total number of DHTrie messages generated by the

network in order to match these documents against the posted user queries.

In Figure 5.5, the performance of the different algorithms in terms of DHTrie

messages per document is shown. To improve the readability of the graph and show

clearer the behaviour of the algorithms performing better, the measurements of al-

gorithm It have been subquadrupled. The main observation is that the number

of messages generated by all the different algorithms to match the incoming doc-

uments against the user queries, grows at a logarithmic scale mainly due to the

routing infrastructure used. A second observation emerging from the graphs is the

effectiveness of the FCache independently of the message routing algorithm used.

The use of FCache (with 30K entries in this experiment) results in the reduction of

messages sent using the routing infrastructure by more than 6 times in the recursive

and the hybrid method, and by 8 times in the iterative method. Notice also that

using algorithm ReC reduces the DHTrie message cost of publishing a document

of about 5500 words to only 500 messages for a network consisting of 100K nodes

managing to process both Boolean and VSM queries. Finally, it is worth pointing

out the small difference in the performance of the recursive and the hybrid methods,

with the recursive one being slightly better. This is important since as we will show

96 Chapter 5 : Protocols for Distributed Information Filtering

0

1000

2000

3000

4000

5000

6000

7000

8000

50
 100
 50
 100
 50
 100
 50
 100
 50
 100
 50
 100

It
 ItC
 Re
 ReC
 Hy
 HyC

of nodes (x1000) and algorithm

of

 m
es

sa
ge

s/
do

cu
m

en
t

DHT Messages
 FCache Messages

Parameter Value

N 50K, 100K

Q 5M

Cs 30K

Ct 10K

W 5415

SF -

T -

S 50

δ 5

Figure 5.6: Total document processing cost

later in this section the hybrid method is much more efficient in terms of publication

latency, a fact that makes it an appealing approach.

In Figure 5.6, we present the total cost for processing a single document in terms

of message traffic for networks of 50K and 100K nodes. By total cost we mean the

messages sent using information from FCache plus the messages sent using the

DHTrie infrastructure. For readability reasons, messages for algorithm It have been

truncated to 8000. For algorithm ItC and a network of 50K nodes, the DHTrie

messages were about 50% of the total messages sent, whereas for a network of 100K

nodes they were about 60%. On the other hand, for algorithms ReC and HyC the

DHTrie messages were around 35% for both network sizes. The above observations

show the importance of these two methods and FCache in the reduction of the total

document matching cost and in the relief in terms of messages of the DHTrie routing

infrastructure.

Finally in Figure 5.7, we show the performance of the six algorithms in terms of

publication latency and how this performance is affected by increasing the number

of nodes in the network. For readability reasons, we have reduced the latency

measurements of algorithm Re by a factor of 6. One important observation is

the good performance of the iterative algorithms in terms of latency. This is due

to Chord’s lookup protocol used. A single lookup message is sent to each one

of the intended recipients of the publication, and thus the publication process is

5.2 : Experimental Evaluation 97

0

50

100

150

200

250

300

350

400

450

500

550

10
 20
 30
 40
 50
 60
 70
 80
 90
 100

of nodes (x1000)

la
te

nc
y

(h
op

s)

It
 ItC
 Re/6
 ReC
 Hy
 HyC

Parameter Value

N 10K-100K

Q 5M

Cs 30K

Ct 10K

W 5415

SF -

T -

S 50

δ 5

Figure 5.7: Performance in terms of publication latency for various network sizes

parallelised. In this way, the longest chain of messages created is that imposed by

Chord’s routing strategy, which is logarithmic to the number of nodes in the system

and independent of the number of recipients. On the other extreme are the recursive

methods, that perform poorly. This is due to the long recipients list used to contact

the intended recipients at publication time, as described in Section 5.1.2. Finally,

the hybrid methods present a better behaviour to publication latency. An important

observation that should be stressed is the use of the FCache and its effect in the

reduction of publication latency. Algorithm ItC is for example 6 times faster than

It and the performance of HyC is comparable to that of the iterative algorithms.

The utilisation of the FCache manages to remove many recipients (by contacting

them directly using their IP stored in the FCache) from recipients lists created by

the recursive and hybrid methods, thus significantly reducing publication time. This

also explains the reason for not improving the performance of the iterative method.

5.2.2 Varying the FCache Size

The second set of experiments targeted the performance of the algorithms under

different FCache sizes and studied the effect of FCache in the DHTrie utilisation

and also in publication latency. We used the document corpus as the training

set for populating the FCache of the different nodes. A randomly chosen node p

publishes 10K documents and populates of its FCache with the IP addresses of the

98 Chapter 5 : Protocols for Distributed Information Filtering

0

1000

2000

3000

4000

5000

6000

7000

1
 5
 10
 15
 20
 25
 30

FCache size (x1000)

of

 D
H

T
 m

es
sa

ge
s/

do
cu

m
en

t

ItC (50K nodes)
 ItC (100K nodes)
 ReC (50K nodes)

ReC (100K nodes)
 HyC (50K nodes)
 HyC (100K nodes)

Parameter Value

N 50K, 100K

Q 5M

Cs 1K-30K

Ct 10K

W 5415

SF -

T -

S 50

δ 5

Figure 5.8: Message traffic at the DHT for different FCache sizes

nodes that are responsible for the most frequent words contained in the published

documents. These publications served as a training set for the FCache. Then

another 100 documents are published by p and the size of the FCache is limited

to different values. Subsequently, the total number of messages, used to match

these documents against the stored user queries, is recorded. Figure 5.8 shows the

utilisation of the overlay network in messages per document, as the size of FCache

grows. The values shown are averaged over 10 runs with different nodes.

As it is shown in Figure 5.8, the number of messages sent using the DHTrie

routing infrastructure reduces quickly as the size of FCache increases to reach a

state where the effect of an FCache increase causes no significant change in the

number of messages (around 30K entries, the rightmost point in x-axis). Notice

that the cost for each node to maintain an FCache consists only of storing some

information in its local data store, namely about 24 bytes per entry (the hash value

of the word and the IP address of the node responsible for this word). Additionally,

the routing information of the FCache of node p depends only on the documents that

get published by p, causing no additional maintenance messages. The only extra

cost involved with FCache is its update cost as nodes come and go from the network.

This causes FCache entries to be outdated, costing more extra messages through

the routing infrastructure to publish a resource. These extra messages though are

sent only once, since the FCache field is updated when the new node responsible for

5.2 : Experimental Evaluation 99

300

400

500

600

700

800

900

1
 5
 10
 15
 20
 25
 30

FCache size (x1000)

of

 F
C

ac
he

 m
es

sa
ge

s/
do

cu
m

en
t

ItC (50K nodes)
 ReC (50K nodes)
 HyC (50K nodes)

ItC (100K nodes)
 ReC (100K nodes)
 HyC (100K nodes)

Parameter Value

N 50K, 100K

Q 5M

Cs 1K-30K

Ct 10K

W 5415

SF -

T -

S 50

δ 5

Figure 5.9: Number of messages sent by utilising the FCache, for different FCache sizes

the word with an outdated entry is located. With our measurements, we found out

that when 10% of the FCache entries are outdated, the message cost increase was no

more than 4% showing that FCache is able to cope up with misses. Notice also that

in the recursive and hybrid methods (algorithms ReC and HyC) the performance

of FCache in different network sizes remains constant, whereas in the case of the

iterative method (algorithm ItC) the performance deteriorates (we get 50% more

DHTrie messages per document for an 100% increase in network size).

Figure 5.9 shows the utilisation of FCache per document, showing again that

after a threshold value (in our example around 30K entries, the rightmost point in

x-axis) its effect is significantly reduced. This is also the reason that we chose 30K

FCache entries as a baseline value for the rest of our experiments. We also observe

that the number of messages sent using the FCache is about the same for all the

algorithms and network sizes, showing that FCache is equally utilised in all cases.

In Figure 5.10 we show the performance of the algorithms in terms of publication

latency and how this performance is affected by the variation of the FCache size.

An important observation emerging from the graphs is that the effect of the FCache

size is not the same for all the algorithms. ItC remains unaffected by the increase

not only in FCache size but also in the network size, something that is also verified

from the graphs of the previous section. This is due to the routing infrastructure

and the iterative way of publishing the incoming documents. On the other hand

100 Chapter 5 : Protocols for Distributed Information Filtering

0

50

100

150

200

250

300

350

400

450

1
 5
 10
 15
 20
 25
 30

FCache size (x1000)

la
te

nc
y

(h
op

s)

ItC (50K nodes)
 ItC (100K nodes)
 ReC (50K nodes)/5

ReC (100K nodes)/5
 HyC (50K nodes)
 HyC (100K nodes)

Parameter Value

N 50K, 100K

Q 5M

Cs 1K-30K

Ct 10K

W 5415

SF -

T -

S 50

δ 5

Figure 5.10: Publication latency for different FCache sizes

algorithms ReC and HyC seem to perform better when the size of the FCache

increases. This is attributed, as also stated in the previous section, to the removal

of many recipients from recipients lists that results in smaller message chains, and

thus smaller latency. As the size of FCache increases, more recipients are contacted

using their IP (obtained from FCache) rather than the routing infrastructure, which

causes shorter publication times. Finally, although a slight increase due to network

size is observed, the behaviour of the algorithms and the FCache effect remain

unaffected by this change.

5.2.3 Effect of FCache Training

In this set of experiments we measure the effect of FCache training to the message

cost imposed to the network by the publication of a single document and also to

the publication latency. To conduct the experiments, we randomly selected a node

P and trained P ’s FCache with a varying number of documents. Through this

process the node was able to collect statistics about the most frequent words used

in documents (published by it), and as a result it was able to populate its FCache

with the appropriate pointers to frequently contacted nodes. Thus, for an FCache

with 30K entries (the baseline value used in the experiments), the node would know

the IP addresses for the nodes responsible for the 30K most frequent words. We

then published 100 documents (with 5415 words average document size) to P and

5.2 : Experimental Evaluation 101

400

450

500

550

600

650

700

750

800

2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 40
 60
 80
 100

of documents (x100) published per node

of

 D
H

T
 m

es
sa

ge
s/

do
cu

m
en

t

ItC (50K nodes)/2
 ReC (50K nodes)
 ItC (100K nodes)/2

ReC (100K nodes)
 HyC (50K nodes)
 HyC (100K nodes)
 Parameter Value

N 50K, 100K

Q 5M

Cs 30K

Ct 0.2K-10K

W 5415

SF -

T -

S 50

δ 5

Figure 5.11: Performance of the DHT for different levels of FCache training

recorded the message cost to match these documents against the stored user queries.

The results shown in Figure 5.11 are averaged over 100 runs for different nodes to

eliminate network topology effects.

Figure 5.11 shows that the performance of the different algorithms improves

as more documents get published. For readability purposes we have reduced the

measurements for the ItC algorithm by a factor of 2. Algorithms ReC and HyC

seem less sensitive in this parameter, as the difference in the number of messages

observed is about 100 messages for 50 times more documents (the leftmost and

rightmost point in the x-axis), whereas ItC presents a difference of more than 300

messages. Additionally, ReC shows less sensitivity with respect to the network size,

contrary to ItC that needs about 50% more messages. Finally, all algorithms show

a similar behaviour for the two network sizes we tested.

Figure 5.12 shows the number of hits of FCache for different levels of FCache

training. Notice that all the algorithms have roughly the same number of hits for a

network of 50K nodes, showing that FCache hits are not affected by the algorithm

used. Looking at the scale in the y-axis, we can also see that the number of FCache

hits shows only a slight improvement of around 4% for a 5000% increase in the

number of documents used for training. This is attributed to the skewed nature of

the data (documents) used to train the FCache. It is however important to note

that even a small increase in FCache hits can significantly reduce message load (as

102 Chapter 5 : Protocols for Distributed Information Filtering

820

830

840

850

860

870

880

2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 40
 60
 80
 100

of documents (x100) published per node

of

 F
C

ac
he

 m
es

sa
ge

s/
do

cu
m

en
t

ItC (50K nodes)
 ReC (50K nodes)
 ItC (100K nodes)

ReC (100K nodes)
 HyC (50K nodes)
 HyC (100K nodes)
 Parameter Value

N 50K, 100K

Q 5M

Cs 30K

Ct 0.2K-10K

W 5415

SF -

T -

S 50

δ 5

Figure 5.12: Number of messages sent by utilising the FCache, for different levels of
FCache training

0

20

40

60

80

100

120

2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 40
 60
 80
 100

of documents (x100) published per node

la
te

nc
y

(h
op

s)

ItC (50K nodes)
 ReC (50K nodes)/5
 ItC (100K nodes)

ReC (100K nodes)/5
 HyC (50K nodes)
 HyC (100K nodes)

Parameter Value

N 50K, 100K

Q 5M

Cs 30K

Ct 0.2K-10K

W 5415

SF -

T -

S 50

δ 5

Figure 5.13: Publication latency for different levels of FCache training

it is already shown in the graphs of Figure 5.12), since every FCache hit, saves us

O(log N) DHTrie messages.

In Figure 5.13 we show the performance of the algorithms in terms of publication

latency and how this performance is affected as FCache training varies. We observe

the algorithm ReC is the most heavily affected by the training level of the FCache,

followed by HyC and ItC which remains unaffected by the variation in the FCache

training. This can be explained as follows. Regarding publication latency, ReC is

the algorithm that is mostly dependent on the information provided by FCache, as

this reduces the long recipients lists that delay the document publication. Algorithm

HyC is designed to produce shorter lists and thus the removal of many recipients is

5.2 : Experimental Evaluation 103

0

1000

2000

3000

4000

5000

1412
 5415
 20755

Average document size (words)

of

 D
H

T
 m

es
sa

ge
s/

do
cu

m
en

t

It
 ItC
 Re
 ReC
 Hy
 HyC

Parameter Value

N 50K

Q 5M

Cs 30K

Ct 10K

W 1412, 5415,

20755

SF -

T -

S 50

δ 5

Figure 5.14: Message traffic at the DHT for documents of different size

not crucial for its performance in publication time. Algorithm ItC uses the iterative

way provided by Chord infrastructure to contact message recipients, thus remains

unaffected by FCache training. Finally all algorithms show a slight increase when

the network size is doubled. This increase is small due to the logarithmic routing

provided by the infrastructure.

5.2.4 Varying the Document Size

Document (i.e., publication) size is an important parameter in the performance of

our algorithms. This set of experiments targeted the performance of the differ-

ent algorithms for varying document sizes. Figure 5.14 shows the message cost for

publishing documents of varying size by using each one of the six different algo-

rithms. Each one of the bars in Figure 5.14 is an average of the message cost for

100 documents, published by 1000 different nodes (in a network of 50K nodes in

total) to normalise network topology effects. Notice that the graph is truncated to

a maximum of 5000 messages to show clearly the best performing algorithms.

Figure 5.14 shows that for small documents the use of the recursive or the hybrid

method, contrary to FCache, does not improve performance significantly, since algo-

rithms ItC, ReC and HyC perform similarly. This is because for a large proportion

of the words contained in small documents an FCache entry exists, thus needing a

single message to reach the node responsible for queries that contain these words.

104 Chapter 5 : Protocols for Distributed Information Filtering

0

1

2

3

4

5

6

7

8

9

10

It
 ItC
 Re
 ReC
 Hy
 HyC

Algorithm

fa
ct

or
 o

f
in

cr
ea

se
 in

 m
es

sa
ge

 tr
af

fi
c

3 times larger document
 14 times larger document
 Parameter Value

N 50K

Q 5M

Cs 30K

Ct 10K

W 1412, 5415,

20755

SF -

T -

S 50

δ 5

Figure 5.15: Increase rate in message traffic with respect to document size for each
algorithm

The remaining words that are not listed in node’s FCache use the DHTrie infrastruc-

ture, but their number is so small that we cannot observe significant differences in

message cost. For large documents though, the use of the recursive method together

with FCache is shown to be significantly better than its counterparts, managing

to process documents of average size of around 21K words by using around 1800

messages. Note also that algorithms ReC and HyC perform similarly for all sizes of

documents, underpinning our initial claim that the two algorithms behave similarly

in terms of message traffic, but HyC is a better choice since it handles publication

latency in a more efficient way.

For this experiment we used three groups of 100 documents, D1, D2 and D3.

Document group D2 was 3 times larger on average than D1, while document group

D3 was 14 times larger on average than D1. Initially 100 random nodes were cho-

sen to publish document group D1, and the message traffic generated was recorded.

Then in a similar way the other two document groups were published and the num-

ber of messages generated was recorded. Figure 5.15 shows the factor of increase

in message traffic for each algorithm when publishing the two different groups of

documents. With our experiments, we have concluded that the increase in message

cost is linear to the document size for all algorithms with algorithm Re and Hy

presenting the smaller increase factor, thus showing a smaller sensitivity to docu-

ment size. On the other hand, algorithms that use the FCache show more sensitivity

5.2 : Experimental Evaluation 105

0

100

200

300

400

500

600

1412
 5415
 20755

Average document size (words)

la
te

nc
y

(h
op

s)

It
 ItC
 Re/10
 ReC/10
 Hy
 HyC

Parameter Value

N 50K

Q 5M

Cs 30K

Ct 10K

W 1412, 5415,

20755

SF -

T -

S 50

δ 5

Figure 5.16: Latency for documents of different size

to document size, with HyC being the algorithm with the second larger increase

rate. Despite this increase, HyC remains the most efficient algorithm (together with

ReC) as shown in Figure 5.14.

Figure 5.16 shows how document size affects latency for the different algorithms.

The most important observation is the bad behaviour of the recursive algorithms

(notice that the measurements for these algorithms are reduced by a factor of 10

for better readability), which shows that they are heavily affected by the document

size. This is expected since the recipients list grow longer with publication size,

making it a crucial parameter for the performance of the recursive algorithms. On

the other hand, the iterative and hybrid algorithms are not sensitive to document

size, for different reasons each. The iterative algorithms are not sensitive because

of the usage of the Chord lookup functionality (and no recipients lists) and the

hybrid methods because of the use of recipients lists that are independent from the

publication size.

Similarly to Figure 5.15, the graphs in Figure 5.17 show the factor of increase

in publication latency for each algorithm when publishing a 3 times larger and a

14 times larger document. We observe that the iterative and hybrid algorithms

are almost insensitive to document size, while the recursive algorithms show high

sensitivity. This is caused by the recipients lists which grow longer with publication

size.

106 Chapter 5 : Protocols for Distributed Information Filtering

0,0

0,5

1,0

1,5

2,0

2,5

3,0

It
 ItC
 Re
 ReC
 Hy
 HyC

Algorithm

fa
ct

or
 o

f
in

cr
ea

se
 in

 la
te

nc
y

3 times larger document
 14 times larger document

Parameter Value

N 50K

Q 5M

Cs 30K

Ct 10K

W 5415, 20755

SF -

T -

S 50

δ 5

Figure 5.17: Increase rate in latency with respect to document size for each algorithm

0

20

40

60

80

100

120

140

V
SM

B
oo

le
an

&

 V
SM

V
SM

B
oo

le
an

&

 V
SM

V
SM

B
oo

le
an

&

 V
SM

V
SM

B
oo

le
an

&

 V
SM

V
SM

B
oo

le
an

&

 V
SM

V
SM

B
oo

le
an

&

 V
SM

It
 ItC
 Re
 ReC
 Hy
 HyC

Query type and algorithm

of

 m
es

sa
ge

s/
qu

er
y

DHT Messages
 FCache Messages

Parameter Value

N 50K

Q 500K

Cs 30K

Ct 10K

W -

SF -

T -

S 50

δ 5

Figure 5.18: Message cost to index a query in the network

5.2.5 Varying the Type of Queries

In this set of experiments we investigate the cost of indexing a query in the network.

Each one of the bars in Figures 5.18 and 5.19 shows the average message traffic and

latency recorded when indexing 500K queries of each type in the network of 50K

nodes. In these experiments we used queries with vector space atomic queries only

and also queries with both Boolean and vector space queries. Indexing the second

type of queries is the same as indexing queries with Boolean atomic queries only (the

user is referred to Section 5.1.1). Figure 5.18 shows the message cost for indexing

queries of different types by using each one of the six different algorithms. Notice

that the graph is truncated to a maximum of 140 messages to show clearly the best

5.2 : Experimental Evaluation 107

0

20

40

60

80

100

120

140

V
SM

B
oo

le
an

&

 V
SM

V
SM

B
oo

le
an

&

 V
SM

V
SM

B
oo

le
an

&

 V
SM

V
SM

B
oo

le
an

&

 V
SM

V
SM

B
oo

le
an

&

 V
SM

V
SM

B
oo

le
an

&

 V
SM

It
 ItC
 Re
 ReC
 Hy
 HyC

Query type and algorithm

la
te

nc
y

(h
op

s)

50K nodes
 100K nodes

Parameter Value

N 50K

Q 500K

Cs 30K

Ct 10K

W -

SF -

T -

S 50

δ 5

Figure 5.19: Latency in indexing a query in the network

performing algorithms.

The most important observation in this graph is that regardless of the algorithm,

vector space queries are much more expensive to index than Boolean or mixed

type queries, since vector space queries require indexing in all nodes responsible for

the distinct words contained in the query, whereas other query types are indexed

under only one (see Section 5.1.1). It is clear that ReC and HyC are the best

performing algorithms for vector space query indexing in terms of message traffic,

whereas no significant difference in performance is observed for the other query

types. Notice also the important role of FCache, which manages to forward to the

intended recipients more than 2/3 of the total network traffic in algorithms ReC

and HyC, thus relieving the DHT infrastructure of substantial messaging effort.

As we can see in Figure 5.19, latency in the indexing of Boolean or mixed type

queries is similar for all the algorithms with the Re algorithm being slightly worse

than the rest. For vector space queries however algorithms Re and Hy are perform-

ing worse than their counter parts. Additionally, algorithm Hy seems to behave

similarly in terms of latency to Re which may seem unusual considering its perfor-

mance in the previous experiments. This change in behaviour is explained by the

fact that in this experiment the two algorithms have roughly the same size of re-

cipients lists. This happens because Re creates small recipients lists (since a vector

space query in our scenario is about the size of an paper abstract) and thus the size

108 Chapter 5 : Protocols for Distributed Information Filtering

0

500

1000

1500

2000

2500

3000

3500

20
 40
 60
 80
 100
 150
 200
 250
 300

desired recipients list size

of

 D
H

T
 m

es
sa

ge
s/

do
cu

m
en

t

Hy (50K nodes)
 HyC (50K nodes)

Hy (100K nodes)
 HyC (100K nodes)
 Parameter Value

N 50K, 100K

Q 5M

Cs 30K

Ct 10K

W 5415

SF -

T -

S 20-300

δ 5

Figure 5.20: Message traffic when varying the recipient list size in the hybrid algorithms

of the list is similar to the size we use for algorithm Hy.

5.2.6 Varying the Desired Recipients List Size in the Hybrid

Algorithms

This set of experiments targets a specific parameter of the hybrid algorithms and

intends to show how the size of the recipients list affects the message load in the

network and publication latency. Figures 5.20 and 5.21 show the Hy and HyC

algorithms for two different network sizes (50K and 100K nodes) and each point in

the graph is averaged over 10 runs. We have used 100 documents (with 5415 words

average size) from the NN corpus as incoming publications and randomly assigned

each document to a publisher node.

Figure 5.20 shows the average number of DHT messages needed to publish a doc-

ument as the desired recipient list size increases. We should note that the hybrid

algorithm tries to bridge the two extremes between the iterative and the recursive

algorithms. The lower the recipients list size the closer the algorithm is to the iter-

ative counterpart, as the iterative counterpart can be viewed as a hybrid algorithm

with recipient list size of one. On the other hand, the higher the recipient list size,

the closer the algorithm is to the recursive counterpart. For this reason, we see the

reduction in the network traffic as the recipient list size increases. Another impor-

5.2 : Experimental Evaluation 109

0

100

200

300

400

500

600

700

800

900

1000

20
 40
 60
 80
 100
 150
 200
 250
 300

desired recipients list size

la
te

nc
y

(h
op

s)

Hy (50K nodes)
 HyC (50K nodes)

Hy (100K nodes)
 HyC (100K nodes)
 Parameter Value

N 50K, 100K

Q 5M

Cs 30K

Ct 10K

W 5415

SF -

T -

S 20-300

δ 5

Figure 5.21: Latency when varying the recipient list size in the hybrid algorithms

tant observation is the role of the FCache in the behaviour of the algorithms. It

decreases network traffic by a factor of 6 as it was expected given the rest of results

presented in this section, and reduces the effect of the network size in the behaviour

of the algorithm (notice for example the difference between the two instances of

algorithm Hy and the difference between the two instances of algorithm HyC).

When publication latency is in question then the behaviour of the algorithms

is similar (Figure 5.21). FCache continues to play an important role in reducing

latency and network size effects, while all algorithms show an increase when the

desired recipients list size increases. This behaviour can be explained as above by

the tuning of the hybrid algorithm between the two extremes.

5.2.7 Summing Up

We have presented a set of protocols, collectively called DHTrie, that extend the

Chord protocols with pub/sub functionality. We have implemented six variations

of the protocols and evaluated them experimentally in different settings and for

different parameters. In this section we present our conclusions regarding the exper-

imental evaluation of the six algorithms and sum up the strengths and weaknesses

of each one of them.

Experiments have shown the usefulness the FCache in all the cases. In all our

experiments the algorithms that use the FCache (ItC, ReC and HyC) performed

110 Chapter 5 : Protocols for Distributed Information Filtering

significantly better than their counterparts (It, Re and Hy), not only in terms of

message traffic but also in terms of publication latency. This, combined with the

fact that FCache is a local data structure that is compact (less than 1MB) and easy

to maintain, lead us to the conclusion that such a routing table is a useful tool that

comes with very little extra cost.

When message traffic in the routing infrastructure is in question, then algorithm

ReC is the best candidate. It remains relatively unaffected by network size, it

shows relatively small sensitivity to increasing document sizes and needs only few

valid FCache entries to present a big performance improvement. On the other

hand, when publication latency is in question, algorithm ItC is a good candidate.

Its performance with respect to publication latency remains unaffected by network

size, level of training and size of the FCache, and the size of the publication. This

of course comes at the price of higher network traffic in the routing infrastructure.

Finally, HyC is a tunable alternative to the previous approaches that manages

to balance its performance between network traffic and publication latency. It is

slightly more expensive than ReC in terms of network traffic but still significantly

lower than ItC, whereas it performs well in terms of latency. Its behaviour shows

no deviations from the behaviour of the other two algorithms and its sensitivity to

different parameters follows that of its counterparts. In general it tries to combine

the benefits of the two previous algorithms by providing an versatile algorithm that

can be tuned to optimise either network traffic or publication latency. HyC should

be the algorithm of choice when our performance metric gives equal weight to both

message traffic and latency, and should be a reasonable choice for a distributed

resource sharing scenario, as the one we have assumed.

5.3 Load Balancing

In typical IR scenarios the probability distributions associated with documents

and queries can be arbitrary and are typically skewed. For example, the frequency

of occurrence of words in a document collection follows the Zipf distribution, sub-

scriptions to an electronic journal might refer mostly to current hot topics while

publications appearing in the same journal might reflect its established tradition

5.3 : Load Balancing 111

etc. Thus, a key issue that arises when trying to partition the query space among

the different nodes of a DHT in a pub/sub scenario is to achieve load balancing. In

any pub/sub setting we can distinguish three types of node load: query, routing and

filtering.

The query load of a node P is the number of queries stored at node P . The

routing load of a node P is the number of messages that P has to forward due to the

DHTrie protocols. Finally, the filtering load of a node P is the number of filtering

requests (i.e., publications) that need to be processed at node P .

5.3.1 Balancing the Filtering Load

Filtering is arguably the heaviest of the load balancing tasks at hand, since for each

filtering request, a node has to search its local data store, retrieve the matching

queries and notify interested subscribers. The filtering load of a node P depends on

the number of words that hash to the interval of the identifier space owned by P

and the frequency distribution of these words in published documents.

In the DHT literature, work on load balancing has recently concentrated on two

particular problems: address-space load balancing and item load balancing. The

former problem is how to partition the address-space of a DHT “evenly” among

keys; it is typically solved by relying on consistent hashing and constructions such

as virtual servers [180] or potential nodes [113]. In the latter problem, we have to

balance load in the presence of data items with arbitrary load distributions [4, 7, 113]

as in our case.

We have implemented and evaluated a simple algorithm for distributing the

filtering load evenly throughout the different nodes of the network. The algorithm

is based on the well-known concept of load-shedding (LS), where an overloaded node

attempts to off-load work (i.e., filtering requests) to less loaded nodes. The algorithm

is in fact applicable to the standard DHT look-up problem but here we utilize it in

a pub/sub scenario.

The load balancing algorithm is as follows. Once a node P understands that

it has become overloaded, it chooses the most frequent word w it is responsible

112 Chapter 5 : Protocols for Distributed Information Filtering

for and a small integer k. Then P contacts the nodes responsible for words wj

for all j, 1 ≤ j ≤ k (wj is the concatenation of strings w and j) and asks them

to be its replicas3. Then P notifies the rest of the network about this change in

responsibilities by piggy-backing the necessary information in DHTrie maintenance

messages.

Each node M that receives this message notes down the word w. Later on, if

M has a new publication containing w, it divides the filtering responsibility for w

among P and k other nodes by concatenating a random number from 1 to k to the

end of the w and using DHTrie to find the node responsible for this word. In this

way, the filtering responsibility of w for P is reduced by k + 1 times (k new nodes

plus P). We call k + 1 the split factor (SF) in subsequent experiments.

In the experiments carried out in this section, a node P considers itself overloaded

if it exceeds the threshold (T) of 10 filtering requests for the same word w in a time

window of 100 document publications (in other words, if at least 10% of the published

documents contain w). In a real network, a node would not know how to define such

a time window. In this case it could use sampling to estimate the average document

publication rate, and thus be able to discover if it is doing more filtering work than

other nodes.

The results of our experiments for the LS algorithm are shown in Figure 5.22.

Figure 5.22 shows the average number of filtering requests received by each node in

a time window for a period of 100 time windows. SF was varied between 10 and

30 nodes and T was set to 10 requests/time window respectively. For readability

purposes only the first 10K nodes (out of a total of 50K) are shown and the y-axis

is truncated to 25 filtering requests (the highest point in the unbalanced case is 159

filtering requests for a single node). Notice that prior to the load balancing algorithm

the first 3K nodes get a very large proportion of the filtering requests, whereas the

rest of the network receives very few or no requests at all. On the contrary, after

the load balancing algorithm is run, only a small amount of nodes receive more that

20 filtering requests, with the rest of the filtering load being distributed in a more

uniform way among the nodes. It is also notable that the variation of the SF did

3Currently we select the replica nodes randomly, but peer load or locality criteria could be used.

5.3 : Load Balancing 113

0

5

10

15

20

25

1
 1000
 1999
 2998
 3997
 4996
 5995
 6994
 7993
 8992
 9991

Ranked nodes

of

 f
ilt

er
in

g
re

qu
es

ts
 /

no
de

No LS
 With LS (SF=10)

With LS (SF=20)
 With LS (SF=30)
 Parameter Value

N 50K

Q 5M

Cs 30K

Ct 10K

W 5415

SF 1, 10, 20, 30

T 10

S 50

δ 5

Figure 5.22: Average number for filtering requests

not change the balance of the load significantly, although a slight improvement was

shown. However, as we will show in the next section, increasing the SF also causes a

significant increase in message traffic. Finally, we experimented with different values

for T but we did not observe significant differences in the load distribution.

5.3.2 Balancing the Routing Load

Trying to balance the filtering load causes an increase in message traffic. For this

reason, we set up an experiment to investigate the effect not only in the amount of

traffic added to the system but also the distribution of this addition. Figure 5.23

shows the price we pay to achieve filtering load balancing in terms of message routing.

In this graph we show the number of routing requests received by the first 10K nodes

of our network. Notice that the number of messages needed per document increases

significantly after the load balancing algorithm is run (we observed increases of as

much as 80% for SF=10, 180% for SF=20 and 240% for SF=30). For this reason

we have used SF=10 wherever the LS algorithm was used. This increase is due to

FCache misses occurring from the splitting of queries and filtering responsibilities.

The increase in FCache misses causes a significant increase in DHTrie messages

as it was expected (see Section 5.2.3), which is reduced when the FCache entries

are updated. The important point however in Figure 5.23 is that the new load

imposed on the network is uniformly distributed among the nodes and does not

114 Chapter 5 : Protocols for Distributed Information Filtering

0

4

8

12

16

20

1
 1000
 1999
 2998
 3997
 4996
 5995
 6994
 7993
 8992
 9991

Ranked nodes

of

 D
H

T
 m

es
sa

ge
s

/ n
od

e

No LS
 With LS (SF=10)

With LS (SF=20)
 With LS (SF=30)

Parameter Value

N 50K

Q 5M

Cs 30K

Ct 10K

W 5415

SF 1, 10, 20, 30

T 10

S 50

δ 5

Figure 5.23: Routing load for the first 10K nodes

cause overloading in any group of nodes. The new load distribution follows closely

the old one. This observation leads us to the conclusion that the load balancing

algorithm shown here manages to efficiently distribute the filtering load among the

nodes, while imposing an additional cost for routing purposes, which in our scenario

is considered an easier task to perform.

5.3.3 Balancing the Query Load

Even query distribution among nodes is a hard task to achieve since typically queries

follow a skewed distribution that reflect hot topics in an area, or popular information

needs. Although query load is not one of the heaviest loads imposed on a node, it

still remains a significant parameter that has to be addressed. In a distributed

resource sharing scenario storage resources or computational power of nodes (e.g.,

because of battery shortage) may be limited, which makes the cost of storing millions

of user queries a difficult one. Additionally, the filtering task is also dawdled when

an incoming document has to be matched against millions of queries in a limited

resource environment. For the above reasons, we have looked into the problem of

query load balancing and we have devised an solution that, combined with the LS

algorithm described in Section 5.3.1, manages to distribute the filtering load more

evenly to the participating nodes.

Figure 5.24 shows the results for 1M queries indexed in a network of 50K nodes

5.3 : Load Balancing 115

0

30

60

90

120

150

1
 1000
 1999
 2998
 3997
 4996
 5995
 6994
 7993
 8992
 9991

Ranked nodes

of

 s
to

re
d

qu
er

ie
s

/ n
od

e

RWI
 LFWI
 LFWI+LS
 Parameter Value

N 50K

Q 5M

Cs 30K

Ct 10K

W 5415

SF 10

T 10

S 50

δ 5

Figure 5.24: Query load for the first 10K nodes

and each graph is produced as an average over ten runs. For readability reasons

only the load of the 10K most loaded nodes is shown and the graphs are truncated

to a maximum of 150 stored queries per node. To distribute the queries to the nodes

responsible we used two different query indexing methods based on the protocols

presented in Section 5.1.1. RWI (Random Word Index) chooses to index a query

q to the node responsible for a word chosen randomly from the query. Contrary,

LFWI (Least Frequent Word Index) chooses to index q to the node responsible for

the least frequent word contained in the query. Finally LFWI+LS indexes queries

under their least frequent word and uses the load shedding algorithm with SF=10

to achieve a better load distribution. We observe that the load distribution of the

RWI method is highly skewed with the most loaded node storing 3363 queries,

while the majority of the load is handled by 10K nodes. LFWI manages to slightly

improve the load distribution, but still the most loaded node is forced to store more

than 2000 queries. Finally, we can see the LS algorithm, also applicable in this case,

manages to balance the load evenly between the nodes. The most loaded node stores

152 queries while the heaviest 10K nodes (20% of total nodes) store about 35% of

total load.

116 Chapter 5 : Protocols for Distributed Information Filtering

5.4 Conclusions

The evaluation of the DHTrie protocols revealed strengths and weaknesses of

the different algorithms developed. In our experiments we showed that the DHTrie

protocols are scalable: the number of messages it takes to publish a document

remains almost constant as the network grows. Additionally, we showed that the

use of data structures that exploit local knowledge can significantly reduce network

traffic (up to a factor of 9), with little overhead in training. Network traffic also

presents little sensitivity to document size when FCache is utilised. Finally, Section

5.3 presents a load balancing algorithm that trades message traffic for balance in

the peer load.

In the next chapter, we put our attention on the filtering problem faced by each

one of the peers, and provide local data structures and indexing algorithms that

enable us to solve the filtering problem efficiently for large databases of queries

expressed in the model AWP . To support model AWPS, we utilise an algorithm

that combines our approach for indexing Boolean queries with algorithm SQI [211]

for indexing VSM queries.

Chapter 6

Local Filtering Algorithms

I n Chapters 4 and 5 we dealt with the problem of defining the protocols between

the peers to provide pub/sub functionality in a distributed environment. In

this setting, peers store continuous queries (or profiles) that express long-term user

information needs, while others can publish documents to the network. Whenever

a document is published, the continuous queries satisfying this document are found

and notifications are sent to appropriate users. This chapter deals with the filtering

problem that needs to be solved efficiently by each peer: Given a database of con-

tinuous queries db and a document d, find all queries q ∈ db that match d. In this

chapter, we present local data structures and indexing algorithms that enable us

to solve the filtering problem efficiently for large databases of queries expressed in

the model AWP . Thus, we develop and evaluate efficient main-memory algorithms

that are able to filter millions of continuous AWP queries in just a few hundred

milliseconds. Our algorithms are the first in the literature that deal with IR models

like AWP supporting Boolean queries, named attributes with values of type text,

and word proximity operators. The results presented in this chapter have been

published in [106, 125, 200].

The main idea behind our algorithms is to use tries to capture common elements

of queries. In this way, clustering of queries is improved and significantly smaller

filtering times are achieved. The algorithms closest to ours are the ones employed

in the Boolean version of SIFT [209] where documents are free text and queries

118 Chapter 6 : Local Filtering Algorithms

are conjunctions of keywords. SIFT has been the inspiration for this work and the

results presented in Sections 6.1 and 6.4 extend and improve the results of [209].

In particular, we evaluate experimentally algorithms BF, SWIN and PrefixTrie that

are extensions of the algorithms BF, Key and Tree of [209] for the model AWP . We

also discuss in detail the new algorithms BestFitTrie and LCWTrie as alternatives

to PrefixTrie, and compare them under various experimental settings. Finally, we

introduce ReTrie, an extension of the previous algorithms that considers the periodic

reorganisation of the database to achieve greater efficiency at filtering time.

The algorithms presented here are also utilised in systems DHTrie (presented in

the previous chapter and also in [203]) and LibraRing (presented in Chapter 4 and

also in [202]), in the context of information filtering and digital library applications

built on top of DHTs. In all of the above distributed systems, these algorithms are

used locally in each server, while appropriate protocols (presented in detail in the

previous chapter) guarantee successful distributed operation.

The rest of the chapter is organised as follows. Section 6.1 presents four main

memory algorithms that solve the filtering problem for conjunctive queries in AWP ,

while Section 6.2 presents an algorithm for reorganising the query database to

achieve even faster filtering times. Section 6.3 discusses how to support index-

ing of AWPS queries by combining our algorithms with known approaches in the

literature, and Section 6.4 presents an extensive evaluation of the algorithms using

a real document corpus and realistically created query databases. Finally, a brief

background on tries is provided in Section 6.5, while Section 6.6 summarises our

achievements and concludes the chapter.

6.1 Filtering Algorithms for AWP
In this section we present and evaluate four main memory algorithms that solve

the filtering problem for conjunctive queries inAWP . Thus our algorithms deal with

queries of the form A1 = s1 ∧ . . . ∧ An = sn ∧ B1 w wp1 ∧ . . . ∧ Bm w wpm,

where Ai, Bi are attributes that belong to the attribute universe A, each si is a text

value and each wpi is a word pattern containing conjunctions of words and proximity

formulas with only words as subformulas. Because our work extends and improves

6.1 : Filtering Algorithms for AWP 119

previous algorithms for SIFT [209], we adopt terminology from SIFT in many cases.

6.1.1 The Algorithm BestFitTrie

BestFitTrie uses two data structures to represent each published document d: the

occurrence table OT (d) and the distinct attribute list DAL(d). OT (d) is a hash table

that uses words as keys, and is used for storing all the attributes of the document

in which a specific word appears, along with the positions that each word occupies

in the attribute text. DAL(d) is a linked list with one element for each distinct

attribute of d. The element of DAL(d) for attribute A points to another linked list,

the distinct word list for A (denoted by DWL(A)) which contains all the distinct

words that appear in A(d).

To index queries BestFitTrie utilises an array, called the attribute directory (AD),

that stores pointers to word directories. AD has one element for each distinct

attribute in the query database. A word directory WD(Bi) is a hash table that

provides fast access to roots of tries in a forest that is used to organize sets of words

– the set of words in wpi (denoted by words(wpi)) for each atomic formula Bi w wpi

in a query. The proximity formulas contained in each wpi are stored in an array

called the proximity array (PA). PA stores pointers to trie nodes (words) that are

operands in proximity formulas along with the respective proximity intervals for

each formula. There is also a hash table, called equality table (ET), that indexes all

text values si that appear in atomic formulas of the form Ai = si.

When a new query q of the form of Definition 5 arrives, the index structures are

populated as follows. For each attribute Ai, 1 ≤ i ≤ n, we hash text value si to

obtain a slot in ET where we store the value Ai. For each attribute Bj, 1 ≤ j ≤ m,

we compute words(wpj) and insert them in one of the tries with roots indexed

by WD(Bj). Finally, we visit PA and store pointers to trie nodes and proximity

intervals for the proximity formulas contained in wpj.

Let us now explain how each word directory WD(Bj) and its forest of tries

are organised. The main idea behind this data structure is to store sets of words

compactly by exploiting their common elements. In this way, memory space is

120 Chapter 6 : Local Filtering Algorithms

Id Query Bi w wpi Identifying Subsets

0 Bi w databases {databases}
1 Bi w relational ≺[0,2] databases {databases, relational}
2 Bi w databases ∧ relational {databases, relational}
3 Bi w (software ≺[0,2] neural ≺[0,0]

networks) ∧ (software ≺[0,3] rela-
tional ≺[0,0] databases)

{databases, relational,
neural}, {databases,
relational, software},
{databases, relational,
networks}

4 Bi w optimal ∧ (artificial ≺[0,0]

intelligence) ∧ relational ∧ data-
bases

{databases, relational,
artificial, intelligence,
optimal}

5 Bi w artificial ∧ relational ∧ in-
telligence ∧ databases ∧ knowl-
edge

{databases, relational,
artificial, intelligence,
knowledge}

Table 6.1: Identifying subsets of words(wpi) with respect to S = {words(wpi), i =
0, . . . , 5}

preserved and filtering becomes more efficient as we will see below.

Definition 11 Let S be a set of non-empty sets of words and s1, s2 ∈ S with s2 ⊆ s1.

We say that s2 is an identifying subset of s1 with respect to S iff s2 = s1 or @ r ∈ S

such that s2 ⊆ r.

The sets of identifying subsets of two sets of words s1 and s2 with respect to a set S

is the same if and only if s1 is identical to s2. Table 6.1 shows some examples that

clarify these concepts.

The sets of words words(wpi) are organised in the word directory WD(Bi) as

follows. Let S be the set of sets of words currently in WD(Bi). When a new set of

words s arrives, BestFitTrie selects the best trie in the forest of tries of WD(Bi),

and the best location in that trie to insert s. The algorithm for choosing t depends

on the current organization of the word directory and will be given below.

Throughout its existence, each trie T of WD(Bi) has the following properties.

The nodes of T store sets of words and other data items related to these sets. Let

sets-of -words(T) denote the set of all sets of words stored by the nodes of T . A node

of T stores more than one set of words if and only if these sets are identical. The

root of T (at depth 0) stores sets of words with an identifying subset of cardinality

6.1 : Filtering Algorithms for AWP 121

one. In general, a node n of T at depth i stores sets of words with an identifying

subset of cardinality i + 1. A node n of T at depth i storing sets of words equal to

s is implemented as a structure consisting of the following fields:

• Word(n): the (i + 1)-th word wi of identifying subset {w0, . . . , wi−1, wi} of s

where w0, . . . , wi−1 are the words of nodes appearing earlier on the path from

the root to node n.

• Query(n): a linked list containing the identifier of query q that contained word

pattern wp for which {w0, . . . , wi} is the identifying subset of sets-of -words(T).

• Remainder(n): if node n is a leaf, this field is a linked list containing the

words of s that are not included in {w0, . . . , wi}. If n is not a leaf, this field is

empty.

• Children(n): a linked list of pairs (wi+1, ptr), where wi+1 is a word such that

{w0, . . . , wi, wi+1} is an identifying subset for the sets of words stored at a

child of wi and ptr is a pointer to the node containing the word wi+1.

The sets of words stored at node n of T are equal to {w0, . . . , wn}∪Remainder(n),

where w0, . . . , wn are the words on the path from the root of T to n. An identifying

subset of these sets of words is {w0, . . . , wn}. Figure 6.1(a) shows the general form

of our index structure (we have omitted ET and PA). The part of WD(Bi) corre-

sponding to the queries of Table 6.1 is shown in full including lists Query(n) and

Remainder(n). The purpose of Remainder(n) is to allow for the delayed creation of

nodes in trie. This delayed creation lets us choose which word from Remainder(n)

will become the child of current node n depending on the sets of words that will

arrive later on.

The algorithm for inserting a new set of words s in a word directory is as follows.

The first set of words to arrive will create a trie with a randomly chosen word as

the root and the rest stored as the remainder. The second set of words will consider

being stored at the existing trie or create a trie of its own. In general, to insert a new

set of words s, BestFitTrie iterates through the words in s and utilises the hash table

implementation of the word directory to find all candidate tries for storing s: the

122 Chapter 6 : Local Filtering Algorithms

tries with root a word of s. To store sets as compactly as possible, BestFitTrie then

looks for a trie node n such that the set of words ({w0, . . . , wn}∪Remainder(n))∩s,

where {w0, . . . , wn} is the set of words on the path from the root to n, has maximum

cardinality. There may be more than one node that satisfies this requirement and

such nodes might belong to different tries. Thus BestFitTrie performs a depth-

first search down to depth |s| − 1 in all candidate tries in order to decide on the

optimal node n. The path from the root to n is then extended with new nodes

containing the words in τ = (s\{w0, . . . , wn})∩Remainder(n). If s ⊆ {w0, . . . , wn}∪
Remainder(n), then the last of these nodes l becomes a new leaf in the trie with

Query(l) = Query(n) ∪ {q} (q is the new query from which s was extracted) and

Remainder(l) = Remainder(n)\τ . Otherwise, the last of these nodes l points to two

child nodes l1 and l2. Node l1 will have Word(l1) = u, where u ∈ Remainder(n) \
τ, Query(l1) = Query(n) and Remainder(l1) = Remainder(n)\(τ∪{u}). Similarly

node l2 will have Word(l2) = v, where v ∈ s \ ({w0, . . . , wn} ∪ τ), Query(l2) = q

and Remainder(l2) = s \ ({w0, . . . , wn} ∪ τ ∪ {u}). The complexity of inserting a

set of words in a word directory is linear in the size of the word directory.

The filtering procedure utilises two arrays named Total and Count. Total has

one element for each query in the database and stores the number of atomic formulas

contained in that query. Array Count is used for counting how many of the atomic

formulas of a query match the corresponding attributes of a document. Each element

of array Count is set to zero at the beginning of the filtering algorithm. If at

algorithm termination, a query’s entry in array Total equals its entry in Count,

then the query matches the published document, since all of its atomic formulas

match the corresponding document attributes.

When a document d is published at the server, filtering proceeds as follows.

BestFitTrie hashes the text value C(d) contained in each document attribute C

and probes the ET to find matching atomic formulas with equality. Then for each

attribute C in DAL(d) and for each word w in DWL(C), the trie of WD(C) with

root w is traversed in a breadth-first manner. Only subtrees having as root a word

contained in C(d) are examined, and hash table OT (d) is used to identify them

quickly. At each node n of the trie, the list Query(n) gives implicitly all atomic

6.1 : Filtering Algorithms for AWP 123

databases

relational

neural
 artificial

{networks, software}
 intelligence

[0]

[1,2]

[3]

WD

knowledge
 optimal

[4]
[5]

(a) BestFitTrie

databases

relational

networks

neural

relational

artificial

relational

databases

intelligence

knowledge
 optimal

[0]

[1,2]

[4]

WD

software

[3]

relational

[5]

(b) PrefixTrie

Figure 6.1: BestFitTrie vs. PrefixTrie for the atomic queries of Table 6.1

formulas C w wpi that can potentially match C(d) if the proximity formulas in wpi

are also satisfied. This is repeated for all the words in DWL(C), to identify all the

qualifying atomic formulas for attribute C. Then the proximity formulas for each

qualifying query are examined using a recursive polynomial time algorithm that

takes a proximity formula and a text value as an input, and decides whether the

proximity formula is satisfied by the text value. For each atomic formula satisfied by

C(d), the corresponding query element in array Count is increased by one. At the

end of the filtering algorithm arrays Total and Count are traversed and the values

stored for each query are compared. The equal entries in the two arrays give us the

queries satisfied by d.

6.1.2 Other Filtering Algorithms

To evaluate the performance of BestFitTrie, we have also implemented algorithms

BF, SWIN and PrefixTrie. BF (Brute Force) has no indexing strategy and scans

the query database sequentially to determine matching queries. SWIN (Single Word

INdex) utilises a two-level index for accessing queries in an efficient way. A query

of the form presented at the beginning of this section is indexed by SWIN under all

its attributes A1, . . . , An, B1, . . . , Bm and also under n text values s1, . . . , sn and m

words selected randomly from wp1, . . . , wpm. More specifically SWIN utilises an ET

to index equalities and an AD pointing to several WDs to index the atomic con-

tainment queries. Atomic queries within a WD slot are stored in a list. PrefixTrie

is an extension of the algorithm Tree of [209] appropriately modified to cope with

attributes and proximity information. Tree was originally proposed for storing con-

124 Chapter 6 : Local Filtering Algorithms

junctions of keywords in secondary storage in the context of the SDI system SIFT.

Following Tree, PrefixTrie uses sequences of words sorted in lexicographic order for

capturing the words appearing in the word patterns of atomic formulas (instead

of sets used by BestFitTrie). A trie is then used to store sequences compactly by

exploiting common prefixes [209].

Algorithm BestFitTrie constitutes an improvement over PrefixTrie. Because Pre-

fixTrie examines only the prefixes of sequences of words in lexicographic order to

identify common parts, it misses many opportunities for clustering (see Figure 6.1).

BestFitTrie keeps the main idea behind PrefixTrie but (a) handles the words con-

tained in a query as a set rather than as a sorted sequence and (b) searches exhaus-

tively the forest of trie to discover the best place to introduce a new set of words.

This allows BestFitTrie to achieve better clustering as shown in Figures 6.1(a) and

6.1(b), where we can see that it needs only one trie to store the set of words for the

formulas of Table 6.1, whereas PrefixTrie introduces redundant nodes that are the

result of using a lexicographic order to identify common parts. This node redun-

dancy can be the cause of deceleration of the filtering process as we will show in

Section 6.4.

6.2 Reorganisation of Queries

Most of the algorithms presented earlier use heuristics to identify and cluster

similar queries, in order to achieve better performance during matching. These

heuristics provide an organisation of queries that is dependent on the order of inser-

tion of the queries in the system. Taking BestFitTrie as an example, we can notice

that for a given set of user queries Q, and two different orderings of these queries, the

resulting clustering that is achieved is different. In other words, if we consider the

clustering problem as a search problem over the search space of all possible query

organisations, then BestFitTrie actually provides us with a greedy heuristic that

results in a possibly non-optimal solution (but yet a fairly good one as we will see

in Section 6.4). An alternative to organising the user queries in a heuristic fashion

is to search over the space of all possible organisations for the optimal one. This is

obviously prohibitively expensive and will not be considered further in this work.

6.2 : Reorganisation of Queries 125

In this section we propose ReTrie, an algorithm that can be used together with

BestFitTrie in order to reorganise the query database periodically and achieve better

clustering. To describe ReTrie, we will need the following definitions.

Definition 12 Let s be a set of words indexed at trie node n of trie T . For this set

of words, we have that s = {w0, . . . , wn} ∪Remainder(n), where w0, . . . , wn are the

words in the path from the root of T to node n. The clustering ratio of s, denoted

as ClusteRat(s), is ClusteRat(s) = |{w0,...,wn}|
|s| .

ClusteRat(s) is used to quantify the notion of the clustering quality for a given

set of words. From the definition, it follows that 0 < ClusteRat(s) ≤ 1. Gener-

ally when ClusteRat(s) is near 0, the set of words s is considered badly clustered

and ReTrie should try repositioning it in the forest of tries. On the contrary, when

ClusteRat(s) is near 1, the set of words is considered highly clustered and no reposi-

tioning is needed. Below we define when a set of words is considered under-clustered.

Definition 13 Let s be a set of words indexed at trie node n of trie T . s is con-

sidered under-clustered iff ClusteRat(s) < c, where 0 ≤ c ≤ 1 is a clustering

threshold.

To keep track of the clustering ratio of each set of words s, ReTrie utilises a

clustering array (CA) that contains an entry for every set of words inserted in

WD(Bi). Each CA entry contains a pointer to the position s is currently stored

and a number representing ClusteRat(s). When a new set of words s is indexed at

node n of trie T , the clustering ratio of s in CA is initialised using the formula from

Definition 12. Additionally, if Remainder(n) is expanded to create new nodes, then

the clustering ratios of the other sets of words stored at n should be updated, since

they now have more of their words clustered. If Remainder(n) is not expanded, no

other update is necessary to array CA.

Algorithm ReTrie, presented in Figure 6.3, is run periodically in order to repo-

sition badly clustered sets of words. All under-clustered sets of words (identified by

scanning CA) are candidates for moving when the algorithm is executed. For each

under-clustered set of words s with clustering ratio ClusterRat(s), ReTrie searches

126 Chapter 6 : Local Filtering Algorithms

databases

relational

neural
 artificial

[0]

[1]

WD

[2]

(a) A WD with only one trie and three
sets of words (s0, s1 and s2) stored

databases

relational

neural
 artificial

[0]

[1]

WD

[2]

index

compression

[3]

(b) WD after the insertion of
s3 = {databases, index, compression}

databases

relational

neural
 artificial

[0]

[1]

WD

[2]

index

compression

[3]

compression

index

[4]

(c) WD after the insertion of
s4 = {compression, index}

WD

compression

index

databases

relational

neural
 artificial

[0]

[1]
 [2]

[4]

databases

[3]

(d) WD after ReTrie has re-organised
the index

Figure 6.2: Profile insertions and re-organisation achieved by ReTrie

the forest of tries of WD(Bi) looking for all nodes that can store s. For each one

of these positions, ReTrie calculates the new clustering ratio for s and chooses the

position that results in the maximum clustering ratio, maxClu(s). s is moved to

the new position found only if ClusterRat(s) < maxClu(s). Moving s to a new

position results in updates to array CA. The update procedure is the same as the

one described in the previous paragraph for query insertions.

ReTrie can improve the clustering of queries because not all queries have the

same clustering opportunities when entering the query index with BestFitTrie. This

can be explained as follows. When a new set of words s needs to be indexed, the

clustering algorithm looks for a trie in the forest of tries of WD(Bi) and a node in

that trie, such that ClusterRat(s) is maximised. It is easy to see that the number

of tries and the number of nodes in those tries affect the clustering opportunities

of s: the higher the number of candidate positions to insert s, the higher the pos-

sibility for the algorithm to cluster s effectively (that is in a position with a higher

ClusterRat(s)). This is shown by the example of Figure 6.2. Consider a forest con-

sisting of a single trie currently indexing three sets of words: s0 = {databases}, s1 =

{databases, relational, neural} and s3 = {databases, relational, artificial} (Figure

6.2 : Reorganisation of Queries 127

Algorithm ReTrie

01: begin
02: for i = 0 to N do B for all stored sets of words

(N: # of stored sets of words)

03: if CA[i].clusterRat < c then B identify under-clustered ones

04: let s be the i-th set of words
05: for each trie T such that root(T) ∈ s do B for all candidate tries

06: for each node n ∈ T such that word(n) ∈ s do B for all possible storage

positions in candidate tries

07: calculate clusterRat(s)
08: if clusterRat(s) > curClusterRat then B if a better position is

found make a note of it

09: curClusterRat ← clusterRat(s)
10: curPosition ← n

11: end if
12: end for
13: end for
14: end if
15: if curPosition 6= CA[i].position then B if the best position found is

better than the initial

16: move s to curPosition B move s there

17: CA[i].position ← curPosition B and update CA

18: CA[i].clusterRat ← curClusterRat

19: endif
20: end for
21: end

Figure 6.3: Pseudocode for algorithm ReTrie

6.2(a)). When a set of words s3 = {databases, index, compression} arrives, it is in-

serted in the only position available and is clustered only under one word (Figure

6.2(b)). Now ClusterRat(s3) = 0.33. Upon arrival of s4 = {index, compression}
(Figure 6.2(c)), it is obvious that there is a better position to index s3. This position

is together with s4, as it is shown in Figure 6.2(d) where ClusterRat(s3) = 0.66.

Notice that in the forest of tries of WD(Bi) shown in Figure 6.2(c), words index and

compression appear in two nodes each (this redundancy in nodes is one of the fac-

tors that slow down filtering), whereas after the re-organisation of the forest (Figure

6.2(d)) there are no redundant nodes for these words (i.e., they appear only once in

the forest). Generally, it is not possible to remove all redundant nodes in a forest

(notice for example the word database in this example), so our effort concentrates

on minimising these nodes by re-organisation.

128 Chapter 6 : Local Filtering Algorithms

There are two major problems when trying to design an algorithm for reorgan-

ising the database. The first problem is what to reorganise and the second is when

you should do this reorganisation. We have already presented our solution to the

first problem, and now we discuss the second one.

The straightforward approach is to reorganise the database after every fixed

number of insertions or at fixed time intervals. This approach has the drawback of

ignoring the clustering criteria, and invokes reorganisation even at cases where there

is not much need for it. Another option we considered is defining a criterion for the

quality of clustering and reorganise when the quality of clustering drops. We have

tried two different approaches for defining this criterion. The first approach considers

the quality of clustering in correlation with the number of redundant nodes in the

forest. This approach exploits the fact that badly clustered queries introduce more

redundant nodes (to see this consider the number of nodes in Figures 6.2(c) and (d)).

The second approach quantifies the clustering quality in terms of the percentage of

under-clustered queries in the system. In both approaches, an appropriate threshold

is used to trigger the reorganisation process. Finally, a simple, effective and widely

used (in other related cases) approach is to consider reorganisation when the system

is idle. This approach, apart from the obvious benefits of not overloading the system,

offers the advantage that the reconstruction of the database can be done partially,

which is useful if we want to exploit even small time intervals to do the heavy work

of reorganisation.

Exploring all the above possibilities is out of the scope of this work and will not

be considered further. For the experiments presented in the next section, we used

the percentage of under-clustered queries to trigger the reorganisation process.

6.3 Filtering Algorithms for AWPS
To index AWPS queries we utilise a combination of two different data algo-

rithms: our home-brewed BestFitTrie algorithm, presented in Section 6.1.1 and

algorithm SQI presented in detail in [211]. In this section we briefly present the SQI

algorithm that is used for indexing VSM queries and discuss how the two different

algorithms can be used together to solve the filtering problem for queries in AWPS.

6.4 : Experimental Evaluation 129

The idea behind SQI is to use an inverted index to store the most significant

word contained in an atomic formula’s text value. Thus, for a VSM query of the

form A1 ∼a1 s1 ∧ ... ∧ An ∼an sn, only some carefully selected terms contained in

text values s1, ..., sn will be chosen and the query is index under those terms only.

Notice that usually these terms are the most discriminative terms contained in the

text values, which means that they are typically terms that appear less frequently

in documents. This way indexing a query under all its terms is avoided and faster

times can be achieved during filtering. Notice also that this indexing is done without

sacrificing the accuracy when computing the relevance of an incoming document to

a query.

The above method together with BestFitTrie is used at each node to index locally

the queries it is responsible for. Two arrays similar to arrays Total and Count are

used to keep track of the number of atomic formulas contained in a query and the

number of the atomic formulas of a query that matched the corresponding attributes

of an incoming document. If at algorithm termination, a query’s entry in array Total

equals its entry in Count, then the query matches the published document, since all

of its atomic formulas match the corresponding document attributes. Note also that

each incoming document has to be matched against both algorithms (BestFitTrie

and SQI), to decide which queries it satisfies.

We have not conducted and experiments regarding the performance of algorithm

SQI, but the interested reader is referred to [211]. It remains open whether the two

algorithms can be combined in a single trie-like data structure that will allow faster

filtering of incoming documents.

6.4 Experimental Evaluation

To carry out the experimental evaluation of the algorithms described in the

previous section, we needed data to be used as incoming documents, as well as user

queries. It may not be difficult to collect data to use in the evaluation of filtering

algorithms for SDI scenarios. For the model AWP considered in this work, there are

various document sources that one could consider: meta-data for papers on various

publisher Web sites (e.g., ACM or IEEE), electronic newspaper articles, articles

130 Chapter 6 : Local Filtering Algorithms

Description Value

Number of documents 10,426

Document vocabulary size 641,242

Maximum document size (words) 110,452

Minimum word size (letters) 1

Maximum word size (letters) 35

Table 6.2: Some characteristics of the NN corpus

Attribute Percentage

of documents

title 63%

authors 58%

abstract 88%

body 86%

year 63%

(a)

of attributes Percentage

of documents

1 7.9%

2 28.7%

3 2.4%

4 16.0%

5 45.0%

(b)

Table 6.3: Some attribute characteristics of the corpus documents

from news alerts on the Web (e.g., http://www.cnn.com/EMAIL) etc. However, it is

rather difficult to find user queries except by obtaining proprietary data (e.g., from

CNN’s news alert system).

For our experiments we chose to use the NN corpus, also used for the experi-

ments in the previous chapter. Table 6.2 summarises some key characteristics of the

document corpus, where Tables 6.3(a) and 6.3(b) give details on the fraction of doc-

uments that contain each attribute, and on the fraction of documents that contain a

specific number of attributes respectively. Because no database of queries was avail-

able to us, we developed a methodology for creating user queries using words and

technical terms extracted automatically from the Research Index documents using

the C-value/NC-value approach of [82]. The extracted multi-word technical terms

are used to create proximity formulas and also as conjunctions of keywords in user

queries. For the formulation of user queries author names and words extracted from

paper abstracts are also used. The attribute universe for the experiments presented

in this section consists of attributes paper title, authors, abstract and body.

6.4 : Experimental Evaluation 131

The basic concept for the query creation in our methodology is that of a unit.

Atomic queries are created as conjunctions of units selected uniformly from unit

sets, whereas queries are created as conjunctions of atomic queries selected from the

attribute universe with a probability pCi
. In our scenario four different types of unit

sets exist:

• Author unit set. This set contains the last names of authors appearing in the

full citation graph of ResearchIndex1. Each author appears in the author unit

set as many times as the in-degree of the papers he has published. Thus the

probability P (α) of author α to appear in a query is P (α) = Nα/
∑

k∈Vα
Nk,

where Nα is the number of papers in the citation graph that cite the work of

author α, and Vα is the author vocabulary obtained also by the full citation

graph.

• Proximity formulas unit set. This set contains proximity formulas created

using the extracted multi-word terms. The technical terms with more than

five words were excluded since they were noise, and the set was produced after

applying upper and lower NC-value cut-off thresholds for the remaining terms.

The proximity operators in this set contain distances according to the number

of words contained in each multi-word term.

• Keywords from technical terms. This unit set contains keywords extracted

from technical terms. These keywords are used as conjuncts in the creation of

atomic queries.

• Nouns from abstracts. This set contains the nouns used in the corpus abstracts

after the cut-off of the most and least frequent words. The rationale behind

this is that abstracts are intended to be a comprehensive summary of the

publication content, thus nouns from abstracts are appropriate candidates for

use in queries.

An example of a user query created synthetically from the methodology briefly

sketched above is:

1The citation graph contains information about the citations between research papers and was
compiled in [143].

132 Chapter 6 : Local Filtering Algorithms

Parameter Description

W average # of words per document

Wd average # of distinct words per document

N # of queries in database

D # of incoming documents

m percentage of stored queries matching the in-
coming documents

c clustering threshold

Table 6.4: Parameters varied in experiments and their descriptions

(author w Riedel) ∧
(title w implementation ∧ (RBF ≺[0,3] networks))

For more details of the methodology the interested reader can refer to [198]. As

a byproduct of our work on this topic, we have a new corpus of documents and

continuous queries which is representative of digital library scenarios, and can also

be used by other researchers in the area of information filtering.

All the algorithms were implemented in C/C++, and the experiments were run

on a PC, with a Pentium III 1.7GHz processor, with 1GB RAM, running Linux.

Time shown in the graphs is wall-clock time and the results of each experiment are

averaged over 10 runs to eliminate any fluctuations in the time measurements.

6.4.1 Varying the Database Size

The first experiment that we conducted to evaluate our algorithms targeted the

performance of the four algorithms under different sizes of the query database. In

this experiment we randomly selected one hundred documents from the NN corpus

and used them as incoming documents in the query databases of different sizes.

The size and the matching percentage for each document used was different but the

average document size was 6869 words, whereas on average 1% of the queries stored

matched the incoming documents.

As we can see in Figure 6.4, the time taken by each algorithm grows linearly

with the size of the query database. However SWIN, PrefixTrie and BestFitTrie

are less sensitive than Brute Force to changes in the query database size. The trie-

6.4 : Experimental Evaluation 133

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.5 1 1.5 2 2.5 3

F
ilt

er
in

g
T

im
e

(m
se

c)

Millions of queries

BestFitTrie
BF

PrefixTrie
SWIN

Parameter Value

W 6869

Wd 1115

N 0.5M-3M

D 100

m 1%

c -

Figure 6.4: Effect of the query database size in filtering time

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t (

K
B

 /
se

c)

Total Input Size (KB)

BF-1M
BestFitTrie-1M

PrefixTrie-1M
SWIN-1M

BF-2M
BestFitTrie-2M

PrefixTrie-2M
SWIN-2M

BF-3M
BestFitTrie-3M

PrefixTrie-3M
SWIN-3M

Parameter Value

W 6869

Wd 1115

N 1M-3M

D 100

m 1%

c -

Figure 6.5: Performance in terms of throughput for the algorithms of Section 6.1

based algorithms outperform SWIN mainly due to the clustering technique that

allows the exclusion of more non-matching atomic queries filtering. We can also

observe that the better exploitation of the commonalities between queries improves

the performance of BestFitTrie over PrefixTrie, resulting in a significant speedup

in filtering time for large query databases. Additionally, Figure 6.5 contrasts the

algorithms in terms of throughput were we can see that BestFitTrie gives the best

filtering performance managing to process a load of about 150KB per second for a

query database of 3 million queries.

In terms of space requirements, BF needs about 50% less space than the trie-

based algorithms, due to the simple data structure that poses small space require-

ments. Additionally the rate of increase for the two trie-based algorithms is similar

to that of BF, requiring a fixed amount of extra space each time. Figure 6.6 shows

134 Chapter 6 : Local Filtering Algorithms

 20

 40

 60

 80

 100

 120

 140

 0.5 1 1.5 2 2.5 3

P
ro

fil
e

D
at

ab
as

e
S

iz
e

(M
B

)

Millions of profiles

BF
BestFitTrie

PrefixTrie

Parameter Value

W -

Wd -

N 0.5M-3M

D -

m -

c -

Figure 6.6: Space requirements for the trie-based algorithms

the space requirements of the trie-based algorithms in comparison to the brute force

approach. From the experiments above, it is clear that BestFitTrie speeds up the

filtering process with a small extra storage cost, and proves faster than the rest of

the algorithms, managing to filter as much as 3 million queries in less the 200 mil-

liseconds, which is about 1000% times faster than the sequential scan method and

20% faster than PrefixTrie.

6.4.2 Varying the Matching Percentage

In this experiment we wanted to observe the sensitivity of each algorithm when the

number of queries that matched incoming documents varies. To do this, we used two

sets of documents, A and B, that contained about the same number of distinct words

and the same attributes, but the number of queries that matched each document

was different. Notice that given the way the algorithms are designed, the important

parameter of a document is the number of distinct words contained, rather than its

size. This happens because the probing of the query index uses the distinct words

contained in the attribute text. Practically, the increase in the number of distinct

words increases the probability of a specific word contained in a query, to be also

contained in the incoming document. This in turn increases the number of queries

with proximity formulas that need to be evaluated2, which is a time consuming

2Remember that the evaluation of an atomic query is done in two phases; the existence
of keywords is checked first and the evaluation of the proximity formulas follows.

6.4 : Experimental Evaluation 135

0

20

40

60

80

100

BF
 SWIN
 PrefixTrie
 BestFitTrie

av
er

ag
e

%
 in

cr
ea

se
 in

 m
at

ch
in

g
tim

e

Parameter Value for Value for

set A set B

W 47155 42419

Wd 2920 3033

N 3M 3M

D 10 10

m 2% 22%

c - -

Figure 6.7: Average % increase in filtering time for a 20% increase in the number of
matching queries

process. The size of the document is of smaller importance, since it only increases

the number of positions of a specific word in the document, and thus the number

of checks at proximity evaluation time. However due to the algorithm presented in

[123], the majority of the positions of a specific word in a document can be excluded

from the proximity evaluation.

Figure 6.7 shows the % increase in matching time for two documents A and B

with the same number of distinct words, but different number of queries matching

them. Document set B contained 47155 words on average, and matched 20% more

queries than document set A, which contained 42419 words on average. Both docu-

ment sets contained four (attribute, value) pairs, and the query database contained

3 million queries. Apart from BF which showed a 97% increase in the matching

time, BestFitTrie appears to be the most sensitive to the increase in the matching

percentage (showing a 19% increase in filtering time), in contrast to PrefixTrie and

SWIN, which appear to be less affected (with 13% and 9% increase respectively).

This can be explained as follows. The trie structure of PrefixTrie and BestFitTrie

forces them to explore a big number of child nodes when a word node appears in a

document, in contrast to SWIN that searches in either case all the nodes that are

hashed under a specific word. This means that in higher matching percentages, the

trie-based algorithms loose some of the advantages offered by their sophisticated

data structures and show greater sensitivity to the matching degree. However the

trie-based algorithms are still significantly faster, with BestFitTrie being the faster

algorithm of all four despite the high increase.

136 Chapter 6 : Local Filtering Algorithms

6.4.3 Varying the Document Size

In this experiment we want to observe the behaviour of the four algorithms when

the size of the incoming document increases. This time two sets of documents with

about the same number of queries matching them were chosen, and the variations in

the performance of the four algorithms were examined. Document set A contained

10 documents of average length of 75344 words and 1864 distinct words, whereas

document set B contained 10 documents of average length of 148609 words and 2304

distinct words, that is about 24% more distinct words than document set A. The

differences in the performance were below 5% in matching time for SWIN, PrefixTrie

and BestFitTrie, whereas BF showed an increase of about 50%. The insensitivity

of SWIN, PrefixTrie and BestFitTrie in the document size is mainly due to the

hash representation of the document and the way the matching process is carried

out. During the matching process, we actually consider only the distinct words

of the document (that are obviously significantly less than the document itself for

large documents), and check the existence of a word in the document using a hash

function, which provides fast answer times. Moreover the proximity evaluation is

not greatly affected from the large number of word positions inside a document due

to the well-designed proximity evaluation algorithm of [123] that allows the omission

of a large number of word positions in a document.

Since in an SDI scenario one may not always have to deal with large documents

(for example, if AWP is used for describing metadata about research papers) we

carried out experiments with documents with smaller size. More specifically exper-

iments with documents of mean size of 551 words, show that BestFitTrie performs

even better in terms of filtering time, being 1.75 times faster that PrefixTrie and

about 86 times faster that BF (as opposed to 1.2 and about 10 times faster respec-

tively for documents of mean size 6869 words).

6.4.4 Updating the Query Database

In this experiment we investigated the update time for the four different algorithms.

To measure the average time needed to insert a single query in the database we

6.4 : Experimental Evaluation 137

0

50

100

150

200

250

0
 0.5
 1
 1.5
 2
 2.5

U
pd

at
e

tim
e

(s
ec

)

Millions of queries

BF

SWIN

PrefixTrie

BestFitTrie
 Parameter Value

W -

Wd -

N 0M-2.5M

D -

m -

c -

Figure 6.8: Query insertion time for different query database sizes

worked as follows. Starting with the empty database, we measured the total time

needed to populate it with 500K queries, and proceeded in a similar way by adding

batches of 500K queries in our database and measuring the total insertion time per

batch. Subsequently the average insertion time per query for a given batch of queries

can be found simply by dividing the total time measured with the population of the

batch to produce a single point in the graph of Figure 6.8.

It should be clear that for BF and SWIN the query insertion time will be constant

on average, since BF does a simple insertion at the end of a list, while SWIN utilises

a hash table and inserts each atomic query in the beginning of the list pointed to

by the hash table slot. For the trie-based algorithms the query insertion is a more

complex process that involves the examination of lists at every level of the trie. While

PrefixTrie examines only a single path in a single trie of the forest, BestFitTrie needs

to examine several paths in the trie and also several tries (in the usual case as many

tries as the number of words in a profile). Our remarks are verified by the graph

in Figure 6.8 that shows the average insertion time in milliseconds for a query q for

a given database size. In this figure we can see that BestFitTrie needs about 20%

more time than PrefixTrie to insert a query in a database with 2.5 million profiles.

This is a standard tradeoff where the algorithm spends some extra time at indexing

to save it at query execution.

138 Chapter 6 : Local Filtering Algorithms

6.4.5 Incorporating Ranking Information

To examine the performance of the two trie-based algorithms (namely PrefixTrie

and BestFitTrie), we modified them in order to take into account information about

the frequency of occurrence of words in documents. More specifically we use the

document frequency of a word wi (denoted by dfi), which represents the number of

documents in a collection that contain wi, to identify the frequent and infrequent

words among the documents. In an SDI scenario where no document collection

is available, we can compute dfi on the collection of recently processed documents

[208] (say k most recent documents arrived, where k is large enough). Using this

information, we created variations of the trie-based algorithms that use different

heuristics for storing user queries in tries.

The rank heuristic stores the most frequent words among the documents (that

is the words with the highest df) near the roots of the tries, while the less frequent

words (that is the words with the lowest df) are pushed deeper in them resulting

in relatively few big and “wide” tries (since their roots will exist in more queries).

The algorithms using the rank heuristic are PrefixTrie-rank and BestFitTrie-rank.

Contrary to rank, the inverse rank heuristic (irank) [208] stores the least frequent

words of the queries near the roots of the tries, while the frequent ones are pushed

deeper in the tries, resulting in many narrow tries. Thus more queries are put in

subtrees of words occurring less frequently, resulting in less lookups during filtering

time. The algorithms using the irank heuristic are PrefixTrie-irank and BestFitTrie-

irank.

The probability that any word wi appears in an incoming document d is defined

to follow probability distribution D(wi), where 0 ≤ D(wi) ≤ 1. The number of

nodes N that will be examined within each trie depends on the clustering heuristic

and is equal to

N = D(w1)N1 + D(w2)N2 + . . . + D(w|V |)N|V | (6.1)

where Ni is the number of nodes in the trie that have word wi as root node, and |V |

6.4 : Experimental Evaluation 139

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.5 1 1.5 2 2.5 3

F
ilt

er
in

g
T

im
e

(m
se

c)

Millions of queries

BestFitTrie-irank
BestFitTrie-rank

BestFitTrie
PrefixTrie-irank
PrefixTrie-rank

PrefixTrie Parameter Value

W 6869

Wd 1115

N 0.5M-3M

D 100

m 1%

c -

Figure 6.9: Incorporating word frequency information into the trie-based algorithms,
and its effect in filtering time

is the size of our vocabulary. The sum

N1 + N2 + . . . + N|V | (6.2)

is positive and it is always less than or equal to the number of words in the query

database.

From Equations 6.1 and 6.2 we can see that the number N of nodes examined

is minimised if we assign more words to WD slots pointing to words (trie roots)

with smaller probability to appear in a document. Based on the above observation,

we created a modification of BestFitTrie, called LCWTrie (Least Common Word

Trie,) by limiting BestFitTrie to consider only one candidate trie during insertion:

the one that has the least frequent word of the atomic query as root. In this way,

the atomic query can only be inserted in that trie (or that trie will be created if

it does not exist), while the remainder of the words of the atomic query will be

organised following the insertion algorithm of BestFitTrie (this will give us the best

organisation considering only this trie instead of the whole forest).

In Figure 6.9 we present the performance of PrefixTrie and BestFitTrie and their

ranking variations. We can see that using the rank heuristic the performance of both

algorithms deteriorates, due to the creation of large tries that need bigger exploration

time. We can also observe that the irank heuristic improves the performance of

both trie-based algorithms, with the greater effect shown on PrefixTrie that becomes

140 Chapter 6 : Local Filtering Algorithms

 20

 40

 60

 80

 100

 120

 140

 160

 0.5 1 1.5 2 2.5 3

F
ilt

er
in

g
T

im
e

(m
se

c)

Millions of queries

BestFitTrie-irank
LCWTrie

PrefixTrie-irank

Parameter Value

W 6869

Wd 1115

N 0.5M-3M

D 100

m 1%

c -

Figure 6.10: Performance of LCWTrie in comparison to the two faster filtering algorithms

faster than BestFitTrie-irank. This improvement in performance for both algorithms

was expected as shown earlier in this section.

Figure 6.10 presents the performance of the three faster algorithms, namely

PrefixTrie-irank, BestFitTrie-irank and LCWTrie. BestFitTrie-irank prioritises clus-

tering over frequency information by examining all candidate tries and choosing the

one that has the most common words. Word frequency information plays a sec-

ondary role, allowing the algorithm to choose between tries with the same common

words the trie that has the highest ranked word as a root. On the other hand,

PrefixTrie-irank and LCWTrie are designed to show a preference in frequency infor-

mation against clustering. Both algorithms examine exactly one candidate trie, that

with the least frequent word as root. Additionally, LCWTrie organises the query

within that trie in the best possible way, taking into account common words be-

tween the queries already stored. In contrast, PrefixTrie-irank does not care about

clustering and stores the query according to frequency information only, that is the

word with the lowest rank goes deeper in the trie.

Our observations about the significance of frequency information presented in

the beginning of the section are verified. From the experiments of Figure 6.10, we

see that LCWTrie performs similarly with PrefixTrie-irank, although it presents a

slight advantage for large query databases, due to the clustering within the trie.

Additionally, both algorithms outperform BestFitTrie that owes its performance

mainly to clustering, giving little consideration to frequency information. Figure

6.4 : Experimental Evaluation 141

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0.5 1 1.5 2 2.5 3

P
ro

fil
e

D
at

ab
as

e
S

iz
e

(M
B

)

Millions of profiles

BestFitTrie-irank
PrefixTrie-irank

LCWTrie
PrefixTrie

Parameter Value

W -

Wd -

N 0.5M-3M

D -

m -

c -

Figure 6.11: Memory requirements of ranking variations of BestFitTrie and PrefixTrie

6.11 shows the memory requirements of the different algorithms for varying database

sizes. The improvement in clustering using the heuristics discussed here is obvious.

All algorithms that exploit frequency information need significantly less space to

store the same number of queries compared to PrefixTrie. This difference in storage

requirements comes from the existence of less redundant nodes.

6.4.6 Reorganisation of Queries

To study the effect of our reorganisation strategy to the performance of the algo-

rithms at filtering time, we compared ReTrie with BestFitTrie. The ranking coun-

terparts of BestFitTrie presented earlier (namely BestFitTrie-rank and -irank) are

not suitable for comparing with our reorganisation strategy, because of the non-

flexible way of clustering they use. The rank and irank heuristic do not allow for

many alternatives to cluster a set of words, resulting in the inapplicability of the

ReTrie algorithm. For the same reasons, ReTrie cannot be used in conjunction with

PrefixTrie.

Varying the Clustering Threshold

In this experiment we wanted to determine a baseline value for the clustering thresh-

old c to be used in the evaluation of ReTrie. To do so, we populated the query

database db with 2.5 million queries and invoked ReTrie with different reorganisa-

tion thresholds ranging from 0 to 0.6 with an increase step of 0.1. For each reorgan-

142 Chapter 6 : Local Filtering Algorithms

 164

 166

 168

 170

 172

 174

 176

 178

 0 0.1 0.2 0.3 0.4 0.5 0.6

F
ilt

er
in

g
T

im
e

(m
se

c)

Reorganization Threshold

Parameter Value

W 6869

Wd 1115

N 2.5M

D 100

m 1%

c 0-0.6

Figure 6.12: Filtering time for different clustering thresholds

isation threshold, a different re-organised database db′ was created, since different

sets of words were chosen to be moved. Then, we randomly selected one hundred

documents from the NN corpus as incoming documents to be matched against each

one of the different databases. The average filtering time for each one of the differ-

ent clustering thresholds is shown in Figure 6.12. We observe that after a threshold

value of around 0.4, the filtering time shows a slight increase. As we move to even

higher values of c, the increase in filtering time is even sharper. This can be ex-

plained as follows. At high values of c, sets of words with a high clustering ratio

are also moved. These sets usually contain words that are often in user queries, and

thus create sub-tries that store a large number of such sets. Moving highly clustered

queries results in the perturbation of large tries that need to re-cluster, probably in

a position with a lower clustering ratio. This way, by moving some already highly

clustered queries to an even better position, we disturb the clustering of many other

queries that subsequently cluster at a position with lower clustering ratio. Based on

the results shown in Figure 6.12, we chose 0.4 as the clustering threshold to be used

in the subsequent experiments.

Performance at Filtering Time

The second experiment targets the performance of filtering for different sizes of the

query database after ReTrie is run. In this experiment we populated the query

database db with different numbers of queries (ranging from 500K to 3M) using

6.4 : Experimental Evaluation 143

40

60

80

100

120

140

160

180

200

220

240

0.5
 1
 1.5
 2
 2.5
 3

F
ilt

er
in

g
tim

e
(m

se
c)

Millions of queries

BestFitTrie (set 1)

ReTrie c=0.4 (set 1)

ReTrie c=0.6 (set 1)

BestFitTrie (set 2)

ReTrie c=0.4 (set 2)

ReTrie c=0.6 (set 2)

Parameter Value for Value for

set S1 set S2

W 6702 6869

Wd 1004 1115

N 0.5M-3M 0.5M-3M

D 100 100

m 2.5% 2%

c 0.4, 0.6 0.4, 0.6

Figure 6.13: Performance of algorithm ReTrie for different clustering thresholds and sets
of documents

algorithm BestFitTrie. We then used algorithm ReTrie with clustering threshold 0.4

to reorganise the queries stored in the database db to get a new database db′. We

then chose one hundred documents from the NN corpus and used them as incoming

documents for both databases db and db′ of different sizes.

To conduct this experiment we choose two different sets of documents, namely

S1 and S2, that contain one hundred documents each. Set S1 consists of documents

from the NN corpus, chosen to contain many words that are also contained in the

under-clustered queries that algorithm ReTrie has chosen to move. This set is used

to demonstrate the performance gain of algorithm ReTrie at times where similar

documents arrive at high rates, e.g. imagine a scenario where the above algorithms

are used in a news alert system and a sudden crisis occurs (e.g., an earthquake or

terrorist act). Set S2 is a randomly chosen set of documents from the NN corpus.

This set is used to demonstrate the performance of the algorithm in the standard

setting used to conduct the rest of the experiments.

Figure 6.13 shows the performance of ReTrie for two clustering thresholds (c =

0.4 and c = 0.6) and also in comparison with BestFitTrie. Initially one can observe

that the results of the experiments in Section 6.4.6 and also our choice of 0.4 as a

value for c are verified. The filtering performance of algorithm ReTrie for c = 0.6 is

worse not only from its counterpart with c = 0.4, but also from algorithm BestFit-

Trie. The reasons for this are explained in the previous section. The performance

of the algorithms is also affected by the document set used as publications. We can

see that ReTrie is significantly better than BestFitTrie in cases where many simi-

144 Chapter 6 : Local Filtering Algorithms

lar documents get published at a short time interval, whereas the gain in filtering

performance is small when a random document set is used. This can be explained

as follows. In the case of random documents the improvement in clustering that

is achieved by ReTrie is not exploited since not many of the re-clustered sub-tries

are used, due to the statistical properties of the document set (many diverse sub-

jects, larger vocabulary, etc.). On the other hand, in the case of similar documents,

the clustering improvement leads to a performance benefit since the optimised sub-

tries are used more often and lookups in OT (d) are reduced. In general, from the

set of experiments we conducted with document sets of different statistical proper-

ties, we observed improvement in filtering performance ranging from 2% to 18% for

clustering thresholds ranging from 0.1 to 0.4. The time needed to re-organise the

under-clustered sets of words was marginally higher compared to the update time

shown in the experiments of Section 6.4.4 times the number of set of words that had

to be moved.

Space Requirements

ReTrie needs about 22MB more memory than the rest of the trie-based algorithms

for a database of 3M queries, due to the size of CA. This amount, although small

compared with today’s main memory capacities, is about one third of the total

memory requirements for the rest of the trie-based algorithms. This increase in

memory usage is the cost for the faster filtering times achieved by ReTrie.

6.4.7 Summary of Results

The experiments conducted in this section show the strengths and weaknesses of all

algorithms. When no frequency information of word occurrences in documents is

available, BestFitTrie seems to perform as much as 20% faster than prior work in

the literature (achieving also a significantly higher throughput rate). Additionally

BestFitTrie seems to remain relatively unaffected to the increase in document size,

compared to the rest of the algorithms. This improvement comes at the cost of

a small constant increase in storage cost compared to brute force approach, and a

6.5 : Indexing Using Tries 145

small increase in query insertion time, which is a standard tradeoff in such a set-

ting. Additionally BestFitTrie presents a sensitivity in the increase of the matching

percentage, compared to the rest of the algorithms, but experiments show that it

remains significantly faster despite this increase.

When word frequency information is available, variations of the original algo-

rithms (namely BestFitTrie-irank and PrefixTrie-irank) are reported to perform

faster. A new algorithm introduced, called LCWTrie, performs slightly better that

the previous algorithms, with no extra storage cost associated. Finally, algorithm

ReTrie seems an interesting addition to the algorithms presented so far. While the

rest of the algorithms give a greedy static solution to the problem of query database

organisation, ReTrie considers periodic re-organisations of the database to achieve

better performance at filtering time. Experiments show that the parameters regu-

lating this re-organisation process (e.g., the clustering threshold) should be carefully

tuned and tailored to the needs of the specific scenario. Should this be done, further

improvements of around 15% compared to BestFitTrie are reported.

6.5 Indexing Using Tries

In this section we discuss related research which is specific to this chapter and

was not covered in Chapter 2. Initially we give a brief background on the trie data

structure and then we present the trie variations that we extended to create our

local indexing mechanisms.

The concept of tries was initially conceived by de la Briandais in [67], but the

actual term was coined in [83] by Fredkin, who derived the naming from the term

retrieval used in information retrieval systems. Tries are widely used in a number

of different application domains ranging from dictionary management [14, 21, 119]

and text compression [32] to natural language processing [23, 157], pattern matching

[79, 172], IP routing [152] or searching for reserved words in a compiler [13]. The

broad applicability of tries has resulted in considering them a general-purpose data

structure with properties that are now well-understood due to a series of studies

e.g., [72, 78, 107, 119, 167, 172].

146 Chapter 6 : Local Filtering Algorithms

There are several ways to implement a trie node depending on the application in

mind, but the two most common ways are using arrays in the size of the alphabet

(array tries) [83] and using lists with non-empty elements as roots of subtrees (list

tries) [67, 118]. Array tries are better suited when the alphabet is relatively small,

whereas the list implementation is best suited for large alphabets or trie nodes with

few children, as opposed to a fixed size array consisting mainly of null pointers.

There are generally two ways to reduce the size of a trie, reducing the size of

each one of the nodes, and reducing the number of nodes needed to represent a set

of strings. Compact tries [185] are variants that are used to reduce the number of

nodes needed to represent a certain string, by compacting chains of nodes that lead

to a leaf without branching to a single node. Another idea for size reduction in a

trie is to view the indexed strings as a set, rather than as a sequence. In this way

the size of the resulting trie can be influenced, leading to the smallest trie. However,

Comer showed that the problem of determining the smallest trie is NP-complete

[60], thus several works have proposed heuristics to minimise a static trie (e.g., the

O-Trie [59]).

In the approach presented in this chapter we extended the concept of a list trie

to implement the data structures used to store user queries in main memory. The

algorithm BestFitTrie (and its variations LCWTrie and ReTrie) utilise variations

of list tries and techniques from compact tries to allow for the late creation of trie

nodes in order to explore commonalities between user queries.

6.6 Conclusions

In this chapter we have presented efficient main-memory algorithms suitable

for large scale information filtering with queries supporting Boolean and proximity

operations on attribute values. Our work extends the SIFT framework to the AWP
model, and presents new data structures and algorithms to efficiently filter incoming

documents. Specifically, we improve current algorithms for this class of queries by

introducing three new algorithms (namely BestFitTrie, LCWTrie, and ReTrie) and

their variations. The efficiency of the new algorithms is investigated using an existing

scientific collection and a synthetic query collection. A byproduct of our work is a

6.6 : Conclusions 147

new corpus of documents and user queries which is representative of digital library

scenarios, and can also be used by other researchers in the area of information

filtering.

This was the last chapter presenting results of this thesis. In the next chapter we

highlight the main achievements of our work, discuss possible directions for future

work and conclude this thesis.

148 Chapter 6 : Local Filtering Algorithms

Chapter 7

Conclusions

T o conclude this work we will present a short summary of the research con-

ducted in this thesis, we will highlight our main contributions and provide

possible directions for future research.

7.1 Summary

In this thesis we put our focus on the problem of distributed resource sharing in

wide-area networks such as the Internet and the Web. In the architecture that we

have proposed, each peer owns resources that it is willing to share and supports two

kinds of basic functionality: information retrieval and information filtering. This

functionality is unified in a single framework and a P2P architecture is adopted.

In our approach, nodes can implement any of the following types of services:

super-peer service, provider service and client service. Nodes implementing the

super-peer service (super-peers) form the message routing layer of the network.

Each super-peer is responsible for serving a fraction of the clients by storing doc-

uments, indexing continuous queries, matching them against incoming (published)

documents and creating notifications. The super-peers run a DHT protocol which

is an extension of Chord. A node implementing the client service (client) connects

to the network through a single super-peer node, which is its access point. Clients

can connect, disconnect or even leave the system silently at any time. Clients are

information consumers: they can pose one-time queries to receive relevant resources,

150 Chapter 7 : Conclusions

subscribe to resource publications with continuous queries and receive notifications

about published resources (e.g., documents) that match their interests. Finally,

the provider service (provider) is implemented by information sources that want to

expose their contents to the clients of the system.

The main focus of this work was to provide models and languages for expressing

publications and subscriptions, protocols that regulate super-peer interactions and

query indexing mechanisms that are utilized by each one of the super-peers locally.

Publications and subscriptions in our architecture were expressed using a well-

understood attribute-value model, called AWPS, that is based on named attributes

with free text as value interpreted under the Boolean and VSM (or LSI) models.

Utilising a different data model (e.g., such as XML) and query language (e.g., such as

XPath) would force us to change our distributed protocols for resource publication

and query subscription, and also our local indexing algorithms to accommodate the

new features introduced by the different model.

In the context of this work, we showed how to provide IR and IF functionality

by using an extension of the Chord DHT. To achieve this, we have designed and

implemented a set of protocols, collectively called DHTrie, that extend the Chord

protocols assuming that publications and subscriptions are expressed in the model

AWPS. Since probability distributions associated with publication and query el-

ements are expected to be skewed in such a scenario, achieving a balanced load

among the nodes becomes an important problem. Thus, we studied important cases

of load balancing for DHTrie and presented a new algorithm, based on the idea of

load-shedding, which is also applicable to the standard DHT lookup problem.

In the architecture described above, clients subscribe to their access points with

profiles that express their information needs, and providers expose their content

using an appropriate meta-data model. Each super-peer is responsible for storing the

queries, so that whenever a resource is published, the continuous queries satisfying

it are found and notifications are sent to the appropriate clients. A facet of this

work deals with the filtering problem that needs to be solved efficiently by each

super-peer. We have proposed data structures and indexing algorithms that enable

us to solve the filtering problem efficiently for large databases of queries expressed

7.2 : Contributions 151

in the model AWP . The main idea behind these algorithms is to store sets of words

compactly by exploiting their common elements. This is done using a variation

of the trie data structure and appropriate algorithms are used for reorganising the

query database when clustering of queries drops.

7.2 Contributions

In this section we summarise the primary contributions of this thesis. We have

looked into the problem of offering distributed resource sharing functionality in a

P2P environment and presented an architecture that unifies information retrieval

and filtering in a single framework, while providing centralised and distributed al-

gorithms that outperform the best algorithms in the literature. Our ultimate goal

was to combine the scalability and efficiency of a distributed system, with the effec-

tiveness and accuracy of a centralised system.

Specifically, we presented three IR-based models, studied their theory and an-

swered questions related to satisfiability and entailment. In this context, we used

methods from logic and complexity to show that the satisfiability problem for queries

in WP and AWP is NP-complete and the entailment problem is coNP-complete

and discussed cases where these problems can be solved in polynomial time.

Contrary to other approaches in the area, we aimed for exact query answering

by extending the Chord protocols with IR and pub/sub functionality. In this way,

we provided a distributed architecture with low network traffic and low publication

latency at the same time. We also demonstrated the effectiveness of additional

routing information, based on local interactions, in lowering message traffic and

latency.

Finally, we proposed a solution for the local filtering problem that outperforms

current literature. Our trie-based query indexing algorithms are 20% faster than

their counterparts, offering sophisticated clustering of user queries and mechanisms

for the adaptive reorganisation of the query database when filtering performance

drops.

152 Chapter 7 : Conclusions

7.3 Open Problems

Let us now present a list of open problems that are directly related to the results

of this work. Note that this list is meant to illustrate our possible future directions

and it is not by any means exhaustive. We are primarily interested in supporting rich

query languages in distributed information management systems and in designing

distributed and centralised query and document indexing mechanisms that enable

one-time and pub/sub functionality. However, issues such as security, privacy, lo-

cality, failure resilience and recovery are equally important issues in the design of

such a system, and should not be neglected.

7.3.1 Rich Query Languages

In this work we presented three progressively more expressive data models and their

respective query languages, and showed how to utilise them in a distributed resource

sharing scenario. We would like to move to the utilisation of data models based on

XML and queries based on the XQuery/XPath enriched with IR features such as

phrases, word proximity, similarity, etc. It is also interesting to use the lessons

learned in Chapter 3 to study the complexity of query evaluation in RDBMS with

text functionalities, combinations of RDBMS and IR systems [52], and proposals for

full-text extensions to XML [20].

7.3.2 Approximate Information Filtering

The problem of information filtering has lately received considerable attention from

various research communities including researchers from information retrieval, da-

tabases, distributed computing, digital libraries, agent systems [46, 187, 203] and

others. All the approaches taken so far (including the one presented in the context of

this thesis) have the underlying hypothesis that the subscriber is interested in all the

events that were published in the network. It would also be interesting to support

approximate information filtering functionality. In this context, a user subscribes

with a continuous query and monitors some (namely the most interesting) sources

of the network. The user query is replicated to these sources and only incoming

7.3 : Open Problems 153

documents from these sources are forwarded to him. The system is responsible for

managing the user query, discover new potential sources and move queries to better

ones. This approach resembles centralised approaches currently taken for filtering

news items, based on a profile of user preferences [62]. In these approaches, how-

ever, the emphasis is on duplicate elimination whereas in our case is on information

quality, scalability and efficiency.

7.3.3 Load Balancing

In the DHT literature, work on load balancing has concentrated on two particular

problems: address-space load balancing and item load balancing. The former problem

is how to partition the address-space of a DHT “evenly” among keys; it is typically

solved by relying on consistent hashing and constructions such as virtual servers

[180] or potential nodes [113]. In the latter problem, load has to be balanced in the

presence of data items with arbitrary load distributions [4, 113] as in our case. The

load balancing algorithm presented in this thesis is based on the concept of load

shedding to ensure uniform load distribution. This algorithm is also applicable to

the standard DHT look-up problem, and many questions regarding the details and

the behavior of the algorithm remain open:

• Which peers should be contacted when a load-shedding decision is made from

an overloaded peer P? Normally one would have to contact all the peers in the

network to notify them about this change, but we conjecture that notifying

only the nodes that contact P more often will suffice in most cases.

• Load-stealing (or load-acquisition) is also a promising technique. What are

the cases where it is more effective that load-shedding? What are the different

parameters that affect the behaviour of the two approaches?

• Different load distributions often require different approaches. How can we

identify the load balancing algorithms appropriate for each type of skew?

• Load balancing plays an important role in the scalability and efficiency of any

P2P system, especially in structured ones, where failures are more expensive.

154 Chapter 7 : Conclusions

It is therefore necessary to integrate load balancing mechanisms at the level

of the DHT infrastructure, which is not yet clear how to achieve even given

works such as [4, 113, 113, 180].

References

[1] K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information

Systems. In Conference on Cooperative Information Systems (CoopIS), pages

179–194, 2001.

[2] K. Aberer and J. Wu. A Framework for Decentralized Ranking in Web Infor-

mation Retrieval. In Proceedings of Asia-Pacific Web Conference (APWeb),

pages 213–226, 2003.

[3] K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt. Improving Data

Access in P2P Systems. IEEE Internet Computing, 6(1):58–67, 2002.

[4] K. Aberer, A. Datta, and M. Hauswirth. Multifaceted Simultaneous Load

Balancing in DHT-based P2P systems: A new game with old balls and bins.

Technical Report IC/2004/23, EPFL, 2004.

[5] K. Aberer, F. Klemm, M. Rajman, and J. Wu. An Architecture for Peer-to-

Peer Information Retrieval. In Proceedings of the International Workshop on

Peer-to-Peer Information Retrieval (P2PIR), Sheffield, UK, July 2004.

[6] K. Aberer, L. Onana Alima, A. Ghodsi, S. Girdzijauskas, M. Hauswirth, and

S. Haridi. The essence of P2P: A reference architecture for overlay networks.

In Proccedings of the International Conference on Peer-to-Peer Computing

(P2P), August 2005.

[7] K. Aberer, A. Datta, M. Hauswirth, and R. Schmidt. Indexing Data-oriented

Overlay Networks. In Proceedings of the International Conference on Very

Large Data Bases (VLDB), pages 685–696, Trondheim, Norway, August 2005.

[8] Karl Aberer, Phillipe Cudre-Mauroux, and Manfred Hauswirth. The Chatty

Web: Emergent Semanics Through Gossiping. In Proceedings of the Interna-

156 References

tional World Wide Web Conference (WWW), Budapest, Hungary, 20-24 May

2003. ACM.

[9] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-

Wesley, 1995.

[10] I. Aekaterinidis and P. Triantafillou. Internet scale string attribute pub-

lish/subscribe data networks. In Proceedings of the ACM Conference on In-

formation and Knowledge Management (CIKM), pages 44–51, 2005.

[11] I. Aekaterinidis and P. Triantafillou. PastryStrings: A Comprehensive

Content-Based Publish/Subscribe DHT Network. In Proceedings of the In-

ternational Conference on Distributed Computing and Systems (ICDCS), July

2006.

[12] M. K. Aguilera, R. E. Strom, D.C. Sturman, M. Astley, and T.D. Chandra.

Matching Events in a Content-based Subscription System. In Proceedings of

the ACM Symposium on Principles of Distributed Computing (PODC), pages

53–62, New York, May 1999. Association for Computing Machinery.

[13] A. V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques, and

Tools. Addison-Wesley, 1986.

[14] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms.

Addison-Wesley, Reading, Massachusetts, 1983.

[15] L.O. Alima, S. El-Ansary, P. Brand, and S. Haridi. DKS(N, k, f): A Family

of Low Communication, Scalable and Fault-Tolerant Infrastructures for P2P

Applications. In Cluster Computing and the Grid (CCGRID), pages 344–350,

2003.

[16] L.O. Alima, A. Ghodsi, P. Brand, and S. Haridi. Multicast in DKS(N, k, f)

Overlay Networks. In Proceedings of the International Conference on Princi-

ples of DIstributed Systems (OPODIS), 2003.

[17] L.O. Alima, A. Ghodsi, and S. Haridi. A Framework for Structured Peer-to-

Peer Overlay Networks. In Global Computing 2004, volume 3267 of LNCS,

pages 223–250, 2004.

References 157

[18] M. Altinel and M.J. Franklin. Efficient Filtering of XML Documents for Se-

lective Dissemination of Information. In Proceedings of the International Con-

ference on Very Large Databases (VLDB), 2000.

[19] M. Altinel, D. Aksoy, T. Baby, M. Franklin, W. Shapiro, and S. Zdonik. DBIS-

toolkit: Adaptable Middleware for Large-scale Data Delivery. In Proceedings

of the ACM SIGMOD Conference, 1999.

[20] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. TeXQuery: a full-text

search extension to Query. In Proceedings of the World Wide Web Conference

(WWW), pages 583–594. ACM Press, 2004.

[21] J.-I. Aoe, K. Morimoto, and T. Sato. An Efficient Implementation of Trie

Structures. Software–Practice and Experience, 22(9):695–721, 1992.

[22] J. Aspnes and G. Shah. Skip Graphs. In Fourteenth Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 384–393, Baltimore, MD,

USA, 12–14 January 2003.

[23] R. Baeza-Yates and G. Gonnet. Fast Text Searching for Regular Expressions

or Automaton Simulation on Tries. Journal of the ACM, 43(6):915–936, 1996.

[24] R.A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.

Addison-Wesley, 1999.

[25] H. Balakrishnan, M.F. Kaashoek, D.R. Karger, R. Morris, and I. Stoica. Look-

ing up data in P2P systems. Communications of the ACM, 46(2):43–48, 2003.

[26] H. Balakrishnan, S. Shenker, and M. Walfish. Semantic-Free Referencing in

Linked Distributed Systems. In Proceedings of the International Workshop on

Peer-to-Peer Systems (IPTPS), 2003.

[27] W.T. Balke. Peer-to-Peer Systems and Applications, chapter Information Re-

trieval in Peer-to-Peer Systems. Number 3485 in LNCS. Springer, 2005.

[28] W.T. Balke, W. Nejdl, W. Siberski, and U. Thaden. DL Meets P2P - Dis-

tributed Document Retrieval Based on Classification and Content. In Pro-

ceedings of the European Conference on Research and Advanced Technology

for Digital Libraries (ECDL), pages 379–390, 2005.

158 References

[29] W.T. Balke, W. Nejdl, W. Siberski, and U. Thaden. Progressive Distributed

Top k Retrieval in Peer-to-Peer Networks. In Proceedings of the International

Conference on Data Engineering (ICDE), pages 174–185, 2005.

[30] N.J. Belkin and W.B. Croft. Information Filtering and Information Retrieval:

Two Sides of the Same Coin? Communications of the ACM, 35(12):29–38,

1992.

[31] T.A.H. Bell and A. Moffat. The Design of a High Performance Information

Filtering System. In Proceedings of the ACM Conference on Research and

Development in Information Retrieval (SIGIR), pages 12–20, 1996.

[32] T.C. Bell, J.G. Cleary, and I.H. Witten. Text Compression. Prentice-Hall,

1990.

[33] M. Bender, S. Michel, G. Weikum, and C. Zimmer. Bookmark-Driven Query

Routing in Peer-to-Peer Web Search. In Proceedings of the International Work-

shop on Peer-to-Peer Information Retrieval (P2PIR), 2004.

[34] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer. Improv-

ing Collection Selection with Overlap-Awareness. In Ricardo A. Baeza-Yates,

Nivio Ziviani, Gary Marchionini, Alistair Moffat, and John Tait, editors, Pro-

ceedings of the ACM Conference on Research and Development in Information

Retrieval (SIGIR), pages 67–74, Salvador, Brazil, 2005. ACM.

[35] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer. MIN-

ERVA: Collaborative P2P Search (Demo). In Klemens Bhm, Christian S.

Jensen, Laura M. Haas, Martin L. Kersten, Per-Åke Larson, and Beng Chin

Ooi, editors, Proceedings of the International Conference on Very Large Da-

tabases (VLDB), pages 1263–1266, Trondheim, Norway, 2005. ACM.

[36] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 1987.

[37] A. Bharambe, S. Rao, and S. Seshan. Mercury: A Scalable Publish-Subscribe

System for Internet Games. In Proceedings of the International Workshop on

Network and System Support for Games (Netgames), Braunchweig, Germany,

2002.

References 159

[38] A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting scalable

multi-attribute range queries. In Proceedings of ACM SIGCOMM Conference,

Portland, Oregon, USA, 2004.

[39] S. Brin and L. Page. The anatomy of a large–scale hypertextual Web search

engine. In Proceedings of the World Wide Web Conference (WWW), 1998.

[40] J.P. Callan. Learning While Filtering Focuments. In Proceedings of the ACM

Conference on Research and Development in Information Retrieval (SIGIR),

pages 224–231, 1998.

[41] J.P. Callan. Document Filtering With Inference Networks. In Proceedings of

the ACM Conference on Research and Development in Information Retrieval

(SIGIR), 1996.

[42] J.P. Callan, W.B. Croft, and S.M. Harding. The INQUERY retrieval sys-

tem. In Proceedings of the International Conference on Database and Expert

Systems Applications (DEXA), pages 78–83. Springer-Verlag, 1992.

[43] A. Campialla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficient Filtering in

Publish Subscribe Systems Using Binary Decision Diagrams. In Proceedings of

the International Conference on Software Engeneering (ICSE), pages 443–452,

Los Alamitos, California, May12–19 2001. IEEE Computer Society.

[44] A. Carzaniga, D.S. Rosenblum, and A. L. Wolf. Achieving scalability and

expressiveness in an Internet-scale event notification service. In Proceedings of

the ACM Symposium on Principles of Distributed Computing (PODC), pages

219–227, 2000.

[45] A. Carzaniga, D.-S. Rosenblum, and A.L Wolf. Design and Evaluation of

a Wide-Area Event Notification Service. ACM Transactions on Computer

Systems (TOCS), 19(3):332–383, 2001.

[46] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation of

a Wide-Area Event Notification Service. ACM Transactions on Computer

Systems (TOCS), 19(3):332–383, August 2001.

160 References

[47] U. Cetintemel, M.J. Franklin, and C.L. Giles. Self-Adaptive User Profiles for

Large-Scale Data Delivery. In Proceedings of the International Conference on

Data Engineering (ICDE), pages 622–633, 2000.

[48] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient Filtering of

XML Documents with XPath Expressions. In Proceedings of the International

Conference on Data Engineering (ICDE), pages 235–244, February 2002.

[49] C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke. Predicate Rewriting for

Translating Boolean Queries in a Heterogeneous Information System. ACM

Transactions on Information Systems (TOIS), 17(1):1–39, 1999.

[50] C.-C.K. Chang. Query and Data Mapping Across Heterogeneous Information

Sources. PhD thesis, Stanford University, January 2001.

[51] C.-C.K. Chang, H. Garcia-Molina, and A. Paepcke. Boolean Query Mapping

across Heterogeneous Information Sources. IEEE Transactions on Knowledge

and Data Engineering (TKDE), 8(4):515–521, 1996.

[52] S. Chaudhuri, R. Ramakrishnan, and G. Weikum. Integrating DB and IR

Technologies: What is the Sound of One Hand Clapping? In Proccedings of

the Biennial Conference on Innovative Data Systems Research (CIDR), pages

1–12, 2005.

[53] T.T. Chinenyanga and N. Kushmerick. Expressive retrieval from XML docu-

ments. In Proceedings of the ACM Conference on Research and Development

in Information Retrieval (SIGIR), September 2001.

[54] P. A. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl. Publish/Subscribe

for RDF-based P2P Networks. In Proceedings of the European Semantic Web

Symposium (ESWS), 2004.

[55] P.A. Chirita, W. Nejdl, and O. Scurtu. Knowing Where to Search: Personal-

ized Search Strategies for Peers in P2P Networks. In Proceedings of the Inter-

national Workshop on Peer-to-Peer Information Retrieval (P2PIR), 2004.

[56] I. Clarke, T.W. Hong, S.G. Miller, O. Sandberg, and B. Wiley. Protecting

Free Expression Online with Freenet. IEEE Internet Computing, 6(1):40–49,

January 2002.

References 161

[57] E. Cohen, A. Fiat, and H. Kaplan. Associative Search in Peer to Peer Net-

works: Harnessing Latent Semantics. In Proceedings of the Joint Conference

of the IEEE Computer and Communications Societies (INFOCOM), 2003.

[58] W.W. Cohen. WHIRL: A word-based information representation language.

Artificial Intelligence, 118(1-2):163–196, 2000.

[59] D. Comer. Analysis of a Heuristic for Trie Minimization. ACM Transactions

on Database Systems (TODS), 6(3):513–537, September 1981.

[60] D. Comer and R. Sethi. The Complexity of Trie Index Construction. Journal

of the ACM, 24(3):428–440, 1977.

[61] G.M. Del Corso, A. Gulli, and F. Romani. Ranking a stream of news. In

Proceedings of the World Wide Web Conference (WWW), pages 97–106, 2005.

[62] G.M.d. Corso, A. Gulli, and F. Romani. Ranking a Stream of News. In

Proceedings of the World Wide Web Conference (WWW), 2005.

[63] A. Crespo and H. Garcia-Molina. Routing Indices for Peer-to-Peer Systems.

In Proceedings of the 28th International Conference on Distributed Systems,

July 2002.

[64] F.M. Cuenca-Acuna and T.D. Nguyen. Text-Based Content Search and Re-

trieval in Ad-hoc P2P Communities. In Proceedings of the Networking 2002

Workshops, number 2376 in LNCS, pages 220–234. Springer-Verlag, 2002.

[65] A. Datta, M. Hauswirth, R. John, R. Schmidt, and K. Aberer. Range Queries

in Trie-Structured Overlays. In Proccedings of the International Conference

on Peer-to-Peer Computing (P2P), pages 57–66, 2005.

[66] N. de Bruijn. A Combinatorial Problem. In Proceedings of the Koninklijke

Nederlandse Akademie van Wetenschappen, volume 49, pages 758–764, 1946.

[67] R. de la Briandais. File searching using variable length keys. In Proceedings

of the Western Joint Computer Conference, pages 295–298, 1959.

[68] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

162 References

[69] R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint Networks. Artificial

Intelligence, 49(1-3):61–95, 1991. Special volume on Knowledge Representa-

tion.

[70] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,

D. Swinehart, and D. Terry. Epidemic Algorithms for Replicated Database

Management. In Proceedings of the ACM Symposium on Principles of Dis-

tributed Computing (PODC), pages 1–12, August 1987.

[71] P.J. Denning. Electronic Junk. Communications of the ACM, 25(3):163–165,

1982.

[72] L. Devroye. A study of trie-like structures under the density model. Annals

of Applied Probability, 2(2):402–434, 1992.

[73] Y. Diao, M. Altinel, M.J. Franklin, H. Zhang, and P. Fischer. Path Sharing

and Predicate Evaluation for High-Performance XML Filtering. ACM Trans-

actions on Database Systems (TODS), 2003.

[74] L. Dong. Automatic term extraction and similarity assessment in a domain

specific document corpus. Master’s thesis, Department of Computer Science,

Dalhousie University, Halifax, Canada, 2002.

[75] F. Fabret, H.A. Jacobsen, F. Llirbat, J. Pereira, K.A. Ross, and D. Shasha.

Filtering algorithms and implementation for very fast publish/subscribe sys-

tems. In Proceedings of the ACM SIGMOD Conference, 2001.

[76] D. Faensen, L. Faulstich, H. Schweppe, A. Hinze, and A. Steidinger. Her-

mes – A Notification Service for Digital Libraries. In Proceedings of the

Joint ACM/IEEE Conference on Digital Libraries (JCDL), Roanoke, Virginia,

USA, 2001.

[77] A. Fiat and J. Saia. Censorship resistant peer-to-peer content addressable

networks. In Symposium on Discrete Algorithms (SODA), pages 94–103, 2002.

[78] P. Flajolet. On the Performance Evaluation of Extendible Hashing and Trie

Searching. Acta Informatica, 20:345–369, 1983.

[79] P. Flajolet and C. Puech. Partial match retrieval of multidimensional data.

Journal of the ACM, 33(2):371–407, 1986.

References 163

[80] P.W. Foltz and S.T. Dumais. Personalized Information Delivery: An Analysis

of Information Filtering Methods. Communications of the ACM, 35(12), 1992.

[81] M.J. Franklin and S.B. Zdonik. “Data In Your Face”: Push Technology in

Perspective. In Proceedings of the ACM SIGMOD Conference, pages 516–519,

1998.

[82] K. Frantzi, S. Ananiadou, and H. Mima. Automatic recognition of multi-

word terms: the C-value/NC-value method. International Journal on Digital

Libraries, 5(2), 2000.

[83] E. Fredkin. Trie Memory. Communications of the ACM, 3(9):490–499, 1960.

[84] M.J. Freedman and R. Vingralek. Efficient Peer-to-Peer Lookup Based on a

Distributed Trie. In Proceedings of the International Workshop on Peer-to-

Peer Systems (IPTPS), volume 1 of LNCS, 2002.

[85] N. Fuhr and K. Großjohann. XIRQL: An XML Query Language Based on

Information Retrieval Concepts. ACM Transactions on Information Systems

(TOIS), 22(2):313–356, April 2004.

[86] E. Gabrilovich, S.T. Dumais, and E. Horvitz. Newsjunkie: providing personal-

ized newsfeeds via analysis of information novelty. In Proceedings of the World

Wide Web Conference (WWW), pages 482–490, 2004.

[87] P. Ganesan, Q. Sun, and H. Garcia-Molina. YAPPERS: A Peer-to-Peer

Lookup Service over Arbitrary Topology. In Proceedings of the Joint Con-

ference of the IEEE Computer and Communications Societies (INFOCOM),

2003.

[88] P. Ganesan, P.K. Gummadi, and H. Garcia-Molina. Canon in G Major: De-

signing DHTs with Hierarchical Structure. In Proceedings of the International

Conference on Distributed Computing and Systems (ICDCS), pages 263–272,

2004.

[89] H. Garcia-Molina. Peer-to-Peer Data Management. Powerpoint slides of key-

note address given at ICDE, 2002. Available from http://www-db.stanford.

edu/peers/.

164 References

[90] B. Gedik and L. Liu. PeerCQ: A Decentralized and Self-Configuring Peer-to-

Peer Information Monitoring System. In Proceedings of the IEEE International

Conference on Distributed Computer Systems (ICDCS), May 2003.

[91] V. Gopalakrishnan, B. Bhattacharjee, and P. Keleher. Distributing Google.

In Proceedings of the IEEE International Workshop on Networking Meets Da-

tabases (NetDB), April 2006.

[92] T.J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML Streams

with Deterministic Automata. In Proceedings of the Conference on Database

Theory (ICDT), pages 173–189, Siena, Italy, January 2003.

[93] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Meghdoot: Content-

Based Publish/Subscribe over P2P Networks. In Proceedings of the Interna-

tional Conference on Distributed Systems Paltforms (Middleware), Toronto,

Ontario, Canada, October 18-22 .

[94] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse. Kelips:

Building an Efficient and Stable P2P DHT through Increased Memory and

Background Overhead. In Proceedings of the International Workshop on Peer-

to-Peer Systems (IPTPS), volume 2 of LNCS, 2003.

[95] M. Harren, J.M. Hellerstein, R. Huebsch, T. Loo, S. Shenker, and I. Stoica.

Complex Queries in DHT-based Peer-to-Peer Networks. In Proceedings of the

International Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[96] N.J.A. Harvey, M.B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet:

A Scalable Overlay Network with Practical Locality Properties. In USENIX

Symposium on Internet Technologies and Systems, 2003.

[97] K. Hildrum, J. Kubiatowicz, S. Rao, and B.Y. Zhao. Distributed object loca-

tion in a dynamic network. In Proceedings of the ACM Symposium on Parallel

Algorithms (SPAA), pages 41–52, 2002.

[98] K. Hildrum, J.D. Kubiatowicz amd S. Rao, and B.Y. Zhao. Distributed object

location in a dynamic network. Theory of Computing Systems, 37(3):405–440,

2004.

References 165

[99] H.J.Siegel. Interconnection Networks for SIMD Machines. Computer, 12(6):

57–65, 1979.

[100] H.-C. Hsiao and C.-T. King. Similarity Discovery in Structured P2P Overlays.

In Proceedings of the International Conference on Parallel Processing (ICPP),

2003.

[101] H.-C. Hsiao and C.-T. King. Tornado: a capability-aware peer-to-peer storage

overlay. Journal of Parallel and Distributed Computing (JPDC), 64(6):747–

758, 2004.

[102] R. Huebsch. Content-Based Multicast: Comparison of Implementation Op-

tions. Technical Report UCB//CSD-03-1229, UC Berkeley, February 2003.

[103] D.A. Hull, J.O. Pedersen, and H. Schütze. Method Combination For Doc-

ument Filtering. In Proceedings of the ACM Conference on Research and

Development in Information Retrieval (SIGIR), pages 279–287, 1996.

[104] Stratos Idreos, Manolis Koubarakis, and Christos Tryfonopoulos. P2P-DIET:

One-Time and Continuous Queries in Super-Peer Networks. In Proceedings of

the 9th International Conference on Extending Database Technology (EDBT),

pages 851–853, Heraklion, Greece, March 2004.

[105] Stratos Idreos, Manolis Koubarakis, and Christos Tryfonopoulos. P2P-DIET:

An Extensible P2P Service that Unifies Ad-hoc and Continuous Querying in

Super-Peer Networks. In Proceedings of the ACM SIGMOD Conference, pages

933–934, Paris, France, June 2004.

[106] Stratos Idreos, Christos Tryfonopoulos, Manolis Koubarakis, and Yannis

Drougas. Query Processing in Super-Peer Networks with Languages Based

on Information Retrieval: the P2P-DIET Approach. In Proceedings of the In-

ternational Workshop on Peer-to-peer Computing and Databases (P2P&DB),

Herakion, Greece, March 2004.

[107] P. Jacquet and W. Szpankowski. Analysis of digital tries with Markovian

dependency. IEEE Transactions on Information Theory (TOIT), 37(5):1470–

1475, 1991.

166 References

[108] M. Jelasity and O. Babaoglu. T-Man: Gossip-Based Overlay Topology Man-

agement. In Proceedings of the International Workshop on Engineering Self-

Organising Applications (ESOA), volume 3910 of LNCS, Berlin, Germany,

2006. Springer-Verlag.

[109] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. The Peer

Sampling Service: Experimental Evaluation of Unstructured Gossip-Based Im-

plementations. In Proceedings of the International Conference on Distributed

Systems Paltforms (Middleware), Toronto, Canada, October 2004.

[110] G.P. Jesi, A. Montresor, and O. Babaoglu. Proximity-Aware Superpeer Over-

lay Topologies. In Proceedings of the International Workshop on Self-Managed

Systems & Services (SelfMan’06), Dublin, Ireland, June 2006. Springer-Verlag.

[111] M.F. Kaashoek and D.R. Karger. Koorde: A Simple Degree-Optimal Dis-

tributed Hash Table. In Proceedings of the International Workshop on Peer-

to-Peer Systems (IPTPS), volume 2 of LNCS, 2003.

[112] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy.

Consistent Hashing and Random Trees: Distributed Caching Protocols for

Relieving Hot Spots on the World Wide Web. In ACM Symposium on Theory

of Computing (STOC), 1997.

[113] D. R. Karger and M. Ruhl. Simple efficient load balancing algorithms for peer-

to-peer systems. In Proceedings of the ACM Symposium on Parallel Algorithms

(SPAA), 2004.

[114] I.A. Klampanos and J.M. Jose. An architecture for peer-to-peer information

retrieval. In Proceedings of the ACM Conference on Research and Development

in Information Retrieval (SIGIR), pages 401–402, 2003.

[115] I.A. Klampanos and J.M. Jose. An Architecture for Information Retrieval

over Semi-Collaborating Peer-to-Peer Networks. In Proceedings of the ACM

Symposium on Applied Computing (SAC), 2004.

[116] J. Kleinberg. Authoratitive sources in a hyperlinked environment. Journal of

the ACM, 48(5):604–632, 1999.

References 167

[117] F. Klemm and K. Aberer. Aggregation of a Term Vocabulary for Peer-to-Peer

Information Retrieval: a DHT Stress Test. In Proceedings of the International

Workshop on Databases, Information Systems and Peer-to-Peer Computing

(DBISP2P), Trondheim, Norway, August 2005.

[118] D.E. Knuth. The Art of Computer Programming, volume 1: Fundamental

Algorithms. Addison-Wesley, Reading, Massachusetts, 1973.

[119] D.E. Knuth. The Art of Computer Programming, volume 3: Sorting and

Searching. Addison-Wesley, Reading, Massachusetts, 1973.

[120] G. Koloniari and E. Pitoura. Content-Based Routing of Path Queries in Peer-

to-Peer Systems. In Proceedings of the International Conference on Extending

Database Technology (EDBT), 2004.

[121] G. Koloniari and E. Pitoura. Peer-to-Peer Management of XML Data: Issues

and Research Challenges. Sigmod Record, June 2005.

[122] M. Koubarakis. The Complexity of Query Evaluation in Indefinite Tempo-

ral Constraint Databases. Theoretical Computer Science, 171:25–60, January

1997. Special Issue on Uncertainty in Databases and Deductive Systems, Ed-

itor: L.V.S. Lakshmanan.

[123] Manolis Koubarakis, Theodoros Koutris, Christos Tryfonopoulos, and

Paraskevi Raftopoulou. Information Alert in Distributed Digital Libraries:

The Models, Languages, and Architecture of DIAS. In Proceedings of the

6th European Conference on Research and Advanced Technology for Digital

Libraries (ECDL), pages 527–542, Rome, Italy, September 2002.

[124] Manolis Koubarakis, Christos Tryfonopoulos, Paraskevi Raftopoulou, and

Theodoros Koutris. Data Models and Languages for Agent-Based Textual

Information Dissemination. In Proceedings of the 6th International Workshop

on Cooperative Information Agents (CIA), volume 2446 of Lecture Notes in Ar-

tificial Intelligence, pages 179–193, Madrid, Spain, September 2002. Springer.

[125] Manolis Koubarakis, Christos Tryfonopoulos, Stratos Idreos, and Yannis

Drougas. Selective Information Dissemination in P2P Networks: Problems

168 References

and Solutions. SIGMOD Record, Special Issue on Peer-to-Peer Data Manage-

ment, 32(3):71–76, 2003.

[126] Manolis Koubarakis, Spiros Skiadopoulos, and Christos Tryfonopoulos. Logic

and Computational Complexity for Boolean Information Retrieval. IEEE

Transactions on Knowledge and Data Engineering, 2006. To appear.

[127] J. Li, B.T. Loo, J.M. Hellerstein, M.F. Kaashoek, D.R. Karger, and R. Morris.

On the Feasibility of Peer-to-Peer Web Indexing and Search. In Proceedings

of the International Workshop on Peer-to-Peer Systems (IPTPS), volume 2 of

LNCS, 2003.

[128] W. Litwin. Linear Hashing: A New Tool For File And Table Addressing. In

Proceedings of the International Conference on Very Large Databases (VLDB),

pages 212–223, 1980.

[129] W. Litwin, M.-A. Neimat, and D.A. Schneider. LH* - A Scalable, Distributed

Data Structure. ACM Transactions on Database Systems (TODS), 21(4):480–

525, December 1996.

[130] J. Lu and J. Callan. Federated search of text-based digital libraries in hier-

archical peer-to-peer networks. In Proceedings of the European Conference on

Information Retrieval Research (ECIR), 2005.

[131] J. Lu and J. Callan. Content-based retrieval in hybrid peer-to-peer networks.

In Proceedings of the ACM Conference on Information and Knowledge Man-

agement (CIKM), 2003.

[132] J. Lu and J. Callan. Merging retrieval results in hierarchical peer-to-peer net-

works. In Proceedings of the ACM Conference on Research and Development

in Information Retrieval (SIGIR), pages 472–473, 2004.

[133] H.P. Luhn. A Business Intelligence System. IBM Journal of Reasearch and

Development, 2(4):314–319, 1958.

[134] T. Luu, F. Klemm, M. Rajman, and K. Aberer. Using Highly Discriminative

Keys for Indexing in a Peer-to-Peer Full-Text Retrieval System. Technical

Report 2005041, Ecole Polytechnique Federale de Lausenne (EPFL), School

of Computer and Communication Sciences, July 2005.

References 169

[135] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: a scalable and dynamic em-

ulation of the butterfly. In Proceedings of the ACM Symposium on Principles

of Distributed Computing (PODC), pages 183–192, 2002.

[136] G.S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed Hashing in

a Small World. In USENIX Symposium on Internet Technologies and Systems,

2003.

[137] C.D. Manning and H. Schütze. Foundations of Statistical Natural Language

Processing. The MIT Press, Cambridge, Massachusetts, 1999.

[138] S. Marti, P. Ganesan, and H. Garcia-Molina. SPROUT: P2P Routing with

Social Networks. In Proceedings of the International Workshop on Peer-to-

Peer Computing and Databases (P2P&DB), pages 425–435, 2004.

[139] P. Maymounkov and D. Mazieres. PKademlia: A Peer-to-Peer Information

System Based on the XOR Metric. In Proceedings of the International Work-

shop on Peer-to-Peer Systems (IPTPS), volume 1 of LNCS, 2002.

[140] S. Michel, P. Triantafillou, and G. Weikum. KLEE: A Framework for Dis-

tributed Top-k Query Algorithms. In Proceedings of the International Con-

ference on Very Large Databases (VLDB), pages 637–648, 2005.

[141] S. Michel, P. Triantafillou, and G. Weikum. MINERVA∞: A Scalable Effi-

cient Peer-to-Peer Search Engine. In Gustavo Alonso, editor, Proceedings of

the International Conference on Distributed Systems Paltforms (Middleware),

volume 3790 of Lecture Notes in Computer Science, pages 60–81, Grenoble,

France, 2005. Springer.

[142] S. Michel, M. Bender, P. Triantafillou, and G. Weikum. IQN Routing: Inte-

grating Quality and Novelty in P2P Querying and Ranking. In Proceedings

of the International Conference on Extending Database Technology (EDBT),

Munich, Germany, March 2006.

[143] E. Milios, Y. Zhang, B. He, and L. Dong. Automatic Term Extraction and

Document Similarity in Special Text Corpora. In Proceedings of the Pacific

Association for Computational Linguistics Conference (PACLing), pages 275–

284, Halifax, Canada, August 2003.

170 References

[144] A. Montresor, M. Jelasity, , and O. Babaoglu. Gossip-based Aggregation in

Large Dynamic Networks. ACM Transactions on Computer Systems (TOCS),

23(3):219–252, 2005.

[145] M. Morita and Y. Shinoda. Information Filtering Based on User Behaviour

Analysis and Best Match Text Retrieval. In Proceedings of the ACM Confer-

ence on Research and Development in Information Retrieval (SIGIR), pages

272–281, 1994.

[146] W. Müller, M. Eisenhardt, and A. Henrich. Scalable summary based retrieval

in P2P networks. In Proceedings of the ACM Conference on Information and

Knowledge Management (CIKM), pages 586–593, 2005.

[147] M. Naor and U. Wieder. A Simple Fault Tolerant Distributed Hash Table. In

Proceedings of the International Workshop on Peer-to-Peer Systems (IPTPS),

volume 2 of LNCS, 2003.

[148] G. Navarro and R.A. Baeza-Yates. Proximal Nodes: A Model to Query Docu-

ment Databases by Content and Structure. ACM Transactions on Information

Systems (TOIS), 15(4):400–435, 1997.

[149] W. Neidl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,

M. Palmer, and T. Risch. EDUTELLA: A P2P Networking Infrastructure

Based on RDF. In Proceedings of the International World Wide Web Confer-

ence (WWW). May 2002.

[150] W. Nejdl, W. Siberski, U. Thaden, and W.T. Balke. Top-k Query Evaluation

for Schema-Based Peer-to-Peer Networks. In Proceedings of the International

Semantic Web Conference, pages 137–151, 2004.

[151] B. Nguyen, S. Abiteboul, G.Cobena, and M. Preda. Monitoring XML Data

on the Web. In Proceedings of the ACM SIGMOD Conference, Santa Barbara,

CA, USA, 2001.

[152] S. Nilsson and G. Karlsson. IP-Address Lookup Using LC-Tries. IEEE Journal

on Selected Areas in Communication, 17(6):1083–1092, 1999.

[153] National Institute of Standards and Technology. Secure hash standard, 1995.

Publication 180-1.

References 171

[154] P2P-DIET home page. URL http://www.www.intelligence.tuc.gr/

p2pdiet/.

[155] P2PIR. Workshop on Peer-to-Peer Information Retrieval, July 2004.

[156] P2PIR. Workshop on Peer-to-Peer Information Retrieval, November 2005.

[157] J.L. Peterson. Computer Programs for Detecting and Correcting Spelling

Errors. Communications of the ACM, 23(12):676–686, 1980.

[158] Y. Petrakis and E. Pitoura. On Constructing Small Worlds in Unstruc-

tured Peer-to-Peer Systems. In Proceedings of the International Workshop on

Peer-to-Peer Computing and Databases (P2P&DB), Heraklion, Crete, Greece,

March 2004.

[159] U. Pfeifer, N. Fuhr, and T. Huynh. Searching Structured Documents with

the Enhanced Retrieval Functionality of freeWAIS-sf and SFgate. Computer

Networks and ISDN Systems, 27(6):1027–1036, 1995.

[160] P.R. Pietzuch and J.M. Bacon. Hermes: A Distributed Event-Based Mid-

dleware Architecture. In Proceedings of the International Workshop on Dis-

tributed Event-Based Systems (DEBS), July 2002.

[161] T. Pitoura, N. Ntarmos, and P. Triantafillou. Replication, Load Balancing and

Efficient Range Query Processing in DHTs. In Proceedings of the International

Conference on Extending Database Technology (EDBT), March 2006.

[162] C.G. Plaxton, R. Rajaraman, and A.W. Richa. Accessing Nearby Copies

of Replicated Objects in a Distributed Environment. Theory of Computing

Systems, 32(3):241–280, 1999.

[163] M.F. Porter. An Algorithm for Suffix Striping. Program, 14(3):130–137, 1980.

[164] P. Raftopoulou and E.G.M. Petrakis. Knowledge Sharing in Multi-Layer P2P

Networks. In Proceedings of IEEE STEP 4th International Workshop on Net-

Centric Computing (NCC), Budapest, Hungary, 24-25 September 2005.

[165] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable

Content-addressable Network. In Proceedings of ACM SIGCOMM Conference,

2001.

172 References

[166] S. Ratnasamy, M. Handley, R.M. Karp, and S. Shenker. Application-Level

Multicast Using Content-Addressable Networks. In Proceedings of Interna-

tional Workshop on Networked Group Communication (NGC), pages 14–29,

London, UK, November 2001.

[167] M. Regnier and P. Jacquet. New Results on the Size of Tries. IEEE Transac-

tions on Information Theory (TOIT), 35(1):203–205, 1989.

[168] M.E. Renda and J. Callan. The robustness of content-based search in hier-

archical peer to peer networks. In Proceedings of the ACM Conference on

Information and Knowledge Management (CIKM), pages 562–570, 2004.

[169] P. Revesz. Introduction to Constraint Databases. Springer, 2002.

[170] P.Z. Revesz. A Closed Form Evaluation for Datalog Queries with Inte-

ger (Gap)-Order Constraints. Theoretical Computer Science, 116(1):117–149,

1993.

[171] P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Keyword Searching. In

Proceedings of the International Conference on Distributed Systems Paltforms

(Middleware), pages 21–40, 2003.

[172] Ronald L. Rivest. Partial-Match Retrieval Algorithms. SIAM Journal on

Computing, 5(1):19–50, 1976.

[173] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralised Object Lo-

cation and Routing for Large-Scale Peer-to-Peer Systems. In Proceedings of

the International Conference on Distributed Systems Paltforms (Middleware),

November 2001.

[174] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. Scribe: The

Design of a Large-scale Event Notification Infrastructure. In J. Crowcroft and

M. Hofmann, editors, Proceedings of the International Workshop COST264,

2001.

[175] O.D. Sahin, F. Emekci, D. Agrawal, and A.E. Abbadi. Content-Based Simi-

larity Search over Peer-to-Peer Systems. In Proceedings of the International

Workshop on Databases, Information Systems, and Peer-to-Peer Computing

(DBISP2P), 2004.

References 173

[176] K. Sankaralingam, S. Sethumadhavan, and J.C. Browne. Distributed Pagerank

for P2P Systems. In Proceedings of the IEEE International Symposium on High

Performance Distributed Computing (HPDC), pages 58–69, 2003.

[177] M.T. Schlosser, M. Sintek, S. Decker, and W. Nejdl. HyperCuP - Hypercubes,

Ontologies, and Efficient Search on Peer-to-Peer Networks. In Proceedings of

the 1st Workshop on Agents and P2P Computing (AP2PC), pages 112–124,

Bologna, Italy, 2002.

[178] S.M. Shi, J. Yu, G. Yang, and D.X. Wang. Distributed Page Ranking in

Structured P2P Networks. In Proceedings of the International Conference on

Parallel Processing (ICPP), pages 179–186, 2003.

[179] S. Srinivasan and E. Zegura. Network Measurement as a Cooperative Enter-

prise. In Proceedings of the International Workshop on Peer-to-Peer Systems

(IPTPS), 2002.

[180] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord:

A Scalable Peer-to-peer Lookup Service for Internet Applications. In Proceed-

ings of ACM SIGCOMM Conference, San Diego, California, August 2001.

[181] I. Stoica, D. Adkins, S. Ratnasamy, S. Shenker, S. Surana, and S. Zhuang.

Internet Indirection Architecture. In Proceedings of ACM SIGCOMM Con-

ference, pages 73–86, August 2002.

[182] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Frans Kaashoek,

F. Dabek, and H. Balakrishnan. Chord: a Scalable Peer-to-Peer Lookup Pro-

tocol for Internet Applications. IEEE/ACM Transactions on Networking, 11

(1):17–32, 2003.

[183] J. Stribling, I.G. Councill, J. Li, M.F. Kaashoek, D.R. Karger, R. Morris, and

S. Shenker. OverCite: A Cooperative Digital Research Library. In Proceedings

of the International Workshop on Peer-to-Peer Systems (IPTPS), pages 69–

79, 2005.

[184] T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M. Kharrazi, X. Long, and

K. Shanmugasundaram. ODISSEA: A Peer-to-Peer Architecture for Scalable

174 References

Web Search and Information Retrieval. In Proceedings of the International

Workshop on the Web and Databases (WebDB), pages 67–72, 2003.

[185] E.H. Sussenguth. Use of Tree Structures for Processing Files. Communications

of the ACM, 6(5):272–279, 1963.

[186] D. Tam, R. Azimi, and H.-Arno Jacobsen. Building Content-Based Pub-

lish/Subscribe Systems with Distributed Hash Tables. In Proceedings of the

International Workshop On Databases, Information Systems and Peer-to-Peer

Computing (DBISP2P), September 2003.

[187] C. Tang and Z. Xu. pFilter: Global Information Filtering and Dissemination

Using Structured Overlays. In Proceedings of the International Workshop on

Future Trends in Distributed Computing Systems (FTDCS), 2003.

[188] C. Tang, Z. Xu, and M. Mahalingam. pSearch: Information Retrieval in

Structured Overlays. In Proceedings of HotNets-I, 2002.

[189] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using

self-organizing semantic overlay networks. In Proceedings of ACM SIGCOMM

Conference, 2003.

[190] W.W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A.P. Buchmann. A Peer-

to-Peer Approach to Content-Based Publish/Subscribe. In Proceedings of the

International Workshop on Distributed Event-Based Systems (DEBS), June

2003.

[191] M. Theimer and M. Jones. Overlook: scalable name service on an overlay

network. In Proceedings of the International Conference on Distributed Com-

puting Systems (ICDCS), pages 52–64, 2002.

[192] A. Theobald and G. Weikum. Adding Relevance to XML. In Proceedings

of the International Workshop on the Web and Databases (WebDB), pages

105–124, 2000.

[193] P. Triantafillou and A. Economides. Subscription Summarization: A New

Paradigm for Efficient Publish/Subscribe Systems. In Proceedings of the Inter-

national Conference on Distributed Computing and Systems (ICDCS), Tokyo,

Japan, March 2004.

References 175

[194] P. Triantafillou and T. Pitoura. Towards a Unifying Framework for Complex

Query Processing over Structured Peer-to-Peer Data Networks. In Proceedings

of the 1st International Workshop On Databases, Information Systems and

Peer-to-Peer Computing (DBISP2P), September 2003.

[195] Christos Tryfonopoulos. Agent-Based Textual Information Dissemination:

Data Models, Query Languages, Algorithms and Computational Complex-

ity. Master’s thesis, Department of Electronic and Computer Engineering,

Technical University of Crete, Greece, October 2002.

[196] Christos Tryfonopoulos and Manolis Koubarakis. Implementing Pub-

lish/Subscribe Systems with Languages from Information Retrieval on Top

of Structured Overlay Networks. In Proceedings of the International Work-

shop on Peer-to-Peer and IR (P2P&IR), Sheffield, UK, July 2004.

[197] Christos Tryfonopoulos and Manolis Koubarakis. Distributed Resource Shar-

ing using Self-Organized Peer-to-Peer Networks and Languages from Infor-

mation Retrieval. In Proceedings of the International Workshop on Self-*

Properties in Complex Information Systems (Self-*), Bertinoro, Italy, May

2004.

[198] Christos Tryfonopoulos and Manolis Koubarakis. Selective Dissemination of

Information in P2P Systems: Data Models, Query Languages, Algorithms and

Computational Complexity. Technical Report TR-ISL-02-2003, Department

of Electronic and Computer Engineering, Technical University of Crete, 2002.

[199] Christos Tryfonopoulos and Manolis Koubarakis. Publish/Subscribe Systems

with Distributed Hash Tables and Languages from Information Retrieval. In

Proceedings of the 6th Workshop on Distributed Data and Structures (WDAS),

Lausanne, Switzerland, July 2004.

[200] Christos Tryfonopoulos, Manolis Koubarakis, and Yannis Drougas. Filter-

ing Algorithms for Information Retrieval Models with Named Attributes and

Proximity Operators. In Proceedings of the 27th Annual International ACM

SIGIR Conference, pages 313–320, Sheffield, UK, July 2004.

176 References

[201] Christos Tryfonopoulos, Stratos Idreos, and Manolis Koubarakis. Pub-

lish/Subscribe Functionalities for Future Digital Libraries using Structured

Overlay Networks. In Proceedings of the 8th International Workshop of the

DELOS Network of Excellence on Digital Libraries on Future Digital Library

Management Systems, Schloss Dagstuhl, Germany, March 2005.

[202] Christos Tryfonopoulos, Stratos Idreos, and Manolis Koubarakis. LibraRing:

An Architecture for Distributed Digital Libraries Based on DHTs. In Proceed-

ings of the 9th European Conference on Research and Advanced Technology

for Digital Libraries (ECDL), pages 25–36, Vienna, Austria, September 2005.

[203] Christos Tryfonopoulos, Stratos Idreos, and Manolis Koubarakis. Pub-

lish/Subscribe Functionality in IR Environments using Structured Overlay

Networks. In Proceedings of the 28th Annual International ACM SIGIR Con-

ference, pages 322–329, Salvador, Brazil, August 2005.

[204] D. Tsoumakos and N. Roussopoulos. A Comparison of Peer-to-Peer Search

Methods. In Proceedings of the International Workshop on the Web and Da-

tabases (WebDB), pages 61–66, 2003.

[205] S. Voulgaris and M. van Steen. An Epidemic Protocol for Managing Rout-

ing Tables in Very Large Peer-to-Peer Networks. In Proceedings of the In-

ternational Workshop on Distributed Systems: Operations and Management

(DSOM), Heidelberg, Germany, October 2003.

[206] S. Waterhouse. JXTA Search: Distributed Search for Distributed Networks.

Technical report, Sun Microsystems, Inc., 2001.

[207] I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Compressing and

Indexing Documents and Images. Morgan Kauffman Publishing, San Fran-

cisco, 2nd edition, 1999.

[208] T.W. Yan and H. Garcia-Molina. The SIFT Information Dissemination Sys-

tem. ACM Transactions on Database Systems (TODS), 1999.

[209] T.W. Yan and H. Garcia-Molina. Index Structures for Selective Dissemination

of Information Under the Boolean Model. ACM Transactions on Database

Systems (TODS), 19(2):332–364, 1994.

References 177

[210] T.W. Yan and H. Garcia-Molina. Index Structures for Information Filtering

under the Vector Space Model. Proceedings of the International Conference

on Data Engineering (ICDE), pages 337–347, 1994.

[211] T.W. Yan and H. Garcia-Molina. The SIFT Information Dissemination Sys-

tem. ACM Transactions on Database Systems (TODS), 24(4):529–565, 1999.

[212] B. Yang and H. Garcia-Molina. Designing a Super-Peer Network. In Pro-

ceedings of the International Conference on Data Engineering (ICDE), March

2003.

[213] B. Yang and H. Garcia-Molina. Improving Search in Peer-to-Peer Networks.

In Proceedings of the International Conference on Distributed Computing and

Systems (ICDCS), pages 5–14, Vienna, Austria, July 2002. IEEE.

[214] B. Yang and H. Garcia-Molina. Comparing Hybrid Peer-to-Peer Systems. In

Proceedings of the International Conference on Very Large Databases (VLDB),

pages 561–570, 2001.

[215] W.G. Yee and O. Frieder. On Search in Peer-to-Peer File Sharing Systems. In

The ACM Symposium for Applied Computing, 2005.

[216] W.G. Yee and O. Frieder. The Design of PIRS, a Peer-to-Peer Information

Retrieval System. In Proceedings of the International Workshop on Databases,

Information Systems and Peer-to-Peer Computing (DBISP2P), 2004.

[217] J.A. Yochum. A High-Speed Text Scanning Algorithm Utilising Least Frequent

Trigraphs. In IEEE Symposium on New Directions in Computing, 1985.

[218] D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos. On Constructing

Internet-Scale P2P Information Retrieval Systems. In Proceedings of the In-

ternational Workshop on Databases, Information Systems and Peer-to-Peer

Computing (DBISP2P), pages 136–150, 2004.

[219] D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos. Exploiting locality for

scalable information retrieval in peer-to-peer networks. Information Systems,

30(4):277–298, 2005.

178 References

[220] Y. Zhang and J. Callan. Maximum Likelihood Estimation for Filtering Thresh-

olds. In Proceedings of the ACM Conference on Research and Development in

Information Retrieval (SIGIR), 2001.

