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Abstract

Modern applications, such as telecommunication and sensor networks, have brought distributed
data streams to the foreground, with monitoring tasks being an important aspect of such systems.
The inefficiency of collecting data to a central point for processing dictates the need to devise local
or semi-local algorithms that aim to reduce the communication overhead while retaining accuracy
standards.

The geometric monitoring method [Sharfman et al., “A Geometric Approach to Monitoring
Threshold Functions over Distributed Data Streams”, ACM SIGMOD ’06 ICMD] provides a frame-
work for enforcing local constraints at distributed nodes, as well as a method for resolving violations
not representing the system’s state i.e., false alarms, in order to reduce the necessary communi-
cation with the coordinating node. Furthermore, successive work proposed optimizations to the
selection process of the nodes participating to the set that resolves such violations.

We propose a heuristic method that exploits data stream characteristics and utilizes multi-
objective optimization in order to avert, or delay, successive false alarms by optimally positioning
vector representations of data streams during the violation resolution process. Additionally, a
hierarchical node clustering method for deterministic and optimal node selection, found in [ Keren
et al., “Geometric Monitoring of Heterogeneous Streams”, IEEE Trans. Knowl. Data Eng., 2014], is
improved and simplified. Extensive experimentation on real-world and synthetic datasets showcase
that the proposed methods can reduce the communication burden in half, compared to that of the
original geometric monitoring method.
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Chapter 1

Introduction

1.1 Overview

A multitude of recent emergent applications require real-time handling of rapidly incoming

data, that may as well be great in size and distributed in nature. Such applications that follow a

continuous distributed monitoring model are classified as Data Stream Systems [1]. Notable exam-

ples include, among others, distributed sensors, ISP network traffic monitoring, telecommunication

system management, event monitoring, and real-time analysis tools for financial data.

These systems differ from the traditional Database Management Systems (DBMS), in the

sense that they are following a pull paradigm, where large scale event monitoring is required or

continuous queries are issued, instead of the push paradigm, where one-shot queries normally take

place. Data Stream Systems are required to efficiently process, in real-time, data streams that are

of high volume, continuous, size unbound, and most likely violative, in the sense that it would be

inefficient to store them in memory. Additionally, the distributed nature of some applications incur

an additional challenge to such systems, for they are required to communicate via a bandwidth-

limited and possibly delay-inducing network in order to synchronize, reorganize, and provide a

real-time overview of the results.

Intelligent algorithms must be devised that are able to guarantee high accuracy standards

while limiting the communication overhead induced to the distributed system. Approaches such as

collecting all data to a central node for processing, and polling nodes for data updates, as easily

implementable as they may be, are prohibitive is such a decentralized scenario, either due to the

communication and storage overhead they induce, or due to the accuracy degradation they inflict.

The geometric threshold monitoring method proposed by Sharfman et al. [2] consists of a
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geometric approach in which convex optimization theory is employed in order to guarantee that

communication between distributed nodes takes place only when needed, while maintaining strict

bounds on the accuracy of the monitoring task. By decomposing the task to local constraints

at the nodes, and by introducing a clever mechanism for resolving constraint violations that are

not representative of the system’s state, i.e. false alarms, the communication between sites is

significantly reduced without any accuracy reduction.

Following this framework, much work has emerged attempting to improve the communication

bounds of the geometric monitoring method and to generalize the method to applications in the

likes of continuous query answering. Following this trend, this thesis employs heuristics structured

on top of multi-objective optimization theory and signal processing filters in order to better the per-

formance of the geometric monitoring algorithm. Additionally, an existing method for hierarchical

clustering of distributed streams, found in [3], is improved and simplified.

Evaluation of the proposed algorithms over synthetic and real-world datasets exhibits an im-

provement of up to 60% over the original geometric monitoring method, in terms of communication

reduction. Furthermore, the behavior of the proposed algorithms when executed on streams with

different inherent characteristics, as well as the influence tunable parameters have on the proposed

methods, are being researched.

1.2 Motivation

The rapidly increasing interest towards distributed Data Stream Systems dictates the necessity

of algorithms that provide, firstly, scalability warranties in terms of node population size and data

stream volume, and secondly, tight accuracy bounds while operating with an incremental, real-

time, fashion. Such requirements drive the research towards devising methods that minimize the

inter-node communication to the absolute necessary, without being too limited and application

specific.

The geometric monitoring method presented in [2], as well as related successive work, while

providing universal methods for minimizing communication costs during monitoring tasks, seem

to exhibit limited scaling abilities regarding node population size and stream dimensionality, from
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which a trade-off between the algorithm’s efficiency and the provided accuracy arises.

Based on this observation, the present thesis is driven by the motivation to further reduce

communication costs of the geometric monitoring method without sacrificing it’s accuracy, while

proposing methods orthogonal to and directly applicable alongside methods proposed in prior work.

1.3 Contributions

This thesis contributes to the research on distributed stream systems that implement the

geometric monitoring framework by providing:

• a heuristic method for resolving false threshold violations by employing multi-objective op-

timization theory and estimations of data stream moments in order to optimally reposition

vectors representing data streams in space during a violation resolution operation,

• an improved algorithm over an existing hierarchical node clustering method for deterministic

violation resolution between a subset of distributed streams,

• a throughout evaluation of the proposed algorithms on synthetic and real-world data by

employing the seminar geometric monitoring method as the baseline model. By implementing

the aforementioned algorithms a significant reduction of the communication overhead induced

by the geometric monitoring can be achieved. Furthermore, the cases where the proposed

algorithms do not perform well are examined and the factors that hamper their performance

are analyzed.

1.4 Thesis Outline

Chapter 2 provides the necessary theoretical background used throughout this thesis, including

the geometric monitoring framework, multi-objective optimization theory, graph matching theory

and the Savitzky-Golay smoothing and differentiating filter. An overview of the related work is

presented in Chapter 3. The problem formulation, along with a detailed analysis of the imple-

mentation of the proposed methods follow in Chapters 4 and 5, respectively. Finally, experimental
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evaluation of our work takes place in Chapter 6, before providing concluding remarks, as well as

proposals for future work, in Chapter 7.
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Chapter 2

Theoretical Background

The present chapter contains the background knowledge required throughout the length of

this thesis. Section 2.1 describes the framework of the Geometric Monitoring method. Section 2.2

presents multi-objective optimization and dives into the algorithms used in our implementation. In

Section 2.3 we explain the Savitzky-Golay filtering used for smoothing, velocity and acceleration

approximation, and, finally, Section 2.4 discusses graph maximum weight matching.

2.1 Geometric Monitoring of Distributed Streams

The Geometric Monitoring method [2] was devised as a way to monitor threshold crossings of

arbitrary functions over distributed data streams i.e., be able to determine whether an arbitrary

monitoring function f(·) over the data streams violated a predetermined threshold (f(·) > T or

f(·) < T ). By mapping data streams to a feature space defined by the dimensionality of each

“stream update” and monitoring the convex hull surrounding the value of the monitoring function,

Sharfman et al. were able to decompose the monitoring task into local constraints and apply

distributed threshold monitoring, while reducing the communication costs required by central data

processing.

In the current section the Geometric Monitoring method is thoroughly analyzed. In Sub-

section 2.1.1 two system architectures are shown, a decentralized scenario and a centralized one,

where Geometric Monitoring can be applied. Subsection 2.1.2 explains the computational model,

followed by the method’s geometric interpretation in Subsection 2.1.3. Finally, in Subsection 2.1.4

the protocol implementing the Geometric Monitoring method is described.
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2.1.1 System Architecture

In [2] two different scenarios of Geometric Monitoring corresponding to different network

topologies are examined. The decentralized scenario refers to a topology where nodes are allowed

to communicate with each other and a central node is absent. The centralized scenario models a

star network topology, where a coordinator node communicating with all other nodes is existent.

Decentralized Scenario

The topology examined is that of a partially or fully connected mesh network where a coordi-

nator node is absent and nodes are allowed to broadcast to the network or communicate with each

other according to the links existent between them. Data stream update vectors arrive continuously

at each of the monitoring nodes and nodes must always be synchronized, i.e. all nodes must be

aware of the monitoring task’s state at all times. An example is depicted in Figure 2.1.
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Figure 2.1: Network topology example of the decentralized scenario. Dashed lines represent data
streams and half arrows represent message exchanges.
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Centralized Scenario

The centralized, or coordinator-based scenario is built upon a star network topology, where

all monitoring nodes communicate with a central node, the coordinator node. Nodes receive data

stream update vectors continuously, and must communicate their state information to the coordina-

tor node when needed. The coordinator receives data stream updates as well, which can be modeled

by an additional monitoring node responsible for the coordinator node’s data stream. Communi-

cation between monitoring nodes is not allowed, thus, only the communicator can, and must, be

aware of the state of the monitoring task at all times. An example is depicted in Figure 2.2.
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Figure 2.2: Network topology example of the centralized scenario.The bold node represents the co-
ordinator node. Dashed lines represent data streams and half arrows represent message exchanges.

2.1.2 Computational Model

The main goal of the Geometric Monitoring method is to efficiently detect threshold crossings
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of an arbitrary function over distributed data streams. This is realized via vector projections of

the data streams and convex local constraint assignments regarding said vectors at the nodes.

Let f : Rd → R be an arbitrary function, the monitoring function, whose value over the data

streams needs to be monitored, so that if f(·) > T or f(·) < T an alarm is raised. For linear

functions this problem is trivial, so that by letting, for example, x1 and x2 be data stream values at

different nodes and requiring f(x1+x22 ) > 10 to be monitored, it holds that f(x1+x22 ) = f(x1)+f(x2)
2 ,

and the problem can be decomposed to local constraints f(xi) < 10, i = 1, 2 at both nodes, i.e.

a node remains silent until it violates its local constraint. Consider now the case of a non-linear

function. By knowing the value of the function at the nodes nothing can be deduced about the

function’s value over the average of the monitoring streams and where it is positioned with respect

to the threshold. Let f(x) = 10x − x2, x1 = 0 and x2 = 9. Even thought f(x1) = 0 < 10 and

f(x2) = 9 < 10, their average violates the specified threshold, f(x1+x22 ) = f(4.5) = 24.75 > 10.

In order to be able to effectively track non-linear functions, in the likes of the aforementioned

example, a mapping of the streams to a vector space must take place. Let P = {p1, . . . , pn} be

the monitoring node set with weights w1, . . . , wn, which can be either static or time varying. Their

respective data streams S = {s1, . . . , sn} are represented by ~v1(t), . . . , ~vn(t), the d-dimensional local

statistics vectors of the nodes at time t. The global statistics vector at time t is the weighted average

of the local statistics vectors, as such:

~v(t) =

∑n
i=1wi~vi(t)∑n
i=1wi

(2.1)

Infrequent communication between monitoring nodes, in the decentralized scenario, or between

monitoring nodes and the coordinator, in the coordinator-based scheme, dictates the need to keep

track of the value of the global statistics vector at the time the last global communication occurred,

thus forming the estimate vector :

~e(t) =

∑n
i=1wi~vi

′∑n
i=1wi

(2.2)

,where ~vi
′ is the last communicated statistics vector of node pi.

At the monitoring nodes the difference between the current local statistics vector and the last
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communicated statistics vector is denoted by ∆~vi(t) = ~vi(t) − ~vi
′, i = 1, . . . , n. The drift vector

~ui(t), i = 1, . . . , n, also maintained at the monitoring nodes, represents the deviation of each node’s

data stream from the estimate vector and is defined differently in the two scenarios:

• In the decentralized setting the drift vector is regarded as the displacement of the local

statistics vector from the estimate vector:

~ui(t) = ~e(t) + ∆~vi(t) (2.3)

• In the centralized setting the monitoring nodes forward their state to the coordinator node,

who has a global overview of the monitoring task at hand. This property allows the coordi-

nator to counteract the effects a specific stream has on the partially observed monitoring task

with another, “opposite”, stream belonging to a different monitoring node. This is taken care

by the balancing process initiated every time a local violation occurs, which is responsible

for computing and communicating the slack vector ~δi to the nodes that contributed to the

process, thus providing them with the necessary disposition of their drift vectors, as such:

~ui(t) = ~e(t) + ∆~vi(t) +
~δi
wi

(2.4)

Balancing Process

The balancing process taking place in the centralized scenario is initiated by the coordinator

node every time a threshold violation occurs, with the objective of resolving a possibly false alarm

with minimal communication overhead. This task is executed by collecting a subset of monitoring

nodes’ data, the balancing set P ′, until the average of their drift vectors, the balancing vector, does

not cause a threshold crossing. The balancing vector is formulated as follows:

~b =

∑
pi∈P ′ wi ~ui(t)∑
pi∈P ′ wi

(2.5)

After a successful balancing process has come to an end, ∆~δi slack vector adjustments for all

participants in the balancing set P ′ are computed and communicated to their respective sites, so
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that local drift vectors can be readjusted to reflect the balancing operation by computing ~δi =

~δi
′
+ ∆~δi, where ~δi

′
the previous slack vector (Equation 2.4). These adjustments are calculated as

follows:

∆~δi = wi~b− wi ~ui(t) ∀ pi ∈ P ′ (2.6)

, where
∑

pi∈P ′ ∆~δi = ~0. Once the slack vector adjustments have been communicated to the

respective monitoring nodes participating in P ′, their drift vectors are essentially set to the value

of the newly computed balancing vector.

In case the balancing process proves unsuccessful all monitoring nodes are contained in the

balancing set P ′ and a new estimate vector is computed with the data cumulated at the coordinator

node. Subsequently, all drift vectors and slack vectors are set to ~0.

2.1.3 Geometric Interpretation

The estimate vector, being the product of the system’s previous global synchronization, is

known to all monitoring nodes and denotes the last known position of the global statistics vector.

That being said, the estimate vector is considered valid if it resides on the same side of the threshold

as the unknown global statistics vector. In order to estimate the current position of the global

statistics vector, since a mere observation of the monitoring function’s value at each stream provides

no information about its current location (as described in Section 2.1.2), it is vital that the task

is decomposed into local constraints that will guarantee the timely detection of a violation of the

estimate’s vector validity.

The convexity property of the drift vectors, along with Theorem 1 [2], are sufficient in provide

a framework for decomposing the monitoring task into local constraints at the nodes. Both the

convexity property and the relevant theorem are presented below for completeness.

The convexity property dictates that the weighted average of the drift vectors equal the global

statistics vector, as such:

~v(t) =

∑n
i=1wi ~ui(t)∑n
i=1wi

(2.7)

The geometric interpretation of the property guarantees that the global statistics vector ~v is always

contained in the convex hull defined by the drift vectors ~ui, i = 1, . . . , n.
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Theorem 1 (Sharfman et al. [2]). Let ~x, ~y1, . . . , ~yn ∈ Rd be a set of vectors in Rd. Let Conv(~x, ~y1, . . . , ~yn)

be the convex hull of ~x, ~y1, . . . , ~yn. Let B(~x, ~yi) be a ball centered at ~x+~yi
2 and with radius of ‖~x−~yi2 ‖2

i.e., B(~x, ~yi) = {~z | ‖~z − ~x+~yi
2 ‖2 ≤ ‖

~x−~yi
2 ‖2}, then Conv(vecx, ~y1, . . . , ~yn) ⊂ B(~x, ~yi).

Essentially, Theorem 1 states that n d-dimensional spheres defined by n+ 1 vectors can effec-

tively bound the convex hull defined by said vectors, as such: Conv(~x, ~y1, ~y2, . . . , ~yn) ⊂ ∪B(~x, ~yi), i =

1, . . . , n, which finds direct application to the distributed monitoring task if ~x = ~e and ~yi = ~ui, i =

1, . . . , n. An example is depicted in Figure 2.3 .

~e

~u1

~u2

~u3

~u4

~u5

~v

Figure 2.3: Example of a convex hull (light gray) defined by the drift vectors ~ui, i = 1, 2, 3, 4, 5.
The hull is bounded by the spheres created from the estimate vector ~e and the drift vectors ~ui, i =
1, 2, 3, 4, 5. The global statistics vector ~v is guaranteed to be contained in the convex hull of the
drift vectors.
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Local Constraints

The decomposition of the threshold monitoring task to local constraints at the nodes, in which

each node monitors its respective bounding sphere B(~e, ~ui), i = 1, . . . n for a possible threshold

violation, induces a coloring upon the spheres. Let V = {~x|f(~x > T )} be the set of vectors said to

be green, and V = {~y|f(~y < T )} the red set of vectors; the local constraint monitoring at the nodes

is essentially a process of monitoring the monochromaticity of a node’s bounding sphere B(~e, ~ui) i.e.,

all vectors in the bounding ball are of the same color. As long as this monochromaticity is upheld

for the whole of the node set, the convex hull defined by the drift vectors is monochromatic and, by

the convexity property, the global statistics vector has not crossed the threshold. In case a single

node signals a threshold crossing, a local violation has occurred. If the local violation coincides

with a threshold crossing of the global statistics vector, then a global violation has occurred.

2.1.4 Protocol

Two variants of a network’s topological structure have been proposed for application of the

Geometric Monitoring method, a decentralized scenario and a centralized, coordinator-based one

(Section 2.1.1). The following paragraphs present the algorithms for each of these systems.

Decentralized Algorithm

The decentralized scenario of the geometric monitoring method, summarized in Algorithm 1,

operates on the mesh network described in Section 2.1.1. Each node pi keeps track of its drift

vector ~vi(t) and the previously communicated statistics vectors ~vj
′ from all other nodes pj , from

which the estimate vector is locally computed. At the occurrence of a local violation the violating

node initiates a global system synchronization by broadcasting its local statistics vector along with

its unique identifier, from which the estimate vector is globally updated so that monochromaticity

checks are valid.
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Algorithm 1: Decentralized algorithm

1 begin

2 foreach node pi do /* Node initialization */

3 Broadcast ~vi(0);

4 ~vi
′ = ~vi(0);

5 Wait messages from all other nodes;

6 if messages from all vectors received then

7 ~e(t) =
∑n

i=1 wi ~vi
′∑n

i=1 wi
;

8 end

9 end

10 foreach node pi do /* Main monitoring task */

11 foreach new si stream update ~vi(t) do

12 Recalculate ~ui(t) = ~e(t) + ∆~vi(t);

13 if B(~e, ~ui(t)) is not monochromatic then

14 Broadcast message < i, ~vi(t) >;

15 Set ~vi
′ = ~vi(t);

16 end

17 if new message < j, ~vj(t) > received then

18 Set ~vj
′ = ~vj(t);

19 Recalculate ~e(t) =
∑n

i=1 wi ~vi
′∑n

i=1 wi
;

20 if B(~e, ~ui(t)) is not monochromatic then

21 Broadcast message < i, ~vi(t) >;

22 Set ~vi
′ = ~vi(t);

23 end

24 end

25 end

26 end

27 end

Centralized Algorithm

The centralized, coordinator-based geometric monitoring operation is summarized in Algo-

rithms 2 and 3, where the execution sequence of the monitoring nodes and the coordinator node

are described, respectively. The topology is that of a star network, where nodes are allowed to

communicate exclusively with the coordinator node, as described in Section 2.1.1. The coordinator
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node is responsible for answering queries about the monitoring status i.e., has absolute knowledge

about threshold violations, and handles the balancing process (Section 2.1.2). Local streams are

tracked by the monitoring nodes on the basis of the last communicated estimate vector, and must

inform the coordinator for any local threshold violation. The coordinator node can also monitor

it’s respective data stream without any change in the described framework.

Algorithm 2: Centralized algorithm’s coordinator node operation

1 begin

2 Wait for < INIT, · > messages from all monitoring nodes; /* Initialization */

3 ~e(0) =
∑n

i=1 wi ~vi(0)∑n
i=1 wi

;

4 if new < REP, ~vi(t), ~ui(t) > message received then /* Monitoring operation */

5 P ′ = P ′ ∪ {< i, ~vi(t), ~ui(t) >};
6 Balance(P ′);

7 end

8 end

9 Function Balance(P ′) /* Balancing Process */

10 ~b =

∑
pi∈P ′ wi ~ui(t)∑

pi∈P ′ wi
;

11 if B(~e,~b) is not monochromatic then

12 if P − P ′ 6= ∅ then
13 Send < REQ > message to random node in P − P ′ set;

14 else

15 ~e(t) =
∑n

i=1 wi ~vi(t)∑n
i=1 wi

;

16 Send < NEW -EST,~e(t) > message to all nodes;

17 return;

18 end

19 else

20 foreach pi ∈ P ′ do
21 ∆~δi = wi~b− wi ~ui(t);
22 Send < ADJ-SLK,∆~δi > message to node pi;

23 return;

24 end

25 end

26 end
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Algorithm 3: Centralized algorithm’s monitoring node operation

1 begin

2 foreach node pi do /* Node initialization */

3 Send < INIT, ~vi(0) > message to coordinator;

4 ~vi
′ = ~vi(0);

5 ~δi = ~0;

6 Wait message from coordinator;

7 if < NEW -EST,~e > message received then

8 Set ~e(t) = ~e;

9 end

10 end

11 foreach node pi do /* Main monitoring task */

12 foreach new si stream update ~vi(t) do

13 Recalculate ~ui(t) = ~e(t) + ∆~vi(t) +
~δi
wi

;

14 if B(~e, ~ui(t)) is not monochromatic then

15 Send < REP, ~vi(t), ~ui(t) > message to coordinator;

16 Wait for < NEW -EST, · > or < ADJ-SLK, · > message from coordinator;

17 end

18 if new message < REQ > received then

19 Send < REP, ~vi(t), ~ui(t) > message to coordinator;

20 Wait for < NEW -EST, · > or < ADJ-SLK, · > message from coordinator;

21 end

22 if new < NEW -EST,~e > message received then

23 Set ~e(t) = ~e;

24 ~vi
′ = ~vi(t);

25 ~δi = ~0;

26 end

27 if new < ADJ-SLK,∆~δi > message received then

28 ~δi = ~δi + ∆~δi;

29 end

30 end

31 end

32 end
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2.2 Multi-objective Optimization

Multi-objective optimization, also known as multi-objective programming, vector optimization

and Pareto optimization, belongs to the field of decision making and focuses on mathematical

optimization problems. As it is evident by the term, multiple, possibly conflicting, objectives exist

and are required to be simultaneously optimized. Such problems arise in a multitude of fields, from

engineering to finance and molecular studies.

One example application originating from the field of aeronautics is the optimization of objec-

tives such as speed, travel range, fuel consumption, safety and aircraft building costs by taking into

account decision variables like engine trust, number of engines, wall thickness, wing area and lug-

gage capacity. Attempts to optimize such problems usually lead to a plethora of optimal solutions,

where trade-offs must be made regarding the decision variables.

Optimal solutions, where none of the objective functions can be improved without the simulta-

neous degradation of other objective functions’ values, are called non-dominated, or Pareto optimal

solutions. A formalization of a multi-objective optimization framework is stated in Equation 2.8.

Let vector of m objectives F (x) = [F1(x), F2(x), . . . , Fm(x)]:

min
x∈Rn

F (x)

s.t. l ≤ x ≤ u (2.8)

Gi = 0, i = 1, . . . , ke

Gj ≤ 0, j = ke + 1, . . . , k

, where x ∈ Rn is the decision variable vector, l and u denote the respective lower and upper

bounds of x, Gi are the equality constraints and Gj are the inequality constraints the solution

must uphold. The decision variable vector is said to exist into the decision variable space, and the

objective vector lies in the objective space. A mapping of the feasible set under F forms the attained

set C = {y ∈ Rm|y = F (x), x ∈ Rn}. A graphical representation of the Pareto optimal solutions

creates the Pareto front, Pareto curve, or Pareto surface, as shown in Figure 2.4.
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F1

F2

F1min

F2min

a

b

Figure 2.4: Example of the objective space of a multi-objective optimization problem with two
objective functions. The feasible region is shaded with gray, and the respective Pareto front is
denoted with bold. Points a, and b mark the optimal points for each of the two depicted objective
functions, F1 and F2 respectively.

Finding the Pareto optimal solution to such problems is generally NP-hard in complexity. Thus,

various approximation methods exist that either lead to the optimal solution, if this is available, or

provide a solution set approximation in the case of non-available or partially available Pareto fronts.

These methods originate from different viewpoints of the multi-objective optimization problem and

can be divided into numerical and evolutionary optimization algorithms, with our focus being

targeted towards the former.

2.2.1 Non-linear Constrained Optimization Problems

Solutions to optimization problems where the objective functions are generally non-linear and

both equality and inequality constraints exist are usually provided by iterative methods similar to

line search for single objective optimization problems. At each iteration t an appropriate direction

dt and a successive point xt+1 is chosen given the current position xt. Following this paradigm a

sequence of points {xt}∞t=1 and directions {dt}∞t=1 are produced until the maximum iteration limit
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is reached or convergence is achieved. A generic primal descent algorithm is shown in Algorithm 4.

Algorithm 4: Generic primal descent

1 begin

2 Choose initial point x0 ∈ X and set t = 0 ; /* Initialization */

3 while Termination condition not satisfied do /* Search */

4 t = t+ 1;

5 Determine search direction dt;

6 Determine step length st, so that f(xt + stdt) < f(xt);

7 Update ;

8 end

9 end

Feasible Directions

The method of feasible directions for constrained function minimization attempts to iteratively

converge to an optimal point on the basis of Algorithm 4 by employing usable feasible directions.

A search direction dt is termed as usable feasible direction if it satisfies two properties:

1. a small disposition towards direction dt does not violate any constraint i.e.,

dTt ∇G(xt) ≤ 0

2. a move towards dt reduces the objective functions value i.e.,

dTt ∇F (xt) < 0

.

In case the feasible region D is convex the line connecting the optimal point, x?, with any

other arbitrary point x ∈ D lies completely inside the convex region and is, thus, reachable via the

feasible directions method.
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SQP

Following the framework of non-linear constrained optimization algorithms the sequential

quadratic programming almost-feasible-point methods attempt to solve problems by quadratically

approximating non-linear objective functions subject to linearly approximated equality and in-

equality constraints by decomposing the original problem to a sequence of quadratic programming

subproblems. Such methods do not always produce feasible points during iterations, but ultimately

feasibility is enforced.

Given the general case of the multi-objective optimization problem in Equation 2.8 a La-

grangian function is formed:

L(x, λ) = F (x) +

k∑
i=1

λiGi(x) (2.9)

, with λ being Lagrangian multipliers. Based on the newly created function a decomposition to

quadratic programming subproblems is taking place, where non-linear constraints are linearized

and inequality constraints substitute the bound constraints found in Equation 2.8, as such:

min
d∈Rn

1

2
dTHtd+∇F (xt)

Td

∇Gi(xt)Td+Gi(xt) = 0, i = 1, . . . , ke (2.10)

∇Gi(xt)Td+Gi(xt) ≤ 0, i = ke + 1, . . . k

, with Ht being a Hessian matrix approximation of the Lagrangian function at iteration t and

d being the search direction. Subsequently, by obtaining a step length st through a line search

method the following iteration point is computed, as stated in Algorithm 4.

2.3 Savitzky-Golay Filtering

The Savitzky-Golay filter [4] is a digital, low-pass smoothing filter following the paradigm of

moving window averaging i.e.,

gi =

nR∑
n=−nL

cnfi+n

,where the underlying function f(·), with fi = f(xi) denoting the value of the function at data
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point xi, is approximated over a window of size nL + nR + 1 by a higher order polynomial so that

coefficients cn retain higher moment information.

Assume equidistant data points and let the polynomial of order M :

yi(x) = a0 + a1
x− xi

∆x
+ a2(

x− xi
∆x

)2 + · · ·+ aM (
x− xi

∆x
)M

Firstly a least squares fit of the polynomial is taking place over the span of the window:

i+nR∑
j=i−nL

(yi(xj)− fj)2 = min

Subsequently the value of gi is set to the resulting value of the fitted point xi, and this process

proceeds iteratively for all data points.

While a seemingly burdensome process, by considering that the least squares fitting requires

just a single linear matrix inversion and that the coefficients ai of the fitted polynomial are linear in

the data values, the computation can be notably simplified to a pre-computation of the smoothing

coefficients and a subsequent convolution.

Following a matrix notation, we define the matrix J containing the nL + nR + 1 points corre-

sponding to each order of the polynomial:

J =



1 −nL . . . (−nL)M

...
...

...

1 0 . . . 0

...
...

...

1 nR . . . nMR


∈ R(nL+nR+1)×(M+1)
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The vector a containing the polynomial coefficients:

a =



aM
...

a1

a0


∈ RM+1

The vector f of the nL + nR + 1 original data points:

f =



fi−nL

...

fi
...

fi+nR


∈ RnL+nR+1

Thus, the least squares fitting can be written as :

min‖Ja− f‖2

By solving the resulting normal equations:

a = (JTJ)−1JT f

the polynomial coefficients can be computed. Finally, the convolution coefficients are contained in:

C = (JTJ)−1JT

,and the smoothed signal can be easily computed as such:

gi = (CeM+1)
T f

, with eM+1 being the (M + 1)st unit vector.
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Consequently, the value of the resulting signal at the center point is obtained from a single set

of coefficients, while the remaining sets are able to produce the desired derivatives of the original

signal. By incorporating a set of data over a window of length nL + nR + 1 for the computation

of a single point, it is assumed that the redundancy present in distant data aids at increasing the

signal to noise ratio.

2.4 Matching in Graphs

Let G = (V,E) be a graph with V being the vertex set and E being the set of edges connecting

said vertices. In graph theory, a matching, forms a subset of edges M ⊆ E, so that no two

edges share a common vertex, with a perfect matching covering the whole vertex set of the graph.

Subsequently, a maximum matching is defined as the matching M with the largest possible number

of edges, and a maximum weight matching is the matching M that maximizes the sum of edge

weights.

Maximum Weight Matching, the Primal-Dual method

The Primal-Dual method for maximum weight matching in graphs [5] is based on the duality

found in Linear Programming problems.

Specifically, let a Linear Programming optimization problem (Equation 2.12); its Dual Linear

program (Equation 2.13) is formulated so that its variables, the dual variables, model the constraints

of the original problem, while its constraints represent the primal variables of the original problem.

This allows optimization of the primal problem’s value by tightening its bounds, as computed by

the dual program. By optimizing the value and retaining feasibility of the dual program the -not

necessarily feasible- primal problem approaches feasibility. Finally, due to equivalence between the

primal program and its dual, the algorithm terminates with both optimal primal and dual solutions.

This relationship is depicted in Equation 2.11.
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Constraints in Primal⇐⇒ Variables in Dual

Constraints in Dual ⇐⇒ Variables in Primal

(2.11)

The general linear program formulation, along with its dual, are shown in Equations 2.12

and 2.13, respectively:

max cTx

s.t. Ax ≤ b (2.12)

x ≥ 0

min bTy

s.t. ATy ≥ c (2.13)

y ≥ 0

,where A ∈ RM×N , b ∈ RM , c ∈ RN , x ∈ RN are the primal variables, and y ∈ RM are the

respective dual variables.

Following this paradigm,s the maximum weight matching problem can be formulated as Primal-

Dual linear programming problem. By defining a positive weight function on the vertices y : V →

R+, a weighted vertex cover is a subset C ⊆ V such that ∀e = (u, v) ∈ E, u, v ∈ C : yu + yv ≥ wu,v.

Additionally, let a matching M and xu,v = 1 iff edge eu,v = (u, v) ∈ M . The resulting linear

programming pair is depicted in Equations 2.14 and 2.15, the former being the primal program and

the latter being its respective dual program.

max
∑

(u,v)∈E

xu,vwu,v

s.t. xu,v ≥ 0 , (u, v) ∈ E (2.14)∑
u∈e:e∈E

xe ≤ 1 , u ∈ V

min
∑
u∈V

yu

s.t. yu ≥ 0 , u ∈ V (2.15)

yu + yv ≥ wu,v , (u, v) ∈ E
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Chapter 3

Related Work

A great deal of prior work exists on threshold monitoring and monitoring of distributed sets

of data streams, mostly focusing on applications where the monitored function is well defined and

linear. In [6] the sum of a distributed set of variables is monitored for threshold crossings, with [7]

proposing the addition of local constraints to reduce communication overhead. Continuous tracking

and approximate answering of specific aggregation operations (sum, averaging and minimum) over

a coordinator-based scenario is explored in [8]. Additionally, [9,10] provide methods for estimating

simple functions over distributed data streams. k-largest aggregate value monitoring is described

in [11], where local constraint enforcement and efficient resolution of false constraint violations is

presented.

Elevation of the restriction of monitoring function linearity happens at [2], where a geomet-

ric method for threshold monitoring of arbitrary functions over coordinator-based and mesh-like

network topologies is described. In [12], approximate answers to complex aggregate queries are

provided by a coordinator node, with the distributed nodes retaining synopses of the monitored

data and communicating them when local constraints are violated i.e., significant divergence of

local data from the previously communicated data has been observed. Furthermore, prediction

mechanisms are employed in order to reduce the communication burden. By reducing the approxi-

mate query answering to local threshold crossing monitoring at the distributed nodes, [13] succeeds

in unifying the continuous monitoring task with the geometric threshold monitoring method of [2].

Safe Zones are introduced in [14] as an extension of the geometric monitoring method of [2],

where an arbitrary function is geometrically monitored by employing optimal local constraints

fitted to the distributed nodes’ data distributions . In order to reduce the computational burden

of optimal local constraint formation, a hierarchical node clustering scheme is implemented that
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allows recursive computation of the problem at hand. In [15], the Safe Zones and the bounding

balls of the geometric monitoring method are proven to be fundamentally the same. Following

that claim, [3] explores ellipsoidal bounds as a way to minimize the volume of bounding regions

and reduce the communication overhead induced by false alarms. Additionally, communication

of temporal data, along with first and second moments of the nodes’ data distributions, as well

as a method for decoupling the estimate vector from its use as the reference vector for bounding

region construction is proposed. Constraints tailored to fit data distributions at the nodes are

also explored in [16], where simple and efficiently computable shapes are proposed, as well as a

hierarchical clustering of the monitoring nodes into disjoint sets that maximize the probability of

resolution of false alarms. Finally, [17] offers a generalization of the geometric monitoring scheme

by incorporating a variety of prediction models based on velocity and acceleration of the vector

representations of the data streams.
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Part II

PROBLEM DEFINITION AND

IMPLEMENTATION
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Chapter 4

Problem Statement

The geometric monitoring method of [2] provides a rigid framework of projecting streams

into an Euclidean, multi-dimensional space in order to effetively monitor threshold crossings of

arbitrary functions. Subsequent work attemts to provide solutions to various drawbacks of the

original method by optimizing local constraints at the distributed nodes, exploring node clustering

schemes that will provide deterministic and efficient methods for optimal constraint computation

and node selection during the balancing process, and employing forecasting models to predict and

limit Local Violations that do not result to a threshold crossing of the aggregate stream.

While these attempts succeed at reducing the communication overhead of the geometric moni-

toring method, a scalability problem still persists regarding the dimensionality of the data streams

and the monitoring node population size. This thesis explores the limits of the balancing process

itself, and how optimal positioning of drift vectors into space, a significant aspect of the method not

touched upon in prior work, as well as appropriate node selection for inclusion into the balancing

set, can improve monitoring performance and reduce the communication cost, while taking into

acount termporal stream properties, such as velocity and acceleration.
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Chapter 5

Implementation

This chapter provides a detailed description of the implemented system. In Section 5.1, the

Geometric Monitoring method implementation is described, along with the necessary simplifying

assumptions to aid experimentation. Following that, in Section 5.2 an algorithm for node matching

is proposed, inspired by the violation recovery method found in [16]. In Section 5.3, the heuristic

based balancing method for local violation resolution is presented, along with the necessary data

stream tracking scheme. Finally, the main implementation challenges are discussed.

5.1 Geometric Monitoring Implementation

The initial Geometric Monitoring method [2], which is described in detail in Section 2.1,

provides two algorithms for threshold monitoring of distributed data streams. These algorithms

operate on different network structures and implement a somewhat different handling of threshold

violations.

The decentralized algorithm operates on a coordinator-less environment, where nodes are al-

lowed to communicate with each other, whereas the coordinator-based algorithm has a Star network

topology, where the coordinator node is the central node (the hub) and the Monitoring nodes reside

on the edges of the network. The algorithm operating on the decentralized setting does not pro-

vide a balancing process for local violation resolution. On the other hand, the coordinator based

algorithm implements a violation resolution operation every time a local violation occurs, which

aims to minimize the communication overhead induced by false violation reports.

Our focus is centered towards a simplified coordinator-based algorithm (Algorithms 2,

and 3), described in Section 2.1, as it provides a framework for the heuristic balancing process, as

well as the node matching operation presented in detail in Sections 5.3 and 5.2 respectively.
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To aid method formulation and experimentation, the following simplifying assumptions have

been made regarding the coordinator-based algorithm:

• Communication between nodes is considered instantaneous. There is no delay when passing

messages through the network. The problem of message handling in a real-world Geometric

Monitoring method implementation, where message delays are induced by the underlying

network, has been studied in detail in [18].

• Communication between nodes is considered loss-less and reliable. In case network reliability

can not be guaranteed appropriate methods should be considered.

• The system operates in an iterative fashion, as described in Algorithm 5. This simplification

of the real-time distributed monitoring process to an iterative process provides a more man-

ageable setting for experimentation without distorting the results of the proposed methods,

which can be applied directly to the original real-time distributed setting.

• The system pauses at each violation, until the violation is resolved. During violation resolution

Monitoring nodes do not receive updates from their respective data streams.

• The Coordinator node does not participate in the monitoring operation. The Coordina-

tor node does not receive updates from a data stream, it only receives messages from the

Monitoring nodes in case of threshold violation. This assumption can easily be elevated by

considering an additional monitoring node responsible for handling the coordinator’s data

stream monitoring operation.
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Algorithm 5: Iterative network operation

Data: monitoringNodes: a list of Monitoring nodes, coordinator: the Coordinator node

1 begin

2 initialization;

3 repeat

4 foreach node ∈ monitoringNodes do

5 node.DataV ectorUpdate();

6 node.ComputeDriftV ector();

7 end

8 foreach node ∈ monitoringNodes do

9 node.CheckForV iolation();

10 if localV iolation then

11 node.Report();

12 coordinator.Balance();

13 end

14 end

15 until globalV iolation;

16 end

5.2 Distance Based Node Matching

The balancing method of the coordinator-based algorithm, as described in Section 2.1 [2, 3],

aims at resolving local violations that do not result in a global violation (false alarms) by balancing

the violating node’s drift vector with the respective vectors of randomly chosen nodes. Consider the

violating node ni with weight wi = 1, so that the bounding ball B(~e(t), ~ui(t)) is not monochromatic,

and the randomly requested node nj with weight wj = 1, so that the newly formed bounding ball

is B(~e(t),
~ui(t)+ ~uj(t)

2 ), where ~e(t) the estimate vector at time t and ~ui(t), ~uj(t) the drift vectors of

nodes ni, nj at time t, respectively. If the resulting bounding ball is monochromatic the violation

is resolved, otherwise another node is randomly requested for balancing.

As observed in [16,19], the original balancing method’s node choosing scheme can be inefficient,

so a more efficient and deterministic approach should be adopted. Optimal pairing of nodes and

the construction of a hierarchical structure (Figure 5.1) reduces the communication overhead of

false alarms, with the vast majority of violation resolutions requiring only the assigned node pair
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to be successful. The criterion by which nodes are paired attempts to maximize the probability

of a successful balance by maximizing “the percentage of pairs of data vectors from both nodes

whose sum is in the Minkowski sum of the nodes’ safe-zones” [16], or, in this case, whose resulting

bounding ball is monochromatic.

Here, the same node pairing scheme is followed, but with a different, distance based, criterion

for grouping nodes into disjoint pairs and creating the hierarchical structure depicted in Figure 5.1.

The method proceeds as follows (Algorithm 6):

1. Monitoring nodes are visualized as the nodes of a complete graph G = (V,E), where V =

{n1, n2, ..., nk} vertex set consists of the initial Monitoring nodes (“Type-1 nodes”) and E =

{(ni, nj) ∀i, j ∈ [1, ..., k], i 6= j} edge set contains an edge for every pair of vertices.

2. Weights are assigned to all edges E. The weight of each edge is defined as the cumulative

distance of the value of the monitoring function on the mean of each pair of data vectors

from the value of the monitoring function on the global mean of all Monitoring nodes’ data

vectors, plus the cumulative distance of each pair of data vectors:

wi,j =

tend∑
t=t0

[−|(f(~vglobal(t))− f(
~vi(t) + ~vj(t)

2
))|+ (|~vi(t)− ~vj(t)|)] (5.1)

, where ~vi(t) the data update of node ni at time t, ~vglobal(t) the global mean of all Monitoring

nodes at time t and f(·) the monitoring function.

3. Maximum weighted matching is performed on the resulting graph via the primal-dual method

implemented in the networkx Python library [20], so that nodes are partitioned into disjointed

sets Mi, |Mi| = 2 ∀i ∈ [1, ..., k2 ].

4. Each set Mi, i ∈ [1, ..., k2 ] is considered a single node, so that a new complete graph G′ =

(V ′, E′) is created, where V ′ = {M1, ...,M k
2
} (“Type-2 nodes”) the new vertex set and E′ =

{(Mi,Mj) ∀i, j ∈ [1, ..., k2 ]} the new edge set. Weights are assigned to the new edges and the

process repeats until the resulting graph contains only a single vertex (“Type-k node”), which

incorporates all the initial Monitoring nodes.
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{n1, n4, n5, n7, n6, n3, n2, n8}

Type-1

Type-2

Type-4

Type-8

Figure 5.1: Hierarchical pairing scheme example for node set {n1, n2, n3, n4, n5, n6, n7, n8}.

5. Vertices not matched with any other vertex during the matching process are ignored in fu-

ture iterations. During the balancing process such unmatched vertices are handled by the

traditional random selection balancing algorithm found in [2](also, Section 5.1).

Algorithm 6: Recursively create Monitoring node pairs and hierarchy

1 Function DistancePairer(nodes,i)
Data: nodes = [(n1, [~v1(t0), ..., ~v1(tend)]), ..., (nk, [ ~vk(t0), ..., ~vk(tend)])]: list of nodes

with their respective data vectors,i: pair type, initial=1

Result: nodeHierarchy: dictionary of Type-k pairs

2 if length(nodes) = 1 then // recursion stopping condition

3 return nodeHierarchy;

4 end

5 g = CreateCompleteGraph(nodes); // complete graph with nodes as vertices

6 foreach (ni, nj) ∈ g.Edges() do // assign weights to edges

7 wi,j =
∑tend

t=t0
[−|(f(~vglobal(t))− f(

~vi(t)+ ~vj(t)
2 ))|+ (|~vi(t)− ~vj(t)|)];

8 g.edge(ni, nj).weight = wi,j ;

9 end

10 nodeHierarchy(Type-i) = g.maximalWeightMatching(); // node pairs of Type- i

11 DistancePairer(nodeHierarchy(Type-i), i ∗ 2);

12 end

The incentive behind the distance based node pairing scheme comes from the need to track

the global data vector as closely as possible, with only a subset of the total node population’s data

vectors at each balancing attempt. By considering the distance of the mean of a pair of data vectors
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Figure 5.2: The drift vectors during Geometric Monitoring operation until a Global Violation.
Distance based node matching is used on 4 nodes ({n0, n1, n2, n3}), with 1-dimensional data vectors,
threshold T = 100 and f(x) = x as the monitoring function. The Type-2 node pairs are {n0, n3}
and {n1, n2}.

Figure 5.3: Detailed depiction of the Geometric Monitoring operation of Figure 5.2. Distance based
node matching operating on 4 nodes ({n0, n1, n2, n3}), with 1-dimensional data vectors, threshold
T = 100 and f(x) = x as the monitoring function. Distance d1 denotes the distance of the data
vector mean of the paired nodes n0 and n3 from the global mean (global data vector) at t = 25,
whereas distance d2 denotes the in-between distance of data vectors ~v0(t) and ~v3(t) of the node pair
at time t = 25 (before a Local Violation occurs, where ~e = 0 and ~ui(t) = ~vi(t) ∀ i ∈ [0, 1, 2, 3], t <
30). Both distances are taking part in the edge weighting process, according to Equation 5.1.
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from the global data vector (distance d1 in Figure 5.3) the “quality” and “accuracy” of the tracking

ability of each pair is evaluated. Additionally, by taking into account the in-between distance of

data vectors of each node pair (distance d2 in Figure 5.3), pairs from the limits of the data vector

velocity spectrum that manage to “cancel each other out” more effectively are encouraged.

5.3 Heuristic Balancing

The balancing method incorporated into the coordinator based algorithm of the Geometric

Monitoring method [2] (Section 2.1) attempts to minimize the communication overhead of local

violations by computing the, so called, balancing vector. The balancing vector is defined as the

weighted mean of the drift vectors of the nodes contained in the balancing set, and, in case of a

successful balance, it is guaranteed that B(~e,~b) is monochromatic. Consequently, by setting the

drift vectors of the nodes in the balancing set to be equal to the balance vector, all local constraints

are fulfilled and the convexity property of the drift vectors is satisfied.

While this method partially succeeds in reducing the communication burden of false alarms

either by requesting only a subset of the total node set each time a Local Violation occurs or by

setting the drift vectors to a safe point (represented by the balance vector), major drawbacks can

be noted regarding vector positioning and bounding ball construction. Updated vector assignment

as a result of the “optimization” procedure does not take into account the idiosyncrasies of the

monitoring function and the admissible region it produces. Additionally, all nodes taking part in

the balancing process are handled identically, without taking advantage of the differences in the

behavior of each node.

Previous work proposed selecting an optimal reference vector, instead of the estimate vector

for bounding ball construction, along with shape customization of the local constraints at the nodes

according to the node’s needs [3]. Local constraint customization served as the basis for the now

popular Safe-Zone framework [14,16], which diverges from the traditional bounding sphere setting,

while maintaining the same fundamental idea of distance computation of a point from a set of

support vectors [15], preserving the essence of the admissible region and retaining the balancing

process of the coordinator based scenario.
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This thesis proposes a novel heuristic approach for optimal positioning of drift vectors, which

takes into account both the temporal behavior of each node’s data stream, as well as the peculiar-

ities of the monitoring function over said data streams. Aim of the heuristic optimization is the

maximization of the estimated time until the following Local Violation occurs, which, expressed as

an optimization formula, receives the following form:

max min
(T − xi)− acceli(tlv) ∗ t2

veli(tlv)
,∀ni ∈ P ′ (5.2)

where:

t : the variable to optimize

T : monitoring threshold

xi : the maximum value of the monitoring function f(·) over the bounding ball B(~e(tlv), ~ui(tlv)),

where tlv is the time a Local Violation occurred and i the index of node ni

veli(tlv) : the estimated velocity of the maximum value of the monitoring function f(·)

when applied to the bounding ball created by the data stream update of node ni

and the estimate vector ~e at time tlv

acceli(tlv) : the estimated acceleration of the maximum value of the monitoring function f(·)

when applied to the bounding ball created by the data stream update of node ni

and the estimate vector ~e at time tlv

tlv : time of Local Violation occurrence

P ′ : the balancing set

The Equation 5.2 originates from elementary kinematic equations, as such:

Assume a moving object i at point xi, with acceleration ai and current velocity vi. Let vf be the

object’s final velocity when it reaches a threshold point T at time t, from which it deviates by

d = T − xi. Let current time be t = 0.
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Distance (or Displacement) in terms of velocity and acceleration is described by:

d = vit+ at2 (5.3)

For which it holds:

d = vit+ ait
2 ↔

T − xi = vit+ ait
2 ↔

t =
(T − xi)− ait2

vi

Thus, t is the expected time the moving object reaches the threshold point T .

The newly defined heuristic optimization formula (5.2) aims to maximize the time until the

next Local Violation concerning any of the nodes belonging in the balancing set. By taking into

account the maximum value of the monitoring function f(·) inside the bounding ball created by

each data stream update and the estimate vector, and by computing acceleration and velocity

measures of this value over time, an approximate mapping of the data stream space to the one

dimensional space of the arbitrary monitoring function is achieved. This permits the computation

of the optimal positions the balanced drift vectors should take in order to maximize the time they

reach the monitoring threshold, as depicted in Figure 5.4b.
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~u1

~b

~u2

(a) The classic balancing method. As long as

B(~e,~b) is monochromatic (i.e. within the Admis-
sible region), balance is successful and the up-

dated drift vectors are set to ~u1
′ = ~u2

′ = ~b.

~e

~u1

~b

~u2

~u2
′

~u1
′

(b) The heuristic balancing method. Arrows
depict the velocities of each drift vector. Af-
ter a successful balance is achieved (B(~e,~b) is
monochromatic), the optimal points in which the
updated drift vectors ( ~u1

′, ~u2
′) should be po-

sitioned are computed by maximizing the esti-
mated time until the next Local Violation, based
on the current drift vector positions and the es-
timated velocities. Balance vector ~b remains un-
changed.

Figure 5.4: Balancing methods

5.3.1 Implementation of the Heuristic Balancing

In order transform the heuristic optimization formula (5.2) into an applicable setting, multi-

objective optimization (Section 2.2) is used. The optimization function is now defined as such:

min−z

s.t. z ≤ g(h(~e, ~u0), vel0, accel0, T )

z ≤ g(h(~e, ~u1), vel1, accel1, T )

... (5.4)

z ≤ g(h(~e, ~un), veln, acceln, T )

~b =
1∑n
i=0wi

n∑
i=0

(wi ∗ ~ui) ,∀ni ∈ P ′
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where:

g : R4 → R, the heuristic optimization function as defined in Equation 5.2

h : Rd → R, the function computing the maximum value of the monitoring function f(·) in B(~e, ~ui),

which is an optimization problem by itself

d : the data vector dimensionality

T : the monitoring threshold

~ui : the drift vector of node ni

wi : the weight of node ni

veli : the velocity of the maximum value of the monitoring function when applied to the ball

defined by node’s ni drift vector ~ui and the estimate vector ~e

acceli : the acceleration of the maximum value of the monitoring function when applied to the ball

defined by node’s ni drift vector ~ui and the estimate vector ~e

~b : the balancing vector

P ′ : the balancing set
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Solution to the above optimization problem (5.4) is given by a Sequential Least Squares Pro-

gramming (SLSQP) solver, which implements sequential quadratic programming (described briefly

in Section 2.2.1) by using the Han-Powell quasi-Newton method with BFGS update at each itera-

tion for the Hessian matrix approximation, and an L1-test function for computing the step length.

The solver is implemented by the pyOpt Python optimization library [21]. The problem is decom-

posed and formulated using an additional helping parameter z in order to avoid non-differentiable

functions (such as min and max) and to aid computation by the solver.

In the heuristic optimization problem defined previously (5.4) the nested optimization of de-

tecting the maximum value of an arbitrary monitoring function inside the bounding ball B(~e, ~ui)

is existent. This optimization problem is formed as follows:

max f (5.5)

s.t.

d∑
i=1

(xi − ci)2 = r2 (5.6)

where:

f : the monitoring function f(·)

xi : element i of d-dimensional vector ~x

ci : element i of d-dimensional vector ~c, which represents the center of the sphere

r : the radius of the sphere

d : the space dimensionality

Eq. 5.6 : a (d+ 1) dimensional sphere in Rd

The optimization problem of detecting the maximum value of a function inside a sphere (5.5)

is solved using Constrained Function Minimization (CONMIN), which implements the method of

feasible directions, as described in Section 2.2.1 and implemented by the pyOpt Python optimization

library [22].
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The resulting heuristic balancing algorithmic implementation is summarized in the following

Algorithm:

Algorithm 7: Heuristic Balancing

1 Function RepMessageReceived(< ni,vi,ui,veli,acceli >)

2 add ni to balancing set P ′;

3 Balance();

4 end

5 Function Balance(P ′)

6 if length(P ′) = 1 then

7 RequestNode(); // request node based on respective gathering scheme

8 end

9 ~b =
∑

P ′
wi∗ ~ui
wi

;

10 if B(~e,~b) is monochromatic then

11 /* heuristic optimization procedure, */

12 /* returns the optimal drift vector positions in set O */

13 O = DriftV ectorOptimizationProblem();

14 foreach ni ∈ P ′ do
15 ∆δi = wi ∗ ~ui′−wi ∗ ~ui; // ~ui

′ denotes the optimal drift vector position

16 Send(< ADJSLK,ni,∆δi >);

17 end

18 end

19 end

5.3.2 Smoothing, Velocity and Acceleration Estimation via Savitzky-Golay

The heuristic balancing method proposed previously (Section 5.3) requires an efficient estima-

tion of the velocity and the acceleration of the output of the monitoring function over the maximum

value of the bounding ball. Additionally, a smoothing operation over the data stream series would

be beneficial, in order to grasp the trend (increasing or decreasing) of the data stream without

letting noisy updates and extreme fluctuations misguide the optimization operation.

The Savitzky-Golay smoothing filter [4] (Section 2.3) is ideal in the heuristic Geometric Mon-

itoring setting, for it smooths and derivates the signal without much additional computational

burden, allowing it to be applied directly at the Monitoring Nodes’ data streams. By assuming
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Figure 5.5: Savitzky-Golay filtering of a signal with added Gaussian noise. The smoothing window
is 50 points in length, centered at the far end, as in the real-time smoothing applied to the Geometric
Monitoring setting. The polynomial order is 2 for the smoothed signal, 3 for the velocity estimation
and 5 for the acceleration estimation of the original signal.

equidistant data points the precomputation of convolution coefficients becomes trivial when speci-

fying the window size, the window center, the order of the polynomial and the desired derivative.

Following that, the precomputed coefficients are applied to the desired signal by a simple convo-

lution, which is both fast and, if required, on-line. The application of the filter on a noisy signal,

along with the velocity and the acceleration computation of this signal, is shown in Figure 5.5.

5.4 Implementation Challenges

The proposed methods and algorithms incur some implementation challenges, which, on the

greater part, can be managed.

Regarding the distance based node matching presented in Section 5.2:
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• In order to extract the optimal node pairs training data must be available. This situation can

be handled in two ways. One way is to initiate execution of the Geometric Monitoring task

using the original method of randomly requesting nodes during balancing, until the necessary

amount of data to train the model has been cumulated. Then the model can be trained and

the operation can be switched to the distance based node matching scheme. A more appro-

priate solution could be to incrementally update the node pairs using the data provided by

message passing in the standard Geometric Monitoring execution, or by occasionally polling

the monitoring nodes during low network activity until a satisfiable amount of data has been

gathered.

Regarding the heuristic balancing method presented in Section 5.3:

• The bi-level multi-objective optimization incorporated into the method can become compu-

tationally expensive when dealing with a large balancing set or with highly dimensional data

streams. Attention must be paid to the selected solvers responsible for the optimization task,

for some solvers can be more effective than others in different settings and different monitor-

ing function applications. Additionally, some solvers provide customization parameters, such

as tolerance and iteration count, among others, that greatly influence the execution time of

the optimization routine, as well as the precision of the results.

• The Savitzky-Golay smoothing filter, responsible for smoothing and differentiating the signals

representing the maximum value of the monitoring function over the bounding spheres, is

directly affected by the selected window length and the polynomial order. That being the

case, care must be taken to select appropriate values that effectively track the general trends

without compromising detail important to the optimization routine.
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Part III

RESULTS AND CONCLUSIONS
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Chapter 6

Experiments

In order to evaluate our proposed algorithms, the heuristic balancing method (HM ), the dis-

tance based node clustering scheme (DIST ), as well as the combination of those (HDM ), we com-

pare them with the geometric monitoring method [2] (GM ), and the hierarchical clustering method

of [16] (DISTR). Datasets originate from both synthetic and real-world settings in order to explore

the performance, scalability and applicability of our methods in terms of reduction in communica-

tion.

Firstly, Section 6.1 contains a detailed description of the datasets and the monitoring functions

used for evaluation purposes. Following that, Section 6.2 presents the experimental results along

with the necessary commentation.

6.1 Data, Setup and Monitoring Functions

6.1.1 Synthetic Datasets

Synthetic datasets have been incorporated into the evaluation process of the proposed algo-

rithms in order to provide a controllable environment under which the behavior of our methods

can be analyzed. Data streams are created by firstly sampling data stream velocity distribution

means by a user specified normal distribution and fixing the standard deviation of each stream.

Afterwards, an initial velocity is sampled from each stream’s assigned distribution and a λ value is

chosen, which controls the rate of change of the streams’ velocity. Stream update vi(tk) of node ni

at time tk is generated by sampling a new velocity uk+1 from the velocity distribution assigned to

node ni and updating the streams’ value by: vi(tk+1) = vi(tk) + (1− λ)uk + λuk+1. Noisy versions

of the generated streams are the product of additive Gaussian noise.
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Linear streams (LIN ) are generated by setting the parent distribution to N (10, 20), the stan-

dard deviation of each stream’s velocity distribution to σ = 10 and the lambda value to λ = 0.

An example of the resulting one dimensional streams corresponding to 20 nodes, along with the

resulting global statistics stream, is illustrated in Figure 6.1.

Interweaving streams(INT ) are produced from the same parent distribution N (10, 20) by se-

lecting σ = 50 for the standard deviation of each stream’s velocity distribution and λ = 0.1 as the

velocity update parameter. An instance of one dimensional interweaving streams corresponding to

20 nodes, along with the resulting global statistics stream, is shown in Figure 6.2.

Noisy streams (NOISE ) are the result of the previously used parent distribution with σ = 100

as the standard deviation of each stream’s velocity, λ = 0.15 the velocity update parameter, and

N (0, 30) the distribution of the additive Gaussian noise. Such one dimensional streams corre-

sponding to 20 monitoring nodes, along with the resulting global statistics stream, are depicted in

Figure 6.3.

When necessary, a partitioning of the dataset into training and testing sets is executed by

uniformly sampling 20% of the initial dataset as the training set, with the rest being the testing

dataset.

Unless stated otherwise, thresholds are set to 1 ∗ 104 for the LIN dataset, 2 ∗ 103 for the

INT dataset, and 2.5 ∗ 103 for the NOISE dataset, irrespective of the number of streams in each

experiment.

6.1.2 Air Quality Database

The real world dataset consists of measurements of air pollutants, as measured during the year

2014, provided by the “European Environmental Agency - AQ e-Reporting” database [23]. Data

streams correspond to hourly measurements of air pollutants NO2 and NO, in micro-grams per

cubic meter, averaged over a window of five days for a whole year. Monitoring nodes are picked

at random from available air quality measurement stations across Austria. Notable characteristics

of this dataset are the difference in behavior and shape between data streams taken from different

stations, and between different air pollutant measurements. These lead to irregularities and great

variance between measurements at different time points and locations. Figures 6.5 and 6.4 illustrate
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Figure 6.1: Linear data stream examples (LIN)
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Figure 6.2: Interweaving data stream examples (INT)

the global and local statistics streams of 8 nodes that monitor the variance of NO2 pollutant, as

well as the ratio of NO to NO2.

Where applicable the training dataset is regarded as the first month of the year.

Thresholds that lead to approximately 100 data stream updates until a Global Violation were

selected, irrespective of the stream population.
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Figure 6.3: Interweaving data stream examples (NOISE)
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Figure 6.4: Streams of 8 nodes monitoring the ratio NO/NO2.

6.1.3 Monitoring Functions

The monitoring functions used during the experiments were carefully chosen in order to illus-

trate, as accurately as possible, the properties and behavior of each examined method. Specifically:

• Experiments using the one dimensional synthetic datasets (LIN, INT, NOISE ) monitor the

function f(x) = x. This simple functions allows us to clearly examine the behavior of the

implemented methods over artificial streams with specific characteristics regarding linearity
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Figure 6.5: Streams of 8 nodes monitoring the variance of NO2 air pollutant.

and noise, without affecting the results.

• Experiments that incorporate multi-dimensional synthetic datasets (LIN, INT, NOISE ) mon-

itor a multi-variable quadratic function f(x, y, z, k, . . . ) = (x−y+z−k+. . . )2+x+y+z+k+

. . . , with variables x, y, z, k, . . . corresponding to different stream dimensions i.e., a quadratic

function with d variables is monitored over d-dimensional streams. Quadratic functions are

of grave importance to numerous real-world applications (e.g., a Gaussian distribution is

expressed via an exponent of a quadratic function).

• Experiments performed on real-world data streams of air pollutants monitor the variance of

NO2 and the ratio of NO to NO2. Both functions operate on two dimensional data. Let

mNO2,ti and mNO,ti be measurements of air pollutants NO2 and NO at ti, respectively. The

former function operates on data updates vti =
( mNO2,ti

(mNO2,ti
)2

)
and the latter on data updates

vti =
(
mNO,ti
mNO2,ti

)
.

6.2 Experimental Results

The following experiments are performed in order to gain an insight on the behavior of the

methods proposed in this thesis and how these compare to methods presented in prior work, focusing
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on the communication overhead induced by each method until a Global Violation takes place.

In Subsection 6.2.1 our distance based node matching algorithm (Section 5.2) is compared

with two methods of violation resolution found in related work. Subsection 6.2.2 compares the

balancing algorithm of the seminar work on geometric monitoring with our proposed, heuristic,

method. Subsequently,in Subsection 6.2.3 our HDM method is compared with the GM method

while exploring the impact different tuning parameters induce on the performance of our algorithm.

Finally, our algorithm HDM is put to test using datasets from a real-world domain, with GM

operating as the baseline method, in Subsection 6.2.4.

6.2.1 Node Matching Algorithms

The seminar geometric monitoring method [2] dictates that random nodes are requested in

order to perform a violation resolution via the balancing method (GM). Subsequent work [16]

examines the partitioning of nodes into disjoint pairs, so that the probability of a violation resolution

is maximized by maximizing the percentage of data vectors that result to a successful balancing

operation (DISTR), either by iterating over all data vectors pairs between all nodes and evaluating

the constraint, or by employing the pdfs of the data streams. Our proposed method depends only

on simple Euclidean distance computations between data stream vectors, not being bound on the

monitoring function and its possible irregularities. All three methods are being compared alongside

the original geometric monitoring balancing method GM.
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Figure 6.6: Comparison of GM, DISTR and DIST methods in terms of communication cost in
messages over the range of 20 nodes.
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Figure 6.7: Drift vectors of 4 nodes as a result of application of GM, DIST and DISTR methods
over the LIN dataset.

Figure 6.6 provides information about the communication overhead each method incurs, and

how this evolves as a function of node count. Method DIST proves to be comparable with the

GM method for node selection, both surpassing the DISTR method in terms of communication

reduction. Specifically, GM and DIST methods illustrate an equal of better performance than

the DISTR method over the whole range of nodes, for all three datasets LIN, INT and NOISE.

Algorithms GM and DISTR mostly induce the same communication burden, with some exceptions

located towards the larger end of the node spectrum, where for 16 nodes DIST method always

surpasses the GM method in terms of communication reduction, and for 20 nodes the GM method

induces less message exchange than the rest of the algorithms. This is due to the random selection

DIST and DISTR algorithms perform in case pefect node pairs cannot be created i.e., the node

number is not a power of 2.

A graphical illustration of the required nodes for a successful violation resolution is provided in

Figure 6.8. Following the trend of the aforementioned experiment, GM and DIST methods achieve

a violation resolution by employing far less nodes than the DISTR algorithm. Roughly 70 to 80

percent of all Local Violations are successfully resolved by 2 nodes by employing the GM and DIST

methods. The DISTR method is able to resolve false alarms by using only 2 nodes with a score of

60 percent or less of total Local Violations, with the rest requiring more than 2 nodes to successfully

perform the balancing process.
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(a) Number of nodes participating in violation resolutions as a fraction of total Local Violations, for the LIN
dataset.
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(b) Number of nodes participating in violation resolutions as a fraction of total Local Violations, for the
INT dataset.
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(c) Number of nodes participating in violation resolutions as a fraction of total Local Violations, for the
NOISE dataset.

Figure 6.8: Number of nodes required to successfully resolve a violation, as a fraction of total Local
Violations, for methods GM, DISTR and DIST.
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These results can be explained by viewing how each methods handles node pairing, in Fig-

ure 6.7. It is evident that the DIST method attempts to group together data streams that are

more likely to “balance each other out” by taking into account the in-between distance, as well as

the distance of the average of the two streams from the global data stream. On the other hand,

the DISTR method assists node pairings whose average will not induce a Local Violation, while

allowing streams that are more likely to violate the threshold be grouped together. Subsequently,

when a node from the latter pair signals a threshold crossing, its pair will not be able to success-

fully resolve the violation, thus requesting additional nodes from a higher level of the hierarchical

clustering.

6.2.2 Balancing methods

During the balancing process of the original geometric monitoring method [2] (GM) the com-

puted drift vectors of the nodes are set to the value of the balancing vector that successfully resolves

the reported Local Violation. In contrast, the heuristic balancing method proposed in this thesis

(HM) attempts to optimize the positioning of the new drift vectors by taking into account the

properties of each stream. Figure 6.9 illustrates the communication cost induced by the balanc-

ing methods over a range of 2 to 20 nodes for the datasets LIN, INT and NOISE, when applied

alongside the random node selection method (GM) for violation resolution. For the HM method a

window size of 10 and an approximation order of 1 are employed for the Savitzky-Golay filter.

When applied to the LIN dataset the HM method consistently surpasses the original GM

balancing method in terms of communication reduction by optimally positioning the drift vectors

following a Local Violation resolution, a property illustrated in Figure 6.10 for 2 monitoring nodes.

When data streams become more complex and unpredictable, i.e., the INT and NOISE datasets,

the HM method provides a similar to slightly worse performance than that of GM, due to variable

velocities and accelerations affecting the performance of the optimization function. Additionally,

the selection of random nodes at each resolution attempt hampers the performance of HM due

to the fact that optimal positioning computation is relative to the nodes taking part in a specific

balancing process. Thus, when an optimized drift vector participates in a subsequent balancing

process with a different node set the existing optimization and the “correlation” between optimized
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(a) Communication cost of meth-
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(b) Communication cost of meth-
ods GM and HM for the INT
dataset.
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(c) Communication cost of meth-
ods GM and HM for the NOISE
dataset.

Figure 6.9: Comparison of the GM and HM methods in terms of communication cost over a range
of 20 nodes. For the Savitzky-Golay filter of HM method a window size of 10 and an order of 1 are
employed.
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(a) Drift vectors of 2 nodes, as formulated by the GM
algorithm.
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(b) Drift vectors of 2 nodes, as formulated by the HM
algorithm.

Figure 6.10: The drift vectors of 2 nodes with streams originating from the LIN dataset, when the
GM and HM balancing methods are applied.

6.2.3 Monitoring Synthetic Data

In order to eliminate the unpredictability the GM node selection method incurs to HM, we

compare the GM method with a combination of our proposed methods (DIST, HM), resulting to
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the HDM method. Figure 6.11 depicts the performance of the two methods over a range of 2 to 20

nodes, in terms of communication cost. Following that, Figures 6.13 and 6.12 examine the way the

Savitzky-Golay filter parameters affect the performance of HDM. Finally, Figure 6.14 illustrates

the scalability of the HDM method compared to the GM method, in terms of communication cost

and stream dimensionality.

Once again, the HDM method outperforms the original GM method when applied onto the

LIN dataset for any parameter setting of the Savitzky-Golay filter by achieving a communication

reduction of up to 60 percent. When datasets in the likes of INT and NOISE are employed, where

smooth and drastic velocity changes can be observed, respectively, fine-tuning the filter’s param-

eters can reduce the communication burden of HDM significantly, surpassing the GM algorithm

in terms of communication reduction, as shown in Figures 6.13 and 6.12. Finally, when multi-

ple stream dimensions are monitored the HDM method illustrates similar performance as with its

one-dimensional stream counterparts.
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(a) Communication cost of meth-
ods GM and HDM for the LIN
dataset. The Savitzky-Golay win-
dow size is set to 10 and the ap-
proximation order is set to 1.
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(b) Communication cost of meth-
ods GM and HDM for the INT
dataset. The Savitzky-Golay win-
dow size is set to 10 and the ap-
proximation order is set to 1.
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(c) Communication cost of meth-
ods GM and HDM for the NOISE
dataset. The Savitzky-Golay win-
dow size is set to 24 and the ap-
proximation order is set to 1.

Figure 6.11: Comparison of the GM and HDM methods in terms of communication cost over a
range of 20 nodes.

6.2.4 Monitoring Air Quality Data

In this final experiment a real-world dataset is employed, originating from air quality measure-

ments. Specifically, the variance of NO2 and the ratio of NO to NO2 are monitored in order to
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dataset.
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Figure 6.12: Comparison of the GM and HDM methods in terms of communication cost over a
range of window sizes, for 16 nodes. The approximation order is set to 1 for all experiments.
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Figure 6.13: Comparison of the GM and HDM methods in terms of communication cost over a
range of Savitzky-Golay appriximation orders, for 16 nodes.

evaluate the HDM and GM methods over real-world applications, once again in terms of commu-

nication costs over a range of 4 to 16 nodes, as shown in Figure 6.16.

The HDM method exhibits a decent performance when the appropriate Savitzky-Golay pa-

rameters are carefully selected, even though the streams are characterized by great variance and

irregularities in time. Compared to the GM method, the HDM method succeeds at reducing the

communication overhead by approximately 10 percent.
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ods GM and HDM for the LIN
dataset.

2 3 4 5 6 7 8 9 10

dims

100

200

300

400

500

600

700

800

900

1000

M
es

sa
ge

s

GM

HDM

(b) Communication cost of meth-
ods GM and HDM for the INT
dataset.
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Figure 6.14: Comparison of the GM and HDM methods in terms of communication cost over a range
of stream dimensions, for 8 nodes. Savitzky-Golay’s window size is set to 10 and the approximation
order is set to 1 for all experiments. The monitoring function is a multi-variable quadratic function
dependent on the stream dimensionality.
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(a) Drift vectors of 4 nodes, as formulated by the GM
algorithm.
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Figure 6.15: The drift vectors of 4 nodes with streams originating from the LIN dataset, when the
GM and HDM methods are applied.
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over a range of 4 to 16 nodes, when variance moni-
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window size is set to 6 and the approximation order
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Figure 6.16: Comparison of HDM and GM methods in terms of communication cost over a range
of 4 to 16 nodes originating from the air pollution dataset.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

While the geometric monitoring method and its successors provide an efficient framework for

monitoring distributed data streams, prior work’s experimental results indicate that the scalability

of this method can be vastly improved while respecting a communication-accuracy trade-off. As-

pects of the method, such as optimal local constraints at the nodes, as provided by Safe Zones [14],

as well as deterministic selection of nodes during the balancing process [16] succeed at relieving the

communication burden of the monitoring task at hand.

Motivated by the aforementioned work on geometric monitoring, this thesis proposes a heuristic

method to improve the original balancing process, an aspect not extensively reviewed. By employing

multi-objective optimization methods, and specifically Sequential Least Squares Programming, as

well as the Savitzky-Golay smoothing and differentiating filter for smoothing and estimating the

velocity and acceleration of data stream projections, we propose a method to optimally position drift

vectors during a balancing process in order to maximize the estimated time until a successive Local

Violation. Furthermore, a distance-based improvement of the method for hierarchical clustering

of nodes, originally proposed in [16], is presented, which clusters node pairs into disjoint sets that

will effectively lead to a successful balance, while closely tracking the (unknown) global statistics

stream and, at the same time, decoupling the matching operation from the monitoring function.

Both of these methods are fully compatible with the original geometric monitoring method, as well

as the improvements found in related work.

Evaluation on synthetic and real-world datasets retrieved from the “European Environmental

Agency - AQ e-Reporting” database showcase the advantages and the drawbacks of our methods.
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When the monitoring task is compromised of smooth data streams without violent fluctuations

and relatively low noise our heuristic method for node balancing, alongside our hierarchical node

clustering scheme, achieves a communication reduction of up to 60% compared to the original

geometric monitoring method. On the other hand, when data streams are irregular as a function of

time, or their signal to noise level is low, care must be taken at the selection of the Savitzky-Golay

filter parameters for velocity and acceleration estimation of streams.

7.2 Future Work

Multi-objective optimization and advanced solvers are able to provide optimal, or nearly opti-

mal solutions to a variety of fields, including the area of distributed data streams. As a multitude

of sophisticated solvers exist, further research directed towards the formulation of more elaborate

optimizing functions regarding the balancing process of the geometric monitoring method would

be a promising continuation of contemporary work on the subject.

Regarding the estimation of velocity and acceleration of data streams in order to avert future

constraint violations, sophisticated prediction models, such as multi-dimensional Gaussian processes

and parameter estimation techniques for signal processing filters in the likes of the Savitzky-Golay

filter provide an interesting field for exploration and experimentation on data stream systems.
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