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Abstract

Life on Earth is strongly linked to weather and climate; consequently

knowing how to evaluate and interpret factors that affect such phe-

nomena is vital for environmental and economic sustainability. The

sensitivity of Europe to climate change has a distinct north–south

gradient, with many studies indicating that Southern Europe will be

more severely affected leading to warmer and drier climate, which

will threaten its waterways, hydropower, agricultural production and

timber harvests.

This thesis focuses on the investigation of precipitation trends on the

island of Crete. In order to provide an efficient methodology to predict

precipitation and to produce reliable precipitation maps, geostatistical

approaches are required. The data available for this study are monthly

measurements of precipitation from 54 rain gauges around Crete, with

records from 1948 until 2012. The data for the time period from 1948

until 1964 present a lot of missing records and have been used only

for a preliminary analysis.

For the analysis of precipitation measurements for the time period

1965 until 2012 a geostatistical methodology has been developed. At

first, original monthly measurements of precipitation were analysed

over different time and spatial scales, in order to determine their sta-

tistical properties. Then, an investigation on the topographic parame-

ters that contribute to precipitation amount and distribution through

space were conducted. Multilinear regression was used to determine

a trend model for every year. The precipitation residuals were shown

to be suitable for the application of regression kriging. In order to

apply kriging, the spatial variability of the data sets was investigated



using the Spartan variogram family. To determine the trend at every

point in space, the Digital Elevation Model of Crete, created through

Geographical Information Systems, was used. The model was val-

idated using leave–one–out cross–validation and measures of uncer-

tainty were estimated. The analysis of the validation measures shows

that the differences between the true values and the estimated val-

ues are small. Finally, precipitation maps were generated using the

geostatistical model constructed.

The most important conclusions that are derived in this thesis are:

1. Spatial correlations of the precipitation were identified both lo-

cally and between the Eastern and Western parts of the island.

2. The statistical analysis of precipitation data is not consistent

with a significant change in annual precipitation for the period

1965 to 2012.

3. The elevation is the most important topographic parameter for

the estimation of annual precipitation levels.

4. There is increased uncertainty in the precipitation estimates in

the coastal areas of the island.

5. The network of the meteorological stations is very sparse, espe-

cially in the western part of the island.

The above findings improve our understanding of the space–time pre-

cipitation patterns and its statistical distribution over Crete. The

proposed model provides a flexible and mathematical advanced tool

with potential applications in effective water resources management.



Περίληψη 

 

Η ζωή στη Γη είναι άρρηκτα συνδεδεμένη με τον καιρό και το κλίμα. 

Κατά συνέπεια, πληροφορίες οι οποίες βοηθούν στην ερμηνεία των 

παραγόντων που επηρεάζουν τέτοιου είδους φαινόμενα είναι ζωτικής 

σημασίας για το περιβάλλον και την οικονομική βιωσιμότητα. Η 

ευαισθησία της Ευρώπης στην κλιματική αλλαγή αυξάνεται με 

κατεύθυνση από το βορρά προς το νότο, με πολλές μελέτες να δείχνουν 

ότι η νότια Ευρώπη θα πληγεί πιο σοβαρά. Πιο συγκεκριμένα, η νότια 

Ευρώπη αναμένεται να γίνει πιο θερμή και ξηρή, επιφέροντας συνέπειες 

στους υδατικούς πόρους, την υδροηλεκτρική ενέργεια, την γεωργική 

παραγωγή και την ξυλεία της. Εξαιτίας της ευαισθησίας της Μεσογείου 

σε τέτοια φαινόμενα, πολλές περιοχές της έχουν μελετηθεί εκτενώς. Οι 

μελέτες αυτές υποδεικνύουν μία τάση μείωσης της ατμοσφαιρικής 

κατακρήμνισης, κυρίως στις νοτιοανατολικές περιοχές. 

Η παρούσα εργασία επικεντρώνεται στη διερεύνηση τάσεων που 

σχετίζονται με τις βροχοπτώσεις στο νησί της Κρήτης. Προκειμένου να 

δημιουργηθεί μια αποτελεσματική μεθοδολογία για την πρόβλεψη 

χωρικών και χρονικών τάσεων της βροχόπτωσης και την παραγωγή 

αντίστοιχων χαρτών, απαιτείται η χρήση της Γεωστατιστικής. Η 

παρούσα διατριβή χρησιμοποιεί δεδομένα βροχόπτωσης από 

βροχομετρικούς σταθμούς στην Κρήτη. Τα δεδομένα αυτά είναι μηνιαία 

και αναφέρονται στην χρονική περίοδο από το 1948 έως το 2012. 

Χρησιμοποιήθηκαν δεδομένα από 54 σταθμούς και για την χρονική  



περίοδο από το 1948 έως και το 1964 τα δεδομένα παρουσιάζουν πολλές 

ελλείψεις και δεν χρησιμοποιήθηκαν πέρα από μια διερευνητική 

ανάλυση.  

Για την μελέτη των δεδομένων βροχόπτωσης στο χρονικό διάστημα από 

1965 έως 2012 αναπτύχθηκε γεωστατιστική μεθοδολογία ανάλυσης. 

Αρχικά, οι πρωτογενείς μηνιαίες μετρήσεις της βροχόπτωσης 

αναλύθηκαν σε διαφορετικές χρονικές και χωρικές κλίμακες, ώστε να 

εκτιμηθούν οι στατιστικές τους ιδιότητες. 

Στη συνέχεια, διερευνήθηκε η συμβολή των τοπογραφικών παραμέτρων 

στο ύψος και την χωρική κατανομή της βροχόπτωσης. Με εφαρμογή της 

πολλαπλής γραμμικής παλινδρόμησης (multilinear regression) 

δημιουργήθηκε ένα μοντέλο χωρικής τάσης της βροχόπτωσης ανά έτος. 

Κατόπιν αφαίρεσης της τάσης από τη συνολική βροχόπτωση προκύπτει 

το χωρικό πεδίο υπολοίπων της βροχόπτωσης, το οποίο χρησιμοποιείται 

για γεωστατιστική ανάλυση με τη μέθοδο regression kriging. Η χωρική 

μεταβλητότητα των  δεδομένων ποσοτικοποιείται με τη βοήθεια της 

συνάρτησης του βαριογράμματος, για την οποία χρησιμοποιείται το 

Σπαρτιάτικο μοντέλο βαριογράμματος. Για την κατασκευή χαρτών 

βροχόπτωσης απαιτείται και η εκτίμηση των χωρικών τάσεων σε κάθε 

κόμβο του πλέγματος χαρτογράφησης. Για να επιτευχθεί αυτό, 

χρησιμοποιήθηκε το ψηφιακό μοντέλο εδάφους της Κρήτης, το οποίο 

δημιουργήθηκε μέσω της πλατφόρμας των Γεωγραφικών 

Πληροφοριακών Συστημάτων. 

Για την επαλήθευση του γεωστατιστικού μοντέλου, χρησιμοποιήθηκε η 

μέθοδος της διασταυρωτικής επιβεβαίωσης (leave-one-out cross-

validation) και υπολογίσθηκαν στατιστικά μέτρα επίδοσης. Η ανάλυση  

 



των μέτρων αυτών έδειξε ότι η απόκλιση μεταξύ των εκτιμώμενων και 

των πραγματικών τιμών της βροχόπτωσης είναι μικρή. Τέλος, 

δημιουργήθηκαν χάρτες βροχόπτωσης χρησιμοποιώντας το παραπάνω 

γεωστατιστικό μοντέλο.  

Τα πιο σημαντικά συμπεράσματα που προκύπτουν από την παρούσα 

διατριβή είναι τα εξής:  

1.  Ανιχνεύθηκε συστηματική διαφορά της βροχόπτωσης ανάμεσα 

στην Ανατολική και την Δυτική Κρήτη. 

2.  Η στατιστική ανάλυση των δεδομένων βροχόπτωσης δεν 

υποστηρίζει σημαντική μεταβολή της ετήσιας βροχόπτωσης για 

το χρονικό διάστημα 1965 έως 2012.  

3.  Το υψόμετρο αποτελεί την σημαντικότερη από τις τοπογραφικές 

παραμέτρους για τον προσδιορισμό της ετήσιας βροχόπτωσης. 

4.  Παρατηρείται αυξημένη αβεβαιότητα στις εκτιμήσεις της 

βροχόπτωσης στις παράλιες περιοχές του νησιού. 

5.  Το βροχομετρικό δίκτυο είναι ιδιαίτερα αραιό, ιδιαίτερα στο 

δυτικό τμήμα του νησιού. 

Τα παραπάνω ευρήματα βελτιώνουν την κατανόηση μας, όσον αφορά 

τις χωροχρονικές μεταβολές της  βροχόπτωσης, καθώς και την 

στατιστική κατανομή της βροχόπτωσης σε όλη την έκταση της Κρήτης. 

Το προτεινόμενο μοντέλο παρέχει ένα ευέλικτο και μαθηματικά 

εξελιγμένο εργαλείο το οποίο μπορεί να βρει εφαρμογές  στην πιο 

αποτελεσματική διαχείριση των υδάτινων πόρων. 
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Chapter 1

Introduction

During the last decades, geostatistical approaches have been successfully applied

in different environmental and earth sciences disciplines. Geostatistics has meth-

ods that can be applied in difficult situations, such as sparse measurements, is

able to provide space–time predictions for variables with environmental and so-

cioeconomic importance and provides estimates of the uncertainty of the results.

Nowadays, geostatitstical methods are at the core of new research methodologies

that are being proposed.

Because of the uncertainties involved, probabilistic approaches are required

to enable water resources managers to undertake analyses of risk under scenarios

of climate change. Mathematical techniques are being developed to construct

probability distributions for specified outcomes. Most studies of climate change

impact on water stress in countries assess demand and supply on an annual basis.

Analysis at monthly or higher temporal resolution scale is desirable, since changes

in seasonal patterns and the probability of extreme events may offset the positive

effect of increased availability of water resources [Kovats et al., 2014].

This thesis is motivated by the need for accurate interpolation methodologies

that can help to determine the spatiotemporal variability of precipitation. Thus,

below we introduce spatiotemporal methodologies applied on field data from rain

gauges. The methods that we propose combine spatial trend models based on

features of the local topography with fluctuations the correlations of which are

modeled by means of the Spartan variogram family.

In addition, this thesis is motivated by the dramatic decrease of available water
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resources and predictions that identify climate change as a potential trigger for

upcoming socioeconomic disaster. More specifically, many Mediterranean basins

with significant agricultural activity are threatened by desertification. Therefore,

accurate spatiotemporal modeling of precipitation is significant and needed for

the identification of future climatic conditions, in order to enable policy makers

to design and implement more efficient water resources management.

1.1 Objectives

The main objective of this thesis is to develop and improve the results of standard

interpolation methodologies leading to more precise mapping of precipitation on

the island of Crete (Greece). The broader aim is to better understand the dis-

tributions of precipitation around Crete at different space and time scale. A

secondary goal is to study the impact of the island’s topography on the rainfall

variations and its contribution on precipitation measurements. Another objective

is to introduce the recently established Spartan variogram family in climatology.

The final goal of this research is to use stochastic methods for the spatiotempo-

ral simulation of precipitation in one of the most mountainous islands of Europe

which has a terrain marked by big plains between mountains and climate that

belongs to two different climatic zones.

1.2 Innovation

The present research addresses the geostatistical analysis of precipitation data

on the island of Crete. The methodology that we present includes stochastic

methods for the spatial and temporal analysis of precipitation patterns in Crete,

analyzed at different scales. The Spartan variogram family is herein applied for

the first time to precipitation data. We generate maps of precipitation and its

uncertainty across the island using geostatistical methods.
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1.3 Thesis Outline

The remainder of this thesis is organized as follows. In Section 1.4 background

information and theory pertaining to meteorological parameters are presented as

well as some of the most commonly used methodologies for the analysis of pre-

cipitation data. In Section 2 geostatistical methodologies are reviewed. Section

3 presents relevant information for the study area (Crete) and an exploratory

statistical analysis of the available rainfall data set. In Section 4 we present

the geostatistical methodology applied to the data set and the results obtained.

Section 5 contains a general discussion of the results and concluding remarks.

Finally, in Appendix A all the resulted plots for every year are gathered.

1.4 Basic Concepts and Literature Review

Climate in a narrow sense is usually defined as the average weather, or more

rigorously, as the statistical description in terms of the mean and variability of

relevant quantities over a period of time ranging from months to thousands or

million of years. The classical period for averaging these variables is 30 years,

as defined by the World Meteorological Organization. The relevant quantities

are most often surface variables such as temperature, precipitation and wind

[Hartmann et al., 2013].

Life on Earth is strongly linked to weather and climate; consequently knowing

how to evaluate and interpret key factors for weather and climate is vital. Human

societies have developed and prospered under relatively stable climate since the

ice age which ended several thousand years ago. In the last century, however,

climate trends have been observed that have caused international concern.

More specifically, according to the Fifth Assessment Report [Hartmann et al.,

2013] the mean surface temperature seems to follow an increasing trend of 0.075◦C

per decade from 1901 to 2012 (90% confidence interval: 0.062 to 0.088◦C) as

shown in Fig. 1.1. The HadCRUT4 dataset that is used for the Fig. 1.1 has been

developed by the Climatic Research Unit at the University of East Anglia in

conjunction with the Met Office Hadley Centre [Jones et al., 2015]. HadCRUT4

is a gridded dataset of global historical surface temperature anomalies relative to

3
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a 1961-1990 reference period. Data are available for each month since January

1850, on a 5 degree grid [Morice, 2015].

The observed trend on a shorter time scale is presented in Table 1.1. Climate

change is caused by non-anthropogenic factors such as biotic processes, varia-

tions in the solar radiation received by the Earth, plate tectonics, and volcanic

eruptions. However, most scientists believe that there is a definite anthropogenic

component of climate change [IPC, 2013].

Figure 1.1: (a) Global mean surface temperature (GMST) anomalies relative to
a 1961-1990 climatology based on HadCRUT4 annual data. The straight black
lines are least squares trends for 1901-2012, 1901-1950 and 1951-2012. (b) Same
data as in (a), with smoothing spline (solid curve) and the 90% confidence interval
on the smooth curve (dashed lines). Note that the (strongly overlapping) 90%
confidence intervals for the least squares lines in (a) are omitted for clarity. Figure
taken from Hartmann et al. [2013].

The climate of Europe is temperate and is divided into five types: maritime,

transitional, continental, polar and Mediterranean. The sensitivity of Europe to

climate change has a distinct north–south gradient, with many studies indicating

that Southern Europe will be more severely affected by climate change. Southern

Europe has a hot semi-arid climate which is expected to become warmer and drier,

threatening the continent’s waterways, hydropower, agricultural production and

4



1. Introduction

Table 1.1: Estimates of the mean change in global (spatial) mean surface tem-
perature between 1901 and 2012, 1901 and 1950, and 1951 and 2012, obtained
from the linear (least squares) and nonlinear (smoothing spline) trend models.
Half-widths of the 90% confidence intervals are also provided for the estimated
changes based on the two trend methods. Table taken from Hartmann et al.
[2013].

Trend in ◦C per decade

Method 1901-2012 1901-1950 1951-2012

Least squares 0.075± 0.013 0.107± 0.026 0.106± 0.027

Smoothing spline 0.081± 0.010 0.070± 0.016 0.090± 0.018

timber harvests.

Climate trends will lead to changes in temperature and precipitation, affect-

ing multiple sectors of the society and the economy (Table 1.2). For example,

as extreme weather events (meteorological droughts, heavy precipitation events,

heat waves, floods and fires) become more frequent, their impacts on economic,

social and health sectors will become more visible. In Southern Europe projec-

tions call for an increase in the frequency and the intensity of heat waves and

a decrease in precipitation, contrary to the projected precipitation increase for

Northern Europe [Kovats et al., 2014]. Nevertheless, the impact of this change

over the Mediterranean region is not clear due to the prevalence of strong con-

vective rainfall and its great spatial variability. Climate change could lead to

increased evaporative losses, leading to significant reduction of water availability

in rivers and groundwater resources [Kovats et al., 2014].

1.4.1 Precipitation and Drought

1.4.1.1 Precipitation

In meteorology, any product of the condensation of atmospheric water that falls

under gravity to Earth is called precipitation. Precipitation can be divided into

three categories, based on whether it falls as liquid water (rain, drizzle, sleet),

liquid water that freezes on contact with the surface, or ice (snow, hail). Precip-

itation occurs when a portion of the atmosphere becomes saturated with water

5



Table 1.2: Impacts of climate extremes in the last decade in Europe. Table taken from Kovats et al. [2014].

Year Region Meteorological charac-
teristics

Production systems and
physical infrastructure, set-
tlements

Agriculture, fisheries,
forestry, bioenergy

Health and social wel-
fare

Environmental quality
and biological conserva-
tion

Mega-
fire

2003 Western
and
central
Europe

Hottest summer in at
least 500 years [Luter-
bacher et al., 2004]

Damage to road and
rail transport systems.
Reduced/interrupted op-
eration of nuclear power
plants (mostly in France).
High transport prices on
the Rhine due to low water
levels

Grain harvest losses of 20%
[Ciais et al., 2005]

35 000 deaths in August
in central and western
Europe [Robine et al.,
2008]

Decline in water quality
[Daufresne et al., 2007].
High outdoor pollution

Yes

2004/
2005

Iberian
Peninsula

Hydrological drought Grain harvest losses of 40

2007 Southern
Europe

Hottest summer on
record in Greece since
1891 [Founda and
Giannakopoulos, 2009]

1710 buildings burned
down or rendered unin-
habitable in Greece [JRC,
2008]

∼ 575 500 hectares burnt
area [JRC, 2008]

6 deaths Portugal, 80
deaths in Greece [JRC,
2008]

Several protected con-
servation sites (Natura,
2000) were destroyed
[JRC, 2008]

Yes,
Greece

2007 England
and
Wales

May–July wettest since
records began in 1766

Estimated total losses 4
billion (£3 billion insured
losses) [Chatterton et al.,
2010]

78 farms flooded. Impacts
on agriculture £50 million
[Chatterton et al., 2010]

13 deaths and 48 000
flooded homes [Pitt,
2008]. Damage costs
for health effects, in-
cluding loss of access to
education, £287 million
[Chatterton et al., 2010]

2010 Western
Russia

Hottest summer since
1500 [Barriopedro et al.,
2011]

Fire damage to forests
[Shvidenko et al., 2011].
Reduction in crop yields
[Barriopedro et al., 2011]
[Coumou and Rahmstorf,
2012]

Estimated 10 000 ex-
cess deaths due to heat
wave in Moscow in July
and August [Revich and
Shaposhnikov, 2012]

High outdoor pollution
levels in Moscow [Bon-
dur, 2011], [Revich and
Shaposhnikov, 2012]

Yes

2011 France Hottest and driest
spring in France since
1880

Reduction in snow cover for
skiing

8% decline in wheat yield
[AGRESTE, 2011]
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vapour, so that the water condenses and “precipitates”.

Over 96 percent of the world’s total water supply is saline. Over 68 percent

of the total freshwater is locked up in ice and glaciers, while another 30 percent

of freshwater is in the ground. Fresh surface–water sources, such as rivers and

lakes, only constitute about 93 100 km3, which is about 1/150th of one percent

of the total water on the Earth; yet, rivers and lakes are the sources of most of

the water people use everyday [Shiklomanov, 1993].

Precipitation is a major component of the water cycle, and it is responsible

for depositing the fresh water on the planet (Fig. 1.3). Approximately 505 000

km3 of water falls as precipitation each year, 398 000 km3 of it over the oceans

and 107 000 km3 over land [Chowdhury, 2005]. Given the Earth’s surface area,

the above implies that the globally averaged annual precipitation is 990 mm, but

only 715 mm of that precipitation falls over land. Climate classification systems

such as the Köppen classification use average annual rainfall to help differentiate

between climate regimes.

Figure 1.2: Projected changes in heavy precipitation (in %) in winter and summer
from 1971–2000 to 2071–2100 for the RCP8.5 scenario based on the ensemble
mean of different regional climate models (RCMs) nested in different general
circulation models (GCMs). Figure taken from EEA [2015].
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Figure 1.3: Water Cycle. Figure taken from Shiklomanov [1993].

The standard instrument for measuring rainfall or snowfall is the standard

rain gauge, developed at the start of the 20th century. The gauge consists of a

funnel emptying into a graduated cylinder, 2 cm in diameter, which fits inside

a larger container which is 20 cm in diameter and 50 cm tall. If the rainwater

overflows the graduated inner cylinder, the larger outer container will catch it.

When measurements are taken, the height of the water in the small graduated

cylinder is measured, and the excess overflow in the large container is carefully

poured into another graduated cylinder and measured to give the total rainfall.

Sometimes a cone meter is used to prevent leakage that can corrupt the data.

The cylinder is usually marked in mm and will measure up to 250 mm of rainfall

with 0.5 mm markings that define the resolution [Strangeways, 2006].

Other types of gauges include the wedge gauge (the cheapest and most fragile

rain gauge), the tipping bucket rain gauge, and the weighing rain gauge. Con-

trary to in–situ methods, radars and satellites are used for measuring rainfall

with remote sensing methods. In particular, precipitation measurements in vast

expanses of the ocean and remote land areas depend on satellite observations.

There is a relationship between the occurrence and the intensity of precipitation

with the recorded electromagnetic spectrum. Satellite sensors that are used for

precipitation, fall into two categories. Thermal infrared (IR) sensors record a

8



1. Introduction

channel around 11 micron wavelength and primary give information about cloud

tops. These information combined with mathematical schemes, algorithms and

atmospheric properties, create the precipitation estimation from IR data. The IR

sensors work best in cases of deep, vigorous convection —such as the tropics—

and becomes progressively less useful in areas where stratiform precipitation dom-

inates. The second category of sensor channels is in microwave part of the electro-

magnetic spectrum, with frequencies ranging between 10 GHz to a few hundred

GHz. Satellites such as the Tropical Rainfall Measuring Mission (TRMM) and the

Global Precipitation Measurements (GPM) mission employ microwave sensors to

estimate precipitation.

1.4.1.2 Drought

The definition of drought is complex because different interpretations are possible.

The majority of people may consider drought as a “prolonged absence or marked

deficiency of precipitation,” a “deficiency of precipitation that results in water

shortage for some activity or for some group,” or a “period of abnormally dry

weather sufficiently prolonged for the lack of precipitation to cause a serious

hydrological imbalance” [Heim, 2002].

Drought can be divided into four categories:

1. Meteorological or Climatological. Meteorological drought is defined

usually on the basis of the degree of dryness —in comparison to some “nor-

mal” or average amount— and the duration of the dry period. Definitions

of meteorological drought must be considered as region specific since the

atmospheric conditions that result in deficiencies of precipitation are highly

variable from region to region [Wilhite and Glantz, 1985].

2. Agricultural. The onset of an agricultural drought may lag that of a me-

teorological drought, depending on the prior moisture status of the surface

soil layers.

3. Hydrological. Precipitation deficits over a prolonged period that affect

surface or subsurface water supply, thus reducing streamflow, groundwater,
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reservoir, and lake levels, will result in a hydrological drought, which will

persist long after a meteorological drought has ended.

4. Socioeconomic. Socioeconomic drought associates the supply and de-

mand of certain economic goods with elements of meteorological, agricul-

tural and hydrological drought.

The relationship between the different types of drought is complex. For example,

streamflow is the key variable in the analysis of droughts for many water supply

activities such as hydropower generation, recreation, and irrigated agriculture

where crop growth and yield are largely dependent on water availability in the

streams [Condra, 1944].

The hydrology of a region is affected by changes in the timing and amount

of precipitation, evaporation, transpiration rates, and soil moisture, parameters

which in turn also affect the drought characteristics of a region. The effect of a

drought varies according to vulnerability. For example, subsistence farmers are

more likely to migrate during droughts because they do not have alternative food

sources. Areas with populations that depend on water resources to grow their

food sources are more vulnerable to famine.

1.4.2 Drought Indices

Drought indices are quantitative measures that characterize drought levels by

assimilating data from one or several variables (indicators) such as precipitation

and evapotranspiration into a single numerical value. The nature of drought

indices reflects different events and conditions; they can reflect climate dryness

anomalies (mainly based on precipitation) or correspond to delayed agricultural

and hydrological impacts such as soil moisture loss or lowered reservoir levels

[Zargar et al., 2011].

Some of the drought indices incorporate a large amount of data on rainfall,

streamflow, snow and other hydrometeorological indicators, and they transform

these huge datasets into a single number. Since the development of a drought

index can be based on multiple factors (e.g. drought’s nature and characteris-

tics and the impacts considered), multiple drought indices have been developed
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(more than 150, according to Niemeyer [2008]). They include the Standardized

Precipitation Index (SPI, McKee et al. [1993]), the Palmer Drought Severity In-

dex (PDSI, Palmer [1965]), the Reconnaissance Drought Index (RDI, Tsakiris

et al. [2007]), deciles (Gibbs and Maher [1967]), the Reclamation Drought Index

(RDI, Weghorst [1996]), the Crop Moisture Index (CMI, Palmer [1968]), the Sur-

face Water Supply Index (SWSI, Shafer and Dezman [1982]), and the Aggregate

Drought Index (ADI, Keyantash and Dracup [2004]) [Vrochidou, 2013].

1.4.3 Climate Models

Numerical models of climate, i.e., General Circulation Models or GCMs, represent

physical processes in the atmosphere, oceans, cryosphere and land surface, in

terms of mathematical equations that are solved numerically. They are the most

commonly used tools for simulating the climate [IPCC, 2015]. The models divide

the earth, ocean and atmosphere into grid blocks. The examined variables, such

as precipitation, are calculated at each grid point as a function of time. The time

step is a function of the grid size: the finer the resolution, the shorter the interval

between each computation [WMO, 2015]. Typically, a three–dimensional grid has

horizontal resolution of between 250 and 600 km, 10 to 20 vertical layers in the

atmosphere, and sometimes as many as 30 layers in the oceans (Fig. 1.4). Thus,

the resolution of GCMs is quite coarse and many physical processes that occur

at smaller scales, such as those related to clouds, cannot be properly modeled.

There are different types of GCMs based on the area studied, i.e., studies of

the oceans can concentrate on three–dimensional properties of the oceans and

are generally known as ocean GCMs. When it comes to simulating the general

behaviour of the climate system over lengthy periods, however, it is essential to use

models that represent, and where necessary conserve, the important properties

of the atmosphere, land surface and the oceans in three dimensions. At the

interfaces, the atmosphere is coupled to the land and oceans through exchanges

of heat, moisture and momentum. These models of the climate system are usually

known as coupled GCMs.

A technique known as parameterization refers to averaging known properties

over the larger scale, which is one source of uncertainty in GCM–based simula-
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tions of future climate. The use of all the available GCM experiments does not

guarantee a representative range for the simulated climate variables, especially

for estimates of future atmospheric composition, due to uncertainties such as

the parameterization technique used (averaging a known property over the larger

scale) [IPCC, 2015].

To overcome the coarse spatial resolution of a coupled GCM, the technique

of nested modeling is used (Fig. 1.4). This technique is applied after the general

analysis using the GCM output as initial and boundary conditions for appropriate

Regional Climate Models (RCM). This enables the RCM to enhance the detailed

regional model climatology. This downscaling procedure can be extended to finer

grids in terms of local models [WMO, 2015].

Figure 1.4: Schematic illustrating the relation between General Circulation Mod-
els and Regional Circulation Models. Figure taken from WMO [2015].

The first GCM was created by Phillips [1956] at Princeton and was quickly

hailed as “a classic experiment”. Later, Neumann and Charney developed a gen-

eral circulation model of the entire three–dimensional global atmosphere built

directly from the primitive equations. Many researchers responded to the chal-

lenge of creating new GCMs. Dickinson et al. [1989] conducted an innovative

study in which they introduced the RCM, which plays a key role in the scientific

investigations during the last three decades. Recent research on the connections

between GCMs and RCMs include the following papers: Christensen et al. [2007];

Giorgi and Mearns [1999]; Grotch and MacCracken [1991]; Hulme [1992]; McCabe

12



1. Introduction

and Dettinger [1995]; Wilby et al. [1998] and Fowler et al. [2007].

1.4.4 Statistical Modeling

In addition to climate models and drought indices, that have been used widely

to characterize a region, another approach to evaluate the climatic conditions

observed in an area is the geostatistical analysis. In this approach, mathematical

functions are used to model a variable of interest, e.g., precipitation, and to

determine potential correlations through space and time.

Such studies have been presented by Goovaerts [2000] who has used three

multivariate geostatistical algorithms that incorporate a digital elevation model

into the spatial prediction of rainfall: simple kriging with varying local means,

kriging with an external drift, and colocated cokriging. Another study that uses

geostatistical tools is provided by Tushaus [2014] and focuses in the topographical

parameters that affect mountain rain. Moral [2010] gives a comparison of different

geostatistical approaches for mapping climate variables incorporating geograph-

ical information systems (GIS) and carrying out cross validation to obtain the

prediction errors created by the algorithms. Lately, Baxevani and Lennatsson

[2015] developed a daily stochastic spatio–temporal precipitation generator based

on a censored latent Gaussian field. The distributions used for the description

of precipitation intensity are a gamma distribution for observations below some

threshold and a generalized Pareto distribution to model the excesses above the

threshold.

1.4.5 Probabilistic Modeling of Precipitation

Precipitation is best modelled as a stochastic variable due to its significant spatial

and temporal variability. There are certain typical features of these data that

must be taken into account to produce useful results, including the non–Gaussian

distribution of precipitation values, with the presence of many zero values, the

low density of observations, and the temporal and spatial variability of spatial

correlation patterns.

Various probability distributions have been used to model precipitation. The

most commonly used probability distribution for precipitation data analysis based
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on recorded measurements is the gamma distribution [Baxevani and Lennatsson,

2015; McKee et al., 1993; Vrochidou, 2013]. We present plots of several relevant

probability distribution functions including the normal (Gaussian), the gamma,

the generalized extreme value and Student’s t distribution.

1.4.5.1 The Normal Distribution

The normal distribution also known as the Gauss distribution, is the most im-

portant distribution in statistics. It is often encountered in natural phenomena

as a result of the Central Limit Theorem. The latter —loosely expressed— states

that the normal distribution is an attractor for averages of identically distributed

random variables so long as their probability distributions do not have heavy

tails. Its crucial property is that any affine combination of independent normal

random variables is also normal [Kroese et al., 2011]. An affine combination of

vectors x1, . . . , xn is a vector
∑n

i=1 aixi = a1x1 + a2x2 + · · ·+ anxn, called a linear

combination of x1, . . . , xn, in which the sum of the coefficients is equal to 1, thus,∑n
i=1 ai = 1. The probability density function of a normal distribution is given

as follows:

f(x;µ, σ2) =
1

σ
√

2π
e−

1
2(x−µσ )

2

, (1.1)

where µ is a location parameter, equal to the mean, and σ is the standard de-

viation. For µ = 0 and σ = 1 we refer to this distribution as the standard

normal distribution. In many connections it is sufficient to use this simpler form

since µ and σ simply may be regarded as a shift and scale parameter, respectively

[Walck, 1996]. In Fig. 1.5 different types of the normal distribution are presented.

In precipitation data analysis, the Gaussian distribution is used mostly after the

transformation of the data sets into a normalized index, i.e., the transformation of

precipitation data into the Standardized precipitation index, resulting into a new

data set of normalized values [Karavitis et al., 2011; McKee et al., 1993]. In this

particular study, normal probability distribution is used to fit the precipitation

residuals, that are used for the application of the residual kriging.
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(a) Probability density function (b) Cumulative distribution function

Figure 1.5: Plots of the probability density function and the cumulative distri-
bution function for the Normal or Gaussian Distribution.

Location parameters

The normal distribution f(x), with any mean µ and any positive deviation σ,

is symmetric around the point x = µ, which is at the same time the mode, the

median and the mean of the distribution. The following results hold for N(µ, σ2)

variables

Mean = Mode = µ = µ1, and Variance = σ2 = µ2, (1.2)

µ3 = 0, and µ4 = 3σ4, (1.3)

where µ1, µ2, µ3, µ4 are the first, the second, the third and the fourth moments

[Jagdish and Campbell, 1982](see section 2.7 on page 32).

Skewness

The skewness is defined in terms of the centered third–order moment of the dis-

tribution. The skewness is a measure of the symmetry or asymmetry of the prob-

ability density function. The skewness of the normal distribution and all other

symmetric distributions is equal to zero. Any data with a symmetric empirical

distribution should also have a skewness near zero.
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The skewness of a distribution is defined as

s =
µ3

2

µ2
3

= 0. (1.4)

Kurtosis

The kurtosis is defined in terms of the centered fourth–order moment of the

distribution. The kurtosis is a measure of whether the data are more or less

concentrated near the peak relative to a normal distribution. The kurtosis for

the standard normal distribution is equal to three, calculated by

kurtosis =
µ4

µ2
3

= 3. (1.5)

1.4.5.2 The Gamma Distribution

The gamma distribution is a two–parameter family of continuous probability dis-

tributions. Gamma distribution is the most commonly used distribution in the

analysis of precipitation data, since it is used to fit precipitation for the SPI

development [McKee et al., 1993; Vrochidou, 2013] but it is also used to fit pre-

cipitation using geostatistical tools such as the study conducted by Baxevani and

Lennatsson [2015]. The parameters used in this case include the shape parameter

a and the scale parameter b. Both parameters are positive real numbers.

If a is an integer, the distribution represents an Erlang distribution; i.e., the

sum of a independent exponentially distributed random variables, each of which

has a mean equal to b [Devroye, 1986; Kroese et al., 2011].

A random variable X that is gamma–distributed with shape a and scale b is

denoted as:

X ∼ Γ(a, b) ≡ Gamma(a, b). (1.6)

The probability density function of the gamma distribution using the shape–

scale parametrization is:

f(x; a, b) =
xa−1e−

x
b

baΓ(a)
for x > 0 and a, b > 0. (1.7)

Here Γ(a) is the gamma function evaluated at a. The gamma function is defined
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by means of the following integral

Γ(a) =

∞∫
0

e−xxa−1x, a > 0. (1.8)

The cumulative distribution function is the regularized gamma function

F (x; a, b) =

x∫
0

f(u; a, b) du =
γ(a,

x

b
)

Γ(a)
, (1.9)

where γ(a, x/b) is the lower incomplete gamma function [Kroese et al., 2011],

defined by means of the following integral

γ(a, x) =
1

Γ(a)

x∫
0

e−tta−1t, a > 0, x > 0. (1.10)

For positive integer values of a = n, we have

γ(n, x) = 1− e−x
n−1∑
k=0

xk

k!
. (1.11)

In Fig. 1.6, plots of the gamma distibutions are presented with different

parametrization. [McKee et al., 1993]

Location parameters

The gamma distribution f(x), with any mean µ, any shape parameter α > 0 and

any scale parameter b > 0 has mean value

µ = ab, (1.12)

and variance

σ2 = ab2. (1.13)
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(a) Probability density function (b) Cumulative distribution function

Figure 1.6: Plots of the probability density function and the cumulative distri-
bution function for the Gamma Distribution.

Skewness

The skewness of the gamma distribution is equal to 2/
√
a. The skewness depends

only on the shape parameter a. The gamma distribution approaches a normal

distribution when a is large (approximately when a > 10).

Median

Unlike the mode and the mean which have readily calculable formulas based on

the parameters of the gamma distribution, the median does not obey a closed

form equation. The median for this distribution is defined as the value ν such

that

1

Γ(a)ba

ν∫
0

xa−1e−
x
b dx =

1

2
. (1.14)

A formula for approximating the median for any gamma distribution, when

the mean is known, has been derived based on the fact that the ratio µ/(µ −
ν) is approximately a linear function of a when a ≥ 1 [Devroye, 1986]. The

approximation formula is:

ν ≈ µ
3a− 0.8

3a+ 0.2
. (1.15)
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Superposition

If Xi follows a Gamma(ai, b) distribution for i = 1, 2, ..., N (i.e., all distributions

have the same scale parameter b), then

N∑
i=1

Xi ∼ Gamma

(
N∑
i=1

ai, b

)
, (1.16)

where ∼ denotes equality in distribution, provided all Xi are independent.

1.4.5.3 Generalized Extreme Value Distribution

The generalized extreme value (GEV) distribution is a family of continuous prob-

ability distributions developed within extreme value theory to combine the Gum-

bel, Fréchet and Weibull families also known as type I, II and III extreme value

distributions respectively. In hydrology, the Gumbel distribution is used to ana-

lyze variables such as monthly and annual maximum values of daily rainfall and

river discharge volumes [Oosterbaan, 1994], and also to describe droughts [Burke

et al., 2010]. Fréchet distribution is also applied to hydrology to extreme events

such as annually maximum one–day rainfalls and river discharges [Vivekanandan,

2013]. The Weibull distribution has been used to describe wind speed distribu-

tions [Odo et al., 2012; Yanping et al., 2010]. In general, the GEV distribution

has applications in meteorological analysis and widely to the economical domain

[Ghosh, 2010; Gilli and Këllezi, 2006; Sharma and Singh, 2010]. This study uses

the GEV distribution to fit precipitation data of a dry region, such as Crete,

locally, at the position of every station over the recorded years.

By virtue of the extreme value theorem (also known as the FisherTippettGne-

denko theorem) the GEV distribution is the limit distribution of properly nor-

malized maxima of a sequence of independent and identically distributed ran-

dom variables. More specifically, let X1, X2 . . . , Xn be a sequence of independent

and identically distributed random variables, and Mn = max{X1, . . . , Xn}. If

a sequence of pairs of real numbers (an, bn) exists such that each an > 0 and

limn→∞ P
(
Mn−bn
an
≤ x

)
= F (x), where F is a non degenerate distribution func-

tion, then the limit distribution F belongs to either the Gumbel, the Fréchet or

the Weibull family [wikipedia, 2015b]. Because of this feature, the GEV distribu-

19



Basic Concepts and Literature Review

(a) Probability density function (b) Cumulative distribution function

Figure 1.7: Plots of the probability density function and the cumulative distri-
bution function for the Generalized Extreme Value Distribution.

tion is used as an approximation to model the maxima of long (finite) sequences

of random variables [Coles, 2001]. In Fig. 1.7, generalized extreme value distri-

butions with different parametrization are presented.

Distribution and Probability Density Functions

The generalized extreme value distribution has the following cumulative distri-

bution function

F (x;µ, σ, k) = exp

{
−
[
1 + k

(
x− µ
σ

)]−1/k}
, (1.17)

for 1 + k(x − µ)/σ > 0, where µ ∈ R is the location parameter, σ > 0 the scale

parameter, and k ∈ R the shape parameter. For k = 0 the expression is formally

undefined and is understood as a limiting case.

The density function is, consequently

f(x;µ, σ, k) =
1

σ

[
1 + k

(
x− µ
σ

)](−1/k)−1
exp

{
−
[
1 + k

(
x− µ
σ

)]−1/k}
,

(1.18)

again, for 1 + k(x− µ)/σ > 0.
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Statistics

Some simple statistics of the GEV distribution are:

E(X) = µ− σ

k
+
σ

k
g1, (1.19)

V ar(X) =
σ2

k2
(g2 − g21), (1.20)

Mode(X) = µ+
σ

k

[
(1 + k)−k − 1

]
. (1.21)

Skewness

skewness(X) =
g3 − 3g1g2 + 2g31

(g2 − g21)3/2
× sign(k). (1.22)

Kurtosis

kurtosis(X) =
g4 − 4g1g3 + 6g2g

2
1 − 3g41

(g2 − g21)2
− 3, (1.23)

where gi = Γ(1− ik), i = 1, 2, 3, 4 and Γ(t) is the gamma function.

Sub-families

The shape parameter k governs the tail behaviour of the distribution. The sub-

families defined by k = 0, k > 0 and k < 0 correspond, respectively, to the

Gumbel, Fréchet and Weibull families, whose cumulative distribution functions

are displayed below [Kroese et al., 2011].

• Gumbel or type I extreme value distribution (k = 0)

F (x;µ, σ, 0) = e−e
(x−µ)/σ ∀ x ∈ R. (1.24)

• Fréchet or type II extreme value distribution, if k = α−1 > 0

F (x;µ, σ, k) =

0 x ≤ µ,

e−((x−µ)/σ)
−α

x > µ.
(1.25)
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• Reversed Weibull or type III extreme value distribution, if k = −α−1 < 0,

F (x;µ, σ, k) =

e−(−(x−µ)/σ)
α

x < µ,

1 x ≥ µ,
(1.26)

where σ > 0.

The equations above relate to maxima, and the distribution being discussed

is an extreme value distribution for maxima. A generalised extreme value distri-

bution for minima can be obtained, for example by substituting (−x) for x in the

distribution function, and subtracting from one: this yields a separate family of

distributions [Coles, 2001].

The ordinary Weibull distribution arises in reliability applications and is

obtained from Reversed Weibull distribution using the variable transformation

t = µ − x , which gives a strictly positive support. In term of an equation this

means

F (t;σ, k) =

 k
σ
(t/σ)k−1e−(t/σ)

k
t ≥ 0,

0 t < 0.
(1.27)

This arises because the Weibull distribution is used to characterize minima rather

than maxima. Importantly, in applications of the GEV, the upper bound is

unknown and must be estimated from the data, while in applications of the

Weibull distribution the lower bound is known to be zero. Note the differences

in the ranges of interest for the three extreme value distributions: Gumbel is

unlimited, Fréchet has a lower limit, while the reversed Weibull has an upper

limit.

One can link the type I to types II and III in the following way: if the cumula-

tive distribution function of some random variable X is of type II and has a posi-

tive support, i.e. F (x; 0, σ, α), then the cumulative distribution function of lnX is

of type I, namely F (x; lnσ, 1/α, 0). Similarly, if the cumulative distribution func-

tion of X is of type III, and with negative support, i.e. F (x; 0, σ,−α), then the

cumulative distribution function of ln(−X) is of type I, namely F (x;− lnσ, 1/α, 0)

[Coles, 2001].
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1.4.5.4 Student’s t Distribution

The probability density function of Student’s t distribution, or simply the t dis-

tribution, is given by:

f(x; ν) =
Γ(ν+1

2
)

√
νπ Γ(ν

2
)

(
1 +

x2

ν

)− ν+1
2

, (1.28)

where ν > 0. If the parameter ν takes integer values, then it is referred to as

the degrees of freedom of the t distribution. The distribution arises in statis-

tics in the estimation of the mean of a normally distributed population when

the population variance is unknown (and thus estimated from the data) and the

sample size is small. Whereas the normal distribution describes the full popu-

lation, t–distributions describe samples drawn from the population; accordingly,

the t–distribution for each sample size is different; larger samples converge to the

normal distribution [Devroye, 1986].

The cumulative Student distribution function is expressed as follows:

F (t; ν) =

∫ t

−∞

Γ(ν+1
2

)
√
νπ Γ(ν

2
)

(
1 +

t2

ν

)− ν+1
2

dt. (1.29)

In Fig. 1.8, the probability density function and the cumulative distribution

function of Student’s t distribution with different degrees of freedom are pre-

sented.

Statistics

The Student’s t distribution f(x), with ν degrees of freedom, has mean value

µ =

0 ∀ν > 1,

undefined otherwise,
(1.30)
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(a) Probability density function (b) Cumulative distribution function

Figure 1.8: Plots of the probability density function and the cumulative distri-
bution function for the Student’s t Distribution.

variance

σ2 =


ν
ν−2 ∀ν > 2,

∞ for 1 < ν ≤ 2,

undefined otherwise,

(1.31)

skewness

µ =

0 ∀ν > 3,

undefined otherwise.
(1.32)

1.4.6 The Role of Spatial and Temporal Scales

One of the most important issues in the analysis of precipitation data is the time

scale of the observations, i.e., whether they correspond to days, months, seasons,

wet and dry periods or years. Annual means of precipitation correspond to the

sum of precipitation over 365 days of each year, wet periods correspond to Oc-

tober till March and dry periods to April till September. Seasonal time scale is

established in practice of all the four seasons by summing the precipitation over

the total days of each seasons. Changes in seasonal precipitation distribution and

intensities would matter more for arable crops than changes in annual precipita-

tion [Rotter and Van De Geijn, 1999]. Accordingly, monthly time scale refers to

the summation of daily precipitation for each of the calendar months of a year
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[Kumar et al., 2013].

As proven by McKee et al. [1993], at longer time scales drought becomes

less frequent and of longer duration. In terms of precipitation this means that

at longer time scales small amounts of precipitation become less frequent and of

longer duration. Also correlation between precipitation and topography increases

with the length of time interval. Finally, as proven by Bárdossy and Pergam

[2013], interpolation quality depends on the aggregation time; longer aggregation

times, reduce the relative error of the interpolation.
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Chapter 2

Geostatistical Methods

Earth science data are distributed through space and/or time. The analysis and

prediction of spatial phenomena, such as mineral grades, porosities and pollutant

concentrations are performed using geostatistical methods [Chilès and Delfiner,

2012; Christakos, 1992; Goovaerts, 1997]. Geostatistics comprises a collection of

numerical methods that can be used to model and characterize spatial attributes,

based on the theory of random fields. Random fields are the proper mathematical

framework for analyzing spatial data, in the same way that time series analysis

is used for temporal data. Because geographical location varies continuously, the

number of variables required to represent a spatial process is infinite even for

areas of interest of finite size. Such a collection of random variates is called a

random function or a random field [Olea, 1999].

The values of a variable that is distributed in space and/or time are often

correlated with each other. The study of such correlations is usually conducted

using a method known as “structural analysis” or “variogram modeling”. After

structural analysis, predictions of the modeled process at unsampled locations

are derived using geostatistical methods, such as kriging interpolation. The data

processing steps involved in a geostatistical study involve: (i) exploratory data

analysis (ii) structural analysis (iii) generating predictions and (iv) estimating

the uncertainty.



Randomness

2.1 Randomness

Randomness characterizes phenomena in which the knowledge of a situation with

absolute precision is impossible due to various restrictions that are intrinsic, i.e.

strong spatial and temporal variability of the observed process, or imposed by

the experimental procedure, e.g. limited resolution, random errors, or caused by

fluctuations of environmental factors, e.g. temperature and humidity. In these

cases, the measured properties at different points in space are defined by means

of respective probability distribution functions, which determine the probabilities

of occurrence for each possible result [Papoulis and Pillai, 2002].

2.2 Random Fields

Ω denotes a probability space, F is the Borel’s σ–algebra on Ω, which is a collec-

tion of subsets of Ω that contains the null set and is closed under complementation

and countable unions, and P is the probability measure. Let (Ω,F, P ) denote a

probability space and D ⊆ Rd the spatial domain of interest. Then an RF X(s;ω)

is a collection of real–valued random variables distributed over D. The RF is de-

fined by a mapping from Ω×D into the set of real numbers R. Hence, for any fixed

s ∈ D, X(s;ω) → X(ω) is F–measurable as a function of ω, and for a fixed ω,

X(s;ω)|ω=fixed = x(s) is a deterministic function of s [Gikhman and Skorokhod,

1996]. A random variable could be the gain in a game of chance, the voltage of a

random source, the cost of a random component, pollutant concentrations, wind

direction or any other numerical quantity that is of interest. A random variable

is a function whose domain is the set s of all experimental outcomes [Papoulis

and Pillai, 2002].

A random variable x is said to be a discrete random variable if its sample

space is discrete: x(s) = 0, 1, 2, ..., for example. This class includes the indicator

random variable which has a binary sample space, meaning there are only two

possible outcomes: x(s) = 0, 1. Most of the random variables used to repre-

sent environmental variables are continuous random variables: they have a sam-

ple space, x(s), that is continuous. For example, precipitation, sea–levels, wind

speeds, and breaking strengths all take values on continuous scales. Because of
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the continuity it is not possible to assign probabilities to all probable values of

the random variable in a meaningful way [Coles, 2001].

Mathematical properties characterizing the random variables are extended

for the case of variables distributed in space. A random field consists of a set of

random variables that describe the spatial (or space–time) changes of an attribute.

Therefore, a random field may be viewed as a multidimensional random variable.

Because of the interdependence of physical quantities at different locations in

space, random fields have unique mathematical properties that distinguish them

from a set of independent random variables. Overall, we denote a field marked

as X(s) where the vector s corresponds to the position of a point in the study

area [Hristopulos, 2012].

Random fields are divided into the following categories based on their values

and their support:

1. If the field takes values from a finite set of numbers (e.g., from the set of

integers), it is called a field of discrete values.

2. If the field values are drawn from a continuum of real numbers, then it is

called a field of continuous values.

3. If the locations where the field is defined coincide with the positions of a

grid, we refer to a lattice field.

4. If the field extends over a continuous space, we have a continuum field.

Random variables and random fields are described by an ensemble of states.

Each state (realization) is also a sample of the field with a corresponding prob-

ability determined by the multidimensional probability density function of the

field.

In this case study, the variable of interest is precipitation. We assume that

precipitation can be modeled as a random field defined on a continuum space.

The interpolation is performed over a rectangular grid leading to a discretised

lattice field.
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2.3 Basic Concepts of Random Fields

Random fields describe different types of spatial dependence with different proper-

ties. The probability distribution of a random field and its parameters are defined

as extensions of those applicable to independent random variables. Henceforth,

the following symbols are going to be used:

• In capital letters, X(s) denotes the random field.

• In lowercase letters, x(s), denotes the values corresponding to a unique

realization.

• The fluctuation of the field is denoted with a prime next to the symbol of

the field. For example X ′(s) indicates the fluctuation of the field X(s).

The integral limits depend on the space where the field X is defined. If the

field takes positive and negative values, the integral ranges from −∞ to∞. If the

field takes only positive values, the integral ranges from 0 to ∞. If it is known

that the field values are limited to a specific interval [a,b], then the integral is

calculated over this interval.

2.4 Probability Density Function

The probability density function (pdf) of the field is denoted with the symbol

f
X

[x(s)]. For the pdf the subscript is the symbol indicating the field, while the

argument of the function are the values of the state x(s).

In the case of a single random variable, the pdf f
X

(x) is a function that refers

to a single point. In contrast, in the case of a random field, f
X

[x(s)] contains

the values for the entire area where the field is defined. This means that f
X

[x(s)]

describes the joint pdf of the field values for any number (even infinite) of points.

Therefore, the pdf in the case of the random field involves much more information

than the pdf of a single variable.

The one–dimensional (scalar) pdf of the field at the point s1 is defined as

f
X

(x1, s1) and describes the possible states of the field at that point. In the case
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of non–homogeneity it is possible for the one–dimensional pdf to vary from point

to point.

Accordingly, the two–dimensional pdf of the field is defined as f
X

(x1, x2; s1, s2),

and expresses the interdependence of possible states at two locations. The multi-

dimensional pdf, f
X

(x1, . . . , xN ; s1, . . . , sN), which describes the interdependence

of possible states for a set of N points, is similarly defined [Isaaks and Srivastava,

1989].

The pdf is the first derivative of the cumulative density function. It is nor-

malized so that the total probability of all possible outcomes is equal to 1, i.e.,

∞∫
−∞

f
X

(x) dx = 1. (2.1)

2.5 Statistical Homogeneity

The concept of statistical homogeneity extends the classical definition of homo-

geneity (a property is homogeneous if the corresponding variable is constant in

space). Thus, a random field X(s) is statistically homogeneous if the following

conditions are fulfilled:

1. The mean value (expectation) is constant, meaning m
X

(s) = m
X

.

2. The covariance function is defined and depends only on the distance vector

r = s1 − s2 between two points, meaning c
X

(s1, s2) = c
X

(r).

3. The second condition implies that the variance of a statistically homoge-

neous field is constant.

These conditions define statistical homogeneity in a weak sense. A random

field is statistically homogeneous in the strong sense if the multidimensional pdf

for N points, where N is any positive integer, remains unchanged by transfor-

mations that change the location of the points without changing the distances

between them.

Accordingly, the concept of statistical homogeneity implies that the statistical

properties of the field do not depend on the spatial coordinates of the center of
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mass of the N points. Practically, statistical homogeneity implies that there are

no spatial trends, so that the spatial variability of the field can be attributed to

fluctuations around a constant level equal to the mean value [Hristopulos, 2012].

2.6 Statistical Isotropy

Statistical isotropy is a property that assumes and further constrains statistical

homogeneity. A field is statistically isotropic if it is statistically homogeneous

and its covariance function depends only on the distance r, but not on the direc-

tion of the distance vector r. This is important from a practical point of view,

because it facilitates the identification of the spatial dependence by means of the

omnidirectional variogram. Therefore, if the covariance function is isotropic, the

field is by definition statistically homogeneous, but not vice versa [Olea, 1999].

2.7 Moments

Statistical moments are deterministic functions that represent expectations over

all possible states of the field. They are defined for various combinations of field

values at one or more locations. The expectation of a quantity A(X) which

depends on the field is denoted by E[A(X)]. For example, the general form of a

multidimensional moment E[Xk1(s1) . . . X
kN (sN)], where k1 + · · · + kN = K, is

given by the following K–dimensional integral

E[Xk1(s1) . . . X
kN (sN)] =

∫
dx1 . . .

∫
dxN fx(x1, . . . , xN ; s1, . . . , sN)xk11 . . . xkNN .

(2.2)

The limit of integration in the above integral depend on the spatial support

of the joint pdf. In general, we can extend the limits of integration from minus

infinity to infinity taking into account that the pdf vanishes outside the support.

In practice most commonly used moments are low order moments such as

mean value, variance, covariance function and semivariogram [Cressie, 1993].
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2.7.1 Expectation

An important feature of a distribution is its central value (mean value). Roughly,

this is similar to the arithmetic average of the data values in a sample. The mean

value of a random field is defined by

m
X

(s) = E[X(s)]. (2.3)

E[X(s)] denotes the expectation, calculated over the ensemble of all states of the

field, i.e.

E[X(s)] =

∫
dx f

X
(x; s)x, (2.4)

where x are the values that correspond to a given state.

In Eq. (2.4) it can be noted that the mean value may depend on the position,

s, which comes from a possible position dependence of the one–dimensional pdf.

Since the pdf is not always known in advance, the expectation is estimated from

the sample using statistical methods [Cressie, 1993].

For highly asymmetric distributions, a more appropriate central value is the

median, Mx, which is the value corresponding to a cumulative frequency of 0.5.

Hence, the median splits the distribution into two equal halves [Goovaerts, 1997].

The median, Mx of the sample is the midpoint of the observed values if they are

arranged in increasing order and is calculated by means of [Isaaks and Srivastava,

1989]

Mx =


x
(
r
N+1

2

)
if N is odd,

1

2

(
x
(
r
N
2

)
+ x

(
r
N
2
+1

))
if N is even,

(2.5)

where r refers to rank of the values x(s) arranged in ascending order.

2.7.2 Variance

The variance is a measure of the distribution’s dispersion around the mean value.

It is given by the mean value of the squared fluctuation according to the following

equation:

σ2
x(s) ≡ E

[
{X(s)−mx(s)}2

]
= E

[
X
′2(s)

]
. (2.6)

33



Moments

Since the variance involves squared differences, it is sensitive to erratic high

values. It is possible for the variance to vary from point to point. If the field

is statistically homogeneous, however, the variance is the same at every point

[Hristopulos, 2012].

The square root of the variance, σ, is called standard deviation, and its ratio to

the mean, σ/m, is the unit–free coefficient of variation for non–negative variables

[Goovaerts, 1997].

2.7.3 Skewness

In probability theory and statistics, the skewness of a probability distribution is

a measure of the distribution’s asymmetry about its mean. The skewness can be

positive or negative, or even undefined. The skewness is usually defined as

coefficient of skewness =
E
[
X
′3

(s)
]

σ3
X

. (2.7)

The qualitative interpretation of the skewness is complicated. For a unimodal

distribution, negative skewness indicates that the tail on the left side of the

probability density function is longer or fatter than the right side —skewness

does not distinguish between these two possibilities. Conversely, positive skewness

indicates that the tail of the right side is longer or fatter than the left side. In

cases where one tail is long but the other tail is fat, skewness does not obey a

simple rule. For example, a zero value indicates that the tails on both sides of

the mean balance out. This occurs both for a symmetric distribution and for

asymmetric distributions the asymmetries of which even out, such as one tail

being long but thin and the other being short but fat. In case of a unimodal

symmetric distribution, the mean is equal to the median and the mode. Further,

in multimodal and discrete distributions, skewness is also difficult to interpret.

Importantly, the skewness does not determine the relationship of the mean and

the median [Dean and Illowsky, 2012].
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2.7.4 Kurtosis

One common measure that describes the shape of a probability distribution is

kurtosis. Kurtosis measures the heaviness of the tails of distributions, originated

with Pearson [Shohat, 1929] and is based on a scaled version of the fourth moment

of the data or population. The coefficient of kurtosis is usually defined as

k
X

=
E
[
X
′4

(s)
]

σ4
X

. (2.8)

There are various interpretations of kurtosis based on peakedness (width of

peak), tail weight, and lack of shoulders (distribution primarily peak and tails,

not in between). However, heavy tails have much more influence on kurtosis than

the shape of the distribution near the mean [Ali, 1974; Kaplansky, 1945]. Also

it has been argued that kurtosis really measures heavy tails, and not peakedness

[Balanda and Macgillivray, 1988]. For this measure, higher kurtosis means more

of the variance is the result of infrequent extreme deviations, as opposed to fre-

quent modestly sized deviations. It is common practice to use an adjusted version

of Pearson’s kurtosis, the excess kurtosis, to provide a comparison of the shape of

a given distribution to that of the normal distribution. The coefficient of excess

kurtosis is defined based on the kurtosis of a univariate normal distribution which

is equal to 3. Thus, the excess kurtosis is calculated by the equation

excess kurtosis =
E
[
X
′4

(s)
]

σ4
X

− 3 = k
X
− 3. (2.9)

Sample skewness and kurtosis are rather unreliable estimators of the cor-

responding population parameters if the sample is small; they become better

estimators as the sample size increases. However, large values of skewness or

kurtosis may merit attention even in small samples, because such values indicate

that statistical methods based on normality assumptions may be inappropriate

[Williams, 2000].
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2.8 Covariance Function

Another moment which characterizes a random field is the centered covariance

function (CCF), also known as covariance function for short, is defined by the

following equation:

c
X

(s1, s2) ≡ E [X(s1)X(s2)]− E [X(s1)]E [X(s2)] . (2.10)

Equation (2.10) is equivalent to the following

c
X

(s1, s2) ≡ E [{X(s1)−mX
(s1)}{X(s2)−mX

(s2)}] . (2.11)

The random field X
′
(s1) ≡ X(s1) − m

X
(s1) corresponds to the fluctuation

of the field X(s1) around the mean value at point s1. The mean value of the

fluctuation field equals to zero, meaning

E
[
X
′
(s1)

]
= 0. (2.12)

Based on the previous equations it holds that

c
X

(s1, s2) = E
[
X
′
(s1)X

′
(s2)

]
. (2.13)

Consequently, the CCF represents quantitatively the dependence of the fluc-

tuations between two different points. [Hristopulos, 2012].

In statistically homogeneous and isotropic fields the two most important pa-

rameters of the covariance are (i) the variance σ2
X

= c
X

(0) and (ii) the correlation

length ξ. The variance is a measure of the magnitude of the field fluctuations.

The correlation length is the parameter which normalizes the distance (in co-

variance function, distance is shown as the ratio r/ξ). The correlation length

defines the distance over which the field values are statistically correlated. In

case of anisotropic dependence, different correlation lengths are observed along

the principal directions of anisotropy [Varouchakis, 2012].

If the arguments of the covariance function coincide, its value becomes equal
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to the variance of the field at that point, that is

c
X

(s1, s1) = σ2
X

(s1). (2.14)

Spectral density

Not every function is acceptable as a covariance function. Permissibility con-

ditions for the covariance function are defined by Bochner’s theorem. This is

expressed by means of the spectral density, which is given by the Fourier trans-

formation of the covariance function [Bochner et al., 1959]. The Fourier transform

is defined by the following integral

c̃
X

(k) =

∫
dr e−i k·r c

X
(r), (2.15)

where r is the distance vector between two points and k is the vector of spatial

frequency (wave–vector).

The inverse Fourier transform is given occurs by the following integral:

c
X

(r) =
1

(2π)d

∫
dk ei k·r c̃x(k). (2.16)

Bochner Theorem: A function c
X

(r) is a permissible covariance function if

the following conditions apply:

1. The power spectral density c̃
X

(k) exists,

2. it is non–negative throughout the frequency domain, and

3. the integral of c̃
X

(k) over the entire frequency domain is bounded.

2.9 Variogram Function

The semivariogram (or more commonly known as variogram for simplicity) is a

statistical moment that assesses the average decrease in similarity between two

random variables as the distance between them increases. Stochastic interpolation
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algorithms, such as kriging–based methods, require knowledge of the variogram

or the covariance [Olea, 1999].

The variogram of a random field is defined by the following equation

γ
X

(s,r) =
1

2
E
{

[X(s+r)−X(s)]2
}
. (2.17)

The variogram is defined with respect to a pair of points, using the expectation

of the squared increment field, where the latter is defined as δX(s;r) ≡ X(s+r)−
X(s). The squared increment field δX(s;r) is also called distance step r.

If the field X(s) is statistically homogeneous, the variogram is directly con-

nected to the covariance function by means of the equation

γ
X

(r) = σ2
X
− c

X
(r). (2.18)

Thus the variogram of an SRF is bounded by the variance, i.e., by c
X

(0). From

the above equation it follows that (i) the variogram tends asymptotically to the

variance and (ii) if the covariance is known, the variogram is also known. For

statistically homogeneous fields, the variogram contains the same information as

the covariance function [Chilès and Delfiner, 2012].

There are two reasons to favor the variogram over the covariance function

for an SRF with unknown mean. First, it is a more general function than the

covariance and second the variogram does not require knowledge of the mean

to compute the covariance. The mean has to be estimated from the data; this

introduces bias that cannot be corrected unless the covariance function, or at

least the correlation function, is already known. The variogram is not affected

by these problems since it automatically filters out the mean.

If the increment δX(s;r) is statistically homogeneous, the random field X(s) is

called homogeneous field with statistically homogeneous differences. In this case

the variogram γ
X

(r) depends solely on the distance r between the points. This

is the result of statistical homogeneity of the field increment. If the field X(s) is

statistically homogeneous, the same applies to the increment δX(s;r). However

the opposite is not necessarily true, i.e. if the field of increment is statistically

homogeneous, the initial field X(s) is not necessarily homogeneous [Hristopulos,
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2012].

For a field X(s) with homogeneous increments, the covariance function may

depend on both the distance r and the positions of the points. Instead, the

variogram function depends only on the distance between the points.

The variogram parameters determine the spatial dependence of the field values

at two neighboring points. From the definition of the variogram, using the mean

squared differences, it is shown that the variogram is a non–negative function,

i.e., γ
X

(r) ≥ 0. However, the reverse is not always true, i.e. a non–negative

function is not necessarily an admissible variogram [Hristopulos, 2012].

Statistically homogeneous field

For homogeneous fields with isotropic spatial dependence, the variogram is de-

termined by two parameters: the upper bound (sill) and the correlation length.

The value of the variogram for long distances r tends asymptotically to the upper

bound (sill) which in theory is equal to the variance σ2
X

of the random field. This

property is based on the relation γ
X

(r) = σ2
X
− c

X
(r) and the fact that at long

distance the value of the covariance function tends towards zero. The variogram

can increase indefinitely if the variability of the process does not approach a limit

at long distances. In this case, however, the random field is not statistically

homogeneous.

The correlation length determines the ”speed” with which the variogram ap-

proaches the sill and also the range within which two points are correlated. It

gives a precise meaning to the conventional notion of the area of influence for the

sample.

Variogram behavior near the origin has two typical behaviors:

1. A discontinuity at 0 known as the nugget effect. γ
X

(r) does not seem to

tend to zero as r → 0. This means that the random field is generally

not continuous and thus very irregular. The term nugget effect is due

to discontinuities of the variogram of mineral grades at the origin. By

extension, the term “nugget effect” is applied to all discontinuities at the

origin, even if their cause is different. In general, the nugget effect is due to

[Chilès and Delfiner, 2012]:
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i. a microstructure or “noise”, namely a component of the phenomenon

with a range shorter than the sampling support (true nugget effect),

ii. a structure with a range shorter than the smallest interpoint distance,

iii. measurement or positioning errors.

2. A flat curve which indicates pure nugget effect or white noise. There is no

correlation between any two points, however close they may be. This is the

extreme case of total absence of spatial structure.

If correlation characteristics vary in different directions in space, the depen-

dence is anisotropic. There are two main types of anisotropy mainly encountered

in practice.

Geometrical anisotropy refers to cases where the sill is independent of the di-

rection, but the “speed” of approach to the sill depends on the direction. In this

case the variogram is expressed as a function γ
X

(
r1
ξ1
, . . . , rd

ξd

)
of dimensionless dis-

tances r1
ξ1
, . . . , rd

ξd
, where ξ1, . . . , ξd are the correlation lengths in the corresponding

directions and d is the number of spatial dimensions (d=1 for drillholes, d=2 for

data on a plane, and d=3 for data in 3D space).

Zone anisotropy, also called stratified anisotropy, refers to the case where the

sill depends on the spatial direction. Then the variogram can be expressed as the

sum of two components such that

γ
X

(r) = γ
X,1

(r) + γ
X,2

(r̂). (2.19)

In the above equation the function γ
X,1

(r), where r = ‖r‖ is the magnitude of

the distance vector, represents an isotropic dependence, while the function γ
X,2

(r̂)

represents the anisotropic dependence of the sill on the direction of the unit vector

r̂.

In the case of geometric anisotropy d correlation lengths are required ξ1, . . . , ξd,

which are not usually equal to each other. Accordingly, additional parameters are

required for the determination of the anisotropy. For two dimensional systems

with ξx and ξy, corresponding to the correlation lengths along the main axis, the

anisotropy parameters are:
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1. the ratio of correlation lengths ρy/x ≡ ξy/ξx, which is called anisotropy

ratio,

2. the orientation angle θ, which defines the orientation of the main anisotropy

axis in relation to the Cartesian coordinate system.

Any isotropic model can be interpreted as a particular case of the geometric

anisotropic model with anisotropic ratio ρy/x equal to one. If ρy/x = 1, it does

not matter what the orientation angle θ is [Goovaerts, 1997; Hristopulos, 2012].

The variogram generally increases, but not necessarily linearly, with the dis-

tance between the points, while in contrast the correlation function decreases.

This is due to the fact that the correlation function describes the dependence

between the field values at two different points in space, and their dependence

decreases at larger distances. In contrast, the variogram measures the difference

between field values as a function of their distance. Therefore, variogram values

increase when the distance increases [Journel, 1989].

2.10 Variogram Models

The most commonly used theoretical variogram models include the exponential,

gaussian, spherical, power–law, linear and the Matérn functions. Their respective

equations are listed below. For the following equations which define the isotropic

versions of the models, σ2
X

is the variance, ‖r‖ is the Euclidean norm of the lag

vector r, and ξ is the characteristic length.

Exponential

γ
X

(r) = σ2
X

[1− exp (−‖r‖/ξ)] . (2.20)

The exponential model approaches the sill asymptotically. A practical def-

inition of the range is the distance 3ξ where the variogram is equal to 0.95σ2
X

.

Geometrically, a tangent at the origin intersects the asymptote σ2
X

at lag ξ.

Gaussian

γ
X

(r) = σ2
X

[
1− exp

(
−‖r‖2/ξ2

)]
. (2.21)
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The sill is approached asymptotically. A practical rule is to consider the range

as the distance
√

3ξ where the variogram becomes equal to 0.95σ2
X

. A graph of the

model has a parabolic form near the origin. Despite its theoretical permissibility,

normal equations involving Gaussian models may be numerically singular [Olea,

1999].

Spherical

γ
X

(r) =


σ2
X

[
1.5

(
‖r‖
ξ

)
− 0.5

(
‖r‖
ξ

)3
]

if ‖r‖ ≤ ξ,

σ2
X

if ‖r‖ ≥ ξ.

(2.22)

Near the origin this variogram behaves as a linear function. The model is said

to be transitive, because it reaches a finite sill at a finite range ξ. The tangent

to this variogram at the origin intersects the sill at two–thirds of the range. The

model is not permissible in spaces with dimension larger than 3 [Walck, 1996].

Power–law

γ
X

(‖r‖) = α‖r‖2H where 0 < H < 1, (2.23)

where H is the Hurst exponent.

This is a non–transitive model. The linear variogram is a special case for

H = 1/2, and the pure nugget effect is a special case for H = 0. The main

advantage of the power model is its simplicity. The power variogram may be used

to model an experimental variogram that is not transitive or to model transitive

variograms if the maximum lag in the normal equations is smaller than the range,

taking the dependence of the variogram beyond the range immaterial [Olea, 1999].

Linear

γ
X

(‖r‖) = α‖r‖. (2.24)

Matérn

γ
X

(‖r‖) = σ2
X

[
1− 1

2ν−1Γ(ν)

(
2
√
ν

R
‖r‖
)ν

Kν

(
2
√
ν

R
‖r‖
)]

, (2.25)
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where ν is the smoothness parameter, Γ(·) is the gamma function and Kν(·)
is the modified Bessel function of the second kind of order ν. For ν = 0.5,

the exponential model is recovered, while the Gaussian model is recovered for

ν → ∞. For all cases ν > 0 [Stein, 1999]. Some special cases are recovered for

different values of ν, e.g., for ν = 1/3, 1, 3/2, 5/2 the recovered models are von

Kármán, Whittle, Second–order autoregressive and Third–order autoregressive

models, respectively [Guttorp and Gneiting, 2006].

The Matérn family has been applied extensively to environmental data as to

the analysis of temperature data in the northern United States by Handcock and

Wallis [1994], to the statistical assessment of deterministic air quality models

by Fuentes [2002] and to the analysis of gravitational fields to diagnose geodetic

networks by Meier [1981]. Also Mej́ıa and Rodŕıguez-Iturbe [1974] established

the use of stochastic process models in hydrology using the Matérn model.

Lately, the Matérn correlation family has attracted attention in the machine

learning community [Rasmussen and Williams, 2006; Seeger, 2004].

2.10.1 Spartan Variogram Model

Spartan spatial random fields (SSRFs) are generalized Gibbs random fields, equipped

with a coarse–graining kernel that acts as a low–pass filter for the fluctuations

[Hristopulos, 2003]. SSRFs are defined by means of physically motivated spa-

tial interactions and a small set of free parameters. SSRFs have been applied in

environmental risk assessment [Hristopulos and Elogne, 2007], atmospheric envi-

ronment [Ẑukoviĉ and Hristopulos, 2008] and in hydrological data [Varouchakis

et al., 2012].

The multivariate probability density function of Gibbs random fields is ex-

pressed as:

f
X

[X(s)] = Z−1exp{−H [Xs)]}. (2.26)

The exponent H [X(s)] represents the value of the energy functional H [X] for

the state X(s), and the normalization constant Z =
∑

X(s) exp{−H [X(s)]} is

the partition function.

The isotropic Fluctuation–gradient–curvature (FGC) SSRF functional is given
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by the following equation:

H[X] =
1

2η0ξd

∫
ds[{X(s)−E[X(s)]}2 +η1ξ

2{∇X(s)}2 + ξ4{∇2X(s)}2]. (2.27)

The scale parameter η0 determines the total variance of the fluctuations, the

coefficient η1 the shape of the covariance spectral density, and ξ is the character-

istic length [Hristopulos, 2003].

The spectral density is expressed in terms of η0, η1, ξ by the equation

C̃
X

(k) =
|G̃(k)|2η0 ξd

1 + η1 (kξ)2 + (kξ)4
. (2.28)

The permissibility conditions for the new parameters require that either the set

of relations (i) or the set of relations (ii) below is valid:

(i) η0 > 0, ξ > 0, and η1 ≥ 0,

(ii) η0 > 0, ξ > 0, and η1 < 0, η21 < 4.

The maximum of the spectral density for η1 > 0 is at km = 0. For η1 < 0, the

spectral density curve is nonmonotonic, suggesting oscillatory behaviour of the

covariance. The maximum of the spectral density occurs at the finite frequency

km = ξ−1
√
|η1|/2. The height of the spectral peak is C̃

X
(km) = 4η0 ξ

d/ (4− η21).

As η1 → −2, the width tends to zero while the height tends to infinity.

The spectral representation of the covariance function is given by means of

the following one–dimensional integral, where Jd/2−1(r) is the Bessel function of

the first kind of order d/2− 1 [Hristopulos and Elogne, 2007]

C
X

(r) =
η0rξ

d

(2πr)d/2

∫ kc

0

dk
kd/2Jd/2−1 (kr)

1 + η1 (kξ)2 + (kξ)4
. (2.29)

The Spartan covariance function in 3–dimensions is expressed as follows:
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C
X

(h) =



η0e
−hβ2

2π∆

[
sin(hβ1)

hβ1

]
for |η1| < 2, σ2

X
=

η0
2π∆

,

η0e
−h

8π
for η1 = 2, σ2

X
=
η0
8π
,

η0
4π∆

(
e−hω1 − e−hω2

h

)
for η1 > 2, σ2

X
=

η0
4π∆

,

(2.30)

where, ω1,2 = (|η1 ∓∆|/2)1/2, ∆ = |η21 − 4|1/2, and β1,2 = |2∓ η1|1/2/2.

In Eq. (2.30), ω1,2 and β2 are dimensionless damping coefficients, β1 is a

dimensionless wave number, ξ is the characteristic length, ‖h‖ = ‖r‖/ξ is the

normalized lag vector, h = |h| is the Euclidean norm and σ2
X

is the variance. The

exponential covariance function is obtained from Eq. (2.30) for η1 = 2.

In this case study, the Spartan variogram model is used for the estimation of

the spatial variability.

2.11 Variogram Estimation

The estimation of the variogram is performed using the sample values and is

based on the ergodic hypothesis, which allows us to replace the stochastic mean

[calculated with regard to all situations which correspond to the pair of points

X(s), X(s + r)], with the average of all pairs of points that are “approximately”

apart at a distance equal to r. There are various methods for estimating the

variogram. We discuss the most commonly used in applied studies below.

2.11.1 Method of Moments

The most commonly used method for estimating the variogram is the method of

moments, in which the estimator is expressed by means of the equation

γ̂
X

(rk) =
1

2n(rk)

N∑
i,j=1

{
[X(si)−X(sj)]

2}ϑij(rk), (k = 1, . . . , Nc), (2.31)
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where,

ϑij(rk) =

1, si − sj ∈ B(rk),

0, otherwise.
(2.32)

• The class function ϑij(rk) selects those vectors that corresponds to a closed

area B(rk) centered around the vector rk, as shown in Fig. 2.1.

• The variable n(rk) is equal to the number of point pairs contained in the

class B(rk).

• The sample variogram is defined for a finite set of discrete distances rk (k =

1, . . . , Nc), where Nc is the total number of classes.

Figure 2.1: Schematic figure of the region B(rk) around the distance vector
[Hristopulos, 2012]

Therefore, this calculation determines a value for the sample variogram for

each rk, according to the average value of the squared differences [X(si)−X(sj)]
2
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over all pairs of points, whose distance vector belongs in the B(rk) region. The

estimator γ̂
X

(rk) is a good approximation of the true γ
X

(rk) if the average of the

squared differences in the rk class is close to the expectation E{X(s)−X(s+rk)}
[Hristopulos, 2012].

The estimation of the variogram implies an ergodic assumption, which allows

to toggle between the stochastic expectation and the sample mean. The ergodic

property can be considered as valid if the following conditions hold

1. The increment field X(si) − X(sj) is statistically homogeneous. This im-

plies that the process to be investigated shows no significant changes in its

statistical properties within the study area.

2. The number of pairs in each class is large enough so the sample average of

the squared increments can be calculated with good statistical accuracy.

3. The number of classes is large enough to allow a sufficiently dense mapping

of the variogram as a function of distance.

After the experimental variogram is calculated, it is fit to a theoretical model

which allows the calculation of the variogram for every possible distance. The

theoretical model is needed for the estimation (prediction) of the field at points

where measurements are not available. A theoretical variogram is admissible if it

is a conditionally negative definite function. This means that for any set of linear

coefficients λα, where α = 1, . . . , n, that satisfies the equation

n∑
α=1

λα = 0, (2.33)

the following inequality must apply

−
n∑

α=1

n∑
β=1

λαλβ γX (sα − sβ) ≥ 0. (2.34)

The variogram permissibility conditions are expressed more concisely with the

help of Bochner’s theorem as follows: The function γ
X

(r) is a valid variogram in

d dimensions if
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1. γ
X

(0) = 0,

2. the generalized Fourier transformation γ̃
X

(k) exists,

3. γ̃
X

(k) satisfies the inequality −k2γ̃
X

(k) ≥ 0, and

4. lim γ
X

(r)/r2 = 0, r →∞.

If the random field X(s) is statistically homogenous, it is easier to check the

acceptance of a variogram model using the covariance σ2
X
− γ

X
(r). If the function

γ
X

(r) is a permissible variogram, then the function c
X

(r) = σ2
X
− γ

X
(r) is an

acceptable covariance function and vice versa [Christakos, 1984].

2.12 Spatial Estimation

An important problem in the geosciences is the estimation of a variable over an

entire spatial domain based on measurements carried out at a limited number

of points. From the mathematical viewpoint this is an interpolation problem.

The variable of interest is approximated by a parametric function whose form is

assumed in advance, either explicitly or implicitly. If this function is parametric,

its parameters are selected so as to optimize some fitting criterion —with respect

to the data. Once the approximation function is determined, it is a simple matter

to evaluate it wherever needed [Chilès and Delfiner, 2012].

The term estimate includes all the mathematical procedures needed to calcu-

late the field values at points where no measurements of the property are avail-

able. The estimate is local, if it refers to a specific point, or global, if it aims to

calculate a characteristic (representative) value over an entire region. Based on

the parametric function which contains the spatial dependence, it is possible to

obtain local estimates in the field where there are no measurements, using the

neighboring measured field values. However, in most cases of practical interest,

the final objective is to estimate the field at a set of points instead of a single

point. For example, in order to construct maps of environmental properties, the

field must be estimated at all the nodes of a suitable interpolation grid.

Various models of spatial estimation (interpolation) exist in the literature.

The main idea is that the value at the estimation point is given by a linear or
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nonlinear combination of the neighboring values. The estimate results from the

optimization of a statistical measure, e.g. the maximization of likelihood or the

minimization of the mean square estimation error. Interpolation methods are

divided in three categories:

(i) the local neighbourhood approach, which includes methods such as inverse

distance weighted that assumes that the value at an unsampled point can

be approximated as a weighted average of values at points within a certain

cut–off distance; usually the weights are inversely proportional to a power of

distance. Also, natural neighbour interpolation falls into the same category,

but the weighted averages are dependent on areas or volumes [Mitas and

Mitasova, 2005].

(ii) The variational approach which assumes that the interpolation function

should pass through (or close to) the data points and, at the same time,

should be as smooth as possible. These two requirements are combined

into a single condition of minimising the sum of the deviations from the

measured points and the smoothness seminorm of the spline function.

(iii) The third category includes the geostatistical approaches, interpolation us-

ing kriging, the surface or volume is assumed to be one realisation of a

random function with a certain spatial covariance [Journel and Huijbregts,

2003].

The most popular methods are based on stochastic linear interpolation in

conjunction with the minimization of the mean square error of the estimate.

This set of methods is known as “kriging”, a term coined by Matheron [1963]

in honor of the South African engineer who first used this method in mineral

resources exploration, Danie Krige [1951].

The problem of local estimation is usually expressed as follows: Based on

a data set x(si), at si (where i = 1, . . . , N) points located within a region Ω,

determine the value of the field at the estimation point u ∈ Ω, which does not

coincide with any of the si. The estimate at point u is denoted as X̂(u), while

with x̂(u) we denote the specific value of the estimate derived from the available

data.
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The estimation process is usually repeated at every node of a grid suitably

defined for the particular application. This allows the creation of maps represent-

ing the isolevel contours of the random field. These maps should be accompanied

by an estimate of reliability, which determines the uncertainty of the estimation

at each point.

Let ω(u) represent the correlation neighborhood of the point u, which includes

n(u) ≤ N points than the size of si. The size of the neighborhood is determined

in terms of the correlation length. The neighborhood could ideally be extended

over the entire domain, but for large data sets this may lead to computational

difficulties. Next, we briefly outline how the kriging methods are formulated

by focusing on the simple kriging method. The fluctuation of the field at the

estimation point is expressed according to the following linear combination:

X̂(u)−m
X

(u) =
∑

sα∈ω(u)

λα [X(sα)−m
X

(sα)] =

n(u)∑
α=1

λα [X(sα)−m
X

(sα)] .

(2.35)

The coefficients λα represent the linear weights. Therefore, the above equation

expresses the fluctuation at the estimation point as a function of the fluctuation

of the sampling points inside the correlation neighborhood. The estimate of the

field is respectively given by the equation

X̂(u) = m
X

(u) +

n(u)∑
α=1

λα [X(sα)−m
X

(sα)] . (2.36)

The estimator X̂(u) is a random variable, because it consists of a linear

combination of random field values. Accordingly, the estimation error ε(u) =

X̂(u) −X(u), is also a random variable. Kriging is a form of generalized linear

regression formulates the optimal estimator X̂(u) using weights that minimize

the estimation error variance [Chilès and Delfiner, 2012].

2.12.1 Kriging Methods

There exist various formulations of kriging which aim to adapt to different types

of natural variability. Below, we present some formulations of kriging which differ
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between them in how they treat the trend function m
X

(u).

2.12.1.1 Simple Kriging (SK)

Simple kriging (SK) is applied when the mean m
X

(u) is known and constant

throughout the study area Ω, i.e. E[X(s)] = m
X

. In this case the kriging estimator

is defined by the following equation:

X̂(u) =

n(u)∑
α=1

λαX(sα)−m
X

n(u)∑
α=1

λα − 1

 . (2.37)

The linear weights λα are then determined so as to minimize the error variance

given by the equation

σ2
E,SK(u) = Var

[
X(u)− X̂(u)

]
= Var

[
X̂(u)−m

X
−X ′(u)

]
. (2.38)

The equation of the estimator X̂(u) leads to the following relation for the

fluctuation of the random variable X̂(u)

X̂(u)−m
X

=

n(u)∑
α=1

λα [X(sα)−m
X

] =

n(u)∑
α=1

λαX
′
(sα). (2.39)

The error variance can thus be expressed as a quadratic function of the weights

with coefficients that are determined by the linear weights λα, α = 1, . . . , n(u).

σ2
E,SK(u) =

n(u)∑
α=1

n(u)∑
β=1

λαλβ E
[
X
′
(sα)X

′
(sβ)

]
+ E

[
X
′2(u)

]

−2

n(u)∑
α=1

λα E
[
X
′
(sα)X

′
(u)
]

=

n(u)∑
α=1

n(u)∑
β=1

λαλβ cX (sα − sβ) + σ2
X
− 2

n(u)∑
α=1

λα cX (sα − u).

(2.40)

The optimal values of the linear weights minimize the error variance. The

weights are obtained by setting to zero each of the n(u) partial first derivatives
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of the error variance with respect to the weights, i.e.,

∂σ2
E,SK(u)

∂λα
= 0, α = 1, . . . , n(u). (2.41)

The system of n(u) linear equations is known as the system of normal equa-

tions [Luenberger, 1969]. After calculating the derivatives, the system is expressed

in the following form and is expressed by the equation

n(u)∑
β=1

λβ cX (sα − sβ) = c
X

(sα − u), α = 1, . . . , n(u). (2.42)

The above system of linear equations may also be expressed as the matrix

equation

Cα,βλβ = Cα,u. (2.43)

The matrix Cα,β, represents the covariance matrix with elements Cα,β =

c
X

(sα − sβ). The vector Cα,u represents the values of the covariance function

between the sample points and the estimation point, i.e., Cα,u = c
X

(sα − u).

Using the equation c
X

(0) = σ2
X

, the linear system is written in more detail in

the form of matrices as follows:
σ2
X

. . . . . . c
X

(s1 − sn)

c
X

(s2 − s1) . . . . . . c
X

(s2 − sn)
...

...
...

...

c
X

(sn − s1) . . . . . . σ2
X



λ1

λ2
...

λn

 =


c
X

(s1 − u)

c
X

(s2 − u)
...

c
X

(sn − u)

 (2.44)

The solution of the linear system is given by the following equation:

λβ = C−1β,α Cα,u, ∀ β = 1, . . . , n(u). (2.45)

The covariance matrix elements are calculated from the optimum variogram

by means of the equation

σ2
X
− γ

X
(sα, sβ) = c

X
(sα, sβ). (2.46)
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The linear system (Eq. (2.45)) has a solution for the coefficients λβ, where

β = 1, . . . , n(u), if the covariance function is permissible (semi positive definite),

and if each point has a unique value. The values of the linear coefficients are

independent of the sill of the variogram, but they depend on the covariance

model, i.e., on the form of the spatial dependence. Kriging is considered as

an exact interpolator, in the sense that at every point where a measurement is

available, the kriging estimate coincides with the sample value. This exactitude

property is not true if the variogram (or the covariance, equivalently) involves a

nugget effect. Then, the nugget variance is added to the diagonal elements of the

covariance matrix on the left side of Eq. (2.44). As a result of this additional

variance, the exactitude property is lost.

The reliability (uncertainty) of the estimate is determined by the square root

of the variance of the estimation error. The variance σ2
E,SK(u) is determined from

the following equation based on Eqs. (2.40), (2.45)

σ2
E,SK(u) = σ2

X
−

n(u)∑
α=1

n(u)∑
β=1

Cu,αC
−1
α,βCβ,u. (2.47)

This is equivalently expressed as

σ2
E,SK(u) = σ2

X

1−
n(u)∑
α=1

n(u)∑
β=1

ρα,uρ
−1
α,βρβ,u

 , (2.48)

where ρα,β are the elements of the correlation matrix defined by means of Cα,β =

σ2
X
ρα,β.

Equations (2.47), (2.48) show that the error variance increases proportionally

to the random field variance σ
X
2. Also, assuming positive values of the weights

λα, the error increases as the distance |u− sα| between the estimation points and

the sample point decreases, because then the correlation ρu,α tends to one [Chilès

and Delfiner, 2012; Goovaerts, 1997].
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2.12.1.2 Ordinary Kriging (OK)

Ordinary kriging (OK) is applied when the mean m
X

(u) is constant but unknown

inside the local neighborhood ω(u) of the estimate point. The mean m
X

(s) may

vary from neighborhood to neighborhood if the ordinary kriging is not applied

over the entire domain.

The unknown local mean is filtered from the linear estimator by forcing the

kriging weights to sum to one. This constraint enforces the zero bias condition.

The ordinary kriging estimator X̂(u) is thus written as a linear combination only

of the X(sα) where α = 1, . . . , n(u), as

X̂(u) =

n(u)∑
α=1

λαX(sα), (2.49)

with

n(u)∑
α=1

λα = 1. (2.50)

Equation (2.50) is the unbiasedness constraint.

In the case of ordinary kriging, minimum mean square error should be cal-

culated using the restriction imposed by the unbiasedness constraint. The mini-

mization of the error variance under the non-bias condition
∑n(u)

α=1 λα = 1 uses the

Lagrange multiplier method for constrained minimization. The error variance is

calculated by means of the equation

σ2
E,OK

(u) = σ2
X

(u) +

n(u)∑
α=1

n(u)∑
β=1

λαλβE
[
X
′
(sα)X

′
(sβ)

]

−2

n(u)∑
α=1

λαE
[
X
′
(sα)X

′
(u)
]

+ 2µ

n(u)∑
β=1

(λα − 1),

(2.51)

where the constant 2µ is the Lagrange parameter. Using the covariance function,
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Eq. (2.51) is expressed as

σ2
E,OK

(u) = σ2
X

(u) +

n(u)∑
α=1

n(u)∑
β=1

λαλβ cX (sα, sβ)

−2

n(u)∑
α=1

λαcX (sα,u) + 2µ

n(u)∑
β=1

(λα − 1).

(2.52)

The optimal values of the linear weights and the parameter µ minimize the

error variance. The weights are obtained by setting each of the (n(u) + 1) partial

first derivatives equal to zero, i.e.,

∂σ2
E,OK(u)

∂λα
= 0, α = 1, . . . , n(u), (2.53)

∂σ2
E,OK(u)

∂µ
= 0. (2.54)

These conditions lead to the following linear system of equations for the linear

weights,

n(u)∑
β=1

λβ cX (sα − sβ) + µ = c
X

(sα − u), α = 1, . . . , n(u), (2.55)

n(u)∑
α=1

λα = 1. (2.56)

The above linear system of equations is written in the form of matrices as

follows:



σ2
X

cX (s1 − s2) . . . cX (s1 − sn) 1

cX (s2 − s1) σ2
X

. . . cX (s2 − sn) 1
...

...
...

...
...

cX (sn − s1) cX (sn − s2) . . . σ2
X

1

1 1 . . . 1 0





λ1

λ2
...

λn

µ


=



cX (s1 − u)

cX (s2 − u)
...

cX (sn − u)

1


(2.57)
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The solution of the linear system is given by the following equation:

λβ = C−1β,α Cα,u, ∀ β = 1, . . . , n(u). (2.58)

The optimal estimate of the kriging error variance is respectively given by the

equation

σ2
E,OK

(u) = σ2
X
−

n(u)∑
α=1

λα cX (u, sα)− µ, (2.59)

with parameter µ < 0 [Christakos, 1992; Goovaerts, 1997].

2.12.1.3 Kriging with a Trend Model – Universal Kriging(UK)

Universal kriging(UK) considers that the unknown local mean varies smoothly

within each local neighborhood ω(u). In this case, the trend component is mod-

eled as a linear combination of known functions. Hence, the trend in each corre-

lation neighborhood is given as

m
X

(s
′
) =

K∑
k=0

αk(s
′
)ψk(s

′
) ≈

K∑
k=0

αk(u)ψk(s
′
), s

′ ∈ ω(u). (2.60)

The functions ψk(s
′
) are known, whereas the coefficients αk(s

′
) are unknown and

deemed constant within each local neighborhood ω(u). The linear estimator is

thus written

X̂(u) =
K∑
k=0

αk(u)ψk(u) +

n(u)∑
α=1

λα

[
X(sα)−

K∑
k=0

ψk(sα)αk(u)

]

=

n(u)∑
α=1

λαX(sα) +
K∑
k=0

αk(u)

ψk(u)−
n(u)∑
α=1

λαψk(sα)

 . (2.61)

Consequently, the minimized error variance is calculated as

σ2
E,UK

(u) = c
X,R

(0)−
n(u)∑
α=1

λα cX,R(sα − u)−
K∑
k=0

µ ψk(u), (2.62)
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where µ are the Lagrange parameters and c
X,R

is the covariance of the residual

component [Goovaerts, 1997].

2.12.1.4 Regression Kriging – Residual Kriging (RK)

Regression Kriging (RK) combines a trend function with interpolation of the

residuals. In RK the estimate is expressed as

X̂(u) = m
X

(u) + X̂
′
(u), (2.63)

where m
X

(u) is the trend function, and X̂
′
(u) is the interpolated residual by

means of OK [Rivoirard, 2002]. Typically, the trend function is modeled as

m
X

(u) =

p∑
k=0

βkqk(u) q0(u) = 1, (2.64)

where qk(u) are the values of auxiliary variables at u, βk are the estimated regres-

sion coefficients and p is the number of auxiliary variables [Draper and Smith,

1981; Hengl, 2007; Hengl et al., 2007]. Auxiliary variables could include polyno-

mials of the data coordinates (x,y). The regression coefficients, βk, are estimated

from the sample using ordinary least squares (OLS) or optimally, generalized least

squares (GLS) as

β
GLS

=
(
qT · c−1 · q

)−1 · qT · c−1 ·X, (2.65)

where β
GLS

is the vector of estimated regression coefficients, c is the covariance

matrix of the residuals, q is a matrix of predictors at the sampling locations, and

X is the vector of measured values of the variable.

The variance of the estimates follows from the equations [Hengl et al., 2003,

2007]:

σ2
E,RK

(u) = σ2
d(u) + σ2

f (u), (2.66)

σ2
d(u) = qTu

(
qT c−1

X
′ q
)−1

q(u), (2.67)

σ2
f (u) =

n(u)∑
α=1

λαc
X
′ (sα − u) + µ, (2.68)
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where σ2
d(u) is the drift prediction variance, qu is the vector of (p+1)×1 predictors

at the unvisited location, q is the matrix of (nu + 1)× (p + 1) predictors at the

sampling points in the search neighborhood, c
X
′ is the variogram matrix of the

(nu + 1)× (nu + 1) residuals at the measured locations (neighborhood) and σ2
f (u)

is the kriging (OK) variance of residuals. The matrices and vectors involved in

the RK variance [Varouchakis, 2012]:

qu =



q1(u)

q2(u)
...

qp(u)

1


(2.69)

q =



q1(u1) . . . qp(u1) 1

q1(u2) . . . qp(u2) 1
...

...
...

...

q1(unu) . . . qp(unu) 1

1 . . . 1 0


(2.70)

cX′ =



σ2

X
′ c

X
′ (s1 − s2) . . . c

X
′ (s1 − sn) 1

c
X
′ (s2 − s1) σ2

X
′ . . . c

X
′ (s2 − sn) 1

...
...

...
...

...

c
X
′ (sn − s1) c

X
′ (sn − s2) . . . σ2

X
′ 1

1 1 . . . 1 0


(2.71)

The method of regression kriging is used in applications, such as the modeling

of spatial variability in tropical rainforest soils [Yemefack et al., 2005], mapping

of leaf area index (LAI) [Berterretche et al., 2005], modeling spatial distribution

of human diseases [Pleydell et al., 2004], and mapping of groundwater levels

[Varouchakis et al., 2012]. It is a powerful spatial prediction technique that can

be used to interpolate environmental variables (both continuous and categorical)

from large point sets. The asset of the method relies on its ability to combine a

trend model between the dependent variable and auxiliary variables (such as land
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surface parameters), and allow separate interpretation of the two interpolated

components [Hengl et al., 2007]. The use of regression kriging is limited because

the analyst must carry out various steps in different software environments, both

statistical and GIS, it is computationally demanding and it is sometimes difficult

to find the auxiliary variables that affects the data sets.

In this study, we use regression kriging interpolation to estimate the precip-

itation over the entire island of Crete based on available measurements from a

limited number of stations. We opt for this method because we can use physi-

cal motivation to construct a trend model in terms of auxiliary variables and the

residuals obtained after removing the trend are close to the Gaussian distribution.

2.13 Spatial Model Validation

Validation methods provide the means for assessing the performance of different

spatial models or of the same model with different parameters, in terms of statis-

tical measures. There are methods such as likelihood maximization, least squares

and empirical contrast minimization, to quantify the fit of the data to specific

spatial models. These methods provide a first account of the model’s ability to

represent the data. Validation typically involves methods that also measure the

predictive performance of the model to predict based on the available data. Let

us call statistical algorithm any function that returns an estimator from data,

such as maximum likelihood. Then, model selection can be seen as the selection

of a particular (statistical) algorithm [Sylvain and Alain, 2010].

Cross–validation (CV) —a popular strategy for algorithm selection— is a

model validation technique for assessing the predictive performance of a statistical

spatial model. It is mainly used in settings where the goal is prediction, and one

wants to estimate how accurately a predictive model will perform in practice.

The main idea behind CV is to split data, once or several times, in order to

estimate the accuracy and reliability of each algorithm. Part of the data (the

training sample) is used for training each algorithm, while the remaining data

(the validation sample) is used to evaluate the predictive performance of the

algorithm. CV selects the algorithm with the smallest estimated “risk” (where

the notion of risk may involve a single statistical measure or a combination of
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statistical measures).

The goal of cross–validation is to estimate the expected level of fit of a model to

a data set that is independent of the data (training sample) that were used to train

the model. It can be based on any quantitative measure of fit that is appropriate

for the data and the model. Most forms of cross–validation are straightforward

to implement so long as an implementation of the prediction method is available.

In particular, the prediction method needs only to be available as a “black box”;

there is no need to have access to the internals of its implementation [Grossman

et al., 2010].

Furthermore, one of the main reasons for using cross-validation instead of

using the conventional validation (e.g. partitioning the data set into two sets of

70% for training and 30% for test) is that the error (e.g. Root Mean Square Error)

on the training set in the conventional validation is not a useful estimator of model

performance and thus the error on the test data set does not properly represent

the assessment of model performance. This may be because there is not enough

data available or there is not a good distribution and spread of data to partition

it into separate training and test sets in the conventional validation method. In

these cases, a fair way to properly estimate model prediction performance is to

use cross–validation as a powerful general technique.

In summary, cross–validation combines average measures of fit (i.e., measures

of prediction error) to minimize the estimation error and derive a more accurate

estimate of model prediction performance [Grossman et al., 2010].

Below we present the most commonly used methods for model validation.

2.13.1 Cross–validation Approach

Most classical CV estimators split the data of the training set and are distin-

guished into two main categories: exhaustive data splitting and partial data

splitting.

Exhaustive data splitting

Exhaustive cross–validation methods are CV methods which learn and test on all

possible ways to divide the original sample into a training and a validation set.
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1. Leave–p–out cross–validation (LPO), also called delete–p CV or delete–

p multifold [Zhang, 1993] involves using p observations as the validation set

and the remaining observations as the training set. This is repeated on

all ways to cut the original sample with n observations on a validation

set of p observations and a training set. LPO cross–validation requires to

learn and validate Cn
p times, where the possible combinations of the set C

are calculated by the binomial coefficient
(
n
p

)
. The binomial coefficient is

defined by the relation
(
n
k

)
= n!

k!(n−k)! , where n! denotes the factorial of n.

Hence, if n� 1, it becomes impossible to calculate.

2. Leave–one–out cross–validation (LOOCV or LVO), also called delete–

one CV [Li, 1987], ordinary CV [Burman, 1989; Stone, 1974] or simply CV

[Efron, 1983; Li, 1987], is a particular case of leave–p–out cross–validation

with p = 1. It can be shown that the CV error estimate is an almost unbi-

ased estimate of the true error expected on an independent test set [Sudhir

and Richard, 2006]. LVO cross–validation does not face the computational

constrains of general LPO cross–validation because Cn
1 = n.

In this case study, the LVO method of cross–validation is applied to evaluate

the fit between the theoretical model and the data.

Partial data splitting

Non–exhaustive cross validation methods do not compute all possible ways of

splitting the original sample. The methods are approximations of leave–p–out

cross–validation.

1. In k–fold cross–validation, sometimes called rotation estimation, the

original sample is randomly partitioned into k mutually exclusive subsets

(the folds) of approximately equal size [Kohavi, 1995]. Of the k subsets, a

single subset is retained as the validation data for testing the model, and

the remaining k−1 subsets are used as training data. The cross–validation

process is then repeated k times, with each of the k subsets used exactly

once as the validation data. The k results from the folds are then averaged

(or otherwise combined) to produce a single estimate. The advantage of
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this method over repeated random sub–sampling is that all observations

are used for both training and validation, and each observation is used for

validation exactly once. 10–fold cross–validation is commonly used, but in

general k remains an unfixed parameter [McLachlan et al., 2004].

When k = n (the number of observations), the k–fold cross–validation be-

comes equivalent to LVO CV.

2. Repeated learning–testing (RLT) randomly splits the dataset into train-

ing and validation data. For each such split, the model is fit to the training

data, and predictive accuracy is assessed using the validation data. The re-

sults are then averaged over the splits. The advantage of this method (over

k–fold cross–validation) is that the proportion of the training/validation

split is not dependent on the number of iterations (folds). The disadvan-

tage of this method is that some observations may never be selected in the

validation subsets, whereas others may be selected more than once. In other

words, validation subsets may overlap. This method also exhibits Monte

Carlo variation, meaning that the results vary if the analysis is repeated

with different random splits [Breiman et al., 1984; Burman, 1989; Zhang,

1993].

As the number of random splits goes to infinity, the repeated random sub–

sampling validation is arbitrary close to the leave–p–out cross–validation.

In a stratified variant of this approach, the random samples are generated

in such a way that the mean response value (i.e. the dependent variable in

the regression) is equal in the training and testing sets. This is particularly

useful if the responses are dichotomous with an unbalanced representation

of the two response values in the data.

3. Monte–Carlo cross validation (MCCV) [Picard and Cook, 1984] is very

similar to RLT. Unlike RLT, MCCV allows the same split to be chosen

several times [Sylvain and Alain, 2010].
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2.13.2 Cross–validation Error Measures

In order to assess the model performance certain statistical measures need to

be evaluated. These measures include: the mean error (bias) (ME), the mean

absolute error (MAE), the mean absolute relative error (MARE), the root mean

square error (RMSE), the root mean square relative error (RMSRE), Pearson’s

linear correlation coefficient (RP) and Spearman (rank) correlation coefficient

(RS). Below we define these measures in the case of leave–one–out cross valida-

tion. For the following measures, x∗(si) and x(si) are, respectively, the estimated

(based on the N − 1 data that do not include point si) and true value of the field

at point si, x(si) denotes the spatial average of the data and x∗(si) the spatial

average of the estimates, while N is the number of observations.

Mean error (bias) (ME)

The mean error is calculated as follows:

ε
bias

=
1

N

N∑
i=1

x∗(si)− x(si). (2.72)

Mean absolute error (MAE)

The mean absolute error is calculated as follows:

ε
MA

=
1

N

N∑
i=1

|x∗(si)− x(si)| . (2.73)

Mean absolute relative error (MARE)

The mean absolute relative error is calculated as follows:

ε
MAR

=
1

N

N∑
i=1

∣∣∣∣x∗(si)− x(si)

x(si)

∣∣∣∣ . (2.74)
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Root mean square error (RMSE)

The root mean square error is calculated as follows:

ε
RMS

=

√√√√ 1

N

N∑
i=1

[x∗(si)− x(si)]
2. (2.75)

Root mean square relative error (RMSRE)

The root mean square relative error is calculated as follows:

ε
RMSR

=

√√√√ 1

N

N∑
i=1

[
x∗(si)− x(si)

x(si)

]2
. (2.76)

Pearson’s Linear correlation coefficient (RP)

The correlation coefficient, ρ, is the statistic that is most commonly used to

summarize the relationship between two variables. The formula for Pearson’s

linear correlation coefficient ρ is [Isaaks and Srivastava, 1989]

ρX,Y =
cov(X, Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
.

In case of cross–validation for a sample of size N, ρ is defined as

ρ̄X,X∗ =

∑N
i=1

[
x(si)− x(si)

][
x∗(si)− x∗(si)

]
√∑N

i=1

[
x(si)− x(si)

]2√∑N
i=1

[
x∗(si)− x∗(si)

]2 . (2.77)

The correlation coefficient measures the dispersion of estimates with respect to

the observed values. This relation can best be illustrated in terms of a scatterplot.

If ρ = +1, the scatterplot is a straight line with a positive slope; if ρ = −1, the

scatterplot is a straight line with a negative slope. For |ρ| < 1 the scatterplot

appears as a cloud of points that becomes more diffuse as |ρ| decreases from 1 to

0 [Isaaks and Srivastava, 1989].

64



2. Geostatistical Methods

Spearman (rank) correlation coefficient (RS)

It is important to note that ρ provides a measure of the linear relationship be-

tween two variables. If the relationship between two variables is not linear, the

correlation coefficient may be a very poor summary statistic. It is often useful to

supplement the linear correlation coefficient with another measure of the strength

of the relationship, the rank correlation coefficient. To calculate the rank corre-

lation coefficient, one applies Eq. (2.77) to the ranks of the data values rather

than to the original sample values:

ρ
rank

= 1− 6
∑N

i=1(Rxi −Ryi)
2

N(N2 − 1)
, (2.78)

where Rxi is the rank of xi among all the other x values. The rank is usually

calculated by sorting the x values in ascending order; the rank of a given value

is equal to its order of appearance in the sorted list. The lowest x value appears

first on a sorted list and therefore receives a rank of 1; the highest x value appears

last on the list and receives a rank of N.

Large differences between ρrank and ρ are often quite revealing about the

existence of extreme pairs on the scatterplot. Unlike the traditional correlation

coefficient, the rank correlation coefficient is not strongly influenced by extreme

pairs. Large differences between the two may be due to the location of extreme

pairs on the scatterplot. A high value of prank and a low value of ρ may be

due to the fact that a few erratic pairs have adversely affected an otherwise good

correlation. If, on the other hand, it is ρ that is quite high while ρrank is quite

low, then it is likely that the high value of ρ is due largely to the influence of a

few extreme pairs.

Differences between ρ and ρrank may also reveal important features of the

relationship between two variables. If the rank correlation coefficient is +1, then

the ranks of the two variables are identical: the largest value of x corresponds

to the largest value of y, and the smallest value of x corresponds to the smallest

value of y.

The value of ρ is often a good indicator of how successful we might be when

trying to predict the value of one variable from the other with a linear equation.

If |ρ| is large, then for a given value of one variable, the other variable is restricted
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to only a small range of possible values. On the other hand, if |ρ| is small, then

knowing the value of one variable does not help us very much in predicting the

value of the other [Isaaks and Srivastava, 1989].
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Chapter 3

Exploratory Data Analysis

3.1 Information about the Study Area

The study area is the island of Crete (Greece), in the southeastern part of the

Mediterranean region. Crete is the largest island in Greece and one of its thirteen

(13) geographical regions. The island is divided into four prefectures, Chania,

Rethimno, Heraklion and Lasithi, with Heraklion as the capital and the largest

city.

The island of Crete covers an area of 8 336 km2 in the Southern Aegean. It

has a coastline of 1 046 km and its population reaches 623 065 people. The Sea

of Crete lies to the north, the Lybian Sea to the south, the Myrtoan Sea to the

west and the Karpathian Sea to the East of the island. Crete has an elongated

shape, spanning 260 km from east to west; it is 60 km at its widest point and

narrows to only 12 km at the narrowest point [Hellenic Statistical Authority,

2014]. Comparing Crete with other major European islands, that cover an area

of more than 200 km2, it ranks at the 12th place, with United Kingdom being the

biggest. The size of Crete is similar to the size of Cyprus and Corsica [wikipedia,

2015a].

Crete is one of the most mountainous islands of Europe with high mountain

ranges crossing the island from West to East forming three large mountain com-

plexes. In between lie lower mountains and semi–mountainous areas. In Western

Crete, the White Mountains or “Lefka Ori” with Pachnes (2 456m) as its highest
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peak, is also the highest point on Crete. The middle of the island is dominated by

Mount Ida or “Psiloritis”, a single elongated mountain mass whose highest peak

is Timios Stavros (2 453m) while in eastern Crete Dikti Mountains rise with their

highest peak at 2 148m (Fig. 3.1) [Wolffenbuttel and van der Meijden, 2015].

Figure 3.1: Morphological map of the island of Crete, Greece [Google Earth,
2015].

The prefecture of Lasithi is categorized mostly as a semiarid bioclimatic zone

with mild or warm winter. The sub–mountainous areas belong to the semi–

dry bioclimatic zone with cold winter, while the mountainous areas (i.e. Lasithi

Plateau) belong to dry bioclimatic zone with cold winter [Watrous, 1982].

Only the northern part of Heraklion prefecture belongs to the semiarid bio-

climatic zone with warm winter. The rest belongs to the semi–arid with mild

to warm winter. The plains and sub–mountainous areas of both Chania and

Rethimno prefectures belong to semi–arid bioclimatic zone with mild or warm

winter. The mountainous areas belong to dry bioclimatic zone with mild to cold

winter. A very small part of the very high mountainous areas belong to a humid

bioclimatic zone with harsh winter [Vrochidou, 2009].

The few plains are limited to the coastal area, where most of the population

lives and the most important agricultural areas are located (Fig. 3.1). The largest

and most productive plain of the island is Messara valley in the south of Heraklion

prefecture. Ierapetra’s valley in the south–east also has significant agricultural
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Table 3.1: Crops cultivated in Crete and their respective farming area. The units
are in (×103ha)a. Table taken from Chartzoulakis et al. [2001].

Category Cultivated area Percentage of the total

Row crops 32.1 9.96

Vegetable crops 8.9 2.76

Vineyards 30.6 9.50

Fruit crops 182.6 56.70

Forage crops 14.2 4.50

Fallow fields 53.6 16.58

Arable land 322.0 100.00

activity.

Agriculture is an important source of income for the region of Crete, con-

tributing to local Gross Domestic Product (GDP) by 13%. Fruit crops cover

60.8% of the total cultivated area, from which about 89% represents olive or-

chards [Chartzoulakis et al., 2001]. Grapevines and greenhouse vegetable crops

are also important sources of income for farmers. About 42.3% of the cultivated

land is irrigated; the percentage of irrigated land is higher for vegetable crops

and lower for tree crops and grapevines (Table 3.1).

During the past thirty years, groundwater level has decreased due to over–

exploitation [Varouchakis et al., 2012]. Potential future climatic changes in the

Mediterranean region, population increase, and extensive agricultural activity

generate concern over the sustainability of water resources. The accurate esti-

mation of the spatial and temporal variability of precipitation is important for

integrated water resources management plans that will help reduce the risk of

water deficits and desertification. It is also important in helping to understand

the potential impact of global climate change on the island.

3.1.1 Temperature

In order to describe the climate in Crete, temperature records were used for the

time period of 2006 till 2013. Evaluation of the data showed that:

1. The minimum temperature of −6.9◦C was observed in Samaria at 2012.
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2. The maximum temperature of 45◦C was observed in Paleochora at 2007.

These data are presented on Table 3.2 separated into monthly maxima and

minima.

Table 3.2: Monthly temperature minima and maxima recorded on Crete between
minimum and maximum recorded temperatures (◦C).

Month January February March April

Min −5.6
Samaria

2012
−6.9

Samaria

2012
−6.4

Samaria

2011
0.3

Samaria

2012

Max 30.4
Vrysses

2010
32.1

Vrysses

2010
30.1

Vrysses

2010
36.7

Chania

2008

Month May June July August

Min 3.4
Samaria

2011
9.0

Samaria

2013
10.8

Samaria

2013
11.9

Anogeia

2009

Max 38.8
Chania

2010
45

Paleochora

2007
42.4

Paleochora

2007
40.4

Moires

2012

Month September October November December

Min 7.5
Samaria

2008
2.2

Samaria

2011
−0.1

Samaria

2011
−6.1

Samaria

2010

Max 37.7
Chania

2007
34.2

Chania

2010
30.8

HeraclionPort

2012
29.6

Vrysses

2010

Evaluation of the data shows that the minimum temperature is lower in the

west side of Crete and increases from west to east, from −6.9◦C in the west to

2.6◦C in the east.

Based on the available temperature data of Crete, the following conclusions

can be drawn:

• The lowland area of Crete exhibits a climatic transition from the Mediter-

ranean to the semi–desert climate. It is characterized by little rainfall, mild

winters and long dry seasons. Summer is relatively cool and lasts from June

to September, because of the sea breeze and the annual winds. The hottest

months are July and August. In this region, frost is never observed and the

temperature seldom falls below 0◦C. The temperature differences along the

lowland over the year are moderate.
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• The mountainous zone of Crete shows greater variation and an annual av-

erage temperature 2− 3◦C lower than the lowland. The mean temperature

of the warmest month (July) is comparable to the average temperature of

the warmest month of the lowland stations, but the average temperature of

the coldest month (February) is approximately 3◦C lower [Region of Crete

Information Bull., 2002; Vrochidou, 2009].

3.1.2 Humidity

The mean relative atmospheric humidity is minimum in June and maximum

in December across the north of the island. In southern Crete, the minimum

mean monthly relative humidity occurs in July (Ierapetra and Timbaki stations).

Among the northern stations, the minimum mean relative humidity decreases

from east to west (Sitia 59.88%, Heraklion 55.4% and Souda 48,90%) while the

maximum relative humidity is similar in Sitia and Souda (about 72%) and signif-

icantly lower in Heraklion (67%). The greatest variation of the relative humidity

occurs at the southern stations (27%) while the lowest occurs at Heraklion station

(only 12%).

During the summer months, when the temperatures are particularly high (es-

pecially in southern Crete), the low mean relative humidity makes summer pleas-

ant which is especially important in tourist areas [Region of Crete Information

Bull., 2002].

3.1.3 Topography

In order to incorporate topographic parameters into the spatial model that we

will construct in Section 4, the Digital Elevation Model (DEM) of Crete is nec-

essary. The DEM was created in Geographical Information Systems (GIS) [esri,

2015], and more specifically in ArcGIS, release version 10.0, and the mostly used

feature was the 3D Analyst. Firstly, seven separate SRTM data sets compris-

ing Crete were downloaded from Processes Distributed Active Archive Center

[LP DAAC]. The NASA SRTM data sets result from a collaborative effort by

the National Aeronautics and Space Administration (NASA) and the National

Geospatial–Intelligence Agency (NGA), as well as the participation of the Ger-

71



Information about the Study Area

man and Italian space agencies, to generate a near–globe digital elevation model

(DEM) of Earth using radar interferometry. The data set used in this case is

SRTM Non–Void Filled elevation data, which was processed from raw C–band

radar signals spaced at intervals of 1 arc–second (approximately 30 meters) at

NASA’s Jet Propulsion Laboratory (JPL). This version was then edited or fin-

ished by the NGA to delineate and flatten water bodies, better define coastlines,

remove spikes and wells, and fill small voids.

Using tools from 3D Analyst feature in ArcGIS, one single raster image was

created from the seven separate SRTMs. The spatial resolution is 3 601 × 3 601,

the referenced horizontal datum is the World Geodetic System 84 (WGS84), and

the vertical datum is the Earth Gravitatuinal Model 1996 (EGM96) ellipsoid.

The resulting image is then processed in Matlab and the resulting DEM of Crete

is shown in Fig. 3.2.

Figure 3.2: Digital Elevation Model of Crete

3.1.4 Precipitation

The average annual rainfall increases from the east to the west and from the south

to the north. The mean precipitation based on all stations in each prefecture

over the study period is 723 mm for Lasithi, 700 mm for Heraklion, 990 mm for
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Rethimno and 1 279 mm for Chania.

The lowest annual precipitation is recorded at Demati station (196 mm) in

Heraklion, while in stations placed on mountainous areas show significant varia-

tions. At Askufou station the mean annual precipitation is 3 146 mm, the highest

recorded for the study period. Crete presents significantly variability of annual

precipitation geographically (east versus west) and physiographically (lowland

versus mountainous areas), displaying increasing precipitation with altitude (i.e.,

positive lapse rate) which ranks among the largest in Greece. Monthly precipita-

tion peaks in December or January and attains a minimum in July and August

which are almost drought months across the low–lying areas of Crete [Region of

Crete Information Bull., 2002].

3.2 Precipitation Records

The data available for this study are monthly measurements of precipitation

from fifty four (54) rain gauges distributed around Crete shown in Fig. 3.3. More

specifically, six (6) of the stations are located in the prefecture of Chania, nine

(9) in Rethimno, twenty eight (28) in Heraklion and eleven (11) in Lasithi. The

study spans the time period from 1948 to 2012.

Figure 3.3: Geomorphological map of Crete showing the locations of the 54 sta-
tions (yellow circles) with rain gauges used in this study [Google Earth, 2015].
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Before exploring the data, it should be noted that the records are incomplete.

Figure 3.4 shows for which years and stations there are missing data. As evidenced

in Fig. 3.4 there is a significant number of stations with incomplete records. The

presence of missing data emphasizes the need to use geostatistical methods in

order to understand the variability of precipitation.

Figure 3.4: Matrix showing the missing data problem related to the precipitation
records used. Rows correspond to stations while columns correspond to years.
Circles (blue) mark locations with complete yearly records while with stars mark
years that miss one or more monthly measurements.
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3. Exploratory Data Analysis

3.3 Statistical Analysis of Monthly Data

The recorded precipitation as shown in Fig. 3.3 are sparse distributed over the

domain, and also exhibit extreme dry condition during the summer period, with

a lot of zero precipitation. This fact adds more complexity to the data analysis,

making it difficult to conclude to a set of data appropriate for further investi-

gation. Therefore, the recorded data are analyzed extensively and transformed

into different data sets. The transformations used are chosen carefully, firstly to

preserve a physical meaning, i.e., data sets of dry and wet periods, but also able

to give a good fit to a model probability distribution function.

In order to fit the data to specific probability distribution models, distribu-

tions, such as the gamma distribution, empty records are removed in preliminary

data processing. In addition, since several probability models do not allow zero

values, such records are replaced by the machine resolution which is a very small

real number (e.g., 2.2204−16).

Based on a review of the literature, the gamma distribution is widely used

to fit precipitation data [Baxevani and Lennatsson, 2015; McKee et al., 1993;

Vrochidou, 2013]. Hence, in the exploratory data analysis we fit monthly data

with known distributions at every station, including the gamma distribution. Fits

of the empirical cumulative probability distributions (cdfs) to respective model

cdfs using the method of maximum likelihood result in unsatisfactory agreement

between the empirical and the model cdf as shown in Fig. 3.6. This is mostly due

to the presence of many months (especially in the summer) with zero precipitation

values (Fig. 3.5).

To overcome this problem, the rainfall data sets are accordingly separated

into wet and dry periods. The series representing the wet periods, consists of

the monthly observations from October till March for all the years in the study

period. Similarly, the dry period series comprises the measurements from April

till September. Fitting wet and dry periods with model distributions gives good

results for some of the stations (Fig. 3.7) but not for all of them (Fig. 3.8). More

specifically, the wet period data set was fitted reasonably well by the Generalized

Extreme Value distribution. On the other hand, the dry period data do not lead

to good fits, because of the drought conditions observed in Crete during these
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(a) C1 station Timeseries (b) L10 station Timeseries

Figure 3.5: Left: Monthly precipitation series at the station C1 which exhibits
the maximum mean monthly precipitation. Right: Monthly precipitation series
at the station L10 which has recorded the minimum mean monthly precipitation.

months.

3.4 Precipitation Fields and Series

Average monthly precipitation fields from 1948 until 2012 are generated by ag-

gregating the average values of the monthly precipitation measurements of each

station for every year. This results in 65 average monthly precipitation fields (65

years) consisting of maximum 54 values (54 stations) for the entire island. Every

field consists of the average monthly precipitation value for the particular year at

every station available, and it is referred to the average monthly precipita-

tion. We can also consider the distribution of the average monthly precipitation

field to estimate the statistical fluctuations over the study area for specific years.

For example, we could focus to the precipitation mean values for the year 1950

(which is the year with the minimum average monthly precipitation) and for the

year 2002 (which is the year with the maximum average monthly precipitation).

This data allows us to fit model distributions for every year. Representative

results are presented in Fig. 3.10.

The average monthly precipitation for a given location Sj and a specific year
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3. Exploratory Data Analysis

(a) C1 full period (b) L10 full period

Figure 3.6: Empirical and model cumulative probability functions for the two
precipitation time series shown in Fig. 3.5 C1 and L10 correspond to the em-
pirical cdfs (blue line). The model fits include the following: “GEV” refers to
the generalized extreme value distribution (red line), “Normal” refers to the the
Gaussian distribution (green line), “Exponential” refers to the exponential dis-
tribution (cyan line), and “Gamma” refers to the gamma distribution (brown
line).

T is defined as

P(Sj, T ) =
1

m

12∑
i=1

(I(Sj, ti) · P (Sj, ti)) , (3.1)

where T is the specific year, Sj is the station name, P (Sj, ti) are monthly precip-

itation levels, I(Sj, ti) is an indicator with value 1 for available monthly record

and 0 otherwise, ti is the specific month with values ranging between 0 and 12,

and m is the number of the recorded months for the particular year 1. If this value

is calculated for every station for 2002, then the field of the average monthly pre-

cipitation of the year 2002 is produced. More specifically, in Fig. 3.9a the values

of average monthly precipitation for every available station for the year 2002 are

shown with the height of the stem.

The average monthly precipitation field for the year T consists of 0 to 54

1The calculation is conducted with the matlab nanmean command which ignores the missing
months
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(a) C1 wet period (b) L10 wet period

Figure 3.7: Empirical and model cumulative probability functions for the wet
period data (consists of monthly observations from October till March) of the
two precipitation time series shown in Fig. 3.5 C1 and L10 correspond to the
empirical cdfs (blue line). The model fits include the following: “GEV” refers
to the generalized extreme value distribution (red line), “Normal” refers to the
the Gaussian distribution (green line), “Exponential” refers to the exponential
distribution (cyan line), and “Gamma” refers to the gamma distribution (brown
line).

values, depending on how many stations are available. For example, for year T :

AMP (T ) =
(

P(Si1 , T ),P(Si2 , T ), . . . ,P(SiT , T )
)
, (3.2)

where AMP (T ) is the average monthly precipitation field in constant time, T is

a specific year, P(Si, T ) are the results of Eq. (3.1). S1, S2, . . . , SN correspond to

stations, N is the size of the stations network (N=54), and 1 ≤ i1 ≤ 54 . . . 1 ≤
iT ≤ 54. Note thatAMP (T ) vector’s length is not necessarily equal to 54, because

there are not always available records for all the stations. If the values of the stems

of Fig. 3.9a are gathered together, the average monthly precipitation field for year

2002 is created. Examples of the cdf fits of average monthly precipitation fields

for years 1950 and 2002 are shown in Fig. 3.10. Based on the maximum likelihood,

the best probability distribution model is the GEV distribution, shown with the

red line. It is obvious from the figure that for year 1950 the model cumulative

distribution function has higher variability and not so good fit as for year 2002.
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(a) C1 dry period (b) L10 dry period

Figure 3.8: Empirical and model cumulative probability functions for the dry
period data (consists of monthly observations from April till September) of the
two precipitation time series shown in Fig. 3.5 C1 and L10 correspond to the
empirical cdfs (blue line). The model fits include the following: “GEV” refers
to the generalized extreme value distribution (red line), “Normal” refers to the
the Gaussian distribution (green line), “Exponential” refers to the exponential
distribution (cyan line), and “Gamma” refers to the gamma distribution (brown
line).

(a) Average monthly precipitation (b) Cumulative monthly precipitation

Figure 3.9: Three–dimensional stem plots representing the average monthly pre-
cipitation field (left) and the annual precipitation field (right) for the year 2002.
Each stem refers to the average monthly precipitation at every station based on
the Eq. (3.1) (left) and to the cumulative monthly precipitation based on the Eq.
(3.3) (right) for the year 2002.
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(a) Year 1950 (b) Year 2002

Figure 3.10: Empirical cumulative distribution function (cdf) and fits to model
cdfs for the average monthly precipitation. The empirical cdf is given by the
staircase (blue line), the Generalized Extreme Value distribution is given by the
red line, the normal distribution is given by the dark green line, the exponential
distribution by the cyan line, and the Gamma distribution by the brown line.

This is mostly because of the small data set available for this year. Even though

the data set is small, the GEV distribution gives the best fit.

In addition, annual precipitation fields from 1948 until 2012 are generated by

aggregating the cumulative monthly values. This results in 65 annual precipita-

tion fields, one for every year, with maximum 54 values for the entire island. Every

field consists of the cumulative monthly precipitation for the particular year at

every station available, and it is referred to the annual precipitation. We can

also consider the distribution of the annual precipitation field for a specific year

to estimate the statistical fluctuations over the study area. For example, we could

focus to the precipitation mean values for the year 1950 and for the year 2002 for

the reasons explained above. This data allows us to fit model distributions for

every year. Representative results are presented in Fig. 3.11.

The cumulative monthly precipitation at station Sj and for year T is defined

as

CP (Sj, T ) =
12∑
i=1

(I(Sj, ti) · P (Sj, ti)) , (3.3)

where T , Sj, ti and P (Sj, ti) are as above, and I(Sj, ti) is an indicator with value 1
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3. Exploratory Data Analysis

if all P (Sj, ti) monthly records are available for this year and 0 otherwise 1. Figure

3.9b shows the values of cumulative monthly precipitation for every available

station with the height of the stem.

The data sets of cumulative monthly precipitation field, henceforth referred

as annual precipitation, for the year T comprises between zero and 54 values,

depending on how many stations have available data in this year. For example,

for year T :

AP (T ) = (CP (Si1 , T ), CP (Si2 , T ), . . . , CP (Si , T )) , (3.4)

where AP (T ) is the annual precipitation field in constant time, T is the specific

year, CP (Sj, T ) are the results of Eq. (3.3). S1, S2, . . . , SN correspond to stations,

N is the size of the stations network (N=54), and 1 ≤ i1 ≤ 54, . . . 1 ≤ iT ≤ 54.

Note that AP (T ) vector’s length is not necessarily equal to 54, because there are

not always available records for all the stations. If we focus in Fig. 3.4, vertically,

for every circle (blue mark) we have one value of CP (T ). The summation of the

circles, gives the length of the vector for the estimated year. For example, for

year 2000, we have 54 values to generate the annual precipitation field. Focusing

in Fig. 3.9b, gathering the values of the stems together, the annual precipitation

field for year 2002 is created. Examples of the cdf fits of those data sets are shown

in Fig. 3.11. Based on the maximum likelihood, the best probability distribution

model is the GEV distribution, shown with the red line.

Next we construct time series of precipitation at specific locations. The aver-

age monthly precipitation time series for the station S consists of at least 1 to 65

values, depending on how many years are available. Specifically, for station S:

AMP (S) =
(

P(S, Tj1),P(S, Tj2), . . . ,P(S, TjS)
)
, (3.5)

where AMP (S) is the average monthly precipitation time series at specified lo-

cation, S is the specific station, P(S, Ti) are the results of Eq. (3.1) for the year

S which have measurements at this station, and 1 ≤ j1 < j2 < · · · < jS ≤ 65.

AMP (S) vector’s length is not necessarily equal to 65, because there are not

1The calculation is conducted with the sum command which leaves out the years that have
missing months
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(a) Year 1950 (b) Year 2002

Figure 3.11: Empirical cumulative distribution function (cdf) and fits to model
cdfs for the annual precipitation. The empirical cdf is given by the staircase (blue
line), the Generalized Extreme Value distribution is given by the red line, the
normal distribution is given by the dark green line, the exponential distribution
by the cyan line, and the Gamma distribution by the brown line.

always available records for all the previous years. If we focus again in Fig. 3.4,

along the rows, every circle (blue mark) corresponds to one value of CP (S). The

summation of the circles, gives the length of the vector for the estimated year. For

example, for station H23, we have 59 values to generate the annual precipitation

time series. For example, for station S:

AP (S) =
(
CP (S, Tj1), CP (S, Tj2), . . . , CP (S, TjS))

)
, (3.6)

where AP (S) is the annual precipitation time series at specified location, S is

the specific station, CP (S, Ti) are the results of Eq. (3.3) at year S which have

measurements at this station, and 1 ≤ j1 < j2 < · · · < jS ≤ 65. AP (S) vector’s

length is not necessarily equal to 65, because there are not always available records

for all the previous years.

The analysis of the time series, gives similar results with the field data sets: the

model cumulative distribution function that fits best the time series is the GEV

distribution. The optimal distribution, GEV, and its parameters are identified

by applying the maximum likelihood estimation method, and they are presented

in Table 3.3 for the average monthly precipitation time series data sets (based
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on Eq. (3.5)) and in Table 3.4 for the annual precipitation time series data sets

(based on Eq. (3.6)).

Table 3.3: Location coordinates, optimal GEV distribution type and parameters
for all the stations on the island, calculated with the average monthly precip-
itation time series data set (based on Eq. (3.5)). The coordinates x, y, z are
measured in the Greek Geodetic Reference System (EGSA ’87), with x and y be-
ing northing and easting measured in meters, and z being the elevation measured
in meters above sea level. The GEV distribution and its parameters are defined
in Eq. (1.17). “Weibull” refers to the Reversed Weibull distribution, that belongs
to the Generalized Extreme Value distribution family.

Latitude Longitude Elevation k σ µ Distr. Type

CHANIA

517156 3906520 740 −0.06 42.24 164.18 Weibull

508459 3854769 10 −0.01 11.55 44.48 Weibull

514927 3922549 20 −0.10 12.90 54.24 Weibull

525676 3908980 50 −0.14 21.44 83.42 Weibull

479746 3917260 316 −0.13 23.87 98.52 Weibull

486286 3914250 520 0.14 25.98 128.49 Fréchet

RETHIMNO

562696 3883780 20 −0.01 11.55 44.48 Weibull

552861 3902359 260 −0.01 20.40 89.11 Weibull

563266 3895810 310 −0.11 14.33 56.59 Weibull

571668 3911363 260 −0.60 40.89 92.56 Weibull

556336 3897010 660 −0.16 24.35 99.21 Weibull

554179 3906323 580 0.01 19.24 72.80 Fréchet

540774 3893055 90 0.15 16.71 59.28 Fréchet

558436 3887380 560 0.20 12.10 56.24 Fréchet

547996 3897760 390 −0.36 31.01 83.40 Weibull

HRAKLEIO

630233 3899448 230 −0.05 17.46 63.35 Weibull

590910 3887874 570 −0.27 15.32 71.86 Weibull

583036 3870700 450 −0.03 10.96 39.20 Weibull

622750 3891949 450 −0.14 16.66 59.97 Weibull
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600049 3877943 200 −0.03 10.74 44.07 Weibull

612352 3873325 680 −0.16 13.56 52.05 Weibull

591040 3874936 190 0.07 10.94 38.02 Fréchet

613595 3895526 330 0.02 14.95 56.03 Fréchet

577228 3889597 520 −0.02 21.80 82.87 Weibull

584536 3887230 450 0.11 16.78 64.42 Fréchet

617026 3877270 210 0.04 15.35 35.19 Fréchet

581799 3887788 500 0.02 15.68 62.12 Fréchet

612261 3880719 200 0.10 10.44 42.21 Fréchet

594138 3869421 800 0.04 14.13 50.42 Fréchet

620116 3884740 320 −0.22 11.99 43.30 Weibull

621158 3897473 350 −0.07 14.57 55.78 Weibull

626716 3873280 10. 0.01 12.24 34.61 Fréchet

589276 3898390 500 −0.14 17.40 72.29 Weibull

571666 3884860 140 −0.13 13.81 41.26 Weibull

603058 3888005 430 0.00 11.12 54.76 Fréchet

582134 3883486 400 −0.08 13.75 51.40 Weibull

611476 3886360 400 −0.29 16.64 48.53 Weibull

578536 3874150 150 0.09 11.23 37.00 Fréchet

604705 3876931 225 0.06 9.65 40.77 Fréchet

600316 3896140 380 0.13 17.00 59.65 Fréchet

605866 3883420 360 −0.15 15.43 51.56 Weibull

600526 3904810 40 −0.17 19.09 54.63 Weibull

600886 3910990 15 −0.20 8.38 37.80 Weibull

LASITHI

694096 3888550 480 0.14 14.43 62.44 Fréchet

645796 3902380 240 −0.15 13.90 61.90 Weibull

639586 3895960 840 −0.22 30.36 106.86 Weibull

657492 3887454 20 −0.07 8.64 38.19 Weibull

644896 3882850 590 0.13 15.22 54.91 Fréchet

689776 3889690 150 −0.04 11.06 48.76 Weibull
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645166 3877390 200 −0.37 15.79 40.97 Weibull

705496 3898540 25 −0.11 11.41 38.04 Weibull

664846 3884170 50 0.10 13.86 42.14 Fréchet

690436 3899320 114 −0.08 9.91 34.67 Weibull

676876 3883150 325 −0.05 20.16 54.92 Weibull

Table 3.4: Location coordinates, optimal GEV distribution type and parameters
for all the stations on the island, calculated with the annual precipitation time
series data set (based on Eq. (3.6)). The coordinates x, y, z are measured in
the Greek Geodetic Reference System (EGSA ’87), with x and y being northing
and easting measured in meters, and z being the elevation measured in meters
above sea level. The GEV distribution and its parameters are defined in Eq.
(1.17). “Weibull” refers to the Reversed Weibull distribution, that belongs to the
Generalized Extreme Value distribution family.

Latitude Longitude Elevation k σ µ Distr. Type

CHANIA

517156 3906520 740 −0.37 479.69 2003.56 Weibull

508459 3854769 10 0.04 128.43 518.52 Fréchet

514927 3922549 20 0.09 135.25 617.16 Fréchet

525676 3908980 50 −0.12 247.90 998.53 Weibull

479746 3917260 316 −0.13 289.29 1181.73 Weibull

486286 3914250 520 0.08 327.65 1575.42 Fréchet

RETHIMNO

562696 3883780 20 0.04 128.43 518.52 Fréchet

552861 3902359 260 −0.05 257.20 1085.55 Weibull

563266 3895810 310 −0.11 174.37 680.48 Weibull

571668 3911363 260 −0.38 316.23 1225.18 Weibull

556336 3897010 660 −0.16 292.18 1190.56 Weibull

554179 3906323 580 −0.01 221.97 859.72 Weibull

540774 3893055 90 −0.05 183.86 709.37 Weibull

558436 3887380 560 0.10 142.20 674.99 Fréchet
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547996 3897760 390 −0.09 220.53 1030.68 Weibull

HRAKLEIO

630233 3899448 230 −0.02 206.82 742.58 Weibull

590910 3887874 570 −0.28 188.52 862.30 Weibull

583036 3870700 450 −0.02 129.75 462.50 Weibull

622750 3891949 450 −0.07 169.69 724.75 Weibull

600049 3877943 200 0.00 129.39 522.43 Fréchet

612352 3873325 680 −0.12 145.83 638.97 Weibull

591040 3874936 190 0.11 127.79 444.80 Fréchet

613595 3895526 330 −0.08 171.41 677.94 Weibull

577228 3889597 520 −0.02 260.10 998.18 Weibull

584536 3887230 450 −0.04 184.44 775.45 Weibull

617026 3877270 210 −0.09 142.60 420.80 Weibull

581799 3887788 500 −0.04 177.18 736.91 Weibull

612261 3880719 200 −0.03 126.78 518.20 Weibull

594138 3869421 800 0.00 164.07 600.35 Fréchet

620116 3884740 320 −0.17 132.43 530.57 Weibull

621158 3897473 350 −0.20 165.08 665.85 Weibull

626716 3873280 10 −0.13 138.43 413.79 Weibull

589276 3898390 500 −0.10 198.62 878.17 Weibull

571666 3884860 140 0.10 117.51 502.35 Fréchet

603058 3888005 430 0.00 136.38 656.62 Fréchet

582134 3883486 400 −0.07 162.48 611.59 Weibull

611476 3886360 400 −0.06 134.79 589.88 Weibull

578536 3874150 150 −0.05 121.72 439.90 Weibull

604705 3876931 225 0.02 107.23 480.16 Fréchet

600316 3896140 380 −0.06 176.62 700.59 Weibull

605866 3883420 360 −0.09 160.01 618.70 Weibull

600526 3904810 40 −0.07 185.50 669.27 Weibull

600886 3910990 15 −0.20 100.52 453.63 Weibull

LASITHI
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694096 3888550 480 0.09 164.19 742.30 Fréchet

645796 3902380 240 −0.14 167.15 740.95 Weibull

639586 3895960 840 −0.19 350.46 1286.88 Weibull

657492 3887454 20 −0.08 106.02 460.25 Weibull

644896 3882850 590 −0.02 177.46 663.75 Weibull

689776 3889690 150 −0.12 131.17 586.13 Weibull

645166 3877390 200 −0.24 150.42 515.18 Weibull

705496 3898540 25 −0.11 135.43 455.56 Weibull

664846 3884170 50 −0.08 150.40 498.48 Weibull

690436 3899320 114 −0.08 119.66 418.62 Weibull

676876 3883150 325 −0.14 171.06 699.29 Weibull

By the above investigation and taking into account the statistical properties,

in both cases, average monthly precipitation time series and annual precipitation

time series, Generalized Extreme Value distribution (GEV) is the more repre-

sentative distribution. For visual evidence of the goodness of the GEV fit, we

present below the cdf plots of two stations for both average monthly and an-

nual precipitation time series (Figs. 3.12, 3.13). Although, Gamma distribution

function seems to have a good fit here, the GEV distribution fits better the time

series, with higher differences calculated with the maximum likelihood between

them in cases of smaller data sets. Through the above investigation, we can say

that the best model distribution function to fit the data sets, for both spatial and

temporal scale is the GEV distribution function.

3.5 Precipitation Comparison in the Eastern and

Western Regions

To further study the spatial patterns of precipitation and to investigate the role of

longitude on recorded precipitation values on Crete, we divide the island into two

different geographical regions, i.e., into Western and Eastern Crete. As mentioned

before, the available precipitation data are measurements from 54 meteorologi-
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(a) C1 station (b) L10 station

Figure 3.12: Empirical and model cumulative probability functions for the average
monthly precipitation time series of station C1 (left) and L10 (right) correspond
to the empirical cdfs (blue line). The model fits include the following: “GEV”
refers to the generalized extreme value distribution (red line), “Normal” refers to
the the Gaussian distribution (green line), “Exponential” refers to the exponential
distribution (cyan line), and “Gamma” refers to the gamma distribution (brown
line).

(a) C1 station (b) L10 station

Figure 3.13: Empirical and model cumulative probability functions for the annual
precipitation time series of station C1 (left) and L10 (right) correspond to the
empirical cdfs (blue line). The model fits include the following: “GEV” refers
to the generalized extreme value distribution (red line), “Normal” refers to the
the Gaussian distribution (green line), “Exponential” refers to the exponential
distribution (cyan line), and “Gamma” refers to the gamma distribution (brown
line).
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Figure 3.14: Flow chart of the preliminary data processing and geostatistical
methodology applied to the spatial database. Data Organisation & Transfor-
mations refers to the preliminary investigation of the needed transformations in
order to keep the physical meaning of the data, but also to find the appropriate
data set . “GEV” refers to the generalized extreme value distribution

cal stations around Crete, 6 of the meteorological stations are located in the

prefecture of Chania, 9 in Rethimno, 28 in Heraklion and 11 in Lasithi.

More specifically, West Crete consists of fifteen (15) stations and for sixty five

(65) years there should be eleven thousand and seven hundred records (11 700).

Due to lack of recorded measurements during the first twelve years there exist

recorded data only for fifty three (53) years in total that include at most nine

thousand five hundred and forty measurements for the 15 stations (9 540). From

those 9 540 measurements the 2 400 are missing (25%). While, East Crete consists

of thirty nine (39) stations and for 65 years there should be thirty thousand and

four hundred and twenty measurements (30 420), from those eight thousand and

three hundred eighty the 8 380 are missing (27%).

To compare the Eastern and Western regions of Crete, we need a representa-

tive data set for each. We create the average monthly precipitation time series
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for West and for East by gathering one representative value for every region for

every year. Below we present the methodology used to create the time series for

the West region. The same methodology can be applied to the East.

The averaged monthly precipitation time series of West Crete are generated

by aggregating the mean values of the average monthly precipitation of the 15

stations located in the prefectures of Chania and Rethimno for every year (for the

East we take into account the 39 stations located in the prefectures of Heraklion

and Lasithi). The average monthly precipitation for West Crete is calculated as

follows:

PW(T ) =

(
1

m

15∑
i=1

(
I(Si, T ) · P(Si, T )

))
, (3.7)

where T is the specific year, Si is the station name, P(Si, T ) are the average

monthly precipitation calculated from Eq. (3.1), I(Si, T ) is an indicator with

value 1 if there is a record of average monthly precipitation for this year at this

station, and m ≤ 15 is the sum of the available stations in the West for the

particular year.

If this value is calculated for every year, then the time series of average

monthly precipitation for West Crete is produced. The average monthly pre-

cipitation time series for West Crete begins in 1960, because there are no avail-

able measurements before this year. The formula that gives the average monthly

precipitation time series for West Crete is

AMPW =
(

PW(Tj1),PW(Tj2), . . . ,PW(TjS)
)
, (3.8)

where PW(Tj) are the results of Eq. (3.7) for year Tj, where 1 ≤ j1 < j2 < · · · <
jS ≤ 65.

For the generation of the annual precipitation time series for West Crete we

firstly calculate the mean cumulative monthly precipitation for West Crete for

every year as

CPW(T ) =

(
1

m

15∑
i=1

(I(Si, T ) · CP (Si, T ))

)
, (3.9)

where T , Si, m, and I(Si, T ) as above, and CP (Si, T ) are the cumulative monthly
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3. Exploratory Data Analysis

(a) Spatially averaged for the average
monthly precipitation

(b) Spatially averaged for the annual
precipitation

Figure 3.15: Time series of average monthly precipitation (left) and annual pre-
cipitation (right) for the Western (blue line) and the Eastern (red line) regions
of Crete based on Eqs. (3.7) and (3.9) respectively. The sample mean of the
precipitation in the West (East) is indicated by the green (magenta) straight line
in the diagrams.

precipitation calculated from Eq. (3.3).

If this value is calculated for every year, then the time series of average

monthly precipitation for West Crete is produced. The average monthly pre-

cipitation time series for West Crete begins from 1960, because there were not

available measurements before that year. The formula that gives the average

monthly precipitation time series for West Crete is

APW =
(

CPW(Tj1),CPW(Tj2), . . . ,CPW(TjS)
)
, (3.10)

where CPW(Tj) are the results of Eq. (3.9) for year Tj.

Figure 3.15a and Fig. 3.15b reveal strong correlations in precipitation between

the western and eastern parts of the island. A spatial trend is observed with the

spatially averaged data calculated with the average monthly precipitation time

series in the West measured at about 40 mm than in the East (Eq. (3.7) for the

West, accordingly we proceed with the calculation of the East). For the spatially

averaged data with the annual precipitation time series, the spatial correlation is

at about 450 mm higher in the West than in the East (Eq. (3.9) for the West,
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Precipitation Comparison in the Eastern and Western Regions

(a) Pearson’s correlation plot (b) Spearman’s correlation plot

Figure 3.16: Correlation plots between Western and Eastern regions of Crete for
the average monthly precipitation. On the left diagonal, the histograms show the
probability densities of the Western and Eastern average monthly precipitation
time series (Eq. (3.8)). On the right diagonal the scatterplots of the data are
presented. The Pearson’s correlation coefficient calculated by Eq. (2.77) equals
to 0.69 (left) and Spearman’s correlation coefficient based on Eq. (2.78) equals
to 0.76 (right).

accordingly we proceed with the calculation for the East). In other words, if we

have a mean value of precipitation for the one region, i.e., for West Crete, we are

able to make a first assumption for East Crete, the value of which would be 40

mm lower in the case of the average monthly precipitation and lower at about

450 mm in the case of the annual precipitation.

We quantify the correlations shown in Fig. 3.15 by means of the correlation

plots shown in the plots of Figs. 3.16 and 3.17. The estimated Pearson’s correla-

tion coefficient for the average monthly precipitation is 0.69 and the Spearman’s

is equal to 0.76. On the other hand, the correlation coefficients between West

and East Crete for the annual precipitation is 0.71 for both Pearson’s and Spear-

man’s coefficients. We have lower dependence with the average monthly data

because the data sets have bias from the beginning, as the average values are

calculated by the available months. This mean that we could have stations with

missing measurements in the summer, while for stations in the opposite region we

could have missing values in the winter. If we focus to the annual precipitation,

longitude seems to affects precipitation in Crete.
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3. Exploratory Data Analysis

(a) Pearson’s correlation plot (b) Spearman’s correlation plot

Figure 3.17: Correlation plots between Western and Eastern regions of Crete for
the annual precipitation. On the left diagonal, the histograms show the proba-
bility densities of the Western and Eastern annual precipitation time series (Eq.
(3.10)). On the right diagonal the scatterplots of the data are presented. The
Pearson’s correlation coefficient calculated by Eq. (2.77) equals to 0.71 (left) and
Spearman’s correlation coefficient based on Eq. (2.78) equals to 0.71 (right).
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Chapter 4

Results of Geostatistical Analysis

In a study area that lacks homogeneity and has mountainous areas across, to-

pography is an important factor for precipitation generating a noticeable trend.

The analysis on both the average monthly and the annual precipitation fields

gave similar results. Below, we will present in detail the results of the analysis

for the annual precipitation field of the year 1971. Representative figures for the

remaining years, from 1965 until 2011, are presented in Appendix A. For com-

parison reasons, results for the average monthly precipitation field in 1971 are

presented in Section 4.2. In Sections 4.1 and 4.2 we perform a local analysis of

the precipitation field, while in Section 4.3 we focus on a global analysis that

refers to the entire island.

4.1 Model of Annual Precipitation Field

First, we remove the trend from the precipitation data. We accomplish this with

the application of multilinear regression of the response (e.g., the precipitation)

on the predictors, which contain longitude, latitude and elevation.

The residuals remaining after the application of the multilinear regression are

shown in Fig. 4.2 (in red). The plots in Fig. 4.3 show how known probability

density functions, including the normal distribution, fit the precipitation resid-

uals. As shown in Fig. 4.3b the residuals can be considered as approximately

Gaussian; hence, Ordinary Kriging can be used for interpolation.



Model of Annual Precipitation Field

4.1.1 Topographic Trend

In order to decide which of the topographic parameters contribute to precipita-

tion, multilinear regression was performed using all the possible combinations of

longitude, latitude and elevation as predictor variables. The results of the cal-

culations are presented in Table 4.1. The coefficient of determination R2 is low

if only one or two of the parameters are used. Hence, we include all three vari-

ables (longitude, latitude, and elevation) in the trend function. The coefficient of

determination is defined as

R2 = 1− SSres
SStot

, (4.1)

where SSres is the sum of squares of residuals, also called the residual sum of

squares, and SStot is the total sum of squares (proportional to the variance of

the data), and has values among 0 and 1. More specifically, the estimates of the

coefficients for the regression model of the annual precipitation field are presented

in Table 4.2. The p–value is very low, thus rejecting the null hypothesis of zero

correlation.

The most important topographic factor seems to be the elevation, which con-

tributes most to the trend model. This conclusion is based on the value of the

coefficient that multiplies the elevation in the trend function. Figure 4.1 shows a

plot of the trend function and the data versus easting and elevation.

In Fig. 4.2 the annual precipitation field values are marked with blue cir-

cles, while the residual precipitation resulting after the removal of the trend is

marked with red asterisks. The plots of the model probability density functions

and the normal probability plot of the precipitation residuals are presented in

Fig. 4.3. These plots show that the residuals are approximately normally dis-

tributed. As mentioned above, the Student’s t distribution describes the average

of samples from a full normal population. Hence, because of the small sample

size (only 49 available stations), it is expected that the residual precipitation

fit best the Student’s t distribution, in agreement with the plot shown in Fig.

4.3a. Nonetheless, in the following it is assumed that the residuals are treated as

normally distributed.

Summary statistics of the annual data set for the year 1971 are presented in

Table 4.3. They include the mean value, the minimum, the maximum value, the
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4. Results of Geostatistical Analysis

Table 4.1: Statistics of multilinear regression for all the possible combinations of
longitude (x), latitude (y) and elevation (z), for the annual precipitation field in
the year 1971 (Eq. (3.4)). The coordinates x, y, z are measured in the Greek
Geodetic Reference System (EGSA ’87), with x and y representing the longitude
and latitude measured in meters, and z being the elevation measured in meters
above sea level. The value of the coefficient of determination R2 shows how
much of the variability in the response variable (precipitation) is explained by
the model (e.g. for x, y, z : 74%). The F–statistic gives the relationship between
the response variable and the predictor variables. The p–value is used in the
context of null hypothesis testing of zero correlation in order to quantify the idea
of statistical significance of evidence. The p–value refers to the F–statistic test,
lower value are preferable.

Regression with R2 F–statistic p–value Error variance

x 0.2434 15.1196 3.1593e-04 5.1638e+04

y 0.3383 24.0259 1.1723e-05 4.5163e+04

z 0.3066 20.7799 3.6774e-05 4.7326e+04

x, y 0.5179 24.7092 5.1510e-08 3.3618e+04

x, z 0.4869 21.8277 2.1586e-07 3.5779e+04

y, z 0.6108 36.0980 3.7461e-10 2.7139e+04

x, y, z 0.7415 43.0295 2.8437e-13 1.8426e+04

Table 4.2: Trend model parameters, for annual precipitation field in the year 1971
(Eq. (3.4)).

b × 1 × x × y × z

bi, i=0,. . . ,3 -4.1919e+04 -0.0019 0.0112 0.5688

lower bound -5.5151e+04 -0.0027 0.0078 0.3852

upper bound -2.8686e+04 -0.0011 0.0146 0.7524

Table 4.3: Summary statistics for the precipitation data set depicted in Fig. 4.2.
The parameter n is the number of available stations of the year.

1971 n Mean Median Minimum Maximum Std.dev. Coef.of var. Skewness

Precipitation 49 634.8980 581.1000 291.2000 1602.4000 258.5111 0.4072 1.5316

Residuals 49 2.2065e-12 -21.9881 -339.2030 381.6012 131.4318 5.9567e+13 0.4557

standard deviation of the annual precipitation as well as the respective values for

precipitation residuals. The zero mean of the residuals, the approximately zero
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Figure 4.1: Multilinear regression of the precipitation field on the predictors
which comprise longitude, latitude, and elevation, for the annual precipitation
field in the year 1971. The trend equation for this year is given by f = −4.1919 ·
104 − 0.0019x + 0.0012 y + 0.5688 z. The coordinates x, y, z are measured in
the Greek Geodetic Reference System (EGSA ’87), with x and y representing
the easting and the northing coordinates measured in meters, and z being the
elevation measured in meters above sea level.

skewness, and the proximity of the residuals to the straight line on the normal

probability plot as shown in Fig. 4.3b prove that the residuals are close to the

Gaussian distribution.
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4. Results of Geostatistical Analysis

Figure 4.2: Scatter plot of the annual precipitation field values and the precipi-
tation residuals obtained after the application of multilinear regression according
to the trend equation shown in Fig. 4.1, for the year 1971. The blue circles corre-
spond to the annual precipitation field values, while the red asterisks correspond
to the precipitation residuals. The square boxes mark the highest values for the
respective data set.

4.1.2 Variogram Modeling

To construct a spatial model of the residual precipitation, a suitable variogram

model needs to be determined. After the calculation of the experimental vari-

ogram based on the method of moments, the Spartan variogram is fitted as a

theoretical model. This allows estimating the parameters η0, η1, and the char-

acteristic length ξ of the Spartan model (see Eq. (2.30)). Figure 4.4 shows

the graphical representation of the variogram of the above data set. The scale

parameter η0 that determines the total variance of the fluctuations is equal to

1.9764e+05 mm2, the shape parameter η1 = −0.8643, and the correlation length

ξ that shows the range of the spatial dependence equals 9.9620. The shape pa-

rameter η1 is dimensionless. Particularly for this case, the correlation length ξ is
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(a) PDF plot
(b) Probability plot for the normal distri-
bution

Figure 4.3: Empirical and model probability density function (left) and normal
probability plot (right) for the year 1971 of the precipitation residuals provided in
Fig. 4.2. On the left, bars correspond to the empirical histogram of the data (blue
line), while the model fits include the following: “t Scale–Location” refers to the
Student’s t distribution (red line), “Logistic” refers to the Logistic distribution
(blue dotted line), “GEV” refers to the generalized extreme value distribution
(brown line), and “Normal” refers to the Gaussian distribution (gray line). On the
right, cross markers are used for the sample data, while the solid line corresponds
to the model normal probability (red line).

also in dimensionless units, since the distances were normalized for the estima-

tion of the variogram parameters. The lengths in the three orthogonal directions

are scaled in such a way that the entire 3D map area is contained within the

rectangular domain with size 100 x 100 x 1000. This implies that the lengths in

all three directions are scaled by appropriate factors according to the following

normalizing equations

ξx =
ξ

3.5326 · 10−4
(4.2)

ξy =
ξ

8.3615 · 10−4
(4.3)

ξz =
ξ

0.4103
(4.4)

Inverting normalization, we obtain the anisotropic correlation lengths ξx = 28km,

ξy = 12km, ξz = 24m.
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4. Results of Geostatistical Analysis

Figure 4.4: Empirical variogram (crosses) and theoretical Spartan variogram
model (continuous blue line) based on Eq. (2.30) for the precipitation residuals of
the year 1971 (shown in Fig. 4.2). The horizontal axis is calibrated using normal-
ized distances; one unit corresponds to a lag distance of approximately 2.8 km in
x direction, 1.2 km in y direction, and 2.4 m in z direction. Bars count the avail-
able pairs of sample points for every lag distance. The estimated parameters for
the theoretical model are as follows: nugget variance σ2

n = 173.9258 mm2, η0 =
1.9764e+ 05 mm2, η1 = −0.8643, ξ = 9.9620.

4.1.3 Regression Kriging

As shown above, the residual precipitation approximately follows a Gaussian dis-

tribution. Hence, kriging can be used to create precipitation maps, based on the

theoretical model of the variogram (see Fig. 4.5). The necessary equations for

the application of the residual kriging are presented in detail in Section 2.12.1.4.

Kriging is used to generate a map of the residuals which then has to be trans-

formed into a map of precipitation values. This is accomplished by adding the

trend values at each map grid point. The trend at the grid points is estimated
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using the elevation values from the Digital Elevation Model which was developed

using Geographical Information Systems (see Fig. 3.2), combined with the trend

function calculated —the trend function’s coefficients are shown in Table 4.2. The

precipitation map thus generated is shown in Fig. 4.6. We observe three areas

with higher prediction values than the rest of the island, which coincide with the

three mountainous areas shown in the digital elevation model. This reflects the

significant influence of the topographic parameters on the precipitation. More

specifically, at the highest peak of Lefka Ori, which is located in Chania, the pre-

dicted precipitation value equals 2 326 mm, at mountain Psiloritis in Rethimno

the predicted precipitation is equal to 2 055 mm, while on mountain Dicti in the

regional unit of Lasithi the precipitation equals 1 775 mm. These values are also

in agreement with the overall trend of a negative west–east precipitation gradient.

Figure 4.5: Map of estimated annual precipitation residuals for 1971, based on
the Spartan variogram model (Eq. (2.30)) and the data set shown in Fig. 4.2. The
Cartesian coordinates are measured in the Greek Geodetic System (EGSA ’87),
with the horizontal axis representing the easting and the vertical axis representing
the northing. Both axes are measured in meters.

The ratio of the kriging standard deviation divided by the kriging estimate

at the grid points, generates a map showing the kriging coefficient of variation.

The map of the coefficient of variation is presented in Fig. 4.7. The biggest

uncertainties are marked in red and they occur in the south–eastern part of

Crete. The areas with high coefficient of variation are low–land areas with lower
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4. Results of Geostatistical Analysis

Figure 4.6: Map of estimated annual precipitation for 1971, based on Spartan
variogram model (Eq. (2.30)) and the data set shown in Fig. 4.2. The Cartesian
coordinates are measured in the Greek Geodetic System (EGSA ’87), with the
horizontal axis representing the easting and the vertical axis representing the
northing. Both axes are measured in meters.

precipitation. Even though the standard deviation in these areas is lower than

in the rest of Crete, the precipitation estimate is not analogously lower, resulting

to higher sensitivity to changes. These errors are also partially due to the lack of

measuring stations along the coastline.

4.1.4 Leave–One–Out Cross Validation

For the assessment of the spatial precipitation model’s performance we use the

method of leave–one–out cross validation. This method is described in detail

in Section 2.13.1. The results of the cross validation analysis are presented in

Figs. 4.8 and 4.9 and in Table 4.4. The latter summarizes the cross validation

measures first for the estimated residuals and secondly for the estimated pre-

cipitation. The low mean error value means low bias, while the transformation

from residuals to precipitation decreases the mean absolute relative error and

the root mean square relative error. We notice the high correlation, based on

both Pearson’s and Spearman’s correlation coefficients, between the estimated

precipitation values and the actual precipitation values. This is achieved after

the incorporation of the precipitation trend to the residuals.
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Figure 4.7: Map of estimated coefficient of variation of annual precipitation for
1971, based on Spartan variogram model (Eq. (2.30)) and the data set shown in
Fig. 4.2. The Cartesian coordinates are measured in the Greek Geodetic System
(EGSA ’87), with the horizontal axis representing the easting and the vertical
axis representing the northing. Both axes are measured in meters.

Figure 4.8: Kriging–based leave–one–out cross validation predictions versus sam-
ple values for 1971 precipitation (based on the data set shown in Fig. 4.2).
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4. Results of Geostatistical Analysis

Figure 4.9: Histogram of leave–one–out cross validation errors for 1971 precipi-
tation (based on the data set shown in Fig. 4.2).

A comparison between the actual precipitation at each station and the respec-

tive value obtained by means of leave–one–out cross validation is shown in the

bar plot of Fig. 4.10.

4.2 Model of Average Monthly Precipitation

For the average monthly precipitation the results obtained by the application of

the spatial analysis are very similar to those extracted from the analysis of the

annual precipitation data set. Below, we repeat the analysis conducted in Section

4.1 for the annual precipitation field, and we present the respective results for the

average monthly precipitation field in the year 1971.

4.2.1 Topographic Trend

In order to remove the trend from the precipitation data, we performed multi-

linear regression of the response (e.g., the precipitation) on the predictors, which

contain the longitude, latitude and elevation. The residuals remaining after the

105



Model of Average Monthly Precipitation

Table 4.4: Cross validation performance measures calculated through leave–one–
out cross validation for the precipitation data of year 1971 for annual recorded
precipitation data set. ME: Mean error (bias) (Eq. (2.72)), MAE: Mean abso-
lute error (Eq. (2.73)), MARE: Mean absolute relative error (INF if z contains
zeros) (Eq. (2.74)), RMSE: Root mean square error (Eq. (2.75)), RMSRE: Root
mean square relative error (INF if the actual precipitation value is zero) (Eq.
(2.76)), RP: Pearson’s linear correlation coefficient (Eq. (2.77)), RS: Spearman
(rank) correlation coefficient (Eq. (2.78)), ErrMin: Difference between minimum
prediction and minimum sample value, ErrMax: Difference between maximum
prediction and maximum sample value.

1971 ME(mm) MAE(mm) MARE RMSE(mm) RMSRE RP RS ErrMin(mm) ErrMax(mm)

Residuals 2.9540 96.9050 2.3637 129.3083 6.5976 0.3132 0.3212 157.5841 -145.7528

Precipitation 2.9540 96.9050 0.1623 129.3083 0.2171 0.8703 0.8742 -72.6871 -238.2975

Figure 4.10: Comparison between the actual precipitation values of the year 1971
at each station and the predictions derived using leave–one–out cross validation.

application of the multilinear regression method are shown in Fig. 4.12 (in red).

The estimates of the coefficients for the regression model of the average monthly

precipitation field in the year 1971 are presented in Table 4.5.
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Table 4.5: Trend model parameters, for average monthly precipitation field in the
year 1971 (Eq. (3.2)).

b × 1 × x × y × z

bi, i=0,. . . ,3 -3.4932e+03 -0.0002 0.0010 0.0474

lower bound -4.5959e+03 -2.2887e-04 0.0007 0.0321

upper bound -2.3905e+03 -9.2975e-05 0.0012 0.0627

As mentioned above for the annual precipitation, elevation contributes most

to the trend model, the same applies for the average monthly precipitation field.

Figure 4.11 shows a plot of the trend function and the data versus norhting and

elevation.

Figure 4.11: Multilinear regression of the precipitation field on the predictors
in which comprise longitude, latitude, and elevation, for the average monthly
precipitation field in the year 1971. The trend equation for this year is given
by f = −3.4932 · 103 − 0.0002x + 0.0010 y + 0.0474 z. The coordinates x, y, z
are measured in the Greek Geodetic Reference System (EGSA ’87), with x and
y representing the easting and northing coordinates measured in meters, and z
being the elevation measured in meters above sea level.
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In Fig. 4.12 the average monthly precipitation field values are marked with

blue circles, while the residual precipitation resulting after the removal of the

trend is marked with red asterisks. The plots of the model probability den-

sity functions and the normal probability plot of the precipitation residuals are

presented in Fig. 4.13. These plots show that the residuals are approximately

normally distributed.

Figure 4.12: Scatter plot of the average monthly precipitation field values and
the precipitation residuals obtained after the application of multilinear regression
according to the trend equation shown in Fig. 4.11, for the year 1971. The
blue circles correspond to the monthly precipitation field values, while the red
asterisks correspond to the precipitation residuals. The square boxes mark the
highest values for the respective data set.

Summary statistics of the average monthly precipitation data set for the year

1971 are presented in Table 4.6. They include the mean value, the minimum, the

maximum value, the standard deviation of the average monthly precipitation as

well as the respective values for precipitation residuals. The zero mean of the

residuals, the approximately zero skewness (see Table 4.6), and the proximity of

the residuals to the straight line on the normal probability plot as shown in Fig.

4.13b prove that the residuals are close to the Gaussian distribution.
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Table 4.6: Summary statistics for the precipitation data set depicted in Fig. 4.12.
The parameter n is the number of available stations of the year.

1971 n Mean Median Minimum Maximum Std.dev. Coef.of var. Skewness

Precipitation 49 52.9082 48.4250 24.2667 133.5333 21.5426 0.4072 1.5316

Residuals 49 8.7977e-13 -1.8323 -28.2669 31.8001 10.9527 1.2449e+13 0.4557

(a) PDF plot
(b) Probability plot for the normal distri-
bution

Figure 4.13: Empirical and model probability density function (left) and normal
probability plot (right) for the year 1971 of the precipitation residuals provided
in Fig. 4.12. On the left, bars correspond to the empirical histogram of the
data (blue line), while the model fits include the following: “t Scale–Location”
refers to the Student’s t distribution (red line), “Logistic” refers to the Logistic
distribution (blue dotted line), “GEV” refers to the generalized extreme value
distribution (brown line), and “Normal” refers to the Gaussian distribution (gray
line). On the right, cross markers are used for the sample data, while the solid
line corresponds to the model normal probability (red line).

4.2.2 Variogram Modeling

We fitted the theoretical Spartan variogram model to the experimental variogram,

to construct the spatial model. This allows estimating the parameters η0, η1, and

the characteristic length ξ of the Spartan model (see Eq. (2.30)). Figure 4.14

shows the graphical representation of the variogram of the above data set. The

scale parameter η0 that determines the total variance of the fluctuations is equal

to 2.6979e + 03 mm2, the shape parameter η1 = 1.9999, and the correlation

length ξ that shows the range of the spatial dependence equals 15.8604. The
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shape parameter η1 is in dimensionless units. Particularly for this case, the

correlation length ξ is also dimensionless, since the distances were normalized for

the estimation of the variogram parameters. The same normalization that was

applied for the annual precipitation is applied here too. The biggest contribution

to the variogram estimation has the vertical direction, which implies anisotropy

focused on the elevation. Inverting normalization, we obtain the anisotropic

correlation lengths ξx = 45km, ξy = 19km, ξz = 39m.

Figure 4.14: Empirical variogram (crosses) and theoretical Spartan variogram
model (continuous blue line) based on Eq. (2.30) for the precipitation residuals of
the year 1971 (shown in Fig. 4.12). The horizontal axis is calibrated using normal-
ized distance; one unit corresponds to a lag distance of approximately 2.8 km in x
direction, 1.2 km in y direction, and 2.4 m in z direction. Bars count the available
pairs of sample points for every lag distance. The estimated parameters for the
theoretical model are as follows: nugget variance σ2

n = 2.2204e − 16 mm2, η0 =
2.6979e+ 03 mm2, η1 = 1.9999, ξ = 15.8604.
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4.2.3 Regression Kriging

The residual precipitation follows a Gaussian distribution as shown above, thus

kriging can be used to create precipitation maps, based on the theoretical model

of the variogram (see Fig. 4.15). The necessary equations for the application of

the residual kriging are presented in detail in Section 2.12.1.4.

Figure 4.15: Map of estimated average monthly precipitation for 1971, based on
Spartan variogram model (Eq. 2.30) and the data set shown in Fig. 4.12. The
Cartesian coordinates are measured in the Greek Geodetic System (EGSA ’87),
with the horizontal axis representing the easting and the vertical axis representing
the northing. Both axes are measured in meters.

The ratio of the kriging standard deviation divided by the kriging estimate

at the grid points, generates a map showing the kriging coefficient of variation.

The map of the coefficient of variation is presented in Fig. 4.16. The coefficient of

variation map of average monthly precipitation is very similar to the one created

for the annual precipitation data set, with the biggest estimation errors in the

south–eastern part of Crete.

4.2.4 Leave one Out Cross Validation

The results of leave–one–out cross validation analysis —the method used for the

assessment of the model’s performance— are presented in Figs. 4.17 and 4.18 and

in Table 4.7. The latter summarizes the cross validation measures firstly for the
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Figure 4.16: Map of estimated coefficient of variation of average monthly precip-
itation for 1971, based on Spartan variogram model (Eq. (2.30)) and the data set
shown in Fig. 4.12. The Cartesian coordinates are measured in the Greek Geode-
tic System (EGSA ’87), with the horizontal axis representing the easting and the
vertical axis representing the northing. Both axes are measured in meters.

estimated residuals and secondly for the estimated precipitation. As observed for

the annual precipitation data set, we extracted similar conclusion from the cross

validation measures for the average monthly precipitation. We observe low mean

error (low bias), and decrease to the mean absolute relative error and the root

mean square relative error after the incorporation of the precipitation trend to the

residuals. Also after that transformation, we observe high correlation coefficient

ranks, based on both Pearson’s and Spearman’s correlation coefficients, between

the estimated precipitation values and the actual precipitation values.

A comparison between the actual precipitation at each station and the respec-

tive value obtained by means of leave-one-out cross validation is shown in the bar

plot of Fig. 4.19.
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Figure 4.17: Kriging–based leave–one–out cross validation predictions versus sam-
ple values for 1971 precipitation (based on the data set shown in Fig. 4.12).

Figure 4.18: Histogram of leave–one–out cross validation errors for the 1971 pre-
cipitation (based on the data set shown in Fig. 4.12).
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Figure 4.19: Comparison between the actual precipitation values of the year 1971
at each station and the predictions derived using leave–one–out cross validation.

Table 4.7: Cross validation performance measures calculated through leave–one–
out cross validation for the precipitation data of year 1971 for the average monthly
precipitation data set. ME: Mean error (bias) (Eq. (2.72)), MAE: Mean abso-
lute error (Eq. (2.73)), MARE: Mean absolute relative error (INF if z contains
zeros) (Eq. (2.74)), RMSE: Root mean square error (Eq. (2.75)), RMSRE: Root
mean square relative error (INF if the actual precipitation value is zero) (Eq.
(2.76)), RP: Pearson’s linear correlation coefficient (Eq. (2.77)), RS: Spearman
(rank) correlation coefficient (Eq. (2.78)), ErrMin: Difference between minimum
prediction and minimum sample value, ErrMax: Difference between maximum
prediction and maximum sample value

1971 ME(mm) MAE(mm) MARE RMSE(mm) RMSRE RP RS ErrMin(mm) ErrMax(mm)

Residuals 0.2462 8.0754 2.3637 10.7757 6.5976 0.3132 0.3212 13.1320 -12.1461

Precipitation 0.2462 8.0754 0.1623 10.7757 0.2171 0.8703 0.8742 -6.0573 -19.8573

In both cases, the estimation smoothen local fluctuations. At stations with

low precipitation values the kriging method tends to force the estimate to higher

values compared to the original record and closer to the mean value. On the

other hand, at stations with high values, the estimates are lower than the true

values. This smoothing effect is a well–known property of kriging interpolators.
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4. Results of Geostatistical Analysis

4.3 Spatiotemporal Patterns of Precipitation

The calculation of the overall trend of precipitation in Crete, based on the

recorded values, seems to have an increasing pattern. More specifically, the trend

calculated with mean values of every year’s records of annual precipitation refers

to an increase of 2.1 mm of precipitation per year, this increase corresponds to

0.28% increase per year (Fig. 4.20b). For the average monthly precipitation, the

trend calculated with the data set mean values, is an increase of 0.2 mm of pre-

cipitation, that corresponds to an increase of 0.32% per year for average monthly

precipitation values.

(a) Annual precipitation, approximately
2.1 mm increase or 0.28% increase per
year.

(b) Average monthly precipitation, ap-
proximately 0.2 mm increase or 0.32% in-
crease per year.

Figure 4.20: Overall trend calculated from the recorded data sets. The averaged
annual precipitation values are calculated with the calculation of the mean values
of annual precipitation of every station in Crete for every year (left), while the
averaged average monthly precipitation values are calculated with the calculation
of the mean values of average monthly precipitation of every station in Crete for
every year (right). The solid red line shows the trend equation, while the red
dashed line shows the 95% coefficient bounds.

The results derived from the application of multilinear regression for the es-

timated precipitation values, gave the similar patters as the results taken from

the recorded values. Particularly, for the annual estimated precipitation, there is

a 0.24% increase per year (Fig. 4.21a), while for the average monthly estimated
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Spatiotemporal Patterns of Precipitation

precipitation, the increase equals to 0.36% per year (Fig. 4.21b).

These are pretty interesting results, since they contradict the results taken

from various GCMs according to the latest report of the Intergovernmental Panel

on Climate Change [Hartmann et al., 2013], that monitors climate change on

behalf of the UN Programme for the Environment (UNEP). The IPCC results

refers to a decrease by 20% in South and Eastern Europe. In Southern Europe

precipitation will show a decrease of 1% per decade, while in the summer season

this reduction will reach 5%.

(a) Annual estimated precipitation, ap-
proximately 1.6 mm increase or 0.24% in-
crease per year.

(b) Average monthly estimated Precipi-
tation, approximately 0.2 mm increase or
0.36% increase per year.

Figure 4.21: Overall trend calculated from the estimations. The averaged annual
precipitation values are calculated with the calculation of the mean values of
the estimated annual precipitation of every station in Crete for every year (left),
while the averaged average monthly precipitation values are calculated with the
calculation of the mean values of estimated average monthly precipitation of
every station in Crete for every year (right). The solid red line shows the trend
equation, while the red dashed line shows the 95% coefficient bounds.

Also according to Vrochidou et al. [2013] in the results presented for annual

precipitation over Crete, the calculated trend follows a negative ratio, especially

when applying the worst case scenarios. The estimation trends are decrease in

precipitation amount by 6%, 17% and 26% concerning three different scenarios

(best:RCP2.6, moderate:4.5 and worst:8.5) respectively.

Below we present a figure of a six years period results of precipitation maps
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4. Results of Geostatistical Analysis

for visible proof that our results did not seem to present decrease in precipitation

amount. We do not present the years after 2009, because we have only a few

stations available to extract results.
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Spatiotemporal Patterns of Precipitation

Figure 4.22: Kriging maps of precipitation from 2004 until 2009, created based
on the Spartan variogram model (Eq. (2.30)). The Cartesian coordinates are
measured in the Greek Geodetic System (EGSA ’87), with the horizontal axis
representing the easting and the vertical axis representing the northing. Both
axes are measured in meters. 118



4. Results of Geostatistical Analysis

Figure 4.22: Kriging maps of precipitation from 2007 until 2009 (cont.).
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Chapter 5

Conclusions

This study attempts for the first time a comprehensive analysis of the spatial

variability of monthly rainfall over the island of Crete using geostatistical meth-

ods. Our goal is to better understand the spatial and temporal patterns that

underlie the considerable variability of the rainfall process over the island.

The spatio–temporal analysis of precipitation data for the period 1948–2011

for the island of Crete yields useful information about climate change and precip-

itation trends on the island. We estimate the precipitation probability distribu-

tions for the dry and wet periods, separately for the west and east regions of the

island, both at fixed time scales (fields), but also at specific spatial scales (time

series). The original monthly data sets for the wet periods are fitted accurately

with the Generalized Extreme Value distribution, but the data for the dry period

do not give good fits because of many precipitation records with zero values. A

spatial trend is observed, with the average monthly precipitation in the West

measuring about 40 mm higher than in the East. Accordingly, a spatial trend

is observed with the annual precipitation in the West measuring 450 mm higher

than in the East.

In addition to the geographical East–West pattern of precipitation on the

island, we investigate the topographic dependence of precipitation. The analy-

sis reveals positive correlation between elevation and precipitation, and between

latitude and precipitation, whereas the longitude is negatively correlated with

precipitation. A linear regression model using all three explanatory variables is

used, because it gives the lowest coefficient of determination R2. It is deduced



that topographic parameters are strongly correlated with precipitation and con-

tribute both to the intensity of precipitation as well as its spatial distribution.

The multilinear regression model is used to remove topographic trends and to

obtain precipitation residuals. Trend removal helps to transform the initially

non–Gaussian precipitation data into Gaussian distributed residuals.

The spatial variability of the residuals is separately investigated for every year

through the calculation of the empirical variogram and the subsequent fitting of

Spartan variograms as theoretical models. This study is the first application

of the Spartan variogram to precipitation data. We apply regression kriging to

the precipitation residuals in order to generate precipitation maps. Regression

kriging incorporates the trend function at every node of the map grid based on

the elevation obtained from the Digital Elevation Model of Crete. Performance

measures estimated by means of cross validation prove that the geostatistical

approach leads to a representative spatial model, which takes into account the

significant spatial variability of the rainfall process on the island. The proposed

approach can be integrated as a modeling tool in a comprehensive water resources

management plan.

According to the latest report of the Intergovernmental Panel on Climate

Change [Hartmann et al., 2013] that monitors climate change on behalf of the

UN Programme for the Environment (UNEP), an increase of 10% to 40% of rain-

fall in northern Europe and a respective decrease of 20% in South and Eastern

Europe from 1900 to 2005 is expected. In Southern Europe precipitation is pro-

jected to decrease by 1% per decade, while in the summer season this reduction

will reach 5%. Also according to Vrochidou et al. [2013] the analysis of annual pre-

cipitation over Crete based on climate models shows a negative trend (reduction

of precipitation), especially if the worst case scenarios are applied. In particular,

a decrease in the amount of precipitation by 6%, 17% and 26% is projected based

on three different scenarios (best:RCP2.6, moderate:RCP4.5 and worst:RCP8.5)

respectively.

Studying the evolution of the precipitation over time based on the geostatisti-

cal analysis, we observe that the annual precipitation has a cyclical behavior with

a variable period. It is interesting that the overall rainfall trend does not seem

to support the scenario of reduced rainfall due to climate change at least over
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5. Conclusions

the length of this study. In particular, the overall trend represents an increase by

approximately 0.28% from 1948 to 2011 for the annual precipitation and 0.32%

from 1948 to 2011 for the average monthly precipitation.

A natural evolution of the present study is to extend the methodology pre-

sented herein to a more rigorous analysis of anisotropy as well as to a joint spatio–

temporal model. To improve the knowledge of the precipitation distribution and

water availability, a possible approach is to incorporate additional variables in

the model, such as groundwater levels, evapotranspiration and runoff. Such an

integrated model could provide a valuable tool for water resources management

on the island of Crete. A study involving longer time series is needed to more

accurately evaluate the potential impact of climate change.

Our current model cannot handle zero precipitation values. A possible im-

provement could involve the Generalized Pareto distribution model proposed by

Baxevani and Lennatsson [2015]. This will also allow extension of the geostatisti-

cal model to finer time scales (i.e., monthly or daily scale). Finally, it is necessary

to compare our results with other types of statistical analysis of extreme events

(e.g.,[Davison et al., 2013]).

Finally it is important to establish more monitoring stations on the island,

particularly in the municipality of Chania, where data from only six stations

are available. This will give a denser network, that will improve the results of

geostatistical analysis.
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Appendix A

In Appendix A we present figures from 1965 until 2010 for the annual precipitation

fields. The figures include:

a. Empirical variogram (crosses) and theoretical Spartan variogram model (con-

tinuous blue line) based on Eq. (2.30) for the precipitation residuals. The

horizontal axis is calibrated using normalized distances; one unit corresponds

to a lag distance of approximately 2.8 km in x direction, 1.2 km in y direction,

and 2.4 m in z direction. Bars count the available pairs of sample points for

every lag distance. The estimated parameters for the theoretical model are

presented separately on every figure’s caption.

b. Kriging–based leave–one–out cross validation predictions versus sample values

for precipitation.

c. Map of estimated annual precipitation, based on Spartan variogram model

(Eq. (2.30)). The Cartesian coordinates are measured in the Greek Geodetic

System (EGSA ’87), with the horizontal axis representing the easting and the

vertical axis representing the northing. Both axes are measured in meters.

d. Map of estimated coefficient of variation of annual precipitation, based on

Spartan variogram model (Eq. (2.30)). The Cartesian coordinates are mea-

sured in the Greek Geodetic System (EGSA ’87), with the horizontal axis

representing the easting and the vertical axis representing the northing. Both

axes are measured in meters.



Figure 1: Year 1965 annual precipitation. The Spartan variogram parameters are:
nugget variance σ2

n = 0.0041 mm2, η0 = 2.5294e + 05 mm2, η1 = 0.4333, ξ =
10.6993.
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. Appendix A

Figure 2: Year 1966 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 7.1825e + 03 mm2, η0 = 1.0504e + 05 mm2, η1 =
−1.8852, ξ = 21.4235.
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Figure 3: Year 1967 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 6.7205e + 03 mm2, η0 = 2.2078e + 05 mm2, η1 =
−1.2175, ξ = 23.7127.
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Figure 4: Year 1968 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 1.6271e + 04 mm2, η0 = 5.6444e + 03 mm2, η1 =
−1.9999, ξ = 35.4525.
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Figure 5: Year 1969 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 2.3427e + 03 mm2, η0 = 4.3808e + 05 mm2, η1 =
1.9999, ξ = 29.0385.
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Figure 6: Year 1970 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 2.9939e + 03 mm2, η0 = 7.6891e + 05 mm2, η1 =
1.9999, ξ = 35.2855.
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Figure 7: Year 1971 annual precipitation. The Spartan variogram parameters are:
nugget variance σ2

n = 173.9258 mm2, η0 = 1.9764e+05 mm2, η1 = −0.8643, ξ =
9.9620.
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Figure 8: Year 1972 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 2.3323e + 03 mm2, η0 = 1.0643e + 06 mm2, η1 =
1.9999, ξ = 58.0892.
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Figure 9: Year 1973 annual precipitation. The Spartan variogram parameters are:
nugget variance σ2

n = 574.7301 mm2, η0 = 4.9180e + 05 mm2, η1 = 1.9999, ξ =
53.2182.
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Figure 10: Year 1974 annual precipitation. The Spartan variogram parame-
ters are: nugget variance σ2

n = 705.9062 mm2, η0 = 4.0002e + 05 mm2, η1 =
1.9999, ξ = 23.7951.
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Figure 11: Year 1975 annual precipitation. The Spartan variogram parame-
ters are: nugget variance σ2

n = 171.9771 mm2, η0 = 1.0865e + 06 mm2, η1 =
1.9999, ξ = 40.6173.
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Figure 12: Year 1976 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 1.4903e + 04 mm2, η0 = 4.1825e + 05 mm2, η1 =
−0.2280, ξ = 16.1434.
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Figure 13: Year 1977 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 8.9749e − 04 mm2, η0 = 1.8066e + 06 mm2, η1 =
1.9999, ξ = 21.6769.
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Figure 14: Year 1978 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 1.1239e + 03 mm2, η0 = 1.1422e + 06 mm2, η1 =
1.9999, ξ = 45.8321.
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Figure 15: Year 1979 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 0.0024 mm2, η0 = 1.1146e+06 mm2, η1 = 0.7711, ξ =
18.5273.
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Figure 16: Year 1980 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 6.1494e + 03 mm2, η0 = 2.3375e + 05 mm2, η1 =
−1.6003, ξ = 10.7215.
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Figure 17: Year 1981 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 2.0419e − 04 mm2, η0 = 6.9971e + 05 mm2, η1 =
−0.9333, ξ = 21.7992.
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Figure 18: Year 1982 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 4.5221e + 03 mm2, η0 = 8.9089e + 05 mm2, η1 =
1.9999, ξ = 36.7636.
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Figure 19: Year 1983 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 3.1588e + 03 mm2, η0 = 6.8585e + 05 mm2, η1 =
1.9999, ξ = 34.7984.
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Figure 20: Year 1984 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 7.9446e + 03 mm2, η0 = 1.0700e + 06 mm2, η1 =
1.9999, ξ = 65.4678.
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Figure 21: Year 1985 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 4.5399e − 05 mm2, η0 = 3.6757e + 05 mm2, η1 =
1.9999, ξ = 25.2580.

146



. Appendix A

Figure 22: Year 1986 annual precipitation. The Spartan variogram parame-
ters are: nugget variance σ2

n = 0.0018 mm2, η0 = 9.0470e + 05 mm2, η1 =
−0.9929, ξ = 11.5590.
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Figure 23: Year 1987 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 2.4680e + 04 mm2, η0 = 1.2462e + 05 mm2, η1 =
−1.8947, ξ = 5.9949.
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Figure 24: Year 1988 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 1.2608e + 04 mm2, η0 = 4.8478e + 05 mm2, η1 =
1.9999, ξ = 14.3913.
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Figure 25: Year 1989 annual precipitation. The Spartan variogram parame-
ters are: nugget variance σ2

n = 717.0774 mm2, η0 = 2.7366e + 05 mm2, η1 =
1.9999, ξ = 22.3578.
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Figure 26: Year 1990 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 3.9497e + 03 mm2, η0 = 5.0704e + 05 mm2, η1 =
1.9999, ξ = 25.0299.
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Figure 27: Year 1991 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 6.6308e + 03 mm2, η0 = 1.6522e + 05 mm2, η1 =
−1.7973, ξ = 6.8429.
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Figure 28: Year 1992 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 3.5278e + 03 mm2, η0 = 5.4916e + 05 mm2, η1 =
1.9999, ξ = 21.7160.
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Figure 29: Year 1993 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 1.5363e + 04 mm2, η0 = 6.1321e + 05 mm2, η1 =
1.9999, ξ = 58.0159.

154



. Appendix A

Figure 30: Year 1994 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 8.2364e + 03 mm2, η0 = 8.8440e + 05 mm2, η1 =
1.9999, ξ = 36.7642.
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Figure 31: Year 1995 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 2.4940e + 04 mm2, η0 = 8.5090e + 5 mm2, η1 =
1.9999, ξ = 77.2552.
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Figure 32: Year 1996 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 2.3365e + 03 mm2, η0 = 1.7743e + 06 mm2, η1 =
1.9999, ξ = 32.6777.
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Figure 33: Year 1997 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 5.5623e + 03 mm2, η0 = 1.2460e + 06 mm2, η1 =
1.9999, ξ = 40.9075.
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Figure 34: Year 1998 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 6.3451e − 04 mm2, η0 = 5.3467e + 05 mm2, η1 =
−1.6870, ξ = 11.6252.
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Figure 35: Year 1999 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 6.9015e − 04 mm2, η0 = 7.3055e + 05 mm2, η1 =
1.9999, ξ = 19.8601.
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Figure 36: Year 2000 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 5.2191e + 03 mm2, η0 = 1.1207e + 06 mm2, η1 =
1.9999, ξ = 41.0061.
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Figure 37: Year 2001 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 5.7736e + 03 mm2, η0 = 2.5562e + 06 mm2, η1 =
1.9929, ξ = 44.4091.
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Figure 38: Year 2002 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 2.0380e + 04 mm2, η0 = 1.8979e + 06 mm2, η1 =
1.9999, ξ = 20.9565.
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Figure 39: Year 2003 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 6.6351e + 03 mm2, η0 = 1.8439e + 06 mm2, η1 =
1.9999, ξ = 63.9489.
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Figure 40: Year 2004 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 1.0361e + 04 mm2, η0 = 5.5118e + 05 mm2, η1 =
1.9999, ξ = 46.8156.
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Figure 41: Year 2005 annual precipitation. The Spartan variogram parame-
ters are: nugget variance σ2

n = 94.6634 mm2, η0 = 1.5193e + 06 mm2, η1 =
1.9999, ξ = 48.3514.
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Figure 42: Year 2006 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 9.6712e − 06 mm2, η0 = 1.5007e + 06 mm2, η1 =
1.9999, ξ = 27.5556.
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Figure 43: Year 2007 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 0.0011 mm2, η0 = 7.8444e+05 mm2, η1 = 1.4447, ξ =
21.2302.
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Figure 44: Year 2008 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 1.0835e + 04 mm2, η0 = 5.3203e + 05 mm2, η1 =
1.9999, ξ = 18.7451.
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Figure 45: Year 2009 annual precipitation. The Spartan variogram parame-
ters are: nugget variance σ2

n = 325.7335 mm2, η0 = 5.8068e + 05 mm2, η1 =
−1.2541, ξ = 27.1204.
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Figure 46: Year 2010 annual precipitation. The Spartan variogram parameters
are: nugget variance σ2

n = 2.8934e + 04 mm2, η0 = 1.4142e + 03 mm2, η1 =
−1.9999, ξ = 4.8863.
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Rhône River. Oecologia, 151(3):544–559, 2007. 6

A.C. Davison, R. Huser, and E. Thibaud. Geostatistics of dependent and asymp-

totically independent extremes. Mathematical Geosciences, 45(5):511–529,

2013. ISSN 1874-8953. doi: 10.1007/s11004-013-9469-y. 123

S. Dean and B. Illowsky. Descriptive statistics: Skewness and the mean, median,

and mode. Technical report, OpenStax-CNX, 2012. 34

L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag New

York Inc, 1986. 16, 18, 23

R.E. Dickinson, R.M. Errico, F. Giorgi, and G.T. Bates. A regional climate model

for western United States. Clim. Change, 15:383–422, 1989. 12

N. Draper and H. Smith. Applied Regression Analysis. Wiley, New York, second

edition, 1981. 57

B. Efron. Estimating the error rate of a prediction rule: improvement on cross-

validation. J. Amer. Statist. Assoc., 78(382):316–331, 1983. 61

esri. USGS EarthExplorer, 2015. URL http://www.esri.com/. 71

D. Founda and C. Giannakopoulos. The exceptionally hot summer of 2007 in

Athens, Greece - a typical summer in the future climate. Global and Planetary

Change, 67(3–4):227–236, 2009. 6

H.J. Fowler, S. Blenkinsop, and C. Tebaldi. Linking climate change modelling

to impacts studies: recent advances in downscaling techniques for hydrological

modelling. Int. J. Climatol., 27:1547–1578, 2007. 13

M. Fuentes. Spectral methods for nonstationary processes. Biometrika, 89:197–

210, 2002. 43

S. Ghosh. Modelling bivariate rainfall distribution and generating bivariate cor-

related rainfall data in neighbouring meteorological subdivisions using copula.

Hydrological Processes, 24:3558–3567, 2010. doi: 10.1002/hyp.7785. 19

176

http://www.esri.com/


References

W.J. Gibbs and J.V. Maher. Rainfall deciles as drought indicators. Bureau of

Meteorology Bulletin, 1967. Commonwealth of Australia, Melbourne. 11

I.I. Gikhman and A.V. Skorokhod. Introduction to the theory of random processes.

Dover Publications, INC, Mineola, New York, 1996. ISBN 0-486-69387-2. 28
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