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Abstract

In this work we derive expressions for the effective velocity and effective dispersion coefficient for finite-sized spherical particles with
neutral buoyancy flowing within a water saturated fracture. We considered the miscible displacement of a fluid initially free of particles by
another fluid containing particles of finite size in suspension within a fracture formed by two semi-infinite parallel plates. Particle spreading
occurs due to the combined actions of molecular diffusion and the dispersive effect of the Poiseuille velocity profile. Unlike Taylor dispersion,
here the finite size of the particles is taken into account. It is shown that because the finite size of a particle excludes it from the slowes
moving portion of the velocity profile, the effective particle velocity is increased, while the overall particle dispersion is reduced. A similar
derivation applied to particles flowing in uniform tubes yields analogous results. The effective velocity and dispersion coefficient derived in

this work for particle transport in fractures with uniform aperture are unique and ideally suited for use in particle tracking models.
0 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction be modified to account for system geometry and for parti-
cle flux at system boundaries due to wall reactions. Effective
Sir Geoffrey Taylor [1] introduced an effective disper- parameters were also derived by Grindrod [11,12] using an
sion coefficient for soluble matter flowing in a cylindrical asymptotic spectral comparison method. Other important
tube. Often referred to as the Taylor dispersion coefficient, contributions include analytical solutions for contaminant
it is a function of the dissolved constituent’s molecular dif- transportin fractured porous media, where contaminants are
fusion coefficient and the fundamental system parameterssubject to plug flow advection, dispersion, matrix diffusion,
(i.e., centerline flow velocity and tube radius). Aris [2] ex- sorption, and decay (Tang et al. [13]; Sudicky and Frind [14];
tended this work through moment analysis in a more gener- Cormenzana [15]). Also, Abdel-Salam and Chrysikopou-
alized manner. Sankarasubramanian and Gill [3], Johns andos [16] derived closed-form analytical solutions for con-
DeGance [4], and Brenner [5,6] continued the study of in- taminant transport in single, uniform rock fractures with and
ternal flow and transport by developing exact solutions for without penetration into the rock matrix for constant con-
the dispersion of reactive solutes in a tube. Following the centration as well as constant flux boundary conditions.
Taylor—Aris procedures, scientists have examined various It is often assumed that solutes are infinitesimally small
aspects of contaminant transport in parallel-plate systems.and that axial advection and transverse diffusion chiefly gov-
For example, Shapiro and Brenner [7—9] and Berkowitz and ern contaminant fate and transport in fractures. While it
Zhou [10] have obtained approximate analytical models for is true that many contaminants are of molecular size, this
the dispersion of reactive solutes in parallel-plate geometriesis not always the case (Chrysikopoulos and Abdel-Salam
and concluded that the Taylor dispersion coefficient needs to[17]). Many studies have shown colloids to be ubiquitous
in groundwater while often having an affinity for reactive

— _ contaminants (Smith and Degueldre [18]; Contardi et al.
Corresponding author.

E-mail addressscjames@sandia.gov (S.C. James) [19]). Essentially, if a contaminant sorbs onto a colloid,
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Much of the groundwork for the development of the ef-
fective parameters for finite particles flowing in a fracture
was based upon particle flow and transport in a tube. Al-
though the solution of Brenner and Gaydos [22] is quite
broad in nature, it is difficult to implement in a model of
colloid transport in fractured media. Often, there is insuffi-
cient information about colloidal interactions with the fluid
or medium to accurately define the coefficients in their ef-
fective parameters. In this work, the effective velocity and
effective dispersion coefficient for finite-sized, hard, spher-
ical colloidal particles with neutral buoyancy are derived
from first principles in an intuitive fashion. It is shown that
the finite size of a particle excludes it from the slowest mov-
ing portion of the velocity profile near the walls of a frac-
ture, causing the effective velocity of a particle plume to

be greater than the corresponding mean solute velocity. Fur-Uest =
thermore, particle size exclusion leads to a decrease in the

effective dispersion coefficient of a particle plume. When

used in a particle tracking algorithm, excellent agreement

with an analytical solution is demonstrated.

2. Mathematical derivations
2.1. Effective velocity
Assume that a fully developed, unidimensional, Poiseuille

velocity distribution exists within a fracture as shown in
Fig. 1, expressed as (Fox and McDonald [23, p. 392])

2
z
u(z) =Umax|:1—4<z) ] (1)
The mean fluid velocity is
b/2
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whereUmax is the maximum velocity of the interstitial fluid
along the centerline of the fractureis the coordinate direc-
tion perpendicular to the walls of the fracture with its origin
at the center of the fracture; ahds the aperture of the frac-

ture. Furthermore, assume that a spherical particle travels
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Fig. 1. Schematic illustration of the fracture considered in this study.
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with a velocity corresponding to the local flow velocity at
its centroid. Particle—wall overlap is not allowed. Hydrody-
namic, gravitational, van der Waals, and electrostatic forces
are not considered in the calculation of particle velocity.
As particle penetration of the fracture wall is not permit-
ted, the finite size of a particle does not allow it to sample
the slowest moving portion of the velocity profile nearest
the wall. The average (or effective) velocity of a particle
is estimated by integrating the Poiseuille velocity distribu-
tion over the aperture available to a particle and dividing by
that same available aperture. The available aperture is the
original aperturep, less the diameter of a particie,. Size
exclusion leads to an effective particle velocity of

(b—dp)/2 2
max 1-4(2) |dz
b—d, b
(—b+dp)/2
2 d, 1(d,\?
= “Umax| 1+ 2 -Z2(-L) | 3
3 max[ % 2( b) ] ®)

Note that the effective particle velocity (3) is greater than the
mean fluid velocity (2) because the particle diameter may
not be larger than the fracture apertggdg /b < 1). Also, it

is evident that the effective velocity of a particle increases
with increasing particle diameter.

2.2. Effective dispersion coefficient

The two-dimensional, unsteady, advection—diffusion
equation with axial advection and transverse diffusion
representing the two governing transport mechanisms is
(Berkowitz and Zhou [10])

on@.2.0) 8@z o an@z

4
ot 072 dx “)
wheren is the number concentration of colloids ahds the
molecular diffusion coefficient of a particle with diameter

dp, given by the Stokes—Einstein diffusion equation (Bird
etal. [24, p. 513)),

kT
D=_——,
3mnd),

(5)

wherek is Boltzmann’s constant, is the absolute tempera-
ture, andy is the dynamic viscosity of the interstitial fluid.

In the present derivation, the molecular diffusion in the
axial direction is neglected because it is negligible relative
to the axial dispersion due to the parabolic velocity profile.
All axial particle movement is due to advection. A quasi-
steady-state assumption is made by considering only advec-
tion across the plane moving with the center of mass of a
colloid particle plume such that ands may be collapsed
into a single coordinate thereby eliminating transient termin
(4). This can be achieved by the coordinate transformation

(6)

\’;::x_Uefft.
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of reference can be assumed to be nearly constant across
the aperture of the fracture. This assumption implies that
on(&,z)/0& may be replaced witldn(£)/9&. Integration

of (9) with respect tq yields

on(§,2) _ Umad (1_ d_,,>25 _4<£>3 on(&)
9z 3D b)) b b AE
+C(&), (10)

whereC(§) is an integration constant. Imposing the nondis-
persive flux boundary condition across the centerline Q)
because of neutral particle buoyancy requires that the inte-
gration constant vanish:

Fig. 2. Schematic illustration of the “velocity defect” represented by the dn(&, z)
shaded areas. Bold arrows indicate axial advection of particles and open 9z
arrows indicate transverse molecular diffusion of particles.

=0=C()=0. (11)
z=0

Integration of (10) with respect toyields
Applying the preceding coordinate transformation in (4)

yields the partial differential equation n(E. 7) = Unmaxb? <1_ d_p)2(£>2 B 2<§)4 an(E)
2 ' 6D b b b aE
pdnE.2) _ on(§,2) -
2 = [M(Z) - Ueff] 9E (7) + ng(§), (12)

where the termu(z) — Ueff = ug(2) is termed the “veloc-  whereng(£) is an integration constant. Note that evaluating

ity defect,” defined as the velocity that is a functionof  » (&, 0) proves that (£) is actually the particle concentra-

at a pointé = 0 that follows the first moment of a particle tion at the centerline of the fracture.

plume in time. Subtracting the effective velocity (3) from The average particle concentration in fhdirection over

the Poiseuille (parabolic) velocity profile (1) yields the entire fracture aperture is defined by integrating the par-
ticle number concentration across the fracture and dividing

2 2
g (z) = u(z) — Ueff = Umax|:<1— d_f’) — 12(%) ] (8) by the fracture aperture:

3 b
b/2
Figure 2 illustrates the velocity defect. Note that particles _ 1 A
in the shaded regions have a tendency to diffuse in the direc-1(§) = b n(§, z)dz. (13)
tion of the open arrows because of the concentration gradient —b/2

induced by the velocity defect. It is in these shaded regions
where axial particle advection (indicated by the bold arrows)
and transverse particle diffusion (indicated by the open ar-

rows) are important. With respect to the moving frame of Umaxb2|: 7 1d, 1 ( dp>2] (&)

Substituting (12) into (13) and performing the integration,
the average colloid concentration is

reference, the velocity of a particle that is in contact with the n(§) = — = —— 4+ — —

wallis negativeus (b — d,)/2) = —(2/3)Umad1— dp/b)2. 60 [120 605 1230 08
Consequently, the apparent velocity of the particles in the + nel (). (14)
shaded areas to the left of the moving frame of reference
is negative as indicated by the direction of the bold arrows.
Because the mean particle velocity at the plane for which
& =0 is zero, the transfer of particles across this plane de-
pends only on the transverse variationmofin view of (8),

the governing equation (7) can be expressed as

Note that due to averaging overthe terman(¢)/0& can be
replaced byn(£)/0&. Solving (14) fomg (§€) and substitut-

ing the resulting expression into (12) defimgs, z) in terms
of the average concentration across the fracture:

Umaxb2|: 7 1d, 1<dp>2

120 6p 12

02n(6,2)  Unmax (1 dp>2 12<z>2 e g nG-="¢p b

922 3D b b 08 FRCYRCTRPRY:
Employing the assumption that transverse concentration gra- + (1— f) <5) —2(5> :| 08 + ().
dients induced by axial advection are quickly smoothed out
by transverse molecular diffusion after the frame of ref- (15)

erence has moved beyond an “entrance length” (Kessler The effective dispersion coefficient is derived from the
and Hunt [25, Eq. (11)]), the rate of change of the parti- flux of particles across a plane that is moving with the first
cle number concentration with respect to the moving frame moment of the particle plume in time. The average flux of
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particles in the axial direction relative to the moving coordi- 12d0°F
nate., is given by 10f
1 (b=dp)/2 = o8
/= m / n@, 2ug(e)dz "E 06
(=b+dp)/2 [a] 04:
2 U2, b2 (. d,\%oi A:
_ 2 Unab®() dp) 00 (16) oaf
945 D b) o F
where the latter transformation is a consequence of employ- AT 2
ing (8) and (15). The average flux is calculated only for the 0ot o1
portion of the fracture available to the particles, hence the d /b

p
region spanned by the limits of integration.

Using the effective velocity as a moving frame of ref- Fig. 3: Effective and Taylor dispersio_n coefficients as a function of_ par-
erence, the transport of particles within the fracture may t|cle-d|ameter-to-fractu_re-aperture ratio. The fracture 3 representative of
b . . . what might be found in the subsurface with=1 x 107* m, Umax =

e viewed as a dispersion problem. Consequently, the, ;-6 /e air — 28815 K
advection—diffusion equation may now be redefined as

fé?grse:(?gond .It?]\'\:j.(f’ff g.'gﬁs(':%gf??ggtg'e n_:%wggt;reamre]:_of coefficient of the particle plume is 50% less than the corre-
£, with diffusi Ic! eff. 1NUS, u ?ponding Taylor dispersion coefficient.

ts;eady 'E[raniport of tpart|cles can bfhexpr'essed th:.OlIJgh USe o1 1he limiting cases where the particle diameter becomes
€ continuily equation assuming there 1S no particie gener'infinitesimally small ¢, — 0) as well as when the parti-

ation (Bird et al. [24, p. 555]), cle diameter is comparable to the fracture apertdge-¢ b)
AN (€) aJ are also examined. As the diameter of a particle becomes
ar T oE (7) infinitesimally small, the effective velocity with which the
particle plume travels is reduced to the mean flow velocity,
Ueft = 4 Umax and Deft = Draylor- This is in agreement with
the assumption of an infinitesimally small solute made by
on() 3% (&) Taylor in his derivation. At the limit of the particle diameter
a;  eff 9g2 (18) approaching the fracture aperture, the effective velocity of a
particle plume becomdénax While the corresponding effec-

mze;e tzseﬁ?eg;}[/iilecjlzpferzgz Cgﬁg:ﬁ'e?gﬁ r’[ire):rii?;]lt)?ne OItive dispersion coefficient reduces to the molecular diffusion
PP b P 9 9 coefficient. Both results arise directly from the assumptions

effect of the advective flux of particles across the plane mov- that each particle is assumed to travel with a velocity equal

:2?(;’:’#3;2?} ﬁ??;%re?{nnggsiﬁ a particle plume plus molecu- to that fqund atits centroiq dueto thg hydraulip gradient and
: that particle—wall overlap is not permitted. An increased par-
2 UZb? dp 6 ticle diameter to fracture aperture ratio implies a narrower
Dett =D+ 945 D <1 N 7) : (19) range of velocities for a colloid plume, thereby decreasing

For the limiting case where a particle becomes negligibly the _dlsperswv_a effect of _the_ velocity gradient. If a plgme. IS
. . .~ 7 subject to a single velocity, it spreads by molecular diffusion
small, d, — 0, the preceding expression for the effective

dispersion coefficient for finitely sized particles reduces to alone. The expected behavior Deq at both limits of small

the classic Taylor dispersion coefficient and large particles is evident from (19).
y P Clearly, particle size should be considered when investi-

2 Uﬁmxb2 gating the transport of finite-sized particles through a water-

Draylor="D + 945 D (20) saturated fracture. It should be noted that there have been
other derivations of effective velocity and dispersion co-
efficients for solutes and particles in cylindrical and pla-

3. Discussion nar systems (DiMarzio and Guttman [26]; Anderson and
Quinn [27]; Brenner and Gaydos [22]); however, the re-

Figure 3 compares the effective dispersion coefficient for sults presented in this study are directly applicable to colloid

particles using (19) to an equivalent Taylor dispersion coef- transport in a uniform aperture fracture.

ficient, (20). It should be noted that the molecular diffusion

coefficient used in both the effective and Taylor dispersion

coefficients was calculated from (5), even though the Taylor 4. Effects of viscous forces

dispersion coefficient assumes infinitesimally small parti-

cles. Figure 3 demonstrates that when the particle diame- Although the effects of the fracture walls upon colloid

ter is 6.5% of the fracture aperture, the effective dispersion motion have not been addressed thus far, it is important to

Substituting the expression for average particle flux (16) into
the preceding equation yields
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note that as a colloid approaches a wall (its surface less thareffective velocity of a finite-sized particle is

a few diameters away), significant changes in velocity and )

diffusivity are noted. Specifically, the velocity and diffusiv- ,, __ }U 1 dp 1idy (23)
ity parallel and perpendicular to the wall decrease in dif- e R 4\ R '

ferent proportions (i.e., diffusion is no longer isotropic and
because the colloid may not penetrate the wall, its perpendic-
ular velocity must approach zero as it nears the wall, while 5,z 1) D 8 [ on(r, z 1) on(r,z,t)
parallel velocity is reduced) (van de Ven [28, Eq. (6.13)]). — 5, = —[FT} —u(r) 2z
Unfortunately, these effects may not be incorporated into

the analytical derivation presented above, although more Following the same procedures used to derive the effective
complicated solution approximations exist (e.g., method of dispersivity of a particle in a fracture (see Section 2.2), the
reflections, matched asymptotic solutions for “inner” and €ffective dispersion coefficient in a uniform tube is

“outer” regions, and truncated power series expansions by 1 U2 R2 d

Goldman et al. [29], O’'Neill and Stewartson [30], and Goren pgg = D + —— —Mmax (1 - —") . (25)

and O’Neill [31], respectively). In this treatment of effec- 192 D R

tive parameters, if the constantsnax and D are replaced  Again, for infinitely small particles, (23) and (25) are in
with simple symmetric (even) function8max(z) andD(z), complete accord with the results of Taylor [1].

respectively, the wall effects may be estimated. However,

unless the colloid is larger than 10% of the aperture, edge5.2. Comparison to other studies

effects are negligible through more than 90% of the frac-

ture, yet very near to the Wa.”S, they are Significant. Without DiMarzio and Guttman [26] investigated the case of flex-

breaking the solution space into different zones, no simple jble polymers flowing through a gel permeation column ac-

integrable function can express the correction factor appro- counting for some hydrodynamic wall effects and derived an

priately. For example, a nonanalytically integrable exponen- expression for the effective velocity equivalent to (23) and

tial representation of the hydrodynamic correction factor is  an expression for the effective dispersion coefficient that is
equivalent to (25).

)’3] 21) Anderson and Quinn [27] derived the following expres-

b—d, ’ sion for the effective velocity of a submicrometer particle

passing through a porous membrane,

The governing equation for particle transport in a tube is

(24)

r or

F(z)=1+a—aexp|:—<

wherex (real) ands (large, positive, and even) are constants
that are calculated to match the curves of van de Ven [28, 1 d, 1/d, 2
Fig. 6.4]. Although the preceding correction factors may not Ueff = EUmaX[l (E) ]
be carried through the analytical treatment of effective pa- 3
rameters, a numerical solution exists. While this numerical [1_ 14, 02<d ) ] (26)
treatment of effective parameters is beyond the scope of this 6 R R ’

work, incorporating wall effects through (21) would serve to

decreas#/ef and Des. Any symmetric equation that approx-
imates the hydrodynamic correction factors may be used and
therefore (21) should not be considered unique.

+R 4

but they did not determine an equation for the effective dis-
persion coefficient.

Brenner and Gaydos [22] performed a comprehensive
moment analysis to obtain effective parameters of

1 d dp\?
5. Extension to flow in cylindrical tubes Ueft = iUmaX|:1+ ?p - 1225(%) + O(dlz,)} (27)

5.1. Mathematical derivation and

d 9 /d 2R
To extend our results to finite-sized particles flowing in a Deff = D[l + O.231<—”> < ”) In(—)

cylindrical tube, a derivation equivalent to that performed in R 16 dp
Cartesian coordinates was performed in cylindrical coordi- 9 (d, 2R )
nates. The Poiseuille velocity profile in a tube of radkis 16( ) | (d > + O(d )
p
2 2 p2
r 1 U45.R d
=Unax|1— (=) |, 22 —_—max 10931 2
u(r) max|: <R) ] (22) + 192 D |: <R>

wherer is the radial distance from the center of the tube. dp 2 2
et s 28
The mean velocity within the tube 8 = Unax/2 and the + 2'42( R ) + O(dl’) . (28
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[ Brenner and Gaydos [1977] ] 6 Partlde tr aCk| ng anal ySS
0.9F .

r ] To further illustrate the effect of particle size on parti-
0.8F . cle transport in a uniform, water-saturated fracture, particle-

: ] tracking simulations were conducted. Particle-tracking algo-
0.7¢ ] rithms are stochastic solutions to linear partial differential
equations that do not provide direct numerical solutions and

Deff/DTaonr

08¢ s sty ea 48 o therefore do not suffer from numerical dispersion as do the
iMarzio and Guttman .. .. . A .

1203, T finite element and finite difference methods. Each particle is
[ DiMarzio and Guttman [1971] individually considered (i.e., stored in a memory location),

[ this study eq. (22) 1 thus retaining its own unique characteristics including, for

[ And d Quinn [1974) ] . .
1,15 Anderson and Quinn [1974) example, particle diameter.

Particle-tracking techniques have frequently been applied

2 [ ]

Y 1.10F . to investigations of contaminant transport in porous and

- r ] fractured media (Chrysikopoulos et al. [32]; Thompson et
1051 Brenner and Gaydos [1977] 1 al. [33]; James and Chrysikopoulos [34—36]; Reimus and

James [37]; Chrysikopoulos and James [38]). The general
1003| ] particle tracking transport equation consists of an absolute
70,00 005 040 045 0.20 term, in this case due to advection; and a stochastic term rep-
resenting dispersion in the system (Kitanidis [39]). In vector
notation the particle-tracking equation is given by (Thomp-

d/R

Fig. 4. Comparison of the effective parameters derived in this study with son and Gelhar [40])

appropriate parameters reported in previous studies. The top plot relates the

ratio of effective dispersion to Taylor dispersion as a function of particle X" = X" AT HAr+BX™ Y - ZVAL, (29)
to tube diameter ratio. The bottom plot illustrates the relationship between

the ratio of the effective velocity to the mean flow velocity and the ratio of Where exponentn is the numerical step numbeX” is

particle to tube diameter. the three-dimensional position vector at time leveht,
AX™1) is the absolute forcing vector evaluatedxdt 1

with coefficients incorporating the effects of London, van (i.e., a function of the velocity distribution(X”1) is a

der Walls, viscous, and Debye double layer forces. Note that, deterministic scaling second-order tensor evaluatedatt

to first order, the expressions (23) and (25) derived here com-(i.e., a function of the dispersion coefficient), ahik a vec-

pare well with those of Brenner and Gaydos [22]. tor of three independent normally distributed random num-
Figure 4 compares expressions (23) and (25) with the pers with zero mean and unit variance. The terms of the

corresponding expressions derived by DiMarzio and Gutt- diagonal second-order tensB¢X” 1) are equal tov'2D

man [26], Anderson and Quinn [27], and Brenner and Gay- (Ahlstrom et al. [41]).

dos [22]. Clearly, the various results are somewhat different;  The two-dimensional particle tracking equations for the

however, they indicate that the overall trend for finite-sized uniform aperture fracture examined in this work can be writ-

particles is faster travel and decreased dispersion with in-ten as

creasing particle size. Certainly, the expressions derived by )

Brenner and Gaydos [22] are most general, but obtaining _ 7t o

the coefficients in their equations requires more information X = x4 Umax|:1 N 4(7) :|At +Z1V2DAt,

than just the particle size and the diameter of the cylin- (30)

der. Of importance is to note that the expression (28) for _ fa——

the effective dispersion coefficient derived by Brenner and ="+ Zpv/2DA (31)

Gaydos [22] goes through a minimumdyy/R = 0.149 and  ysing the effective velocity and dispersion coefficient de-
surpasses the Taylor dispersion coefficient,atR = 0.277. rived in this work, the preceding two-dimensional particle
Theoretically, Taylor dispersion represents the upper limit of racking equations may be replaced by a one-dimensional
dispersion in a tube. particle tracking equation:

All of the previous studies discussed in this section focus
only on particle transport in cylindrical tubes. To our knowl- _m _ .m-1 /
edge, the effective parameters (3) and (19) derived in thisx * + Uent + Ziy/2Den - (32)
work for particle transport in water-saturated fractures with Particles encountering the wall are reflected as a mirror im-
uniform aperture are unique. Furthermore, they are easily age (James and Chrysikopoulos [33]).
implemented in particle-tracking algorithms while requiring Breakthrough curves generated for both the one- and two-
knowledge only of the fracture aperture and particle diame- dimensional particle tracking algorithms were indistinguish-
ter. able from a breakthrough curve obtained by the analytical
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greater than the mean particle location in Fig. 5a due to the
increased average particle velocity for the plumes of finite-
sized particles as determined by (3). Second, the spread of
the particle plumes in Figs. 5b and 5c is less than that in
Fig. 5a because the finite size of the particles reduces the
effective dispersion of the particle plume according to (19).
Certainly, the particle tracking results show that the finite
size of the particles do indeed affect the transport behavior
of a particle plume. The snapshots of the particle plumes
in Figs. 5b and 5c show indistinguishable characteristics,
suggesting that the two-dimensional particle tracking equa-
tions can be replaced by the more computationally efficient
one-dimensional particle tracking equation that employs the
effective parameters.

7. Summary

y (m) In this work an effective velocity (3) and an effective
_ _ _ S dispersion coefficient (19) for finite-sized, spherical, parti-
Fig. 5. Snapshots of a 5,000-particle plume with (a) infinitesimally small - ¢|ag traveling in a uniform aperture fracture are derived. The
diameter determined by a two-dimensional particle tracking algorithm; . . . . .
(b) diameterd, = 5 x 10-% m determined by a two—dimensional parti- S,IOW|Y f!owmg carrier fluid forms a p.arabollc velocity Pro'
cle tracking algorithm; and (c) diamete, = 5 x 10~ m determined by file within the fracture. Beca.use'pamcle—wall overlap is not
a one-dimensional particle tracking algorithm employing the derived effec- allowed, and because a particle is assumed to flow at a veloc-
tive parameters (hete= 70 daysp = 1 x 1074 m, Umax= 1x 10-6 m/s, ity equal to that found near its centroid, the size of a particle
and7 = 28815 K). physically excludes it from the slowest moving portion of
the velocity profile located at the fracture walls. While this

solution provided by Carslaw and Jaeger [42, p. 258], size exclusion serves to increase the effective travel velocity

no (x — Uefft)? of a particle plume, it also decreases its effective dispersion
i(x,t) = n Dot 12 X~ —apr | (33) coefficient. The effective dispersion coefficient derived here
eff eff is found to be similar in form to the Taylor dispersion coef-

whereng is the initial number of particles introduced into the  ficient. In fact, in the limit of a particle diameter becoming
fracture per cross-sectional area of the fracture (James [43]) infinitesimally small, the newly derived effective dispersion
Note that (33) is the analytical solution to (18) subject to coefficient reduces to the classic Taylor dispersion coeffi-

an instantaneous particle injection describednld§, 0) = cient. Extension of the parallel plate results to a uniform
nod (§) andn (oo, t) = 0, wherés is the Dirac delta function,  tube show similar particle behavior. Although other investi-
with & replaced by — Ukgit. gators have derived expressions & and Desr applicable

Snapshots of particle tracking simulations for both in- to particle transport in cylindrical tubes, the effective para-
finitesimally small and finite-sized particles are presented meters derived in this work for particle transport in fractures
in Fig. 5. Results are obtained after approximately 70 days with uniform aperture are unique. A particle tracking analy-
of travel time using a time step akr = 100 s through a  sis is presented to compare the results between the transport
fracture with aperturé = 1 x 104 m and centerline ve-  of particles that are either infinitesimally small or of finite
locity of Umax= 1 x 10-6 m/s. Figure 5a is a snapshot of diameter. The results presented in this work suggest that
two-dimensional particle tracking results for infinitesimally the finite size of constituent particles increases the effec-
small particlesD = 8.41x 10~ m?/s). Figure 5b presents  tive plume velocity and decreases the overall spreading of a
two-dimensional particle tracking results for particles with particle plume.
diameterd, = 5 x 1075 m (5% of the fracture aperture)
and diffusion coefficient determined by the Stokes—Einstein
equation. Figure 5c is a snapshot from the one-dimensional
particle tracking algorithm based on the effective parame-  Sandia is a multiprogram laboratory operated by Sandia
ters derived in this work for particles with finite diameter Corporation, a Lockheed Martin Company, for the United
(d, =5 x 107 m). It should be noted that thelocation States Department of Energy under Contract DE-AC04-
of each particle across the fracture in Fig. 5¢ was randomly 94AL.85000.
selected after the locations of the particles in the plume
were determined. Comparing Flg. ba vy|th Figs. 5b and 59, Appendix A. Nomendlature
two important features are evident. First, the mean parti-
cle locations for the particle plumes in Figs. 5b and 5c are A absolute forcing vector (L)
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b fracture aperture (L)

B deterministic scaling tensor (Et/2)

C integration constant (%)

dp particle diameter (L)

D dispersion coefficient @t1)

Dett effective dispersion coefficient for a plume of
finite-sized particles (£t2)

Draylor Taylor dispersion coefficient for a plume of infini-
tesimally small particles #t~1)

D molecular diffusion coefficient #t~1)

J average axial flux of particles relative to the moving
coordinatet (L—2t~1)

F hydrodynamic correction factor for wall effects (-)

k Boltzmann’s constant (M#t=2T-1)

m time step number (-)

n number concentration of particles per unit volume
of interstitial fluid (L=3)

n average number concentration of particles per unit
volume of interstitial fluid across the fracture($)

no initial number of particles introduced into the frac-
ture per cross-sectional area of the fracture4)L

nel number concentration of particles per unit volume
of interstitial fluid at the centerline of a fracture
(L3

r radial distance from the center of a cylindrical
tube (L)

R radius of a cylindrical tube (L)

t time (t)

At time step (1)

T absolute temperature of the interstitial fluid (T)

u(z) local interstitial fluid velocity (L t1)

us(z)  velocity defect, equal ta(z) — Uest (Lt™1)

U mean velocity of the interstitial fluid (L°t")

Usetf effective velocity of a particle (L't!)

Umax Maximum interstitial fluid velocity along the cen-
terline in thex-direction (L t™1)

x coordinate along the fracture length (L)

X three-dimensional position vector (L)

z coordinate perpendicular to the fracture (L)
randomly generated normally distributed number
with zero mean and unit variance (-)
three-dimensional vector of randomly generated
normally distributed numbers with zero mean and
unit variance (-)

constant in the hydrodynamic correction factor (-)
constant in the hydrodynamic correction factor (-)
Dirac delta function (=)

dynamic viscosity of the interstitial fluid

MLt

coordinate transformation, equalto- Uit (L)

=S ™ R
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