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Abstract

Life on Earth is strongly linked to weather and climate; consequently
knowing how to evaluate and interpret factors that affect such phe-
nomena is vital for environmental and economic sustainability. The
sensitivity of Europe to climate change has a distinct north—south
gradient, with many studies indicating that Southern Europe will be
more severely affected leading to warmer and drier climate, which
will threaten its waterways, hydropower, agricultural production and

timber harvests.

This thesis focuses on the investigation of precipitation trends on the
island of Crete. In order to provide an efficient methodology to predict
precipitation and to produce reliable precipitation maps, geostatistical
approaches are required. The data available for this study are monthly
measurements of precipitation from 54 rain gauges around Crete, with
records from 1948 until 2012. The data for the time period from 1948
until 1964 present a lot of missing records and have been used only

for a preliminary analysis.

For the analysis of precipitation measurements for the time period
1965 until 2012 a geostatistical methodology has been developed. At
first, original monthly measurements of precipitation were analysed
over different time and spatial scales, in order to determine their sta-
tistical properties. Then, an investigation on the topographic parame-
ters that contribute to precipitation amount and distribution through
space were conducted. Multilinear regression was used to determine
a trend model for every year. The precipitation residuals were shown
to be suitable for the application of regression kriging. In order to

apply kriging, the spatial variability of the data sets was investigated



using the Spartan variogram family. To determine the trend at every
point in space, the Digital Elevation Model of Crete, created through
Geographical Information Systems, was used. The model was val-
idated using leave—one—out cross—validation and measures of uncer-
tainty were estimated. The analysis of the validation measures shows
that the differences between the true values and the estimated val-
ues are small. Finally, precipitation maps were generated using the

geostatistical model constructed.

The most important conclusions that are derived in this thesis are:

1. Spatial correlations of the precipitation were identified both lo-

cally and between the FEastern and Western parts of the island.

2. The statistical analysis of precipitation data is not consistent
with a significant change in annual precipitation for the period
1965 to 2012.

3. The elevation is the most important topographic parameter for

the estimation of annual precipitation levels.

4. There is increased uncertainty in the precipitation estimates in

the coastal areas of the island.

5. The network of the meteorological stations is very sparse, espe-

cially in the western part of the island.

The above findings improve our understanding of the space—time pre-
cipitation patterns and its statistical distribution over Crete. The
proposed model provides a flexible and mathematical advanced tool

with potential applications in effective water resources management.



Mepianym

H ¢wn ot ' elvat dppnkta ouvdedepévn pe tov katpd Kat To KApa.
Katd ovvénewa, mAnpogopieg ot onoleg Bonbovv otnv eppnvela Twv
ToPAYOVIWY Tov enNpPealouv TETOLOL €l80VG @awvopeva eivatl {WTIKNG
onpaciag ywr to meplBdAiov kat TtV owkovouwkn Buwopdtnta. H
gvawcnola ¢ Evpwmng ommv kApatiky oAdayn av§dvetor pe
katevBuvon anod to Boppda TPOG TO VOTO, PE TOAAEG HEAETEG VI SElVOUV
otL n votix Evpwnn Ba mAnyet no cofapd. o ovykekpéva, n votia
Evpwmn avapévetatl va yivel mo Beppr) kat npr, ENLQEPOVTAG CUVETELEG
O0TOUG VSATIKOUG TOPOUG, TNV USPONAEKTPIKY EVEPYELX, TNV YEWPYLKN
napaywyn kat v EuAeia e E€attiag ¢ evaiobnoiag g Mecoyeiov
0€ TETOLX PALVOPEVX, TOAAEG TEPLOXES TNG EXOUV PEAETNOEL eKTEVWG. OL
peATEG auTEG LTOSelkvUoUY plar TAoM PEIWONG TNG ATHOCQALPLKIG

KOTOUKPNHVLOTG, KUPLWG OTLG VOTLOXVATOALKEG TEPLOYES.

H napovoa epyacia emkevtpwvetal ot OlEPEVVNON TACEWV TOU
oxetiovta pe Ti§ Bpoxontwoelg oto vnot g Kpnng. [lpokeypévou va
SnuovpynBel pa anoteAeopatikny pebodoroyia yia tnv mpofAsdm
XWPLKWV KAl XPOVIKWV TACEWV TNG PPoXOnTwong Kol TNV Topaywyn)
avtioTolywv Yaptwv, amatteitar 1 xpnon s lewotatiotikng. H
napovoa  SatpPn  xpnowonotel Sedopéva  Ppoxomtwong and
Bpoxopetpkovg otaBpovg otnv Kprtn. Ta §edopéva avta elvat pnviaia
KOl QVOPEPOVTAL OTNV XPOVIKN mepiodo and to 1948 €wg to 2012.

XpnoponomOnkav dedopeva anod 54 oTabBpRovg KoL yLo TV XPOVLIKY



neplodo anod to 1948 £wg kot To 1964 Ta Sedopéva tapovotdlouv ToAAEG
eMelPelg kot Sev ypnowyonomBnkav mEpa and pla SLEPELVITIKY

avaAvon.

[l v peAétn twv Sedopévwy Bpoxdntwong oto Xpovikd Slaotnpa anod
1965 €wg 2012 avantiyxbnke yewotatloTikny pebodoroyia avdAvong.
Apxwd, oL mpwtoyevelg pmviaieg petpnoelg g Ppoxontwong
avaAVBNKaY o€ SLPOPETIKEG XPOVIKEG KL XWPLKEG KALPaKES, woTe va

EKTIPNO0VV 0L OTATIOTIKEG TOUG LBLOTNTES.

Z1n ovvéxela, SlepeuviBNKe 1 GLPBOAT TWV TOTOYPAPIK®Y TAPAPETPWV
0710 VYOG KoL TNV XWPLKN Katavopt) TG Bpoxontwong. Me epappoyn g
moManAnig  ypappwkng  maAwdpopnong  (multilinear  regression)
SnpovpynOnke éva HOVTEAD XWPLKNG TAONG TNG BPOoXONTWoNG avd £T0G.
Katonwv agaipeons g tong anod Tt cuvoAlkn BpoxonTwor) TpoKUTTEL
TO YWPLKO tedio vtoAoinwyv TG fpoxonTWOoNG, TO OMOol0 XpMoLonoLeiTaL
Yl YEWOTATIOTIKY) avaAvon pe tn pébodo regression kriging. H xwpukm
petafAntotta twv Sedopévwy mtocotwkonoteital pe ) Ponbeia g
ouvapTNONG TOu BaplOYPAPpPATOG, Yl TNV Omolo XPMOLponoLElTaL TO
Inaptidtiko povtédo Paploypdppatog. a v KATAOKELT) XOXPTWV
BpoxdnTwong analTeltal Kat 1 EKTINOoN TWV XWPLKWV TAoewV o€ K&Be
kOpBo tou mAypatog xaptoypaenons. I va emtevxBel avto,
xpnoyonomOnke to Ynelakod povtédo edd@oug tg Kpntng, to onolo
Snpovpynnke péow TG mMAat@oppag  Twv  ewypa@kwv
[TAnpo@oplakwv ZuoTNHATWV.

[ v enaAnBgvon Tov YewoTATIOTIKOU PHOVTEAOV, XpoLonomOnKe 1

péBodog g Saotavpwtikig emBefaiwong (leave-one-out cross-

validation) kat vnoAoyiocbnkav otatiotikd pétpa enidoong. H avéivon



TWV HETPWV AUTWV ESELEE OTLT AMOKALOT HETAED TWV EKTIHWHEVWV KoL
TWV TMPAYPATIKOV TWHOV TNng Bpoxontwong eivar pwpn. TéAog,
SnpovpynOnkav xapteg BPoxOTTWONG XPTOLHOTOLWVTAG TO TAPATAV®

YEWOTATIOTIKO HOVTEAO.

Ta mo onpavtikd cupnepdopaTa TOV TPOKVUTTOUV ANd TNV mapovoa

Statppn eival ta €€16:

1. AviyvetBnke cvoTnpatiky Sla@opd tng Bpoxontwong avdpeoo
otnv AvatoAwkn kat tnv Avtikn Kpn.

2. H otatotkn) avaivon twv Sedopévwv Bpoxontwong Sev
vnootnpifel onpovTiky petafoAn ¢ eTolag BpoxonTwong yo
TO XpOoViko Staotnpa 1965 £wg 2012.

3. Touyopetpo anoteAel TV ONPAVTIKOTEPT A0 TLG TOTOYPAPLKES
TOPAPETPOVG YLK TOV TPOTSLOPLOPO TNG ETNOLAG BPOXOTTWONG.

4. Moapatnpeitar avinpévn afefatdTnTa OTIG EKTNOES TNG
BpoxOnTWonG oTIG TAPAALEG TEPLOXES TOV VIGLOV.

5. To Bpoxopetpkd Siktvo elval Wlaltepa apatd, Wdlaitepa oTo

SUTIKO TPpA TOV VN oLoV.

Ta tapandvw gupnpata BEATIWVOUV TNV KATAVONOT) HAG, OGOV XPOop&
TIG XWPOXPOVIKEG PETABOAEG TG  Ppoxdmtwong, kKabwg Kot Ttnv
OTATIOTIKY KATAvopT| TG Bpoxontwaong og 0An v éktaon tng Kpntng.
To mpotewodpevo POVTEAO TapEXEL €va EVEAKTO Kol paBnpotikd
eCeltypévo epyadelo to omolo pmopel va Bpel EQAPHOYEG OTNV TLO

AMOTEAEOPATIKY SLaXElpLon TWV VSATVWY TOPWV.
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Chapter 1
Introduction

During the last decades, geostatistical approaches have been successfully applied
in different environmental and earth sciences disciplines. Geostatistics has meth-
ods that can be applied in difficult situations, such as sparse measurements, is
able to provide space—time predictions for variables with environmental and so-
cioeconomic importance and provides estimates of the uncertainty of the results.
Nowadays, geostatitstical methods are at the core of new research methodologies
that are being proposed.

Because of the uncertainties involved, probabilistic approaches are required
to enable water resources managers to undertake analyses of risk under scenarios
of climate change. Mathematical techniques are being developed to construct
probability distributions for specified outcomes. Most studies of climate change
impact on water stress in countries assess demand and supply on an annual basis.
Analysis at monthly or higher temporal resolution scale is desirable, since changes
in seasonal patterns and the probability of extreme events may offset the positive
effect of increased availability of water resources [Kovats et al., 2014].

This thesis is motivated by the need for accurate interpolation methodologies
that can help to determine the spatiotemporal variability of precipitation. Thus,
below we introduce spatiotemporal methodologies applied on field data from rain
gauges. The methods that we propose combine spatial trend models based on
features of the local topography with fluctuations the correlations of which are
modeled by means of the Spartan variogram family.

In addition, this thesis is motivated by the dramatic decrease of available water
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resources and predictions that identify climate change as a potential trigger for
upcoming socioeconomic disaster. More specifically, many Mediterranean basins
with significant agricultural activity are threatened by desertification. Therefore,
accurate spatiotemporal modeling of precipitation is significant and needed for
the identification of future climatic conditions, in order to enable policy makers

to design and implement more efficient water resources management.

1.1 Objectives

The main objective of this thesis is to develop and improve the results of standard
interpolation methodologies leading to more precise mapping of precipitation on
the island of Crete (Greece). The broader aim is to better understand the dis-
tributions of precipitation around Crete at different space and time scale. A
secondary goal is to study the impact of the island’s topography on the rainfall
variations and its contribution on precipitation measurements. Another objective
is to introduce the recently established Spartan variogram family in climatology.
The final goal of this research is to use stochastic methods for the spatiotempo-
ral simulation of precipitation in one of the most mountainous islands of Furope
which has a terrain marked by big plains between mountains and climate that

belongs to two different climatic zones.

1.2 Innovation

The present research addresses the geostatistical analysis of precipitation data
on the island of Crete. The methodology that we present includes stochastic
methods for the spatial and temporal analysis of precipitation patterns in Crete,
analyzed at different scales. The Spartan variogram family is herein applied for
the first time to precipitation data. We generate maps of precipitation and its

uncertainty across the island using geostatistical methods.
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1.3 Thesis Outline

The remainder of this thesis is organized as follows. In Section 1.4 background
information and theory pertaining to meteorological parameters are presented as
well as some of the most commonly used methodologies for the analysis of pre-
cipitation data. In Section 2 geostatistical methodologies are reviewed. Section
3 presents relevant information for the study area (Crete) and an exploratory
statistical analysis of the available rainfall data set. In Section 4 we present
the geostatistical methodology applied to the data set and the results obtained.
Section 5 contains a general discussion of the results and concluding remarks.

Finally, in Appendix A all the resulted plots for every year are gathered.

1.4 Basic Concepts and Literature Review

Climate in a narrow sense is usually defined as the average weather, or more
rigorously, as the statistical description in terms of the mean and variability of
relevant quantities over a period of time ranging from months to thousands or
million of years. The classical period for averaging these variables is 30 years,
as defined by the World Meteorological Organization. The relevant quantities
are most often surface variables such as temperature, precipitation and wind
[Hartmann et al., 2013].

Life on Earth is strongly linked to weather and climate; consequently knowing
how to evaluate and interpret key factors for weather and climate is vital. Human
societies have developed and prospered under relatively stable climate since the
ice age which ended several thousand years ago. In the last century, however,
climate trends have been observed that have caused international concern.

More specifically, according to the Fifth Assessment Report [Hartmann et al.,
2013] the mean surface temperature seems to follow an increasing trend of 0.075°C
per decade from 1901 to 2012 (90% confidence interval: 0.062 to 0.088°C) as
shown in Fig. 1.1. The HadCRUT4 dataset that is used for the Fig. 1.1 has been
developed by the Climatic Research Unit at the University of East Anglia in
conjunction with the Met Office Hadley Centre [Jones et al., 2015]. HadCRUT4

is a gridded dataset of global historical surface temperature anomalies relative to
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a 1961-1990 reference period. Data are available for each month since January
1850, on a 5 degree grid [Morice, 2015].

The observed trend on a shorter time scale is presented in Table 1.1. Climate
change is caused by non-anthropogenic factors such as biotic processes, varia-
tions in the solar radiation received by the Earth, plate tectonics, and volcanic
eruptions. However, most scientists believe that there is a definite anthropogenic

component of climate change [IPC, 2013].

Tempearature anomaly (*C)

-0E . . .
1850 1900 1850 2000

Figure 1.1: (a) Global mean surface temperature (GMST) anomalies relative to
a 1961-1990 climatology based on HadCRUT4 annual data. The straight black
lines are least squares trends for 1901-2012, 1901-1950 and 1951-2012. (b) Same
data as in (a), with smoothing spline (solid curve) and the 90% confidence interval
on the smooth curve (dashed lines). Note that the (strongly overlapping) 90%
confidence intervals for the least squares lines in (a) are omitted for clarity. Figure
taken from Hartmann et al. [2013].

The climate of Europe is temperate and is divided into five types: maritime,
transitional, continental, polar and Mediterranean. The sensitivity of Europe to
climate change has a distinct north—south gradient, with many studies indicating
that Southern Europe will be more severely affected by climate change. Southern
Europe has a hot semi-arid climate which is expected to become warmer and drier,

threatening the continent’s waterways, hydropower, agricultural production and
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Table 1.1: Estimates of the mean change in global (spatial) mean surface tem-
perature between 1901 and 2012, 1901 and 1950, and 1951 and 2012, obtained
from the linear (least squares) and nonlinear (smoothing spline) trend models.
Half-widths of the 90% confidence intervals are also provided for the estimated
changes based on the two trend methods. Table taken from Hartmann et al.
[2013].

Trend in °C per decade
Method 1901-2012 1901-1950 1951-2012
Least squares 0.075+ 0.013 0.107+£ 0.026 0.1064 0.027
Smoothing spline 0.081+ 0.010 0.070£ 0.016 0.090+ 0.018

timber harvests.

Climate trends will lead to changes in temperature and precipitation, affect-
ing multiple sectors of the society and the economy (Table 1.2). For example,
as extreme weather events (meteorological droughts, heavy precipitation events,
heat waves, floods and fires) become more frequent, their impacts on economic,
social and health sectors will become more visible. In Southern Europe projec-
tions call for an increase in the frequency and the intensity of heat waves and
a decrease in precipitation, contrary to the projected precipitation increase for
Northern Europe [Kovats et al., 2014]. Nevertheless, the impact of this change
over the Mediterranean region is not clear due to the prevalence of strong con-
vective rainfall and its great spatial variability. Climate change could lead to
increased evaporative losses, leading to significant reduction of water availability

in rivers and groundwater resources [Kovats et al., 2014].

1.4.1 Precipitation and Drought
1.4.1.1 Precipitation

In meteorology, any product of the condensation of atmospheric water that falls
under gravity to Earth is called precipitation. Precipitation can be divided into
three categories, based on whether it falls as liquid water (rain, drizzle, sleet),
liquid water that freezes on contact with the surface, or ice (snow, hail). Precip-

itation occurs when a portion of the atmosphere becomes saturated with water



Table 1.2: Impacts of climate extremes in the last decade in Europe. Table taken from Kovats et al. [2014].

Year |Region Meteorological charac- | Production systems and |Agriculture, fisheries, | Health and social wel- | Environmental quality | Mega-
teristics physical infrastructure, set- | forestry, bioenergy fare and biological conserva- | fire
tlements tion
2003 |Western |Hottest summer in at|Damage to road and|Grain harvest losses of 20% | 35000 deaths in August | Decline in water quality | Yes
and least 500 years [Luter-|rail transport systems.|[Ciais et al., 2005] in central and western | [Daufresne et al., 2007].
central bacher et al., 2004] Reduced/interrupted  op- Europe [Robine et al.,|High outdoor pollution
Europe eration of nuclear power 2008]
plants (mostly in France).
High transport prices on
the Rhine due to low water
levels
2004/ |Iberian | Hydrological drought Grain harvest losses of 40
2005 | Peninsula
2007 |Southern |Hottest summer on|1710 buildings burned |~ 575500 hectares burnt |6 deaths Portugal, 80|Several protected con-|Yes,
Europe |record in Greece since|down or rendered unin-|area [JRC, 2008] deaths in Greece [JRC, [servation sites (Natura, | Greece
1891  [Founda  and|habitable in Greece [JRC, 2008] 2000) were destroyed
Giannakopoulos, 2009] |2008] [JRC, 2008]
2007 |England |May—July wettest since|Estimated total losses 4|78 farms flooded. Impacts|13 deaths and 48000
and records began in 1766 | billion (£3 billion insured|on agriculture £50 million|flooded homes [Pitt,
Wales losses) [Chatterton et al.,|[Chatterton et al., 2010] 2008].  Damage costs
2010] for health effects, in-
cluding loss of access to
education, £287 million
[Chatterton et al., 2010]
2010 |Western |Hottest summer since Fire damage to forests|Estimated 10000 ex-|High outdoor pollution | Yes
Russia 1500 [Barriopedro et al., [Shvidenko et al., 2011].|cess deaths due to heat|levels in Moscow [Bon-
2011] Reduction in crop yields|wave in Moscow in July | dur, 2011], [Revich and
[Barriopedro et al., 2011]|and August [Revich and | Shaposhnikov, 2012]
[Coumou and Rahmstorf, | Shaposhnikov, 2012]
2012]
2011 | France Hottest and  driest | Reduction in snow cover for |8% decline in wheat yield

spring in France since
1880

skiing

[AGRESTE, 2011]
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vapour, so that the water condenses and “precipitates”.

Over 96 percent of the world’s total water supply is saline. Over 68 percent
of the total freshwater is locked up in ice and glaciers, while another 30 percent
of freshwater is in the ground. Fresh surface—water sources, such as rivers and
lakes, only constitute about 93100 km?®, which is about 1 /150th of one percent
of the total water on the Earth; yet, rivers and lakes are the sources of most of
the water people use everyday [Shiklomanov, 1993].

Precipitation is a major component of the water cycle, and it is responsible
for depositing the fresh water on the planet (Fig. 1.3). Approximately 505000
km?® of water falls as precipitation each year, 3908000 km?® of it over the oceans
and 107000 km® over land [Chowdhury, 2005]. Given the Earth’s surface area,
the above implies that the globally averaged annual precipitation is 990 mm, but
only 715 mm of that precipitation falls over land. Climate classification systems
such as the Koppen classification use average annual rainfall to help differentiate

between climate regimes.
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Figure 1.2: Projected changes in heavy precipitation (in %) in winter and summer
from 1971-2000 to 2071-2100 for the RCP8.5 scenario based on the ensemble
mean of different regional climate models (RCMs) nested in different general
circulation models (GCMs). Figure taken from EEA [2015].
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Figure 1.3: Water Cycle. Figure taken from Shiklomanov [1993].

The standard instrument for measuring rainfall or snowfall is the standard
rain gauge, developed at the start of the 20th century. The gauge consists of a
funnel emptying into a graduated cylinder, 2 cm in diameter, which fits inside
a larger container which is 20 cm in diameter and 50 cm tall. If the rainwater
overflows the graduated inner cylinder, the larger outer container will catch it.
When measurements are taken, the height of the water in the small graduated
cylinder is measured, and the excess overflow in the large container is carefully
poured into another graduated cylinder and measured to give the total rainfall.
Sometimes a cone meter is used to prevent leakage that can corrupt the data.
The cylinder is usually marked in mm and will measure up to 250 mm of rainfall

with 0.5 mm markings that define the resolution [Strangeways, 2006].

Other types of gauges include the wedge gauge (the cheapest and most fragile
rain gauge), the tipping bucket rain gauge, and the weighing rain gauge. Con-
trary to in—situ methods, radars and satellites are used for measuring rainfall
with remote sensing methods. In particular, precipitation measurements in vast
expanses of the ocean and remote land areas depend on satellite observations.
There is a relationship between the occurrence and the intensity of precipitation
with the recorded electromagnetic spectrum. Satellite sensors that are used for

precipitation, fall into two categories. Thermal infrared (IR) sensors record a
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channel around 11 micron wavelength and primary give information about cloud
tops. These information combined with mathematical schemes, algorithms and
atmospheric properties, create the precipitation estimation from IR data. The IR
sensors work best in cases of deep, vigorous convection —such as the tropics—
and becomes progressively less useful in areas where stratiform precipitation dom-
inates. The second category of sensor channels is in microwave part of the electro-
magnetic spectrum, with frequencies ranging between 10 GHz to a few hundred
GHz. Satellites such as the Tropical Rainfall Measuring Mission (TRMM) and the
Global Precipitation Measurements (GPM) mission employ microwave sensors to

estimate precipitation.

1.4.1.2 Drought

The definition of drought is complex because different interpretations are possible.
The majority of people may consider drought as a “prolonged absence or marked
deficiency of precipitation,” a “deficiency of precipitation that results in water
shortage for some activity or for some group,” or a “period of abnormally dry
weather sufficiently prolonged for the lack of precipitation to cause a serious
hydrological imbalance” [Heim, 2002].

Drought can be divided into four categories:

1. Meteorological or Climatological. Meteorological drought is defined
usually on the basis of the degree of dryness —in comparison to some “nor-
mal” or average amount— and the duration of the dry period. Definitions
of meteorological drought must be considered as region specific since the
atmospheric conditions that result in deficiencies of precipitation are highly

variable from region to region [Wilhite and Glantz, 1985].

2. Agricultural. The onset of an agricultural drought may lag that of a me-
teorological drought, depending on the prior moisture status of the surface

soil layers.

3. Hydrological. Precipitation deficits over a prolonged period that affect

surface or subsurface water supply, thus reducing streamflow, groundwater,
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reservoir, and lake levels, will result in a hydrological drought, which will

persist long after a meteorological drought has ended.

4. Socioeconomic. Socioeconomic drought associates the supply and de-
mand of certain economic goods with elements of meteorological, agricul-

tural and hydrological drought.

The relationship between the different types of drought is complex. For example,
streamflow is the key variable in the analysis of droughts for many water supply
activities such as hydropower generation, recreation, and irrigated agriculture
where crop growth and yield are largely dependent on water availability in the
streams [Condra, 1944].

The hydrology of a region is affected by changes in the timing and amount
of precipitation, evaporation, transpiration rates, and soil moisture, parameters
which in turn also affect the drought characteristics of a region. The effect of a
drought varies according to vulnerability. For example, subsistence farmers are
more likely to migrate during droughts because they do not have alternative food
sources. Areas with populations that depend on water resources to grow their

food sources are more vulnerable to famine.

1.4.2 Drought Indices

Drought indices are quantitative measures that characterize drought levels by
assimilating data from one or several variables (indicators) such as precipitation
and evapotranspiration into a single numerical value. The nature of drought
indices reflects different events and conditions; they can reflect climate dryness
anomalies (mainly based on precipitation) or correspond to delayed agricultural
and hydrological impacts such as soil moisture loss or lowered reservoir levels
[Zargar et al., 2011].

Some of the drought indices incorporate a large amount of data on rainfall,
streamflow, snow and other hydrometeorological indicators, and they transform
these huge datasets into a single number. Since the development of a drought
index can be based on multiple factors (e.g. drought’s nature and characteris-

tics and the impacts considered), multiple drought indices have been developed

10
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(more than 150, according to Niemeyer [2008]). They include the Standardized
Precipitation Index (SPI, McKee et al. [1993]), the Palmer Drought Severity In-
dex (PDSI, Palmer [1965]), the Reconnaissance Drought Index (RDI, Tsakiris
et al. [2007]), deciles (Gibbs and Maher [1967]), the Reclamation Drought Index
(RDI, Weghorst [1996]), the Crop Moisture Index (CMI, Palmer [1968]), the Sur-
face Water Supply Index (SWSI, Shafer and Dezman [1982]), and the Aggregate
Drought Index (ADI, Keyantash and Dracup [2004]) [Vrochidou, 2013].

1.4.3 Climate Models

Numerical models of climate, i.e., General Circulation Models or GCMs, represent
physical processes in the atmosphere, oceans, cryosphere and land surface, in
terms of mathematical equations that are solved numerically. They are the most
commonly used tools for simulating the climate [[PCC, 2015]. The models divide
the earth, ocean and atmosphere into grid blocks. The examined variables, such
as precipitation, are calculated at each grid point as a function of time. The time
step is a function of the grid size: the finer the resolution, the shorter the interval
between each computation [WMO, 2015]. Typically, a three-dimensional grid has
horizontal resolution of between 250 and 600 km, 10 to 20 vertical layers in the
atmosphere, and sometimes as many as 30 layers in the oceans (Fig. 1.4). Thus,
the resolution of GCMs is quite coarse and many physical processes that occur
at smaller scales, such as those related to clouds, cannot be properly modeled.

There are different types of GCMs based on the area studied, i.e., studies of
the oceans can concentrate on three-dimensional properties of the oceans and
are generally known as ocean GCMs. When it comes to simulating the general
behaviour of the climate system over lengthy periods, however, it is essential to use
models that represent, and where necessary conserve, the important properties
of the atmosphere, land surface and the oceans in three dimensions. At the
interfaces, the atmosphere is coupled to the land and oceans through exchanges
of heat, moisture and momentum. These models of the climate system are usually
known as coupled GCMs.

A technique known as parameterization refers to averaging known properties

over the larger scale, which is one source of uncertainty in GCM-based simula-

11
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tions of future climate. The use of all the available GCM experiments does not
guarantee a representative range for the simulated climate variables, especially
for estimates of future atmospheric composition, due to uncertainties such as
the parameterization technique used (averaging a known property over the larger
scale) [IPCC, 2015].

To overcome the coarse spatial resolution of a coupled GCM, the technique
of nested modeling is used (Fig. 1.4). This technique is applied after the general
analysis using the GCM output as initial and boundary conditions for appropriate
Regional Climate Models (RCM). This enables the RCM to enhance the detailed
regional model climatology. This downscaling procedure can be extended to finer
grids in terms of local models [WMO, 2015].

Figure 1.4: Schematic illustrating the relation between General Circulation Mod-
els and Regional Circulation Models. Figure taken from WMO [2015].

The first GCM was created by Phillips [1956] at Princeton and was quickly
hailed as “a classic experiment”. Later, Neumann and Charney developed a gen-
eral circulation model of the entire three-dimensional global atmosphere built
directly from the primitive equations. Many researchers responded to the chal-
lenge of creating new GCMs. Dickinson et al. [1989] conducted an innovative
study in which they introduced the RCM, which plays a key role in the scientific
investigations during the last three decades. Recent research on the connections
between GCMs and RCMs include the following papers: Christensen et al. [2007];
Giorgi and Mearns [1999]; Grotch and MacCracken [1991]; Hulme [1992]; McCabe
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and Dettinger [1995]; Wilby et al. [1998] and Fowler et al. [2007].

1.4.4 Statistical Modeling

In addition to climate models and drought indices, that have been used widely
to characterize a region, another approach to evaluate the climatic conditions
observed in an area is the geostatistical analysis. In this approach, mathematical
functions are used to model a variable of interest, e.g., precipitation, and to
determine potential correlations through space and time.

Such studies have been presented by Goovaerts [2000] who has used three
multivariate geostatistical algorithms that incorporate a digital elevation model
into the spatial prediction of rainfall: simple kriging with varying local means,
kriging with an external drift, and colocated cokriging. Another study that uses
geostatistical tools is provided by Tushaus [2014] and focuses in the topographical
parameters that affect mountain rain. Moral [2010] gives a comparison of different
geostatistical approaches for mapping climate variables incorporating geograph-
ical information systems (GIS) and carrying out cross validation to obtain the
prediction errors created by the algorithms. Lately, Baxevani and Lennatsson
[2015] developed a daily stochastic spatio—temporal precipitation generator based
on a censored latent Gaussian field. The distributions used for the description
of precipitation intensity are a gamma distribution for observations below some
threshold and a generalized Pareto distribution to model the excesses above the
threshold.

1.4.5 Probabilistic Modeling of Precipitation

Precipitation is best modelled as a stochastic variable due to its significant spatial
and temporal variability. There are certain typical features of these data that
must be taken into account to produce useful results, including the non-Gaussian
distribution of precipitation values, with the presence of many zero values, the
low density of observations, and the temporal and spatial variability of spatial
correlation patterns.

Various probability distributions have been used to model precipitation. The

most commonly used probability distribution for precipitation data analysis based
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on recorded measurements is the gamma distribution [Baxevani and Lennatsson,
2015; McKee et al., 1993; Vrochidou, 2013]. We present plots of several relevant
probability distribution functions including the normal (Gaussian), the gamma,

the generalized extreme value and Student’s t distribution.

1.4.5.1 The Normal Distribution

The normal distribution also known as the Gauss distribution, is the most im-
portant distribution in statistics. It is often encountered in natural phenomena
as a result of the Central Limit Theorem. The latter —loosely expressed— states
that the normal distribution is an attractor for averages of identically distributed
random variables so long as their probability distributions do not have heavy
tails. Its crucial property is that any affine combination of independent normal
random variables is also normal [Kroese et al., 2011]. An affine combination of
vectors xq, ..., T, is a vector 2?21 a;T; = a1T1 + oo + - - - + a,T,, called a linear
combination of x1,...,x,, in which the sum of the coefficients is equal to 1, thus,
Y i, a; = 1. The probability density function of a normal distribution is given
as follows: .

Flazo®) = —=e 352" (1)

where p is a location parameter, equal to the mean, and o is the standard de-
viation. For 4 = 0 and ¢ = 1 we refer to this distribution as the standard
normal distribution. In many connections it is sufficient to use this simpler form
since u and o simply may be regarded as a shift and scale parameter, respectively
[Walck, 1996]. In Fig. 1.5 different types of the normal distribution are presented.
In precipitation data analysis, the Gaussian distribution is used mostly after the
transformation of the data sets into a normalized index, i.e., the transformation of
precipitation data into the Standardized precipitation index, resulting into a new
data set of normalized values [Karavitis et al., 2011; McKee et al., 1993]. In this
particular study, normal probability distribution is used to fit the precipitation

residuals, that are used for the application of the residual kriging.
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Figure 1.5: Plots of the probability density function and the cumulative distri-
bution function for the Normal or Gaussian Distribution.

Location parameters

The normal distribution f(z), with any mean p and any positive deviation o,
is symmetric around the point z = p, which is at the same time the mode, the
median and the mean of the distribution. The following results hold for N (u, o?)
variables

Mean = Mode = yt = p11, and Variance = 0% = o, (1.2)
ps =0, andpuy =30, (1.3)

where 11, po, ps, g are the first, the second, the third and the fourth moments
[Jagdish and Campbell, 1982](see section 2.7 on page 32).

Skewness

The skewness is defined in terms of the centered third—order moment of the dis-
tribution. The skewness is a measure of the symmetry or asymmetry of the prob-
ability density function. The skewness of the normal distribution and all other
symmetric distributions is equal to zero. Any data with a symmetric empirical

distribution should also have a skewness near zero.
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The skewness of a distribution is defined as

2
S — (1.4)

S
o

Kurtosis

The kurtosis is defined in terms of the centered fourth—order moment of the
distribution. The kurtosis is a measure of whether the data are more or less
concentrated near the peak relative to a normal distribution. The kurtosis for

the standard normal distribution is equal to three, calculated by

kurtosis = Ha

1.4.5.2 The Gamma Distribution

The gamma distribution is a two—parameter family of continuous probability dis-
tributions. Gamma distribution is the most commonly used distribution in the
analysis of precipitation data, since it is used to fit precipitation for the SPI
development [McKee et al., 1993; Vrochidou, 2013] but it is also used to fit pre-
cipitation using geostatistical tools such as the study conducted by Baxevani and
Lennatsson [2015]. The parameters used in this case include the shape parameter
a and the scale parameter b. Both parameters are positive real numbers.

If a is an integer, the distribution represents an Erlang distribution; i.e., the
sum of a independent exponentially distributed random variables, each of which
has a mean equal to b [Devroye, 1986; Kroese et al., 2011].

A random variable X that is gamma—distributed with shape a and scale b is

denoted as:
X ~ I'(a,b) = Gamma(a, b). (1.6)

The probability density function of the gamma distribution using the shape-

scale parametrization is:

x% e~

beI'(a)

SHE]

f(z;a,b) = for x >0 and a,b> 0. (1.7)

Here I'(a) is the gamma function evaluated at a. The gamma function is defined
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by means of the following integral

/ Ty, a > 0. (1.8)
0

The cumulative distribution function is the regularized gamma function

V(a7
F(z;a,b) /fuab F(l)) (1.9)

where vy(a,x/b) is the lower incomplete gamma function [Kroese et al., 2011],

defined by means of the following integral

xT

1
v(a,x) = () /e_tt“_lt, a>0,z>0. (1.10)

For positive integer values of a = n, we have

k

n—1
I
y(n,x) =1—e E o (1.11)
k=0

In Fig. 1.6, plots of the gamma distibutions are presented with different
parametrization. [McKee et al., 1993]

Location parameters

The gamma distribution f(z), with any mean pu, any shape parameter o > 0 and

any scale parameter b > 0 has mean value
(= ab, (1.12)

and variance
o = ab®. (1.13)
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Figure 1.6: Plots of the probability density function and the cumulative distri-
bution function for the Gamma Distribution.

Skewness

The skewness of the gamma distribution is equal to 2/+/a. The skewness depends
only on the shape parameter a. The gamma distribution approaches a normal

distribution when a is large (approximately when a > 10).

Median

Unlike the mode and the mean which have readily calculable formulas based on
the parameters of the gamma distribution, the median does not obey a closed
form equation. The median for this distribution is defined as the value v such
that

v

1 .1
“—1e% dr = - 114
F(a)b“/x ¢rar=g (1.14)
0

A formula for approximating the median for any gamma distribution, when
the mean is known, has been derived based on the fact that the ratio u/(u —
v) is approximately a linear function of @ when a > 1 [Devroye, 1986]. The

approximation formula is:
3a —0.8

~ 2t 00 1.15
YRS 02 (1.15)
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Superposition

If X; follows a Gamma(a;, b) distribution for i = 1,2,..., N (i.e., all distributions

have the same scale parameter b), then

N N
ZXi ~ Gamma (Z ai,b> : (1.16)

i=1 =1

where ~ denotes equality in distribution, provided all X; are independent.

1.4.5.3 Generalized Extreme Value Distribution

The generalized extreme value (GEV) distribution is a family of continuous prob-
ability distributions developed within extreme value theory to combine the Gum-
bel, Fréchet and Weibull families also known as type I, IT and III extreme value
distributions respectively. In hydrology, the Gumbel distribution is used to ana-
lyze variables such as monthly and annual maximum values of daily rainfall and
river discharge volumes [Oosterbaan, 1994], and also to describe droughts [Burke
et al., 2010]. Fréchet distribution is also applied to hydrology to extreme events
such as annually maximum one—day rainfalls and river discharges [Vivekanandan,
2013]. The Weibull distribution has been used to describe wind speed distribu-
tions [Odo et al., 2012; Yanping et al., 2010]. In general, the GEV distribution
has applications in meteorological analysis and widely to the economical domain
[Ghosh, 2010; Gilli and Kéllezi, 2006; Sharma and Singh, 2010]. This study uses
the GEV distribution to fit precipitation data of a dry region, such as Crete,
locally, at the position of every station over the recorded years.

By virtue of the extreme value theorem (also known as the FisherTippettGne-
denko theorem) the GEV distribution is the limit distribution of properly nor-
malized maxima of a sequence of independent and identically distributed ran-
dom variables. More specifically, let X1, X5..., X, be a sequence of independent
and identically distributed random variables, and M,, = max{Xy,..., X, }. If
a sequence of pairs of real numbers (a,,b,) exists such that each a, > 0 and
lim,, oo P (M’:l—;b" < :L‘) = F(z), where F' is a non degenerate distribution func-
tion, then the limit distribution F' belongs to either the Gumbel, the Fréchet or
the Weibull family [wikipedia, 2015b]. Because of this feature, the GEV distribu-
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Figure 1.7: Plots of the probability density function and the cumulative distri-
bution function for the Generalized Extreme Value Distribution.

tion is used as an approximation to model the maxima of long (finite) sequences
of random variables [Coles, 2001]. In Fig. 1.7, generalized extreme value distri-

butions with different parametrization are presented.

Distribution and Probability Density Functions

The generalized extreme value distribution has the following cumulative distri-

F(z;p,0,k) = exp {— {1 +k (x ; M)} Uk} ; (1.17)

for 1 + k(x — p)/o > 0, where p € R is the location parameter, o > 0 the scale

bution function

parameter, and k € R the shape parameter. For k = 0 the expression is formally

undefined and is understood as a limiting case.

The density function is, consequently

flx;py 0, k) = % {1+k (x;“H(_l/k)_le:cp{— {1+k (96;“)}_%},

(1.18)

again, for 1 4+ k(z — p)/o > 0.
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Statistics

Some simple statistics of the GEV distribution are:

o o
EX)=p——+— 1.19
o2

Var(X) = 15(92 = 91), (1.20)
Mode(X) = pu + % [(1+ k)" —1]. (1.21)

Skewness

93 — 39192 + 297 _ .

skewness(X ) = x sign(k). 1.22
() (92 — g3)3? (k) (1.22)

Kurtosis

—4 69297 — 39}

kurtosis(X) = g1~ 29195+ 09201 — 901 _ 3, (1.23)

(92 — g7)?
where g; = I'(1 — ik), i = 1,2,3,4 and I'(¢) is the gamma function.

Sub-families

The shape parameter k governs the tail behaviour of the distribution. The sub-
families defined by £ = 0, £ > 0 and k£ < 0 correspond, respectively, to the
Gumbel, Fréchet and Weibull families, whose cumulative distribution functions

are displayed below [Kroese et al., 2011].

e Gumbel or type I extreme value distribution (k = 0)

F(z;p,0,0) = e Y r e R (1.24)

e Iréchet or type II extreme value distribution, if k = a=! > 0

0 T < p,
F(x;p,0,k) = (1.25)
67((507/")/0')70‘ x > Iu
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e Reversed Weibull or type III extreme value distribution, if k = —a~! < 0,

e_(_(z_u)/a)a x < l’l/7
F(z;p,0,k) = (1.26)
1 T 2>

where o > 0.

The equations above relate to maxima, and the distribution being discussed
is an extreme value distribution for maxima. A generalised extreme value distri-
bution for minima can be obtained, for example by substituting (—z) for x in the
distribution function, and subtracting from one: this yields a separate family of
distributions [Coles, 2001].

The ordinary Weibull distribution arises in reliability applications and is
obtained from Reversed Weibull distribution using the variable transformation
t = u — x , which gives a strictly positive support. In term of an equation this
means

Et/o)" e W" ¢ >0,
0 t <O0.

F(t;o,k) = (1.27)
This arises because the Weibull distribution is used to characterize minima rather
than maxima. Importantly, in applications of the GEV, the upper bound is
unknown and must be estimated from the data, while in applications of the
Weibull distribution the lower bound is known to be zero. Note the differences
in the ranges of interest for the three extreme value distributions: Gumbel is
unlimited, Fréchet has a lower limit, while the reversed Weibull has an upper
limit.

One can link the type I to types II and III in the following way: if the cumula-
tive distribution function of some random variable X is of type II and has a posi-
tive support, i.e. F'(x;0,0, ), then the cumulative distribution function of In X is
of type I, namely F(x;Ilno,1/«,0). Similarly, if the cumulative distribution func-
tion of X is of type III, and with negative support, i.e. F(z;0,0,—«), then the
cumulative distribution function of In(—X) is of type I, namely F'(x; —Ino, 1/, 0)
[Coles, 2001].
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1.4.5.4 Student’s t Distribution

The probability density function of Student’s t distribution, or simply the t dis-

tribution, is given by:

Flov) = % (1 + 52) - (1.28)

where v > 0. If the parameter v takes integer values, then it is referred to as
the degrees of freedom of the t distribution. The distribution arises in statis-
tics in the estimation of the mean of a normally distributed population when
the population variance is unknown (and thus estimated from the data) and the
sample size is small. Whereas the normal distribution describes the full popu-
lation, t—distributions describe samples drawn from the population; accordingly,
the t—distribution for each sample size is different; larger samples converge to the

normal distribution [Devroye, 1986].

The cumulative Student distribution function is expressed as follows:

F(t;v) = t \/I;L;—Trl()z) (1 + g) - dt. (1.29)

In Fig. 1.8, the probability density function and the cumulative distribution
function of Student’s t distribution with different degrees of freedom are pre-

sented.

Statistics

The Student’s t distribution f(z), with v degrees of freedom, has mean value

0 Vv > 1,
= (1.30)
undefined otherwise,
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Figure 1.8: Plots of the probability density function and the cumulative distri-
bution function for the Student’s t Distribution.

variance
-5 Yv > 2,
o> =< for 1 <v <2, (1.31)
undefined otherwise,
skewness
0 Vv > 3,
= (1.32)

undefined otherwise.

1.4.6 The Role of Spatial and Temporal Scales

One of the most important issues in the analysis of precipitation data is the time
scale of the observations, i.e., whether they correspond to days, months, seasons,
wet and dry periods or years. Annual means of precipitation correspond to the
sum of precipitation over 365 days of each year, wet periods correspond to Oc-
tober till March and dry periods to April till September. Seasonal time scale is
established in practice of all the four seasons by summing the precipitation over
the total days of each seasons. Changes in seasonal precipitation distribution and
intensities would matter more for arable crops than changes in annual precipita-
tion [Rotter and Van De Geijn, 1999]. Accordingly, monthly time scale refers to

the summation of daily precipitation for each of the calendar months of a year
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[Kumar et al., 2013].

As proven by McKee et al. [1993], at longer time scales drought becomes
less frequent and of longer duration. In terms of precipitation this means that
at longer time scales small amounts of precipitation become less frequent and of
longer duration. Also correlation between precipitation and topography increases
with the length of time interval. Finally, as proven by Bardossy and Pergam
[2013], interpolation quality depends on the aggregation time; longer aggregation

times, reduce the relative error of the interpolation.
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Chapter 2

Geostatistical Methods

Earth science data are distributed through space and/or time. The analysis and
prediction of spatial phenomena, such as mineral grades, porosities and pollutant
concentrations are performed using geostatistical methods [Chiles and Delfiner,
2012; Christakos, 1992; Goovaerts, 1997]. Geostatistics comprises a collection of
numerical methods that can be used to model and characterize spatial attributes,
based on the theory of random fields. Random fields are the proper mathematical
framework for analyzing spatial data, in the same way that time series analysis
is used for temporal data. Because geographical location varies continuously, the
number of variables required to represent a spatial process is infinite even for
areas of interest of finite size. Such a collection of random variates is called a

random function or a random field [Olea, 1999].

The values of a variable that is distributed in space and/or time are often
correlated with each other. The study of such correlations is usually conducted
using a method known as “structural analysis” or “variogram modeling”. After
structural analysis, predictions of the modeled process at unsampled locations
are derived using geostatistical methods, such as kriging interpolation. The data
processing steps involved in a geostatistical study involve: (i) exploratory data
analysis (ii) structural analysis (iii) generating predictions and (iv) estimating

the uncertainty.



Randomness

2.1 Randomness

Randomness characterizes phenomena in which the knowledge of a situation with
absolute precision is impossible due to various restrictions that are intrinsic, i.e.
strong spatial and temporal variability of the observed process, or imposed by
the experimental procedure, e.g. limited resolution, random errors, or caused by
fluctuations of environmental factors, e.g. temperature and humidity. In these
cases, the measured properties at different points in space are defined by means
of respective probability distribution functions, which determine the probabilities

of occurrence for each possible result [Papoulis and Pillai, 2002].

2.2 Random Fields

Q2 denotes a probability space, F is the Borel’s o—algebra on €2, which is a collec-
tion of subsets of {2 that contains the null set and is closed under complementation
and countable unions, and P is the probability measure. Let (€2, F, P) denote a
probability space and D C R the spatial domain of interest. Then an RF X (s; w)
is a collection of real-valued random variables distributed over ID. The RF is de-
fined by a mapping from {2 x ID into the set of real numbers R. Hence, for any fixed
s € D, X(s;w) — X(w) is F-measurable as a function of w, and for a fixed w,
X (8;W)|w=fizea = z(s) is a deterministic function of s [Gikhman and Skorokhod,
1996]. A random variable could be the gain in a game of chance, the voltage of a
random source, the cost of a random component, pollutant concentrations, wind
direction or any other numerical quantity that is of interest. A random variable
is a function whose domain is the set s of all experimental outcomes [Papoulis
and Pillai, 2002].

A random variable x is said to be a discrete random variable if its sample
space is discrete: x(s) =0, 1,2, ..., for example. This class includes the indicator
random variable which has a binary sample space, meaning there are only two
possible outcomes: z(s) = 0,1. Most of the random variables used to repre-
sent environmental variables are continuous random variables: they have a sam-
ple space, z(s), that is continuous. For example, precipitation, sea—levels, wind

speeds, and breaking strengths all take values on continuous scales. Because of

28



2. Geostatistical Methods

the continuity it is not possible to assign probabilities to all probable values of
the random variable in a meaningful way [Coles, 2001].

Mathematical properties characterizing the random variables are extended
for the case of variables distributed in space. A random field consists of a set of
random variables that describe the spatial (or space—time) changes of an attribute.
Therefore, a random field may be viewed as a multidimensional random variable.
Because of the interdependence of physical quantities at different locations in
space, random fields have unique mathematical properties that distinguish them
from a set of independent random variables. Overall, we denote a field marked
as X (s) where the vector s corresponds to the position of a point in the study
area [Hristopulos, 2012].

Random fields are divided into the following categories based on their values

and their support:

1. If the field takes values from a finite set of numbers (e.g., from the set of

integers), it is called a field of discrete values.

2. If the field values are drawn from a continuum of real numbers, then it is

called a field of continuous values.

3. If the locations where the field is defined coincide with the positions of a

grid, we refer to a lattice field.
4. If the field extends over a continuous space, we have a continuum field.

Random variables and random fields are described by an ensemble of states.
Each state (realization) is also a sample of the field with a corresponding prob-
ability determined by the multidimensional probability density function of the
field.

In this case study, the variable of interest is precipitation. We assume that
precipitation can be modeled as a random field defined on a continuum space.
The interpolation is performed over a rectangular grid leading to a discretised
lattice field.
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2.3 Basic Concepts of Random Fields

Random fields describe different types of spatial dependence with different proper-
ties. The probability distribution of a random field and its parameters are defined
as extensions of those applicable to independent random variables. Henceforth,

the following symbols are going to be used:
e In capital letters, X (s) denotes the random field.

e In lowercase letters, x(s), denotes the values corresponding to a unique

realization.

e The fluctuation of the field is denoted with a prime next to the symbol of
the field. For example X'(s) indicates the fluctuation of the field X(s).

The integral limits depend on the space where the field X is defined. If the
field takes positive and negative values, the integral ranges from —oo to co. If the
field takes only positive values, the integral ranges from 0 to oco. If it is known
that the field values are limited to a specific interval [a,b], then the integral is

calculated over this interval.

2.4 Probability Density Function

The probability density function (pdf) of the field is denoted with the symbol
f¢lz(s)]. For the pdf the subscript is the symbol indicating the field, while the
argument of the function are the values of the state x(s).

In the case of a single random variable, the pdf f, (z) is a function that refers
to a single point. In contrast, in the case of a random field, f,[z(s)] contains
the values for the entire area where the field is defined. This means that f, [z(s)]
describes the joint pdf of the field values for any number (even infinite) of points.
Therefore, the pdf in the case of the random field involves much more information
than the pdf of a single variable.

The one-dimensional (scalar) pdf of the field at the point s; is defined as
fi (z1,81) and describes the possible states of the field at that point. In the case
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of non-homogeneity it is possible for the one-dimensional pdf to vary from point
to point.

Accordingly, the two—dimensional pdf of the field is defined as f, (z1, x2; 81, 82),
and expresses the interdependence of possible states at two locations. The multi-
dimensional pdf, f,(x1,...,2N;81,...,8y), which describes the interdependence
of possible states for a set of N points, is similarly defined [Isaaks and Srivastava,
1989].

The pdf is the first derivative of the cumulative density function. It is nor-

malized so that the total probability of all possible outcomes is equal to 1, i.e.,

/ fi(@) de = 1. (2.1)

2.5 Statistical Homogeneity

The concept of statistical homogeneity extends the classical definition of homo-
geneity (a property is homogeneous if the corresponding variable is constant in
space). Thus, a random field X (s) is statistically homogeneous if the following

conditions are fulfilled:

1. The mean value (expectation) is constant, meaning m, (s) = m,..

2. The covariance function is defined and depends only on the distance vector

r = s; — sy between two points, meaning ¢, (s1,82) = ¢, (r).

3. The second condition implies that the variance of a statistically homoge-

neous field is constant.

These conditions define statistical homogeneity in a weak sense. A random
field is statistically homogeneous in the strong sense if the multidimensional pdf
for N points, where N is any positive integer, remains unchanged by transfor-
mations that change the location of the points without changing the distances
between them.

Accordingly, the concept of statistical homogeneity implies that the statistical

properties of the field do not depend on the spatial coordinates of the center of
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mass of the N points. Practically, statistical homogeneity implies that there are
no spatial trends, so that the spatial variability of the field can be attributed to

fluctuations around a constant level equal to the mean value [Hristopulos, 2012].

2.6 Statistical Isotropy

Statistical isotropy is a property that assumes and further constrains statistical
homogeneity. A field is statistically isotropic if it is statistically homogeneous
and its covariance function depends only on the distance r, but not on the direc-
tion of the distance vector r. This is important from a practical point of view,
because it facilitates the identification of the spatial dependence by means of the
omnidirectional variogram. Therefore, if the covariance function is isotropic, the

field is by definition statistically homogeneous, but not vice versa [Olea, 1999].

2.7 Moments

Statistical moments are deterministic functions that represent expectations over
all possible states of the field. They are defined for various combinations of field
values at one or more locations. The expectation of a quantity A(X) which
depends on the field is denoted by E[A(X)]. For example, the general form of a
multidimensional moment E[X" (s;)... X*¥(sy)], where k; + -+ + ky = K, is

given by the following K—dimensional integral

E[X*(s))... X (sy)] = /da:l . /de fol@y, .. N8y, ... sy)aht L ahy,
(2.2)

The limit of integration in the above integral depend on the spatial support

of the joint pdf. In general, we can extend the limits of integration from minus

infinity to infinity taking into account that the pdf vanishes outside the support.

In practice most commonly used moments are low order moments such as

mean value, variance, covariance function and semivariogram [Cressie, 1993].
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2.7.1 Expectation

An important feature of a distribution is its central value (mean value). Roughly,
this is similar to the arithmetic average of the data values in a sample. The mean

value of a random field is defined by
my (s) = E[X(s)]. (2.3)

E[X (s)] denotes the expectation, calculated over the ensemble of all states of the
field, i.e.

E[X(s)] = /dx fi(z58) , (2.4)

where x are the values that correspond to a given state.

In Eq. (2.4) it can be noted that the mean value may depend on the position,
s, which comes from a possible position dependence of the one-dimensional pdf.
Since the pdf is not always known in advance, the expectation is estimated from
the sample using statistical methods [Cressie, 1993].

For highly asymmetric distributions, a more appropriate central value is the
median, M,, which is the value corresponding to a cumulative frequency of 0.5.
Hence, the median splits the distribution into two equal halves [Goovaerts, 1997].
The median, M, of the sample is the midpoint of the observed values if they are
arranged in increasing order and is calculated by means of [[saaks and Srivastava,
1989

2 (r&) if N is odd,
My=¢, ° (2.5)
3 <m (7@) +x (7‘%“)) if N is even,

where r refers to rank of the values x(s) arranged in ascending order.

2.7.2 Variance

The variance is a measure of the distribution’s dispersion around the mean value.
It is given by the mean value of the squared fluctuation according to the following
equation:

02(s) = E [{X(s) — mu(s)}?] =E [X'Q(s)] . (2.6)
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Since the variance involves squared differences, it is sensitive to erratic high
values. It is possible for the variance to vary from point to point. If the field
is statistically homogeneous, however, the variance is the same at every point
[Hristopulos, 2012].

The square root of the variance, o, is called standard deviation, and its ratio to
the mean, o/m, is the unit—free coefficient of variation for non-negative variables
[Goovaerts, 1997].

2.7.3 Skewness

In probability theory and statistics, the skewness of a probability distribution is
a measure of the distribution’s asymmetry about its mean. The skewness can be

positive or negative, or even undefined. The skewness is usually defined as

E [X“(s)]

coefficient of skewness = 3
o
X

(2.7)

The qualitative interpretation of the skewness is complicated. For a unimodal
distribution, negative skewness indicates that the tail on the left side of the
probability density function is longer or fatter than the right side —skewness
does not distinguish between these two possibilities. Conversely, positive skewness
indicates that the tail of the right side is longer or fatter than the left side. In
cases where one tail is long but the other tail is fat, skewness does not obey a
simple rule. For example, a zero value indicates that the tails on both sides of
the mean balance out. This occurs both for a symmetric distribution and for
asymmetric distributions the asymmetries of which even out, such as one tail
being long but thin and the other being short but fat. In case of a unimodal
symmetric distribution, the mean is equal to the median and the mode. Further,
in multimodal and discrete distributions, skewness is also difficult to interpret.
Importantly, the skewness does not determine the relationship of the mean and
the median [Dean and Illowsky, 2012].
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2.7.4 Kurtosis

One common measure that describes the shape of a probability distribution is
kurtosis. Kurtosis measures the heaviness of the tails of distributions, originated
with Pearson [Shohat, 1929] and is based on a scaled version of the fourth moment

of the data or population. The coefficient of kurtosis is usually defined as

f= Lt (2.8)

There are various interpretations of kurtosis based on peakedness (width of
peak), tail weight, and lack of shoulders (distribution primarily peak and tails,
not in between). However, heavy tails have much more influence on kurtosis than
the shape of the distribution near the mean [Ali, 1974; Kaplansky, 1945]. Also
it has been argued that kurtosis really measures heavy tails, and not peakedness
[Balanda and Macgillivray, 1988]. For this measure, higher kurtosis means more
of the variance is the result of infrequent extreme deviations, as opposed to fre-
quent modestly sized deviations. It is common practice to use an adjusted version
of Pearson’s kurtosis, the excess kurtosis, to provide a comparison of the shape of
a given distribution to that of the normal distribution. The coefficient of excess
kurtosis is defined based on the kurtosis of a univariate normal distribution which

is equal to 3. Thus, the excess kurtosis is calculated by the equation

E [X"‘(s)}
excess kurtosis = — o 8= k,
X

— 3. (2.9)

Sample skewness and kurtosis are rather unreliable estimators of the cor-
responding population parameters if the sample is small; they become better
estimators as the sample size increases. However, large values of skewness or
kurtosis may merit attention even in small samples, because such values indicate
that statistical methods based on normality assumptions may be inappropriate
[Williams, 2000].
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2.8 Covariance Function

Another moment which characterizes a random field is the centered covariance
function (CCF), also known as covariance function for short, is defined by the

following equation:
¢ (s1,82) = E[X(s1)X(s2)] —E[X(s1)] E[X (s2)] . (2.10)
Equation (2.10) is equivalent to the following

O (S1,82) = E[{X (1) — my (s1) H{X (s2) — my(s2)}] (2.11)

The random field X'(s;) = X(s1) — m, (s1) corresponds to the fluctuation
of the field X (s;) around the mean value at point s;. The mean value of the

fluctuation field equals to zero, meaning
E [X’(sl)] ~0. (2.12)
Based on the previous equations it holds that

¢ (s1,82) = F [X'(sl)X/(sg)] . (2.13)

Consequently, the CCF represents quantitatively the dependence of the fluc-

tuations between two different points. [Hristopulos, 2012].

In statistically homogeneous and isotropic fields the two most important pa-
rameters of the covariance are (i) the variance 02 = ¢, (0) and (ii) the correlation
length £&. The variance is a measure of the magnitude of the field fluctuations.
The correlation length is the parameter which normalizes the distance (in co-
variance function, distance is shown as the ratio r/£). The correlation length
defines the distance over which the field values are statistically correlated. In
case of anisotropic dependence, different correlation lengths are observed along

the principal directions of anisotropy [Varouchakis, 2012].

If the arguments of the covariance function coincide, its value becomes equal
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to the variance of the field at that point, that is

CX(S1751> = O';(Sl). (214)

Spectral density

Not every function is acceptable as a covariance function. Permissibility con-
ditions for the covariance function are defined by Bochner’s theorem. This is
expressed by means of the spectral density, which is given by the Fourier trans-
formation of the covariance function [Bochner et al.,; 1959]. The Fourier transform

is defined by the following integral

e (k) = / dr e ¥7 ¢ (1), (2.15)

where r is the distance vector between two points and k is the vector of spatial
frequency (wave—vector).

The inverse Fourier transform is given occurs by the following integral:

1

&) = o / dk e *7 ¢, (k). (2.16)

Bochner Theorem: A function ¢, (r) is a permissible covariance function if

the following conditions apply:
1. The power spectral density ¢, (k) exists,
2. it is non—negative throughout the frequency domain, and

3. the integral of ¢, (k) over the entire frequency domain is bounded.

2.9 Variogram Function

The semivariogram (or more commonly known as variogram for simplicity) is a
statistical moment that assesses the average decrease in similarity between two

random variables as the distance between them increases. Stochastic interpolation

37



Variogram Function

algorithms, such as kriging—based methods, require knowledge of the variogram

or the covariance [Olea, 1999].

The variogram of a random field is defined by the following equation
1
Yy (S,r) = 5 E {[X(s+r) - X(s)]z} . (2.17)

The variogram is defined with respect to a pair of points, using the expectation
of the squared increment field, where the latter is defined as § X (s;r) = X (s+r) —
X(s). The squared increment field § X (s;r) is also called distance step r.

If the field X(s) is statistically homogeneous, the variogram is directly con-

nected to the covariance function by means of the equation
Vx (I‘) = 0}3 - & (I‘) (218)

Thus the variogram of an SRF is bounded by the variance, i.e., by ¢, (0). From
the above equation it follows that (i) the variogram tends asymptotically to the
variance and (ii) if the covariance is known, the variogram is also known. For
statistically homogeneous fields, the variogram contains the same information as

the covariance function [Chiles and Delfiner, 2012].

There are two reasons to favor the variogram over the covariance function
for an SRF with unknown mean. First, it is a more general function than the
covariance and second the variogram does not require knowledge of the mean
to compute the covariance. The mean has to be estimated from the data; this
introduces bias that cannot be corrected unless the covariance function, or at
least the correlation function, is already known. The variogram is not affected

by these problems since it automatically filters out the mean.

If the increment 6 X (s;r) is statistically homogeneous, the random field X (s) is
called homogeneous field with statistically homogeneous differences. In this case
the variogram 7, (r) depends solely on the distance r between the points. This
is the result of statistical homogeneity of the field increment. If the field X (s) is
statistically homogeneous, the same applies to the increment 6.X (s;r). However
the opposite is not necessarily true, i.e. if the field of increment is statistically

homogeneous, the initial field X (s) is not necessarily homogeneous [Hristopulos,
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2012].

For a field X (s) with homogeneous increments, the covariance function may
depend on both the distance r and the positions of the points. Instead, the
variogram function depends only on the distance between the points.

The variogram parameters determine the spatial dependence of the field values
at two neighboring points. From the definition of the variogram, using the mean
squared differences, it is shown that the variogram is a non—negative function,
ie., 7 (r) > 0. However, the reverse is not always true, i.e. a non-—negative

function is not necessarily an admissible variogram [Hristopulos, 2012].

Statistically homogeneous field

For homogeneous fields with isotropic spatial dependence, the variogram is de-
termined by two parameters: the upper bound (sill) and the correlation length.
The value of the variogram for long distances r tends asymptotically to the upper
bound (sill) which in theory is equal to the variance o2 of the random field. This
property is based on the relation v, (r) = 02 — ¢ (r) and the fact that at long
distance the value of the covariance function tends towards zero. The variogram
can increase indefinitely if the variability of the process does not approach a limit
at long distances. In this case, however, the random field is not statistically
homogeneous.

The correlation length determines the ”speed” with which the variogram ap-
proaches the sill and also the range within which two points are correlated. It
gives a precise meaning to the conventional notion of the area of influence for the
sample.

Variogram behavior near the origin has two typical behaviors:

1. A discontinuity at 0 known as the nugget effect. ~,(r) does not seem to
tend to zero as r — 0. This means that the random field is generally
not continuous and thus very irregular. The term nugget effect is due
to discontinuities of the variogram of mineral grades at the origin. By
extension, the term “nugget effect” is applied to all discontinuities at the
origin, even if their cause is different. In general, the nugget effect is due to
[Chiles and Delfiner, 2012]:
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i. a microstructure or “noise”, namely a component of the phenomenon

with a range shorter than the sampling support (true nugget effect),
ii. a structure with a range shorter than the smallest interpoint distance,

iii. measurement or positioning errors.

2. A flat curve which indicates pure nugget effect or white noise. There is no
correlation between any two points, however close they may be. This is the

extreme case of total absence of spatial structure.

If correlation characteristics vary in different directions in space, the depen-
dence is anisotropic. There are two main types of anisotropy mainly encountered
in practice.

Geometrical anisotropy refers to cases where the sill is independent of the di-

rection, but the “speed” of approach to the sill depends on the direction. In this

case the variogram is expressed as a function - (2—1, ey 2—2) of dimensionless dis-
tances %, e g—j, where &1, ..., &, are the correlation lengths in the corresponding

directions and d is the number of spatial dimensions (d=1 for drillholes, d=2 for
data on a plane, and d=3 for data in 3D space).

Zone anisotropy, also called stratified anisotropy, refers to the case where the
sill depends on the spatial direction. Then the variogram can be expressed as the

sum of two components such that

U (1) = %, (1) + 7, (F). (2.19)

In the above equation the function v,  (r), where r = ||r|| is the magnitude of
the distance vector, represents an isotropic dependence, while the function 7, , ()
represents the anisotropic dependence of the sill on the direction of the unit vector
r.

In the case of geometric anisotropy d correlation lengths are required &1, . . ., &4,
which are not usually equal to each other. Accordingly, additional parameters are
required for the determination of the anisotropy. For two dimensional systems
with &, and &, corresponding to the correlation lengths along the main axis, the

anisotropy parameters are:
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1. the ratio of correlation lengths p,/,, = &,/&, which is called anisotropy

ratio,

2. the orientation angle 6, which defines the orientation of the main anisotropy

axis in relation to the Cartesian coordinate system.

Any isotropic model can be interpreted as a particular case of the geometric
anisotropic model with anisotropic ratio p,/, equal to one. If p,/,, = 1, it does
not matter what the orientation angle 0 is [Goovaerts, 1997; Hristopulos, 2012].

The variogram generally increases, but not necessarily linearly, with the dis-
tance between the points, while in contrast the correlation function decreases.
This is due to the fact that the correlation function describes the dependence
between the field values at two different points in space, and their dependence
decreases at larger distances. In contrast, the variogram measures the difference
between field values as a function of their distance. Therefore, variogram values

increase when the distance increases [Journel, 1989].

2.10 Variogram Models

The most commonly used theoretical variogram models include the exponential,
gaussian, spherical, power—law, linear and the Matérn functions. Their respective
equations are listed below. For the following equations which define the isotropic

versions of the models, o2

2 is the variance, [r|| is the Euclidean norm of the lag

vector r, and ¢ is the characteristic length.

Exponential

W (r) = o} [1—exp (—r]|/€)]. (2.20)

The exponential model approaches the sill asymptotically. A practical def-
inition of the range is the distance 3¢ where the variogram is equal to 0.950)3.

Geometrically, a tangent at the origin intersects the asymptote aﬁ at lag €.

Gaussian

Y (r) = ai [1 — exp (—||r||2/§2)} ) (2.21)
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The sill is approached asymptotically. A practical rule is to consider the range
as the distance 1/3€ where the variogram becomes equal to 0.950}3. A graph of the
model has a parabolic form near the origin. Despite its theoretical permissibility,
normal equations involving Gaussian models may be numerically singular [Olea,
1999].

Spherical

() = o’ [1.5 (’%”) - 0.5 (M)gl if ||lr|| <€, 2.9

aﬁ if ||r|| > €.

Near the origin this variogram behaves as a linear function. The model is said
to be transitive, because it reaches a finite sill at a finite range £&. The tangent
to this variogram at the origin intersects the sill at two—thirds of the range. The

model is not permissible in spaces with dimension larger than 3 [Walck, 1996].

Power—law

Y (el = afr]|*? where 0 < H < 1, (2.23)

where H is the Hurst exponent.

This is a non—transitive model. The linear variogram is a special case for
H = 1/2, and the pure nugget effect is a special case for H = 0. The main
advantage of the power model is its simplicity. The power variogram may be used
to model an experimental variogram that is not transitive or to model transitive
variograms if the maximum lag in the normal equations is smaller than the range,

taking the dependence of the variogram beyond the range immaterial [Olea, 1999].

Linear

% (Irl) = el (2.24)

Matérn

sl =a? 1= o (2w (B2m)]. e

42



2. Geostatistical Methods

where v is the smoothness parameter, I'(-) is the gamma function and K, ()
is the modified Bessel function of the second kind of order v. For v = 0.5,
the exponential model is recovered, while the Gaussian model is recovered for
v — oo. For all cases v > 0 [Stein, 1999]. Some special cases are recovered for
different values of v, e.g., for v = 1/3,1,3/2,5/2 the recovered models are von
Kéarman, Whittle, Second—order autoregressive and Third-order autoregressive
models, respectively [Guttorp and Gneiting, 2006].

The Matérn family has been applied extensively to environmental data as to
the analysis of temperature data in the northern United States by Handcock and
Wallis [1994], to the statistical assessment of deterministic air quality models
by Fuentes [2002] and to the analysis of gravitational fields to diagnose geodetic
networks by Meier [1981]. Also Mejia and Rodriguez-Iturbe [1974] established
the use of stochastic process models in hydrology using the Matérn model.

Lately, the Matérn correlation family has attracted attention in the machine

learning community [Rasmussen and Williams, 2006; Seeger, 2004].

2.10.1 Spartan Variogram Model

Spartan spatial random fields (SSRF's) are generalized Gibbs random fields, equipped
with a coarse—graining kernel that acts as a low—pass filter for the fluctuations
[Hristopulos, 2003]. SSRF's are defined by means of physically motivated spa-
tial interactions and a small set of free parameters. SSRF's have been applied in
environmental risk assessment [Hristopulos and Elogne, 2007], atmospheric envi-
ronment [Zukovié and Hristopulos, 2008] and in hydrological data [Varouchakis
et al., 2012].

The multivariate probability density function of Gibbs random fields is ex-

pressed as:
fo [X(8)] = Z Yexp{—H [Xs)]}. (2.26)

The exponent H [X(s)] represents the value of the energy functional H [X] for
the state X(s), and the normalization constant Z = 3y exp{—H [X(s)]} is

the partition function.

The isotropic Fluctuation—gradient—curvature (FGC) SSRF functional is given
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by the following equation:

B 1
2np&?

H[X] /dS[{X(S) —E[X(s)]}* +m&{VX(s)}* +E{V X (s)}]. (2.27)

The scale parameter 7, determines the total variance of the fluctuations, the
coefficient n; the shape of the covariance spectral density, and ¢ is the character-
istic length [Hristopulos, 2003].

The spectral density is expressed in terms of 19, 11, £ by the equation

RN /(5] /%

(k) = 5 I (2.28)
1+ m (k&) + (k&)

The permissibility conditions for the new parameters require that either the set

of relations (i) or the set of relations (ii) below is valid:
(i) 70> 0, € > 0,and ;> 0,
(ii) mo >0, £ >0,and m; < 0,77 < 4.

The maximum of the spectral density for n; > 0 is at k,, = 0. For n; < 0, the
spectral density curve is nonmonotonic, suggesting oscillatory behaviour of the
covariance. The maximum of the spectral density occurs at the finite frequency

km = €13/ |/2. The height of the spectral peak is C, (k) = 41 €%/ (4 — n?).
As m; — —2, the width tends to zero while the height tends to infinity.

The spectral representation of the covariance function is given by means of
the following one-dimensional integral, where Jz/,_1(r) is the Bessel function of
the first kind of order d/2 — 1 [Hristopulos and Elogne, 2007]

d ke d/2 Lk
ey = e / " agz-1 (kr) (2.29)
0

(2772 L+ (k€ + (k&)

The Spartan covariance function in 3—dimensions is expressed as follows:
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4 —hfs .
Noe sin(hf) 9 Mo
f <2 = —
2 A [ hBy or || VI T oA
—h
Cy(h) = 770; for m =2, o2 = ;7_;, (2.30)
—hwt —hwo
o € — € 2 Mo
4TA ( h ) form > 2, %= AN

where, w15 = (Im F A[/2)%, A = [ — 4]/, and By = [2F m['/2/2.

In Eq. (2.30), wy2 and By are dimensionless damping coefficients, f; is a
dimensionless wave number, ¢ is the characteristic length, ||h| = ||r||/¢ is the
normalized lag vector, h = |h| is the Euclidean norm and o2 is the variance. The
exponential covariance function is obtained from Eq. (2.30) for n; = 2.

In this case study, the Spartan variogram model is used for the estimation of

the spatial variability.

2.11 Variogram Estimation

The estimation of the variogram is performed using the sample values and is
based on the ergodic hypothesis, which allows us to replace the stochastic mean
[calculated with regard to all situations which correspond to the pair of points
X(s), X(s + r)], with the average of all pairs of points that are “approximately”
apart at a distance equal to r. There are various methods for estimating the

variogram. We discuss the most commonly used in applied studies below.

2.11.1 Method of Moments

The most commonly used method for estimating the variogram is the method of

moments, in which the estimator is expressed by means of the equation

e (k) = o AX(s) = X)) Oy(ee), (k=10 N, (231)
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where,
1, s; —s; € B(ry),
9,i(rx) = i € Blry) (2.32)
0, otherwise.

e The class function 9;;(ry) selects those vectors that corresponds to a closed

area B(ry) centered around the vector ry, as shown in Fig. 2.1.

e The variable n(ry) is equal to the number of point pairs contained in the
class B(rg).

e The sample variogram is defined for a finite set of discrete distances ry (k =

1,...,N.), where N, is the total number of classes.

Figure 2.1: Schematic figure of the region B(rj) around the distance vector
[Hristopulos, 2012]

Therefore, this calculation determines a value for the sample variogram for

each ry, according to the average value of the squared differences [X (s;) — X (s;)]?
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over all pairs of points, whose distance vector belongs in the B(ry) region. The
estimator 4, (ry) is a good approximation of the true v, (rg) if the average of the
squared differences in the ry class is close to the expectation E{ X (s) — X (s+ry)}
[Hristopulos, 2012].

The estimation of the variogram implies an ergodic assumption, which allows
to toggle between the stochastic expectation and the sample mean. The ergodic

property can be considered as valid if the following conditions hold

1. The increment field X (s;) — X(s;) is statistically homogeneous. This im-
plies that the process to be investigated shows no significant changes in its

statistical properties within the study area.

2. The number of pairs in each class is large enough so the sample average of

the squared increments can be calculated with good statistical accuracy.

3. The number of classes is large enough to allow a sufficiently dense mapping

of the variogram as a function of distance.

After the experimental variogram is calculated, it is fit to a theoretical model
which allows the calculation of the variogram for every possible distance. The
theoretical model is needed for the estimation (prediction) of the field at points
where measurements are not available. A theoretical variogram is admissible if it
is a conditionally negative definite function. This means that for any set of linear

coefficients \,, where a = 1,...,n, that satisfies the equation

i Ao = 0, (2.33)
a=1

the following inequality must apply
- Z Z AaAs Yy (8o —s5) > 0. (2.34)
a=1 pg=1

The variogram permissibility conditions are expressed more concisely with the
help of Bochner’s theorem as follows: The function 7, (r) is a valid variogram in

d dimensions if
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2. the generalized Fourier transformation 7, (k) exists,
3. 9y (k) satisfies the inequality —&%3, (k) > 0, and
4. lim~, (r)/r* =0, r— oo.

If the random field X (s) is statistically homogenous, it is easier to check the
acceptance of a variogram model using the covariance 02 —~, (r). If the function
7, (r) is a permissible variogram, then the function ¢, (r) = 02 — 7, (r) is an

acceptable covariance function and vice versa [Christakos, 1984].

2.12 Spatial Estimation

An important problem in the geosciences is the estimation of a variable over an
entire spatial domain based on measurements carried out at a limited number
of points. From the mathematical viewpoint this is an interpolation problem.
The variable of interest is approximated by a parametric function whose form is
assumed in advance, either explicitly or implicitly. If this function is parametric,
its parameters are selected so as to optimize some fitting criterion —with respect
to the data. Once the approximation function is determined, it is a simple matter
to evaluate it wherever needed [Chiles and Delfiner, 2012].

The term estimate includes all the mathematical procedures needed to calcu-
late the field values at points where no measurements of the property are avail-
able. The estimate is local, if it refers to a specific point, or global, if it aims to
calculate a characteristic (representative) value over an entire region. Based on
the parametric function which contains the spatial dependence, it is possible to
obtain local estimates in the field where there are no measurements, using the
neighboring measured field values. However, in most cases of practical interest,
the final objective is to estimate the field at a set of points instead of a single
point. For example, in order to construct maps of environmental properties, the
field must be estimated at all the nodes of a suitable interpolation grid.

Various models of spatial estimation (interpolation) exist in the literature.

The main idea is that the value at the estimation point is given by a linear or
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nonlinear combination of the neighboring values. The estimate results from the
optimization of a statistical measure, e.g. the maximization of likelihood or the
minimization of the mean square estimation error. Interpolation methods are

divided in three categories:

(i) the local neighbourhood approach, which includes methods such as inverse
distance weighted that assumes that the value at an unsampled point can
be approximated as a weighted average of values at points within a certain
cut—off distance; usually the weights are inversely proportional to a power of
distance. Also, natural neighbour interpolation falls into the same category,
but the weighted averages are dependent on areas or volumes [Mitas and
Mitasova, 2005].

(ii) The variational approach which assumes that the interpolation function
should pass through (or close to) the data points and, at the same time,
should be as smooth as possible. These two requirements are combined
into a single condition of minimising the sum of the deviations from the

measured points and the smoothness seminorm of the spline function.

(iii) The third category includes the geostatistical approaches, interpolation us-
ing kriging, the surface or volume is assumed to be one realisation of a
random function with a certain spatial covariance [Journel and Huijbregts,
2003].

The most popular methods are based on stochastic linear interpolation in
conjunction with the minimization of the mean square error of the estimate.
This set of methods is known as “kriging”, a term coined by Matheron [1963]
in honor of the South African engineer who first used this method in mineral
resources exploration, Danie Krige [1951].

The problem of local estimation is usually expressed as follows: Based on
a data set x(s;), at s; (wherei = 1,...,N) points located within a region €2,
determine the value of the field at the estimation point u € €2, which does not
coincide with any of the s;. The estimate at point u is denoted as X (u), while
with Z(u) we denote the specific value of the estimate derived from the available
data.
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The estimation process is usually repeated at every node of a grid suitably
defined for the particular application. This allows the creation of maps represent-
ing the isolevel contours of the random field. These maps should be accompanied
by an estimate of reliability, which determines the uncertainty of the estimation
at each point.

Let w(u) represent the correlation neighborhood of the point u, which includes
n(u) < N points than the size of s;. The size of the neighborhood is determined
in terms of the correlation length. The neighborhood could ideally be extended
over the entire domain, but for large data sets this may lead to computational
difficulties. Next, we briefly outline how the kriging methods are formulated
by focusing on the simple kriging method. The fluctuation of the field at the

estimation point is expressed according to the following linear combination:

2

u)

A

X(u) —my(u) = Z Ao [X(80) — my (sa)] = Ao [X(8a) — My (8a)] -

1

Q
I

Sa€w(u)

(2.35)
The coefficients A, represent the linear weights. Therefore, the above equation
expresses the fluctuation at the estimation point as a function of the fluctuation
of the sampling points inside the correlation neighborhood. The estimate of the

field is respectively given by the equation
X(u) =my(u)+ Y A [X(s4) — my (4] (2.36)

The estimator X (u) is a random variable, because it consists of a linear
combination of random field values. Accordingly, the estimation error e(u) =
X(u) — X (u), is also a random variable. Kriging is a form of generalized linear
regression formulates the optimal estimator X (u) using weights that minimize

the estimation error variance [Chiles and Delfiner, 2012].

2.12.1 Kriging Methods

There exist various formulations of kriging which aim to adapt to different types

of natural variability. Below, we present some formulations of kriging which differ
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between them in how they treat the trend function m, (u).

2.12.1.1 Simple Kriging (SK)

Simple kriging (SK) is applied when the mean m, (u) is known and constant
throughout the study area €, i.e. E[X(s)] = m,. In this case the kriging estimator
is defined by the following equation:

X(u) =" XaX(sa) =myg | Aa—1]. (2.37)

Q
Il
—_

The linear weights A\, are then determined so as to minimize the error variance

given by the equation

!

02 5c(1) = Var | X (u) - X(u)} — Var [fqu) —m, — X (u)] . (2.38)

The equation of the estimator X (u) leads to the following relation for the

fluctuation of the random variable X (u)

n(u) n(u)
Ao [X (50) Z Ao X' (50). (2.39)
a=1
The error variance can thus be expressed as a quadratic function of the weights

with coefficients that are determined by the linear weights A\,, o = 1,...,n(u).

n(u) n(u)

Roxl) =3 Y A 5 E[X'(5)X (s0)] + E | X *(w)]

a=1 pB=1

n(u)

23" M\ E [X’(sa)x’(u)] (2.40)

a=1

n(u)
Aag € (Sa —S5) + 0- — 22 Ao G (8o — 11).
a=1

3

(u

=
3

()

Q
I

1 B=1

The optimal values of the linear weights minimize the error variance. The

weights are obtained by setting to zero each of the n(u) partial first derivatives
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of the error variance with respect to the weights, i.e.,

ag}%,SK(u)

W =0, a=1,...,n(u). (2.41)

The system of n(u) linear equations is known as the system of normal equa-
tions [Luenberger, 1969]. After calculating the derivatives, the system is expressed

in the following form and is expressed by the equation
n(u)
> Asc(sa—sg) =c(sa—n),  a=1... n) (2.42)
B=1

The above system of linear equations may also be expressed as the matrix
equation
Cosrg = Cqu- (2.43)

The matrix C,g, represents the covariance matrix with elements C,g =
¢ (Sa —83). The vector C,, represents the values of the covariance function

between the sample points and the estimation point, i.e., C,, = ¢, (8o — 1).

Using the equation ¢, (0) = aﬁ, the linear system is written in more detail in

the form of matrices as follows:

o? T N € =1 A ¢, (s1 —u)
Ce(Sa—s1) ... ... ¢ (S2—sn) A || (s2—u) (2.44)

c(sp—s1) ... ... o2 A ¢y (s, — )

The solution of the linear system is given by the following equation:
Ao =Cho Cay YV B=1,....n(u). (2.45)

The covariance matrix elements are calculated from the optimum variogram

by means of the equation

ai — Y (Say83) = ¢4 (Sa, 83). (2.46)
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The linear system (Eq. (2.45)) has a solution for the coefficients \g, where
B =1,...,n(u), if the covariance function is permissible (semi positive definite),
and if each point has a unique value. The values of the linear coefficients are
independent of the sill of the variogram, but they depend on the covariance
model, i.e., on the form of the spatial dependence. Kriging is considered as
an exact interpolator, in the sense that at every point where a measurement is
available, the kriging estimate coincides with the sample value. This exactitude
property is not true if the variogram (or the covariance, equivalently) involves a
nugget effect. Then, the nugget variance is added to the diagonal elements of the
covariance matrix on the left side of Eq. (2.44). As a result of this additional

variance, the exactitude property is lost.

The reliability (uncertainty) of the estimate is determined by the square root
of the variance of the estimation error. The variance o3 g (1) is determined from
the following equation based on Eqgs. (2.40), (2.45)

n(u) n(u)
opsi(u) = 02 — CuaCi 5Ch0- (2.47)
This is equivalently expressed as
n(u) n(u)
O-é,SK(u) = Oﬁ 1— Z Z pa,up;}ﬁpﬁ,u 5 (248)
a=1 p=1

where p, g are the elements of the correlation matrix defined by means of C,, g =

2
Okpaﬁ'

Equations (2.47), (2.48) show that the error variance increases proportionally
to the random field variance o,%. Also, assuming positive values of the weights
Ao, the error increases as the distance |u—s,| between the estimation points and
the sample point decreases, because then the correlation p,, , tends to one [Chiles
and Delfiner, 2012; Goovaerts, 1997].
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2.12.1.2 Ordinary Kriging (OK)

Ordinary kriging (OK) is applied when the mean m (u) is constant but unknown
inside the local neighborhood w(u) of the estimate point. The mean m, (s) may
vary from neighborhood to neighborhood if the ordinary kriging is not applied

over the entire domain.

The unknown local mean is filtered from the linear estimator by forcing the
kriging weights to sum to one. This constraint enforces the zero bias condition.
The ordinary kriging estimator X (u) is thus written as a linear combination only
of the X(s,) where a = 1,...,n(u), as

n(u)

X(u) =) AaX(sa), (2.49)
a=1
n(u)

with ) Aq = 1. (2.50)
a=1

Equation (2.50) is the unbiasedness constraint.

In the case of ordinary kriging, minimum mean square error should be cal-
culated using the restriction imposed by the unbiasedness constraint. The mini-
mization of the error variance under the non-bias condition ZZ(:ul) Ao = 1 uses the
Lagrange multiplier method for constrained minimization. The error variance is

calculated by means of the equation

n(u) n(u)

7 (W) = LW+ 37 DTANE | X (52X (s5)
a=1 ﬁ:l

n(a) (2.51)

n(w)
23 A\E [X/(SQ)X/(U)} +21Y (e = 1),
a=1 B=1

where the constant 2y is the Lagrange parameter. Using the covariance function,
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Eq. (2.51) is expressed as

(2.52)

n(u)

n(u)
-2 Z AaCy (Sas 1) + 20 Z()\a —1).
a=1 [s=1

The optimal values of the linear weights and the parameter ;4 minimize the
error variance. The weights are obtained by setting each of the (n(u)+ 1) partial

first derivatives equal to zero, i.e.,

002 o (u
—%%élzq a=1,... n(u), (2.53)
002 o (u
o0k _ (2.54)
op
These conditions lead to the following linear system of equations for the linear
weights,
n(u)
Y Asc(sa—sp)tpu=clsa—n), a=1.. n(u) (2.55)
B=1
n(u)
Ao = 1. (2.56)
a=1

The above linear system of equations is written in the form of matrices as

follows:
—0')3 ce(s1—82) ... ¢ (s1—sp) 1] [ A ] _cx(sl—u) 1
¢y (82 —s1) J)% ceo Cy(s2—sp) 1 Ao ¢ (s2 —u)
| = : (2.57)
¢ (Sn—s1) ¢ (sp—s2) ... Oﬁ 1 A ¢ (sp —u)
i 1 1 1 0 1L~ i 1 ]
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The solution of the linear system is given by the following equation:
o =Cho Cows YV B=1,...,0(u). (2.58)

The optimal estimate of the kriging error variance is respectively given by the

equation
(u)
U}iox <u) - Oﬁ - Z Aa Cx (u7 Sa) — My (259)
a=1

with parameter p < 0 [Christakos, 1992; Goovaerts, 1997].

2.12.1.3 Kriging with a Trend Model — Universal Kriging(UK)

Universal kriging(UK) considers that the unknown local mean varies smoothly
within each local neighborhood w(u). In this case, the trend component is mod-
eled as a linear combination of known functions. Hence, the trend in each corre-

lation neighborhood is given as

K K

D ap(s)r(s) = D aruur(s), s €w(u). (2.60)

k=0 k=0

3
—~
n
~—
I

The functions ;(s’) are known, whereas the coefficients ay(s') are unknown and
deemed constant within each local neighborhood w(u). The linear estimator is

thus written

K n(u) K
X(u) = Z o ()Y (u) + Z A | X(sa) — Z VU (sa) ()
kzno(u) ;:1 k:f(u) (2.61)

= XaX(sa) + Y ar(u) |ve(u) = > athi(sa)

=0

Consequently, the minimized error variance is calculated as

n(u)

O-;UK (u) =Cr (0) - Z )‘Oé Cx.r (SOé - 11) - Z H ¢k(u)’ (262)
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where p are the Lagrange parameters and c, , is the covariance of the residual

component [Goovaerts, 1997].

2.12.1.4 Regression Kriging — Residual Kriging (RK)

Regression Kriging (RK) combines a trend function with interpolation of the

residuals. In RK the estimate is expressed as
X(u) = m, (u) + X (u), (2.63)

where m, (u) is the trend function, and X'(u) is the interpolated residual by

means of OK [Rivoirard, 2002]. Typically, the trend function is modeled as

m (u) = Zﬁk%(u) q(u) =1, (2.64)
k=0

where g (u) are the values of auxiliary variables at u, 3 are the estimated regres-
sion coefficients and p is the number of auxiliary variables [Draper and Smith,
1981; Hengl, 2007; Hengl et al., 2007]. Auxiliary variables could include polyno-
mials of the data coordinates (x,y). The regression coefficients, g, are estimated
from the sample using ordinary least squares (OLS) or optimally, generalized least
squares (GLS) as

-1

Bos=(@"-c"q) -q" "X, (2.65)

where 3., . is the vector of estimated regression coefficients, c is the covariance
matrix of the residuals, q is a matrix of predictors at the sampling locations, and
X is the vector of measured values of the variable.

The variance of the estimates follows from the equations [Hengl et al., 2003,
2007]:

07 e (W) = 05 (u) + oF(u), (2.66)

o5(u) = qy (ch;,lq) ) (2.67)
n(u)

o7 () = Aac,, (S0 —w) +p1, (2.68)
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where o2(u) is the drift prediction variance, q,, is the vector of (p+1)x 1 predictors
at the unvisited location, q is the matrix of (n, + 1) X (p + 1) predictors at the
sampling points in the search neighborhood, €. is the variogram matrix of the
(7w +1) X (ny +1) residuals at the measured locations (neighborhood) and ¢7(u)
is the kriging (OK) variance of residuals. The matrices and vectors involved in
the RK variance [Varouchakis, 2012]:

Ch(u
Q2(u
q, = : (2.69)
qp(u)
1
a(a) .. gur) 1
a1 (UQ> .. qp(UQ> 1
q=|: S z (2.70)
q1 (unu ) qp (unu ) 1
1 1 0
[ aj, c. (s1 — s9) c. (s1 —sn) 1]
2
¢, (sg—s1) ., ¢, (s —s,) 1
o = | ; P : (2.71)
2
¢ (sn —s1) ¢, (Sp —S2) ., 1
1 1 1 0 |

The method of regression kriging is used in applications, such as the modeling
of spatial variability in tropical rainforest soils [Yemefack et al., 2005], mapping
of leaf area index (LAI) [Berterretche et al., 2005], modeling spatial distribution
of human diseases [Pleydell et al., 2004], and mapping of groundwater levels
[Varouchakis et al., 2012]. Tt is a powerful spatial prediction technique that can
be used to interpolate environmental variables (both continuous and categorical)
from large point sets. The asset of the method relies on its ability to combine a

trend model between the dependent variable and auxiliary variables (such as land
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surface parameters), and allow separate interpretation of the two interpolated
components [Hengl et al., 2007]. The use of regression kriging is limited because
the analyst must carry out various steps in different software environments, both
statistical and GIS, it is computationally demanding and it is sometimes difficult
to find the auxiliary variables that affects the data sets.

In this study, we use regression kriging interpolation to estimate the precip-
itation over the entire island of Crete based on available measurements from a
limited number of stations. We opt for this method because we can use physi-
cal motivation to construct a trend model in terms of auxiliary variables and the

residuals obtained after removing the trend are close to the Gaussian distribution.

2.13 Spatial Model Validation

Validation methods provide the means for assessing the performance of different
spatial models or of the same model with different parameters, in terms of statis-
tical measures. There are methods such as likelihood maximization, least squares
and empirical contrast minimization, to quantify the fit of the data to specific
spatial models. These methods provide a first account of the model’s ability to
represent the data. Validation typically involves methods that also measure the
predictive performance of the model to predict based on the available data. Let
us call statistical algorithm any function that returns an estimator from data,
such as maximum likelihood. Then, model selection can be seen as the selection
of a particular (statistical) algorithm [Sylvain and Alain, 2010].
Cross—validation (CV) —a popular strategy for algorithm selection— is a
model validation technique for assessing the predictive performance of a statistical
spatial model. It is mainly used in settings where the goal is prediction, and one
wants to estimate how accurately a predictive model will perform in practice.
The main idea behind CV is to split data, once or several times, in order to
estimate the accuracy and reliability of each algorithm. Part of the data (the
training sample) is used for training each algorithm, while the remaining data
(the validation sample) is used to evaluate the predictive performance of the
algorithm. CV selects the algorithm with the smallest estimated “risk” (where

the notion of risk may involve a single statistical measure or a combination of
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statistical measures).

The goal of cross—validation is to estimate the expected level of fit of a model to
a data set that is independent of the data (training sample) that were used to train
the model. It can be based on any quantitative measure of fit that is appropriate
for the data and the model. Most forms of cross—validation are straightforward
to implement so long as an implementation of the prediction method is available.
In particular, the prediction method needs only to be available as a “black box”;
there is no need to have access to the internals of its implementation [Grossman
et al., 2010].

Furthermore, one of the main reasons for using cross-validation instead of
using the conventional validation (e.g. partitioning the data set into two sets of
70% for training and 30% for test) is that the error (e.g. Root Mean Square Error)
on the training set in the conventional validation is not a useful estimator of model
performance and thus the error on the test data set does not properly represent
the assessment of model performance. This may be because there is not enough
data available or there is not a good distribution and spread of data to partition
it into separate training and test sets in the conventional validation method. In
these cases, a fair way to properly estimate model prediction performance is to
use cross—validation as a powerful general technique.

In summary, cross—validation combines average measures of fit (i.e., measures
of prediction error) to minimize the estimation error and derive a more accurate
estimate of model prediction performance [Grossman et al., 2010].

Below we present the most commonly used methods for model validation.

2.13.1 Cross—validation Approach

Most classical CV estimators split the data of the training set and are distin-
guished into two main categories: exhaustive data splitting and partial data

splitting.

Exhaustive data splitting

Exhaustive cross—validation methods are CV methods which learn and test on all

possible ways to divide the original sample into a training and a validation set.
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1. Leave—p—out cross—validation (LPO), also called delete-p CV or delete—
p multifold [Zhang, 1993] involves using p observations as the validation set
and the remaining observations as the training set. This is repeated on
all ways to cut the original sample with n observations on a validation
set of p observations and a training set. LPO cross—validation requires to

learn and validate C} times, where the possible combinations of the set C

are calculated by the binomial coefficient (;) The binomial coefficient is
defined by the relation (Z) = #lk),, where n! denotes the factorial of n.

Hence, if n > 1, it becomes impossible to calculate.

2. Leave—one—out cross—validation (LOOCV or LVO), also called delete—
one CV [Li, 1987], ordinary CV [Burman, 1989; Stone, 1974] or simply CV
[Efron, 1983; Li, 1987], is a particular case of leave—p—out cross—validation
with p = 1. It can be shown that the CV error estimate is an almost unbi-
ased estimate of the true error expected on an independent test set [Sudhir
and Richard, 2006]. LVO cross—validation does not face the computational

constrains of general LPO cross-validation because CT = n.

In this case study, the LVO method of cross—validation is applied to evaluate
the fit between the theoretical model and the data.

Partial data splitting

Non—exhaustive cross validation methods do not compute all possible ways of
splitting the original sample. The methods are approximations of leave-p—out

cross—validation.

1. In k—fold cross—validation, sometimes called rotation estimation, the
original sample is randomly partitioned into k mutually exclusive subsets
(the folds) of approximately equal size [Kohavi, 1995]. Of the k subsets, a
single subset is retained as the validation data for testing the model, and
the remaining k—1 subsets are used as training data. The cross—validation
process is then repeated k times, with each of the k subsets used exactly
once as the validation data. The k results from the folds are then averaged

(or otherwise combined) to produce a single estimate. The advantage of
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this method over repeated random sub—sampling is that all observations
are used for both training and validation, and each observation is used for
validation exactly once. 10—fold cross—validation is commonly used, but in

general k remains an unfixed parameter [McLachlan et al., 2004].

When k = n (the number of observations), the k—fold cross—validation be-

comes equivalent to LVO CV.

2. Repeated learning—testing (RLT) randomly splits the dataset into train-
ing and validation data. For each such split, the model is fit to the training
data, and predictive accuracy is assessed using the validation data. The re-
sults are then averaged over the splits. The advantage of this method (over
k—fold cross—validation) is that the proportion of the training/validation
split is not dependent on the number of iterations (folds). The disadvan-
tage of this method is that some observations may never be selected in the
validation subsets, whereas others may be selected more than once. In other
words, validation subsets may overlap. This method also exhibits Monte
Carlo variation, meaning that the results vary if the analysis is repeated
with different random splits [Breiman et al., 1984; Burman, 1989; Zhang,
1993].

As the number of random splits goes to infinity, the repeated random sub—
sampling validation is arbitrary close to the leave-p—out cross-validation.
In a stratified variant of this approach, the random samples are generated
in such a way that the mean response value (i.e. the dependent variable in
the regression) is equal in the training and testing sets. This is particularly
useful if the responses are dichotomous with an unbalanced representation

of the two response values in the data.

3. Monte—Carlo cross validation (MCCV) [Picard and Cook, 1984] is very
similar to RLT. Unlike RLT, MCCV allows the same split to be chosen

several times [Sylvain and Alain, 2010].
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2.13.2 Cross—validation Error Measures

In order to assess the model performance certain statistical measures need to
be evaluated. These measures include: the mean error (bias) (ME), the mean
absolute error (MAE), the mean absolute relative error (MARE), the root mean
square error (RMSE), the root mean square relative error (RMSRE), Pearson’s
linear correlation coefficient (RP) and Spearman (rank) correlation coefficient
(RS). Below we define these measures in the case of leave-one-out cross valida-
tion. For the following measures, z*(s;) and z(s;) are, respectively, the estimated
(based on the N — 1 data that do not include point s;) and true value of the field
at point s;, m denotes the spatial average of the data and m the spatial

average of the estimates, while N is the number of observations.

Mean error (bias) (ME)

The mean error is calculated as follows:

m:?—E:xsz—xa (2.72)

Mean absolute error (MAE)

The mean absolute error is calculated as follows:

N
Z\x si) — x(s;)] - (2.73)

Mean absolute relative error (MARE)
The mean absolute relative error is calculated as follows:

N
AR_NZ

Sl_x&> (2.74)
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Root mean square error (RMSE)

The root mean square error is calculated as follows:

N
1
Crms = NZ 33'* Sz - x sz)]z' (275)

Root mean square relative error (RMSRE)

The root mean square relative error is calculated as follows:

e = %é {%r (2.76)

Pearson’s Linear correlation coefficient (RP)

The correlation coefficient, p, is the statistic that is most commonly used to
summarize the relationship between two variables. The formula for Pearson’s

linear correlation coefficient p is [Isaaks and Srivastava, 1989]

cov(X,Y) _ E[(X —pux)(Y — PJY)]‘

0x0y Ox0y

In case of cross—validation for a sample of size N, p is defined as

. 70 36| 6) -] -

I [0~ 7] 2 [0 - 78]

The correlation coefficient measures the dispersion of estimates with respect to

the observed values. This relation can best be illustrated in terms of a scatterplot.
If p = +1, the scatterplot is a straight line with a positive slope; if p = —1, the
scatterplot is a straight line with a negative slope. For |p| < 1 the scatterplot
appears as a cloud of points that becomes more diffuse as |p| decreases from 1 to
0 [Isaaks and Srivastava, 1989].
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Spearman (rank) correlation coefficient (RS)

It is important to note that p provides a measure of the linear relationship be-
tween two variables. If the relationship between two variables is not linear, the
correlation coefficient may be a very poor summary statistic. It is often useful to
supplement the linear correlation coefficient with another measure of the strength
of the relationship, the rank correlation coefficient. To calculate the rank corre-
lation coefficient, one applies Eq. (2.77) to the ranks of the data values rather

than to the original sample values:

1 621111(}%901 — Ryi)2
p’rank - N(N2 _ 1) ?

(2.78)

where R,, is the rank of z; among all the other = values. The rank is usually
calculated by sorting the x values in ascending order; the rank of a given value
is equal to its order of appearance in the sorted list. The lowest x value appears
first on a sorted list and therefore receives a rank of 1; the highest x value appears
last on the list and receives a rank of N.

Large differences between p,q..r. and p are often quite revealing about the
existence of extreme pairs on the scatterplot. Unlike the traditional correlation
coefficient, the rank correlation coefficient is not strongly influenced by extreme
pairs. Large differences between the two may be due to the location of extreme
pairs on the scatterplot. A high value of prank and a low value of p may be
due to the fact that a few erratic pairs have adversely affected an otherwise good
correlation. If, on the other hand, it is p that is quite high while p,.,x is quite
low, then it is likely that the high value of p is due largely to the influence of a
few extreme pairs.

Differences between p and p,q.r may also reveal important features of the
relationship between two variables. If the rank correlation coefficient is 41, then
the ranks of the two variables are identical: the largest value of x corresponds
to the largest value of y, and the smallest value of z corresponds to the smallest
value of y.

The value of p is often a good indicator of how successful we might be when
trying to predict the value of one variable from the other with a linear equation.

If |p| is large, then for a given value of one variable, the other variable is restricted
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to only a small range of possible values. On the other hand, if |p| is small, then
knowing the value of one variable does not help us very much in predicting the

value of the other [Isaaks and Srivastava, 1989].
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Chapter 3

Exploratory Data Analysis

3.1 Information about the Study Area

The study area is the island of Crete (Greece), in the southeastern part of the
Mediterranean region. Crete is the largest island in Greece and one of its thirteen
(13) geographical regions. The island is divided into four prefectures, Chania,
Rethimno, Heraklion and Lasithi, with Heraklion as the capital and the largest
city.

The island of Crete covers an area of 8336 km? in the Southern Aegean. It
has a coastline of 1046 km and its population reaches 623 065 people. The Sea
of Crete lies to the north, the Lybian Sea to the south, the Myrtoan Sea to the
west and the Karpathian Sea to the East of the island. Crete has an elongated
shape, spanning 260 km from east to west; it is 60 km at its widest point and
narrows to only 12 km at the narrowest point [Hellenic Statistical Authority,
2014]. Comparing Crete with other major European islands, that cover an area
of more than 200 km?, it ranks at the 12th place, with United Kingdom being the
biggest. The size of Crete is similar to the size of Cyprus and Corsica [wikipedia,
2015a).

Crete is one of the most mountainous islands of Europe with high mountain
ranges crossing the island from West to East forming three large mountain com-
plexes. In between lie lower mountains and semi—mountainous areas. In Western
Crete, the White Mountains or “Lefka Ori” with Pachnes (2456m) as its highest
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peak, is also the highest point on Crete. The middle of the island is dominated by
Mount Ida or “Psiloritis”, a single elongated mountain mass whose highest peak
is Timios Stavros (2453m) while in eastern Crete Dikti Mountains rise with their
highest peak at 2148m (Fig. 3.1) [Wolffenbuttel and van der Meijden, 2015].

Figure 3.1: Morphological map of the island of Crete, Greece [Google Earth,
2015].

The prefecture of Lasithi is categorized mostly as a semiarid bioclimatic zone
with mild or warm winter. The sub-mountainous areas belong to the semi—
dry bioclimatic zone with cold winter, while the mountainous areas (i.e. Lasithi
Plateau) belong to dry bioclimatic zone with cold winter [Watrous, 1982].

Only the northern part of Heraklion prefecture belongs to the semiarid bio-
climatic zone with warm winter. The rest belongs to the semi-arid with mild
to warm winter. The plains and sub-mountainous areas of both Chania and
Rethimno prefectures belong to semi-arid bioclimatic zone with mild or warm
winter. The mountainous areas belong to dry bioclimatic zone with mild to cold
winter. A very small part of the very high mountainous areas belong to a humid
bioclimatic zone with harsh winter [Vrochidou, 2009].

The few plains are limited to the coastal area, where most of the population
lives and the most important agricultural areas are located (Fig. 3.1). The largest
and most productive plain of the island is Messara valley in the south of Heraklion

prefecture. lerapetra’s valley in the south—east also has significant agricultural
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Table 3.1: Crops cultivated in Crete and their respective farming area. The units
are in (x10%ha)?®. Table taken from Chartzoulakis et al. [2001].

Category Cultivated area Percentage of the total
Row crops 32.1 9.96
Vegetable crops 8.9 2.76
Vineyards 30.6 9.50

Fruit crops 182.6 56.70

Forage crops 14.2 4.50

Fallow fields 53.6 16.58

Arable land 322.0 100.00

activity.

Agriculture is an important source of income for the region of Crete, con-
tributing to local Gross Domestic Product (GDP) by 13%. Fruit crops cover
60.8% of the total cultivated area, from which about 89% represents olive or-
chards [Chartzoulakis et al., 2001]. Grapevines and greenhouse vegetable crops
are also important sources of income for farmers. About 42.3% of the cultivated
land is irrigated; the percentage of irrigated land is higher for vegetable crops
and lower for tree crops and grapevines (Table 3.1).

During the past thirty years, groundwater level has decreased due to over—
exploitation [Varouchakis et al., 2012]. Potential future climatic changes in the
Mediterranean region, population increase, and extensive agricultural activity
generate concern over the sustainability of water resources. The accurate esti-
mation of the spatial and temporal variability of precipitation is important for
integrated water resources management plans that will help reduce the risk of
water deficits and desertification. It is also important in helping to understand

the potential impact of global climate change on the island.

3.1.1 Temperature

In order to describe the climate in Crete, temperature records were used for the
time period of 2006 till 2013. Evaluation of the data showed that:

1. The minimum temperature of —6.9°C was observed in Samaria at 2012.
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2. The maximum temperature of 45°C was observed in Paleochora at 2007.

These data are presented on Table 3.2 separated into monthly maxima and

minima.

Table 3.2: Monthly temperature minima and maxima recorded on Crete between
minimum and maximum recorded temperatures (°C).

Month January February March April
. Samaria Samaria Samaria Samaria
Min 1561 o0 7691 g |04 2011 031 9012
Vrysses Vrysses Vrysses Chania
M 30.4 32.1 30.1 36.7
ax 2010 2010 2010 2008
Month May June July August
. Samaria Samaria Samaria Anogeia
Min 3.4 2011 9.0 9013 10.8 9013 11.9 9000
Max 288 Chania 45 Paleochora 194 Paleochora 104 Moires
2010 2007 2007 2012
Month| September October November December
. Samaria Samaria Samaria Samaria
Min 1750 s | 22 sorr | 2011 R
Chania Chania HeraclionPort Vrysses
M ) 4.2 ) 29.
ax ST o7 |3 2010 |08 2012 961 9010

Evaluation of the data shows that the minimum temperature is lower in the
west side of Crete and increases from west to east, from —6.9°C in the west to
2.6°C in the east.

Based on the available temperature data of Crete, the following conclusions

can be drawn:

e The lowland area of Crete exhibits a climatic transition from the Mediter-
ranean to the semi—desert climate. It is characterized by little rainfall, mild
winters and long dry seasons. Summer is relatively cool and lasts from June
to September, because of the sea breeze and the annual winds. The hottest
months are July and August. In this region, frost is never observed and the
temperature seldom falls below 0°C. The temperature differences along the

lowland over the year are moderate.
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e The mountainous zone of Crete shows greater variation and an annual av-
erage temperature 2 — 3°C lower than the lowland. The mean temperature
of the warmest month (July) is comparable to the average temperature of
the warmest month of the lowland stations, but the average temperature of
the coldest month (February) is approximately 3°C lower [Region of Crete
Information Bull., 2002; Vrochidou, 2009].

3.1.2 Humidity

The mean relative atmospheric humidity is minimum in June and maximum
in December across the north of the island. In southern Crete, the minimum
mean monthly relative humidity occurs in July (Ierapetra and Timbaki stations).
Among the northern stations, the minimum mean relative humidity decreases
from east to west (Sitia 59.88%, Heraklion 55.4% and Souda 48,90%) while the
maximum relative humidity is similar in Sitia and Souda (about 72%) and signif-
icantly lower in Heraklion (67%). The greatest variation of the relative humidity
occurs at the southern stations (27%) while the lowest occurs at Heraklion station
(only 12%).

During the summer months, when the temperatures are particularly high (es-
pecially in southern Crete), the low mean relative humidity makes summer pleas-

ant which is especially important in tourist areas [Region of Crete Information
Bull., 2002].

3.1.3 Topography

In order to incorporate topographic parameters into the spatial model that we
will construct in Section 4, the Digital Elevation Model (DEM) of Crete is nec-
essary. The DEM was created in Geographical Information Systems (GIS) [esri,
2015], and more specifically in ArcGIS, release version 10.0, and the mostly used
feature was the 3D Analyst. Firstly, seven separate SRTM data sets compris-
ing Crete were downloaded from Processes Distributed Active Archive Center
[LP DAAC]. The NASA SRTM data sets result from a collaborative effort by
the National Aeronautics and Space Administration (NASA) and the National
Geospatial-Intelligence Agency (NGA), as well as the participation of the Ger-
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man and Italian space agencies, to generate a near—globe digital elevation model
(DEM) of Earth using radar interferometry. The data set used in this case is
SRTM Non—Void Filled elevation data, which was processed from raw C-band
radar signals spaced at intervals of 1 arc—second (approximately 30 meters) at
NASA’s Jet Propulsion Laboratory (JPL). This version was then edited or fin-
ished by the NGA to delineate and flatten water bodies, better define coastlines,
remove spikes and wells, and fill small voids.

Using tools from 3D Analyst feature in ArcGIS, one single raster image was
created from the seven separate SRTMs. The spatial resolution is 3601 x 3601,
the referenced horizontal datum is the World Geodetic System 84 (WGS84), and
the vertical datum is the Earth Gravitatuinal Model 1996 (EGM96) ellipsoid.
The resulting image is then processed in Matlab and the resulting DEM of Crete
is shown in Fig. 3.2.

0 500 1000 1500 2000

Figure 3.2: Digital Elevation Model of Crete

3.1.4 Precipitation

The average annual rainfall increases from the east to the west and from the south
to the north. The mean precipitation based on all stations in each prefecture

over the study period is 723 mm for Lasithi, 700 mm for Heraklion, 990 mm for

72
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Rethimno and 1279 mm for Chania.

The lowest annual precipitation is recorded at Demati station (196 mm) in
Heraklion, while in stations placed on mountainous areas show significant varia-
tions. At Askufou station the mean annual precipitation is 3 146 mm, the highest
recorded for the study period. Crete presents significantly variability of annual
precipitation geographically (east versus west) and physiographically (lowland
versus mountainous areas), displaying increasing precipitation with altitude (i.e.,
positive lapse rate) which ranks among the largest in Greece. Monthly precipita-
tion peaks in December or January and attains a minimum in July and August
which are almost drought months across the low-lying areas of Crete [Region of
Crete Information Bull., 2002].

3.2 Precipitation Records

The data available for this study are monthly measurements of precipitation
from fifty four (54) rain gauges distributed around Crete shown in Fig. 3.3. More
specifically, six (6) of the stations are located in the prefecture of Chania, nine
(9) in Rethimno, twenty eight (28) in Heraklion and eleven (11) in Lasithi. The
study spans the time period from 1948 to 2012.

Figure 3.3: Geomorphological map of Crete showing the locations of the 54 sta-
tions (yellow circles) with rain gauges used in this study [Google Earth, 2015].
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Precipitation Records

Before exploring the data, it should be noted that the records are incomplete.

Figure 3.4 shows for which years and stations there are missing data. As evidenced

n

Fig. 3.4 there is a significant number of stations with incomplete records. The

presence of missing data emphasizes the need to use geostatistical methods in

order to understand the variability of precipitation.
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Figure 3.4: Matrix showing the missing data problem related to the precipitation
records used. Rows correspond to stations while columns correspond to years.
Circles (blue) mark locations with complete yearly records while with stars mark
years that miss one or more monthly measurements.

74



3. Exploratory Data Analysis

3.3 Statistical Analysis of Monthly Data

The recorded precipitation as shown in Fig. 3.3 are sparse distributed over the
domain, and also exhibit extreme dry condition during the summer period, with
a lot of zero precipitation. This fact adds more complexity to the data analysis,
making it difficult to conclude to a set of data appropriate for further investi-
gation. Therefore, the recorded data are analyzed extensively and transformed
into different data sets. The transformations used are chosen carefully, firstly to
preserve a physical meaning, i.e., data sets of dry and wet periods, but also able

to give a good fit to a model probability distribution function.
In order to fit the data to specific probability distribution models, distribu-

tions, such as the gamma distribution, empty records are removed in preliminary
data processing. In addition, since several probability models do not allow zero
values, such records are replaced by the machine resolution which is a very small
real number (e.g., 2.2204716).

Based on a review of the literature, the gamma distribution is widely used
to fit precipitation data [Baxevani and Lennatsson, 2015; McKee et al., 1993;
Vrochidou, 2013]. Hence, in the exploratory data analysis we fit monthly data
with known distributions at every station, including the gamma distribution. Fits
of the empirical cumulative probability distributions (cdfs) to respective model
cdfs using the method of maximum likelihood result in unsatisfactory agreement
between the empirical and the model cdf as shown in Fig. 3.6. This is mostly due
to the presence of many months (especially in the summer) with zero precipitation
values (Fig. 3.5).

To overcome this problem, the rainfall data sets are accordingly separated
into wet and dry periods. The series representing the wet periods, consists of
the monthly observations from October till March for all the years in the study
period. Similarly, the dry period series comprises the measurements from April
till September. Fitting wet and dry periods with model distributions gives good
results for some of the stations (Fig. 3.7) but not for all of them (Fig. 3.8). More
specifically, the wet period data set was fitted reasonably well by the Generalized
Extreme Value distribution. On the other hand, the dry period data do not lead

to good fits, because of the drought conditions observed in Crete during these
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Figure 3.5: Left: Monthly precipitation series at the station C1 which exhibits
the maximum mean monthly precipitation. Right: Monthly precipitation series
at the station LL10 which has recorded the minimum mean monthly precipitation.

months.

3.4 Precipitation Fields and Series

Average monthly precipitation fields from 1948 until 2012 are generated by ag-
gregating the average values of the monthly precipitation measurements of each
station for every year. This results in 65 average monthly precipitation fields (65
years) consisting of maximum 54 values (54 stations) for the entire island. Every
field consists of the average monthly precipitation value for the particular year at
every station available, and it is referred to the average monthly precipita-
tion. We can also consider the distribution of the average monthly precipitation
field to estimate the statistical fluctuations over the study area for specific years.
For example, we could focus to the precipitation mean values for the year 1950
(which is the year with the minimum average monthly precipitation) and for the
year 2002 (which is the year with the maximum average monthly precipitation).
This data allows us to fit model distributions for every year. Representative

results are presented in Fig. 3.10.

The average monthly precipitation for a given location S; and a specific year
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Figure 3.6: Empirical and model cumulative probability functions for the two
precipitation time series shown in Fig. 3.5 C1 and L10 correspond to the em-
pirical cdfs (blue line). The model fits include the following: “GEV” refers to
the generalized extreme value distribution (red line), “Normal” refers to the the
Gaussian distribution (green line), “Exponential” refers to the exponential dis-
tribution (cyan line), and “Gamma” refers to the gamma distribution (brown
line).

T is defined as
12

B(S,,T) = -3 (IS8 - P(S,, 1) (3.)

where T is the specific year, S; is the station name, P(S;,t;) are monthly precip-
itation levels, I(S;,t;) is an indicator with value 1 for available monthly record
and 0 otherwise, ¢; is the specific month with values ranging between 0 and 12,
and m is the number of the recorded months for the particular year . If this value
is calculated for every station for 2002, then the field of the average monthly pre-
cipitation of the year 2002 is produced. More specifically, in Fig. 3.9a the values
of average monthly precipitation for every available station for the year 2002 are
shown with the height of the stem.

The average monthly precipitation field for the year T consists of 0 to 54

IThe calculation is conducted with the matlab nanmean command which ignores the missing
months

7
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Figure 3.7: Empirical and model cumulative probability functions for the wet
period data (consists of monthly observations from October till March) of the
two precipitation time series shown in Fig. 3.5 C1 and L10 correspond to the
empirical cdfs (blue line). The model fits include the following: “GEV” refers
to the generalized extreme value distribution (red line), “Normal” refers to the
the Gaussian distribution (green line), “Exponential” refers to the exponential
distribution (cyan line), and “Gamma” refers to the gamma distribution (brown
line).

values, depending on how many stations are available. For example, for year 7"
AMP(T) = (F(Sil,T),F(SZ-Q, T),....P(S:,, T)) , (3.2)

where AM P(T) is the average monthly precipitation field in constant time, T is
a specific year, F(SZ-, T) are the results of Eq. (3.1). S1,5s,..., Sy correspond to
stations, N is the size of the stations network (N=54), and 1 < i3 <54...1 <
ir < b4. Note that AM P(T) vector’s length is not necessarily equal to 54, because
there are not always available records for all the stations. If the values of the stems
of Fig. 3.9a are gathered together, the average monthly precipitation field for year
2002 is created. Examples of the cdf fits of average monthly precipitation fields
for years 1950 and 2002 are shown in Fig. 3.10. Based on the maximum likelihood,
the best probability distribution model is the GEV distribution, shown with the
red line. It is obvious from the figure that for year 1950 the model cumulative

distribution function has higher variability and not so good fit as for year 2002.

78



3. Exploratory Data Analysis

o
~
o
~

o
)
o
)

Cumulative probability
Cumulative probability

04 ——CAdry period 04 —— 10:dry period
03 — GEV 03}k — GEV
Normal Normal
0.2y Exponential 0.2 Exponential
01 s GAMMA 1 oal s GAMMA
0 . . . . . . 0 . . . . .
0 100 200 300 400 500 600 0 50 100 150 200 250
Data Data
(a) C1 dry period (b) L10 dry period

Figure 3.8: Empirical and model cumulative probability functions for the dry
period data (consists of monthly observations from April till September) of the
two precipitation time series shown in Fig. 3.5 C1 and L10 correspond to the
empirical cdfs (blue line). The model fits include the following: “GEV” refers
to the generalized extreme value distribution (red line), “Normal” refers to the
the Gaussian distribution (green line), “Exponential” refers to the exponential
distribution (cyan line), and “Gamma” refers to the gamma distribution (brown
line).
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Figure 3.9: Three-dimensional stem plots representing the average monthly pre-
cipitation field (left) and the annual precipitation field (right) for the year 2002.
Each stem refers to the average monthly precipitation at every station based on
the Eq. (3.1) (left) and to the cumulative monthly precipitation based on the Eq.
(3.3) (right) for the year 2002.
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Figure 3.10: Empirical cumulative distribution function (cdf) and fits to model
cdfs for the average monthly precipitation. The empirical cdf is given by the
staircase (blue line), the Generalized Extreme Value distribution is given by the
red line, the normal distribution is given by the dark green line, the exponential
distribution by the cyan line, and the Gamma distribution by the brown line.

This is mostly because of the small data set available for this year. Even though
the data set is small, the GEV distribution gives the best fit.

In addition, annual precipitation fields from 1948 until 2012 are generated by
aggregating the cumulative monthly values. This results in 65 annual precipita-
tion fields, one for every year, with maximum 54 values for the entire island. Every
field consists of the cumulative monthly precipitation for the particular year at
every station available, and it is referred to the annual precipitation. We can
also consider the distribution of the annual precipitation field for a specific year
to estimate the statistical fluctuations over the study area. For example, we could
focus to the precipitation mean values for the year 1950 and for the year 2002 for
the reasons explained above. This data allows us to fit model distributions for

every year. Representative results are presented in Fig. 3.11.

The cumulative monthly precipitation at station S; and for year T is defined

as
12

CP(SjvT) = Z (I(Sj>ti) ’ P(Sj7ti)) ) (33)

=1

where T', S;, t; and P(S;,t;) are as above, and 1(S;, ;) is an indicator with value 1
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if all P(S;,t;) monthly records are available for this year and 0 otherwise !. Figure
3.9b shows the values of cumulative monthly precipitation for every available
station with the height of the stem.

The data sets of cumulative monthly precipitation field, henceforth referred
as annual precipitation, for the year T' comprises between zero and 54 values,
depending on how many stations have available data in this year. For example,

for year T
AP(T) = (CP(S;,T),CP(S;,,T),...,CP(S;,T)), (3.4)

where AP(T) is the annual precipitation field in constant time, 7" is the specific
year, CP(S;,T) are the results of Eq. (3.3). S, Sa, ..., Sy correspond to stations,
N is the size of the stations network (N=54), and 1 < i3 < 54,...1 < ip < 54.
Note that AP(T') vector’s length is not necessarily equal to 54, because there are
not always available records for all the stations. If we focus in Fig. 3.4, vertically,
for every circle (blue mark) we have one value of C'P(T"). The summation of the
circles, gives the length of the vector for the estimated year. For example, for
year 2000, we have 54 values to generate the annual precipitation field. Focusing
in Fig. 3.9b, gathering the values of the stems together, the annual precipitation
field for year 2002 is created. Examples of the cdf fits of those data sets are shown
in Fig. 3.11. Based on the maximum likelihood, the best probability distribution
model is the GEV distribution, shown with the red line.

Next we construct time series of precipitation at specific locations. The aver-
age monthly precipitation time series for the station S consists of at least 1 to 65

values, depending on how many years are available. Specifically, for station S:
AMP(S) = (P(S,T;,), P(S, Ty,), ... P(S, Ty5) ) (3.5)

where AM P(S) is the average monthly precipitation time series at specified lo-
cation, S is the specific station, P(S,T;) are the results of Eq. (3.1) for the year
S which have measurements at this station, and 1 < j; < jo < -+ < jg < 65.

AMP(S) vector’s length is not necessarily equal to 65, because there are not

IThe calculation is conducted with the sum command which leaves out the years that have
missing months
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Figure 3.11: Empirical cumulative distribution function (cdf) and fits to model
cdfs for the annual precipitation. The empirical cdf is given by the staircase (blue
line), the Generalized Extreme Value distribution is given by the red line, the
normal distribution is given by the dark green line, the exponential distribution
by the cyan line, and the Gamma distribution by the brown line.

always available records for all the previous years. If we focus again in Fig. 3.4,
along the rows, every circle (blue mark) corresponds to one value of C'P(S). The
summation of the circles, gives the length of the vector for the estimated year. For
example, for station H23, we have 59 values to generate the annual precipitation

time series. For example, for station S:

where AP(S) is the annual precipitation time series at specified location, S is
the specific station, C'P(S,T;) are the results of Eq. (3.3) at year S which have
measurements at this station, and 1 < j; < jo < -++ < jg < 65. AP(S) vector’s
length is not necessarily equal to 65, because there are not always available records

for all the previous years.

The analysis of the time series, gives similar results with the field data sets: the
model cumulative distribution function that fits best the time series is the GEV
distribution. The optimal distribution, GEV, and its parameters are identified
by applying the maximum likelihood estimation method, and they are presented

in Table 3.3 for the average monthly precipitation time series data sets (based
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on Eq. (3.5)) and in Table 3.4 for the annual precipitation time series data sets
(based on Eq. (3.6)).

Table 3.3: Location coordinates, optimal GEV distribution type and parameters
for all the stations on the island, calculated with the average monthly precip-
itation time series data set (based on Eq. (3.5)). The coordinates x, y, z are
measured in the Greek Geodetic Reference System (EGSA ’87), with x and y be-
ing northing and easting measured in meters, and z being the elevation measured
in meters above sea level. The GEV distribution and its parameters are defined
in Eq. (1.17). “Weibull” refers to the Reversed Weibull distribution, that belongs
to the Generalized Extreme Value distribution family.

Latitude Longitude Elevation k o 1 Distr. Type
CHANIA
517156 3906520 740 —0.06 4224 164.18 Weibull
508459 3854769 10 —0.01 11.55  44.48 Weibull
514927 3922549 20 —0.10 1290 54.24 Weibull
525676 3908980 50 —0.14 2144 83.42 Weibull
479746 3917260 316 —0.13 23.87 98.52 Weibull
486286 3914250 520 0.14 2598 128.49 Fréchet
RETHIMNO
562696 3883780 20 —0.01 11.55 44.48 Weibull
552861 3902359 260 —0.01 2040 89.11 Weibull
563266 3895810 310 —0.11 14.33  56.59 Weibull
571668 3911363 260 —0.60 40.89  92.56 Weibull
556336 3897010 660 —0.16 24.35 99.21 Weibull
554179 3906323 580 0.01 19.24 7280 Fréchet
540774 3893055 90 0.15  16.71  59.28 Fréchet
258436 3887380 560 0.20 12.10 56.24 Fréchet
547996 3897760 390 —0.36  31.01 83.40 Weibull
HRAKLEIO
630233 3899448 230 —0.05 1746 63.35 Weibull
590910 3887874 570 —0.27 1532 71.86 Weibull
583036 3870700 450 —0.03 10.96  39.20 Weibull
622750 3891949 450 —0.14 16.66  59.97 Weibull
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600049 3877943 200 —0.03 10.74 44.07 Weibull
612352 3873325 680 —-0.16 13.56  52.05 Weibull
591040 3874936 190 0.07 1094 38.02 Fréchet
613595 3895526 330 0.02 1495 56.03 Fréchet
d77228 3889597 520 —0.02 21.80 82.87 Weibull
2984536 3887230 450 0.11 16.78 64.42 Fréchet
617026 3877270 210 0.04 15.35 35.19 Fréchet
581799 3887788 500 0.02 15.68 62.12 Fréchet
612261 3880719 200 0.10 1044 4221 Fréchet
594138 3869421 800 0.04 14.13 50.42 Fréchet
620116 3884740 320 —-0.22 1199 43.30 Weibull
621158 3897473 350 —0.07 1457 55.78 Weibull
626716 3873280 10. 0.01 1224 34.61 Fréchet
589276 3898390 500 —-0.14 1740 72.29 Weibull
571666 3884860 140 —0.13 13.81 41.26 Weibull
603058 3888005 430 0.00 11.12 54.76 Fréchet
082134 3883486 400 —-0.08 13.75 51.40 Weibull
611476 3886360 400 —0.29 16.64 48.53 Weibull
278536 3874150 150 0.09 11.23 37.00 Fréchet
604705 3876931 225 0.06 9.65  40.77 Fréchet
600316 3896140 380 0.13 17.00  59.65 Fréchet
605866 3883420 360 —0.15 1543 51.56 Weibull
600526 3904810 40 —-0.17 19.09 54.63 Weibull
600886 3910990 15 —-0.20 838  37.80 Weibull
LASITHI
694096 3888550 480 0.14 1443 62.44 Fréchet
645796 3902380 240 —0.15 13.90 61.90 Weibull
639586 3895960 840 —-0.22 30.36 106.86 Weibull
657492 3887454 20 —-0.07 8.64 38.19 Weibull
644896 3882850 590 0.13  15.22 5491 Fréchet
689776 3889690 150 —-0.04 11.06 48.76 Weibull
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645166 3877390 200 —0.37 15.79 4097 Weibull
705496 3898540 25 —0.11 1141 38.04 Weibull
664846 3884170 20 0.10 13.86 42.14 Fréchet
690436 3899320 114 —0.08 991  34.67 Weibull
676876 3883150 325 —0.05 20.16 54.92 Weibull

Table 3.4: Location coordinates, optimal GEV distribution type and parameters
for all the stations on the island, calculated with the annual precipitation time
series data set (based on Eq. (3.6)). The coordinates x, y, z are measured in
the Greek Geodetic Reference System (EGSA ’87), with x and y being northing
and easting measured in meters, and z being the elevation measured in meters
above sea level. The GEV distribution and its parameters are defined in Eq.
(1.17). “Weibull” refers to the Reversed Weibull distribution, that belongs to the
Generalized Extreme Value distribution family.

Latitude Longitude Elevation k o 1 Distr. Type
CHANIA
517156 3906520 740 —0.37 479.69 2003.56 Weibull
508459 3854769 10 0.04 128.43 518.52 Fréchet
514927 3922549 20 0.09 135.25 617.16 Fréchet
525676 3908980 50 —0.12 24790 998.53 Weibull
479746 3917260 316 —0.13 289.29 1181.73 Weibull
486286 3914250 520 0.08  327.65 1575.42 Fréchet
RETHIMNO
562696 3883780 20 0.04 128.43 518.52 Fréchet
552861 3902359 260 —0.05 257.20 1085.55 Weibull
563266 3895810 310 —0.11 174.37 680.48 Weibull
571668 3911363 260 —0.38 316.23 1225.18 Weibull
556336 3897010 660 —0.16 292.18 1190.56 Weibull
554179 3906323 580 —0.01 22197 859.72 Weibull
540774 3893055 90 —0.05 183.86 709.37 Weibull
558436 3887380 560 0.10 142.20 674.99 Fréchet
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247996 3897760 390 —0.09 220.53 1030.68 Weibull
HRAKLEIO
630233 3899448 230 —0.02 206.82 742.58 Weibull
590910 3887874 570 —0.28 188.52 862.30 Weibull
283036 3870700 450 —0.02 129.75 462.50 Weibull
622750 3891949 450 —0.07 169.69 724.75 Weibull
600049 3877943 200 0.00 129.39 522.43 Fréchet
612352 3873325 680 —0.12 145.83 638.97 Weibull
591040 3874936 190 0.11  127.79 444.80 Fréchet
613595 3895526 330 —0.08 171.41 677.94 Weibull
D77228 3889597 520 —0.02 260.10 998.18 Weibull
284536 3887230 450 —0.04 184.44 775.45 Weibull
617026 3877270 210 —0.09 142.60 420.80 Weibull
581799 3887788 500 —-0.04 177.18 736.91 Weibull
612261 3880719 200 —0.03 126.78 518.20 Weibull
594138 3869421 800 0.00  164.07 600.35 Fréchet
620116 3884740 320 —0.17 13243  530.57 Weibull
621158 3897473 350 —0.20 165.08 665.85 Weibull
626716 3873280 10 —0.13 138.43 413.79 Weibull
289276 3898390 500 —0.10 198.62 878.17 Weibull
571666 3884860 140 0.10 117.51 502.35 Fréchet
603058 3888005 430 0.00 136.38 656.62 Fréchet
082134 3883486 400 —0.07 16248 611.59 Weibull
611476 3886360 400 —0.06 134.79 589.88 Weibull
278536 3874150 150 —0.05 121.72  439.90 Weibull
604705 3876931 225 0.02 107.23 480.16 Fréchet
600316 3896140 380 —0.06 176.62 700.59 Weibull
605866 3883420 360 —-0.09 160.01 618.70 Weibull
600526 3904810 40 —0.07 185.50  669.27 Weibull
600886 3910990 15 —0.20 100.52 453.63 Weibull
LASITHI
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694096 3888550 480 0.09 164.19 742.30 Fréchet
645796 3902380 240 —0.14 167.15 740.95 Weibull
639586 3895960 840 —0.19 350.46 1286.88 Weibull
657492 3887454 20 —0.08 106.02 460.25 Weibull
644896 3882850 990 —0.02 17746 663.75 Weibull
689776 3889690 150 —0.12 131.17 586.13 Weibull
645166 3877390 200 —0.24 150.42 515.18 Weibull
705496 3898540 25 —0.11 13543 455.56 Weibull
664846 3884170 20 —0.08 150.40 498.48 Weibull
690436 3899320 114 —0.08 119.66 418.62 Weibull
676876 3883150 325 —0.14 171.06 699.29 Weibull

By the above investigation and taking into account the statistical properties,
in both cases, average monthly precipitation time series and annual precipitation
time series, Generalized Extreme Value distribution (GEV) is the more repre-
sentative distribution. For visual evidence of the goodness of the GEV fit, we
present below the cdf plots of two stations for both average monthly and an-
nual precipitation time series (Figs. 3.12, 3.13). Although, Gamma distribution
function seems to have a good fit here, the GEV distribution fits better the time
series, with higher differences calculated with the maximum likelihood between
them in cases of smaller data sets. Through the above investigation, we can say
that the best model distribution function to fit the data sets, for both spatial and

temporal scale is the GEV distribution function.

3.5 Precipitation Comparison in the Eastern and

Western Regions

To further study the spatial patterns of precipitation and to investigate the role of
longitude on recorded precipitation values on Crete, we divide the island into two
different geographical regions, i.e., into Western and Eastern Crete. As mentioned

before, the available precipitation data are measurements from 54 meteorologi-
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Figure 3.12: Empirical and model cumulative probability functions for the average
monthly precipitation time series of station C1 (left) and L10 (right) correspond
to the empirical cdfs (blue line). The model fits include the following: “GEV”
refers to the generalized extreme value distribution (red line), “Normal” refers to
the the Gaussian distribution (green line), “Exponential” refers to the exponential
distribution (cyan line), and “Gamma” refers to the gamma distribution (brown
line).
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Figure 3.13: Empirical and model cumulative probability functions for the annual
precipitation time series of station C1 (left) and L10 (right) correspond to the
empirical cdfs (blue line). The model fits include the following: “GEV” refers
to the generalized extreme value distribution (red line), “Normal” refers to the
the Gaussian distribution (green line), “Exponential” refers to the exponential
distribution (cyan line), and “Gamma” refers to the gamma distribution (brown
line).
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Figure 3.14: Flow chart of the preliminary data processing and geostatistical
methodology applied to the spatial database. Data Organisation & Transfor-
mations refers to the preliminary investigation of the needed transformations in
order to keep the physical meaning of the data, but also to find the appropriate
data set . “GEV” refers to the generalized extreme value distribution

cal stations around Crete, 6 of the meteorological stations are located in the

prefecture of Chania, 9 in Rethimno, 28 in Heraklion and 11 in Lasithi.

More specifically, West Crete consists of fifteen (15) stations and for sixty five
(65) years there should be eleven thousand and seven hundred records (11 700).
Due to lack of recorded measurements during the first twelve years there exist
recorded data only for fifty three (53) years in total that include at most nine
thousand five hundred and forty measurements for the 15 stations (9540). From
those 9 540 measurements the 2400 are missing (25%). While, East Crete consists
of thirty nine (39) stations and for 65 years there should be thirty thousand and
four hundred and twenty measurements (30420), from those eight thousand and
three hundred eighty the 8 380 are missing (27%).

To compare the Eastern and Western regions of Crete, we need a representa-

tive data set for each. We create the average monthly precipitation time series
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for West and for East by gathering one representative value for every region for
every year. Below we present the methodology used to create the time series for

the West region. The same methodology can be applied to the East.

The averaged monthly precipitation time series of West Crete are generated
by aggregating the mean values of the average monthly precipitation of the 15
stations located in the prefectures of Chania and Rethimno for every year (for the
East we take into account the 39 stations located in the prefectures of Heraklion
and Lasithi). The average monthly precipitation for West Crete is calculated as

follows:

PW(T) = (%i (I(Si,T) -F(Si,T))> , (3.7)

i=1
where T is the specific year, S; is the station name, F(Si,T) are the average
monthly precipitation calculated from Eq. (3.1), I(S;,T) is an indicator with
value 1 if there is a record of average monthly precipitation for this year at this
station, and m < 15 is the sum of the available stations in the West for the

particular year.

If this value is calculated for every year, then the time series of average
monthly precipitation for West Crete is produced. The average monthly pre-
cipitation time series for West Crete begins in 1960, because there are no avail-
able measurements before this year. The formula that gives the average monthly

precipitation time series for West Crete is
AMPW = (WV(]}I),W(EQ),...,WV(T- )), (3.8)

where W(T]) are the results of Eq. (3.7) for year T}, where 1 < j; < jo <--- <
Js < 65.

For the generation of the annual precipitation time series for West Crete we
firstly calculate the mean cumulative monthly precipitation for West Crete for

every year as

CPW(T) = (i f: (1(5:,. T) - C’P(Si,T))) , (3.9)

m <
=1

where T', S;, m, and 1(S;,T) as above, and C'P(.S;,T) are the cumulative monthly
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Figure 3.15: Time series of average monthly precipitation (left) and annual pre-
cipitation (right) for the Western (blue line) and the Eastern (red line) regions
of Crete based on Egs. (3.7) and (3.9) respectively. The sample mean of the
precipitation in the West (East) is indicated by the green (magenta) straight line
in the diagrams.

precipitation calculated from Eq. (3.3).

If this value is calculated for every year, then the time series of average
monthly precipitation for West Crete is produced. The average monthly pre-
cipitation time series for West Crete begins from 1960, because there were not
available measurements before that year. The formula that gives the average

monthly precipitation time series for West Crete is

APW = (W(le), CPW(T},), ... ,W(Tjs)) , (3.10)

where CPW(T}) are the results of Eq. (3.9) for year T}.

Figure 3.15a and Fig. 3.15b reveal strong correlations in precipitation between
the western and eastern parts of the island. A spatial trend is observed with the
spatially averaged data calculated with the average monthly precipitation time
series in the West measured at about 40 mm than in the East (Eq. (3.7) for the
West, accordingly we proceed with the calculation of the East). For the spatially
averaged data with the annual precipitation time series, the spatial correlation is
at about 450 mm higher in the West than in the East (Eq. (3.9) for the West,
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Figure 3.16: Correlation plots between Western and Eastern regions of Crete for
the average monthly precipitation. On the left diagonal, the histograms show the
probability densities of the Western and Eastern average monthly precipitation
time series (Eq. (3.8)). On the right diagonal the scatterplots of the data are
presented. The Pearson’s correlation coefficient calculated by Eq. (2.77) equals
to 0.69 (left) and Spearman’s correlation coefficient based on Eq. (2.78) equals
to 0.76 (right).

accordingly we proceed with the calculation for the East). In other words, if we
have a mean value of precipitation for the one region, i.e., for West Crete, we are
able to make a first assumption for East Crete, the value of which would be 40
mm lower in the case of the average monthly precipitation and lower at about

450 mm in the case of the annual precipitation.

We quantify the correlations shown in Fig. 3.15 by means of the correlation
plots shown in the plots of Figs. 3.16 and 3.17. The estimated Pearson’s correla-
tion coefficient for the average monthly precipitation is 0.69 and the Spearman’s
is equal to 0.76. On the other hand, the correlation coefficients between West
and East Crete for the annual precipitation is 0.71 for both Pearson’s and Spear-
man’s coefficients. We have lower dependence with the average monthly data
because the data sets have bias from the beginning, as the average values are
calculated by the available months. This mean that we could have stations with
missing measurements in the summer, while for stations in the opposite region we
could have missing values in the winter. If we focus to the annual precipitation,

longitude seems to affects precipitation in Crete.
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Figure 3.17: Correlation plots between Western and Eastern regions of Crete for
the annual precipitation. On the left diagonal, the histograms show the proba-
bility densities of the Western and Eastern annual precipitation time series (Eq.
(3.10)). On the right diagonal the scatterplots of the data are presented. The
Pearson’s correlation coefficient calculated by Eq. (2.77) equals to 0.71 (left) and
Spearman’s correlation coefficient based on Eq. (2.78) equals to 0.71 (right).
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Chapter 4
Results of Geostatistical Analysis

In a study area that lacks homogeneity and has mountainous areas across, to-
pography is an important factor for precipitation generating a noticeable trend.
The analysis on both the average monthly and the annual precipitation fields
gave similar results. Below, we will present in detail the results of the analysis
for the annual precipitation field of the year 1971. Representative figures for the
remaining years, from 1965 until 2011, are presented in Appendix A. For com-
parison reasons, results for the average monthly precipitation field in 1971 are
presented in Section 4.2. In Sections 4.1 and 4.2 we perform a local analysis of
the precipitation field, while in Section 4.3 we focus on a global analysis that

refers to the entire island.

4.1 Model of Annual Precipitation Field

First, we remove the trend from the precipitation data. We accomplish this with
the application of multilinear regression of the response (e.g., the precipitation)
on the predictors, which contain longitude, latitude and elevation.

The residuals remaining after the application of the multilinear regression are
shown in Fig. 4.2 (in red). The plots in Fig. 4.3 show how known probability
density functions, including the normal distribution, fit the precipitation resid-
uals. As shown in Fig. 4.3b the residuals can be considered as approximately

Gaussian; hence, Ordinary Kriging can be used for interpolation.



Model of Annual Precipitation Field

4.1.1 Topographic Trend

In order to decide which of the topographic parameters contribute to precipita-
tion, multilinear regression was performed using all the possible combinations of
longitude, latitude and elevation as predictor variables. The results of the cal-
culations are presented in Table 4.1. The coefficient of determination R? is low
if only one or two of the parameters are used. Hence, we include all three vari-
ables (longitude, latitude, and elevation) in the trend function. The coefficient of

determination is defined as
SSres

© SSu

where SS,.s is the sum of squares of residuals, also called the residual sum of

R?=1

(4.1)

squares, and SS;, is the total sum of squares (proportional to the variance of
the data), and has values among 0 and 1. More specifically, the estimates of the
coefficients for the regression model of the annual precipitation field are presented
in Table 4.2. The p—value is very low, thus rejecting the null hypothesis of zero
correlation.

The most important topographic factor seems to be the elevation, which con-
tributes most to the trend model. This conclusion is based on the value of the
coefficient that multiplies the elevation in the trend function. Figure 4.1 shows a
plot of the trend function and the data versus easting and elevation.

In Fig. 4.2 the annual precipitation field values are marked with blue cir-
cles, while the residual precipitation resulting after the removal of the trend is
marked with red asterisks. The plots of the model probability density functions
and the normal probability plot of the precipitation residuals are presented in
Fig. 4.3. These plots show that the residuals are approximately normally dis-
tributed. As mentioned above, the Student’s t distribution describes the average
of samples from a full normal population. Hence, because of the small sample
size (only 49 available stations), it is expected that the residual precipitation
fit best the Student’s t distribution, in agreement with the plot shown in Fig.
4.3a. Nonetheless, in the following it is assumed that the residuals are treated as
normally distributed.

Summary statistics of the annual data set for the year 1971 are presented in

Table 4.3. They include the mean value, the minimum, the maximum value, the
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Table 4.1: Statistics of multilinear regression for all the possible combinations of
longitude (x), latitude (y) and elevation (z), for the annual precipitation field in
the year 1971 (Eq. (3.4)). The coordinates x, y, z are measured in the Greek
Geodetic Reference System (EGSA ’87), with x and y representing the longitude
and latitude measured in meters, and z being the elevation measured in meters
above sea level. The value of the coefficient of determination R? shows how
much of the variability in the response variable (precipitation) is explained by
the model (e.g. for x, y, z : 74%). The F-statistic gives the relationship between
the response variable and the predictor variables. The p—value is used in the
context of null hypothesis testing of zero correlation in order to quantify the idea
of statistical significance of evidence. The p—value refers to the F—statistic test,
lower value are preferable.

Regression with R? F-statistic p—value Error variance
X 0.2434 15.1196 3.1593e-04 5.1638e+04
y 0.3383 24.0259 1.1723e-05 4.5163e+-04
z 0.3066 20.7799 3.6774e-05 4.7326e+-04
X,y 0.5179 24.7092 5.1510e-08 3.3618e+-04
X, Z 0.4869 21.8277 2.1586e-07 3.5779e+04
Y, 7 0.6108 36.0980 3.7461e-10 2.7139e+04
X, V, Z 0.7415 | 43.0295 | 2.8437e-13 | 1.8426e+04

Table 4.2: Trend model parameters, for annual precipitation field in the year 1971
(Eq. (3.4)).

b x 1 X X Xy X 7

b;, i=0,...,3 | -4.1919e+-04 | -0.0019 | 0.0112 | 0.5688
lower bound | -5.5151e+04 | -0.0027 | 0.0078 | 0.3852
upper bound | -2.8686e+04 | -0.0011 | 0.0146 | 0.7524

Table 4.3: Summary statistics for the precipitation data set depicted in Fig. 4.2.
The parameter n is the number of available stations of the year.

1971 n Mean Median | Minimum | Maximum | Std.dev. | Coef.of var. | Skewness
Precipitation |49 | 634.8980 [581.1000| 291.2000 |1602.4000 [258.5111| 0.4072 1.5316
Residuals [49|2.2065e-12|-21.9881 |-339.2030 | 381.6012 [131.4318|5.9567e+13| 0.4557

standard deviation of the annual precipitation as well as the respective values for

precipitation residuals. The zero mean of the residuals, the approximately zero
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Figure 4.1: Multilinear regression of the precipitation field on the predictors
which comprise longitude, latitude, and elevation, for the annual precipitation
field in the year 1971. The trend equation for this year is given by f = —4.1919-
10* — 0.0019 2 + 0.0012y + 0.5688 2. The coordinates x, y, z are measured in
the Greek Geodetic Reference System (EGSA ’87), with x and y representing
the easting and the northing coordinates measured in meters, and z being the
elevation measured in meters above sea level.

skewness, and the proximity of the residuals to the straight line on the normal

probability plot as shown in Fig. 4.3b prove that the residuals are close to the

Gaussian distribution.
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Figure 4.2: Scatter plot of the annual precipitation field values and the precipi-
tation residuals obtained after the application of multilinear regression according
to the trend equation shown in Fig. 4.1, for the year 1971. The blue circles corre-
spond to the annual precipitation field values, while the red asterisks correspond
to the precipitation residuals. The square boxes mark the highest values for the
respective data set.

4.1.2 Variogram Modeling

To construct a spatial model of the residual precipitation, a suitable variogram
model needs to be determined. After the calculation of the experimental vari-
ogram based on the method of moments, the Spartan variogram is fitted as a
theoretical model. This allows estimating the parameters 7y, 1;, and the char-
acteristic length ¢ of the Spartan model (see Eq. (2.30)). Figure 4.4 shows
the graphical representation of the variogram of the above data set. The scale
parameter 7 that determines the total variance of the fluctuations is equal to
1.9764¢ +05 mm?, the shape parameter 1, = —0.8643, and the correlation length
¢ that shows the range of the spatial dependence equals 9.9620. The shape pa-

rameter 7); is dimensionless. Particularly for this case, the correlation length ¢ is
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Figure 4.3: Empirical and model probability density function (left) and normal
probability plot (right) for the year 1971 of the precipitation residuals provided in
Fig. 4.2. On the left, bars correspond to the empirical histogram of the data (blue
line), while the model fits include the following: “t Scale-Location” refers to the
Student’s t distribution (red line), “Logistic” refers to the Logistic distribution
(blue dotted line), “GEV” refers to the generalized extreme value distribution
(brown line), and “Normal” refers to the Gaussian distribution (gray line). On the
right, cross markers are used for the sample data, while the solid line corresponds
to the model normal probability (red line).

also in dimensionless units, since the distances were normalized for the estima-
tion of the variogram parameters. The lengths in the three orthogonal directions
are scaled in such a way that the entire 3D map area is contained within the
rectangular domain with size 100 x 100 x 1000. This implies that the lengths in
all three directions are scaled by appropriate factors according to the following

normalizing equations

B §
& = 3.5326 - 10—4 (4.2)
B §
& = 8.3615 - 104 (4.3)
RS
&= 0.4103 (44)

Inverting normalization, we obtain the anisotropic correlation lengths £, = 28km,
§ = 12km, &, = 24m.
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Figure 4.4: Empirical variogram (crosses) and theoretical Spartan variogram
model (continuous blue line) based on Eq. (2.30) for the precipitation residuals of
the year 1971 (shown in Fig. 4.2). The horizontal axis is calibrated using normal-
ized distances; one unit corresponds to a lag distance of approximately 2.8 km in
x direction, 1.2 km in y direction, and 2.4 m in z direction. Bars count the avail-
able pairs of sample points for every lag distance. The estimated parameters for
the theoretical model are as follows: nugget variance o2 = 173.9258 mm?, 7, =
1.9764¢ + 05 mm?, n; = —0.8643, £ = 9.9620.

4.1.3 Regression Kriging

As shown above, the residual precipitation approximately follows a Gaussian dis-
tribution. Hence, kriging can be used to create precipitation maps, based on the
theoretical model of the variogram (see Fig. 4.5). The necessary equations for
the application of the residual kriging are presented in detail in Section 2.12.1.4.
Kriging is used to generate a map of the residuals which then has to be trans-
formed into a map of precipitation values. This is accomplished by adding the

trend values at each map grid point. The trend at the grid points is estimated
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using the elevation values from the Digital Elevation Model which was developed
using Geographical Information Systems (see Fig. 3.2), combined with the trend
function calculated —the trend function’s coefficients are shown in Table 4.2. The
precipitation map thus generated is shown in Fig. 4.6. We observe three areas
with higher prediction values than the rest of the island, which coincide with the
three mountainous areas shown in the digital elevation model. This reflects the
significant influence of the topographic parameters on the precipitation. More
specifically, at the highest peak of Lefka Ori, which is located in Chania, the pre-
dicted precipitation value equals 2326 mm, at mountain Psiloritis in Rethimno
the predicted precipitation is equal to 2055 mm, while on mountain Dicti in the
regional unit of Lasithi the precipitation equals 1775 mm. These values are also

in agreement with the overall trend of a negative west—east precipitation gradient.
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Figure 4.5: Map of estimated annual precipitation residuals for 1971, based on
the Spartan variogram model (Eq. (2.30)) and the data set shown in Fig. 4.2. The
Cartesian coordinates are measured in the Greek Geodetic System (EGSA ’87),
with the horizontal axis representing the easting and the vertical axis representing
the northing. Both axes are measured in meters.

The ratio of the kriging standard deviation divided by the kriging estimate
at the grid points, generates a map showing the kriging coefficient of variation.
The map of the coefficient of variation is presented in Fig. 4.7. The biggest
uncertainties are marked in red and they occur in the south—eastern part of

Crete. The areas with high coefficient of variation are low-land areas with lower
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Figure 4.6: Map of estimated annual precipitation for 1971, based on Spartan
variogram model (Eq. (2.30)) and the data set shown in Fig. 4.2. The Cartesian
coordinates are measured in the Greek Geodetic System (EGSA '87), with the
horizontal axis representing the easting and the vertical axis representing the
northing. Both axes are measured in meters.

precipitation. Even though the standard deviation in these areas is lower than
in the rest of Crete, the precipitation estimate is not analogously lower, resulting
to higher sensitivity to changes. These errors are also partially due to the lack of

measuring stations along the coastline.

4.1.4 Leave—One—Out Cross Validation

For the assessment of the spatial precipitation model’s performance we use the
method of leave—one—out cross validation. This method is described in detail
in Section 2.13.1. The results of the cross validation analysis are presented in
Figs. 4.8 and 4.9 and in Table 4.4. The latter summarizes the cross validation
measures first for the estimated residuals and secondly for the estimated pre-
cipitation. The low mean error value means low bias, while the transformation
from residuals to precipitation decreases the mean absolute relative error and
the root mean square relative error. We notice the high correlation, based on
both Pearson’s and Spearman’s correlation coefficients, between the estimated
precipitation values and the actual precipitation values. This is achieved after

the incorporation of the precipitation trend to the residuals.
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Figure 4.7: Map of estimated coefficient of variation of annual precipitation for
1971, based on Spartan variogram model (Eq. (2.30)) and the data set shown in
Fig. 4.2. The Cartesian coordinates are measured in the Greek Geodetic System
(EGSA ’87), with the horizontal axis representing the easting and the vertical
axis representing the northing. Both axes are measured in meters.
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Figure 4.8: Kriging-based leave-one—out cross validation predictions versus sam-
ple values for 1971 precipitation (based on the data set shown in Fig. 4.2).
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Figure 4.9: Histogram of leave-one-out cross validation errors for 1971 precipi-
tation (based on the data set shown in Fig. 4.2).

A comparison between the actual precipitation at each station and the respec-
tive value obtained by means of leave-one—out cross validation is shown in the
bar plot of Fig. 4.10.

4.2 Model of Average Monthly Precipitation

For the average monthly precipitation the results obtained by the application of
the spatial analysis are very similar to those extracted from the analysis of the
annual precipitation data set. Below, we repeat the analysis conducted in Section
4.1 for the annual precipitation field, and we present the respective results for the

average monthly precipitation field in the year 1971.

4.2.1 Topographic Trend

In order to remove the trend from the precipitation data, we performed multi-
linear regression of the response (e.g., the precipitation) on the predictors, which

contain the longitude, latitude and elevation. The residuals remaining after the
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Table 4.4: Cross validation performance measures calculated through leave—one—
out cross validation for the precipitation data of year 1971 for annual recorded
precipitation data set. ME: Mean error (bias) (Eq. (2.72)), MAE: Mean abso-
lute error (Eq. (2.73)), MARE: Mean absolute relative error (INF if z contains
zeros) (Eq. (2.74)), RMSE: Root mean square error (Eq. (2.75)), RMSRE: Root
mean square relative error (INF if the actual precipitation value is zero) (Eq.
(2.76)), RP: Pearson’s linear correlation coefficient (Eq. (2.77)), RS: Spearman
(rank) correlation coefficient (Eq. (2.78)), ErrMin: Difference between minimum
prediction and minimum sample value, ErrMax: Difference between maximum
prediction and maximum sample value.

1971 ME(mm) | MAE(mm) | MARE |RMSE(mm)|RMSRE| RP | RS |ErrMin(mm)|ErrMax(mm)
Residuals 2.9540 96.9050 | 2.3637 | 129.3083 | 6.5976 |0.3132]0.3212| 157.5841 -145.7528
Precipitation| 2.9540 96.9050 |0.1623 | 129.3083 | 0.2171 [0.8703]0.8742| -72.6871 -238.2975
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Figure 4.10: Comparison between the actual precipitation values of the year 1971
at each station and the predictions derived using leave—one—out cross validation.

application of the multilinear regression method are shown in Fig. 4.12 (in red).
The estimates of the coefficients for the regression model of the average monthly

precipitation field in the year 1971 are presented in Table 4.5.

106



4. Results of Geostatistical Analysis

Table 4.5: Trend model parameters, for average monthly precipitation field in the

year 1971 (Eq. (3.2)).

b x 1 X X Xy X z

bi, i=0,...,3 | -3.4932e+03 -0.0002 0.0010 | 0.0474
lower bound | -4.5959e+03 | -2.2887e-04 | 0.0007 | 0.0321
upper bound | -2.3905e+03 | -9.2975e-05 | 0.0012 | 0.0627

As mentioned above for the annual precipitation, elevation contributes most
to the trend model, the same applies for the average monthly precipitation field.
Figure 4.11 shows a plot of the trend function and the data versus norhting and

elevation.
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Figure 4.11: Multilinear regression of the precipitation field on the predictors
in which comprise longitude, latitude, and elevation, for the average monthly
precipitation field in the year 1971. The trend equation for this year is given
by f = —3.4932 - 103 — 0.0002z + 0.0010y + 0.0474 z. The coordinates x, y, z
are measured in the Greek Geodetic Reference System (EGSA ’87), with x and
y representing the easting and northing coordinates measured in meters, and z
being the elevation measured in meters above sea level.
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In Fig. 4.12 the average monthly precipitation field values are marked with
blue circles, while the residual precipitation resulting after the removal of the
trend is marked with red asterisks. The plots of the model probability den-
sity functions and the normal probability plot of the precipitation residuals are
presented in Fig. 4.13. These plots show that the residuals are approximately
normally distributed.
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Figure 4.12: Scatter plot of the average monthly precipitation field values and
the precipitation residuals obtained after the application of multilinear regression
according to the trend equation shown in Fig. 4.11, for the year 1971. The
blue circles correspond to the monthly precipitation field values, while the red
asterisks correspond to the precipitation residuals. The square boxes mark the
highest values for the respective data set.

Summary statistics of the average monthly precipitation data set for the year
1971 are presented in Table 4.6. They include the mean value, the minimum, the
maximum value, the standard deviation of the average monthly precipitation as
well as the respective values for precipitation residuals. The zero mean of the
residuals, the approximately zero skewness (see Table 4.6), and the proximity of
the residuals to the straight line on the normal probability plot as shown in Fig.

4.13b prove that the residuals are close to the Gaussian distribution.
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Table 4.6: Summary statistics for the precipitation data set depicted in Fig. 4.12.
The parameter n is the number of available stations of the year.

1971 n Mean |Median | Minimum | Maximum | Std.dev. | Coef.of var. | Skewness
Precipitation 49| 52.9082 |48.4250| 24.2667 | 133.5333 | 21.5426 0.4072 1.5316
Residuals |49(8.7977e-13|-1.8323 | -28.2669 | 31.8001 | 10.9527 |1.2449e+13| 0.4557
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Figure 4.13: Empirical and model probability density function (left) and normal
probability plot (right) for the year 1971 of the precipitation residuals provided
in Fig. 4.12. On the left, bars correspond to the empirical histogram of the
data (blue line), while the model fits include the following: “t Scale-Location”
refers to the Student’s t distribution (red line), “Logistic” refers to the Logistic
distribution (blue dotted line), “GEV” refers to the generalized extreme value
distribution (brown line), and “Normal” refers to the Gaussian distribution (gray
line). On the right, cross markers are used for the sample data, while the solid
line corresponds to the model normal probability (red line).

4.2.2 Variogram Modeling

We fitted the theoretical Spartan variogram model to the experimental variogram,
to construct the spatial model. This allows estimating the parameters 7, 1;, and
the characteristic length ¢ of the Spartan model (see Eq. (2.30)). Figure 4.14
shows the graphical representation of the variogram of the above data set. The
scale parameter 7y that determines the total variance of the fluctuations is equal
to 2.6979¢ + 03 mm?, the shape parameter 7, = 1.9999, and the correlation
length & that shows the range of the spatial dependence equals 15.8604. The
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shape parameter 7; is in dimensionless units. Particularly for this case, the
correlation length £ is also dimensionless, since the distances were normalized for
the estimation of the variogram parameters. The same normalization that was
applied for the annual precipitation is applied here too. The biggest contribution
to the variogram estimation has the vertical direction, which implies anisotropy
focused on the elevation. Inverting normalization, we obtain the anisotropic
correlation lengths £, = 45km, §, = 19km, &, = 39m.
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Figure 4.14: Empirical variogram (crosses) and theoretical Spartan variogram
model (continuous blue line) based on Eq. (2.30) for the precipitation residuals of
the year 1971 (shown in Fig. 4.12). The horizontal axis is calibrated using normal-
ized distance; one unit corresponds to a lag distance of approximately 2.8 km in x
direction, 1.2 km in y direction, and 2.4 m in z direction. Bars count the available
pairs of sample points for every lag distance. The estimated parameters for the
theoretical model are as follows: nugget variance o2 = 2.2204e — 16 mm?, 7y =

2.6979¢ + 03 mm?, n; = 1.9999, £ = 15.8604.
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4.2.3 Regression Kriging

The residual precipitation follows a Gaussian distribution as shown above, thus
kriging can be used to create precipitation maps, based on the theoretical model
of the variogram (see Fig. 4.15). The necessary equations for the application of

the residual kriging are presented in detail in Section 2.12.1.4.
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Figure 4.15: Map of estimated average monthly precipitation for 1971, based on
Spartan variogram model (Eq. 2.30) and the data set shown in Fig. 4.12. The
Cartesian coordinates are measured in the Greek Geodetic System (EGSA '87),
with the horizontal axis representing the easting and the vertical axis representing
the northing. Both axes are measured in meters.

The ratio of the kriging standard deviation divided by the kriging estimate
at the grid points, generates a map showing the kriging coefficient of variation.
The map of the coefficient of variation is presented in Fig. 4.16. The coefficient of
variation map of average monthly precipitation is very similar to the one created
for the annual precipitation data set, with the biggest estimation errors in the

south—eastern part of Crete.

4.2.4 Leave one Out Cross Validation

The results of leave—one—out cross validation analysis —the method used for the
assessment of the model’s performance— are presented in Figs. 4.17 and 4.18 and

in Table 4.7. The latter summarizes the cross validation measures firstly for the
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Figure 4.16: Map of estimated coefficient of variation of average monthly precip-
itation for 1971, based on Spartan variogram model (Eq. (2.30)) and the data set
shown in Fig. 4.12. The Cartesian coordinates are measured in the Greek Geode-
tic System (EGSA ’87), with the horizontal axis representing the easting and the
vertical axis representing the northing. Both axes are measured in meters.

estimated residuals and secondly for the estimated precipitation. As observed for
the annual precipitation data set, we extracted similar conclusion from the cross
validation measures for the average monthly precipitation. We observe low mean
error (low bias), and decrease to the mean absolute relative error and the root
mean square relative error after the incorporation of the precipitation trend to the
residuals. Also after that transformation, we observe high correlation coefficient
ranks, based on both Pearson’s and Spearman’s correlation coefficients, between

the estimated precipitation values and the actual precipitation values.

A comparison between the actual precipitation at each station and the respec-
tive value obtained by means of leave-one-out cross validation is shown in the bar
plot of Fig. 4.19.
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Figure 4.17: Kriging—based leave-one—out cross validation predictions versus sam-
ple values for 1971 precipitation (based on the data set shown in Fig. 4.12).
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Figure 4.18: Histogram of leave-one—out cross validation errors for the 1971 pre-
cipitation (based on the data set shown in Fig. 4.12).
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Figure 4.19: Comparison between the actual precipitation values of the year 1971
at each station and the predictions derived using leave—one—out cross validation.

Table 4.7: Cross validation performance measures calculated through leave—one—
out cross validation for the precipitation data of year 1971 for the average monthly
precipitation data set. ME: Mean error (bias) (Eq. (2.72)), MAE: Mean abso-
lute error (Eq. (2.73)), MARE: Mean absolute relative error (INF if z contains
zeros) (Eq. (2.74)), RMSE: Root mean square error (Eq. (2.75)), RMSRE: Root
mean square relative error (INF if the actual precipitation value is zero) (Eq.
(2.76)), RP: Pearson’s linear correlation coefficient (Eq. (2.77)), RS: Spearman
(rank) correlation coefficient (Eq. (2.78)), ErrMin: Difference between minimum
prediction and minimum sample value, ErrMax: Difference between maximum
prediction and maximum sample value

1971 ME(mm) | MAE(mm) | MARE | RMSE(mm) |[RMSRE| RP | RS |ErrMin(mm)|ErrMax(mm)
Residuals 0.2462 8.0754 |2.3637| 10.7757 6.5976 10.3132{0.3212| 13.1320 -12.1461
Precipitation| 0.2462 8.0754 |0.1623 | 10.7757 0.2171 ]0.8703|0.8742| -6.0573 -19.8573

In both cases, the estimation smoothen local fluctuations. At stations with
low precipitation values the kriging method tends to force the estimate to higher
values compared to the original record and closer to the mean value. On the
other hand, at stations with high values, the estimates are lower than the true

values. This smoothing effect is a well-known property of kriging interpolators.

114



4. Results of Geostatistical Analysis

4.3 Spatiotemporal Patterns of Precipitation

The calculation of the overall trend of precipitation in Crete, based on the
recorded values, seems to have an increasing pattern. More specifically, the trend
calculated with mean values of every year’s records of annual precipitation refers
to an increase of 2.1 mm of precipitation per year, this increase corresponds to
0.28% increase per year (Fig. 4.20b). For the average monthly precipitation, the
trend calculated with the data set mean values, is an increase of 0.2 mm of pre-
cipitation, that corresponds to an increase of 0.32% per year for average monthly

precipitation values.
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Figure 4.20: Overall trend calculated from the recorded data sets. The averaged
annual precipitation values are calculated with the calculation of the mean values
of annual precipitation of every station in Crete for every year (left), while the
averaged average monthly precipitation values are calculated with the calculation
of the mean values of average monthly precipitation of every station in Crete for
every year (right). The solid red line shows the trend equation, while the red
dashed line shows the 95% coefficient bounds.

The results derived from the application of multilinear regression for the es-
timated precipitation values, gave the similar patters as the results taken from
the recorded values. Particularly, for the annual estimated precipitation, there is

a 0.24% increase per year (Fig. 4.21a), while for the average monthly estimated
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precipitation, the increase equals to 0.36% per year (Fig. 4.21b).

These are pretty interesting results, since they contradict the results taken
from various GCMs according to the latest report of the Intergovernmental Panel
on Climate Change [Hartmann et al., 2013], that monitors climate change on
behalf of the UN Programme for the Environment (UNEP). The IPCC results
refers to a decrease by 20% in South and Eastern Europe. In Southern Europe
precipitation will show a decrease of 1% per decade, while in the summer season

this reduction will reach 5%.
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(a) Annual estimated precipitation, ap- (b) Average monthly estimated Precipi-
proximately 1.6 mm increase or 0.24% in- tation, approximately 0.2 mm increase or
crease per year. 0.36% increase per year.

Figure 4.21: Overall trend calculated from the estimations. The averaged annual
precipitation values are calculated with the calculation of the mean values of
the estimated annual precipitation of every station in Crete for every year (left),
while the averaged average monthly precipitation values are calculated with the
calculation of the mean values of estimated average monthly precipitation of
every station in Crete for every year (right). The solid red line shows the trend
equation, while the red dashed line shows the 95% coefficient bounds.

Also according to Vrochidou et al. [2013] in the results presented for annual
precipitation over Crete, the calculated trend follows a negative ratio, especially
when applying the worst case scenarios. The estimation trends are decrease in
precipitation amount by 6%, 17% and 26% concerning three different scenarios
(best:RCP2.6, moderate:4.5 and worst:8.5) respectively.

Below we present a figure of a six years period results of precipitation maps
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for visible proof that our results did not seem to present decrease in precipitation
amount. We do not present the years after 2009, because we have only a few

stations available to extract results.
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Figure 4.22: Kriging maps of precipitation from 2004 until 2009, created based
on the Spartan variogram model (Eq. (2.30)). The Cartesian coordinates are
measured in the Greek Geodetic System (EGSA ’87), with the horizontal axis
representing the easting and the vertical axis representing the northing. Both
axes are measured in meters. 118
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Figure 4.22: Kriging maps of precipitation from 2007 until 2009 (cont.).
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Chapter 5

Conclusions

This study attempts for the first time a comprehensive analysis of the spatial
variability of monthly rainfall over the island of Crete using geostatistical meth-
ods. Our goal is to better understand the spatial and temporal patterns that

underlie the considerable variability of the rainfall process over the island.

The spatio—temporal analysis of precipitation data for the period 1948-2011
for the island of Crete yields useful information about climate change and precip-
itation trends on the island. We estimate the precipitation probability distribu-
tions for the dry and wet periods, separately for the west and east regions of the
island, both at fixed time scales (fields), but also at specific spatial scales (time
series). The original monthly data sets for the wet periods are fitted accurately
with the Generalized Extreme Value distribution, but the data for the dry period
do not give good fits because of many precipitation records with zero values. A
spatial trend is observed, with the average monthly precipitation in the West
measuring about 40 mm higher than in the East. Accordingly, a spatial trend
is observed with the annual precipitation in the West measuring 450 mm higher
than in the East.

In addition to the geographical East—West pattern of precipitation on the
island, we investigate the topographic dependence of precipitation. The analy-
sis reveals positive correlation between elevation and precipitation, and between
latitude and precipitation, whereas the longitude is negatively correlated with
precipitation. A linear regression model using all three explanatory variables is

used, because it gives the lowest coefficient of determination R?. It is deduced



that topographic parameters are strongly correlated with precipitation and con-
tribute both to the intensity of precipitation as well as its spatial distribution.
The multilinear regression model is used to remove topographic trends and to
obtain precipitation residuals. Trend removal helps to transform the initially

non—Gaussian precipitation data into Gaussian distributed residuals.

The spatial variability of the residuals is separately investigated for every year
through the calculation of the empirical variogram and the subsequent fitting of
Spartan variograms as theoretical models. This study is the first application
of the Spartan variogram to precipitation data. We apply regression kriging to
the precipitation residuals in order to generate precipitation maps. Regression
kriging incorporates the trend function at every node of the map grid based on
the elevation obtained from the Digital Elevation Model of Crete. Performance
measures estimated by means of cross validation prove that the geostatistical
approach leads to a representative spatial model, which takes into account the
significant spatial variability of the rainfall process on the island. The proposed
approach can be integrated as a modeling tool in a comprehensive water resources
management plan.

According to the latest report of the Intergovernmental Panel on Climate
Change [Hartmann et al., 2013] that monitors climate change on behalf of the
UN Programme for the Environment (UNEP), an increase of 10% to 40% of rain-
fall in northern Europe and a respective decrease of 20% in South and Eastern
Europe from 1900 to 2005 is expected. In Southern Europe precipitation is pro-
jected to decrease by 1% per decade, while in the summer season this reduction
will reach 5%. Also according to Vrochidou et al. [2013] the analysis of annual pre-
cipitation over Crete based on climate models shows a negative trend (reduction
of precipitation), especially if the worst case scenarios are applied. In particular,
a decrease in the amount of precipitation by 6%, 17% and 26% is projected based
on three different scenarios (best:RCP2.6, moderate:RCP4.5 and worst:RCP8.5)
respectively.

Studying the evolution of the precipitation over time based on the geostatisti-
cal analysis, we observe that the annual precipitation has a cyclical behavior with
a variable period. It is interesting that the overall rainfall trend does not seem

to support the scenario of reduced rainfall due to climate change at least over
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the length of this study. In particular, the overall trend represents an increase by
approximately 0.28% from 1948 to 2011 for the annual precipitation and 0.32%
from 1948 to 2011 for the average monthly precipitation.

A natural evolution of the present study is to extend the methodology pre-
sented herein to a more rigorous analysis of anisotropy as well as to a joint spatio—
temporal model. To improve the knowledge of the precipitation distribution and
water availability, a possible approach is to incorporate additional variables in
the model, such as groundwater levels, evapotranspiration and runoff. Such an
integrated model could provide a valuable tool for water resources management
on the island of Crete. A study involving longer time series is needed to more
accurately evaluate the potential impact of climate change.

Our current model cannot handle zero precipitation values. A possible im-
provement could involve the Generalized Pareto distribution model proposed by
Baxevani and Lennatsson [2015]. This will also allow extension of the geostatisti-
cal model to finer time scales (i.e., monthly or daily scale). Finally, it is necessary
to compare our results with other types of statistical analysis of extreme events
(e.g.,[Davison et al., 2013]).

Finally it is important to establish more monitoring stations on the island,
particularly in the municipality of Chania, where data from only six stations
are available. This will give a denser network, that will improve the results of

geostatistical analysis.
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Appendix A

In Appendix A we present figures from 1965 until 2010 for the annual precipitation
fields. The figures include:

a. Empirical variogram (crosses) and theoretical Spartan variogram model (con-
tinuous blue line) based on Eq. (2.30) for the precipitation residuals. The
horizontal axis is calibrated using normalized distances; one unit corresponds
to a lag distance of approximately 2.8 km in x direction, 1.2 km in y direction,
and 2.4 m in z direction. Bars count the available pairs of sample points for
every lag distance. The estimated parameters for the theoretical model are

presented separately on every figure’s caption.

b. Kriging—based leave—one—out cross validation predictions versus sample values

for precipitation.

c. Map of estimated annual precipitation, based on Spartan variogram model
(Eq. (2.30)). The Cartesian coordinates are measured in the Greek Geodetic
System (EGSA ’87), with the horizontal axis representing the easting and the

vertical axis representing the northing. Both axes are measured in meters.

d. Map of estimated coefficient of variation of annual precipitation, based on
Spartan variogram model (Eq. (2.30)). The Cartesian coordinates are mea-
sured in the Greek Geodetic System (EGSA ’87), with the horizontal axis
representing the easting and the vertical axis representing the northing. Both

axes are measured in meters.
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Figure 1: Year 1965 annual precipitation. The Spartan variogram parameters are:
nugget variance 02 = 0.0041 mm?, 7y = 2.5294e + 05 mm?, 1 = 0.4333, £ =
10.6993.
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Figure 2: Year 1966 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 7.1825¢ + 03 mm?, 7y = 1.0504e + 05 mm?, 7, =
—1.8852, & = 21.4235.
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Figure 3: Year 1967 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 6.7205¢ + 03 mm?, 7, = 2.2078¢ + 05 mm?, 1 =
—1.2175, £ =23.7127.
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Figure 4: Year 1968 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 1.6271e + 04 mm?, 7y, = 5.6444e + 03 mm?, 1 =
—1.9999, ¢ = 35.4525.
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Figure 5: Year 1969 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 2.3427¢ + 03 mm?, 7, = 4.3808¢ + 05 mm?, 1 =
1.9999, & = 29.0385.
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Figure 6: Year 1970 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 2.9939%¢ + 03 mm?, 7, = 7.6891le + 05 mm?, 7, =
1.9999, & = 35.2855.
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Figure 7: Year 1971 annual precipitation. The Spartan variogram parameters are:
nugget variance o2 = 173.9258 mm?, 7y = 1.9764e+05 mm?, 1, = —0.8643, £ =
9.9620.
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Figure 8: Year 1972 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 2.3323¢ + 03 mm?, 7, = 1.0643e + 06 mm?, 7, =
1.9999, & = 58.0892.
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Figure 9: Year 1973 annual precipitation. The Spartan variogram parameters are:
nugget variance o2 = 574.7301 mm?, 7y = 4.9180e + 05 mm?, 7, = 1.9999, ¢ =
53.2182.
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Figure 10: Year 1974 annual precipitation. The Spartan variogram parame-
ters are: nugget variance 02 = 705.9062 mm?, 7y = 4.0002¢ + 05 mm?, 7, =
1.9999, & = 23.7951.
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Figure 11: Year 1975 annual precipitation. The Spartan variogram parame-
ters are: nugget variance 02 = 171.9771 mm?, ny = 1.0865¢ + 06 mm?, n; =
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Figure 12: Year 1976 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 1.4903e + 04 mm?, 7y = 4.1825¢ + 05 mm?, 7, =
—0.2280, & = 16.1434.
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Figure 13: Year 1977 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 8.9749¢ — 04 mm?, 7, = 1.8066e + 06 mm?, 1 =
1.9999, ¢ = 21.6769.
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Figure 14: Year 1978 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 1.1239¢ + 03 mm?, 7, = 1.1422e + 06 mm?, 7, =
1.9999, ¢ = 45.8321.
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Figure 15: Year 1979 annual precipitation. The Spartan variogram parameters
are: nugget variance o2 = 0.0024 mm?, 7y = 1.1146e+06 mm?, 7, = 0.7711, £ =
18.5273.
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Figure 16: Year 1980 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 6.1494e + 03 mm?, 7y = 2.3375¢ + 05 mm?, 7, =
—1.6003, ¢ = 10.7215.
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Figure 17: Year 1981 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 2.0419¢ — 04 mm?, 7y = 6.9971le + 05 mm?, 7 =
—0.9333, £ =21.7992.
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Figure 18: Year 1982 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 4.5221e + 03 mm?, 7, = 8.9089¢ + 05 mm?, 7, =
1.9999, & = 36.7636.
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Figure 19: Year 1983 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 3.1588¢ + 03 mm?, 7, = 6.8585¢ + 05 mm?, 1 =
1.9999, & = 34.7984.

144



. Appendiz A

x 10 Variogram 3000 .
I Recorded
[ JEstimated
2500 B
’E‘ZOOO
£
% 1500 H 1
'?— 1000 [ 1
il HMMH |
0
0 1 L L L L H 0 10 20 30 40 50 60
0 20 40 60 80 100 120 140 Station
h
x10°
3.96
4000
3.94
3.92 3000
3.9 2000
3.88
1000
3.86
0
3.96 0.4
3.94
0.3
3.92
3.9 0.2
3.88
3.86
0
4.5 5 5.5 6 6.5 7
x10°

Figure 20: Year 1984 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 7.9446e + 03 mm?, 7y = 1.0700e + 06 mm?, 7, =
1.9999, & = 65.4678.
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Figure 21: Year 1985 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 4.5399¢ — 05 mm?, 7y = 3.6757e + 05 mm?, 1 =
1.9999, ¢ = 25.2580.
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Figure 22: Year 1986 annual precipitation. The Spartan variogram parame-
ters are: nugget variance 02 = 0.0018 mm?, 7y = 9.0470e + 05 mm?, 7, =
—0.9929, £ = 11.5590.
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Figure 23: Year 1987 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 2.4680e + 04 mm?, 7, = 1.2462¢ + 05 mm?, 1 =
—1.8947, £ = 5.9949.
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Figure 24: Year 1988 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 1.2608¢ + 04 mm?, 7y = 4.8478¢ + 05 mm?, 7, =
1.9999, & = 14.3913.
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Figure 25: Year 1989 annual precipitation. The Spartan variogram parame-
ters are: nugget variance 02 = 717.0774 mm?, ny = 2.7366e + 05 mm?, n; =
1.9999, & = 22.3578.
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Figure 26: Year 1990 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 3.9497¢ + 03 mm?, 7y = 5.0704e + 05 mm?, 7, =
1.9999, ¢ = 25.0299.
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Figure 27: Year 1991 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 6.6308¢ + 03 mm?, 7, = 1.6522¢ + 05 mm?, 1 =
—1.7973, £ = 6.8429.
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Figure 28: Year 1992 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 3.5278¢ + 03 mm?, 7y = 5.4916e + 05 mm?, 7, =
1.9999, & = 21.7160.
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Figure 29: Year 1993 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 1.5363e + 04 mm?, 7, = 6.1321e + 05 mm?, 1 =
1.9999, & = 58.0159.
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Figure 30: Year 1994 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 8.2364¢ + 03 mm?, 7, = 8.8440e + 05 mm?, 7, =
1.9999, & = 36.7642.
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Figure 31: Year 1995 annual precipitation. The Spartan variogram parameters
are: nugget variance o2 = 2.4940e + 04 mm?, 7y = 8.5090e¢ + 5 mm?, 7, =
1.9999, & = 77.2552.
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Figure 32: Year 1996 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 2.3365¢ + 03 mm?, 7, = 1.7743e + 06 mm?, 1 =
1.9999, & = 32.6777.
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Figure 33: Year 1997 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 5.5623e + 03 mm?, 7, = 1.2460e + 06 mm?, 1 =
1.9999, & = 40.9075.

158



. Appendiz A

x 10 Variogram 2500 . . . ; . .

10 : : : : Recorded
: : : 2000 .
»a - .

: : ; : E 1500 1
130 128; = 126 R é °

E she SR ot 2 - e g

HWMHM
0 TN

0 ! L L L ! 0 5 10 15 20 25 30 35

0 20 40 60 80 100 120 Station

h
x10°
3.96
4000

3.94

3.92 # (L. 3000
{ A

3.9 o 2000

3.88

1000

3.86

0
4.5 5 55 6 6.5 7
A %10°
%10
3.96 0.4
3.94
0.3

3.92

3.9 0.2

3.88

0.1

3.86

0
4.5 5 5.5 6 6.5 7
x10°

Figure 34: Year 1998 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 6.345le — 04 mm?, 7y = 5.3467e + 05 mm?, 7 =
—1.6870, & = 11.6252.
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Figure 35: Year 1999 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 6.9015e — 04 mm?, 7y = 7.3055¢ + 05 mm?, 7 =
1.9999, ¢ = 19.8601.
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Figure 36: Year 2000 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 5.2191e + 03 mm?, 7y = 1.1207e + 06 mm?, 7, =
1.9999, & =41.0061.
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Figure 37: Year 2001 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 5.7736e + 03 mm?, 7, = 2.5562¢ + 06 mm?, 1 =
1.9929, & = 44.4091.
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Figure 38: Year 2002 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 2.0380e + 04 mm?, 7, = 1.8979% + 06 mm?, 1 =
1.9999, ¢ = 20.9565.
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Figure 39: Year 2003 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 6.6351e + 03 mm?, 7, = 1.843% + 06 mm?, 1 =
1.9999, ¢ = 63.9489.
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Figure 40: Year 2004 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 1.0361e + 04 mm?, 7y = 5.5118¢ + 05 mm?, 7, =
1.9999, ¢ = 46.8156.
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Figure 41: Year 2005 annual precipitation. The Spartan variogram parame-
ters are: nugget variance 02 = 94.6634 mm?, 7, = 1.5193¢ + 06 mm?, 7 =
1.9999, ¢ = 48.3514.
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Figure 42: Year 2006 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 9.6712e — 06 mm?, 7y = 1.5007e + 06 mm?, 7, =
1.9999, & = 27.5556.
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Figure 43: Year 2007 annual precipitation. The Spartan variogram parameters
are: nugget variance o2 = 0.0011 mm?, 7y = 7.8444e+05 mm?, 1, = 1.4447, £ =
21.2302.
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Figure 44: Year 2008 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 1.0835e + 04 mm?, 7y = 5.3203e + 05 mm?, 7, =
1.9999, ¢ = 18.7451.
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Figure 45: Year 2009 annual precipitation. The Spartan variogram parame-
ters are: nugget variance o2 = 325.7335 mm?, 7y = 5.8068¢ + 05 mm?, n; =
—1.2541, & = 27.1204.
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Figure 46: Year 2010 annual precipitation. The Spartan variogram parameters
are: nugget variance 02 = 2.8934e + 04 mm?, 7y = 1.4142e + 03 mm?, 7, =
—1.9999, & = 4.8863.
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