Master Thesis

“Pattern Recognition and Machine Learning Applications
for Embedded Systems”

Technical University of Crete
Department of Microprocessors and Hardware

Panos Kalodimas (Author)
Yannis Papaeystathiou (Supervisor)
Chania (Greece), April 2016

CHAPTERS

1. Master Thesis OULIINE....cooii ittt reene e 17
2. Master Thesis ADSTIaCt....c..coiiiiiiiieee et 20
3. ReIAtEA WOTK .ottt st e s e s sar e sbe e e sareena 21
4. TSM Algorithm Simple DeSCriptioN.....cccuiiiieciiie ettt e e srre e e s seaeee s 22
4.1. Face Detection Based on Parts Based Detectioncccceveereeniieniieeneeneenecnie e 22
4.2. TSM Face Detection AlgOrithmMi.......cccuiii i e e 24
5. TSM Algorithm Procedures DesCriptioncccivciiiiiicieie e ssieee st e e sieee e saree e 28
5.1. TSM Face Detection AlgOrithmi.......cc.eeiiiiiiiiiiiiecceec e 28
5.2, MO ettt et st e et e s bt e abe e s bee e abeesbaeesaraenas 29
LI TR [o F=Y=(cl VT o o 1o TR PSS 33
B4, HOG ..ttt e b et sttt e b e b b ettt et e e be e sheesaeeeare e 33
5.5, FEature PYramidc.coiiiiiiii ettt et e et e e st e e e s abae e e e ares 34
5.6, CONVOIULION ettt ettt ettt et ettt e s bt e st e e sbeessateesabaeesareenas 38
5.7. Distance Transformationceoeoiiiiiiiiieeeee et 40
LR T 10T« OO PO ST P PP PRUPRRRPR 44
5.9, BACKEIACK ceeeeitieeetee et sa e s s 45
5.10. Non-Maximum Suppression (NIMS)ccceeeiieeiiie e et ree e 46
6. TSM Algorithm IMplementation ... e earre e 48
(o T O T T4 1o =Tl o [o o [P RS 50
6.2, PrOFIlEI e et 53
6.3. Original Edition Profiling.......cccuueiiiiiie et 61
6.3. 1. TIME PIOfile oo 61
6.3.2. VI BIMOIY i e e e e 62
6.3.3. MaX MBMOIY i 64

6.4. DPBD Algorithm REMAINS ...ccccuiiieeciiie ettt et e e et e e e eaba e e e e naae e e eeares 67
6.4.1. Removing the Model Components ProCesscccoecuveeiieciieeeccciieeecciree e eeiee e 67
6.4.2. CONVOIUTION PrOCESS ...ttt ettt s e 68
6.4.3. ROOt Filter INterval Set.......oouei i 69
6.4.4. DOUDIE 1O FIOAt . ..eeeeeeeeiieeee et 70

6.5. TSM Original VErsion 1.2cccccuieeeiiiiieeeiiiee e esitee e e siee e e sre e e e s ara e e e e satre e s e snbae e e snnsaeeeenanees 70
6.6. Features PYramid Stage......ccccccuieiiiiiiie ettt et s e e et e e e e abae e e e ares 73
6.6.1. RESIZE.ciiiiiiiiiiiiiii 75

6.6.2. HOG ..o 77

6.6.3. Features Pyramid Stage V1.3 ...t erree e e e e 79

6.7. FEatures PYramid.. ...ttt et e s e e e st ee e e e anes 81
(o T [o=V =(Sl VT o o1 o PSS 81
6.9, CONVOIULION ittt sttt et et et e sbeesaeesare e 83
6.10. FIltErS RESPONSES ceiiiiiiiie ittt ettt e e ettt e e et e et e e st e e e e sabe e e e s sabaeeesnraeeesnteeaesnnsseeen 85
6.11. Distance Transformation STageoccuiiiiiiiiii i 86

6.11.1. Distance Transformationcoceerieiieienee e 86

6.11.2. DT STaB VL.3 ..ttt ettt sttt e st st st nneennees 90
6.12. DT Scores Data STrUCTUIE......coivviiiiiiiiiiiic e 92
6.13. 2o A = Tol] - -{ PP 93

T 701 S 1 o Vo PP 95

6.13.2. BACKLIACK c.eeeiteeieeee ettt st 98

6.13.3. Backtrack StAgE V1.3ooi ittt et e ettt e e e et e e e e rraeeeeans 98
6.14. RESUIES CACh@...cieiiieiie ettt st e s be e e s e e 99
6.15. Non-Maximum Suppression (NMS)cccueeeiiieiiee e e e e eree e saeeens 101
6.16. TSM Face Detector V1.3ottt 102
6.17. TSM Face Detector V2.1ciiiiiiiiiiieieceiete ettt 106
6.18. TSM Face DeteCtOr V2.2......oiiiiiiiiiieieie ettt 109
6.19. TSM Face Detector V3.1 ..ottt 112
6.20. TSM Face Detector V3.2........cooviiiiiiiiiiniiiiiiic i 115
6.21. TSM Face Detector All VEISIONS.coueiiieieenienie ettt 119

TSM System Default PatChescuuiei i 124
2 T VoY ol oY =T 0 VT PSP PR 124
7.2, FINA V2.0 ittt st sttt st n e e sae e neere e 127

Multi-Threading Implementation..........coccueei i 135
8.1. Features PYramid......i it e e et e e e e e e e s aae e e e e e e e e e nnranaeees 135

8.1 L. LT TACHIC . evurerreseisetetet ettt 135

8.1.2. 2™ BACHIC. evvrueereerereereetsee sttt 137
8.2, RESIZE.iiiiiiiiiiiiiii e 141
< T (= To [N ol PSPPSR PO 142
8.4, HOG ..ttt ettt be e bt sat e sttt e be e bt e nht e et e et e e teenreens 143
8.5, CONVOIULION ..ttt sttt et et b e s e e neereens 144
8.6. Distance TransformMationccoceerieieenieiie e 146
I - T 1ol = To] = - ISP 147

L T WYY Y B - -SSR 148

B.8. 1. LT TACHIC . uurureerereereee ettt 149
8.8.2. 2™ TACHIC civuumreeeierreseitsee sttt sttt 150
8.8.3. B TACHIC vvuoreeeeirceteeiee sttt 153
S T Y|V, =0 o 1 Vo TSRS 154
8.9.1. TSM AIZOTItNM V2.2 .ottt e s st e e e s erte e e s snraeaseans 155
8.9.2. TSM AIZOTItNM V3.2 .ttt e ee e e s erra e e s s enraeeeeans 158
8.9.3. TSM AIGOINM VA. L ..ottt st 160
8.9.4. TSM Algorithm Versions COmMPariSON.......cuuieeecieeeeeiireeeecieeeeeiieeeeeeteeeeserreeeeeans 168
9. TSM System AIternative PatChes.......ccuvie i e 171
1 20 I V1Y A I o PP UPPTPPURPR 172
9.2. DYNAMIC ThreShOId....ccoiiieei e e e e bee e e e sbee e e e ares 175
0.3, INEEIVAL e sttt b e bt et et re e 180
9.4, CANVAS . ittt e e s e e s 183
9.5, B8 FIlters IMOMEL.....ccouiiieiieiiie ettt ettt et sb e b e s eeaee s 187
9.6. Detection COMPONENTSuuuiiiiieieiiiiiiiite ettt e e s ssiare e e e e e s s s ssabrreeeeessssssnenaees 188
9.7. Fast POSe EStiMation......cccueiiiiiiiiiiiiii ettt 202
9.7.1. Face Data STrUCTUIEcoiiiiiiiieee e 203
9.7.2. POSE Peak DELECIONc.eeiiiiiieiiteee ettt s 204
9.7.3. Level PEak DELECTION ..ccccueiiiiieeiie ettt ettt 213
9.8. PYramid FAst Passuuiiiiciiieiiiiiee e ceiee e cettee ettt e s st e e s etee e s e etee e s e ebe e e s e abae e e e nnbae e e e arees 221
10. Related COMPATISON ...ueiieciiiieecciiee e ettt ettt e e e ree e e st e e e e s tre e e e eabeeeseateeesenbaeeeenreeaeennsens 231
10.1. Fre@Ware LIDrarieso i et 232
0 0 R O T o T=T o 1 O PRSPPI 232
10.1.2. DIb G LIBrarny ..o oottt s s e 233
10.1.3. FACE SDK et e 234
10.1.4. FIAaNAMArK ..cocueoiieeeeeieeite ettt ettt sttt et et e b s sare e 234
10.1.5. Semantic Vision TEChNOIOGIEScceeeuieiiieiiiee ettt e e earae e 234
L0.1.6. FDLID oo e e 235
10.2. Latest SY S eMS i, 235
10.2.1. Face Detection and Pose Estimation Based on Evaluating Facial Feature Selection
235
10.2.2. Head Pose Estimation Based On Detecting Facial Features.........cccccceeeeennnnneenn. 236
10.2.3. Discrete area filters in accurate detection of faces and facial features.............. 236
10.2.4. Real-time High Performance Deformable Model for Face Detection in the Wild

237

11.
12.
13.
14.

10.2.5. Multi-view Face Detection Using Deep Convolutional Neural Networks 237

10.2.6. Face and Landmark Detection by Using Cascade of Classifiers........cccccevevuennns 237
10.2.7. Extensive Facial Landmark Localization with Coarse-to-fine Convolutional
NEEWOIK CASCATE. ...ttt ettt e be e sbeesanesane e 238
10.2.8. Face detection by structural Models........ccceeeeciiiiicciiie e 239
FUBUPE WOTK ...ttt ettt ettt st sttt e st e s b e e sab e e sateesmeeesabeeenneas 240
Annex A — TSM EXECULION TIMESeeiiiiiiiiieeeieee e 241
271 o] [o = =T o] o1V 2S PR 242
WED SOUICES ...ttt ettt sttt sttt b e b e s b e st e et e eeeeneeens 244

FIGURES

Figure 1 - Matlab Arrays Memory FOrMat.......cc.oiieiiiiiiiiiieeeccieee et e e e e 17
Figure 2 - C Arrays Memory FOMATueiiiiiiiiieiieceee ettt ettt e e e e s e ree e 17
Figure 3 - Mat2C Library DIiagramccoccueiieiiiieieeiiieeeesiree e ssiae e e st e e s sree s s sbee e s ssabee e s sssneeessnanes 18
Figure 4 - DPBD Algorithm Root and Child Parts Detectionccccccuveeeecieeeeccieee e 23
Figure 5 - DPBD Algorithm Root and Child Parts Locality.......ccccceevviieeiiiiieeniniieeeciee e 23
Figure 6 - Deformable Parts Based Detection Algorithm Execution Flow Diagram....................... 24
Figure 7 - HUMan Face 68 LaNAMArksueieeiiiiieeiiieeeeiiiee e eciiee e sete e e eeitee e e eaare e e esarae e s eenneeeeeennes 24
Figure 8 - TSM Algorithm EXeCULION FIOW ...cccuviiiiiiiiiiciiieccee et 27
Figure 9 - TSM Algorithm Procedures SEQUEL........ccuuiiieiiieeeecee et 29
Figure 10 - HUMan Face Landmarkscuueieeiiiiiieciiee ettt e et e e evae e e e e e 29
Figure 11 - TSIM 13 COMPONENTS ceeeiiiiiiiiiiiiiieeeeeniiiirteeeeessssiibtreeeeesssssssreeaeeeesssssnsnreaeeeessssssssseaees 30
Figure 12 - TSM Parts and Filters Connection STrUCTUIEccuveeeeiiieeiciieee e e e 31
Figure 13 - TSM Component 7 Parts Tree STrUCTUIEueieiiiciececec s 32
Figure 14 - Image Pyramid EXamPIe ...coo ittt esee e e e s e e e e 33
Figure 15 - Histogram of Oriented Gradients Descriptors EXample........ccccceeeciieeeiciieececiiee e, 33
Figure 16 - HOG Cells and BIOCKS.ciiciuiiieeiiiee ettt ettt ecte e et e e tee e e e aee e e e bae e e e eaaeee e e anes 34
Figure 17 - TSM Algorithm HOG Procedure Data.......cccccuveeeeriiieeeiieeeesieesesiee s sree e s seveee e e e 34
Figure 18 - Features Pyramid from Image Pyramid vs Scaled HOG Images...........ccccveeeecvveeeennen. 35
Figure 19 - TSM Algorithm Interval Parameter IMpactcoccoveeeeiiieecccieee e e 36
Figure 20 - TSM Algorithm Image Pyramid Creation Execution FIOWcccccceevviiiniiennicenniiennnne. 38
Figure 21 - TSM Algorithm Convolution Procedure Data........cccceeeciieeeecieeececiee et e 39
Figure 22 - TSM Algorithm Convolution Results Examples (Visualized)........cccooveeeciieeeeciieecennnen. 40
Figure 23 - TSM Algorithm Filters Responses Data Structurecccceevecveeeiccieee e 40
Figure 24 - Distance Transformation EXamples..........ceeeccieieiiiiiieeciiee ettt 41
Figure 25 - TSM Algorithm Distance Transformation Procedures..........ccooeeeeciieeeecieeececveeeeennee 41
Figure 26 - TSM Algorithm DT Results of Component 7 Tree Example (Visualized)c.ccccvennen. 42
Figure 27 - TSM Algorithm DT Results of Component 7 Tree Leafs 61-68 Example (Visualized).. 43
Figure 28 - TSM Algorithm Find Procedure ReSUItS............eeeviiiiiiiiiieee et 44
Figure 29 - TSM Algorithm Backtrack Procedure ResUItS.......ccueeiviiiieiiiciiee e 45
Figure 30 - TSM Algorithm One Face Multiple Detections EXampleccccceecveeeeecieeececiiee e, 46
Figure 31 - TSM Algorithm Overlap Parameter IMmpact......ccccccveeeiiiieei e 47
Figure 32 - TSM Algorithm Implementation Modules.........cccccvveieiiiiiiiiiiee e 48
Figure 33 - TSM Algorithm OQULPUL IMAGE ..eevveeiieeeeee e e 49
Figure 34 - TSM v1.1 Algorithm Implementation Diagramcccoccveeeiicieee e 51
Figure 35 - TSM v1.1 Algorithm FP Stage Implementation Diagram........cccceecveeeiiieeecccieeeeennee, 53
Figure 36 - TSM v1.2 Algorithm Execution FIow Changes........ccccceeeiecciiiieee e 68
Figure 37 - Features Pyramid Stage Changes (TSM V1.2)coociiieiciiieeeicieee e 69
Figure 38 - Features Pyramid Stage Execution FIOW (V1.3)cccoieviiiiiieeiiee e e 79

Figure 39 - Image Pyramid in TSM Algorithm...........ooeeiiiiiieee e 82

Figure 40 - DT Stage EXecUtion FIOW (VI.1) ..ccccueiiieiiiieeecieeeeeee ettt 90

Figure 41 - DT Stage EXecution FIOW (V1.3) .icccuiiiieiiiiieeiiee ettt evee e e vee e e e e e 91
Figure 42 - Backtrack Stage Execution FIOW Diagramccceccuveeeiiiieeeceiiiee e eeee e e 94
Figure 43 - TSM Algorithm v2.1 Detect Stage Execution FIOWc.ccceevciieeiieiienicniee e 107
Figure 44 - TSM Algorithm v3.1 Execution FIow Diagramccccccveeeiiiieeiccciiee e 112
Figure 45 - TSM Algorithm v3.2 Execution Flow Diagramccccccvveeeeviiieeiecciiee e 116
Figure 46 - TSM Algorithm VL1.X DiagramMi.....ccccueeiieciieeeiiiiee e seiiee e ssieee e ssiee e esree e s svee e s s sree e s e naves 119
Figure 47 - TSM Algorithm V2.X DIagrami......cccueeiieiieeecciiee ettt eetae e e evte e e erae e s e ebae e e e eaees 120
Figure 48 - TSM Algorithm V3.X Diagrami......cccueiiiiiiii ettt eetee e e svee e e e e evae e e e 120
Figure 49 - Image DT Scores Array Example (Find INPUL) ...c.eeeecveeeiiiecee e 128
Figure 50 - Find v2.0 Procedure Diagramcccceeceuieieieiieeeeeiree e eeieee e esiee e e esvee e e enaee e e evaea e e nnes 128
Figure 51 - Find v2.0 Results on the DT Score Array EXample......cccocviiecieiicciiee e 129
Figure 52 - Features Pyramid Stage OMP Diagram - 1 TACtiC........cccvevrvrvrvrvresreeseeeeeerererererenenenns 136
Figure 53 - Features Pyramid Stage OMP Diagram - 2" TACHIC v 138
Figure 54 - Convolution Procedure OMP Diagramcccceeeiecieeeiiiieeesiiieeeesieeeessveeesssveeesssnvees 145
Figure 55 - Level Stage OMP 2" Tactic (DIE: ={ - 4 ISP UPPTRPPR 150
Figure 56 - TSM Algorithm v4.1 Execution FIOwW Diagramccceccvueeeeciieeecciiee e 162
Figure 57 - TSM v4.1 Maximum Memory Sections Diagramcccccvvvveciiiieeeeesinnniiireeeee e e 166
Figure 58 - TSM v4.1 Filters Responses Section Usage Diagram.......cccccccceveeviieeecncieeeececeeeeennnen 167
Figure 59 - Dynamic Threshold Patch Execution Flow Diagram..........ccccoceeeeeiieeeeciieecccciee e, 176
Figure 60 - Dynamic Threshold Patch Performance EXamples.......cccceeveceeeieeciieeeecciiee e 179
Figure 61 - Faces Size Within the Image EXamples.......cccueiiieiieeiiciien e 184
Figure 62 - Detection Components Patch Execution Flow Diagramccccccveeeevcieeeccrieeeennen, 191
Figure 63 - Multiple Faces, Same Scale Image EXample.....occveviiiiieiiicien e 199
Figure 64 - Multiple Faces, Multiple Scales Image EXamplecccoccveveivieiicciiee e 199
Figure 65 - Fast Pose Estimation Patch Execution Flow Diagram.........cccccceeeeiiieeeeciieecceciiee e, 203
Figure 66 - Pose Peak Detection Patch Execution Flow Diagram........cccccceevecieeeecieeeecnciiee e, 206
Figure 67 - Detection Components PPD Tree for 99 Filters 3 DC......ccccocvveeiveciieeeccciiee e 207
Figure 68 - Detection Components PPD Tree for 68 Filters 3 DC........ccccoeeeeeiieeeeccieeeeeeiee e 207
Figure 69 - Detection Components PPD Tree for 68 Filters 1 DC........cccccevevviveeeeciiee e e 207
Figure 70 - Pyramid Fast Pass Patch Execution Flow Diagramcccccoecveeivciveeecccieeeceiee e 222
Figure 71 - Pyramid Fast Pass & LPD Patch Execution Flow Diagramccccoceeeeviieeeeccreeeeennnen. 223
Figure 72 — OpenCV Face Detection EXamPleccueeiiiiiieeiiciee et 233
Figure 73 — Dlib Face Detection and Landmark Localization Example.......cccccceeeeecciiiieeeeeeeeeenns 233
Figure 74 — Face SDK Face Detection EXamMPIe.......ccuuuieeeeiiieciiiiieee e ecctreee e e e esenveeee e e e e e 234
Figure 75 — Flandmark Face Detection EXamplecoooiieiiiciiee ettt 234
Figure 76 — Flandmark Landmarks Localizationcccceeeeieeeciiiieee e 234
Figure 77 — Semantic Vision Technologies Face Detection and Landmark Localization Example235
Figure 78 — FDLib Face Detection EXamPpPleccoouiiiiiiiiie ittt e 235
Figure 79 — Publication [3] Face Detection EXample........ccoecuieeieiiiie e et 236
Figure 80 — Publication [6] Face Detection EXample........ccococcuieeieeiiie e ettt e 237

Figure 81 — Publication [7] Face Detection EXample......ccccceeecieeeiiiieeecciiee e 237

Figure 82 — Publication [8] Face Detection EXampPle......ccccoiceciiiiieee i e e e 238
Figure 83 — Publication [9] Face Detection EXample......c.cceeeciieeiiiiiee e et e 238
Figure 84 — Publication [10] Face Detection EXample.......cccoccveeiieiieee e 239
Figure 85 — Complete Pose EStiMation........coccueiiiiiiiiiiiiiie ettt 240

TABLES

Table 1 - TSM Components MUtUal Parts........c..eeeeciiiiiiiiiee et eeee e e e e 31
Table 2 - TSM Features PYramid.........coouuiiiiiiiiiecciiices ettt e s sbee e s sree e s bee e s e naves 36
Table 3 - TSM Algorithm Features Pyramid per Image Siz€cccoecveeeiviieee i 37
Table 4 - Convolution Procedure Calls per Image Sizecccoccvveeeeeiieee e 39
Table 5 - TSM Algorithm DT Scores Arrays per IMage Siz€......c.uuvvvecveeeeriieeeeiiiiee e erieee e esveee e 44
Table 6 - TSM Algorithm Time DePeNdENCIEScccccvvieeeiieee ettt e e e ebee e e e 54
Table 7 - TSM Algorithm Profiling IMagesuveeeeciiiie ettt 55
Table 8 - TSM Algorithm Memory DependencCiesccocveeeiiiiieeiiiiieeerieee e ssree e sree e e 56
Table 9 - TSM Algorithm Data DePeNdENCIES.cccccvviieeiiieee ettt e ree e e ebee e e e 57
Table 10 - Find Procedure Profiling RESUILS.........ccccuiiiieiiieeeccee ettt e 59
Table 11 - High-Score Pixels Profiler RESUILSccoiciviiiiiiiiieciiee et 60
Table 12 - RESUILS CACNE SIZES ...eiiiiiiiieiiiii ettt ettt et e e saee e s e e s bae e sateesbaeessseeenees 60
Table 13 - TSM v1.1 Execution Time Distribution (%)ccccveeeiiirieenier e 61
Table 14 - TSM v1.1 Memory Consumption Distribution (%).......ccccceeeveeevieerceeerieecree e 63
Table 15 - TSM v1.1 Max Memory Consumption Distribution (%).......cccceveerveeinierenieesnieesieeenne 64
Table 16 - Features Pyramid Extra Interval Set Removal Effect (TSM v1.1) (%)...cccccovevvvverrrennee. 69
Table 17 - TSM v1.1 Double to Float Effect (%)ccccveeiiiieeiieeeceeeceeeree et 70
Table 18 - TSM v1.2 Execution Time Distribution (%)ccccvveeeiiriieeniee e 70
Table 19 - TSM v1.2 Memory Consumption Distribution (%)........cccceevvererieerceeiniieenee e 71
Table 20 - TSM v1.2 Max Memory Consumption Distribution (%)......cccccceveeeeeeivieesiieeeiieesvee e 72
Table 21 - FP STage t0 TSIM (%6) ..eecveeeiieeiiieeitiee ettt esteesteeesvte s et eesraeesnteessbeeessseeenaeessteesnsaeesnseesnnes 73
Table 22 - Features Pyramid Stage Execution Time Distribution (v1.1) (%)...ccccceecververrivierrrennnne. 74
Table 23 - Features Pyramid Stage Memory Consumption Distribution (v1.1) (%)cccccceeeuveenee. 74
Table 24 - Reduce to Resize Procedures Comparison (%)cceeeeveerirereiieessieeeneeesiessseessseeenens 76
Table 25 - Resize & Reduce Procedures Memory Profile........ccceeeecviieeeiieee et 76
Table 26 - HOG Procedure Memory Profile.........uiiiiiiieiecceee ettt 77
Table 27 - Features Pyramid Stage Execution Time Distribution (v1.3) (%)...ccccceecvervevevceenriennnne 79
Table 28 - Features Pyramid Stage Memory Consumption Distribution (v1.3) (%)cccceevuvenee. 80
Table 29 - Image vs Features PYramid........ccccccuueiiiiiiiieiiieec ettt e e e e e e 83
Table 30 - CONVOIULION tO TSIM (26) .eeeureeiiiriiieeeieeerteesteeestte e st e e saeesteessreeesbeeessaeesnteesneeesnseeenens 83
Table 31 - Convolution Procedure Memory Profilecccceveiieiiiiiiii e 84
Table 32 - Convolution Procedure Time Improvements (V1.3) (%) ...cccoceeeeeercreeeiieesieeecieeeevee e 84
Table 33 - Filters Responses t0 TSM MaX MEMOIY ...cceiieiieccciiiieeeeeeececntteee e e e e e eccrrnere e e e e e e e cnseneeeas 85
Table 34 - DT StAagE 10 TSM (%) weecuveeeeiee ettt ettt ettt ettt e s te e e etae e s be e e ebaeesabeeebaeesabaeennes 86
Table 35 - DT Stage Execution Time Distribution (V1.1) (%)ccoceevreerireeeiieeciee e 86
Table 36 - DT Stage Memory Consumption Distribution (V1.1) (%) ..c.ccceeevveerceriieeerieeeiee e 86
Table 37 - DT Procedure t0 TSIM (%6) ..eecocveeieieieeeeceteee e eeiree e cetreeeeeiree e eesareeeeeabeeeesenbeeeeensbeeeesnnnes 86
Table 38 - DT Procedure Original Version Implementation (V1.1)c.ccceevveeecieeiiieeciee e 87

Table 39 - DT Procedure New Version Implementation (V1.3)cccoieeiiiiieicciiee e 87

Table 40 - DT Procedure Memory Profile (V1.1 & V1.3) ccceiiiiiiieeceee ettt et 88

Table 41 - DT Procedure Versions Memory Profile Comparison (1.1vs 1.3) ..ccccceeevcieeeeicvieeeenen. 88
Table 42 - DT Procedure Versions COMPAriSONc.uuieeicuueeeeiiieeeeiiieeeeesreeeeenreesssssseessssnssesesnnees 88
Table 43 - DT Stage Original Implementation (V1.1)cccociieeciiecieeeee e 90
Table 44 - DT Stage New Implementation (V1.3) ...ccceeeciiieiiieee et e e e e e 91
Table 45 - DT Stage Versions Comparison (1.1 VS 1.3) coccceieiiiiieeeciieee e eeiree et e e e e e 92
Table 46 - DT Stage Consumption Improvement (V1.3) (%) ...ccccceeeeerieeeiieeeiee e cveeesvee e 92
Table 47 - DT Scores Memory Profile (%)ccccueeeccieee ettt e e e e 92
Table 48 - Backtrack Stage t0 TSIM (%8)uvveieeiiiieeeciiee ettt et e et e e e e ebee e e e earae e e e anes 93
Table 49 - Backtrack Stage Execution Time Distribution (V1.1) (%) ..cccoceeevveercereiieenieeeiee e 94
Table 50 - Backtrack Stage Memory Consumption Distribution (V1.1) (%)....cccoceeeivieeeeicrveeeennen. 95
Table 51 - Find Procedure Memory Profile ...ttt 95
Table 52 - High-Scores Per FING.........uciiiiiiiiiiee ettt e et e e e sabee e s s aaee e s snbee e e s anes 96
Table 53 - Find Buffer Reallocations per FINd..........cc.eoeiiiiiiiciiii ettt e 96
Table 54 - Find Buffer Unused Memory per Find (BYLES)......ccccveeiieeiiieeecieecee e 96
Table 55 - Find Buffer Reallocations x Unused Memory Indicator..........cccceveecieeeeiiieeeecciiee e, 97
Table 56 - Find to Backtrack Stage (%) ..eccvuverieeereeiiieesiieeiteesiee e et e s sire e sve e e seae e st e sneeesnreeenees 97
Table 57 - Backtrack Procedure Memory Profilecoocueiiiiiiiiiceee et 98
Table 58 - Backtrack Procedure to Backtrack Stage (%)ccccecveeeieeriieeeiieesiee e ciee e 98
Table 59 - Backtrack Stage Version Comparison (1.3 vS 1.1) (%) ..ccceevvverrieeercieeciie e erie e 99
Table 60 - Results Cache t0 TSIM IMEMOTY (%) .ecvveeeueeiiieeiiee e et et eesire e s te e e erre e sre e srae e saree e 99
Table 61 - Results Cache Max Memory Participation (%)cccoeevveeciieeecieeciee e eciee e 100
Table 62 - Results Cache Real Temporary Memory (10,000) (%)cccceeeeeerrcreeeieeerieeeieeesieens 100
Table 63 - NMS Procedure Memory Profile ... iieiiiieciee ettt 101
Table 64 - NMS Consumption (Results Cache = 10,000) (%)c.ceeevvrerreeeiieerireeeieeecreeecieeeeree s 101
Table 65 - TSM v1.3 Execution Time Comparison (Compared to v1.2) (%)ccccccevrrcrerriveerivenns 102
Table 66 - TSM v1.3 Memory Consumption Distribution (Comparisons to v1.2) (%)ccccuee.. 104
Table 67 - TSM v1.3 Maximum Memory Consumption (Comparisons to v1.2) (%)cccceevene 105
Table 68 - TSM v2.1 Maximum Memory Consumption (Compared to v1.2) (%)ccccevevveervennne 107
Table 69 - TSM v2.1 Execution Time CoOmMpParisSON (%)cccvueeecreeerieeiiieeeiieesreeesieeesreesesneesveeens 109
Table 70 - TSM v2.2 Maximum Memory Consumption (Compared to v1.2) (%)cccceeevveernens 111
Table 71 - TSM v2.2 Execution Time COmMPariSON (%)cccvueereeeerveerieeeiieesireeeseeeseesssseeessseenns 111
Table 72 - TSM v3.1 Execution Time CoOmMParison (%)cccueeecreeereeeiiieeeiieesieeesieeesreesesveesveeens 113
Table 73 - TSM v3.1 Maximum Memory Distribution (Compared to v1.2) (%)....c.ccccceereveervenne 114
Table 74 - TSM v3.2 Maximum Memory Distribution (Compared to v1.2) (%)....c.cccccveveveernnnne 116
Table 75 - TSM v3.2 Execution Time ComparisSoN (%)c..eeeeeceeeeiiiieeeeciieeeeciieeeeeree e eeveee e e 118
Table 76 - TSM Algorithm All Versions Execution Time Comparison (%)cccecveverveerceeernenns 121
Table 77 - TSM Algorithm All Versions Memory Comparison (%)ccceeeeeeeceeeeieeerieesieeesveens 122
Table 78 - TSM Algorithm All Versions Maximum Memory Consumption Comparison (%)....... 123
Table 79 - TSM Algorithm All Versions Max Memory Requirements (Mbytes)ccccoeeenne.e. 123
Table 80 - Features Pyramid Level Images High Size.........cooociiiieei e 124

Table 81 - Short Pyramid LEVEIScoei ittt e e et e e e e e e e 125

Table 82 - Short Pyramid Patch Time Effect on TSM (%) ..cccvveeeieiiiiieciie et 126

Table 83 - Levelsyith-tigh-scores / LEVEISkeatures_pyramid (%) --vevveverreririniiiiiiiieiiieiseseseeeee e 127
Table 84 - Find v2.0 PixelSyith-nigh-scores / (LEVEISyith-High-scores X COMPONENTS) ..evevvinvinviniiniiiiirnenn 129
Table 85 - Find v2.0 Levelsyith-tigh-scores / LEVEISkeatures_pyramid (20) «veveverueuirieiriiiiieiniesisieisiesieiees 130
Table 86 - Find v2.0 Execution Time Impact on TSM v3.2.1 (%) .cccceeeeeiiieeeecee et 131
Table 87 - Find v2.0 Impact on TSM v3.2.1 Memory Consumption (%)ccccceeeevcveeeeiirveeenennn. 131
Table 88 - Find v2.0 Maximum Memory Consumption Impact on TSM v3.2.1 (%)ccccovveeunenne 132
Table 89 - TSM Basic Versions Maximum Memory Consumptioncccceeeceeeeeeiieeesecveeeeeennn 133
Table 90 - FP Stage OMP Execution Time - 1% TACtIC (%) c.vevereeveereeiieieereeeiseeesseeeeesen s es e 136
Table 91 - FP Stage OMP EXecution TImMe = 2™ TACtC (%) «..v.eveevreeeereereeeseeeeeeeeeeesesesees s eneeeas 138
Table 92 - FP Stage OMP 2™ Tactic Max Memory (MBYEES)c.eveeeeeeeieeeeeeeeeeeeeeeereeeseeseeennens 140
Table 93 - Resize Procedure OMP EXECUtioN TIME (%) «.vveevveeecreeeieeecieeeiteeesteeesteeesveeeveeesvee s 141
Table 94 - Reduce Procedure OMP EXeCUtion TIME (%)....ccceeecreeeieeeiieeeireeeeieeecieeesreesvneesvee s 142
Table 95 - HOG Procedure OMP EXECULiON TIME (%) ..ecveeereeerieeeniieenieeesiieeeieeesieeesieeessveeesaveeens 143
Table 96 - Convolution Procedure OMP EXecution Time (%)cccvveeiieeeiieeccieeeiieesieeecineeeieens 145
Table 97 - Distance Transformation Procedure OMP Execution Time (%).....cccccccvvevveeecveenneenns 146
Table 98 - Find Procedure OMP Execution Time (V2.0) (%) ...cccveeerveeriereiieenieeeieeesieeeseeesieenns 148
Table 99 - Level Stage OMP 1 Tactic EXeCUtion TiMe (96)c.evrverrerereereerereereeeiseessseesessseseenns 149
Table 100 - Level Stage OMP 2™ Tactic EXECUtION TIME (%)v.vververerererreesseeseessessessaessaessannes 151
Table 101 - TSM v3.2.2 Level Stage OMP 2™ Tactic Max Memory (MBYES)covveeereeeerneenn. 152
Table 102 - TSM v3.2.2 Level Stage OMP 2™ Tactic Max Memory (MbBytes)..........cccvvevueunnene.. 153
Table 103 - Level Stage OMP 3™ Tactic EXECULION TIME (%6)......vveeveereeeereeeeeeeeeeseeseseseessnseeneenas 153
Table 104 - Level Stage OMP 3" Tactic EXECUtiON TIME (%6)......vveveereeeereeeeeeeeeseeseseeseesesseseneeeas 153
Table 105 - TSM Procedures & Stage OMP EffiCiency.......ccoeecieiiicciee e 155
Table 106 - TSM v2.2.2 OMP Execution Time (Time Efficient Version) (%) ...ccccccoeevvveeercveeeennnen. 155
Table 107 - TSM v2.2.2 OMP Max Memory Consumption (Mbytes)ccccoccveeeeeiieeeeccieeeeennen, 156
Table 108 - TSM v2.2.2 OMP Execution Time (Memory Efficient Version) (%).......ccccceeevveerneens 157
Table 109 - TSM v3.2.2 OMP Execution Time (Time Efficient Version) (%) ...ccccccoceevvveeeecveeeennnen. 158
Table 110 - TSM v3.2.2 OMP Max Memory Consumption (Mbytes)cccceccveeeeeiireeeccieee e, 159
Table 111 - TSM v3.2.2 OMP Execution Time (Memory Efficient Version) (%).......ccccceeeveerneene 159
Table 112 - TSM v4.1.2 Execution Time Simulationccocceeriiiiiiiiniieeiieeieesec e 164
Table 113 - TSM v4.1.2 EXECULION TIME .uveiiieieeeiieecieesieeeiteeeeteeeseeeessteessveeesnseeseaeesnaeesneeesaseenns 165
Table 114 - TSM v4.1 Maximum Memory Consumption Comparisoncccceeeeeveeeesccreeeesnnnnes 168
Table 115 = TSM VA 1.2 VS V3.2.2 .eeiiiii et eeiiee e eeitee ettt e s s sbte e s s eabee e s s sabee e s s sabee e s e sabeeessnabeeessnnnens 168
Table 116 - TSM OMP Versions Execution Time Comparison (%)ccceeeeeerceeesiererveeeseeesieeenns 168
Table 117 - TSM OMP Versions Max Memory COmMPariSON (%)cc.eeccueeeereeerireeeiieeesreeesrveesveeens 169
Table 118 - TSM v3.2.2 Execution Time Distribution (%)ccecceeeeeeerieeeiie e ereeesiee e 169
Table 119 - NMS Limit Results using 99 Filters Modelccuvviieieiiiccieeee e 172
Table 120 - NMS Limit Results using 146 Filters Modelcccceiiiieeiicieeecceee e 174
Table 121 - Dynamic Threshold Patch Results with 99 Filters Modelccceeeeeeieciiiiieeeeeecs 176
Table 122 - Dynamic Threshold Patch Results with 146 Filters Modeleeeivieciiieeeeeeeecnnns 179

Table 123 - FP Levels Per INterval.........ccuii ettt e e e e 181

Table 124 - TSM v3.2.2 Interval Patch EXecution TIiMe (%)cccceeeeveerieeeiieecieeeieeesiee e 182

Table 125 - TSM Algorithm Interval Patch Performance (%).....ccccccveeeeccieeeecciee et 182
Table 126 - TSM Minimum Detectable FAte (%6) ..ccccvvvveeeieiiiiiiiieeeee et eeeaveeee e e e e eeenans 184
Table 127 - Max/MinFace Parameters Execution Time Profit (%)cccceceevveevieevieereesee e, 185
Table 128 - Max/MinFace Execution Time Profit per Image Size......c.ccceeevveeeieeeiieeciee e 186
Table 129 - TSM v3.2.2 68 Filters Model Performance (Compared to 99 Model) 187
Table 130 - TSM 68 Filters Model RESUILSueviieiiiiiiiiee et 188
Table 131 - DC Patch Face Detection Section Results (DC Set 7) (%) ...ccovvvvvereeeiiiecireieeeeeeeeeenns 191
Table 132 - DC Patch RESUILS (DC SEE 7) (%6) eeveieieeiiiieeeieee ettt et e e eeetaveeeee s e e e eeenanns 192
Table 133 - DC Patch Face Detection Section Results (DC Set 7-3-11) (%)...ccccveevveevreeecveesneenns 192
Table 134 - DC Patch Results (DC Set 7-3-11) (%) ceccvuvrereieiiieeiiieeeeee e eeeeiieeee e e e eeetareeeeeseeeeeeaens 193
Table 135 - DC Patch Face Detection Section Results (DC Set 7-4-10) (%).....cceeevveevcreeecveenireens 194
Table 136 - DC Patch Results (DC Set 7-4-10) (%) ..eccveeereeeiieeeieeesieecteeesiteeeteeestaeesaaeesveeesareaens 194
Table 137 - DC Patch Results Comparison (Threshold = -0.45) (%)ccceeeveeerveerierenieeeiieesieens 195
Table 138 - DC Patch Missed Detections Viewing Angle Classification (%).......ccccceeveveeevveerneenns 196
Table 139 - DC Patch Max(LevelSyigh-scores[COMPONENE]) %o 197
Table 140 - DC Patch MaxXLyigh-scores(Threshold)cocveieiiiiniininiceeee, 198
Table 141 - DC Patch Execution Time Profit per Level (%)cccveevveeccieeecieeciee e 199
Table 142 - DC Patch Execution Time Reduction per Face Size (DC Set 7) (%)...cccceevereercveerreanns 200
Table 143 - DC Patch Execution Time Reduction per Face Size (DC Set 7-4-10) (%) ..eeeevveeruvenne 200
Table 144 - DC Patch Execution Time Reduction per Face Size (DC Set 7-3-11) (%) .veeeevveerurene 201
Table 145 - FACe Data STrUCLUIEuviiii ettt et e e e sbee e s e sbee e e s bee e e enres 204
Table 146 - Face vs Results Cache Data Structures Size per Detection.........cccceeeeeceeeeecciieeeennee, 204
Table 147 - PPD Patch Components Stage Execution Times per POSe.......ccccccvevevviieeeccieeeeennee, 208
Table 148 - PPD Patch Results Comparison (Threshold = -0.45) (%)cccoueevcreeeieeecieeecieeereens 209
Table 149 - FPE Patch Pose EStiMation (%)ccccveeeeieeiiieeiie e ciee et esteesvee et e e esvae e snee e saaee e 210
Table 150 - PPD Patch Execution Time Reduction per DC Set (1 Face Scenario) (%)c....... 210
Table 151 - PPD Patch Execution Time Reduction per DC Set (0°>+90° Scenario) (%)............... 211
Table 152 - PPD Patch Execution Time Reduction per DC Set (-45°>+45° Scenario) (%)........... 212
Table 153 - Pose & Level Peak Detection Patches Results (FD Threshold = -0.65) (%) 215
Table 154 - LPD Patch Detection Procedure Levels..........cocueeriiiiniienieeniiieniee e 216
Table 155 - LPD Patch MaXLyigh-scores ««+eeveererrerursimnimiiiiiiiiiiis it 216
Table 156 - LPD Patch Execution Time Reduction per DC Set (1 Face Scenario) (%)c.c....... 216
Table 157 - LPD Patch Execution Time Reduction per DC Set (0°>+90° Scenario) (%) 217
Table 158 - LPD Patch Execution Time Reduction per DC Set (-45°>+45° Scenario) (%) 217

Table 159 - LPD Patch Execution Time Reduction per DC Set (1 Face Scenario) (v2.2.2) (%) 219
Table 160 - LPD Patch Execution Time Reduction per DC Set (0°>+90° Scenario) (v2.2.2) (%). 219
Table 161 - LPD Patch Execution Time Reduction per DC Set (-45°>45° Scenario) (v2.2.2) (%) 220

Table 162 - PFP Patch |Levelsign-scores| RESUlts per Thresholdccccvivinininiinicnciiiiiine, 223
Table 163 - Pyramid Fast Pass Patch Face Detection Section Results (%)......cccevvrerveercreenrnnenns 223
Table 164 - Pyramid Fast Pass & LPD Patch Results (DC Set 7-4-10) (%) .veeeeevveevererieeecieeerieenne 224

Table 165 - Pyramid Fast Pass & LPD Patch Results (DC Set 7-3-11) (%) ccveeveveeevreeeireeecieeeeieenns 224

Table 166 - Pyramid Fast Pass Patch Execution Time Profit (No Face) (%)ccccceuvevveeriveervennns 225

Table 167 - Pyramid Fast Pass & LPD Patch Execution Time Reduction per DC Set (%) 226
Table 168 - Pyramid Fast Pass & PPD Patch Results (DC Set 7-4-10) (%) ...ccoeevveeeeecrveeeeeireeeeennee 227
Table 169 - Pyramid Fast Pass & PPD Patch Results (DC Set 7-3-11) (%) .cveeveveeevereerreeecieeesieenns 227
Table 170 - PFP & PPD Patch Execution Time Reduction per DC Set (1 Face) (%) ...cccceecvvveenneen. 228
Table 171 - PFP & PPD Patch Execution Time Reduction per DC Set (0°>%90°) (%) «..covvvvvennene.. 229
Table 172 - PFP & PPD Patch Execution Time Reduction per DC Set (-45°>+45°) (%) 229
Table 173 — Tests Hardware Specifications...........ccceviieiieiicciiie e 231
Table 174 - TSM v3.2.2 vs Creators EXecution TIMe (%)coooevuveeeeeeiiiiiiieeeeeeeeeeeesnieeeeeseeeeeennns 231
Table 175 — TSM v3.2.2 Execution Time in SECONS......cc.veviieiiiiiiiiiee et 241

Table 176 - TSM v3.2.2 and Creators EXecution TIMe (SEC) ..cccuvveereeeiiiieiirereeeeeeeeeesiieeeeeeeeeeeennns 241

DIAGRAMS

Diagram 1 - TSM v1.1 Algorithm Execution Time Distribution per Stagecccccceeevveeeecvvee e, 61
Diagram 2 - TSM v1.1 Algorithm Execution Timeline......cc.ceevviieeiiiiiiee e 62
Diagram 3 - TSM v1.1 Stages Execution Time Growth Trend per Imageccccceevvveeeeviieeeeennen, 62
Diagram 4 - TSM v1.1 Memory Consumption Distribution.........cccccveeiiiiieiicciie e 63
Diagram 5 - TSM v1.1 Memory Consumption Growth Trend per Imageccccceeevvveeeevcieeeennnen, 64
Diagram 6 - TSM v1.1 Maximum Memory Distribution per Imagecccccceeeeevveeeecceee e 65
Diagram 7 - TSM v1.1 Maximum Memory Consumption Trend per IMmageccceccveeeeevveeeennen. 66
Diagram 8 - TSM v1.1 Algorithm Memory Profile ... 67
Diagram 9 - TSM v1.2 Execution Time Distribution per Stagecccceeeecieeeeecieee e 71
Diagram 10 - TSM v1.2 Max Memory Distribution per Imageccccceeeecieeeeeciiee e 72
Diagram 11 - TSM v1.2 Algorithm Memory Profile ... 73
Diagram 12 - FP Stage Execution Time Distribution per Procedure (v1.1) (%) ...ccccovvverereeercvennnne 74
Diagram 13 - Features Pyramid Stage Memory Profile (V1.1)....ccccccoeieieiiieiiccee e 75
Diagram 14 - Resize and Reduce Procedure Growth Trend per Image......cccccceeeeevcveeeencieeeeennen 77
Diagram 15 - HOG Procedure Max Memory pPer LEVEL........ccoccuiieecciiee et et 78
Diagram 16 - HOG Procedure Time Consumption per LeVEl.......ccoccuveiieciieiicciiee e 78
Diagram 17 - Features Pyramid Stage Memory Profile (V1.3)....cccccevveeeiieecieeccieecee e 80
Diagram 18 - Image vs Features Pyramid Memory Consumptionccccceeeecieeeeecieeeeccveeeeeene 83
Diagram 19 - Convolution Procedure Time Consumption per Level.......ccocceecvieeecciieecccciiee e, 84
Diagram 20 - Filters Responses Memory Consumption per Levelccccccvevvvcieeeiicieeeecciiee e 85
Diagram 21 - DT Procedure Versions Resources Consumption (v1.1 & v1.3)....cccceeciveeecrieeeennen. 89
Diagram 22 - DT Versions Growth Trend per Image (V1.1 & V1.3)..cccciiiciieiiciieeeeeee e 89
Diagram 23 - DT Scores Memory Consumption Per IMagecccccvevvvvciriieeeeesnniiiineeeeeesessivneeens 93
Diagram 24 - Find Procedure High-Score Values Probability Densityccccccovveeeeciieeccciiee e, 96
Diagram 25 - Find Buffer Calls x Unused Memory Graph........ccccceccieieeciiieeecciee e 97
Diagram 26 - Find Buffer Calls And Unused Memory Graph......cccccccuveiiiiieeeiiciee e 97
Diagram 27 - Results Cache Participation in TSM Max Memory per Image.........ccccceeeecvveeeenneen. 100
Diagram 28 - NMS Procedure Calls per Results Cache Size.......ccccocvveeeivciieeiccciee e 102
Diagram 29 - TSM v1.3 Execution Time Distribution.........ccccccovviiiiiieiiiccie e, 103
Diagram 30 - TSM v1.3 Execution Time Distribution per Stagecccccveeeeeiiieeecciee e, 103
Diagram 31 - TSM v1.3 Memory Consumption Distributioncccceevcieiiieiien e, 104
Diagram 32 - TSM v1.3 Maximum Memory Consumption Distribution per Image 105
Diagram 33 - TSM Algorithm v1.3 Memory Profileccccoooeee i 106
Diagram 34 - TSM v2.1 Maximum Memory Consumption Distribution per Image 108
Diagram 35 - TSM Algorithm v2.1 Memory Profileccccoveieeiiiciee e 108
Diagram 36 - TSM v2.1 Algorithm Timeling Profilecoeeiieiiiiieciee e 109
Diagram 37 - TSM v2.2 Algorithm Timeling Profileccoeeiveceiiiccee e 110
Diagram 38 - TSM v2.2 Algorithm Memory Profilecccceovecieeiiiiee e 110

Diagram 39 - TSM v2.2 Maximum Memory Consumption Distribution per Image 111

Diagram 40 - TSM Algorithm v3.1 Timeline Profile ... 113

Diagram 41 - TSM Algorithm v3.1 Memory Profileccceeeeciei i 114
Diagram 42 - TSM v3.1 Maximum Memory Distribution per Image......cccccceeevveeevceeeecccriee e, 115
Diagram 43 - TSM v3.2 Maximum Memory Distribution per Image........cccceecveviivceeiiiceee e, 117
Diagram 44 - TSM Algorithm v3.2 Memory Profileccccoeeeeieriiicee e 118
Diagram 45 - TSM Algorithm v3.2 Timeling Profilecceiioecieriiciee e 118
Diagram 46 - TSM Algorithm Execution Time Versions COMpParisoncccceecveeevrceeeessveeeeennnee 121
Diagram 47 - TSM Algorithm All Versions Memory Consumption Comparison...........c.ccceeeuneee. 122
Diagram 48 - TSM Algorithm All Versions Maximum Memory Consumption Comparison 122
Diagram 49 - TSM Algorithm Execution Time per LEVEl.......cccveiiiiiieeiiriiee et 126
Diagram 50 - TSM v3.2.2 Maximum Memory Consumption per ImMageccceeeeevvervrvrererenenennnnns 132
Diagram 51 - TSM v3.2.2 Maximum Memory Profiling......cccccccveiviiei i 132
Diagram 52 - TSM Algorithm v3.2.2 Memory Profilecccoecieeiieciee e 133
Diagram 53 - FP Stage OMP Execution Time (1% TACIC) ...ceevvevieieeiieeeeeceeeceeeeeseeeeeeseereeeesnnas 137
Diagram 54 - FP Stage OMP Execution Time Efficiency (1% Tactic)ccccovvvvvrvereereeeeereeereereeeeenns 137
Diagram 55 - FP Stage OMP Execution Time (2" TACtC) ...oveeeereeeereeeeeeeeeseeeseeseeeeseeeeeseesssseenns 139
Diagram 56 - FP Stage OMP Execution Time Efficiency (2" TACtIC)vevevveerreeeeeereeeeereeeeeenns 139
Diagram 57 - FP Stage OMP Execution Time (Al TACLICS) ..cvveevereeerieeiieeeieeecieeeeee e e ecveeesenee s 140
Diagram 58 - FP Stage OMP Execution Time Efficiency (All TaCtiCS) ...cceeevvrevcreeeiieeerieeecieeeieenns 140
Diagram 59 - Resize Procedure OMP EXecution TiMe.......ccccccveiieiiiieeccciiee et e 141
Diagram 60 - Resize Procedure OMP Execution Time Efficiencyccccoecvveviveceiiiicee e, 141
Diagram 61 - Resize Procedure OMP EXecUtion TimMe.......cceeecieriiriieeeeriiee e 143
Diagram 62 - Resize Procedure OMP Execution Time Efficiencyccccccoeeeeeiieeeecciee e, 143
Diagram 63 - HOG Procedure OMP EXeCUtion TiMEcccveeiiiciieriiiiiee e e 144
Diagram 64 - HOG Procedure OMP Execution Time Efficiency......cccceeevcieeiiccee i 144
Diagram 65 - Convolution Procedure OMP EXecution TiMecccoceeeeeiiieeeeciiieeececiee e 146
Diagram 66 - Convolution Procedure OMP Execution Time Efficiency.......cccccevviiinieinneiininenns 146
Diagram 67 - DT Procedure OMP EXECULION TIME.....cccivcieiiiiiieeeesiiee e esiiee e seieee e eevee e e ssveee e e 147
Diagram 68 - DT Procedure OMP Execution Time EffiCciencycccoceeeeevieiieciiee e 147
Diagram 69 - Find v2.0 Procedure OMP EXecution TiMecccceeeecieeeeiiiee e 148
Diagram 70 - Find v2.0 Procedure OMP Execution Time Efficiency......ccccccevveeriiiiniieennieenineenns 148
Diagram 71 - Level Stage OMP Execution Time (1% TaCtic)cceeeeirireeieeieeeeeeseeeeeeseesreeseesenas 149
Diagram 72 - Level Stage OMP Execution Time Efficiency (1% Tactic)ccccevevevevvrererereeennnnns 149
Diagram 73 - Level Stage OMP EXECUtion TIMe (2™ TACHIC) ..v.vvevveeeeeereeeeeeeeeesreeeeeseeeeeereeesessenens 151
Diagram 74 - Level Stage OMP Execution Time Efficiency (2" TaCtic).....overveeeereereeeereseeennns 151
Diagram 75 - Level Stage OMP Execution Time (All TACtiCS) ...ccveeviiiiiieeiiieeeiee e 154
Diagram 76 - Level Stage OMP Execution Time Efficiency (All Tactic)ccceevveeeeciieeeeccieeeenne, 154
Diagram 77 - TSM v2.2.2 OMP Execution Time (Time Efficient)ccccoocveeieiiieeieciee e, 156
Diagram 78 - TSM v2.2.2 OMP Execution Time Efficiency (Time Efficient)........cccceeveeeiveennnens 156
Diagram 79 - TSM v2.2.2 OMP Execution Time (Memory Efficient)cccccoeeveieiiiiiieccieecene, 157
Diagram 80 - TSM v2.2.2 OMP Execution Time Efficiency (Memory Efficient)...........cccuueeenn..e. 157

Diagram 81 - TSM v3.2.2 OMP Execution Time (Time Efficient)ccccceeeveevieeiciee e, 158

Diagram 82 - TSM v3.2.2 OMP Execution Time Efficiency (Time Efficient).......c.cccoeeeeeinenennee. 158

Diagram 83 - TSM OMP Procedures Efficiency per CPU COre.......ccoceeeevcieeeecciiee e 161
Diagram 84 - TSM Algorithm v3.2.2 OMP Execution Time Distribution Impactcc..c......... 170
Diagram 85 - Results Cache NMS Limit Parameter EXample.....cccocveveivciericrciee e 172
Diagram 86 - TSM Algorithm Performance with NMS Limit Disabled (99 Filters Model)............ 173
Diagram 87 - TSM Algorithm Performance with NMS Limit Disabled (Both Models)................. 175
Diagram 88 - Dynamic Threshold Patch Impact on Threshold Low Values (99 Filters Model) ... 178
Diagram 89 - Dynamic Threshold Patch Performance Impact (99 Filters Models)...................... 178
Diagram 90 - Dynamic Threshold Patch Performance Impact (146 Filters Model)..................... 180
Diagram 91 - Components High-Score Results EXampleccccceiveiieiiiiiieeicnciee e 189
Diagram 92 - Components High-Score Results per Viewing Angle Example..........ccccceeecvveeenneen. 190
Diagram 93 - FUNCLION (31) DIGBIamccccuveeiieeeieeeciieeereeeetteeeteeeeieeesteeebaeesveessaeesaseessaeesaseeans 198
Diagram 94 - Detection Components Sets Execution Time Profit per Face Size.......c..cccveeenneee. 202
Diagram 95 - Level Highest-Scores Curves Peaks EXampleccccccoeeeeeiieeeccciiee e 205
Diagram 96 - Face Pose Peak Patch EXampleccccuviiiiiiiiiiiiiiee ettt e 208
Diagram 97 - Pose Peak Detection Patch DC Sets Execution Time Profitccccoeevveviiicieeennnen. 213
Diagram 98 - Level Peak Detection Patch EXample........cceeeieiieeieciiee et 214
Diagram 99 - Fast Pose Estimation Patch Example for TSM v3.2.2.....ccccvviivviieiieiiee e 214
Diagram 100 - Fast Pose Estimation Patch Example for TSM v2.2.2......cccccevviieeiciciee e 214
Diagram 101 - Level Peak Detection Patch DC Sets Execution Time Profit...........ccccceeeevvenennnen. 218
Diagram 102 - Level Peak Detection Patch DC Sets Execution Time Profit (TSM v2.2.2)............ 221
Diagram 103 — PFP & LPD Patch DC Sets Execution Time Profit.......ccccccoceviveieiiiicen e, 227

Diagram 104 — PFP & PPD Patch DC Sets Execution Time Profit.........ccccocveeeiieeeeccei e, 230

1. Master Thesis Outline

The first part of the master thesis was the part of studying the preparing for the implementation
of the TSM Algorithm. In this stage except of studying over the X. Zhu and D. Ramanan “Face
detection, pose estimation and landmark localization in the wild” paper [1], other related paper
had to be studied too in order to understand and analyze the algorithms structure and
methodology. One of these paper is the one from which the TSM algorithms come from, the
"Object Detection with Discriminatively Trained Part-Based Models" paper [2]. As the master
thesis demanded general knowledge around the computer vision and pattern recognition, extra
studying over these Computer Science fields had to done. For example, the book “Computer
Vision: A modern Approach” [24] by David Forsyth and Jean Ponce was used for that purpose.
The difficulties on this stage was the fact that, without any background knowledge, in a short
time period a lot of new Computer Science Fields had to be learned and combined in order to
understand a state of the art algorithm. We have to refer that this master was done in the
Microprocessors and Hardware department of TUC, a department not specialized in Computer
Vision and Machine Learning fields.

The second stage of the master thesis working was the implementation of the TSM algorithm
using the C\C++ programming language. The algorithm was offered by the creators in Matlab
script using some parts write in C++ as the Matlab tool did not offer implementation for every
procedure. These procedures where the HOG, Convolution, Resize, Reduce and DT procedures.
Although these procedures where already implemented in C++ the designer had implemented
them using the Matlab array memory format. This means that this implementation was reading
the array data column by column instead of line by line as the C array memory format does. For
that reason this procedures had to be rewritten and debugged.

1|6 (11|18 21 1|2 3| 4|5

2| 7 | 12|17 | 22 6|7 8| 9|10

3| 8 |13 |18 23 11)12 113 | 14| 15

4|9 | 14|19 24 16)17 | 18| 19| 20

3 |10 | 15| 20| 25 21 |22 | 23| 24| 25
Figure 1 - Matlab Arrays Memory Format Figure 2 - C Arrays Memory Format

One of the greatest difficulties in the implementation of the TSM algorithm was the debugging
procedure. Millions of data had to be tested in order to be sure that the procedures
implementation had no errors. The solution to that problem was the usage of Matlab tool. Every
procedure we implemented we called through the Matlab tool and we receive the return data

inside the Matlab environment. Every part of the algorithm we implemented used inside the
creators implementation and the returned data were compared with the data the creator’s
implementation return. These processing was much easier and faster than doing it in C\C++.
Although this solution helped us a lot make us save a lot of time, it cost us a considerable
amount of time on creating special libraries for formatting the data from the Matlab array
memory format to C and vice versa. For the debugging procedure we had to create a full set
library functions for converting all the data structures the TSM algorithm needed from the
Matlab format to C and the opposite. Despite the effort of creating these libraries, the

advantage we got worth the trouble.

Matlab to C library

T
llljé Jl

12]il' 22

13| 14

::' :|-r|.'-||

l-l 1‘3 24

T
-+

|

1

||.’| 1-5 23
I

|

1:- [0 2s |z 24|25

1|6 |11)s

1:!1;! a7

2]

a2

Converter (3]s | :a'z?

4 | % |4 :&lgq

MATLAB

z:|22|13|24 2| 5 |10 1s.m|1:,1|

Figure 3 - Mat2C Library Diagram

Another part of the implementation was the creation of different kind of versions of the
algorithm. This part was not difficult but as long as the parallelism was used the time
consumption of testing all these versions was extended. Every different parallelization
technique had to be tested for all the versions to see its effect on the TSM algorithm execution
time. Sometimes we had to take decisions in order to reject some versions because the number
of versions would increase in an out of scope number.

The Research part of this thesis was also a great time consumer. As happens in the research field
there were techniques designed, that in the end were rejected as they did not offer any useful
results and they are not mentioned in this thesis despite the fact that a lot of time was spent to
be implemented and tested. During the research period a lot of time was also needed for testing
the results of the implemented patches in order to see their effect in the TSM algorithm
performance. We had to let the algorithm run for hours to get these results, as the sample
images used for testing were 205 images of multiple, usually large, sizes. We needed about 10
hours for a single test. Also a lot of Matlab scripts had to be written in order to make automatic
the procedure of data analysis. The uncertainty of the research was a difficult but on the other

hand constructive part of this thesis working time.

At last the writing stage of this thesis was also a great time consumer. The main reason for this
delay was the fact that this thesis had a huge amount of data analysis. For every graph
presented in this thesis lots of data had to be processed. Hundreds of Excel files were used in
order to process these data and create useful graphs by them. We also had to create our own
profiler inside the TSM algorithm implementation code in order to derive the data needed for
these analysis. Multiple Matlab scripts had to be written in order to profile the algorithms
memory consumption and regularize the data in order to be graphically presented. This thesis
contains 129 diagrams, 182 tables and 94 figures the majority of which are custom made. All
those diagrams and tables shown in this thesis caused us a lot of effort and time but they are a
necessary part of it we could not omit.

2. Master Thesis Abstract

In this thesis a new implementation of the “Face Detection, Pose Estimation, and Landmark
Localization in the Wild” [1] algorithm by Xiangxin Zhu and Deva Ramanan is represented. This
implementation was firstly designed for being used by embedded systems but finally it can also
be used by large multiprocessors systems. This is because the modern embedded systems tend
to be similar to what we used to call multiprocessor systems years ago. Because of the huge
needs of the market in the area of embedded systems (smart-phone, tablets and more) the
latest embedded system are in the category of small multiprocessor systems using from 2 to 4
and even more cores in their central processing unit.

Our implementation of the “Face Detection, Pose Estimation, and Landmark Localization in the
Wild” algorithm was implemented in basic C\C++ as there is no usage of any external C\C++
library in the core of the algorithm. This gives the algorithm the ability to be used in both
Windows and UNIX systems with no further changes. It also allows further improvements and
alteration as it is easily readable for those who would like to use it for custom application. Our
implementation gives the ability of customizing the functionality of the algorithm through a set
of settings and parameters that can easily be modified.

As this implementation is designed for usage in embedded systems the need of reducing
memory consumption and processing speedup was encounter. For that reason a number of
customizations were made in contrast to the original implementation of its creators. There were
also produced a set of techniques that some may pull down the algorithm’s performance but in
contrast they offer extra speedup and memory saving. These techniques may be very useful for
custom application.

Despite any further speedup the main problem of making the face detection task a great time
consumer is the fact that the image size in the one that makes it a long time processing. Large
images compel the system to create large image pyramids in order to search them for face
detection. In addition the larger the top image is the more time is needed to be processed. The
main solution on this problem is proposed is the scaling of the original image to a smaller size in
order to reduce the number of data needed to be processed. This solution makes the systems
faster but they lose part of their performance as scaling an image to a smaller size makes small
size faces to be unable for detection. Our implementation offers a method that scans the image
pyramid faster for face detections in order to avoid detection processing in pyramid levels that
seems to be empty of faces. This can be a very effective method for video application where
empty faces frames can be faster processed and rejected.

3. Related Work

As far as we knew, no previous work was introduced jointly addressing the tasks of face
detection, landmark localization and pose estimation until the June of 2012 when X. Zhu and D.
Ramanan proposed the “Face detection, pose estimation and landmark localization in the wild”
[1] work. This work was supposed to be the state-of-the-art that time and was used as a
baseline for further research leading to the presentation of more proposals for systems trying to
make the face detection process a much faster and efficient. To succeed this, new models was
used except of discriminant parts models like neural networks. The neural networks are
considered to be the more efficient and fast models that can detect faces and estimate pose.
We are not going to mention all of them but only the most recent like [3], [4], [5], [6] and [7].
The most similar work to [1] is the [8], [9] and [10].

Our work does not try to present a new face detection or object detection method but to make
the Discriminant Part Models and Tree Structural Model systems faster and less memory
consumption ones. For this reason the only related work that can be referred is the [25] that
implements the same algorithm. The reason of choosing this algorithm is because except of face
detection and pose estimation it also offer landmark localization of the 68 or 39 (depends on the
viewing angle) human face landmarks. Another task it also implements is the face detection of
faces in the range of over 60 degrees viewing angle. Many algorithms have been deployed since
then, like [26], [27], [28], [29], [30], [31] and [32] but most of them do not offer all these tasks
the same way. Many of them do not offer landmark localization at all or they detect few of
them, the most significant for the face detection (ex. Eyes). The need of the landmarks
localization demand the convolution procedure of at least 68 cascade windows of the image
features space that is a very heavy procedure. Others does not offer pose estimation at all while
the most of them that does, only offer pose estimation in the range of 60 degrees. Only the [25]
does offer the complete set of tasks and it’s the one to compare with.

As far as we know, there are also many other freeware algorithms offered in the web but none
of the uses the TSM method meaning that all of the have a lack of tasks. They usually offer face
detection or/and pose estimation but not the 68 landmark localization or face detection in more
centered faces as referred in the previous paragraph. Some of these algorithms are [3], [4], [5],
[6], [7], [8] and [10].

4. TSM Algorithm Simple Description

The “Face Detection, Pose Estimation, and Landmark Localization in the Wild” [1] algorithm was
created by Xiangxin Zhu and Deva Ramanan from the University of California, department of
Computer Science on 2012. On this algorithm XiangXin Zhu and Deva Ramanan presented a
unified model for face detection, pose estimation and landmark localization in the real world. It
is a model based on a mixture of trees with a shared pool of parts, which represent facial
landmarks, and used to capture topological changes due to viewpoint.

The creators claimed for achieving reliable estimates of head pose and facial landmarks,
particularly in unconstrained “in the wild” images. They presented a single model that
simultaneously advanced the state of the art for all three. It is a novel but simple approach to
encoding elastic deformation and three-dimensional structure using mixture of trees with a
share pool of parts. They define a “part” at each facial landmark and use global mixtures to
model topological changes due to viewpoint. Different mixtures are authorized to share part
templates which allow the model a large number of views with low complexity.

They presented an extensive evaluation of their model for face detection, pose estimation and
landmark localization. They compared to the state-of-the-art from both the academic
community and commercial systems such as Google Picasa and face.com. In terms of face
detection, their model substantially outperforms Viola-Jones and is on par with the commercial
systems above. In terms of pose and landmark estimation, their results dominate even
commercial systems. Their results are particularly impressive since their model is trained with
hundreds of faces while commercial systems use up to billions of examples.

No previous work had jointly addressed the task of face detection, pose estimation, and
landmark estimation until then. Their system is also trained discriminatively, but with much less
training data, particularly when compared to commercial systems.

4.1. Face Detection Based on Parts Based Detection

The “Face Detection, Pose Estimation, and Landmark Localization in the Wild” [1] algorithm is
based on the “Object Detection with Discriminatively Trained Part Based Models” [2] by Pedro F.
Felzenswalb, Ross B. Girshick, David McAllester and Deva Ramanan. This algorithm is an object
detection system based on mixtures of multi-scale deformable part models. In the Tree
Structural Model (TSM) algorithm the mixtures are one scale deformable part models.

The Deformable Parts Based Detector (DPBD) algorithm, it tries to detect specific parts of an
object within an image using trained filters. After the object detection the usage of the mixtures
of trees is taking place. The algorithm checks the locality of the detected parts and the location

correspondence between those detected parts to make a conclusion if they are bringing forward
the object we are looking for or they are just dispread parts within the image. As the filters used
for object detection are all the same size, different size objects are detected in different scales
of the image that is why it is based on mixtures of multi-scaled deformable part models.

Figure 4 - DPBD Algorithm Root and Child Parts Detection Figure 5 - DPBD Algorithm Root and Child
Parts Locality

The DPBD algorithm uses a root filter to detect the object is looking for and a set of multiple
filters to detect specific parts inside the object the root filter detects. The combination of those
results gives the final approval of the correctness of the detection (Figure 4 and Figure 5). The
set of filters used for the parts detection needs different scales of the image as these parts are
obviously smaller that the main object. For example if a car is the object the algorithm is looking
for, the wheals, the lights and other parts of it are all smaller than the car’s shape itself, that is
why the system is multi-scaled, as the algorithm has to search inside lower scales of the image
to detect these parts.

In the Figure 6 below the full diagram of the DPBD algorithm is shown. The algorithm uses two
features maps of the image with resolution ratio of two. The small feature map is used for
applying the root filter and the second one for the child parts filters. Adding the filter’s
responses of all the parts gives the final results of the detection procedure.

model

feature map at twice the resolution

response of part filters

response of root filter

transformed responses

color encoding of filter
response values

low value high value

combined score of

root locations

Figure 6 - Deformable Parts Based Detection Algorithm Execution Flow Diagram

4.2. TSM Face Detection Algorithm

On the and Landmark

Localization in the Wild” [1] algorithm there is a small but

“Face Detection, Pose Estimation,
important difference. This algorithm does not use a main root filter
for the detection of human face but only the combination of a set
of parts (Figure 7). This small difference gives us a good flexibility
during the implementation. The algorithm is only trying to detect
specific parts of the human face and checks the location
correspondence to figure out if they fit to the face template it is
trained.

- 224 528 4
i P2, S

e 1 M
I eyt 0 Rogyiar ¥

Figure 7 - Human Face 68
Landmarks

For the pose estimation, our algorithm uses 13 different pose model trees each of which
represents a different point of viewing a human face by the step of 15 degrees viewing angle.
The one achieving the best score is the one recognized.

As described before, the filters used for detecting face landmarks are one size so in order to
detect different sized faces within the image the algorithm has to apply the detection procedure
over a series of image’s scaled copies. The detection procedure does not use simple images but
the HOG descriptors of them. The series of the HOG images of the scaled copies of the original
image is called the features pyramid of the image and it is described in detail in chapter 5.5. On
all these HOG images the algorithm applies the detection procedure for all the different pose
model trees. At the end of this procedure the algorithm selects the top detection as the most
accurate. This is a simple abstract of the way the algorithm works. In the next chapter (Chapter
5) a more detailed description is presented with deeper analysis on every stage of the

algorithms detection procedure.

The Image

Create Feature
Pyramid

Pose Model
Trees

Detect each
Pose within
the Image

Compare
Results

Select the
highest scores

Figure 8 - TSM Algorithm Execution Flow

5. TSM Algorithm Procedures Description

The TSM algorithm it was used in this thesis uses some well-known and widely used procedures
of the Computer Visio science field. In this chapter a short description on them is appose as they
might not be already known by the reader.

5.1. TSM Face Detection Algorithm

In the previous chapter the way the “Face Detection, Pose Estimation, and Landmark
Localization in the Wild” algorithm works was described in a few words. In this chapter a detail
description of the algorithm is referred.

The detection process consists of five sequential procedures.

e Feature Pyramid: Having an image for processing, the algorithm firstly creates its image
pyramid. By the image pyramid the algorithm gets the feature pyramid of the image by
applying a HOG procedure.

e Convolution Stage (Filter Responses): The next step is to convolve all the filters used for
detecting facial landmarks with every level of the features pyramid. This means that using
the Model of total 99 filters and having a feature pyramid of 20 levels, this step is a
procedure of 1980 convolution procedures and the production of 1980 different results
stored in 20 lists of 99 elements. This is a very heavy procedure. The result of a convolution
between a filter and a pyramid level is called the «Response of the filter».

e Distance Transformation (DT Scores): This procedure is the processing of the convolutions
result in order the algorithm to decide whether there is useful information at the results. It
is a procedure where the results of the parts over the features or in other words the
landmarks over the image have to be partial combined in order to produce a face contour.
For that purpose the algorithm is using a tree model where information about the position
of each part according to its parental part exists. This process is achieved by applying
multiple distance transformations and additions between the parts filter responses. All this
processing is ends up to a results array called the «Score» of the procedure. This array data
reveal the existence of any detections.

e Find & Backtrack (Result Cache): As soon as the distance transformation stage finishes, the
algorithm checks the final result for high-scored values. High scored values means face
detection. By the time that high score values exists inside the score table the algorithm
starts a process called «Backtrack» were the position of the landmarks within the image is
estimated. The results of the Backtrack procedure are the results returned by the algorithm

with information about the position of every landmark. All results are saved in a results

table called «Results Cache».

¢ Non-Maximum Supreme (NMS): At the end of the detection process, the algorithm has to

make a selection between the detection results as many detections does not mean multiple

faces within the image but also multiple detections of the same face.

Image
& Model

Figure 9 - TSM Algorithm Procedures Sequel

Distance
Transformation

A more detailed description of each phase of the detection process is represented in the

following subchapters.

5.2. Model

The Tree structural model is used in the TSM algorithm for face recognition contains a variety of

data and parameters used during the recognition and estimations procedures. We will describe

the most important as it is necessary for understanding how the algorithm works.

On a human face there are a lot of landmarks that can be used for
face recognition as shown in Figure 10. Every landmark of this kind is
called a part. A human face inside an image can be appeared through
a variety of points of view depending on the angle the head of the
face’s owner had the moment the image was captured. This indicates
that lots of the parts of the human face can probably not be visible on
some points of view. Many parts of a human face can also look
different when seen from different points of view. This point also
indicates that a standard set of parts cannot be used for face
detection. For that reason the algorithm’s model contains a set of
different parts for every 15 degrees of viewing angle starting for -90
degrees to +90 degrees for total 13 different pose angles. This method
gives as also the pose estimation.

Figure 10 - Human Face
Landmarks

Every set of parts used for detecting faces in a specific point of view is called a component. As
the angle distance of every component with its vicinal is only 15 degrees some parts may appear
tiny defacements, so we can use the same part (landmark) to more than one components.
Another characteristic of the human face is its proportion. This proportion produces a similarity
between the mirrored components. As a result the majority of the parts that are used by a
component can also be used by its mirror component.

Figure 11 - TSM 13 Components

The above remarks conclude to a model that can use only a few amount of parts for a total of 13
components. The creators offer two Models for face detection. One using only 99 filters and one
using 146. The second one appears to be more accurate as long as the detection results but the
first one is faster. On this thesis we are mainly focused on the 99 filters model as we care more
for a fast implementation running on embedded systems. Despite that no substantial difference
exist between those two models and all the important information concerning the algorithm are
referred for both models.

In both 99 and 146 filters models the median component (centered pose of 0 degrees angle)
uses 68 parts for its recognition. All the components used for recognizing faces at most of 45
degrees viewing angle use the same amount of parts when the rest ones use only 39 parts. This
means that a fusion of 710 to 99 (and 146) parts is achieved by using the same parts on multiple
components. This is a very important achievement for the time performance of the algorithm as
is explained later on chapter 6.

Filter 98

Filter 99

Figure 12 - TSM Parts and Filters Connection Structure

In both models (99 and 146 filters) the middle components (4-10) representing faces of -45 to
45 degrees viewing angle use the same filters for landmark detection. The position between
them is the criteria for individualizing them. On the other hand the filters used by the edge
components (1-3 and 11-13) representing -90 to -60 and 60 to 90 degrees are not always the
same. On the 146 filters model the left and the right edge components use their own set of 39
filters. This is how the number 146 comes from (Table 1). On the other hand on the 99 filters
model only the half of the edge components part’s filters are unique while the rest are
borrowed by the parts of the middle components as also shown in Table 1.

Table 1 - TSM Components Mutual Parts

Components

1 2 3 4 5 6 7 8 9 10 11 12 13

m 16/23 16/23 16/23 68 68 68 68 68 68 68 15/24 15/24 15/24
146 39 39 39 68 68 68 68 68 68 68 39 39 39

Every part of the model is associated with a three dimensional filter that is used in the detection
process in order the landmark that the part represents inside the image to be discovered.

Every component uses an amount of parts. These parts are connected in a tree style hierarchy.
The reason of doing that is because the position of each part according to the rest ones inside

the image produces the conclusion of a face existence. The tree model of the component 7 is
shown in the Figure 13 below.

=
s
mmm P33
E
=

p32

z

P37

P36 P35 -

P22 P24 F45

|P12 | p1a ||| P23

=
[y
=]

i) el) el)

P17
P18 l P50 | P53 P&l
1] 7
P19 F54 P62
P20 P31 P55 P&3
P56 P&4
P57 P85
PSE l P&E
P54 l P&7
' Pa0 l P&B

Figure 13 - TSM Component 7 Parts Tree Structure

5.3. Image Pyramid

An image pyramid is a collection of multi-scaled representations of an image. The parameter
«Levels» of an image pyramid is the number of scaled images in the pyramid and the «Interval»
one is referring to the number of levels exist in the pyramid between two images with scale
ratio of 2. In the Figure 14 below an image pyramid of 12 levels and interval parameter set to 4
is presented. For further reading use [11].

Levels : 12
Interval : 4

Figure 14 - Image Pyramid Example

5.4. HOG

The Histogram of Oriented Gradients is feature descriptors used in image processing for object
detection. There are more than one feature descriptors in computer vision but this one is
considered to be the most accurate and suitable for human detection as described by Navneet
Dalal and Bill Triggs in 2005 [12] and that’s why it is used as a part of TSM algorithm. In the
Figure 15 below a visual representation of the HOG descriptors of two images is shown.

Figure 15 - Histogram of Oriented Gradients Descriptors Example

The idea behind the HOG descriptors method is that the shape and the characteristics of the
objects within an image can be described through the intensity of oriented gradients and edge
directions. The way for doing that is by dividing the image into small boxes of pixels called cells
and calculate the histograms of gradients direction or edge orientation within each cell. The
combination of these histograms represents the descriptor.

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Image Pixels per Cell = 16
Block 1 Bldck 2 Black 3 Black 4

Cell 6 Cell 7 Cell 8 Cell9 Cell 10

X HOG H i
Cell11 | Cell12 | Cell13 | Cell14 | Cell15 i
R Il X
| i T
Cell 16 | Cell 17 | Cell18 | Cell 19 | Cell 20 : 32 i 4
| i 3\‘ ¥ <1
Cell 21 | Cell 22 Cell23 | Cell24 Cell 25 ‘ 4
Figure 16 - HOG Cells and Blocks Figure 17 - TSM Algorithm HOG Procedure Data

The improvement of the descriptor can be achieved using normalization methods against
illumination differences and shadowing. This normalization is applied separately on groups of
cells called blocks and not in the whole image at once for better accuracy (ex. Shadows). Using
cells and blocks, the HOG descriptor method keeps a good tolerance against geometric and
illumination transformations and that’s a good. Transformations affect more when using large
regions of pixels within a cell.

In the TSM algorithm the HOG stage gets a 3 levels (colors) Width* Height array and returns a

Width * Height
Pixels — Per — Cell

32 levels one. This array is the «Features image» of this image

5.5. Feature Pyramid

The first thing the TSM algorithm does is creating a feature pyramid of the image. A feature
pyramid is similar to an image pyramid but instead of scaled patterns of the image it uses scaled
patterns of the histogram of oriented gradients of the image. The creation of a feature pyramid
demands the existence of the image pyramid as its more accurate to scale the image first and
the get its HOG than create its HOG and scale it afterwards. The last option does not produce
the desirable results as deferent scales of an image produce different kind of HOGs as is shown
in Figure 18.

Original Image HOG from Image Pyramid HOG from Scale

e LI E A
/

{
£
o~
s
o
A
g
?f
8
¥

i

By S

Q.
(%)

Figure 18 - Features Pyramid from Image Pyramid vs Scaled HOG Images

In the Figure 18 above in the third column is presented the HOG images coming from the images
at the second column. The first column images are getting blurred as moving downwards
because they are smaller size than the top one in the scale noted at the first column. On the last
column the HOG images comes from the top HOG image at the same column scaled by the scale
factor at the corresponding first column. It is clearly visible that the HOG images at the third
column are much more accurate than the ones at the forth column. This is why the features
pyramid comes from the image pyramid and not by scaling the HOG images. As is obvious the
features pyramid of the face detector algorithm is comes as the third column of the Figure 18.

There are three parameters in the features pyramid that have to be explained

e Interval: The Interval parameter defines the number of levels exists between two levels with
scale ratio of two, as explained in chapter 5.3. This parameter defines a measurement of the
density of the pyramid. A low density pyramid can cause the escape of detections as our
model detects faces of a specific size. The higher the density is the more accurate the
algorithm is. In addition to accuracy the higher the density is the more hardware resources
are needed to execute the algorithm and the detection process last more time. The creators
of the algorithm have define this parameter value to 5 as the most efficient.

Interval = 2

Interval =3

Figure 19 - TSM Algorithm Interval Parameter Impact

In the Figure 19 above the features pyramid at the top is using an interval parameter of 2 in
contrast to the bottom one using an Interval parameter of 3. As shown by the red lines over
the images the most accurate detection is succeeded in the third level of the right features
pyramid. The left pyramid fails to have such an accurate detection and it might probably
miss the detection.

MinLevel: This parameter defines the minimum level of the image pyramid that will be used
for detection. As the model detects faces of a specific size, the minimum this value is, the
smaller is the size of the faces within the image that can be detected. The maximum is the
MinLevel parameter value is the greater the size of the faces within the image must be.

MaxLevel: The MaxLevel parameter defines the Table 2 - TSM Features Pyramid
length of the image pyramid and it affects the Parameters Defaults

maximum size of a human face within the image Interval 5
that can be detected. If the MaxLevel parameteris pinLevel 1
low value then large faces within the image may sBin 4
not be detected. In contrast to the MinlLevel .)

. min (image.size)
parameter, this parameter affect much less the 1 T seshin
algorithm execution time and memory resources ~MaxLevel 1+ N
needed as in the end of the feature pyramid the IOg[T"temﬂj

images’ size tend to be smaller in addition to the
beginning.

e Shin: This parameter represents the number of pixels each side of the HOG cell tile uses. The
value of this parameter affects the size of the features image the HOG process produces as
described is chapter 5.4. As referred in this chapter the HOG process produces features
images smaller than the original ones at a scale factor of the Shin parameter value. This
means that the features pyramid levels are all Sbin times smaller than the respective ones

on the respective image pyramid.

Table 3 - TSM Algorithm Features Pyramid per Image Size

Image Size Levels Max Level Size Min Level Size
320x240 18 86x66x32 13x11x32
640x480 23 326x326x32 13x11x32
800x600 25 406x306x32 13x11x32
1024x768 27 518x518x32 13x11x32
1280x960 28 646x646x32 13x11x32

For building the features pyramid the algorithm creators used two procedures. The first one
resizes the image according a scale factor and the second one creates an image half the input
image. That’s because as explained in chapter 5.3 all the images in the pyramid with level
distance equal to the Interval parameter have scale ratio equal to two.

Resize

Figure 20 - TSM Algorithm Image Pyramid Creation Execution Flow

5.6. Convolution

The convolution process is a well-known one in the area of image processing. It is the procedure
of applying a filter over an image. In the TSM algorithm the convolution process is used for part
detection over the features images. As mentioned in chapter 5.2, the algorithm’s models
contains a set of either 99 or 146 filters. Each filter is used for a human’s face landmark
detection. By convolving each filter to the image features map, high score pixels appears in the
place where the landmark exists.

In the convolution process, the image is a HOG descriptors image, a 3D flexible array and the
filter data is also a 3D array in the stable size of 5x5x32. The result of the convolution is in
contrast a flexible 2D array as shown in Figure 21 below.

Image

Convolution

X-5+1

2

Y Y-5+1

Figure 21 - TSM Algorithm Convolution Procedure Data

In the TSM algorithm the convolution process is repeated for all filters for every level of the
features pyramid. In the creators implementation at Matlab the pyramid reaches the 23 levels
for a 640x480 pixels image. This means that 2277 (23*99) convolution processes occur during
the algorithm execution. This is the most memory and CPU consumption stage of the algorithm
although it is the less complicated. In Table 4 the number of convolution procedures occur in the
face detection one according to the input image size.

Table 4 - Convolution Procedure Calls per Image Size

Image Size Levels 99 filters Model 146 filters Model
320x240 18 1,782 2,628
640x480 23 2,277 3,358
800x600 25 2,475 3,650
1024x768 27 2,673 3,942
1280x960 28 2,772 4,088

In the Figure 22 below a visualization of the convolution results is shown.

Model

Eyes Nostril
Figure 22 - TSM Algorithm Convolution Results Examples (Visualized)

By the convolution process a series of results arrays comes. These arrays are called as «Filters
Responses» and consists one of the basic data structures of the algorithm as they allocate a
great amount of memory. For every convolution process a filter response array comes. At the
end of the convolution process the total number of arrays produced by the convolution process
is equal to the number of the levels of the features pyramid multiplied with the number of filters
used by the model. The total amount is the same shown in Table 4.

[Response—>Level(1) } >

[Response->Level(2) J—b Eﬁf_::ﬂ:_ ::ﬁ]::_ - _____:3—$:;
| -

[Response—>Level(3)] oA
i
i

[Response—Level(n)]—b_:H:_— P

Figure 23 - TSM Algorithm Filters Responses Data Structure

::%:

:%ZZ

:'J%ZI

érf__

5.7. Distance Transformation

Distance transformation is a method used in computer vision, image processing and pattern
recognition for comparison of binary images, especially when these images are results of feature
detection. The distance transformation technique specifies the distance from each pixel to the
nearest non-zero pixel.

On a binary feature image the distance transformation produces an image map where all non-
feature pixel have a value corresponding to its distance to the nearest featured pixels. It's a

representation of the features cost to each pixel.

-|g
-

(o] L]
]C]=

Figure 24 - Distance Transformation Examples

In our algorithm the implementation of distance transformation is used is the Pedro F.
Felzenszwalb and Daniel P. Huttenlocher [13] one as it is one of the fastest. The distance
transformation stage does not contain just an execution of a distance transformation process
but a sequential execution of the process for every part of the model tree. The algorithm climbs
the tree from the leaves to the root adding each parts’ score to its parent’s one just after it
applies the distance transformation process as shown in Figure 25.

—* Parts(k) > score | DT D iy Seeon
7

_+

Parts(k) > Parent — score ————» +
J \f

\Jc;*— Parts(k) — Parent —» score J

Figure 25 - TSM Algorithm Distance Transformation Procedures

In a simple trial of visualizing this process a summary of it is shown in Figure 26 and Figure 27. In
Figure 26 a summary of this process applied on the model tree of component 13 is represented
and an extendible representation of its last branch (68 to 61 leaf) in Figure 27.

DT(11) s

DT(10) DT(43)

- -
-

o

DT(13) DT(24)%
- 3F »
A s .

Figure 26 - TSM Algorithm DT Results of Component 7 Tree Example (Visualized)

In the Figure 26 above is visible that after applying the distance transformation process multiple
times at last the final image comes of this procedure is an image with high-score pixels (white
pixels) in the place where the human faces exists.

In the Figure 27 below a detailed representation of how the distance transformation procedure
works on the detection process. Using the filters responses produced by the convolution

procedure the algorithm applies the distance transformation process on it and add the parental
filter response according to the pose’s model tree.

DT(68)

DT(67)

L

SC(66) DT(66)

-

lﬁl

00) E' .

1

FR(63) s
3 15

Ve
.

ey 4
a

@

| |

bt

|

=]
P}

{1
Il

Figure 27 - TSM Algorithm DT Results of Component 7 Tree Leafs 61-68 Example (Visualized)

The result arrays form the distance transformation process are called as «DT Scores» and are
those data that are passed in the next stage, the Backtrack stage (Chapter 5.8 and 5.9), for
further processing. These arrays are two for every part of the pose tree, except from the root
one, plus one with the whole tree score. The tree score array is the one where the detection is
discovered while the others are used by the Backtrack procedure for the landmark localization
one. The number of DT Score arrays produced in the TSM algorithm is large as shown in the

Table 5 below and it is independent by the number of the filters the TSM algorithm model is
using (99 or 146 filters).

Table 5 - TSM Algorithm DT Scores Arrays per Image Size

Image Size Levels DT Scores
320x240 18 25,092
640x480 23 32,062
800x600 25 34,850

1024x768 27 37,638
1280x960 28 39,032

5.8. Find

At the end of the sequential distance transformation procedure the Find procedure is returning
the coordinates of the high-scored pixels within the image. It just makes a selection of the
scores values that is considered to be detection results. The Threshold parameter that defines
the limit over which a pixel value is considered a detection is set by the creators in the value of -
0.65.

Figure 28 - TSM Algorithm Find Procedure Results

By observing the algorithm results during the profiling process (more details in chapter 6.2), we
noticed that the find procedure discovers high-score values not only at the place of an existing
human face but in different occasions. These occasions are,

e One face, multiple poses detection: When a human face exists within an image during the
detect process the majority of the poses trees produce high-score values. Small viewing
angles differences at the pose trees is sensible to create similar results.

e One face, multiple scale detection: When an image illustrating a human face is used for
creating an image pyramid it is sensible that the models would detect the same face in
multiple nearby levels of the features pyramid. As larger is the interval parameter, explained
in chapter 5.5, of the features pyramid more the levels where the same face is detected

would be.

e One face, multiple high-scores: As is visible in Figure 28 above, after the distance
transformation process the results around the highest score have similar values close to the
highest one. The threshold used for selecting the highest value cannot be accurate as
different images creates different high-scores. The threshold value comes after several tests
using several different input images. As a result it is impossible for the algorithm to use a
Threshold parameter value that would select only one high-score value after the DT process.

More details about the find process results are presented in chapter 6.13.1.

5.9. Backtrack

Backtrack procedure is the part of the algorithm that makes on the landmark localization. Even if
there was no interest in landmark localization, this stage would be needed for localizing the face
detection. The Backtrack procedure is a resources cheap process and is only executed when
detections come up. What is necessary to be mentioned is that the Backtrack procedure
produces a landmark estimation set for every high-score pixel the find procedure discovers. This
means that a series of landmark positioning sets candidates comes from the Backtrack
procedure. The final selection of the most accurate sets comes from the NMS procedure based
on each candidate’s high-score value and its position within the image that is explained in
chapter 5.10.

All the Backtrack procedure results (Candidate detections) are stored in a Results Cache array.
This array size is set to 10,000 results cells by the creators. Every time this array is full the NMS
procedure (Chapter 5.10) is called in order to free array cells from inaccurate and duplicated
detections.

Figure 29 - TSM Algorithm Backtrack Procedure Results

The Backtrack stage results are temporary saved in a data structure called «Results Cache». This
data structure has a user defined size and its default one is 10,000 set by the algorithm creators.
If this data structure is fully filled with detection results the NMS process is called in order to
release data by rejecting the fake results.

5.10. Non-Maximum Suppression (NMS)

Non-maximum suppression (NMS) [14] process is used for selecting high-scoring detections and
skipping the ones that are significantly covered by previously selected detections. As described
in chapter 5.9 the TSM algorithm produce many detection results while trying to detect a face
within an image. As it is obvious poses that are near the same area of viewing angles produce
scores with low contrast. For this reason the algorithm has to find out which detections refer to
the same face within the image and which ones to different faces as an image can contain more
faces. Detections that refer to the same face would have the same locality with low overlapping
differences. The NMS method detects these overlaps and keeps only the highest score
detection, rejecting the rest. This method also makes clear the pose estimation.

Figure 30 - TSM Algorithm One Face Multiple Detections Example

There is a parameter on this process called «Overlap». This parameter defines the percentage of
one detection box area that overlap another one in order those two detection boxes to be
considered as overlapping boxes. Two overlapping boxes refer to the same face. The score that
follows each one is the parameter that creates the dominated one. The lower score boxes are
discarded. The default value of the Overlap parameter is set to 0.3. This value must be also a
product of multiple tests by the creators. Experiments in some different values come up with
faulty results as shown in Figure 31.

0.7

Figure 31 - TSM Algorithm Overlap Parameter Impact

6. TSM Algorithm Implementation

In this chapter an implementation analysis of the TSM algorithm will be quoted. On the
implementation architecture we divide the algorithm in three separate modules (Figure 32)

according to their role and their dependencies. These three modules are the “Input”, the
“Output” and the “Face Detector” one.

Input Data Qutput Data

Image J Model J Results J Image J

. L

-3
<

r/
i

Face Detector

Component Stage Detect Sstage

Features Pyramid

Level Stage
ImagerramidI ‘ NMS J

DT J

Backtrack I Convolution

J SE—
—/ Y,

S - Z

Figure 32 - TSM Algorithm Implementation Modules

HOG

The inputs module is where the input data of the algorithm come up. The algorithm gets two
basic inputs, a 3D array structure containing the image data and the model data structure. The
image array has to be a three channel array, one for each color. In our implementation we used
the OpenCV [27] libraries in order to read image files and decode them in array data structures.
We used the OpenCV library as it provides a variety of functions for reading image files, it is very
popular to the computer vision society and it is free licensed. For the model data structure we
used the XML data format almost for the same reasons. To read XML data format files we used
the open source library rapidXML [33]. This stage is fully independent as it can be easy replaced
by any custom module using other methods for providing the face detector algorithm with the
input data it needs in the format we described above.

The output module is the one that gets the results from
the face detector TSM algorithm and converts it in the
format the user desires. In our implementation we
offer three output types, projection in the computer
screen (for PCs), exporting in image format file (JPEG)
and in XML format file containing the algorithm’s results

data. For those three types we used the OpenCV and
the rapidXML libraries as in the Inputs module. This Figure 33 - TSM Algorithm Output Image
module as the previous one is also fully independent

and can be easily replaces by any custom implementation that a user can create.

At last the “Face Detector” module is the one where the face detection process takes place. The
“Face Detector” module consists of seven different stages. This stages are,

1. The Features Pyramid stage produces the pyramid of image descriptors (HOG). This stage
was described in chapter 5.5 and it was separated from the rest stages as an independent
stage because the next ones have to wait for its outputs in order to start their execution.
None stage can start running if at least one features image is produced. It is a preparations
stage that creates the data needed for the recognition process to start. The convolution
stage needs it and it has to wait for it. Extensive description of this stage exists in chapter
6.6.

2. The Detect stage represents the main detection process and it is the algorithms real body.
The process followed inside this stage is what makes the algorithm so special that the
creators claim it as state-of-art algorithm. This stage contains all the rest stages of the
algorithm.

3. The Components stage is the one where the detection procedure of a specific component
takes place. In this stage, having a component as an input, the algorithm tries to detect it
within all the levels of the Features Pyramid. This stage is executed one time for every
component of the model.

4. The Level stage contains all the procedures needed to detect one component in one level
feature image. This stage is executed once for every level of the Features Pyramid for every
component of the algorithm’s model.

5. The Convolution stage is the one where the convolution procedure takes place. The
convolution process is described in chapter 5.6. The convolution stage is a very simple in
complexity but with a heavy data processing one. It is better described by detail in chapter
6.9.

6. The Distance Transformation stage is using the distance transformation algorithm for
creating detection results, as described in chapter 5.7. It represents the algorithms main
detection process as it produces the data where the detection comes from. Detailed
description of its implementation exists in chapter 6.11.

7. The Backtrack stage is the one where the landmark estimation takes place. It is a small but
complex stage where the output data come from. It is the second pure representative of the
detection algorithm. The Backtrack stage implementation is described in chapter 6.13.

In the next subchapters we represent the implementation architecture as provided by the
creators in combined Matlab and C++ scripts. We firstly created a similar implementation in
pure C\C++ script in order to profile the algorithm and check our implementation correctness. In
the chapters following we exhibit a set of improvements we applied in our implementation in
order to make it faster and less memory consuming.

6.1. Original Edition

The first version (version 1.1) of our implementation was a complete conversion of the creator’s
edition in Matlab to C++ in order to check the correctness of our implementation and be able to
profile it and watch its attitude during its execution. The flow diagram of this implementation is
shown in Figure 34.

Image

Model ¢ » Features Pyramid Stage J

5 }

Model Components - EEEE SEEEEEE Features Pyramid J
|
3 ¥
Detect 5tage
Component Stage
Level 5t
a evel Stage

Convolution[Level] ~———» Filter Responses[Level] J
et

DT Stage f
.
Backtrack Stage J——f Results Cache J

e ¥

NMS -+

=

Results J

Figure 34 - TSM v1.1 Algorithm Implementation Diagram

As the number indexes indicates the algorithm flow follows the according flow,

1. Features Pyramid Stage: Having an image and a model available, the algorithm firstly
produces the Features pyramid as explained in chapter 5.5.

2. Model Components: After the Features Pyramid is available the algorithm uses information
about the pyramid’s scales and arrays’ sizes in order to update and calculate some model’s
parameters.

3. Detect Stage: After having the Features Pyramid calculated and the necessary data updated
inside the model the detection process is ready to begin. The creators’ edition begins the
detection process trying to detect every component through the levels of the Features
Pyramid. As seen in the graph two nested loops are used for this procedure separated as

two different stages.

4. Convolution Stage: At the Level stage, where the algorithms tries to detect a component
through all the levels of the Features Pyramid, the algorithm checks if the Filters’ Responses
are calculated for each level of the Features Pyramid. If they are not, then it call the
Convolution stage to calculate them. This happens because in multi-scaled models some
parts of the component may use Filter Response of other levels of the Features Pyramid.
That is why are called multi-scaled models.

5. Distance Transformation Stage: At this moment the actual detection process starts for a
specific level and component. The Filters Responses are necessary for this procedure. After
the DT stage the Backtrack one follows and the detection results are stored in the Results
Cache data structure.

6. NMS: At the end of the Detect stage when all the components have completed the
detection procedure through all levels of the Features Pyramid the NMS procedure has to
be applied in order to collect the right detection as explained in chapter 5.10.

The Feature Pyramid stage is the first process of the algorithms execution flow. This stage is
using three main procedures implemented in C++ by the creators as shown in Figure 35.

1. Resize: The Resize procedure is the one that reduces the size of an image in a custom scale
factor that gets as an argument. The scale factor value can be between 1 and 0.

2. Reduce: The Reduce procedure creates images in the half size of the source ones that gets
as arguments. This procedure replaces the Resize one when the scale factor is 0.5 because it
is a much faster one.

3. HOG: The HOG procedure converts an image into its Histogram of Oriented Gradients
descriptors.

Image

For Interval
Resize HOG(sbin } ——r1—* Temp Pyramid
l
HOG(sbin) — Padding
While < MaxLevel l
Reduce —» HOG(sbin) —— Features Pyramid

J

Figure 35 - TSM v1.1 Algorithm FP Stage Implementation Diagram

As seen in the Figure 35, the TSM algorithm uses the resized images to create half scaled ones
with the Reduce procedure. By these images it gets the corresponding HOG images. After the
algorithm completes the features pyramid (Temp pyramid), then it begins a padding procedure
so the HOG images data arrays can be convolved later in the Convolution stage without any loss
of information.

6.2. Profiler

Profiling the Face Detection TSM algorithm is not as simple as it may seem. This is because some
parts of the algorithm are either image size or detection independent and some of them both.

In the profiling process there are four types of dependencies in the different parts of the
algorithm.

o Image size dependencies: The image size dependencies come from the size of the image
that is being processed by a part of the algorithm.

e Pyramid dependencies: This kind of dependencies come from the number of levels the
features pyramid has. If the input image size is large, the number of features images come
out the features pyramid process would be larger than a smaller size image.

o Detection dependencies: In chapter 5.7 the detection process is described of how the DT
stage produces high-score values in the score array when face detection exists. By the
results of the DT stage the execution of the Backtrack stage is depending as it is processing
the detection results. If no detection results exists the Backtrack stage has no job to do. This
is a detection dependency.

o Model dependencies: The models proposed for the TSM algorithm affect its performance as

they contain different number of filters. Each filter is convolved with the features images of

the pyramid and this is time and memory consuming procedure.

In the Table 6 below the dependencies table is presented showing the different stages and

process dependencies as long as the time profiling of the algorithm.

Table 6 - TSM Algorithm Time Dependencies

Procedure

Features
Pyramid Stage

Resize
Procedure

Reduce
Procedure

HOG Procedure

Detect Stage

Conv. Stage

Convolution
Procedure

Component
Stage

Level Stage
DT Stage

DT Procedure

Backtrack Stage

Find Procedure

Size Pyra
Yes = Yes
Yes No
Yes = Yes
Yes Yes
Yes = Yes
Yes Yes
Yes = Yes
Yes Yes
Yes = Yes
Yes Yes
Yes Yes
Yes Yes
Yes = Yes

Detect

No

No

No

No

Yes

No

No

Yes

Yes
No

No

Yes

No

Model

No

No

No

No

Yes

Yes

Yes

No

No
No

No

No

No

Description
See Resize, Reduce and HOG procedure

Procedure calls are the same as interval
parameter (Pyramid) (Chapter 5.5)

Larger image means more execution time
(Size)

Larger pyramid means more procedure calls
(Pyramid) (Chapter 5.5)

Larger image means more execution time
(Size)

Larger pyramid means more procedure calls
(Pyramid)

Larger image means more execution time
(Size)

See Convolution, DT and Backtrack stage.
See NMS procedure

See Convolution procedure

Larger image means more execution time
(Size)

Larger pyramid means more procedure calls
(Pyramid)

More filters means more procedure calls
(Model)

See DT and Backtrack stages

See DT and Backtrack stages
See DT procedure

Larger image means more execution time
(Size)

Larger pyramid means more procedure calls
(Pyramid)

See Find and Backtrack procedures

Larger image means more execution time
(Size)

Larger pyramid means more procedure calls
(Pyramid)

More high-score values detected more
execution time.

Backtrack More detections means more data to
No No Yes No
Procedure process (Chapter 5.9)

More detections means more procedure
calls (Chapter 5.9)

More high values detected cause easier the
results cache to full meaning more

NMS Procedure = No No Yes No procedure calls (Chapter 5.10aaaaaa)
More high values means more execution
time

As the execution time of the algorithm may varies due to hardware resources and the operating
system workload, the time profiling of the algorithm is presented in percentages according to its
total execution time. In chapter 10 a set of measurements for different hardware resources is

appose.

As long as the time profiling of the algorithm, the profiling process had to be done using a
variety of image’s sizes that would also produce high detection results. This way all these three
profiling dependencies are calculated inside the profiling process. In our profiling process we
used images of the following sizes shown in Table 7.

Table 7 - TSM Algorithm Profiling Images

Sample Images Pixels Pixels (Mpx) FP Levels Max Faces
320x240 76,800 0.1 Mpx 18 8
640x480 307,200 0.3 Mpx 23 31
800x600 480,000 0.5 Mpx 25 48
1024x768 786,432 0.8 Mpx 27 79
1280x960 1,228,800 1.2 Mpx 28 123

1600x1200 1,920,000 1.9 Mpx 30 192

In the Table 8 below the dependencies of the algorithm parts as long as their memory impact
are shown.

Table 8 - TSM Algorithm Memory Dependencies

Procedure Size Pyra Detect Model Description
Features Yes @ Yes No No See Resize, Reduce and HOG procedure

Pyramid Stage

Resize
Procedure

Reduce
Procedure

HOG
Procedure

Detect Stage

Convolution
Stage

Convolution
Procedure

Component
Stage

Level Stage
DT Stage

DT Procedure

Backtrack
Stage

Find Procedure

Backtrack
Procedure

NMS
Procedure

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Yes

No

No

Yes

Yes
No

No

Yes

Yes

Yes

Yes

No

No

No

Yes

Yes

Yes

No

No
No

No

No

No

No

No

Larger images produce larger scaled images
(Size)

Larger images produce larger reduced images
(Size)

Larger pyramid means more Reduce
procedure calls (Pyramid)

Larger images produce larger HOG images
(Size)

Larger pyramid means more HOG procedure
calls (Pyramid)

See Convolution, DT and Backtrack stage. See
NMS procedure

See Convolution procedure

Larger images produce larger filters
responses images (Size)

Larger pyramid means more procedure calls
(Pyramid)

More filters means more procedure calls
(Model)

See DT and Backtrack stages

See DT and Backtrack stages
See DT procedure

Larger images produce larger DT images.
Larger pyramid means more DT procedure
calls

See Find and Backtrack procedures

Larger pyramid means more Find procedure
calls (Pyramid dependence)

More high-score values detected more find
results (Detections dependence) (Chapter
5.8)

More high-score values detected produce
more backtrack results.

More detections means more Backtrack
procedure calls

More high-score values detected produce
detection results and results cache filling.
More results cache fillings mean more NMS
procedure calls

At last these dependencies affect the memory needed for the basic TSM algorithm data
structures used for the detection procedure. In the Table 9 above this dependencies are

presented.
Table 9 - TSM Algorithm Data Dependencies
| Procedure Size Pyra Detect Model Description
Larger images produce larger sub-scaled
Featur.es Ves Yes No No |mages.and features images (Size)
Pyramid Larger images produce greater levels features
pyramid (Pyramid)
Larger features images produce larger Filters
Filters Responses (Size)
N N Y
Responses Yes ° ° e More filters produce more Filter Responses
(Model)
Larger images produce larger DT Scores (Size)
DT Scores Yes Yes No No Larger pyramid produce more DT scores arrays
(Pyramid)
Results Cache No No Ves No More detections produce more detection

results

As long as the memory profiling process a virtual profiler was created in order to produce the
maximum memory consumption results assuming the worst case scenarios. For maximum
memory consumption profiling, the profiler reacts as the detection process is achieving full
detection results on all levels of the features pyramid on every pose tree. This way there is no
case that can escape. This is the worst case of maximum memory consumption. This scenario is
impossible to happen in real world but is accurate to predict the possible maximum memory
consumption as it is used for different sized images and assuming the worst detection
dependencies scenario. The first three dependencies (except Model) are calculated for the
worst case by the profiler.

On the other hand in total memory consumption profiling the virtual profiler assumes that the
image is fully filled with faces but this faces cannot produce full detection results in every
component at all levels as this scenario is out of sense and it would produce memory profiling
results that would be misguided. Using different sizes images is the easy way to beat the image
size and pyramid levels dependencies, but as long as the detection ones using the maximum
consumption profiling scenarios it produces huge amounts of memory consumption that leads
to misunderstandings and it is far away from the real life results.

The only stage that is actually detection dependent is the Backtrack one. By this stage is also
depended the NMS procedure calls. The Backtrack stage is the one that checks inside the score
array, which comes from the Distance transformation stage, for high-score values and matches
these values with the corresponding model tree landmarks for landmark and pose estimation.

High-score values means face detection. If the Find procedure does not find high-score values
the rest of the Backtrack stage is not executed. The whole Backtrack stage is difficult to be
profiled as it is fully depended by the detection results. The Find procedure though is the only
part of the backtrack stage that is always executed.

When profiling the algorithm for maximum memory consumption we assume that the Backtrack
stage is getting the maximum high-scores values from the Distance Transformation stage. It is
like getting an image full of high-scored values. On the other hand when we profile the
algorithm for total memory consumption this strategy gives as a huge amount of memory
consumption that is very far away from the real life results and it would lead to incorrect
conclusions. For that reason a series of tests were made in order to create a memory profiling
model that could create the most secure and close to real life profiling.

By testing the algorithm in different scales of faces, it was discovered that it is able to detect
faces larger than 100 pixels high when using the 99 filters model and larger than 50 pixels when
the 146 filters one. With a width of the same size in pixels, a face’s area is about 1000 and 250
pixels. This way it is easy to predict the maximum number of faces can be presented within an
image according to its size using the functions (1) and (2).

Faces, ., - {lmage.wzdth X zmage.hezghtJ ”
10000
image.widthx image.height
Faces_ . :[J 7500 geas J (2)

In the Distance Transformation stage not all face detections produce the same high-score
values. A clear image of a face inside a laboratory environment produces more high-score values
than a face within an into-the-wild environment. In addition a face of zero degrees angle
produces more high-score values than another one with more degrees angle. Knowing that a
face’s area is 1000 pixels within the image and also knowing that a feature image has about 16
times less pixels than its original (4 times smaller) it is sensible that the maximum high-score
values that a face can produce in the Distance Transformation stage is about 625 values. This
gives also a maximum face approximate function, the function (3).

HOG.widtthOG.heightJ (3)

Faces,, =
[600

Another parameter that takes matter in the prediction of the Backtrack stage attitude according
to the memory profiling is in how many levels a face within an image can create high-score
values. Again, faces with angles and into-the-wild images produce fewer high-score values than
faces with zero degrees angle and captured in laboratory environment.

By testing the algorithm using both detectable images from laboratories and into the wild
images a close prediction to the real maximum memory consumption can be exclaimed. The
results showed that a face can be detected about at the 12% of the features pyramid levels

Table 10 - Find Procedure Profiling Results

Levelswith—High—Scores o PlxelsWith—High—Scor 4
0

Levels aainmes _ Py Find with—High—Score

Max Average Min Max Average Min

 Samples |
T e e
18.9 14.3 12.1 611 169 1
28.6 17.2 9.18 611 128 1
28.6 14.8 7.37 611 103 1
28.6 116 0.31 611 79 1
I N .
215 16.1 12.9 343 116 1
24.0 16.8 10.7 343 91 1
24.0 15.7 7.21 343 70 1

All (100%) [EPYY0 11.8 0.32 343 53 1

As seen in the Table 10 above the two Models offered for the algorithm creates much different
results. It is obvious that using more filters the algorithm is more accurate at its detection
producing less high-scores for the same or even better results. This is because every filter used
in the 146 filters Model is better trained and more accurate on detecting human face landmarks.
As also seen in the Table 10 the clearest the images are more concentrated are the high-score
values inside the Feature Pyramid levels. In the results table, the maximum number of high-
score values reached by an image is 611 values, almost the same with the theoretical value
calculated in the previous paragraph. This shows that the number of high-score values a face
produces is much smaller than it real size in pixels.

According to these measurements two basic functions were created in order to predict the
number of high-value pixels result after the DT stage procedure. For creating these two
functions and for prediction safety reasons the top 50% of the samples were used. These two

w -
c
© S
= =
-+ @]
2 >
wn
€ Q
o
< @
3 K
Q.
o

Levels,, siopeq = Round (0.15-levels) (4)

HighScoresy,, =100x Components x Levels,, ¢, (5)

146 Filters Model
Levels,y, sooreq = Round (0.15-levels) (6)

HighScoresy,,, =10x Components x Levels ., ¢,.req (7)

The first function ((4) & (6)) gives the levels of the features pyramid that high-scored values
appears cause of the faces within the image. The levels start counting always from the top in
order to profile the Backtrack stage with the hardest amount of data even if it is image size
independent. The second function ((5) & (7)) calculates the total number of high-score values
detected by the find function in the whole algorithms execution. In Table 11 various cases
results are presented for the 99 Filters Model.

Table 11 - High-Score Pixels Profiler Results

320x240 640x480 800x600 1024x768 1280x960
18 23 25 27 28
Cras | ghsoeres

é 3,900 5,200 5,200 6,500 6,500

_% 7,800 10,400 10,400 13,000 13,000

g 11,700 15,600 15,600 19,500 19,500

_‘2‘.) 15,600 20,800 20,800 26,000 26,000

-:‘l‘—:" 19,500 26,000 26,000 32,500 32,500

23,400 31,200 31,200 39,000 39,000

One of the parameters affecting the maximum memory
consumption of the algorithms is the Results cache memory. Cache Size = Max Memory
This data structure keeps the data returned from the Backtrack = (Detections) (Mbytes)
procedure in addition to some more information until the NMS 10,000 11,24
process select the correct ones. This cache memory is defined 8,000 8,99
to 10,000 detection results by the creators but it is easily 6,000 6,74
changeable. For that reason the results cache memory is not 4,000 4,50
included in the max memory consumption profiling as it affects 2,000 2,25

the distribution statistics. In the table below the results cache
max memory usage is shown according to its size.

6.3. Original Edition Profiling

After the implementation of the TSM algorithm’s version 1.1 a profiling process took place in
order to watch the algorithms’ attitude during its execution. In the profiling process we watch
only the «Face Detector» module as the rest (Inputs, Outputs) are customize according to every
specific application and the main function.

6.3.1.Time Profile

In Table 13 the percentage of CPU holding time of each stage and procedure for different image
sizes is shown. A graphic representation of these results is presented in Diagram 1. As it is
apparent the main CPU time consumer is the Convolution stage. The second procedure that

keeps the CPU busy is the Distance Transformation one.

Table 13 - TSM v1.1 Execution Time Distribution (%)
320x240 640x480 800x600 1024x768 1200x960 Average

Levels 18 23 25 27 28
FP Stage 3.86 4.47 4.50 5.02 4.66 4.50
Conv. Stage 64.3 65.9 66.3 66.3 66.8 65.9
DT Stage 31.2 29.2 28.9 28.4 28.4 29.2
Backtrack Stage 0.35 0.38 0.30 0.21 0.14 0.28
0.30 0.09 0.08 0.06 0.04 0.11
W 320x240 HFP m Conv H DT
30 B 640x480 W Backtrack Others
| 800x600
o 20
§ W 1024x768
= = 1200x960
10
0 - w w w 4.50
FP Conv. DT Backtrack Others 0.11 -0.28

Diagram 1 - TSM v1.1 Algorithm Execution Time Distribution per Stage

As is shown in Diagram 1 the execution time of each stage is almost stable in ratio to the
algorithms total execution time despite to the processed image size.

In Diagram 2 the algorithms’ execution timeline for a 640x480 size image is shown. What is
conspicuous is that all the convolution processing takes place at the first run of the Component
stage executed for the first component of the model. This is a useful note concerning the
algorithm’s execution flow for further improvements exposed in the following chapters.

I N RN | R R AR

m Components M Features Pyramid m Convolution mDT Backtrack

Diagram 2 - TSM v1.1 Algorithm Execution Timeline

In the Diagram 3 below the time consumption incremental trend is shown. As seen the
Convolution, DT and FP stages execution time is normally increased as the image size does. One
the other hand the Backtrack stage has reversal trend. This is because the Backtrack stage
consists from image size independent parts. As referred in chapter 5.9 the Backtrack stage is
mainly detection dependent and that is why it is not following the same trend as the rest stages

of the algorithm that are mainly image size dependent.

20
15
10
5
O T T T T 1
320x240 640x480 800x600 1024x768 1200x960
—FP Conv DT
Backtrack Others ~ «eceeeeee TSM
— — —Data

Diagram 3 - TSM v1.1 Stages Execution Time Growth Trend per Image

6.3.2. Memory

A second type of profiling applied in the algorithm is the memory one. The memory
consumption of the algorithm cannot be profiled accurate as the number of detection within the
image affects extensively the memory consumption. For that reason we used for that process a
memory profiling simulator that takes as parameters the worst cases of memory consumption
so that the maximum memory consumption can be accurate forecasted as mentioned in chapter
6.2.

By profiling the algorithm memory usage in a variety of different size images we got
measurements about the memory usage of the algorithm for the features pyramid’s arrays, the
filters responses’ arrays and the whole amount of memory it request from the operating system.

All these measurements are shown in Table 14 and in Diagram 4.

g"’;a 1:222 m 320x240
-§° 1,000 B 640x480
400 m 800x600
500 m 1024x768
400 m 1200x960
200 -
0 - : : :

FP Stage DT Stage Backtrack Results Features Filters DT Scores Results Others
Stage Pyramid Responses Cache

Diagram 4 - TSM v1.1 Memory Consumption Distribution

Table 14 - TSM v1.1 Memory Consumption Distribution (%)

- Image Size 320x240 640x480 800x600 1024x768 1200x960 Average
| TotalUsage 18Gb 68Gb 11.3Gb 184Gb 28.6Gb
FP stage 2.71 2.86 2.69 2.71 2.73 2.74
a Conv. stage 0.00 0.00 0.00 0.00 0.00 0.00
g DT stage 42.2 42.0 39.0 39.0 38.9 40.2
Back. stage 23.4 23.5 26.1 26.1 26.2 25.1
F. Pyramid 1.34 1.29 1.20 1.19 1.18 1.24
F. Responses 0.98 0.97 0.91 0.90 0.90 0.93
DT Scores 13.9 13.8 12.9 12.8 12.8 13.3
Results 14.1 15.1 17.0 17.1 17.1 16.1
Others 1.39 0.38 0.24 0.16 0.11 0.46

As seen in the graph the DT stage is the most memory consumer of the algorithm creating
suspicious for memory leakages and possibilities of memory usage improvements. The second
greater memory consumer of the algorithm is the Backtrack stage with the detection results in
the third position. As seen the data structures needed for the detection (Features Pyramid,
Filters Responses, DT Scores, Results Cache) use a small amount of memory in relation to the
whole algorithm memory consumption. The DT Scores arrays are those that use the most
memory unlike the rest ones.

In the Diagram 5 below the incremental trend according to the image process size is presented.
As seen all the stages memory consumption is normally increased as the image size does. The
only stage that stay still is the Convolution stage that uses zero temporary memory for its
procedure and the Results Cache memory that is a stable, image size, independent data
structure.

20

15
10
5
0
320x240 640x480 800x600 1024x768 1200x960
= = =Image = eceeeeees SM FP Stage
Conv. Stage DT Stage Back. Stage
Others Results = = = F. Pyramid
— = = F. Responses = = = DT Scores ceeceeeee Results Cache

Diagram 5 - TSM v1.1 Memory Consumption Growth Trend per Image

6.3.3. Max Memory

A third type of profiling is the maximum memory one. This is a very important measurement as
it reveals the maximum memory needed for the algorithm to be able to be executed in the
hardware. Unlikely, the total memory consumption profiler that is used only for checking the
algorithm attitude during its execution, the max memory profiler is critically used for checking
the hardware resources needed for the algorithm to be executed. In Table 15 below the
distribution of the maximum memory consumption of the algorithm is shown. In this table the
Results Cache memory is not contained as it is volatile and user determined as explained in
chapter 6.2. Despite that, in the Results Cache table line, the incremental caused to the
maximum memory when the default size Result Cache is used is filled. The table’s contents are
graphically shown in the Diagram 6.

Table 15 - TSM v1.1 Max Memory Consumption Distribution (%)

320x240 640x480 800X600 1024x768 1200x960 Average
18 23 25 27 28

70Mb 287Mb 409Mb 664Mb 1,030 Mb

0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
316 30.0 31.1 31.9 32.4 31.4
33.9 30.7 31.4 31.9 322 32.0
24.8 23.1 23.8 24.3 24.6 24.1
7.81 7.43 7.68 7.88 8.00 7.76

1.88 0.94 0.91 0.84 0.80 1.08

Results Cache +32.0 +7.82 +5.49 +3.39 +2.18 +10.2
(default)

1200x960

1024x768
800x600
640x480

320x240 | HEN Mbytes

0 100 200 300 400 500
Backtrack Stage M Feature Pyramid M Filter Responses
| DT Scores H Others H Results

Diagram 6 - TSM v1.1 Maximum Memory Distribution per Image

Looking at the maximum memory distribution graph (Diagram 6) it is visible that the greatest
parts of the maximum memory consumption are hold by the Backtrack stage temporary
memory, the features pyramid data structure and the filters responses one. What is very
important is that almost the one third of the maximum memory consists of temporary memory
unlike the rest memory that consists of useful data structures. Another point is that the Results
Cache data structure affects the maximum memory consumption of the algorithm more when
the image size is used in getting smaller. As shown in the Table 15, above the increment on the
maximum memory consumption of the algorithm when the default Result cache size is used
reaches the 32% on a 320x240 image while this increment is only 2.2% for a 1200x960 one. This
makes sensible that the Results Cache size should dynamically change according to the size of
the processing image.

In the Diagram 7 below the maximum memory distribution is incremental trend is presented. All
the participants of the maximum memory consumption are increasing normally as the image
size is increasing except of the Result cache that remains stable independent the image size.

16 A

12

10 +

640x480 800x600 1024x768 1200x960 1600x1200

= = =|mage = eeceerees TSM Backtrack F.Pyramid

Others

DT Scores Results

F.Responses
Diagram 7 - TSM v1.1 Maximum Memory Consumption Trend per Image

In the Diagram 8 a detailed memory profile of the algorithm is presented. In dark vertical line
the Components loop is defined as described is chapter 6.1 (Figure 34). What is suspicious for
memory leakage is the fact that the Features Pyramid data structure seems to consume more
memory than the Filters Responses ones. For every level of the features Pyramid the algorithm
uses an XxYx32 image and for its response to all filter a (X-4)x(Y-4)x99 array. This means that the
Features Responses should use more memory than the features images. The memory profile
graph above betrays a series of parental remains of the Parts Based Detector algorithm
explained in next subchapter (chapter 6.4).

140

120 N1 N -

100

o)
o
|

Mbytes

N
o
=

Time
—— Components TSM FP Stage
Backtrack Stage DT Scores DT Stage
Filters Responses Results Cache — — = Features Pyramid

Diagram 8 - TSM v1.1 Algorithm Memory Profile

6.4. DPBD Algorithm Remains

Before starting analyzing the algorithm from the top to the bottom and proceed to changes in
details, a series of small but crucial changes had to be made as they affect the whole algorithms
execution and it would be better to referred before the in deep analysis.

6.4.1.Removing the Model Components Process

In the index 2 of the Figure 34 (Chapter 6.1) the algorithm uses some information produced in
the features pyramid and updates some of the parameters of the model. This effect of the
feature pyramid over the model comes from the multi-scale models of the DPBM algorithm. On
the TSM algorithm’s one-scale model this affect is disappeared and the “Model Component”
procedure can take place before the features pyramid process and even omitted. As the TSM
face detection model’s parameters are independent from the features pyramid’s information
the “Model Component” procedure can take place once and its effect over it can be saved
permanently in the model data structure file.

As long as its contribution to time and memory saving, this change has no impact as it is a very
fast and memory costless procedure. The removal of this process is not a crucial one and can be
let as is, although for informational reasons it had to be referred. It is important though to refer
that removing this procedure from the algorithm creates the need of creating a new model data
structure with the data that the model components procedure calculates inside.

6.4.2. Convolution Process

In the index 4 of the Figure 34 (Chapter 6.1), the algorithm calls the convolution procedure to
calculate the filters responses over a specific level of the feature pyramid. These responses are
saved and used for all the parts asking for their response to this specific level of the feature
pyramid. At this point one more remain of the DPBM algorithm exists. The model uses a scale
parameter for every part because of the multi-scale type of the DPBM algorithm where each
parts of the model may needs different level response. On the TSM face detector algorithm all
the parts of the model use the same level responses. This difference allow as to change the
location inside the algorithm where the convolution process can take place and use less memory
at its execution as shown in Figure 36. The effect of a change like this is described in chapter
6.17 as it changes the whole algorithms’ execution flow.

'\:_ Can be removed _F) Image

”)
Model - -

\, - # Features Pyramid Stage J

%
— Y
mm |
o 1
|: Model Components -l—:'-—— —————— Features Pyramid J
rl
E"--________ _______.—"- |
3 T L J
Detect Stage
Component 5tage — —
C_'_:_ Can change position -:;
g .--LevelStage . _ :._ﬁ:-:;’_'———-'_ =—

£
1 Convolution[Level] ———® Filter Responses|[Level] J
J -

- - -

DT Stage Jl""

v

Backtrack Stage ——— Results Cache |
" —
6 v

MNMS -+
Results

Figure 36 - TSM v1.2 Algorithm Execution Flow Changes

6.4.3. Root Filter Interval Set

As seen in Figure 35 in chapter 6.1 the w

memory allocated for the features ==

pyramid is larger than the one that /" ' == @
used for the Filter Responses. This | Forinterval AP .

reveals another remain of the parental

Resize

DPBD algorithm. As shown in Figure 37,
inside the red circle the algorithm
creates a series of features images | @~ — — — — — — — — — —

using the half sbin parameter value.

This action creates an interval set at the

—

top of the features pyramid that is two

times smaller than its original image as Figure 37 - Features Pyramid Stage Changes (TSM v1.2)
referred in chapter 5.5. The reason the

creators proceed at this implementation is probably because they need features images twice
larger than the ones the parts need for all levels for the root part of every model as referred in
chapter 4.1. In the TSM face detection algorithm the root part is similar to all the others and
these interval set is actually not ever used. This is the reason why the features pyramid structure
uses more memory, as its top interval set is never used in the convolution process and does not

create filters responses. As a result this interval set can be removed from the features pyramid.

By removing this top interval set from the Features Pyramid the results are got in the algorithm
are those shown in Table 16 below. As seen in this table the Features Pyramid stage time
consumption is reduced at the half of it. This is because the interval set of features images
removed is the top one which means the greatest images set. As also seen in the same table the
algorithm’s maximum memory consumption is significantly reduced by just removing an interval
set of features images. This is an indication of how great impact has the images size in the
maximum memory consumption of the algorithm.

Table 16 - Features Pyramid Extra Interval Set Removal Effect (TSM v1.1) (%)

320x240 640x480 800x600 1024x768 1280x960 Average
Levels 18 23 25 27 28
TSM -2.21 -2.23 -2.67 -2.06 -2.23
FP Stage -50.7 -48.8 -54.2 -49.2 -50.8
Memory Usage
TSM -2.36 -2.20 -2.22 -2.23 2.26
FP Stage -49.4 -49.4 -49.4 -49.4 -49.4

Max Memory
TSM -24.2 -30.2 -24.3 -24.3 -24.3 -25.5
Features Pyramid -71.5 -73.1 -73.4 -73.7 -74.0 -73.1

6.4.4. Double to Float

At last another global change in the algorithm is the conversion of it in order to use float data
types instead of the double ones. This small conversion reduces all the memory consumption to
its half as the float data type is using 4 bytes instead of 8 ones. The algorithm’s accuracy in not
influenced at all and its execution time is reduced as shown in Table 17 below.

Table 17 - TSM v1.1 Double to Float Effect (%)

320x240 640x480 800x600 1024x768 1280x960 Average
Time -6.13 -7.58 -7.69 -7.08 -7.62 -7.22
Memory -50.0 -50.0 -50.0 -50.0 -50.0 -50.0
Max Memory -50.0 -50.0 -50.0 -50.0 -50.0 -50.0

A similar attempt of conversion the algorithm to run using normalized integer values was tried.
The results were negative in this attempt as the algorithm lost a bit of its accuracy especially
during the landmark localization and the time consumption was worst compared to the float
version due to the continuous normalizations needed.

By using the float data type instead of the double one and removing the extra features pyramid
interval set the algorithm is now consider as an extended version of the original in order to
individualize it from the original version 1.1. This version is called the 1.2 version of the
algorithm. The differences are not much and not important but from this point every
comparison with the primary version would be a reference to the version 1.2.

6.5. TSM Original Version 1.2

After removing the remains of the DPBM algorithm from the creators’ edition (1.1) as referred in
the previous chapter 6.4, the algorithm moves to the new 1.2 version. For this version is
required to present the new profiling tables and graphs as they are going to be used as
comparison data for the changes that will referred in the following chapters. In the Table 18

below the time table is presented.

Table 18 - TSM v1.2 Execution Time Distribution (%)

| 320x240 640x480 800x600 1024x768 1200x960 Average

Levels 18 23 25 27 28
FP Stage 1.91 2.25 2.36 2.37 2.42 2.26

Conv. Stage 65.6 67.4 67.8 68.1 68.1 67.4
DT Stage 31.9 29.9 29.5 29.3 29.3 30.0
Backtrack Stage 0.37 0.39 0.31 0.22 0.15 0.29
0.30 0.09 0.08 0.06 0.04 0.11

mFP

H Convolution

mDT

Backtrack

W Others

2.57 0.10 ™-0.33

Diagram 9 - TSM v1.2 Execution Time Distribution per Stage

As far as the memory consumption, the change of using double type data to float ones reduced
the algorithm memory usage in the physical memory to the half but this is not a real change to
the algorithms’ structure. On the other hand removing the first interval set of the Features
Pyramid has reduced the size of the Features Pyramid data structure and the algorithm
maximum memory consumption despite the data type used (float, double). The new memory
consumption tables are presented below.

Table 19 - TSM v1.2 Memory Consumption Distribution (%)
320x240 640x480 800x600 1024x768 1200x960 Average

I
086Gb 33Gb 55Gb 9.0Gb 14.0Gb
230 236 -2.20 2.22 2.23 2.26
1.40 1.48 1.39 1.40 1.41 1.42
" 0.00 0.00 0.00 0.00 0.00 0.00
¥ 43.2 43.0 39.9 39.9 39.8 41.2
@ 23.9 24.1 26.7 26.7 26.8 25.6
(Results [T 15.5 17.3 17.4 17.5 16.4
0.39 0.36 0.33 0.32 0.31 0.34
1.01 1.00 0.93 0.93 0.92 0.96
14.2 14.2 13.2 13.1 13.1 136
1.30 0.34 0.20 0.12 0.08 0.41
| others [INGKE! 0.06 0.04 0.04 0.03 0.06

As far as the maximum memory consumption of the algorithm that is a more critical indicator
affecting the algorithm execution ability over the hardware resources, the new maximum
memory tables are below,

Table 20 - TSM v1.2 Max Memory Consumption Distribution (%)
320x240 640x480 800x600 1024x768 1200x960 Average

Pyramid Levels 23 25 27 28 30

27Mb 100Mb 155Mb 251Mb 390 Mb
Max Usage
242 243 243 243 243 24.3
FP Stage 0.00 0.00 0.00 0.00 0.00 0
0.00 0.00 0.00 0.00 0.00 0

0.00 0.00 0.00 0.00 0.00 0
Backtrack Stage 41.7 38.7 40.4 41.7 42.5 41.0

12.7 11.84 11.64 11.45 11.30 11.79
Features Pyramid

-24.2 -22.4 -24.3 -24.3 -24.3 -23.9
Filters Responses 32.8 29.8 30.9 31.7 32.2 31.5

103 9.6 10.0 103 10.5 10.1
[others BT 135 1.21 1.11 1.06 1.44

Results Cache
(default) 42.2 10.1 6.8 4.3 2.8 13.2

As seen in the Table 20 above, the maximum memory consumption of the algorithm is totally
affected by the removal of the DPMD algorithm remains. The maximum memory consumption is
reduced about 24% and the Features Pyramid data structure is now participating at the 12% of
the total maximum memory instead of the 32% at the original version (1.1).

J

1200x960
1024x768
800x600
640x480
320x240 | =

1

1

1

1

0 100 200 300 400
Backtrack M Filter Responses M Pyramid B DT Scores M Others M Results

Diagram 10 - TSM v1.2 Max Memory Distribution per Image

At last memory profile diagram (Diagram 11) of the version 1.2 of the algorithm is presented
below.

00 — T

Mbytes .

60

Time
Components TSM FP Stage
Backtrack Stage —— DT Scores —— DT Stage
Filters Responses Results Cache — — - Features Pyramid

Diagram 11 - TSM v1.2 Algorithm Memory Profile

6.6. Features Pyramid Stage

The Features Pyramid stage is the stage of the algorithm Table 21 - FP Stage to TSM (%)

where the image pyramid is created and afterwards the Image Time Memory Max
features one. This stage is a short one but it is very critical ~ 320x240 1,91 1,40 0

as it is the first one executed by the algorithm. Its results ga0x480 2,25 1,48
are the input to the Detect stage and required to the = gn0.600 236 1,39
detection process to start. In the Table 21 on the right the 1024x768 2,37 1,40

Features Pyramid stage characteristics are presented. 1280x960 2,42 141

Average 2,26 1,42

O O o o o

The Features Pyramid stage consists by three main
procedures, the Resize, the Reduce and the HOG one. The Resize and the Reduce one are those
who create the image pyramid and scale the images in certain scales. The Resize procedure
scales an image at any custom scale while the Reduce one scales images at their half size. The
difference of these two procedures is the execution time they need to be completed. The HOG
procedure is the one that creates the histogram of oriented gradients descriptors of an image.
This procedure creates the Features Pyramid data structure and the actual output of the whole
Features Pyramid stage. In the Table 22 below the execution time distribution is presented.

Table 22 - Features Pyramid Stage Execution Time Distribution (v1.1) (%)
320x240 640x480 800x600 1024x768 1280x960 Average

| Resize [JINRENG 18.2 223 23.9 23.9 20.4

Reduce 10.0 10.8 11.1 10.5 11.1 10.7
S s 66.9 62.9 61.7 61.4 65.1
| others |[IERY) 4.17 3.75 3.85 3.64 3.86

BResize WReduce HOG Others

Diagram 12 - FP Stage Execution Time Distribution per Procedure (v1.1) (%)

As seen in Diagram 12 above the main time consumer of the Features Pyramid stage is the HOG
procedure holding a little more than the 66% of the whole stage execution time. In chapter 6.6.2
the HOG procedure is explained extended.

As far as the memory consumption inside the Features Pyramid stage the distribution between
the stage’s procedures is shown in the Table 23.

Table 23 - Features Pyramid Stage Memory Consumption Distribution (v1.1) (%)

Procedure 320x240 640x480 800x600 1024x768 1280x960 Average
FP Stage 12 Mb 49 Mb 77 Mb 126 Mb 197 Mb
22.3 21.7 21.6 21.6 21.5 21.7
Reduce 15.3 154 15.4 15.4 154 154
12.4 12.3 12.3 12.2 12.2 12.3
50.0 50.6 50.7 50.8 50.9 50.6
Features Pyramid +27.9 +24.1 +23.4 +22.8 +22.3 +24.1

The Table 23 shows that the main consumer of the Features Pyramid stage’s memory is the
temporary one and not the memory consumed inside its main procedures. The reason for this is
the temporary image and features pyramids that are created as shown in the Figure 35 (chapter
6.1). This is also visible in the Diagram 13 below where the memory profiling of the stage is
presented. On the last line of this table the Features Pyramid output size is presented in ratio
with the stage’s memory consumption.

16

[%]
1]
g =
3 14 im —|_
2 12 i
10
_r=
8] 1= 7 |
- |d T
6 i e
===
4 _ | (
2 1= === 2] '
\
0
Time
Levels FP Stage Image Pyramid
—= = = Temp Pyramid Features Pyramid HOG
Resize Reduce

Diagram 13 - Features Pyramid Stage Memory Profile (v1.1)

In the Diagram 13 above the memory consumption profile of the Features Pyramid stage is
shown. As seen the temporary features pyramid and the image pyramid are the main
consumers. As seen in the beginning of the graph the image pyramid is using an image at the
original size for the first level and holds this image until the end as input to the resize
procedures. On the other hand, all the rest images of the image pyramid are used for a while
and then they are released. The temporary features pyramid is filled with HOG images and at
the end is released while the final features Pyramid is created when padding the HOG images.

At the next chapters the Resize, Reduce and HOG procedures are analyzed and memory and
time improvements are presented.

6.6.1.Resize

The resize procedure is the one for scaling an image to any custom size. In our implementation
is the one that resize the image at the scale of the first interval set of the image pyramid. After
that the reduce procedure creates the rest levels of the pyramid. Both the Resize and the
Reduce procedures implementation were provided by the algorithm creators in C\C++ script.

The Reduce procedure is the one that takes an image and returns a copy of it in the half size. In
our implementation this procedure takes the scaled images of the first interval set and creates
copies half of those images for the next sets of intervals as shown in Figure 20 (Chapter 5.5).
That is because the reduce procedure is much faster than the Resize one as the scale factor is
already known (0.5) and its implementation is customized for it. In Table 24 the amount of time
the reduce procedure needs in addition to the resize one is shown.

Table 24 - Reduce to Resize Procedures Comparison (%)

Image 320x240 640x480 800x600 1024x768 1280x960 Average
Time 75.1% 73.5% 70.6% 66.2% 66.3% 70.3%
Memory 98.2% 98.6% 98.8% 99.1% 99.3% 98.8%

In the Table 25 below a memory comparison between the Resize and the Reduce procedure is
presented. As seen the reduce procedure has a little better memory consumption profile.

Table 25 - Resize & Reduce Procedures Memory Profile

X xYx3

Reduce X xYx3
(X -scale)x(Y - scale)x3 33%
(X -scale)x(Y - scale)x3 33,5%

(X-scale)xYx3+(X+Y)-3+((X-scale)+(Y-scale))-6 67%

Temporary

Reduce (X : scale) xY x3 66,5%
(X - scale)xY x3+(X)-3+(Y -scale)-6 99,6%
Reduce (X - scale)x(Y - scale)x3+(X -scale)x Y x3 100%

In Diagram 14 below the ratio of memory consumption and execution time needed by each
procedure is shown according to the size of the image they use. As seen, both procedures react
the same way to image size increments.

—@— Resize Time »

—@— Reduce Time //
— A — Resize Memory // |

---#--- Reduce Memory /_,.-/"
i
=
=

O B N W H U1 O N 0 LV

320x240 640x480 800x600 1024x768 1280x960

Diagram 14 - Resize and Reduce Procedure Growth Trend per Image

6.6.2.HOG

The HOG procedure is the one that creates the Histogram of Oriented gradients descriptor
described in chapter 5.4. This procedure is the greatest time consumer of the Features Pyramid
stage as shown in Diagram 12 and Table 22 (Chapter 6.6). In Table 26 below the memory profile
of the HOG procedure is presented.

Table 26 - HOG Procedure Memory Profile

X xYx3

(% +6)=(¥ +6)x32 61%
(%422
(%4 +)<(Vavo)=32)+ (%4 +2) (Yo +2)x15) 100%

As it is sensible the larger an image is the more memory is needed for the HOG procedure. As

shown in Diagram 15 the ratio of memory consumption between different levels of the features
pyramid is exponential both in temporary and the results memory which are increasing as the
image sizes increases. The perpendicular thin red line in this graph shows how greater is the
memory needed for the first interval set of the features pyramid in addition to the rest levels.

70

\ ——320x240
60

\ ——— 640x480
50 oUUXoUU
40 \ — 1024x768

Time

30 \\ —— 1280960
N \\E\
12 Si\”ﬁ“ﬁ \ —_— &

0 5 10 15 20 25 0 5 10 15 20 25
Levels Levels

Mbytes

First Interval Set

////

Diagram 16 - HOG Procedure Time Consumption

Diagram 15 - HOG Procedure Max Memory per Level
per Level

At the Diagram 16, the time consumption that each level needs at different size images is
shown. The HOG procedure has the same attitude at time consumption as in the memory one.
Again the red thin line in the graph divides the time consumption needed for the first interval

set.

As seen in Figure 35 (Chapter 6.1) the Features Pyramid is not created directly by the results of
this procedure but the arrays are padded first. This happens in order to have an accurate
convolution process later. The padding procedure costs in the Features Pyramid stage a small
amount of time and temporary memory. These costs can be avoided if the padding procedure
could be done inside the HOG procedure saving its results in previously padded arrays. This
technique produces a new flow diagram of the Features Pyramid stage as shown in Figure 38.

mege

r

e .“\
)

/
[For Interval

Resize }—b HOGgadg=a(5bin))

Reduce J—> HOGpadgea(sbi) J

e e y

Figure 38 - Features Pyramid Stage Execution Flow (v1.3)

In order to nest the padding procedure inside the HOG one a series of changes inside the
procedure in the way the memory pointers are used was made. The time cost of this change is
closed to zero and it could not be able to be measured in action, it is only theoretically
understandable, although the total time consumption of the Features Pyramid stage was
reduced. The results of this improvement in the Features Pyramid stage are shown in Table 27

(Chapter 6.6.3).

6.6.3. Features Pyramid Stage v1.3

At the chapter 6.6.2 a new version of the HOG procedure was presented. This version creates
already padded HOG images changing the Features Pyramid stage flow diagram as shown in the
Figure 38. This change in addition to implementation changes inside the stages procedures
caused changes to the stage’s time and memory tables as shown below. In Table 27 the effect of

these changes on the execution time of stage is presented.

Table 27 - Features Pyramid Stage Execution Time Distribution (v1.3) (%)
320x240 640x480 800x600 1024x768 1280x960 Average

-3.46 -3.25 -4.25 -2.27 -3.82 -3.41
16.2 20.2 221 21.7 224 20.5
11.0 10.4 10.1 10.0 10.2 10.3
72.3 68.4 66.8 67.2 66.6 68.3
0.53 1.03 0.93 1.00 0.89 0.88

By the Table 27 data it is visible that the changes inside the Features Pyramid stage and its
procedures reduced the execution time of it for about 3.5%. This reduction is actually caused

because of the removal of the HOG images padding procedure in the end of the stage as it is

visible in this table.

As far as the memory consumption of the Features Pyramid stage the Table 28 shows the effect

of the changes.

Table 28 - Features Pyramid Stage Memory Consumption Distribution (v1.3) (%)

320x240 640x480 800x600 1024x768 1280x960 Average

13.2 -16.8 -17.6 -18.2 -18.7 -16.9
25.6 26.1 26.2 26.4 26.4 26.2
17.6 18.5 18.7 18.8 18.9 18.5
20.9 18.1 17.6 17.1 16.7 18.1
35.9 37.2 37.5 37.7 37.9 37.2

Features Pyramid 32.2 29.0 28.4 27.8 27.4 29.0

The removal of the temporary features pyramid is the main reason of the reduction of the
memory consumption of the Features Pyramid stage for about 17%. This was the effect of the
new HOG procedure implementation that creates already padded HOG images. In the Diagram
17 the new memory profiling graph is presented.

@ 12 e
s
3 |
s 10 IJ
ot
8 I
1
[
6 I i i
L
4 i \
2 LJl_ .| I—
. | [1114
Time
Levels ———FP Stage Image Pyramid
Features Pyramid — HOG Resize

Reduce

Diagram 17 - Features Pyramid Stage Memory Profile (v1.3)

As seen in the Diagram 17 above the Features Pyramid output is creating during the execution
of the Features Pyramid stage. The main memory consumers are the image pyramid that is used
temporary and the output data of the stage, the Features Pyramid.

The features Pyramid stage does not participate at the maximum memory consumption limit the
algorithm reaches. For this reason the memory consumption reduction is not an important
achievement on this version (see version 3.x, Chapters 6.19 and 6.20). On the other hand, the
speedup of the stage’s execution time is actually the important change achieved. Even if the
Features Pyramid stage is a short one, is very important to make shorter as the detection
procedure needs its output results in order to begin, as mentioned in the first paragraph of this
chapter.

6.7. Features Pyramid

The Features Pyramid data structure is a global one
created inside the features pyramid stage and used Image FP/TSM Levels Memory
at the detection process. It handles the HOG 320x240 12.7% 18 3.4 Mb

images of the image pyramid as described in 640x480 11.8% 23 11.9 Mb

chapter 5.5. Its life time starts at the end of the 800x600 11.6% 25 18.0 Mb

1024x768 11.4% 27 28.8 Mb
1280x960 11.3% 28 44.0 Mb

features pyramid stage and finish at the end of the
detect stage as shown in Diagram 8 (Chapter 6.5).
What is worth to focus on is the fact that it holds a
noticeable amount of memory at the maximum memory consumption index.

By using the new version of the HOG procedure, described in chapter 6.6.2, the HOG images
come of, are already padded and immediately registered in the Features Pyramid data structure
as shown in the Figure 38. So, actually the Features Pyramid data structure is created during the
Features Pyramid stage and is released during the Detect stage. The features images are not
useful by the time the Filter Responses are calculated and they are immediately released after
that. Even though this data structure participates on the maximum memory consumption
indicator. As shown in the Table 20 (Chapter 6.5) the Feature Pyramid holds about the 12% of
the algorithms data structures memory.

6.8. Image Pyramid

One sensible question would probably be why the algorithm creates the features pyramid of the
image and not the simple image one transferring the HOG procedure inside the detection
procedure just before the convolution stage as shown in the Figure 39 below.

Image

.

Model * Image Pyramid Stage J
, l

Model Components e Image Pyramid J
|
¥
Detect Stage
Component Stage
Level Stage
HOG[Lewvel] +—— Convolution[Level]
DT 5tage jl— Filter Responzes[Level]

v

Backtrack Stage JI'——I- Results Cache

Results
—

Figure 39 - Image Pyramid in TSM Algorithm

As far as the time consumption this change would not offer any serious benefit, as in a single
core CPU the results are the same. On the other hand as far as the memory consumption, the
features pyramid needs less memory than the image one. As shown in the Diagram 18 below
the size of the image pyramid is larger than the features one for the majority of image sizes until
the pyramids coming from an image sized 304x228 pixels and lower. These are very small
images where the algorithm anyway consumes very low memory.

100
e |mage

80

e Features
60

Mbytes

40

20

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
Levels

Diagram 18 - Image vs Features Pyramid Memory Consumption

Table 29 - Image vs Features Pyramid

Levels 28 26 24 22 20 18
Image Size 1213x909 919x689 697x523 528x396 400x300 304x228
Image Pyramid 54.7 Mb 31.4 Mb 18.0 Mb 10.4 Mb 5.9 Mb 2.0 Mb
Features Pyramid 39.8 Mb 23.5 Mb 14.0 Mb 8.4 Mb 5.1 Mb 1.9 Mb
Features/Image 72.9% 74.9% 77.5% 81.0% 85.6% 99.9%

In the Table 29 above the Image and the Features Pyramids sizes are shown. At the last line the
ratio between them is also shown. In the next chapters various versions of the algorithm are
presented. In some of them the features pyramid data structure does not participate at all in the
maximum memory consumption formation of the algorithm and gives the ability of choosing the
image pyramid instead of the features one.

6.9. Convolution

The convolution stage is implemented by the convolution T EF R SR o) (%)

procedure which was implemented in C++ by the creators

- ' ' Images Time Mem
and it |hs the most mportantfp;ocidu;e of the :;Igorlthm als; 640%480 656 0
t t t
uses the most resources of the hardware and any sma 800x600 674 0
improvement on it can cause large improvement to the
)]) 1024x768 67.8 0
whole algorithm execution. As shown in Table 30 the
. 1280x960 68.1 0
convolution process uses almost the 68% of the complete
. . . . o 1600x1200 68.1 0
algorithms execution time. This means that it is very
Average 67.4 0

important to find ways to decrease this procedure
execution time. In the following graph below (Diagram 19) in the thick lines the time needed for
the convolution process according to the features pyramid levels is shown.

\ —1280x960
\

——1024x768

Time

— 640x480

NN E—
-

rrrrrrrerrr e

1 3 5 7 9 11131517 19 21 23 25 27
Levels

Diagram 19 - Convolution Procedure Time Consumption per Level

In chapter 5.6 the convolution process is described. By this description and by looking at the
convolution procedure memory table (Table 31) it is clear that the convolution procedure is a
very simple one with a very heavy work to execute. It is actually a many data to a simple process
procedure and that is why no great improvements can be applied to it. By looking at the
memory table (Table 31) it is easy understandable that the convolution procedure has no space
for memory saving improvements.

Table 31 - Convolution Procedure Memory Profile

X xYx32+5x5%x32
XxY 100%
Temporary 0 0%
X XY x32+5x5x32+ X xY 100%

In the creators’ implementation, the convolution procedure design was used for flexible filters
size. By customizing the convolution procedure design for using only 5x5x32 sized filters we
got the Table 32 results. By executing the convolution process at once and for all the Features
Pyramid levels, not any extra speedup was succeeded but actually a tiny latency. This might be

caused by memory bandwidth overflows.

Table 32 - Convolution Procedure Time Improvements (v1.3) (%)

Image Size 320x240 640x480 800x600 1200x768 1280x960 Average
Customized for 5x5x32 -13.3 -12.8 -12.9 -12.9 -13.2 -13.0
+ all levels at once -13.1 -12.6 -12.7 -12.8 -13.0 -12.8

The reduction of the execution time needed for the convolution procedure by almost 13% is a
very important change as the convolution procedure holds the 67% of the whole algorithm’s

execution time. As shown in the Table 32 above the average of 13% of reducing the Convolution
stage execution time, an about 8.7% reduction is succeeded in the whole algorithm execution
time. This is a great result!

6.10. Filters Responses

The Filters Responses is a set of arrays used for holding the results of the convolution process
between the filters used for landmark detection and the HOG images of the features pyramid
data structure. These arrays’ data come from the Convolution Stage. What makes this data
structure worth to refer is the great amount of memory used that affects the algorithms
maximum memory consumption as shown in Table 33.

Table 33 - Filters Responses to TSM Max Memory

Image FR/TSM (%) Levels Memory
320x240 32.8 18 8.7 Mb
640x480 33.1 23 33.2 Mb
800x600 33.1 25 51.3 Mb
1024x768 33.2 27 83.3 Mb
1280x960 33.2 28 129.2 Mb

In the Diagram 20 below the memory consumption of every level at different sizes of images is
presented. As is visible the top levels of the Features Pyramid creates high memory size Filters
Responses. Reducing the MinLevel parameter of the Features Pyramid, it would cause great
reduce on the algorithm memory consumption (see Chapter 9.4).

35
—320%240
30
—540x480
25
e 800X600
§ 20
B —1024x768
S 15
= 1280%960
10
5
0

123467 8 91011121314151617181920
Levels

Diagram 20 - Filters Responses Memory Consumption per Level

6.11. Distance Transformation Stage

The Distance transformation (DT) stage is the one explained ‘ Table 34 - DT Stage to TSM (%)

in chapter 5.7. This stage is used by the algorithm for every Images Time Mem Max

320x240 319 37.7 0
640x480 299 37.6
800x600 = 29.5 35.2
1024x768 29.3 35.2
1280x960 @ 29.3 35.2
Average 30.0 36.2

pose map tree, (a component) at every Features Pyramid
level. It creates a copy of the filter response of every part of
the component and it starts a series of DT processes and
matrix additions as explained in chapter 5.7 (Figure 25). The
Distance transformation stage main part consists by the DT
procedure which applies an extended version of the Distance
Transformation process (Chapter 5.7) created by the
algorithm’s creator, implemented in C++.

o O O o o

In the Table 35 and Table 36 the Distance Transformation time and memory usage distribution is
shown. As is clearly visible the main time and memory consumer of the Distance Transformation
stage is the DT procedure. What is also visible from the same tables is that the percentage of
memory and time usage that the DT stage holds remains almost the same independently the

used image’s size. At this point a detailed analysis of the DT procedure will be quoted in chapter
6.11.1.

Table 35 - DT Stage Execution Time Distribution (v1.1) (%)
320x240 640x480 800x600 1024x768 1280x960 Average

928 92.1 92.1 91.9 91.8 92.1

7.19 7.95 7.95 8.07 8.20 7.87

Table 36 - DT Stage Memory Consumption Distribution (v1.1) (%)
320x240 640x480 800x600 1024x768 1280x960 Average

66.7 66.7 66.7 66.7 66.7 66.7
| Others [IREEE 333 333 333 333 333

6.11.1. Distance Transformation

In the Face Detection TSM algorithm the creators create an extended the Pedro F. Felzenszwalb
and Daniel P. Huttenlocher [13] implementation in C\C++. The Distance transformation
procedure as shown in Table 35 holds about the 92% of the DT stage execution time and
consumes the 27.5% (Table 37) of the temporary memory the stage uses.

Table 37 - DT Procedure to TSM (%)

Image Size 320x240 640x480 800x600 1024x768 1200x960 Average
Time 29.6% 27.5% 27.1% 26.9% 26.9% 27.6%
Memory 28.8% 28.7% 26.6% 26.6% 26.6% 27.5%
DT proc Calls 16,031 17,425 18,819 19,516 20,910 18,886

The distance transformation procedure implementation given by the creators is almost like the
pseudo-code in Table 38. This implementation uses a lot of temporary memory and creates a
great amount of system memory allocations calls. This fact in addition to the number of times
this procedure is called (Table 37) during the detection process produces a huge amount of
memory consumption and system memory allocation calls as shown in Table 37.

Table 38 - DT Procedure Original Version Implementation (v1.1)

For y=1; y=Image— height; y++
Temp = DT-1D(Image—line(y)) Apply Distance Transformation to every line

For x=1; x=Image—width; x++
dt = DT-1D(Temp—row(x)) Apply Distance Transformation to every row

In contrast to this version a new one was created in order to reduce the memory consumption
and memory allocation system calls. To achieve that a unique temporary memory buffer was
created and used for all the instances of 1D transformation function. This way we reduce the
system calls for a great amount. In order to extent this version of the distance transformation
procedure to multiprocessing computing an instance of this buffer is created for every thread
that may execute the 1D-DT function. The pseudo code of this version of distance
transformation procedure is shown in Table 39 below. The reduction of memory allocation calls
bring also an execution time improvement as is also shown in the same table.

Table 39 - DT Procedure New Version Implementation (v1.3)

tmp = Array[max(x,y), getMaxThreads() | Allocate temporary
memory

For y=I1; y=Image—height; y++
Temp = DT-1D(Image—line(y), tmp[0, currentThread()) Apply DT to every line

For x=1; x=Image—width; x++
dt = DT-1D(Temp—row(x) , Temp[0, currentThread()) Apply DT to every line

Table 40 - DT Procedure Memory Profile (v1.1 & v1.3)

Versions Version 1.1 Version 1.3
XxY XxY
3-(XxY) 42.9% 3-(XxY) 59.8%
4-(XxY) 571% 2:(XxY)+max(X,Y) = 40.2%
4-(XxY)+max(X,Y) 573% 4(XxY)+max(X,Y) 79.9%

Original v1.1 New v1.3 Profit Ratio
.II\-/T?nfory 4'(XXY) 2-(X><Y)+maX(X,Y) z2'()(><Y) =2
M
L () 4 2:(X+Y) =05:(X+Y+1)

As seen in the Table 41 above, the new version of the DT procedure consumes almost two times
less temporary memory and keeps the number of the memory allocation calls stable,
independent of the image size.

Table 42 - DT Procedure Versions Comparison
Images 320x240 640x480 800x600 1024x768 1200x960

b tevels 18 23 25 27 28

vli.l 251.3Mb 9559Mb 1,475 Mb 2,395 Mb 3,712 Mb
Memory vli3 129.1Mb 485.0Mb 746.4 Mb 1,209 Mb 1,870 Mb
vi3/vl.1 51.5% 50.7 % 50.6 % 50.5 & 50.4 %

vi.l 1,556,320 3,132,520 3,923,460 5,015,440 6,242,320
Allocations [RA ¥} 51,120 65,320 71,000 76,680 79,520
vi3/vil 3.28% 2.09 % 1.81 % 1.53% 1.27 %

Memory [R25E 40 76 94 119 149
Calls vli3 632 1,856 2,628 3,941 5,880

vi3 /vl 82.0% 88.8 % 913 % 92.6% 93.9%

mvl3 mvll

100%
80%

60%

40%
20%

0%

Memory Calls Time

Diagram 21 - DT Procedure Versions Resources Consumption (v1.1 & v1.3)

As seen in Table 42 and visualized in the Diagram 21, the greatest advantage of the new version
of the DT procedure is the huge reduction of memory allocation calls. This reduction is also
responsible for the small reduction on the DT procedure execution time. In addition a great
reduction at the temporary memory is also achieved reducing the memory needed at the half
amount. As seen in the Diagram 22, the reduction of the memory allocation calls has greater
impact in the algorithm execution time when small size images are used while its impact is less
in larger images. This is caused because in small images the ratio between the allocation calls
and the size of memory used is larger than in the large ones.

16

14

12

; S
-

= ===="
2 =~ - == = =
0 ‘
640x480 800x600 1024x768 1200x960 1600x1200
= = = Timevl.l Time v1.3 = = = Memoryvl.1
Memory v1.3 = = = Callsvl.1 Callsv1.3
--------- Levels — — — Temp/Calls v1.1 Temp/Calls v1.3

Diagram 22 - DT Versions Growth Trend per Image (v1.1 & v1.3)

In Diagram 22 above the effect of the image size used in the algorithm to the execution time and
the memory needed by the DT procedure is shown. As seen, the memory allocation calls are
image size independent in the new version. The small increment in the diagram is only caused
by the enlargement of the features pyramid levels as shown in the black dotted line. The lines

gradients also show that the new version is the similarly affected by the image size as the old
one as far as the memory consumption and the execution time needed.

6.11.2. DT Stage v1.3

In addition to the new version of the DT procedure, one final improvement one the DT stage
that has to do with the temporary usage of the parts filters responses come from the
convolution stage applied. As shown in Figure 40, each part’s filter response gets the distance
transformation process applied on it and the result is added to its parental part filter response.
This way the filter responses have to be copied to temporary arrays in order to retain their data
as they are used from multiple parts of different components.

P

DT/\;J—

D
1

Parts(k) — score

3

Parts(k) — Parent — score "l- -———

Figure 40 - DT Stage Execution Flow (v1.1)

The implementation of the DT stage is shown in Table 43 as a pseudo-code implementation. The
memory allocations and the memory consumption of the original version of every execution of
the DT stage are shown in Table 45 below.

Table 43 - DT Stage Original Implementation (v1.1)

For k=1; k=Parts—length; k++

Parts(k) —score = Copy(Responces(
Parts(k)—filterID))

Copy Array Data
For k=Parts—length; k=2; k--
Child = Parts(k)
Parent = Parts(Child—parent)
dt = DT(Child—score) Apply DT to Filter Response
Parent—score += dt Add DT Score to Parent FR

Trying to create a less memory consuming version of DT stage finally we end up in a new version
as shown in the pseudo-code below (Table 44). This version takes advantage of the fact that the
majority of parent-child relationships inside the parts of a model’s tree are sequential. This
expression means that having a part with id N its parent id is N-1. This is what we call a
sequential relationship. In Figure 26 (Chapter 5.7) a series of sequential relationships existences
are shown. On our new implementation of DT stage a single array’s memory is used for a whole
sequential relationship and only when this continuity breaks a new array memory block is
allocated. This way all the processes read their data from this array and save their results again
on it. The filters responses data are used as read only arrays and no need of coping them exists.

Table 44 - DT Stage New Implementation (v1.3)

For k=Parts—length; k=2; k--
Child = Parts(k)
Parent = Parts(Child—parent)

If(! Child—score)

Child —score = Copy(Responses(Child— filterID)) Points to F. Response

Child—score = DT(Child—score) Apply DT
/ —
If(! Parent—score) Parent—score = Responces(Points to F.Response
Parent—filterlD)
Child—score += Parent—score Add Parent F.Response fo
DT Score
Parent—score = Child—score gZ;em e

— Copy(Responses(Parts(k) — id))

FALSE H

isParent (Parts(k)) 4—— k——

[1

—» Parts(k) —> score

Figure 41 - DT Stage Execution Flow (v1.3)

Finally a comparison between the new (v1.3) and the original (v1.1) implementation is shown in
Table 45. It is clear that the new version of the DT stage implementation the memory allocations
and consumption is much less than the original. The profits of this change is shown in the last

column.

Table 45 - DT Stage Versions Comparison (1.1 vs 1.3)

Average v1.1 Average v1.3 vi.l/vl.3
DT Procedure Calls 54 54 1
Memory Allocations 164 10 =16.4
Memory Consumption 164- (X X Y) 10- (X X Y) =16.4
Array Additions 54 54 1

At last the final improvement of the DT stage memory consumption and execution time by
applying both the DT procedure and the DT stage new implementation versions can be seen in
Table 46. As seen both in time and memory consumption the new version achieves a great
improvement not as far as the DT stage but also for the TSM algorithm as the DT stage is the
second more important stage of the algorithm.

Table 46 - DT Stage Consumption Improvement (v1.3) (%)

320x240 640x480 800x600 1024x768 1280x960 Average
Time -20.0 -14.9 -12.8 -11.7 -10.6 -14.0
Temporary Memory -64.2 -64.4 -64.4 -64.5 -64.5 -64.4

These improvements in both time and memory inside the DT stage are very important as the DT
stage is the second most important as far as the detection procedure and most consuming stage
as far as the hardware resources needed for the algorithm.

6.12. DT Scores Data Structure

The DT scores data structure is the output data of 5= 1a S A s) o 2 VTVl T [0)

the DT stage. This data is a series of tables Image Max Mem Mem (Mb)
containing information about the parts filters 320x240 103 14.2 123.5 Mb
responses’ results when the DT procedure is applied 640x480 106 14.2 470.8 Mb
to them. The algorithm keeps two table for every 800x600 10.7 13.2 728.9 Mb

part of each component. This tables are used by the 1024x768 10.8 13.1 1.183 Mb

1280x960 10.8 13.1 1.835 Mb
Average 10.6 13.6

Backtrack procedure in order to make the landmark
estimation. For every component the DT stage
except of these parts scores, it return a table
containing the whole component score as described in chapter 5.7. This table reveals if there is
a face detection within the image and is used by the Find procedure.

The DT scores data are one of the shareholder of the algorithm maximum memory consumption
holding the 10.6% of it. The memory consumption of this data structure is increasing as the
image size increase as shown in the Diagram 23. What is significant is the fact that the DT Scores
constitutes the 13.6% of the whole memory usage of the algorithm much larger than the
Features Pyramid and the Filters Responses data structures.

2(5)8 e— 320x240
350 e— 640%x480
" 300 e 800x600
‘; 250 —1024x768
§ 200 —1280x960
150
100
50
0

1234567 8 91011121314151617181920
Level

Diagram 23 - DT Scores Memory Consumption per Image

6.13. Backtrack Stage

The Backtrack stage is the one that handles the [Eidbi i b0 ey eSSVt L i A
possible face detection and identifies the landmarks. Images Time Mem Max

The first job the Backtrack stage has to do is to check 320x240 0.37 24.0 41.7
the DT stage scores array for high-score values. This is 640x480 0.39 24.1 431
the Find procedure job. If no high-score values are 800x600 0.31 26.7 43.3

detected the Backtrack stage is over. On the other 1024x768 0.22 26.7 435

1280x960 0.15 26.8 43.7
Average 0.29 25.7 43.1

hand when high-score values are detected the
Backtrack procedure is the one that makes the
landmark estimation according to the position of the
high-score values and the scale of the corresponding feature image. Finally the results of the
Backtrack procedure in combination with the Find procedure ones are filling the results cache.
Whenever the result cache is fully filled the NMS procedure is applied to select the correct
results, but this process is explained in chapter X. The Backtrack stage flow diagram is shown in
Figure 42 below.

DT Scores Array

-
- ""-.‘

\’_‘ Ifis notempty

£ =5 e
\\\\\f/ ,,
- ¥

High-Scores Array Backtrack

/ Landmarks Arrays

b Results Cache 4—

Figure 42 - Backtrack Stage Execution Flow Diagram

As long as the time consumption, the Backtrack stage uses a tiny percentage less than 0.5% of
the algorithms execution time and for that reason very few attention is given to that part of the
stage. In contrast this stage consumes about the 25% of the algorithms memory consumption
and holds the 43% of the maximum one and that is why more attention to memory

consumption improvements is given. In Table 50 the memory consumption distribution of the
Backtrack stage is shown.

Table 49 - Backtrack Stage Execution Time Distribution (v1.1) (%)

|| 320x240 640x480 800x600 1024x768 1280x960 Average

7.73 4.70 5.10 6.26 8.34 6.43

62.4 52.8 53.9 55.0 52.4 55.3
[others [IEPEXE 42.5 41.0 38.7 39.3 38.3

As referred in chapter 6.2 the Backtrack stage is in a way independent from the image size. This
stage’s attitude during the algorithm execution is fully dependent by the number of the
detection occur. This means that the algorithm may make the minimum usage of this stage if no
faces are detected and either the maximum when plenty of faces are detected. This is why it
very difficult to profile it. In our profiling process we assume that the Backtrack process makes
full detection at every level and component when we are looking for the maximum memory
consumption. On the other hand when profiling for total memory consumption we assume that
the image is full of faces and we use the profiling settings explained is chapter 6.2. Under these
cases the memory profile table of the Backtrack stage is shown in Table 48.

Table 50 - Backtrack Stage Memory Consumption Distribution (v1.1) (%)

|| 320x240 640x480 800x600 1024x768 1280x960 Average

0.60 0.60 0.60 0.60 0.60 0.60
Backtrack 33.7 33.7 33.7 33.7 33.7 33.7

| others [INCER) 65.7 65.7 65.7 65.7 65.7

At this point an extensive analysis of the two basic procedures of the Backtrack stage is given
and after that a small improvement as far as the memory consumption is presented.

6.13.1. Find

The find procedure is the one that checks the Distance Transformation stage scores array for
high-score values and returns a vector of indexes to the corresponding pixels. The find
procedure is the only part of the Backtrack stage that is executed for every component at every

level of the features pyramid. The time needed for this procedure is closed to zero, as it is a very
simple and fast procedure. As far as the memory consumption it is described in the Table 51
below.

Table 51 - Find Procedure Memory Profile

XxY
P,

2 x| —HhSore | Buffer _ Size 100%

| Buffer _ Size |
Temporary 0 0%
XxY .

2x| ————— | x Buffer _ Size 100%

| Buffer _Size |

In the Table 51 above the memory consumption is directly depended by two parameters. The
first parameter, Puigh-scores, iS the number of high-scores detected inside the DT stage results and
is unpredictable. The only prediction can be made is that it cannot be larger than the DT scores
array size. In the chapter 6.2, statistics about the high-score values produced in the DT stage
according to the model used and faces exist within the image.

On the other hand, the Buffer_Size parameter is the size of a buffer used in order to minimize
the memory consumption of this procedure and avoid the temporary memory used to save the
find process results. If this buffer is completely filled, another block of memory of the same size
is allocated. This type of implementation of the find procedure makes it image size independent
as the memory usage is only affected by the number of detections.

The decision for the default memory buffer size was the result of profiling the find procedure
using series of images both in laboratory and into-the-wild environment. The Diagram 24 shows

the probability density of the profiling results. On this graph the high-score values discovered by

the Find procedure every time it was called are shown. This results come from the same tests

that produced the data tables in chapter 6.2, where the Find procedure profiling is presented.

0.12

0.10

0.08

0.06

0.04

Probability Density

0.02

0.00

200
High-Score values

o

—All 100%
——Top 25%

400

Probability Density

0.12

o
n
S)

o
o
)

o
o
&

o
o
B

o
o
]

o
o
<)

———Top 50%
——Top 10%

200
High-Score values

400

Diagram 24 - Find Procedure High-Score Values Probability Density

In this diagram it is visible that the probability density curve

Table 52 - High-Scores per Find

has global maximum close to the lower values. As seen in the

<10 21.4%
o .
Zable 52 more t:an SOAhof the result:]are enter:edtl)nftfhe area <20 338%
etween 1 and 50. This means that as the er size
W ! . 2 <50 54.0 %
increases the wasted memory will also increasing. On the
) i <100 70.7 %
other hand when the buffer size increases the buffer
<200 89.3%

reallocation calls will be decreased. By analyzing the Diagram

24 data, the following tables’ results return. In the Table 53 the buffer reallocations per useful

find procedure are presented, while in Table 54 the size of memory wasted.

Table 53 - Find Buffer Reallocations per Find

Top10
Top25
Top50

e
[y

Top10
Top25
Top50

=
o

17.8
13.5
11.0

10

30
26

20 30 40 50 60 70
9.0 6.5 4.8 3.9 3.2 3.1
7.0 4.5 3.6 2.9 2.8 2.2
5.4 3.7 2.9 2.7 2.1 2.0
4.3 3.3 2.5 2.4 1.8 1.8

80
2.4
2.1
2.0
1.7

Table 54 - Find Buffer Unused Memory per Find (Bytes)

20
49
48
20

30 40 50 60 70
101 92 115 88 187
27 67 65 167 93
32 46 134 89 150

2.3
2.1
1.9
1.6

100
2.3
2.0
1.8
1.3

100
230
291
315

~

28 82 90 160 125 177 229 275 201

What is interesting in these results is the size of useless memory consumed by the find
procedure and the number of system reallocation call according to the buffer size. The ideal size
of the Find Buffer would produce the minimum system reallocation calls and the minimum
wasted memory. In the Table 55 below the results of Reallocation Calls x Wasted Memory are
shown. The desirable buffer size is when the results are lower.

Table 55 - Find Buffer Reallocations x Unused Memory Indicator

10 20 30 40 50 60 70 80 90 100 Proposal
Top10 166 112 164 111 113 70 144 50 91 130 80.60
Top25 103 84 30 60 47 117 50 89 119 146 70.50
Top50 70 27 30 33 92 46 76 105 125 143 60.40

14 31 68 57 96 58 78 98 113 65 60.40
Topl0
—Top25
Top50
—All
10 2‘0 3‘0 4‘0 5‘0 (;0 7‘0 86 9‘0 100 1‘0 2‘0 3‘0 4‘0 5‘0 60 7‘0 86 ‘.;0 1(;0
Buffer Size Buffer Size

Diagram 26 - Find Buffer Calls And Unused

Diagram 25 - Find Buffer Calls x Unused Memory Graph Memory Graph

As seen in the Diagram 25, according to the data of Table 55, the ideal size of the find buffer is
60 memory blocks. This size produces the lowest Reallocation Calls x Wasted Memory results for
most samples sets. Using this size for the Find buffer memory the time and memory
consumption of the Find procedure is as shown in the Table 56 below. In this table is obvious
that this procedure is really a tiny procedure inside the whole detection procedure.

Table 56 - Find to Backtrack Stage (%)

320x240 640x480 800x600 1024x768 1280x960 Average
Time 9.67 5.50 6.24 7.86 10.63 7.98

Memory 0.60 0.60 0.60 0.60 0.60 0.60

6.13.2. Backtrack

The Backtrack procedure is the one that calculates the landmarks localization after a face is
detected. The output data of this procedure are used in the results cache and are part of the
algorithms final output results. The Backtrack procedure is using a series of correlation between
the high-score values detected in order to correlate them with the corresponding parts
(landmarks). This is a simple procedure with a simple complexity running every time the find one
detects high-score values. No important improvements were made in procedure that worth to
be reported. In fact this procedure uses less than the 0.15% of the algorithms execution time. In
Table 57 the memory profiling of this procedure is presented. As seen this procedure as the
whole Backtrack stage is image size independent. Its execution time is decreasing as the image

size in increasing because all the other size dependent parts of the algorithm are increasing and
it stays stable.

Table 57 - Backtrack Procedure Memory Profile

2% Pyoh-scone
4x PHl.gh_ Score Parts 66%
Temporary 3+ Pyigh-score T2 Parts- By, c. 34%
3 Pigh-score +0-Parts-Fy, ¢, 100%

Table 58 - Backtrack Procedure to Backtrack Stage (%)

320x240 640x480 800x600 1024x768 1280x960 Average
Time 62.4 52.8 53.9 55.0 52.4 55.3
Memory 33.7 33.7 33.7 33.7 33.7 33.7

The Backtrack procedure results in addition to the Find ones are used at the end of the
Backtrack stage to fill the face detection algorithms results for face detection. At the creators
design the Backtrack output data are a bit processed and copied at the results cache data
structure. In our implementation the Backtrack procedure return its results in a ready to use
from the results cache form. This way the Backtrack stage gains time and saves memory.

6.13.3. Backtrack Stage v1.3

In chapters 6.13.1 and 6.13.2 the implementation of the Find and Backtrack procedures was
described. This two procedures where implemented in Matlab script by the creators so no
further improvements can be made as they are designed by the beginning at the maximum
memory saving mode could be achieved. At Table 50 the “Other” line represent a data copy
process that transfers data from the Backtrack output results to the results cache with a small
processing. At this point a small modification inside the Backtrack procedure could skip this copy

and processing procedure, as done in the HOG procedure at Features Pyramid stage in chapter
6.6. By doing this modification, changing the data structure and using multiple pointers, the
memory saving succeeded is shown in Table 59.

Table 59 - Backtrack Stage Version Comparison (1.3 vs 1.1) (%)

320x240 640x480 800x600 1024x768 1280x960 Average
Time -20.0 -20.8 -24.8 -27.4 -28.3 -24.2
Memory -65.7 -65.7 -65.7 -65.7 -65.7 -65.7
Max Memory -24.4 -24.4 -24.4 -24.4 -24.4 -24.4

As seen in the Table 59 the memory consumption reduction is the same size as the “Other” line
memory consumption in Table 50. This happens because by the time the Backtrack procedure
returns its results in the format the results cache needs, there is no need for extra processing
and no need of temporary memory for that processing. This also gains speedup in the Backtrack
stage and the most important is that it cause a total reduction of about 10% of the algorithm’s
maximum memory.

6.14. Results Cache

The Results Cache is a data structure where the |5 210 T o (o 10 Lo i S Lo 64

I

detection data are saved. The default Result Image Max Mem Mem (Mb)
Cache size can hold up to 10,000 detection 320x240 +42.2 27.9 137 Mb
results. This means that the Results cache data 640x480 +11.2 28.2 526 Mb

structure can carry this data by the first 800x600 +7.26 31.0 972 Mb

1024x768 +4.47 31.1 1,581 Mb
1280x960 @ +2.89 31.1 2,458 Mb
Average +13.6 29.9

detection moment until the end of the
algorithms execution where the NMS
procedure selects the correct detections as
described in chapter 5.10. This amount of
memory affects the maximum memory consumption of the algorithm. In Table 60 the increment
of the maximum memory consumption that a full Results Cache can cause is shown in the
second column. At the third column the total memory used by the algorithm is shown. As is
visible about 29.9% of the total memory consumption is allocated for saving detection results.

When the Result Cache cannot hold more data the NMS procedure applies, in order to clear the
Result Cache from the useless detection as described in chapter 5.10. These amounts of data
removed from the Results Cache are considered to be temporary results memory. According to
the profiling rules set in chapter 6.2 the maximum Results Cache temporary memory is shown in
Table 60 (“Mem” column). The Results cache temporary memory is Results cache size
independent as at the end only a few detection are forwarded as detection results equal to the
number of faces detected.

Table 61 - Results Cache Max Memory Participation (%)

320x240 640x480 800x600 1024x768 1280x960
+42.2 +11.2 +7.26 +4.47 +2.89
+33.8 +8.97 +5.81 +3.58 +2.31
+25.3 +6.73 +4.35 +2.68 +1.73
+16.9 +4.49 +2.90 +1.79 +1.15
+8.44 +2.24 +1.45 +0.89 +0.58

The effect of the Results Cache to the global algorithms maximum memory consumption is
affected by the size of the Results cache. In the Table 61 above the participation of the Results
cache in the algorithms maximum memory consumption according to its size is presented. As
seen in this table the larger the image is, less the maximum memory consumption is affected.
That is because the results cache memory consumption is the same independently the image
size, in addition to the rest parts of the algorithm.

——320x240 —640x480 —— 800x600

40
e 1024Xx768 = 1280x960
30
20
0 2—

2000 4000 6000 8000 10000
Results Cache

Diagram 27 - Results Cache Participation in TSM Max Memory per Image

The temporary memory consumption values are profiled for the worst case scenarios using

perfect images full filled with human faces. The Table 62 below introduces cases closer to real
life.

Table 62 - Results Cache Real Temporary Memory (10,000) (%)

320x240 640x480 800x600 1024x768 1280x960
0.90 0.31 0.19 0.14 0.09
1.79 0.63 0.37 0.29 0.19
2.69 0.94 0.56 0.43 0.28
3.58 1.25 0.75 0.57 0.37

4.48 1.56 0.93 0.72 0.46

6.15. Non-Maximum Suppression (NMS)

The NMS procedure is executed at least once in the detection process but it is also called
whenever the algorithm wants to clear its results cache memory. In the implementation of the
algorithm a cache memory is used for keeping the list of the results of each component and
level detection process. Depending on the memory resources of our hardware the size of it can
vary. Small sized cache can cause the call of this procedure in order to make a selection of the
useful results as explained in chapter 5.10. A large sized cache is using memory resources that
might be needed and affect the algorithms max memory consumption. The size of the results
cache can vary depending on the application used and the available hardware resources. More
details about the usage of the results cache memory is referred in chapter 6.14. In this chapter
we focus on the usage of the NMS procedure. In Table 63 the NMS procedure profile is shown

Table 63 - NMS Procedure Memory Profile
Cache _Size-(9+4- AVG(Find,,, - AVG(Parts))

Results

AVG(Find,,s,) ~100=> 21,850 x Cache _ Size

—(Cache _Size— Faces)x(4x AVG(Find,,,,,) x AVG(Parts))
0%
AVG(Find,,s,) ~100=> 21,846 x Cache _Size
Temporary 12x Cache _ Size 100%
12x Cache _ Size 100%

The NMS procedure as the Backtrack stage does, is image size independent. It is only affected by
the results cache contents. If the results cache is full, depending on its size it needs more time to
execute. Using the creators default cache size at the size of 10,000 the NMS execution of a full
one is about 0.1% to 0.03% of the algorithms execution time. Even if the NMS procedure is
called multiple times the effect to the whole algorithm execution is tiny. The same fact comes
with the memory consumption of the NSM procedure as seen in Table 64. These mean that the
NMS procedure is a costless one in addition to the Max memory limitation that can cost when it
is emptying the results cache memory or keeping the results memory cache in smaller size.

Table 64 - NMS Consumption (Results Cache = 10,000) (%)
Calls 320x240 640x480 800x600 1024x768 1280x960

Time

0.16 0.10 0.07 0.05 0.03
0.32 0.20 0.15 0.10 0.07
0.48 0.30 0.22 0.15 0.10
0.64 0.40 0.29 0.20 0.14

0.80 0.49 0.37 0.24 0.17

Memory

0.06 0.01 0.01 0.01 0.00
0.11 0.03 0.02 0.01 0.01
0.17 0.04 0.03 0.02 0.01
0.22 0.06 0.03 0.02 0.01
0.28 0.07 0.04 0.03 0.02

In the Diagram 28 below the number of the NMS procedure calls are presented according to the
result cache memory size and the samples group used. The Top10 samples groups (Chapter 6.2)
is shown using dotted lines, the Top50 the dashed lines and the continuous is for all. As is visible
when the results cache size is large (as the default) the NMS procedure is called few times even
when the number of detection results is great.

25 -
205 —— 8000 _—

| ——6000 /
15 : 100

Diagram 28 - NMS Procedure Calls per Results Cache Size

6.16. TSM Face Detector v1.3

After applying all those changes inside the stages described in the previous chapters the
algorithms execution time is affected as shown in Table 65 below. In this table the impact of the
changes inside each stage is also shown. At this stage, using all these changes inside every stage
the algorithm is reached to an extended new version, version 1.3.

Table 65 - TSM v1.3 Execution Time Comparison (Compared to v1.2) (%)

320x240 640x480 800x600 1024x768 1200x960 Average
Levels 18 23 25 27 28

TSM -15.1 -13.2 -12.6 -12.3 -12.2 -13.1
F. Pyramid -0.07 -0.07 -0.10 -0.05 -0.09 -0.08
Convolution -8.75 -8.64 -8.74 -8.81 -8.98 -8.78

DT -6.38 -4.46 -3.76 -3.43 -3.11 -4.23
Backtrack -0.07 -0.08 -0.08 -0.06 -0.04 -0.07

In the table is clear that the reduction of the algorithms execution time is the reduction of the
Convolution stage one. The 8.8% of the total 13% is caused by the convolution stage. The
second main participant at this reduction is the Distance Transformation stage with
correspondence at about 4.2%. These results are very sensible as this two stages hold the main
parts of the algorithm’s execution time as presented in Diagram 9and Table 18 (Chapter 6.5).

In the Diagram 29 and Diagram 30 below compared to the corresponding Diagram 9 (Chapter
6.5) makes it clear that despite this changes, the algorithms time distribution has not actually
change. As seen in both graphs the Convolution stage still stays at the top of the time
consumption pyramid using almost the 67.5% of the algorithms total time. It is clear that the
algorithms execution time is dependent by the amount of the processed data used in the
Convolution stage primary, and in the DT stage secondary. As described in chapters 6.9 and 6.11
the best effort for accelerating the convolution and distance transformation process was given.
For further improvement of this procedures other techniques have to be used (ex. Chapter 8 -
multithreading) that are explained in following chapters.

= 320x240 W 640x480 = 800x600 W FP Stage u Convolution
B 1024x768 = 1280x960 B DT Stage B Backtrack Stage
Others

Time

2.51

. ‘ 0.21
FP Convolution DT Backtrack Others .26

Diagram 30 - TSM v1.3 Execution Time

Di 29-TSMv1.3 E tion Time Distributi s
iagram v xecution Time Distribution Distribution per Stage

In the Table 66 below the new memory distribution of the algorithm is shown. The same
distribution table is also graphically displayed in Diagram 31 below it. As seen the memory
distribution ratios has change a bit as a result of the changes inside the DT and the Backtrack
stages. The effect of those changes are shown in the Table 66. As seen in this table the greatest
memory consumer is the temporary results. This is because in the profile process the scenario of
a full faces image is used as explained in chapter 6.2. On the other hand the DT stage and its
output data, the DT scores, are still the main memory consumers. Despite that, the DT stage
memory reduction achieved, caused about 26.5% memory reduction to the whole algorithm.

Table 66 - TSM v1.3 Memory Consumption Distribution (Comparisons to v1.2) (%)

320x240 640x480 800x600 1024x768 1200x960 Average
0.49 Gb 1.87 Gb 3.13Gb 5.08 Gb 7.90 Gb

TSM
-43.6 -43.8 -43.5 -43.5 -43.5 -43.6
2.16 2.19 2.03 2.03 2.03 2.09
F. Pyramid
-0.18 -0.25 -0.24 -0.26 -0.26 -0.24
7| Convolution 0.00 0.00 0.00 0.00 0.00 0.00
(]
EP o 27.4 27.2 25.1 25.1 25.1 26.0
= -27.7 -27.7 -25.7 -25.7 -25.7 -26.5
14.6 14.7 16.2 16.3 16.3 15.6
Backtrack
-15.7 -15.8 -17.5 -17.6 -17.6 -16.8
F. Pyramid 0.69 0.64 0.58 0.57 0.56 0.61
F. Responses 1.78 1.78 1.64 1.64 1.64 1.69
DT Scores 25.2 25.2 23.3 23.3 23.2 24.0
Results 25.6 27.6 30.7 30.9 31.0 29.1
Others 0.23 0.10 0.08 0.06 0.06 0.11
B 640x480 m800x600 m1024x768 mW1200x960 m 1600x1200
250
200
o 150
s
o
= 100
50
O 4
FP Stage DT Stage Backtrack Results F. Pyramid F. Responses DT Scores Others
Stage

Diagram 31 - TSM v1.3 Memory Consumption Distribution

What is worth to mention is that most of the memory consumption shown in Table 66 and
Diagram 31 is used for useful data that cannot be avoid. For example a part of the 2% of the
memory used in the Features Pyramid stage is used for the images of the image pyramid. This
data are used temporary but they cannot be avoided as they are necessary for the procedure.
The results memory that consumes about 29% of the memory is used for saving the detections
results that are also useful and important data. Only the Backtrack and DT stage memory usage
of 41.5% is actually real temporary memory.

In addition, the maximum memory consumption distribution is formed as shown in the Table 67
below. By the Table 67 data it is obvious that the maximum memory consumption factor is
critically constitute by the algorithm’s critical data structure as the DT scores, the filters
responses and the results cache. The Backtrack stage temporary memory is the only temporary
memory that participates the maximum memory consumption.

Table 67 - TSM v1.3 Maximum Memory Consumption (Comparisons to v1.2) (%)
| 320x240 640x480 800x600 1024x768 1280x960 Average
205Mb 77.8Mb 121Mb 196 Mb 304 Mb

223 222 220 219 219 221

FP Stage 0 0 0 0 0 0
DT Stage 0 0 0 0 0 0

40.9 41.9 42.1 42.2 42.3 41.9
Backtrack Stage
-10.2 -10.5 -10.5 -10.6 -10.6 -10.5
: 0 0 0 0 0 0
F. Pyramid
-12.7 -11.8 -11.6 -11.4 -11.3 -11.8

42.5 42.6 42.6 42.5 42.5 42.5
13.4 13.7 13.8 13.8 13.8 13.7
[others PP 1.74 1.55 1.43 1.35 1.86
+54.7 +144 +9.33 +5.74 +3.70 +17.6

TSMv1.3

M Backtrack ®F.Responses M DT Scores M Others M Results Cache

1280x960 |
1024x768
800x600 NN

-

N

o

50 100 150 200 250 300 350
Mbytes

Diagram 32 - TSM v1.3 Maximum Memory Consumption Distribution per Image

As seen in the Table 67 the maximum memory consumption of the algorithm is decreased about
22%. This is basically because in this version of the algorithm the features pyramid images are
released every time the filters responses are calculated. Despite the great decrease of the
algorithms total memory consumption the maximum memory one was actually reduced at least
as only the Backtrack stage part of it succeed a real decrement. The great reduction of the

memory used in the DT stage is outshined by the memory needed in the Backtrack one as
shown in the Diagram 33.
80
70

60

Mbytes
N
o

20

10

0 l | 1 L
Time
Components TSM Backtrack e DT Scores

e DT Stage @ . Pyramid e . Responses == Results Cache
Diagram 33 - TSM Algorithm v1.3 Memory Profile

The maximum memory consumption has reached at an end on this version. A new version
(version 2.x) of the algorithm is presented in the next chapter (chapter 6.17) that is customized
for further decrease of the maximum memory consumption. The differences of the next
versions relatively to the version 1.x of the algorithm is that by the version 2.x and above the
algorithm execution flow and its architecture is changed and customized losing its parental
relation with the Parts Based Detection algorithm.

6.17. TSM Face Detector v2.1

In this chapter a new version of the TSM algorithm is presented. This version is called version
2.1. The reason that it is dissociated by the version 1.x is because in this version the algorithm is
customized to the face detection procedure disconnected by its parental algorithm, the DPBD
algorithm. This separation gives also the ability of changing the algorithms execution flow. In the
Figure 34 (Chapter 6.3) the execution flow of the Detect stage of the original version of the TSM
algorithm is shown. At the Figure 43 below version 2.x Detect stage execution flow is shown.
This execution flow comes from taking advantage of the one scale model used in the face
detection TSM algorithm in contrast to the multi scale models used in the DPBD one.

Detect Stage
Level Stage

Convolution[Level]

Component 5tage

S /

Figure 43 - TSM Algorithm v2.1 Detect Stage Execution Flow

This new version of the Detect stage (Figure 43) of the algorithm does not reduce at all the
temporary memory consumption of the algorithm, what it improves is the management of the
maximum memory consumption. On this version of the detect stage inverts the levels and
components stage so it can release the Filters Responses after the end of every level stage
execution. The reduction of the maximum memory consumption relatively to the original
version (1.2) is shown in Table 68.

Table 68 - TSM v2.1 Maximum Memory Consumption (Compared to v1.2) (%)

320x240 640x480 800x600 1024x768 1280x960 Average
16.3Mb 60.8Mb 93.8 Mb 152 Mb 236 Mb

TSM

-38.9 -39.4 -39.4 -39.5 -39.5 -39.3
FP Stage 0 0 0 0 0 0
DT Stage 0 0 0 0 0 0

51.7 53.7 54.1 54.4 54.6 53.7
Backtrack Stage

-10.2 -10.5 -10.5 -10.6 -10.6 -10.5

16.4 15.1 14.8 14.5 14.3 15.0
F. Pyramid

-2.73 -2.67 -2.66 -2.64 -2.63 -2.67

12.4 12.9 13.0 13.0 13.1 12.9
F. Responses

-25.2 -25.3 -25.3 -25.3 -25.2 -25.3

16.9 17.6 17.7 17.8 17.8 17.5

2.65 0.71 0.46 0.28 0.18 0.86
-0.87 -0.92 -0.93 -0.94 -0.95 -0.92
Results Cache +69.1 +18.5 +12.0 +7.4 +4.8 +22.4

Backtrack M Filter Responses M DT Scores M Pyramid B Others M Results

1280x960 [
1024x768 O

800x600 .

640x480 T

320x240 | L

0 50 100 150 200 250
Diagram 34 - TSM v2.1 Maximum Memory Consumption Distribution per Image

As is visible in the Table 68 the Features Pyramid data structure participates in the maximum
memory distribution but this is necessary in order to achieve the Filters Responses data
structure reduction. In version 1.3 the Features Pyramid data structure does not join the data
structures participating the maximum memory consumption but the Filters Responses data
structure is fully included. On the other hand in the version 2.1 the Features Pyramid data
structure is included almost completed but the Filters Responses one is included only by its first

level reducing the total maximum memory for 25%.

60

50

Mbytes

20

10

Time
Levels TSM Backtrack Stage e DT Scores
Results Cache e F. Pyramid

= DT Stage = [. Responses

Diagram 35 - TSM Algorithm v2.1 Memory Profile

As seen in the Diagram 35, where the maximum memory consumption profiler is presented, the
maximum memory consumption is reached at the point of the first level (bigger size image). At
this point it is visible that the biggest size HOG image Filters Responses are added to the rest of
the Features Pyramid HOG images waiting for the convolution procedure in the following levels
detection procedure. This fact produced the idea of the version 2.2 of the detect stage referred
in the next chapter (Chapter 6.17).

Except of the maximum memory consumption factor, the version 2.1 changes have also impact
to the algorithms execution time. This impact is tiny and shown in Table 69.

Table 69 - TSM v2.1 Execution Time Comparison (%)
320x240 640x480 800x600 1024x768 1200x960 Average

Levels 18 23 25 27 28
Vs TSM v1.2 -15.7 -14.4 -13.7 -13.4 -13.3 -14.1
Vs TSM v1.3 -0.61 -1.35 -1.27 -1.22 -1.25 -1.14
(D N DN —
Time
M Feature Pyramid H Convolution HDT Backtrack

Diagram 36 - TSM v2.1 Algorithm Timeline Profile

At last in the algorithms timeline profile in the Diagram 36 it is visible the new execution flow
and how the convolution procedure takes place just in the beginning of every level stage.

6.18. TSM Face Detector v2.2

The TSM algorithm’s version 2.2 is almost the same with the 2.1 one with only one change, the
order the features pyramid levels are forwarded to the Level stage. On the version 2.1 the
algorithm starts the detection procedure from the top to the last level of the features pyramid.
As shown in the Diagram 34 (Chapter 6.17), the features pyramid data structure participates at
the maximum memory consumption of the algorithm. The time that the top level of the features
pyramid enters the level stage and its detection procedure begins, the features pyramid data
structure is full of the rest level’s features images. This way the most memory consuming level
(the top) reaches its maximum memory consumption while the features pyramid is full of
features images. This can be changed if the order that the algorithm forwards the levels of the
features pyramid change. If the algorithm begins the detection procedure from the last to the
top level, the features pyramid data structure will be empty when the top levels detection
procedure begins. This way the version 2.2 of the TSM algorithm is created.

The timeline profile of this version of the algorithm is shown in the Diagram 37. It is visible that
the algorithm’s image pyramid creation takes place in the beginning as also that the diverse
level detection described before.

Ih|nmnmnwuummmmm|1m|»||uMIWIW\hll\l\l\l-lllll\“-IIIIIIIINI-IIIIIIIII|||-IIIIIII|I

Time
M FP Stage H Convolution mD Backtrack

Diagram 37 - TSM v2.2 Algorithm Timeline Profile

At the next graph (Diagram 38) the memory profiling of the algorithm is shown. In this graph is
also visible that the as the features pyramid stage is empting from the features images data the

base on which the level stage begins is lower.

Levels Face Detector Backtrack Stage = DT Scores

5

o

4

o

w
o

Mbytes

2

o

10

Time

= DT Stage = [, Responses e F. Pyramid = Cache Results

Diagram 38 - TSM v2.2 Algorithm Memory Profile

Observing the algorithms maximum memory profiling at the Diagram 38, it reveals that the
maximum memory consumption of the algorithm is reached during the greatest size image
detection as in the previous version (2.1) of the algorithm. As seen in the same graph at the time

of the maximum memory consumption point the features pyramid are fully released.

1280...

1024... I -
800x... I [
640x... . [
320x... M Mbytes
0 50 100 150 200
M Filter Responses B DT Scores Backtrack ~ B Others M Results

Diagram 39 - TSM v2.2 Maximum Memory Consumption Distribution per Image

At the Diagram 39 above the maximum memory consumption distribution is presented using
the data of the Table 70 below.

Table 70 - TSM v2.2 Maximum Memory Consumption (Compared to v1.2) (%)

320x240 640x480 800x600 1024x768 1280x960 Average
13.6Mb 51.6Mb 79.9 Mb 130 Mb 202 Mb

TSM v2.2
-49.0 -48.5 -48.4 -48.3 -48.1 -48.5
FP Stage 0 0 0 0 0 0
DT Stage 0 0 0 0 0 0
61.8 63.3 63.5 63.6 63.7 63.2
Backtrack Stage
-10.2 -10.5 -10.5 -10.6 -10.6 -10.5
0 0 0 0 0 0
F. Pyramid
-12.7 -11.8 -11.6 -11.4 -11.3 -11.8
14.8 15.2 15.2 15.3 15.3 15.1
F. Responses
- -25.2 -25.3 -25.3 -25.3 -25.2 -25.3
202 20.7 20.8 20.8 20.8 20.7
3.17 0.84 0.54 0.33 0.21 1.02
-0.87 -0.92 -0.93 -0.94 -0.95 -0.92
Results Cache +82.7 +21.8 +14.07 +8.65 +5.56 +26.6

The time results of the 2.2 version of the algorithm are presented in Table 71. This table’s data is
clearly sensible as the change of the order may cause a tiny speedup cause of better memory
management but there is not any important change that could affect the time consumption of

the algorithm.

Table 71 - TSM v2.2 Execution Time Comparison (%)
320x240 640x480 800x600 1024x768 1200x960 Average
18 23 25 27 28
-15.7 -14.5 -14.0 -13.5 -13.3 -14.2

Vsvl.3 -0.68 -1.45 -1.62 -1.34 -1.31 -1.28

-0.07 0.10 036 0.13 -0.06 0.14

6.19. TSM Face Detector v3.1

The TSM algorithm version 3.1 is very similar to the 2.x ones. The main change is the unification
of the Features Pyramid stage with the Detect one and the order in which the features pyramid
levels are pushed to the Level stage. In the version 2.1 the levels were pushed ascending. In the
version 2.2 they were pushed descending. In this version they are pushed as soon as an image in
the image pyramid is created as shown in the Figure 44 below.

Level Stage

Figure 44 - TSM Algorithm v3.1 Execution Flow Diagram

What is obvious is that as the scaled images are pushed to the Level stage for detection there is
no need for the features pyramid data structure to exist. The HOG procedure takes place just
before the Convolution one and the features images are released just after. What is although
needed is the temporary image pyramid to hold the scaled images longer than in the other
versions. As described in the chapter 5.5, the features pyramid stage uses the scaled images as
inputs in the Reduce procedure to create half copies of them. So the algorithm in this version
cannot release scaled images from the image pyramid as long as it has not create their next
interval ones. A tactic can be used here is the algorithm to create the next interval scaled image
immediately in order to be able to release the ones used in the Level stage. This way the image
pyramid can hold smaller sized images in order to reduce the maximum memory consumption
that appears during the Level stage. Unfortunately, the maximum memory consumption of the
TSM algorithm appears during the detection procedure of the first level of the pyramid where
the unscaled resource image is used that is needed not only for the next interval scaled image
but also for the rest scaled images of the first interval set of images in the pyramid. This means

that there is no way to avoid it as shown in Figure 44 above. By applying this execution flow the
time results coming of are the following shown in Table 72 below.

Table 72 - TSM v3.1 Execution Time Comparison (%)
320x240 640x480 800x600 1024x768 1200x960 Average

18 23 25 27 28
-15.1 -13.2 -12.6 -12.3 -12.2 -13.1
-15.7 -14.4 -13.7 -13.4 -13.3 -14.1
-15.7 -14.2 -13.5 -13.5 -13.3 -14.1
v3. -22.7 -17.2 -16.0 -14.3 -14.0 -16.8

The version 3.1, as the Table 72 shows, is faster than the rest versions. This is probably caused
by the memory cashing of the data used. The results of the scaling processing are probably
saved in the cache memory and stay there as they are used immediately by the HOG procedure.
As soon as the HOG processing is finished, its results data are used in the convolution procedure
and the filters responses coming from this are used in the level detection stage for face
detection. This sequential usage of data benefits the cashing process inside the CPU cache
memory.

On the other hand the non-sequential order the pyramid levels are pushed to the detection
procedure creates other problems that are not visible until this chapter but in the next chapters
(ex. Chapter 9). Another problem also is that this version has definitely lost its relation with its
parental algorithm and cannot be used at all for multi-scaled model in contrast to the other
versions that can with only small changes.

The timeline profile of the version 3.1 of the algorithm is shown in the Diagram 40. It is visible
that the sequence of the levels send for detection is not ascending but they follow the sequence
of the Features Pyramid stage loop.

Time
M FP Stage B Convolution HDT Backtrack

Diagram 40 - TSM Algorithm v3.1 Timeline Profile

At the next graph (Diagram 41) the memory profiling of the algorithm is shown.

-
IR
M .

Time
Levels e TSM Backtrack Stage e DT Scores
= DT Stage = F. Responses = |mage Pyramid = Cache Results

Diagram 41 - TSM Algorithm v3.1 Memory Profile

The Diagram 41, reveals that in the 3.1 version of the algorithm a new participant in the
formation of the maximum memory appears. This participant is an image pyramid level. In the
chapter 6.8 it was explained how larger is the image pyramid compared to the features one. In
this version is inevitable the usage of the image pyramid instead of the features one and the
cost of this change is paid in memory consumption. As referred in a previous paragraph this fact
cannot be avoided as the image used in the first level of the pyramid is used as source not only

for the Reduce procedure (next interval level) but also for the Resize one (All levels of the first
interval set).

Table 73 - TSM v3.1 Maximum Memory Distribution (Compared to v1.2) (%)

320x240 640x480 800x600 1024x768 1280x960 Average
14.5 Mb 55.3 Mb 85.7 Mb 139 Mb 217 Mb

TSMv2.3

-45.5 -44.9 -44.7 -44.5 -44.3 -44.8
FP Stage 0 0 0 0 0 0
DT Stage 0 0 0 0 0 0

57.9 59.1 59.2 59.3 59.4 59.0
Backtrack Stage

-10.2 -10.5 -10.5 -10.6 -10.6 -10.5

6.35 6.67 6.72 6.77 6.80 6.66
Image Pyramid

-12.7 -11.8 -11.6 -11.4 -11.3 -11.8

13.9 14.2 14.2 14.2 14.2 14.1

R 253 25.3 253 -25.2 25.3
18.9 19.3 19.4 19.4 19.4 19.3

2.97 0.78 0.50 0.31 0.20 0.95
m 0.87 0.92 -0.93 0.94 -0.95 0.92
+77.5 +20.3 +13.1 +8.06 +5.18 +24.8

At the Diagram 42Diagram 41 below it is visible the participation of the image pyramid at the
formation of the maximum memory consumption value of the algorithm as just explained in the

paragraph above.

Backtrack M DT Scores M F.Responses M Image Pyramid M Others M Results

1280x960 I
1024x768 N

800x600 N ET

640x480 I N

320x240 (1

0 50 100 Mbytes 150 200

Diagram 42 - TSM v3.1 Maximum Memory Distribution per Image

This version has two basic disadvantages. The First and most significant is the inconsecutive
order of forwarding the levels of the pyramid to the detection procedure. The second one, less
significant or even not significant is the usage of Image pyramid that is more memory costly.
Both these disadvantages are exceeded in the next subversion of the version 3.x of the TSM

algorithm, presented in the next chapter (Chapter 6.20).

6.20. TSM Face Detector v3.2

In the version 3.1 of the TSM algorithm two main disadvantages are referred. The most
significant disadvantage is the fact that the algorithm in this version is passing the pyramid
levels to the detect stage in an inconsecutive series. This execution flow is repaired in this
version so that the detection procedure can be applied in the pyramid’s levels ascending to their
size starting from the top level. To achieve this change the execution flow of the features
pyramid stage, as presented in the chapter 5.5, changes and the algorithm calculates the levels
of the image pyramid in a sequential way. This way demand to the algorithm to hold in the
memory at least a set of interval of the image pyramid in order to be able to use it for the next

one as shown in the Figure 45 below.

Figure 45 - TSM Algorithm v3.2 Execution Flow Diagram

The second disadvantage of the 3.1 version of the algorithm is the fact that the first level of the
image pyramid joins the parts of data forming the algorithm maximum memory consumption.
This level is the largest one coming from the source image and it is needed for the calculation of
the rest scaled images in the first interval set of the image pyramid. In the chapter 6.6.1 a
version of the Resize procedure using 8 bit images instead of 32 bit ones was introduced. This
version can be used in the version 3.2 in customized to get an 8 bit image as input and return a
32 bit one as output. This way the source image can be used as an 8 bit image using only the
25% of the memory reducing the maximum memory consumption. In the Table 74 below the
maximum memory consumption of this version is shown.

Table 74 - TSM v3.2 Maximum Memory Distribution (Compared to v1.2) (%)

320x240 640x480 800x600 1024x768 1280x960 Average
13.8Mb 525Mb 81.3Mb 132 Mb 206 Mb

TSMv3.2

-48.1 -47.6 -47.5 -47.3 -47.2 -47.5
FP Stage 0 0 0 0 0 0
DT Stage 0 0 0 0 0 0

60.8 62.2 62.4 62.5 62.6 62.1
Backtrack Stage

-10.2 -10.5 -10.5 -10.6 -10.6 -10.5

1.67 1.76 1.77 1.78 1.79 1.75
Image Pyramid

-11.9 -10.9 -10.7 -10.5 -10.4 -10.9

14.6 14.9 15.0 15.0 15.0 14.9

3.12

-25.3
20.3
0.82
-0.92
+21.4

-25.3
20.4
0.53
-0.93
+13.8

-25.3
20.4
0.33
-0.94
+8.49

-25.2
20.4
0.21
-0.95
+5.46

Backtrack M DT Scores M F.Responses M Image Pyramid M Others M Results

1280x960
1024x768
800x600
640x480
320x240 |

I 4 T
.
.
I
50 10Mbytes 150 200

Diagram 43 - TSM v3.2 Maximum Memory Distribution per Image

-25.3
20.3
1.00

-0.92

+26.1

As seen in the Diagram 43 above as the memory consumption of the TSM algorithm is reducing
the most significant part of it is the results cache and the Backtrack stage temporary memory
which is affected also by the detection results. This makes it clear that the number of detection

within the image is significantly affecting its maximum memory consumption. In chapter 7.2 a
patch that changes this attitude is presented. In the Diagram 44 below the memory profile of

the version 3.2 of the TSM algorithm is presented.

5

o

N
o

w
o

Mbytes

20

¥

)
!

=

' A

Time
Levels e TSM Backtrack Stage e DT Scores

= DT Stage = F. Responses = |mage Pyramid = Cache Results

Diagram 44 - TSM Algorithm v3.2 Memory Profile

Time
M FP Stage H Convolution EDT Backtrack

Diagram 45 - TSM Algorithm v3.2 Timeline Profile

As seen in the Diagram 44 and Diagram 45 the sequential flow of the pyramid’s levels passing to
the Detect stage is recovered. It is also visible in the Diagram 44 that the first level of the image
pyramid consumes much lower memory from the next one even if its size is larger. That's

because it is saved in the 8 bit format.

As far as the execution time needed for this version, as it is sensible, it has not changed

relatively to the version 3.1 as shown in the Table 75 below.

Table 75 - TSM v3.2 Execution Time Comparison (%)
320x240 640x480 800x600 1024x768 1200x960 Average

18 23 25 27 28
-23,0 -17,2 -16,3 -14,4 -14,2 -17,0
-9,22 -4,66 -4,17 -2,44 -2,25 -4,55

-8,66 -3,36 -2,94 -1,23 -1,02 -3,44

-8,60 -3,52 -3,16 -1,11 -0,96 -3,47
-0,28 -0,09 -0,36 -0,13 -0,20 -0,21

6.21. TSM Face Detector All Versions

At this last chapter of Chapter 6 a quick summary about the different versions of the algorithm
are appose. Firstly the main change between the versions 1.x and 2.x has to do with the
execution flow of the algorithm. As seen in Figure 46 in version 1.x the execution flow of the
Detect stage is using two nested loops. The outer loop is the one iterating between the different
components (pose trees) and the inner one with the different levels of the features pyramid.
The convolution process takes place inside the components loop. As the filters responses data
are used by all components every calculation of filters responses occur at the first iteration of
the component loop is required until the last iteration. This way the filters response data are
calculated for all levels at the first iteration of the component loop as shown in the timeline
Diagram 2 and used until the end of the component loop as shown in Diagram 8 in chapter 6.3.

Component Stage

Level Stage ‘
Backtrack
Feathres Convolution DT Stage
Pyramid 5t. Stage
e

Features
Pyramid

Filters Results
Responses Cache

Figure 46 - TSM Algorithm v1.x Diagram

On the other hand in the execution flow of the version 2.x the two nested loops change sides.
The levels loop becomes the outer loop and the components one the inner. The convolution
process takes place inside the outer loop, the levels loop and calculates the filters responses of
each level as shown in Figure 47. This way, as the face detector uses one scale models, after the
end of the components loop the corresponding level’s filters responses are note needed any
more and can be released. This is visible also in the timeline profile of the version 2.1 in Diagram
36s (Chapter 6.17).

Level Stage

Component Stage

Figure 47 - TSM Algorithm v2.x Diagram

The algorithm versions 3.x are actually use the same execution flow with very small differences
compared to the 2.x versions. This difference is that they merge the Features Pyramid stage with
the Detect one and they detection procedure begins immediately when a features image is
created as shown in the Figure 48 below.

i
Level Sta f
= Component Stage

Figure 48 - TSM Algorithm v3.x Diagram

The comparison between all the version of the TSM algorithm can be appose as a summary of
the algorithm version history. At the Diagram 46 below the time execution comparison is
presented. As is visible the version 2.x is at least faster than the version 1.3. The greatest speed
up improvements was achieved from the transition of the version 1.2 to 1.3. In the Table 76 the
time execution ratio are shown.

100
mvl.2 mv13 mv2.1 v2.2 mEv3.1l mv3.2

o HEmvmEm III II III II |‘| || “‘ |‘

320x240 640x480 800x600 1024x768 1280x960

8

o

6

o

4

o

2

o

Diagram 46 - TSM Algorithm Execution Time Versions Comparison

Table 76 - TSM Algorithm All Versions Execution Time Comparison (%)
Version 320x240 640x480 800x600 1024x768 1280x960 Average

vl.2 100 100 100 100 100 100

84.9 86.8 87.4 87.7 87.8 86.9
v2.1 84.3 85.6 86.3 86.6 86.7 85.9
v2.2 84.3 85.8 86.5 86.5 86.7 85.9
v3.1 77.3 82.8 84.0 85.7 86.0 83.2
v3.2 77.0 82.8 83.7 85.6 85.8 83.0

As far as the memory consumption the Diagram 47 below shows the differences between each
version of the algorithm. As happened with the time execution the same happens as far as the
memory consumption. The greatest improvement achieved at the version 1.3 of the algorithm.
As shown in the Diagram 47 and in the Table 77 data, the memory consumption of the algorithm
is the same in all the versions greater than the 1.3. It is obvious that in this version the memory
consumption improvements have reached to ceil.

100

80

60

4

o

2

o

mvl.2 mvl3 mv2.1

320x240

640x480

v2.2 mv3.1l mv3.2

800x600

1024x768

1280x960

Diagram 47 - TSM Algorithm All Versions Memory Consumption Comparison

Table 77 - TSM Algorithm All Versions Memory Comparison (%)

Version

320x240

100
56.4
56.4
56.4
56.4
56.4

640x480

100
56.2
56.2
56.2
56.2
56.2

800x600 1024x768
100 100
56.5 56.5
56.5 56.5
56.5 56.5
56.5 56.5
56.5 56.5

1280x960 Average
100 100
56.5 56.4
56.5 56.4
56.5 56.4
56.5 56.4
56.5 56.4

At last, as long as the maximum memory consumption of the algorithm, the comparison graph
(Diagram 48) and table (Table 78) have different indications. As seen the maximum memory
consumption is finally reduced at less than its half for all 2.x versions of the algorithm reaching

1280x960

the minimum of 51% relatively to the original version 1.2.

100

Hvl2 mvl3 mv2.1 v2.2 Ev3.1 mv3.2

80

60

0 T III II III II ||I II

320x240 640x480 800x600 1024x768

4

o

2

o

Diagram 48 - TSM Algorithm All Versions Maximum Memory Consumption Comparison

Table 78 - TSM Algorithm All Versions Maximum Memory Consumption Comparison (%)
320x240 640x480 800x600 1024x768 1280x960 Average

Bl 100 100 100 100 100
BEE 77.7 77.8 78.0 78.1 77.7
61.1 60.6 60.6 60.5 60.5 60.7
| w22 ST 51.5 51.6 51.7 51.9 51.5
| w1 [T 55.1 55.3 5.5 55.7 55.2
D s 52.4 52.5 52.7 52.8 52.5

Until this chapter many changes have been made inside the algorithms stages and procedures
and the execution flow of the algorithm has been modified. The results of these changes have
offer a reduction to the execution time by 17%, to the memory consumption by 43.6% and by
48.5% to the maximum memory consumption. Especially as far as the memory consumption the
improvement is very significant. As shown in Table 79 below, the algorithm, using 1280x960 size
images needs less than 512Mbytes of RAM to be executed instead of the 1Gbyte needed in the
original version 1.1. This makes the algorithm available to be used in embedded system with low
hardware resources!

Table 79 - TSM Algorithm All Versions Max Memory Requirements (Mbytes)

320x240 640x480 800x600 1024x768 1280x960
70 265 409 1030
35 132 205 332
27 100 155 251 390
21 78 121 196 304
16 61 94 152 236
| w2 [52 80 130 202
v3.1 15 55 86 139 217
| w2 [53 81 132 206

Comparing the algorithm’s versions presented, two of them seems to be completed. The version
3.2 is the fastest one but the version 2.2 is the most memory saving. According to the Table 76
and Table 78, the difference between these two versions is small both in time and memory
consumption. Although, the execution time is preferred instead of the maximum memory
consumption as the last one difference does not seems to be critical at all in contrast to the
execution time one, so the final version can be consider the 3.2.

All these changes are implementation changes that do not affect the algorithms creators design
and accuracy. In the next chapters more modifications are appose that either change the
creators design adding new techniques or affect the algorithm’s accuracy.

7. TSM System Default Patches

In the chapter 9 some patches for the TSM algorithm are presented trying to make the
algorithm a faster one. These patches though reduce the algorithm reliability and detection
efficiency. For that reason these patches are called alternative patches. In this chapter two
special patches are presented as they contribute to the memory and execution time
improvement without affecting at all the algorithm detection performance. For that reason
these two patches are called default patches and they are included in all the x.x.2 versions of the
TSM algorithm.

7.1. Short Pyramid

In chapter 6.2 it was mentioned that the Face Detector algorithm is designed to detect faces in
the size of 100 pixels high (50 pixels on 146 filters model). The image pyramid is used in order to
detect larger faces by scaling the image and match the faces on that size. Any faces smaller than
the 100 pixels high are not able to be detected.

The algorithm, as explained in chapter 4.2, uses histograms of oriented gradient in order to
detect the existing faces by using its model filters. As explained in chapter 5.4, a HOG image is
about four times smaller than the original it comes from. This means that a features canvas
containing a face must be larger than 35 pixels.

In chapter 5.5 the mathematic type calculating the number of the image pyramid levels is
referred. This type is the one shown in function (8) below and its results are shown in the Table
80. As seen in this table the last 11 levels of the image pyramid created have image height less
than 100 pixels while the last six less than 50. This make it sensible that even if human faces are
contained within these images, the algorithm is not able to detect them.

min (Width

image

5-sbin
log (2%1terval)

Height,)

image

log

1+ floor

Levels (8)

pyramid

Table 80 - Features Pyramid Level Images High Size
Levels Bottom 12 levels

18 105 91 80 69 60 53 46 40 35 30 27 23
640x480 23 105 91 80 69 60 53 46 40 35 30 27 23
800x600 25 99 8 75 66 57 50 44 38 33 29 25 22

27 42 37 32 28 24 21
28 46 40 35 30 27 23

By testing the algorithm without using these levels of the image pyramid in the detection
process there was no affect in the detection results. By this conclusion there is no need of using
this levels of the image pyramid that is having a small effect on the algorithms execution as it is
explained in later.

According to the conclusions of the previous paragraph the

levels of the images of the Table 80 should be as shown in . Model

the Table 81. As seen the number of levels is almost reduced Image Size 99 146

to the half. These numbers comes from a new mathematic =~ 320x240 7 12

type that calculates the image pyramid levels until they get 640x480 12 17

to a size not smaller than the limit of 100 pixels height. This 180%2:;670608 12 ;3

mathematic type is the one shown in function (9). The 1280x960 17 22

Height,,;, parameter is the minimum size of a detectable face

which is 100 pixels for the 99 filters model, as explained before.

Levels .. ={log [—Heightim”geJ-intervalJ (9)
prarmid ? Height_,

By applying this change in the algorithm there is an impact to its execution time. By reducing the
number of levels in the image and also the features pyramid the whole algorithm is affected.
First of all, the Image Pyramid stage is speeded up as the less levels the image pyramid has the
less scaled images have to be produced and of course less features images have to be created.
The creation of HOG descriptors is a costly procedure as far as the time and memory usage. To
continue, as the image pyramid is shorter, there are less features images to apply the model’s
filters that means less call of the convolution procedure. The convolution process is the most
time consumer procedure as explained in chapter 6. At last, shorter feature pyramid means less
levels for face detection (DT stage, Backtrack stage). This small change causes a wide impact to
the whole algorithm.

On the other hand this change cause the reduction of the Image pyramid levels by rejecting its
bottom levels. This means that this levels corresponds to the smallest features images. Small
images consume few amount of time for their execution in the most parts of the algorithm as
for example explained in chapter 6.9 where the convolution process is described. Even if the half
of the image pyramid is rejected, the execution time cost that is saved by this change is much
smaller than if one of the top levels of the image pyramid was rejected. All these claims are
visible in Table 82 and in the Diagram 49.

Table 82 - Short Pyramid Patch Time Effect on TSM (%)

| 320x240 640x480 800x600 1024x768 1280x960 Average
V22 T -4.45 3.42 -1.94 -1.18 5.45
| v3.2 [T 3.53 2.64 -1.80 0.91 4.61
—— 320x240
——— 640x480
———800x600
1024x768
()
E —— 1280x960
'_
0 5 10 15 20 25
Levels

Diagram 49 - TSM Algorithm Execution Time per Level

As seen in the Table 82, even if the pyramid is reduced in its half the time reduction is not more
than 4.5%. As the image size is getting larger the rejection of the highest levels of the pyramid
seems to be insignificant. This is because as the image is getting larger the lower levels of the
pyramid tend to be larger and this affects the execution time of the most stages of the algorithm
exponentially as referred in the corresponding chapters (ex. Convolution, Chapter 6.9).

As far as the impact of this change to the memory consumption, the reduction is not so
important. The temporary memory consumption is sensible reduced as the features pyramid
levels are reduced. In addition, the maximum memory consumption is not expected to be
reduced as it is clearly depended by the top level of the pyramid and its detection procedure
(see Chapter 6.18 and 6.20). This patch in the algorithm’s design is actually a time saving one
and no changes relative to memory consumption are applied. In the next chapter (chapter 9.1)
the “Find v2.0” patch is a memory consumption improvement one.

At last after removing all these levels of the pyramid, the relations of the functions (4) and (6)
(Chapter 6.3) have to change, as they do not longer represent the real number of levels of the
feature pyramid that contain high-score values. Testing the algorithm in the image sample
referred in chapter 6.3, the new results are as presented in the Table 83 below. As sensible the
high-score values per find data are still the same.

Table 83 - LEVEISWith-High-SCOrES/ I-e"eIsFeatures_Pyramid (%)
99 Filters Model 146 Filter Models

m Max Average Min Max Average Min

29.0 23.0 189 299 20.1 15.1
55.0 29.4 142 312 21.5 13.6
55.0 25.0 130 312 202 8.88
55.0 19.6 048 312 15.0 0.43

From the data contained in Table 83 the functions (4) and (6) (Chapter 6.3) has to be converted
to the functions (10) and (11) as shown below.

99 Filters Model

Levelsyy,. seord = Round (0.25-levels) (10)
146 Filters Model
Levels,y, s.oq = Round (0.20- levels) (11)

By applying the Pyramid patch to the TSM algorithm the versions using it are changed to x.x.1.
For example when this patch is used with the version 3.2 this version is now called the 3.2.1 one.
This is useful when more patches and versions are applied or combined to one or more versions.

7.2. Findv2.0

In chapter 6.13 the Backtrack stage is described. The execution flow of the Backtrack stage starts
form the Find procedure that discovers the high-scored values come from the DT stage and
forwards them to the Backtrack procedure where the last one makes the landmark estimation.
At last the NMS procedure is the one that selects the correct ones by rejecting the overlapping
ones. The Backtrack procedure is the most time and memory consuming one in the Backtrack
stage and unfortunately increases the algorithms maximum memory consumption at a notable
amount. The reason that the Backtrack procedure is using this great amount of resources is that
it uses a complex way to estimate the landmarks and a lot of memory to store the results. In
addition to this the algorithm needs a large amount of results cache memory to store this great
amount of results coming from the Backtrack stage. The memory needed for storing the results
in the results cache memory is also increasing the maximum memory consumption of the
algorithm.

As described in chapter 6.12 a face within an image produce a number of high-score values
during the DT stage. From all those values only one is the top and it’s the one used as the real
detection result. The rest ones are considered as overlapping results. Overlapping results are
produced around the top high-score value in the same level DT scores result image and in the

near levels images. In chapter 7 it is described that, after testing the algorithm along a series of
testing images, the result was that a detected face produce high-score values at the 20% of the
features pyramid levels with a mean number of high-scores of 80 pixels per Find procedure
executed. From all those high-score values only one is the top that results to the final detection.

Figure 49 - Image DT Scores Array Example (Find Input)

For selecting the top high-score value that return the real face detection the algorithm is using
the NMS procedure as described in chapter 5.10. The NMS procedure is used every time the
Results cache is full in order to release space and at the end of the detection procedure in order
to select the real results.

All these problems can be distinguish using a technique that rejects the overlapping results
before they are forwarded to the Backtrack procedure. This way the workload of the Backtrack
procedure can be greatly decreased in addition to the memory consumption reduction.
Additionally, the results cache memory can be also abridged. The technique we propose for that
purpose is a new implementation (version 2.0) of the Find procedure that would discover only
the highest value of a high-value pixels neighborhood as shown in the Figure 50.

DT Score J—b Find J—> High-Scores List J
Clear Max Neighbor <— Order Ascending J

Max-Scores List J

Figure 50 - Find v2.0 Procedure Diagram

As shown in the Find v2.0 procedure execution graph (Figure 50), the v1.0 Find procedure is
used to discover high-score values. If High-score values are discovered the patch saves the
highest one in a list and removes it and its neighbors from the DT scores table. Afterwards it
calls again the v1.0 Find procedure and repeats the same procedure. The reason of repeating
this procedure is because when there are more than one faces inside the image, more high-

scores values neighborhoods would exist. Graphically the impact of the Find procedure patch
over the DT scores table is shown in Figure 51 below.

Figure 51 - Find v2.0 Results on the DT Score Array Example

The advantage of this Find procedure version is that it mostly discovers only one high-score
value for every face detection. This is very important as only substantial high-score values are
passed to the Backtrack one. This change create new conditions around the Backtrack stage that
repeal the statistic results of the chapter 6.2.

In chapter 6.2 a presentation of the statistics results as far as the number of high-score values
produced during the detection process is presented. This data come from the usage of the Find
v1.0 procedure. By using the new version a new set of data comes on. Using the same image
and applying the same experimental process the results using the new version of Find procedure
are presented in the Table 84 below.

Table 84 - Find v2.0 PixelSyitn-igh-scores / (LEVEISyith-tigh-scores X COMponents)

_ v2.0 v1.0 Profit

Max Average Min Max Average Min Max Average Min

99 Filters Model

Top 10% 5 16 1 611 169 1 992 991 0
5 15 1 el 128 1 992 988 0
5 1.4 1 el 103 1 992 986 0
5 13 1 6ll 79 1 992 984 0
T e et
5 1.2 1 343 116 1 985 990 0
5 1.1 1 343 91 1 985 988 O
5 1.1 1 343 70 1 985 984 0
5 1.1 1 343 53 1 985 979 0

In the Table 84 above the great effect of the version 2.0 of the Find procedure is shown. As seen
in the right columns the average number of High-Score values is reduced for more than 98%
compared to the 1.0 one. This is great decrement with many impacts on the whole Backtrack
stage as presented in the next paragraphs.

In chapter 6.2 the number of levels with high-score values is estimated after testing the
algorithm. By changing the Find procedure this number changed also at the top10, top20 and
top50 samples (Table 85). On the other hand it’s the same when all the samples are used. This
difference is caused because, by the time the Find v2.0 procedure is used, every face within an
image creates only one high-score value. In our sample images only one face appears within it
so the sensible result would be one High-score value per Find procedure or none. What is shown
in Table 84 above is that the testing results show even five high-score values to appear. This is
because sometimes the DT score of a component might create multiple neighborhoods of high-
score values in the area where face exists. This phenomenon appears usually at the levels close
to the right one where the face is not yet in the right size (about 100 pixels high) to be detected.

Table 85 - Find v2.0 I-e"elswith-High-Scores/ I-eVeISFeatures_Pyramid (%)

Original Version New Version
Max Average Samples Max Average Samples
18.9 14.3 12.1 23.4 11.8 0.3

28.6 17.2 9.2 23.4 12.7 0.3
28.6 14.8 7.4 28.6 13.7 0.3
28.6 116 0.3 28.6 11.6 0.3
I LT
215 15.8 6.1 21.5 16.1 12.9
24.0 14.5 3.7 24.0 16.8 10.7
24.0 14.8 3.7 24.0 15.7 7.2
24.0 11.8 0.3 24.0 11.8 0.3

Another great impact of this new version of the Find procedure is over the output results of the
whole Backtrack stage. As the number of high-scored values is reduced to more than 98% the
number of the Backtrack stage results is also reduced at the same percentage. This change
implies the need of reducing the results cache memory. As referred in Chapter X the default
result’s cache memory is 10,000 detection results. Using the new Find procedure this number is
sensible to be reduced by 98% less, to the size of 200. This change means that the maximum
memory consumption can be reduced by a remarkable amount of memory.

On the Table 86 below the impact of the Find v2.0 procedure as far as the execution time of the
algorithm and its stages is shown. As seen in this table the execution time consumption of the

whole Backtrack stage is greatly reduced due to the Backtrack procedure time consumption
reduction despite the Find one increase. Although the impact of this reduction is tiny on the
whole Face Detection algorithm’s execution time as the Backtrack stage consumes only about
the 0.25% of the algorithm execution time.

Table 86 - Find v2.0 Execution Time Impact on TSM v3.2.1 (%)

| 320x240 640x480 800x600 1024x768 1280x960 Average
m +77.3 +93.7 +92.9 +117 +103 +96.9
-96.7 95.4 94.7 -94.0 92.5 94.6

Back. Stage 84.3 87.3 84.8 78.5 -72.0 81.4
[NMS TP -93.9 -99.6 -96.0 -94.6 -96.7

-0.42 -0.24 -0.18 -0.11 -0.07 -0.20

On the other hand the impact of the new version (v2.0) of the Find procedure as far as the
memory consumption is much larger than the time one. In the Table 87 below the temporary
memory consumption reduction is shown. As seen in this table the Find procedure temporary
memory consumption is increased but this incremental caused a huge reduction in the
temporary memory consumption of the Backtrack and NMS procedure as also the Backtrack
stage and the temporary results. This is a great achievement as the Backtrack stage and the
temporary results data constitute a large part of the total temporary memory consumption. As
shown in the Table 87 the TSM algorithm temporary memory consumption is actually reduced
about 45% by the usage of the new version of the Find procedure.

Table 87 - Find v2.0 Impact on TSM v3.2.1 Memory Consumption (%)

| 320x240 640x480 800x600 1024x768 1280x960 Average

+50.0 +50.0 +50.0 +50.0 +50.0 +50.0
-99.8 -99.7 -99.7 -99.7 -99.7 -99.7
97.1 97.1 97.1 97.0 -97.0 97.1
[nvs RN -98.0 -98.0 -98.0 -98.0 -98.0
| Resuits ~ [EEER -99.7 -99.7 -99.7 -99.7 -99.7
-39.7 -43.8 43.7 47.7 -47.5 -44.5

As far as the maximum memory consumption, as seen in Table 88 below, is reduced by about
61.5% as a result of the Backtrack stage 99% reduction. The Backtrack stage was one of the main
participants at the maximum memory consumption formation and limiting its memory
consumption the whole algorithms maximum memory consumption is affected. In addition to
that the Results cache size reduction and the precocious rejection of the overlapping detection
cause also a reduction of the impact of it over the maximum memory consumption. As seen in
the table, the analogous of the default size result cache can cause about 1% incremental on the
algorithm’s maximum memory consumption.

Table 88 - Find v2.0 Maximum Memory Consumption Impact on TSM v3.2.1 (%)
| | 320x240 640x480 800x600 1024x768 1280x960 Average
547Mb 201Mb 31.0Mb 502Mb 78.0Mb

604 617 61.9 62.0 62.1 61.6

DT Stage 0 0 0 0 0 0
0.90 1.18 1.19 1.20 1.20 1.13
Backtrack Stage
994 993 99.3 99.3 99.3 99.3
36.8 39.0 39.3 39.5 39.6 38.8
50.2 53.1 53.5 53.8 54.0 52.9

Image Pyramid 4.2 4.6 4.6 4.7 4.7 4.6
[others AR 2.15 1.39 0.86 0.55 2.57

Results Cache 2.32 1.12 0.73 0.45 0.29 0.98
(200) -98.9 -98.0 -98.0 -98.0 -98.0 -98.2

TSMv3.2.1

As is visible in the Diagram 50 below the main modulators of the algorithm’s maximum memory
are the Filters Responses and the DT scores. These two data structure hold about the 91.5% of
the algorithm’s maximum memory consumption (the 96% on the 2.2.2 version!). These two data
structure are very critical and their data cannot be reduced. The version 2.0 of the Find
procedure has managed to reach the maximum memory consumption to a floor with no ability
for further significant reduction.

100
1280x9... | = Profile
80
1024x7... | Real
800x600 | I 60
640x480 NI 40
320x240 MH Mbytes
20
0 20 40 60 80
m Backtrack Stage M F. Responses B DT Scores 0
W Image Pyramid m Others B Results Cache 320x240 640x480 800x600 1024x768 1280x960
Diagram 50 - TSM v3.2.2 Maximum Memory Diagram 51 - TSM v3.2.2 Maximum Memory
Consumption per Image Profiling

By the time the maximum memory consumption of the TSM algorithm is formed almost at all by
predictable known parameters it can be easily predicted with a simple function as the function
(12). This function calculates in a very simple mode the maximum memory consumption using
only two parameters, the image width and height. The results of the function (12) compared to
the real ones are presented in Diagram 52.

Model.filters+ 136)
+ (12)

Mem,,,. =Heigth(Image) -Width(lmage)-(3 .

In the Diagram 52 below a graphical view of the TSM algorithm memory profile is shown. As
seen, the Results Cache and the Backtrack stage lines are now almost at the bottom of the

diagram.

20
18
16
14

12

Mbytes

Time

Levels TSM

e |mage Pyramid = DT Stage = Backtrack Stage

DT Scores e F._Responses

Result Cache

Diagram 52 - TSM Algorithm v3.2.2 Memory Profile

By applying the Find v2.0 procedure to the version 2.2.1 of the algorithm its maximum memory
consumption was also reduced. In the Table 89 below its new maximum memory consumption
is presented. As seen in the “Mbytes” lines both versions need less than 100 Megabytes of
memory to run. In the “VS 1.2” lines it is visible that after all the changes applied to the TSM
algorithm until these two versions are created, the maximum memory consumption of the
algorithm is reduced about 80%. This is a great reduction. This makes also the algorithm able to

run in very low resources hardware!

Table 89 - TSM Basic Versions Maximum Memory Consumption

e 320x240 640x480 800x600 1024x768 1280x960
Mbytes ~ 525Mb 192Mb 295Mb 47.9Mb 74.3 Mb
m Vsli2 -80.3% -80.9% -80.9% -80.9% -80.9%
Mbytes ~ 547Mb 201Mb 31.0Mb 50.2Mb 78.0 Mb
m Vs12 -79.5% -80.0% -80.0% -80.0% -80.0%

The Find patch importance is very high because it totally released the algorithm from a very high
memory consumption. In the single thread versions this might not look so significant but as is

presented in later chapters (chapter 8) where parallelized versions are introduced, the absence
of this patch would probably cause a lot of problems.

8. Multi-Threading Implementation

In this chapter the conversion of the TSM algorithm implementation of a single thread one to a
multi-threading one using the OMP library [34]. Every stage and procedure is tested using
multiple CPU cores and the best combination and distribution of cores are finally used to
succeed the best execution time speed and memory consumption. To this task the modern
hardware boards’ available resources are considered. The versions presented in chapter 6 are
tested in order to discover the most efficient one when multithreading technology is used and
at last one more version of the algorithm is presented in chapter 8.9.3, that is designed totally
for multiple cores CPU.

8.1. Features Pyramid

The Features Pyramid stage consumes a small part of the whole algorithms execution time but it
precedes the Detect one. This means that while the Features Pyramid stage is executed the
Detect one waits for it and all the hardware resources are available to be used. This fact allows
the use of any of the hardware resources in order to speed it up and abridge the Detect stage
execution. For that reason the usage of the OMP technology is applied to the Features Pyramid
stage in order to take advantage of it. The OMP technology is applied to the three main
procedures of this stage, the Resize, the Reduce and the HOG one and also at the whole stage.
Of course, as the number of CPUs in the hardware is limited there are two types of using the
multiprocessors technology. Either focus it on one process at a time or share it around multiple
procedures. Both tactics were tested.

8.1.1.1° Tactic

The first tactic is the one where the multiprocessors technology is focused on every procedure
in order to speed it up individually as shown in Figure 52 below. The parallelization efficiency of
every procedure contained in the Features Pyramid stage is explained in previous chapters.

4

Figure 52 - Features Pyramid Stage OMP Diagram - 1* Tactic

By applying this tactic in the Features Pyramid stage the following results come on as shown in

Table 90 - FP Stage OMP Execution Time - 1* Tactic (%)

—
Q
=
(0]
O
o

320x240 640x480 800x600 1024x768 1280x960 Speedup
L 559 61.1 58.5 64.8 62.0 x1.7
e sz 46.4 43.1 46.7 43.2 x2.3
D 384 38.6 36.7 38.8 36.6 x2.6
b 327 36.2 332 36.8 34.2 x2.9
0 356 34.0 34.4 35.8 33.1 x2.9
41.1 335 35.9 335 30.1 x2.9
8 ER) 333 35.8 31.1 29.7 x2.9

The two graphs below shows the time consumption of the Features Pyramid stage according to
the CPU cores used (Diagram 53) and its speedup efficiency (Diagram 54). In the Diagram 53 is
visible that the speedup of this tactic is image size independent and that the speedup is gained
by the use of more cores is reducing. This is also visible by the Diagram 54 where the efficiency
of the number of CPU cores used is decreasing as more cores are used. According to the
Diagram 53 the usage of 3-4 CPU cores added make the Feature Pyramid stage much faster
when any additional cores does not offer any significant acceleration of the procedure.

320x240 640x480 800x600
1024x768 1280x960 = = = AVG
100
80
60 \
40 S
20
0

1 2 3 4 5 6 7 8
CPU Cores

Diagram 53 - FP Stage OMP Execution Time
(1* Tactic)

320x240 640x480 800x600

1024x768 1280x960 = = = AVG
1.0
0.8 S
0.6

\

0.4 \\
0.2
0.0

(0]

1 2 3 4 5 6 7
CPU Cores

Diagram 54 - FP Stage OMP Execution Time
Efficiency (1°* Tactic)

As far as the memory consumption of this tactic is actually almost the same when one core only

is used. This is because the memory consumption of the parallelized versions of the Resize,

Reduce and HOG procedures is insignificant.

8.1.2.2" tactic

The second parallelization tactic is the one where multiple procedures where shared in multiple

processors cores as shown in Figure 53 below.

I While MaxLevel |

| S

—_———

r
I

While

| S

\
MaxLevel |

—_——

Feature Pyramid

Figure 53 - Features Pyramid Stage OMP Diagram - 2" Tactic

Using this tactic the results for the whole Features Pyramid stage is improved according to the
single version of the algorithm. According to the Table 91 the most efficient results comes when
the hardware can support a parallelization of five CPU cores. Using more cores does not offer
better results and that is because the number of five cores is equal to the value of the interval
parameter. Any other CPU cores more than the five cores are not used by this tactic and stays
idle. This is not a disadvantage for this tactic because the idle cores can probably be used in
nested parallelization as explained later.

Table 91 - FP Stage OMP Execution Time - 2™ Tactic (%)

320x240 640x480 800x600 1024x768 1280x960 Speedup
L 774 76.2 763 74.5 72.0 x1.3
L 604 55.7 53.5 54.0 51.8 x1.8
L e07 56.1 53.8 53.9 52.4 x1.8
L 340 306 29.9 31.2 29.5 x3.2
0 34 302 30.0 313 29.8 x3.2
32.4 305 30.0 303 30.1 x3.3
b 3 32.4 29.9 30.6 29.0 x3.2

320x240 640x480 800x600 320x240 640x480 800x600
1024x768 1280x960 = = = AVG 1024x768 1280x960 = = = AVG
100 1.0
80 0.8
60 0.6
40 0.4
20 0.2
0 0.0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CPU Cores CPU Cores
Diagram 55 - FP Stage OMP Execution Time Diagram 56 - FP Stage OMP Execution Time
(2" Tactic) Efficiency (2™ Tactic)

In the Diagram 55 above it is visible that the usage of more than five CPU cores is useless as
explained in the previous paragraph. What seems strange is the path that the time curves when
four CPU cores are used. At this point is important to be explained that on this tactic the time
speedup is achieved by the reduction of the features pyramid stage loop iterations. On the
single core version this loop iterates for «interval» times. When used two cores the number of
loop iterations are the half, etc. The value of the «Interval» variable is 5 on the algorithm, so
when used three and four cores of the CPU the number of iterations of the stage’s loop is on
both cases two! This is why the Features Pyramid stage does not gain any speedup.

As far as the memory consumption of this tactic it is obvious that it is not the same as in the
tactic 1. While multiple thread execute different procedures inside the Features Pyramid stage
multiple data are calculated and created simultaneously. Looking at the Figure 53 above it is
obvious that a simultaneous creation of the image pyramid and the features pyramid would
allocate a great amount of memory that would also increase the stages maximum memory
consumption that could affect the whole algorithm’s execution time. The Features pyramid
stage maximum memory consumption is reached while the algorithm is in the first Reduce
procedure as by that time the first level of the image pyramid is in use and cannot be released
and the first level of the Features Pyramid is already produced (function (13)). This amount of
memory can be multiplied by the number of the CPU cores used estimating the differences in
the image sizes are used (function (14)).

FPstage . = I.Pyramid[0]+ F.Pyramid[0]+ I.Pyramid|int erval]+0.5 - I.Pyramid[0] (13)

FPstage = 1.Pyramid|t]+ F.Pyramid([t]+ I.Pyramid|t +int erval] (14)

In the function (13) expression the 0.5-1.Pyramid[0] parameter, represents the Reduce

procedure temporary memory. By these functions results the Table 92 presents the amount of
memory needed for the Features Pyramid stage depending on the number of CPU cores used.

Table 92 - FP Stage OMP 2™ Tactic Max Memory (Mbytes)

CPUs 320x240 640x480 800x600 1024x768 1280x960 +%
2.3 9.1 14 23 36
4.1 16 25 41 63 +76%
5.5 21 33 54 84 +134%
6.6 25 39 64 100 +178%
7.4 29 44 72 112 +212%
TSM 5.3 19 30 48 74

As seen in the Table 92 the features pyramid stage maximum memory consumption is increasing
the same percentage for all image sizes. This comes from the stable ratio between the image
and features pyramid levels sizes. In the Features Pyramid stage all the data and procedures all
image size dependent and this creates this stable ratio. While the features pyramid stage
maximum memory consumption is extremely increasing when using multiple CPU cores, it
seems to affect the whole algorithms maximum memory consumption (TSM line). This means
that the second’s tactic memory consumption increment should be considerable before used.

By comparing these two tactics it is obvious that the most suitable is the 1* one as it is the
fastest one, more efficient and it does not affect the algorithm maximum memory consumption.
The 2™ parallelization tactic is only faster when more than 1 CPU is used in the hardware
resource and the speedup it gains is just a little better than the one the 1* tactic offers. As seen
in the diagrams below the 1* parallelization tactic is succeeding the best results both in
execution time and the efficiency on 1 CPU hardware resource.

100
80
60

40

20

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CPU Cores CPU Cores

Diagram 57 - FP Stage OMP Execution Time Diagram 58 - FP Stage OMP Execution Time
(All Tactics) Efficiency (All Tactics)

8.2. Resize

The Resize procedure uses less than 0.70% of the whole algorithm execution. Despite that it is a
tiny part of the algorithm it is a part of the Features Pyramid stage that precede the Detect one
that is the main time consumer. The fact that it precedes makes it desirable to speed up this
process in order to abridge the detect stage execution. On the other hand at the features
pyramid stage all the hardware resources are available

In the Table 93 below the Resize procedure’s time consumption is not stably decreasing for all
image sizes. As is visible also in the Diagram 59 below, the Resize procedure is reducing its
execution time rapidly until the fourth CPU core and by that time it starts an unstable reaction
to the CPU cores added. This instability is not unique for all image sizes but follows different
attitude in each of them. This fact makes the Resize procedure unsafe and unreliable for used
for more than 4 CPU cores.

Table 93 - Resize Procedure OMP Execution Time (%)

320x240 640x480 800x600 1024x768 1280x960 Speedup
D 734 87.9 75.9 87.2 80.8 x1.2
L es7 80.9 64.5 70.4 60.4 XL.5
P ess 69.1 55.3 57.0 51.7 x1.7
Bl s 70.9 53.1 59.8 50.9 x1.7
b s19 70.1 56.0 60.4 51.2 x1.7
52.3 67.3 65.6 57.9 45.6 x1.8
L ses 68.1 64.6 51.6 44.8 x1.8
320x240 640x480 800x600 320x240 640x480 800x600
1024x768 1280x960 = = = AVG 1024x768 1280x960 = = = AVG
100 1.0
80 0.8
60 0.6
40 0.4
20 0.2
0 0.0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CPU Cores CPU Cores

Diagram 60 - Resize Procedure OMP Execution Time

Diagram 59 - Resize Procedure OMP Execution Time .
Efficiency

In the Diagram 60 above the CPU cores usage efficiency is represented. As is visible the Resize
procedure parallelization efficiency is not very good. It seems that using many cores on that
procedure is actually speeds up its execution time but this speedup is not proportional to the
cores sacrificed on it.

As shown in the diagrams the best number of CPU cores to be used for this procedure is up to
three cores. The decision as long as the number of cores to be offered for this procedure is
complicate because there may be multiple ways of doing that according to the global strategy
used for the Feature Pyramid stage.

8.3. Reduce

The Reduce procedure is open to parallelism using multithreading (OMP) as it contains very
simple loops that can handle parallelism. Although looking the whole algorithm, Reduce
procedure takes place in a very small part of it so that it would be preferable to spend resources
to more significant stages of the algorithm. What is very important though is that the Reduce
procedure is a part of the features pyramid module that is necessary for the detection to start.
For this reason is important to accelerate this stage’s process in order to shorten the detection
process beginning. We have all the hardware resources available while the detection stage is
disabled. In the Table 94 below the time consumption results after testing the Reduce
procedure using a multicore CPU is shown.

Table 94 - Reduce Procedure OMP Execution Time (%)

320x240 640x480 800x600 1024x768 1280x960 Speedup
L e39 65.0 70.0 68.1 67.4 xL.5
L 359 36.8 38.3 38.4 37.0 x2.7
L 364 36.9 38.0 37.2 36.6 x2.7
o 360 36.9 36.9 37.6 36.5 x2.7
0 366 36.7 39.9 37.6 36.3 x2.7
36.2 36.3 39.4 37.6 36.3 x2.7
L ses 36.8 36.9 38.0 37.0 x2.7

320x240
1024x768

640x480 800x600 320x240
1280x960 = = = AVG 1024x768

640x480 800x600
1280x960 = = = AVG

100 1.0
80 0.8
60 0.6 \
40 - IR — 0.4 \

20 0.2

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CPU Cores CPU Cores

Diagram 62 - Resize Procedure OMP Execution Time

Diagram 61 - Resize Procedure OMP Execution Time .
Efficiency

As seen in the Diagram 61 above the Reduce procedure’s execution time is greatly reduced until
the usage of the third CPU core. By the fourth one and upper no more speedup appears. This is
also visible in the Diagram 62 where the CPU cores usage efficiency is stably decreased when
using more than three CPU cores. As also seen the Reduce procedure time speedup is accurate
similar corresponding to the image size. As seen in the Diagram 61 and Diagram 62 the best
number of CPU cores to be used is about two or three cores. It is worth to remind that the
Reduce procedure is a small part of the Features Pyramid and is more complicated how the CPU
cores are about to be shared as other procedure may need the more.

8.4. HOG

The HOG procedure is the one that creates the Histogram of Oriented gradients descriptor
described in chapter 5.4. This procedure is open to parallelism using multithreading (OMP) as it
contains loops that can handle parallelism. Looking the whole algorithm, the HOG procedure is
the third most time consuming part of it even if it hold only a small percentage of the whole
algorithm execution time. It is very significant to reduce its execution time as the feature images
it creates are the input data to the detection procedure and to be accurate to the Convolution
stage which is the greatest time consumer of the TSM algorithm. The execution time of the HOG
procedure when parallelism is applied on it is shown in the Table 95 below.

Table 95 - HOG Procedure OMP Execution Time (%)

(o VES 320x240 640x480 800x600 1024x768 1280x960 Speedup
56.2 55.2 52.7 53.1 52.7 x1.9
37.5 37.0 36.0 35.5 37.8 x2.7
30.3 28.6 27.5 28.4 29.3 x3.5

24.0 241 23.7 25.0 23.9 x4.1

21.7 21.4 20.4 20.9 22.3 x4.7
19.0 18.2 17.8 18.2 18.2 x5.5
17.4 16.9 15.1 15.6 16.0 X6.2
320x240 640x480 800x600 320x240 640x480 800x600
1024x768 1280960 = = = AVG 1024x768 1280960 = = = AVG
100 1.0
80 0.8 \
60 0.6
40 0.4
20 0.2
0 0.0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CPU Cores CPU Cores

Diagram 63 - HOG Procedure OMP Execution Time Diagram 64 - HOG Procedure OMP Execution Time
Efficiency

As seen in the Table 95 and also in Diagram 64 the HOG procedure is more efficient to the
parallelism. The more CPU cores used the more the execution time is decreased. There is no
limit to the number of CPU cores used. The HOG procedure is the most time consuming
procedure in the Features Pyramid stage and probably is better if the majority of the CPU cores
are going to be available for this procedure when the v2.x is used.

As seen in the Diagram 64 the larger the image is the more efficient is the usage of multicore
CPUs. It is also visible that the efficiency of using more CPU cores in the HOG procedure is stable
and pleasantly good as even when using eight CPU cores, the efficiency does not fall under the
75%.

8.5. Convolution

The convolution procedure is the most important one of the algorithm as uses the most
resources of the hardware and any small improvement on it can cause large improvement to the
whole algorithm execution. It has a very low complexity and handles a lot of data processing.
Parallelism can cause much more acceleration on it not only by multithreading usage but also
with other techniques like GPU usage.

On the multiprocessor technology the highest performance parallelism is achieved when the
parallelization is applied over different filters and not inside the convolution process of a filter
with the features image as shown in the Figure 54 below.

l Filters

—bl Filter Responses l

-

(Features Image

Figure 54 - Convolution Procedure OMP Diagram

By applying this parallelization in the convolution stage the results as long as the execution time
are shown in Table 96 below.

Table 96 - Convolution Procedure OMP Execution Time (%)

320x240 640x480 800x600 1024x768 1280x960 Speedup
L sos 50.5 50.5 50.5 50.5 x2.0
. 335 33.4 33.4 33.4 33.4 x3.0
Bl = 25.3 25.3 25.3 25.3 x4.0
b 203 203 202 202 20.2 x4.9
Bl 17.2 17.2 17.2 17.2 X5.8
15.2 15.2 15.2 15.2 15.2 X6.6
L 32 132 132 13.2 13.1 x7.6

320x240 640x480 800x600 320x240 640x480 800x600
1024x768 1280x960 = = = AVG 1024x768 1280x960 = = = AVG

100 1.0

‘
80 0.8
60 0.6
40 0.4
20 0.2
0 0.0

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

CPU Cores CPU Cores
Diagram 65 - Convolution Procedure OMP Diagram 66 - Convolution Procedure OMP
Execution Time Execution Time Efficiency

As seen in the diagrams and also in the Table 96, the multiprocessors parallelization technique
creates great results as long as the Convolution stage. Just the usage of a 2™ CPU core achieved
a speedup twice the time needed when using a simple core CPU. As shown in the last column in
the Table 96 every CPU core added in the parallelization process gives the same size speedup.
This is a very pleasant fact as the Convolution process is the one that needed most a time
execution decrement. It is also very pleasant the fact that the use of every CPU core offers very
efficient speedup with the efficiency index to be always over the 95%.

The convolution procedure is the one that probably deserves the most the bound of the
hardware resources. It is very important to focus all the CPU cores at this stage as this
parallelization tactic returns the highest results.

8.6. Distance Transformation

The Distance transformation stage cannot be parallelized as this process is sequential as
explained in chapter 5.7. The parallelization technique can although used inside the Distance
Transformation procedure that handles the main part of this stage. The Distance transformation
procedure owns the 96.5% of this stage and about the 30% of the whole algorithm so it is very
useful if a parallelized technique could reduce its execution time. By testing the OMP technology
in the DT procedure the results are as shown in Table 97 below.

Table 97 - Distance Transformation Procedure OMP Execution Time (%)

320x240 640x480 800x600 1024x768 1280x960 Speedup
84.7 70.1 65.6 63.0 623 XL.5
67.7 51.6 49.1 45.8 44.2 x2.0

69.5 46.7 41.9 39.5 36.3 x2.2

70.3 42.7 37.7 34.1 31.2 x2.5
71.0 42.0 38.0 33.4 28.3 x2.6
80.6 43.3 37.5 32.6 26.7 x2.6
87.7 44.3 38.2 30.3 29.4 x2.5
320x240 640x480 800x600 320x240 640x480 800x600
1024x768 1280x960 = = = AVG 1024x768 1280x960 = = = AVG
100 1.0
80 0.8
60 0.6
40 . 0.4
20 0.2
0 0.0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CPU Cores CPU Cores
Diagram 67 - DT Procedure OMP Execution Time Diagram 68 - DT Procedure OMP Execution Time

Efficiency

As seen in the Table 97 above and in the Diagram 67, the Distance Transformation procedure is
actually gains speedup until the usage of the third core of the CPU. After the third CPU core the
speedup is affected by the size of the image. In addition the efficiency graph shows that the DT
procedure parallelization is not very efficient as its efficiency is stably reducing. If the hardware
resources are available maybe the usage of six CPU cores would be useful but on the other hand
by observing the Diagram 67 the usage of 3 cores might be the best choice. What is also visible,
especially in Diagram 68, is that the image size affects the parallelization efficiency. It seems that
as larger is the image, more CPU cores can be used efficiently.

8.7. Backtrack Stage

The Backtrack stage consists of two basic procedures, the Find one and the Backtrack one. The
Backtrack procedure cannot be parallelized as its processing is sequential and sequence
depended. This is not a problem as far as the Find v2.0 patch is used that extremely reduced its
execution time. On the other hand after the usage of the Find v2.0 patch the Find procedure
increased its execution time and it is the main time consumer of the Backtrack stage. The Find
procedure can be parallelized but is contains a great part of critical procedures. Anyway, the
Backtrack stage holds only the 0.05% of algorithms execution time. As far as the Find procedure,
the speed up gain using the multicore processors is shown in Table 98 below.

Table 98 - Find Procedure OMP Execution Time (v2.0) (%)

320x240 640x480 800x600 1024x768 1280x960 Speedup
b s 64.5 63.6 50.5 50.2 x1.7
L ss0 57.2 56.5 48.5 51.1 x1.8
0 764 65.7 59.8 56.1 58.1 x1.6
| 5 Y 63.1 61.2 58.9 60.4 x1.6
0 675 67.2 63.9 58.6 59.9 x1.6
67.5 74.5 61.3 62.0 57.3 x1.6
L su4 70.1 57.4 61.9 56.5 x1.6
320x240 640x480 800x600 320x240 640x480 800x600
1024x768 1280x960 = = = AVG 1024x768 1280x960 = = = AVG
100 1.0
80 0.8
60 0.6
40 0.4
20 0.2
0 0.0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CPU Cores CPU Cores

Diagram 69 - Find v2.0 Procedure OMP Execution Diagram 70 - Find v2.0 Procedure OMP Execution
Time Time Efficiency

The Table 98 and also the two diagrams (Diagram 69, Diagram 70) above makes it clear that the
usage of parallelization techniques are efficient in the Find procedure when using only 2 CPU
cores. Probably the existence of critical data are the reason of the negative efficiency and
unstable attitude when more CPU cores are used. It is also visible in the Diagram 70 that the
Find procedure parallelization is more efficient when used for large images in contrast to the
small ones.

The Find procedure and the whole Backtrack stage are holds such a small part of the algorithm’s
execution time that either using parallelization or not would probably affect the algorithm’s
execution time in an unnoticeable level.

8.8. Level Stage

The Level detection stage is the main stage of the TSM algorithm. It is the stage where the
convolution stage results are processed and the detection results come from. It contains the
Distance Transformation procedure repeated by multiple times for every component of the

algorithm’s model. It is the most complex part of the whole algorithm. In this chapter a series of
tests over this part is presented in order to discover the most effective parallelization tactic.

8.8.1.1° Tactic

The first parallelization tactic uses the parallelization of the Distance Transformation and Find
procedure inside this stage, as the Backtrack one cannot be parallelized. The results of this tactic
is presented in the Table 99 below,

Table 99 - Level Stage OMP 1°** Tactic Execution Time (%)

320x240 640x480 800x600 1024x768 1280x960 Speedup
o 902 76.0 71.2 68.2 68.0 xL.4
| 3 R 59.2 56.9 53.1 51.6 x1.7
B 7es 54.0 49.1 46.6 43.6 x1.9
L o 50.7 45.7 42.1 39.1 x2.1
e 783 49.9 45.9 40.7 36.6 x2.1
87.7 50.5 45.7 40.5 34.6 x2.1
L %e7 51.9 46.0 37.4 37.1 x2.1
320x240 640x480 800x600 320x240 640x480 800x600
1024x768 1280x960 = = = AVG 1024x768 1280x960 = = = AVG
100 1.0
80 0.8
60 0.6
40 0.4 ==
20 0.2
0 0.0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CPU Cores CPU Cores
Diagram 71 - Level Stage OMP Execution Time Diagram 72 - Level Stage OMP Execution Time
(1* Tactic) Efficiency (1° Tactic)

As seen in the Table 99 and Diagram 71 the Levels stage reaction to this tactic is not linear. The
levels stage is speeding up at the usage of the first CPU cores but at the end it seems to lose its
acceleration. This is sensible as it follows the attitude of the DT stage (Chapter 8.6) which is the
main stage contained by the levels stage. This attitude reacts negatively to this parallelization
tactic efficiency as shown in the Diagram 72 above. As it is visible this tactic’s efficiency is
reducing continuously as the number of CPU cores is increased.

Another characteristic of the first parallelization tactic is that it is not so image size independent.
As seen in the graphs the smaller the size of the image is the less efficient is this tactic. This is
very obvious with the smallest tested image of 320x240 pixels where the speedup is gained is
very low and it tends to become lower as the CPU cores are increasing.

As far as the memory consumption of this tactic is not actually affected as the DT and Find
procedure parallelization does not consumes any significant amount of memory.

8.8.2.2" Tactic

As done in the Feature Pyramid stage where a loop procedure exists, the second parallelization
tactic is a tactic that separates the loop in different CPU cores (Figure 55). In practice every CPU
cores undertakes a component stage execution of the level. The number of components is
enough (13) to bind all available cores. The negative affect of this tactic is that it consumes much
more memory than the single core one. The increase of the memory consumption of this stage
when using this tactic is shown in the Table 100 below.

In the second parallelization tactic a new execution flow diagram is applied as shown in the
Figure 55 below where the multiple threads of the CPU are distributed to every component
stage procedure. This way multiple components detection procedure can run in parallel.

Convolution[Level] For every Level

f* ------- N\ (- * -------) — + ------ N

' Component[1] i ' Component[2] i ' Component[13] i

R T
e E— e

L L) L J

|f

A\ JAN 7\ J,

Figure 55 - Level Stage OMP 2" Tactic Diagram

In the Table 100 below the effect of the 2™ parallelization tactic is shown as far as the time
consumption of the Level stage. As seen in this table the Level stage gains as great speedup, up

to five times, when used with more than five CPU cores. It is also visible that the Level stage is
gaining a very efficient speedup even from the usage of the first extra CPU core in contrast to
the 1" tactic.

Table 100 - Level Stage OMP 2" Tactic Execution Time (%)

320x240 640x480 800x600 1024x768 1280x960 Speedup
P s34 52.1 51.7 53.7 51.5 x1.9
L 387 37.1 36.5 36.9 36.5 x2.7
b 289 28.2 27.9 28.1 28.0 x3.5
L 20 27.8 27.8 28.1 27.3 x3.6
0 194 19.3 18.4 19.4 18.7 X5.3
205 19.7 19.0 19.5 19.0 X5.1
L 204 19.4 18.9 19.4 19.1 X5.1
320x240 640x480 800x600 320x240 640x480 800x600
1024x768 1280x960 = = = AVG 1024x768 1280x960 = = = AVG
100 1.0
80 0.8
60 0.6
40 0.4
20 0.2
0 0.0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CPU Cores CPU Cores
Diagram 73 - Level Stage OMP Execution Time Diagram 74 - Level Stage OMP Execution Time
(2" Tactic) Efficiency (2™ Tactic)

The results of this tactic as shown in the Table 100 and Diagram 73 is that the execution time of
the level stage is reducing rapidly until the fourth CPU core. By the fifth core and the usage of
the second CPU of the testing hardware the stages execution time stops reducing significantly.
What is extremely positive is that the usage of extra CPU cores in this tactic produces a very
good efficiency that always stays over 60%.

Except of the time effect, the 2" parallelization tactic increases also the memory consumption.
As referred in chapter 6.20 the maximum memory consumption of the TSM algorithm is reached
at the Level stage when applied in the top image pyramid level. The maximum memory
consumption at this point can be predicted using the function (15). In this function the
algorithm’s maximum memory is the sum of the Filters Responses, plus the DT Scores produced

in the DT stage (the same for every component), plus the Backtrack stage temporary memory,
all during the execution of the Level stage for the features pyramid top level. At last the memory
consumed by the Model and other data, that is a stable size, is added.

When more CPU cores are used what is parallelized is actually the Component stage. The Filters
Responses are the same for all threads. What is private is the DT and Backtrack stages that are
executed multiple times in the different CPU cores. This means that the maximum memory
consumption can be predicted using the expression of function (16).

FD_ = F Responses[0]+ DT .Scores[0] + Backtrack[0] + Others (15)

FD_ = F Responses[0] + Others+ Cores x (DT Scores[0]+ Backtrack[O]) (16)

Using the function (16) the memory consumption of this stage is multiplied by the number of
cores used as presented in Table 101 below.

Table 101 - TSM v3.2.2 Level Stage OMP 2™ Tactic Max Memory (Mbytes)

| GllL | 320x240 640x480 800x600 1024x768 1280x960 Average
| 1core [JERY 20.1 31.0 50.2 78.0

B 2 31.0 47.9 77.9 121 +54%
| 3cores [IEEVEY 41.9 64.9 106 164 +108%
| 4cores [IEEY: 52.8 81.8 133 207 +162%
| 5cores [IETYG 63.7 98.8 161 250 +216%
| 6cores TN 74.6 116 188 293 +270%
22.2 85.6 133 216 336 +324%
25.0 96.5 150 244 379 +378%

As seen in the Table 101 the usage of a full eight CPU cores parallelization can cause up to 380%
memory consumption incremental. It is obvious by the data of the Table 101 that this
parallelization technique has a heavy memory consumption cost. On the other hand,
considering the relationship between CPU cores and RAM memory that is usually offered in the
hardware market, this increment in the maximum memory consumption is not prohibitive. It
would be unusual an eight cores CPU hardware with less than one Gigabyte of RAM memory!

At this point is very important to refer to the Find v2.0 patch described in chapter 7.2. At this
chapter the memory reduction that was gained using this patch was appose. This reduction is
proved very significant on this 2™ parallelization tactic as it keeps low the memory consumption
incremental. In the Table 102 below the maximum memory consumption of this tactic without
using the Find v2.0 patch is presented in order to be understandable the benefits this patch
offered.

Table 102 - TSM v3.2.2 Level Stage OMP 2™ Tactic Max Memory (Mbytes)

320x240 640x480 800x600 1024x768 1280x960 Average
| 1core [JEEY: 52.5 81.3 132 206

E o 95.8 149 242 377 +82.4%
| 3cores [EETH! 139 216 352 547 +165%
| 4cores [INTES 182 283 461 718 +247%
| 5cores [ELY 226 351 571 889 +329%
| 6cores R 269 418 681 1,060 +412%
80.7 312 485 791 1,231 +494%
91.8 356 552 900 1,401 +577%

As seen in the Table 102 above, the maximum memory consumption of the algorithm when
using the 2™ parallelization tactic would be much larger creating questions about the ability of
using it at any hardware. As seen in the 8 cores line the maximum memory consumption
reaches even more than one gigabyte of memory.

8.8.3.3" Tactic

At last, a combination of these two tactics is tested. This 3" tactic used the parallelized version
of the DT and Find procedure and on the same time shares component detection on several CPU
cores. On the Table 103 the results of this tactic when used until two CPU cores for the 2nd
tactic while the rest cores are shared to the 1st tactic. In the next table, Table 104, the same
result when the 2nd tactic uses until four CPU cores.

Table 103 - Level Stage OMP 3™ Tactic Execution Time (%)
(Tactic 2 = 2 cores)

320x240 640x480 800x600 1024x768 1280x960 Speedup
L sas 52.3 52.1 52.5 52.5 x1.9
L 586 51.4 47.9 45.9 44.5 x2.0
D s30 50.0 46.6 418 40.6 x2.2
. 588 45.9 42.0 36.5 34.0 x2.4
0 ses 49.1 43.9 40.6 36.5 x2.2
67.4 52.2 45.1 38.5 33.4 x2.2
L seie 615 52.8 44.7 37.7 x1.9

Table 104 - Level Stage OMP 3™ Tactic Execution Time (%)
(Tactic 2 = 4 cores)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup
54.5 524 524 52.9 521 x1.9
37.7 36.1 36.5 37.1 35.9 x2.7

28.8 27.7 27.3 27.1 26.7 x3.6

28.7 28.7 27.8 27.9 27.9 x3.5
31.8 29.5 28.3 29.3 28.0 x3.4
49.0 40.8 35.0 31.6 28.4 x2.8
28.8 25.5 23.8 23.1 22.2 x4.1
—@— 1lst —@— 2nd 3rd-2 = ® =3rd-4 —@— 1lst —@— 2nd 3rd-2 = ®-3rd-4
100 1.0
80 0.8

N

60) 0.6 '\“\“\‘ \“\ i
\N td

40 \ 0.4 3 »
- - \\
'\‘H'\-::——o—x 0.2 B

20
0 0.0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CPU Cores CPU Cores
Diagram 75 - Level Stage OMP Execution Time Diagram 76 - Level Stage OMP Execution Time
(All Tactics) Efficiency (All Tactic)

As seen in these two graphs, according to the Table 99, Table 100, Table 103 and Table 104, the
3" parallelization tactic is not gaining any special speedup by the time parallelization is applied
in the DT and Find stage. When it is using only two CPU cores for the component stage
parallelization it seems that there is no worth using it, as until the 3™ CPU core, it is having the
same result as using the 2™ tactic on its own. When using 4 cores for the component stage
parallelization the results also does not seems to be better than using the 2" parallelization
tactic on its own with maximum of four CPU cores.

The 3" parallelization tactic does not seems at all to produce any beneficial result as shown in
Diagram 75 above. As shown in the Diagram 76, the 2" tactic seems to be more efficient than
the others, consuming memory that does not seems to produce memory issues. Even if the Find
v2.0 patch is not in use the 2™ parallelization tactic would also be preferable as even when used
with only 2 or three CPU cores succeeds better results in contrast to the 1% tactic even when the
last one uses all the eight CPU cores.

8.9. TSM Algorithm

After examining the effect of parallelism in most of the stages and procedures of the algorithm,
in this chapter a comparison of every stage and procedure according to its efficiency is appose.
In the Table 105 below the efficiency of every stage of the algorithm that is referred in previous
chapters.

Table 105 - TSM Procedures & Stage OMP Efficiency

Memory CPU Cores

Charge 2 3 4 5 6 7 8
- | No 062 049 042 035 029 025 022
DO No 075 090 068 054 045 038 034
| No 093 091 08 08 078 078 077

Yes 066 060 045 064 053 046 0.40
FP Stage

No 08 075 066 058 048 041 037
No 099 100 099 099 097 094 095
No 073 066 056 050 043 037 032
0| No 08 061 040 032 026 022 0.9

Yes 095 090 08 072 08 073 064
Level Stage

No 068 057 048 041 035 031 026

The Table 105 is a parallelization map giving useful information of how the parallelization affects
the algorithms parts and proposing the parts that the CPU cores have to be focused. It is also
shows when the parallelization affects the memory consumption of the TSM algorithm warning
for memory issues. Using this table, two parallelization tactics are presented for the whole
algorithm. The 1*" tactic is using the most time efficient tactics of the algorithms’ parts while the
2" one is using the most memory consumption efficient tactics of the DT and Features Pyramid
stages. In the next subchapters the impact of those two tactics over the two latest versions of
the algorithm is appose.

8.9.1.TSM Algorithm v2.2

In the Table 105 (Chapter 8.9) the green bolded lines show the parallelized procedure with the
higher efficiency that can be used in order to achieve the highest speedup. By using the most
efficient tactics of the algorithms in version 2.2.2 the results are as shown in the Table 106
below.

Table 106 - TSM v2.2.2 OMP Execution Time (Time Efficient Version) (%)

320x240 640x480 800x600 1024x768 1280x960 Speedup
51.5 51.2 50.9 51.5 51.5 x1.9

L 356 34.9 34.8 34.8 34.4 x2.9
Bl 26.7 26.5 26.6 26.3 x3.8
L 236 23.1 22.9 23.0 22.9 x4.3
0 189 18.4 18.3 18.3 18.0 X5.4
17.2 17.1 16.9 17.0 16.8 X5.9
BEN s 15.8 15.5 15.7 15.6 X6.4

320x240 640x480 800x600 320%x240 640x480 800x600
1024x768 1280x960 = = = AVG 1024x768 1280x960 = = = AVG
100 1.0
80 0.8 \M\
60 0.6
40 0.4
20 0.2
0 0.0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CPU Cores CPU Cores
Diagram 77 - TSM v2.2.2 OMP Execution Time Diagram 78 - TSM v2.2.2 OMP Execution Time
(Time Efficient) Efficiency (Time Efficient)

In the Diagram 77 the Table 106 data are figured. As seen in the graph the 1* parallelization
tactic of the 2.2.2 version of the TSM algorithm is image size independent. It is very pleasant
that using eight CPU cores produce a speedup of 6.4 times faster. As shown in the Diagram 78
the algorithms parallelization efficiency is always higher than 80% and more than 95% for the
first four cores used. This is a very positive result!

As far as the memory consumption of the algorithm when using this tactic the maximum
memory consumption of the algorithms is presented in the Table 107 below.

Table 107 - TSM v2.2.2 OMP Max Memory Consumption (Mbytes)

320x240 640x480 800x600 1024x768 1280x960
5,3 19 30 48 74
| 2 R 30 46 76 117
E 11 41 63 103 160
| 4 14 52 80 131 203
e 16 63 97 158 246
| 6 | 19 74 114 186 289
22 85 131 214 332
B 9 148 241 375

As seen in the Table 107 above the maximum memory consumption needed for the algorithm,
even when eight CPU cores are used, seems not to be prohibited according to the usual
hardware designs in the market. It is almost unusual to have a hardware with more than 4 CPU
cores and less than 2 gigabytes of memory. In addition it is also unusual to have an 8 cores CPU

(2 CPUs) with less than 4 gigabyte memory. Even the embedded systems are usually designed
with 0.5 or 1 gigabytes of memory and 2 or 4 cores CPU.

On the other hand the image processing algorithms usually use small sized images at the size of
640x480 (0.3 megapixels). As seen in the Table 107 the algorithm consumes less than 100
megabytes of memory for images of this size. This observations show that this tactic can be used
for any hardware design.

Nevertheless the fact that the 1% tactic hardware requirements is suitable for the majority of the
embedded systems in the market a second parallelization tactic is appose as a CPU cores
independent version. This tactic uses the parallelized versions on every procedure that keeps
the maximum memory consumption stable. This tactic time results are shown in the Table 108
below.

Table 108 - TSM v2.2.2 OMP Execution Time (Memory Efficient Version) (%)
320x240 640x480 800x600 1024x768 1280x960 Speedup

b e 57.4 56.3 56.6 52.5 x1.8
L a2 40.9 39.8 39.8 38.4 x2.4
b 408 32.9 31.8 315 325 x3.0
| 5 eV 28.4 28.6 27.2 26.0 x3.4
L0 369 25.5 24.9 24.3 25.0 x3.8
35.0 236 22.9 21.8 21.2 x4.2
L 347 232 21.9 20.4 19.5 x4.4
320x240 640x480 800x600 320x240 640x480 800x600
1024x768 1280x960 = = = AVG 1024x768 1280x960 = = = AVG
100
80
60
40
20
0 0.0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CPU Cores CPU Cores
Diagram 79 - TSM v2.2.2 OMP Execution Time Diagram 80 - TSM v2.2.2 OMP Execution Time

(Memory Efficient) Efficiency (Memory Efficient)

As seen in the Table 108 the algorithms speedup is increasing a bit as the image size is greater.
On the Diagram 80 is also visible a fall of the algorithms efficiency as the image size is getting
smaller. These tables show that the 2™ parallelization tactic can be efficiently used for large
sized images as this tactic holds the maximum memory consumption low and also its execution
time is approaching the execution time of the 1* tactic as the image size is getting larger.

The 2™ tactic maximum memory consumption is the same with the single core algorithms
implementation shown in the Table 107 above corresponding line.

8.9.2.TSM Algorithm v3.2

Applying the 1% parallelization tactic in the version 3.2 of the algorithm (Chapter 6.20), the
execution time impact is as shown in the Table 109 below. As seen in this table the 3.2 version
of the algorithm succeeds up to 6.4 times. It is very positive that even from the usage of a
second CPU core the execution time is decreased to its half.

Table 109 - TSM v3.2.2 OMP Execution Time (Time Efficient Version) (%)

320x240 640x480 800x600 1024x768 1280x960 Speedup
bl sue 51.3 51.2 51.9 51.1 x1.9
L 383 34.9 34.7 34.8 34.7 x2.9
D 267 26.6 26.5 26.5 26.6 x3.8
b s 23.1 23.1 23.1 23.0 x4.3
L0 184 18.5 18.2 18.3 18.2 X5.5
17.3 17.2 17.0 17.0 17.0 X5.8
L 163 15.8 15.6 15.7 15.7 X6.3
320x240 640x480 800x600 320x240 640x480 800x600
1024x768 1280x960 = = = AVG 1024x768 1280x960 = = = AVG

100 1.0 -

60 0.6
40 0.4
20 0.2
0 0.0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CPU Cores CPU Cores
Diagram 81 - TSM v3.2.2 OMP Execution Time Diagram 82 - TSM v3.2.2 OMP Execution Time

(Time Efficient) Efficiency (Time Efficient)

In the Diagram 81 and Diagram 82, it is extremely obvious that the 1° parallelization tactic is
totally image size independent. This is also visible by the data of the Table 109. The algorithm is
speeding up during all the extra CPU cores used and its efficiency is always very high over the
80% holding it over the 95% for the four primal cores (1 CPU). The impact of this tactic is very
positive.

In the Table 110, the impact of the 1*' parallelization tactic is shown. As seen in this table even
when using more than one CPU and large sized images the algorithm’s maximum memory does
not exceed the 400 megabytes. Although, as referred in previous chapters, the combination of
CPU cores and RAM memory appears in the hardware market does not make the usage of this

version of the algorithm prohibited.

Table 110 - TSM v3.2.2 OMP Max Memory Consumption (Mbytes)

320x240 640x480 800x600 1024x768 1280x960 Average
5,5 20 31 50 78

b 83 31 48 78 121 +54.0 %
Bl =« 42 65 106 164 +108 %
b 53 82 133 207 +162 %
Bl - 64 99 161 250 +216 %
6 ST 75 116 188 293 +270 %
22 86 133 216 336 +324 %
BEl = 9 150 244 379 +378%

The 1% parallelization tactics is the fastest one using a sensible amount of memory available at
the majority of the hardware designs in the market. Although it is important to present the
impact of the 2™ parallelization tactic on this version of the algorithm. This impact in the
algorithm’s execution time is shown in the Table 111.

Table 111 - TSM v3.2.2 OMP Execution Time (Memory Efficient Version) (%)

320x240 640x480 800x600 1024x768 1280x960 Speedup
62.9 58.9 57.5 56.8 56.6 xL.7

L 466 42.0 413 403 39.6 x2.4
2 34.8 33.3 32.7 31.5 x2.9
L 383 303 28.8 27.9 26.8 x3.3
0 363 28.1 26.9 25.5 23.9 x3.6
38.0 26.8 25.4 24.0 21.9 x3.8
b 394 26.1 24.1 21.6 21.5 x4.0

320x240 640x480 800x600 320x240 640x480 800x600
1024x768 1280960 = = = AVG 1024x768 1280x960 = = = AVG
100 1.0
80 0.8
60 0.6
40 0.4
20 0.2
0 0.0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CPU Cores CPU Cores

TSM v3.2.2 OMP Execution Time Efficiency (Memory

TSM v3.2.2 OMP Execution Time (Memory Efficient) Efficient)

In contrast to the 1st parallelization tactic, the 2nd one of the 3.2.2 version of the algorithm
does not react the same way to all image sizes. As seen this tactic is more efficient to the larger
images. As seen in the Diagram 82 the algorithms efficiency is decreasing linearly as the number
of CPU cores is increasing falling under the 60% at the last 2 cores. This is the main difference
between this and the 1st tactic which keeps its efficiency high for all usable CPU cores.

The 2nd tactic maximum memory consumption is the same with the single core algorithms
implementation shown in the Table 110 above corresponding line.

8.9.3.TSM Algorithm v4.1

On this chapter a last version of the algorithm is presented, designed for multi CPU systems
using more than 1 CPUs. As presented in chapter 8.9, many of the algorithms stages and
procedures shows reduction of their parallelization efficiency while the CPU cores used are
increasing. In this version the maximum efficiency of all procedures is tried to be succeeded. In
the Diagram 83 below the efficiency of all procedures is presented according to the CPU cores
used. As seen in this graph, in the most procedures the maximum efficiency is when using less
cores and only the HOG and the Convolution procedures keep their efficiency high despite the
usage of multiple CPU cores.

——FP Stage Resize Reduce

HOG —DT Convolution
Find Level

1.0

0.8

0.6

0.4

0.2

0.0
1 2 3 4 5 6 7 8

CPU Cores

Diagram 83 - TSM OMP Procedures Efficiency per CPU Core

According to the Diagram 83 above, the HOG and the Convolution procedures are the most
efficient and the most stable, all the rest are either inefficient or unstable. This version of the
TSM algorithm (v4.1) is based on focusing on these two procedures offering the majority of the
hardware resources to them. The idea of this last version is based on splitting the algorithm is
two sections trying to get the maximum efficiency of each of them. As seen in the Figure 56
below the first section is an extension of the Features Pyramid stage containing the HOG and
the Convolution procedures that are the most efficient ones and the second one the Level stage
that is less efficient and its maximum efficiency is reached when using low number of cores.
These two section have to share the hardware resources (CPU cores) in a way that would offer
the maximum efficiency to the algorithm.

HOG OMP Level[1] J——h— Convolution OMP Level[1] J—
v
FP 5tage
Section 1
X Cores Resize/Reduce J—» HOG OMP J—» Convolution OMP J
* Level Stage
1
Section 2 DT Stage
Y Cores

Figure 56 - TSM Algorithm v4.1 Execution Flow Diagram

In the Figure 56 above a complicated execution flow graph is presented. At the beginning, the
algorithm uses all the available CPU cores in order to calculate the HOG descriptors and the
Filter Responses of the first level of the Image Pyramid. No resize procedure is needed for the
top level of the Features pyramid as it uses the image on its original size. This level is also the
one with the greatest size image so the most time consuming level. The HOG and the
Convolution procedures on the other hand are the most efficient ones worth to the usage of the
full CPU resources. After the first level Filters Responses are calculated the algorithm separates
the available CPU cores in the two sections. The first section is calculating the features images
and the Filters Responses of every level while and the second one executes the level stage
looking for detections. The Level stage section needs the Filters Responses data structure as
input and this is the reason why the algorithm calculates the first level Filters Responses outside
the sections section. If the algorithm do that inside the first section the second would be idle,
waiting the first one to finish the first level calculations in order to use it. In this design the

second stage starts immediately its execution as its input data are already calculated while the
first section calculates the next level’s Filters Responses.

The idea behind this execution design is the usage of as many as it can CPU cores to the most
efficient and also most time consuming procedure. This procedure is the Convolution one. The
HOG procedure is added to the same section cause of its sequential relationship with the
Convolution one and mainly because of its very high efficiency in parallelism. On the other hand,
while most of the CPU cores are allocated to the section one, less cores are busy to the section
two where other procedures are executing that need less execution time and are less efficient.
This technique is hiding in a way the time consumption of the procedures executed in the
section two behind the consumption time of the section one.

Another though that motivated this version is to limit the number of CPU cores used in the Level
stage parallelization in order to reduce the maximum memory consumption it consumes. Using
the CPU cores at the Convolution procedure that creates zero temporary memory the algorithm
can succeed high execution time efficiency with less memory consumption. At the same time
the time the algorithm can execute the Section two without the need of allocating the great
amount of memory that the each Component stage needs.

Between those two sections there is unfortunately a dependency. This dependency is that the
output data of the section one (Filters Responses) are the input of the section two (Level Stage).
It is obvious that the section two has to wait for a while the section one to finish some of its
calculations. The ideal usage of this version would be a balanced share of the CPU cores
between those two sections so that when the first section finishes the calculations of a levels
Filters Responses, the second section would start the components detection on the same level.

There are two moments where the section two waits the section one. The first time is when the
section two waits the section one to calculate the first level Filters Responses. The second
moment is when the first section finishes its procedure and the whole algorithm has to wait the
section two to finish. As referred above the section two cannot finish before the section one as
it uses its outputs as an input. This means that the section one will always finish a levels
component detection time earlier than the section two. As far as this type of «waiting», the
solution is to start the detection from the top to the bottom of the Image Pyramid so that the
last components detection of section two would use the smallest image Filters Responses which
is the less time consuming level. This solution transfer the «waiting» problem to beginning
where the section two has to wait for the first calculated Filters Responses. The solution to this
problem is as designed in this version and figured in Figure 56, where the algorithm uses all its
available CPU cores in order to calculate the first level’s Filters Responses. This way the first
levels HOG and Convolution procedure occurs outside the sections section and no cores have to
setidle.

Using the data of the efficiency and execution time tables, a performance function was created
for the algorithm version 3.1 in order to predict the algorithm performance according to the
CPU cores used in each section. This function is depending on two more function as shown

below.
x2=x-—xl (17)
F.=F*E,, (18)

t.x1

FD,, =0.25-(HOG,, +Conv,,)+ MAX (0.75 -(HOG, , +Con,)+ IPstage, ,, Compm) (19)

In function (17), the x2 is the number of cores used in section 2 and x1 are the cores used in the
section 1. X is the number of CPU cores available by the hardware.

In function (18), F:y is the execution time percentage needed by the procedure F during the
algorithms execution, when F; is the execution time percentage needed by the procedure
when no parallelism techniques are used and F.zx the efficiency of the procedure F when

parallelism techniques are used with x number of CPU cores.

At last the function (19) is the algorithms version 3.2 performance function according to the CPU
cores used in each section. As seen in the first part of the function the performance of the HOG
and Convolution procedures when executed for the first level of the Image Pyramid are
multiplied by the number of 0.25. This is because the first level of the Image Pyramid holds the
25% of the whole Image Pyramid data as explained in chapter 6.10. At the second part of the
function (19) the execution time of each section is calculated and the greater is kept. What is
not calculated, because it is very hard to be predicted in contrast to its significance, is the delay
that the section 1 can cause to section 2. This delay is insignificant as it affects the function
result only when both sections needs almost the same time and also because it has a very small
value as it concerns the last level of the Image pyramid that is the smallest one and the
detection procedure is extremely fast.

Using function (19) with the data of the execution time and efficiency tables (the average

efficiency as far as the image size) the results come of are shown in Table 112 below,

Table 112 - TSM v4.1.2 Execution Time Simulation

Available Section 2 cores . .
Cores 2 3 4 5 6 7 Sim Real

18.6 13.8 15.7 19.9 28.8 54.1 15.6 15.8
19.0 16.0 20.2 29.1 54.4 17.0 17.1
19.3 20.6 294 54.8 18.2 18.3

34.6
35.5
36.8
60.4

21.1
30.8
57.5

29.9
56.1

55.3

23.0
26.5
34.9
51.5

23.0
26.6
34.9
51.4

As shown in the Table 112 above the simulated results show that this version (4.1.2) is going to

be faster than the version 3.2.2 when using more than one CPU hardware resources but slower

for single CPU hardware. The simulated results also shows that this design of the algorithm

works better when 2 or 3 CPU cores are offered to the Section 2. Using this data, the version

4.1.2 was tested in real world and its results are shown in the following tables.

Table 113 - TSM v4.1.2 Execution Time

Section 2 cores 320x240 v3.2 Section 2 cores 640x320 v3.2
2 3 4 Time Mem 1 2 3 4 Time Mem
| 239 198 183 216 160 394 206 165 144 174 156 26.1
231 195 21.6 245 17.1 380 205 167 172 213 17.0 268
|0 260 205 260 325 181 363 208 181 213 292 182 281
L 249 237 326 593 224 383 221 212 296 545 228 303
| 220 340 606 263 414 261 306 55.4 263 348
BEN 357 62 347 466 332 569 345 42.0
| 2 % 507 629 60.2 50.7 589
-]
Section 2 cores 800x600 v3.2 Section 2 cores 1024x768 v3.2
1 2 3 4 Time Mem 1 2 3 4 Time Mem
| 206 159 143 166 155 241 201 163 138 166 155 216
210 165 168 21.0 169 254 202 162 167 206 16.8 24.0
|0 212 179 211 294 181 269 204 177 208 292 181 255
L 226 211 295 547 229 288 221 209 294 547 228 279
I 64 305 ss6 263 333 257 304 554 261 327
BER 3338 570 345 413 337 5638 343 403
[2 P 509 575 59.8 51.2 568
I
- Section 2 cores 1280x960 v3.2 Section 2 cores 1600x1200 v3.2
2 3 1 Time Mem 1 2 3 1 Time Mem
| 204 156 143 166 158 215 202 153 144 166 156 195
204 164 168 208 17.0 219 203 169 167 206 169 20.9
|0 202 183 209 295 182 239 205 186 209 296 182 232
I 224 211 299 554 231 268 228 212 299 556 229 26.1
Il 265 306 562 267 315 270 307 56.4 262 312

34,5 57.5 349 39.6 57.7 345 38.7
60.4 513 56.6 60.6 51.2 523

As seen in the Table 113 the version 4.1.2 of the TSM algorithm is faster than any other version
especially when used with 2 CPUs. The speedup of the 4.1.2 version is not so significant but
combined with the maximum memory advantages it offers it could replace the version 3.2.2. As
seen in these tables the version 4.1.2 it is much faster than the memory efficient edition
(«Mem» column) of the 3.2.2 version. This means that this version is ideal when used with
multi-CPUs hardware and large images.

In version 4.1 the TSM algorithm is split in two parallel section where each of them has its own
memory consumption. The section 1 is creating Features images and the Filters Responses. The
Features images data are locally created and released just after the calculation of corresponding
Filter Responses but the Filter Responses are released by the section 2 after the level detection
is completed. The section 2 uses the Filter Responses created in section 1 while the rest data it
uses are locally created and released. The detection results are created inside the section 2 but
they are calculated as global memory consumption because their size is dependent by the size
of the Results Cache data structure. They also have a very small size after the Find v2.0 patch
(Chapter 7.2).

M=>N Filter Responses [N-M]

P —

| Section 2 DT Stage [N] |

Figure 57 - TSM v4.1 Maximum Memory Sections Diagram

As shown in Figure 57 above the maximum memory consumption is actually formed by the level
every section is and the distance between the two sections level. As greater this distance is so
larger is the memory consumption. It is obvious that maximum memory consumption of both
sections is reached when they execute its procedures at the top level of image pyramid, actually
at their first run. On the other hand the Filter Responses of each level is always greater than the
HOG image of the same level. This means that the Filters Responses that are created by the
section 1 are overlapping the section’s memory. When the section 2 finishes its processing on a

level then the Filters Responses of this level is released. So as it is sensible the maximum
memory consumption of the algorithms is reached when the section 2 is on the first level and
the section 1 on the last one. This way the all levels Filter Responses are hold in the memory
increasing the algorithms maximum memory consumption like in the Figure 58.

Section 1

¥
280880
A

Section 2

Figure 58 - TSM v4.1 Filters Responses Section Usage Diagram

To reduce the maximum memory consumption of this version the distance between the
execution levels of every section has to be limited to the minimum. This can be achieved by
obligating the section 1 to wait for the section 2 on a specific maximum distance. If the section 2
is faster or equal to the section 1 this problem does not appears. On the other hand if the
section 1 is faster, then this problem is getting larger. This means that the best distance limit
that would not affect the algorithm execution time is 1 meaning that when section 2 is
processing the level N the section is processing the level N+1. This way the maximum memory
consumption is equal to the following function result,

M Mg +M +M

max = cection 2[1] Filter_Responses[1-2] Features_Image[2] (2 0)

M =M

max Scection 2[1]

+M +M (21)

Filter_Responses[1-3] Features_Image[3]

On the other hand in the real world execution of the TSM algorithm such an ideal
synchronization between these two sections cannot be achieved. This means that the Filters
Responses of N+1 Level must be already calculated when the Section 2 finishes the processing of
the level N. This means that when the Section 2 is finishing the level N processing the Section 1
has to start processing the level N+2 in order to avoid at any chance that there is no possibility
of Section 2 to wait for Section 1. The conclusion is that the distance limit that should be set in
order to avoid section waiting and at the same time minimum maximum memory consumption
is 2. The results using this options are as shown in Table 114 below,

Table 114 - TSM v4.1 Maximum Memory Consumption Comparison

Version Cores 320x240 640x480 800x600 1024x768 1280x960 Average
1 5.60 Mb 20.3 Mb 31.2 Mb 50.5 Mb 78.2 Mb

8 +347% +375% +379% +383% +385% +374%

V2.2.2 8 +345% +370% +375% +378% +380% +370%

Va2 . +151% +162% +163% +165% +165% +161%
14.0 Mb 53.2 Mb 82.2 Mb 134 Mb 208 Mb

As seen in the Table 114 above, the version 4.1.2 of the algorithm is using almost the half
memory of the rest parallelized versions and less than three times the memory a single core

version uses.

To summarize, the version 4.1.2 of the algorithm is 5 0 b i\ bl o et

succeeding execution times similar to the rest parallelized |mage 32002400
version with a tiny, insignificant speedup. On the other time 89.8%
hand the memory consumption of this version is about the Memory 30.8%
half of the rest parallelized version. As seen in the Table Memory v3.2 2,427 Mb
115, the TSM algorithm consumption is not large according Memory v4.1 249 Mb

to the available memory a multi-core hardware design

usually dispose. The conclusion is that this version could probably be very useful when used for
large size images where the memory consumption and the execution time are really high and
small percentage differences can be noticeable sizes in real world. For example in a 3200x2400
pixels image the version 4.1.2 is 10.2% faster than the version 3.2.2.

8.9.4.TSM Algorithm Versions Comparison

After presenting the three version (v2.2.2, v3.2.2, v4.1.2) of the TSM algorithm using OMP
parallelization technology a last survey has to be done. From these three version the most

efficient is the 3.2.2 version.

Table 116 - TSM OMP Versions Execution Time Comparison (%)

Version 1 2 3 4 5 6 7 8

V3.2.2 (Mem) 51.0 34.6 26.3 22.8 18.1 16.9 15.7 51.0
V3.2.2 (Time) 58.5 41.9 34.7 30.4 28.1 27.2 26.6 58.5
V4.1.2 61.5 34.2 26.6 21.6 18.5 17.1 15.0 61.5

The version 4.1.2 is a special version that has to be customized carefully according to the
hardware resources offered in order to warranty its performance. As referred in chapter 8.9.3,
this version is suitable for multiprocessors systems processing large size images, either wise the

profit it can offer is few in contrast to its instability of performance if it is not correctly

customized.

Table 117 - TSM OMP Versions Max Memory Comparison (%)

Version 1 2 3 4 5 6 7 8
V3.2.2 (Mem) 0 0 0 0 0 0 0 0
V3.2.2 (Time) 0 +54 +108 +162 +216 +270 +324 +378
V4.1.2 +118 +54 +54 +54 +108 +108 +108 +161

On the other hand the version 3.2.2 is stably faster than the version 2.2.2 and its memory
consumption is insignificantly higher. It offer good performance without any further
customization at any kind of hardware resource. Both these version can be used with the
memory efficient editions described in chapters 8.9.1 and 8.9.2, but in our opinion there is no
reason for doing that as the time efficient editions consume affordable memory related to the
modern embedded systems capabilities. The usage of the Find v2.0 patch has a major role on
that.

As every procedure of the TSM algorithm has a different parallelization efficiency the execution
time distribution is different according to the CPU cores used at the parallelized versions. The
execution time distribution of the version 3.2.2 of the TSM algorithm is shown in the Table 118

below.

Table 118 - TSM v3.2.2 Execution Time Distribution (%)

CPU Cores 1 2 3 4 5 6 7 8

095 143 163 196 228 286 313 352
+0 +0.49 +0.69 +1.01 +1.33 +1.92 +2.19 +2.57
_ 172 1.72 174 180 175 230 227 244

+0 +0 +0.02 +0.08 +0.03 +0.58 +0.55 +0.72
66.1 65.0 63.3 63.0 58.2 62.2 58.7 55.4
Convolution
+0 -1.16 -2.82 -3.17 -7.96 -3.92 -7.39 -10.7
31.2 31.8 33.2 33.1 37.6 324 35.6 38.2
Level Stage
+0 +0.64 +2.01 +1.94 +6.43 +1.22 +4.40 +7.10

As seen in this table the Convolution procedure tends to participate less as the CPU cores
number increases. This is very sensible as this procedure has very high efficiency at the
parallelization technology and its execution time tends to reduce more than the rest
procedures. That is why the other procedures tend to increase its participation. As seen in the
same table the Resize (and Reduce) procedure and the Level stage participation in the algorithm
execution time increased much more as these two participants efficiency is not as high as the
two others when used too many CPU cores.

Convolution Level Stage HOG Resize
N\
1 2 3 4 5 6 7 8
CPU Cores

Diagram 84 - TSM Algorithm v3.2.2 OMP Execution Time Distribution Impact

9. TSM System Alternative Patches

In this chapter some patches over the TSM algorithm design are presented. These patches aim
to improve the algorithm memory consumption or speed up the detection procedure or both.
All of these improvements affect the algorithm detection performance making the algorithm
less reliable or detection efficient but much faster. The goal is the ratio of speedup to the
detection performance fall to be the greatest it can be achieved.

By studying the relations between the procedures execution time and the data structures (Filter
Responses, Features Images, etc) of different levels of Features Pyramids, a stable ratio between
them is discovered strictly connected with the image size. Using 5 as the value of the Interval
parameter (default and proposed by the creators) the execution time needed for a levels’ filters
responses, for example, to be calculated is given by the function (22) . The same ratio occurs
also when refer to memory consumption on the Filters Responses data structure, as shows the
function (23).

Another ratio between the Features Pyramid levels is the ratio between a level and its following.
Function (24) and (25) shows the relation between a level and the rest pyramid including it. The
Functions (26) and (27) express the relation between a level and the following ones.

Time(level) = 0.75x Time(level —1) (22)

Mem(level) =0.75x Mem(level -1) (23)
I=level

Time(level) =0.25% z Time(l) (24)
I=last
I=level

Mem(/evel) =0.25x Z Mem(/) (25)
I=last
I=level+1

Time(level) =0.33x z Time(l) (26)

I=last

[=level+1

Mem(/level) =0.33x Z Mem(/) (27)

[=last

Using the functions (22) to (27) it is easy to predict the memory and execution time speedup can
be achieved when the MinLevel parameter value changes. If for example the first level of the
Features Pyramid is skipped the benefit that would be gained is a speedup of 25% at the
Convolution stage. A 25% speedup would also cause the same speedup at the execution time of
the whole algorithm as skipping a level in the Feature Pyramid, means also skipping a level in the
Convolution and the detection procedures.

This conclusion is the basic idea behind most of the next alternative patches (Chapter 9.3 to 9.8)
that try to speed up the algorithm by skipping the execution of some of the most time
consuming procedures (Convolution, DT Stage). Skipping the convolution procedure in some
levels of the features pyramid would cause a significant execution time saving, especially if these
levels are from the top ones. The same applies to the Level stage execution where the detection
procedures is applied.

9.1. NMS Limit

The NMS procedure is the one that selects the best detection results within a multiple set of
values appear in the area of a detected human face, as described in chapter 5.10. In the owners
implementation the NMS procedure sorts the detected results ascending and starting from the
highest results checks the rest ones for overlaps, rejecting the overlapping ones. One detail in
this implementation is that the NMS procedure after sorting the detections results it
automatically rejects the lowest values without processing. The number of the detections
results that are rejected is defined by the “NMS limit” parameter which default value is the 70%
of the default Results Cache size. By examining the algorithms results setting this parameter
value to zero, the algorithm accuracy change. The effect of this technique is double. Firstly, the
majority of the detections in that area of lowest 70% are usually faulty detection, so this
rejection protects the algorithm results from fake detection that decrease its reliability. On the
other hand within this area sometimes correct detections exist, that unfortunately are rejected,
decreasing the algorithm detection efficiency (Diagram 85). This sacrifice of correct detection
against the fake ones is probably decided cause of the greater ratio of faulty against correct
results in this area.

M Faulty ®Face #1 W Face #2 = Face #3 M Face #4 M Face #5 m Highest 30% M Lowest 70%

Sorted Results

Diagram 85 - Results Cache NMS Limit Parameter Example

In the Table 119 below the results of testing the algorithm using a set of 205 images used by the
creators of the algorithm also for testing, are shown. At this table, the detections of the
algorithm according to the threshold variable value is presented when using the 99 filters
model.

070 -065 -0.60 055 -050 -0.45 -0.40 -0.35
wstmic |
891 878 8.1 89 85 81 808 .

10.9 12.2 13.9 17.1 17.5 17.9 19.2 -
21.8 15.3 10.6 8.27 4,93 3.27 1.82 -
Reliability 71.4 75.8 78.1 77.1 79.1 79.8 79.6 -
Fake/Real 15.0 10.9 4.25 1.84 1.57 1.08 0.82 -
Detected 93.2 91.2 90.4 88.2 85.5 84.8 83.1 80.3
6.84 8.76 9.62 11.8 14.5 15.2 16.9 19.7
47.9 36.7 23.9 16.4 9.50 6.37 3.95 2.59
Reliability 50.2 59.6 70.4 75.2 78.4 80.2 80.4 78.7

As seen in the Table 119, the default threshold variable value produce totally different results on
the algorithm when the “NMS Limit” parameter is set to 70%. As seen, the number of face
detections is slightly increased when on the other hand the number of fake detections is
increased by more than two times. The ratio between the fake and the real faces that the “NMS
Limit” parameter rejects, changes according to the “Threshold” parameter value. The lower this
parameter is the larger is this ratio. As seen in this table “Fake/Real” line, the ratio between fake
and real faces rejected starts from 15 when the “Threshold” parameter value is -0.70 while it is
less than one for “Threshold” parameter values greater than -0.45. As seen in this table the
reliability of the algorithm with the “NMS Limit” parameter disabled is better as long as the
“Fake/Real” face ratio is greater than 1.5. When the “Threshold” parameter value is greater
than -0.50 the version of the algorithm without the use of the “NMS Limit” parameters succeeds
better reliability.

Detected Missed 1.0
Fake Reliability
100
0.9
80 .S
wv)
60 o
g
40 o 0.8
—_—0%
20 —
—_—70%
0 0.7
-0,7 -0,65 -0,6 -0,55 -0,5 -0,45 -0,4 -0,35 0.7 0.8 0.9 1.0
Threshold Recall

Diagram 86 - TSM Algorithm Performance with NMS Limit Disabled (99 Filters Model)

In the Diagram 86 above as is visible the Threshold parameter value is inversely analogous to the
number of face detections. As it is increasing, the number of face detections (real or faulty) is
decreasing. On the other hand as the Threshold variable is increasing the number of missed
detections is increasing. The “Reliability” indicator is the one that reveals the best ratio between
successful detections, missed detections and fake ones. The function that gives this indicator is
the (28) below

Reliability = D (28)

missed +D fake +D correct
Pr ecision = correct (29)
fake +D, correct
D
Recall = ——<— (30)

missed + correct

As far as the 146 filters Model the results of the same testing procedure are shown in the Table
120 below.

Table 120 - NMS Limit Results using 146 Filters Model

070 065 -0.60 -0.55 -0.50 -0.45 -0.40
e N
885 8.3 842 85 788 774 .
W 115 137 158 175 212 226 .
| 108 713 506 326 212 136 .
799 810 86 802 775 765 .
2.48 145 079 062 033 033 -
934 906 82 83 8l4 793 765
WESE | 662 940 118 147 186 207 235
[Fake ~ [BECE 124 802 500 3.05 2.11 1.65
760 803 8.9 8L6 794 779 755

In the Table 120 above the impact of disabling the “NMS Limit” parameter in the NMS
procedure is much lower than in the 99 filters model. This is because the 146 filters model is
more accurate as it uses more and better trained filters for the landmark detection. This is also
depicted in the relation between the fake and the real face detections inside the 70% of results
rejected by the “NMS Limit” parameter. This relation is 2.5 fake detections for every correct one
when in the 99 filters model this relation is 15 when the “Threshold” parameter value is -0.70.
What is interesting is that the “NMS Limit” parameter has negative impact on the algorithm
results when values lower than -0.65 on the “Threshold” parameter are used.

Detected Missed 1.0
Fake Reliability
100
80 ;-.}:i £ 0.9
- = o
- ‘B
0 — =~ S ——99 Model - 0%
40 08 ——99 Model - 70%

20 // 146 Model - 0%

—_— —— 146 Model - 70%
0 0.7

-0,7 -065 -06 -055 -05 -0,45 -04 0.7 0.8 0.9 1.0
Threshold Recall

Diagram 87 - TSM Algorithm Performance with NMS Limit Disabled (Both Models)

At the Diagram 87 above the effect of different values of the Threshold parameter is shown for
both models. This effect is the same as described in the corresponding paragraph for the 99
filters Model. It is sensible that when the Threshold parameter is reducing the number of real
and also fake face detection to increase and the opposite when increasing. The only difference is
that the 146 filters model is more accurate creating much less fake detections. On the other
hand the detection efficiency is better for the 99 filters model as it is more abstract. The
interesting point of those two models is that as the “Threshold” parameter value is increasing
their reliability is converging. This is very encouraging as the 99 filters model is much faster than
the 146 filters one and it can succeed pretty good reliability and detection efficiency than can
make it more preferable.

As referred in this chapter’s paragraphs, the “NMS Limit” parameter has a positive impact in the
algorithm’s results when the “Threshold” parameter value is low at both Models. The disabling
of the “NMS Limit” parameter is not a wise decision if it is not replaced by another method that
would be able to increase the algorithms reliability by rejecting the fake faces. This method is
appose in the next chapter, chapter 9.2.

9.2. Dynamic Threshold

A static value on the Threshold parameter might not be always efficient. Sometimes in a sharp
image the faces within it can produce many high-score values much higher than the Threshold
parameter value. In addition fake faces may be detected with high-score values much lower
than the real faces ones but still over the Threshold parameter limit. In our implementation a
new proposal to this problem is presented using a dynamic Threshold value. By examining the
fake results values a ratio between the correct detection and the fake one was discovered.
Usually the better the sharpness of an image is the easier for an image processing algorithm to
have accurate results. A common technique for making an image processing algorithm more
independent of this parameter is the normalization method. A similar technique is the one we

create for that purpose. First of all, the NMS procedure does not reject the lowest detection
results using the “NMS Limit” parameter but in addition the results are compared among
themselves. The results that their values are less than the Ratio parameter value of the highest

one are rejected.

. Normilize Results to Normilize Results to Reject Results lower
Detection Results . . .
be greater than zero the maximum one than Ratio variable

Figure 59 - Dynamic Threshold Patch Execution Flow Diagram

On the Table 121 below the results of the Face Detection TSM algorithm using different values
of the Ratio and Threshold parameters for the 99 filters Model is shown. As seen in the table the
most critical parameter is the reliability of the algorithm. As greater it is the more reliable the
algorithm is. A second important parameter is the number of detected faces as the more face
detection the algorithm achieves the more efficient it is. The desirable result is the algorithm to
detect as more faces it can with the maximum percentage of reliability.

Table 121 - Dynamic Threshold Patch Results with 99 Filters Model

Threshold Ratio Detected Missed Fake Reliability Precision Recall

Original 89.1 10.9 21.8 71.4 0.78 0.89
0% 93.2 6.84 47.9 50.2 0.52 0.93
5% 91.2 8.76 33.7 62.3 0.66 0.91
10% 90.6 9.40 20.5 73.5 0.80 0.91
15% 87.8 12.2 13.7 77.1 0.86 0.88
20% 86.1 13.9 7.99 80.1 0.92 0.86
25% 83.8 16.2 4.39 80.7 0.96 0.84
30% 81.4 18.6 1.55 80.4 0.98 0.81
35% 79.3 20.7 1.07 78.6 0.99 0.79

Original 87.8 12.2 15.3 75.8 0.85 0.88
0% 91.2 8.76 36.7 59.6 0.63 0.91
5% 90.8 9.19 22.4 71.9 0.78 0.91
10% 88.2 11.8 14.7 76.6 0.85 0.88
15% 86.3 13.7 8.18 80.2 0.92 0.86
20% 84.2 15.8 5.29 80.4 0.95 0.84
25% 81.8 18.2 1.54 80.8 0.98 0.82

30% 79.5 20.5 1.06 78.8 0.99 0.79

Original 86.1 13.9 10.6 78.1 0.89 0.86

0% 90.4 9.62 23.9 70.4 0.76 0.90
5% 88.0 12.0 14.3 76.7 0.86 0.88
10% 85.7 14.3 8.86 79.1 0.91 0.86
15% 84.8 15.2 5.48 80.9 0.95 0.85
20% 82.5 17.5 1.78 81.3 0.98 0.82
25% 79.9 20.1 1.06 79.2 0.99 0.80
Original 82.9 17.1 8.27 77.1 0.92 0.83
0% 88.2 11.8 16.4 75.2 0.84 0.88
5% 85.9 14.1 9.26 79.0 0.91 0.86
10% 85.3 14.7 6.12 80.8 0.94 0.85
15% 82.9 17.1 2.51 81.2 0.97 0.83
20% 80.6 19.4 1.05 79.9 0.99 0.81
Original 82.5 17.5 4.93 79.1 0.95 0.82
0% 85.5 14.5 9.50 78.4 0.90 0.85
5% 84.8 15.2 6.59 80.0 0.93 0.85
10% 82.9 17.1 3.48 80.5 0.97 0.83
15% 80.3 19.7 1.05 79.7 0.99 0.80
Original 82.1 17.9 3.27 79.8 0.97 0.82
0% 84.8 15.2 6.37 80.2 0.94 0.85
5% 82.9 17.1 3.96 80.2 0.96 0.83
10% 81.2 18.8 1.55 80.2 0.98 0.81
15% 78.8 21.2 0.81 78.3 0.99 0.79
Original 80.8 19.2 1.82 79.6 0.98 0.81
0% 83.1 16.9 3.95 80.4 0.96 0.83
5% 81.4 18.6 2.06 80.0 0.98 0.81
10% 78.8 21.2 0.81 78.3 0.99 0.79
15% 77.1 22.9 0.82 76.6 0.99 0.77

As seen in the Table 121 the Ratio variable improves the algorithm’s performance at about 1.5%
as far as its Maximum Reliability and 4.1% its maximum successful detections. At every value of
the Threshold parameter the Dynamic Threshold patch increases the reliability and efficiency
indexes about 1-2%. These increments on the TSM algorithm performance indexes is not very
significant as the numbers reveal but they show that the Dynamic Threshold patch is an
successful substitute of the “NMS Limit” parameter.

As the Threshold parameter value is increasing the Ratio techniques does not seems to offer any
positive results, but on the other hand when low values are set to Threshold parameter, a small
value of the Ratio one offers a much better performance to the algorithm results. The

conclusion is that a Ratio of 0.05 to 0.15 can be usefully used when low Threshold parameter
value is used aiming on high face detections rates, as shown in Diagram 88. As seen in the
Diagram 88, the results of the algorithm when the Ratio parameter is used is better in all
indexes. In the Diagram 88 the impact of the Ratio technique in the results when used with -0.65
(continuous) and -0.60 (dashed) Threshold variable values is shown.

—@— Detected —@— Missed 1
Fake —@— Reliability
09 F=——
oy -—— -
.©
wv)
k)
@ S <
a.
0.8 . .
Ratio 15% Ratio 10% |
Ratio 5% Ratio 0%
= = = Original
0.7
0% 5% R&%0 15% 20% 0.7 0.8 Recall 0.9 1

Diagram 88 - Dynamic Threshold Patch Impact on ~ Diagram 89 - Dynamic Threshold Patch Performance
Threshold Low Values (99 Filters Model) Impact (99 Filters Models)

As seen in Diagram 88, the results reliability is strongly increased when the “Ratio” parameter is
set to 5% while the face detection rate is not actually reduced. As described above this
phenomenon is smaller when used with -0.60 Threshold parameter value than with -0.65.

Threshold = -0.65 Threshold = -0.65, Ratio = 0.15

Figure 60 - Dynamic Threshold Patch Performance Examples

As described above the usage of the Ratio parameter is a useful technique giving the algorithm a
portion of stability as it rejects the fake face detection even when the Threshold parameter
value is lower than it should. As seen in the Table 121 a Ratio value of 5-15% gives always a
satisfactory result.

As far as the 146 filters Model the results applying the Ratio parameter is shown in the Table
122 below.

Table 122 - Dynamic Threshold Patch Results with 146 Filters Model

Threshold Ratio Detected Missed Fake Reliability Precision Recall

Original 88.5 11.5 10.8 79.9 0.89 0.88
0% 93.4 6.62 19.7 76.0 0.80 0.93
5% 92.3 7.69 12.0 82.0 0.88 0.92
10% 89.5 10.5 8.11 83.0 0.92 0.90
15% 87.6 12.4 5.96 83.0 0.94 0.88
20% 85.7 14.3 4.75 82.2 0.95 0.86
25% 82.1 17.9 3.52 79.7 0.96 0.82
Original 86.3 13.7 7.13 81.0 0.93 0.86
0% 90.6 9.40 12.4 80.3 0.88 0.91
5% 89.1 10.9 7.95 82.7 0.92 0.89
10% 87.4 12.6 5.76 83.0 0.94 0.87
15% 85.3 14.7 4.77 81.8 0.95 0.85
Original 84.2 15.8 5.06 80.6 0.95 0.84
0% 88.2 11.8 8.02 81.9 0.92 0.88
5% 86.3 13.7 5.16 82.4 0.95 0.86
10% 84.6 15.4 4.35 81.5 0.96 0.85
15% 81.6 18.4 3.05 79.6 0.97 0.82

Original 82.5 17.5 3.26 80.2 0.97 0.82

0% 85.3 14.7 5.00 81.6 0.95 0.85

5% 83.1 16.9 3.47 80.7 0.97 0.83
10% 81.2 18.8 2.31 79.7 0.98 0.81
Original 78.8 21.2 2.12 77.5 0.98 0.79
0% 81.4 18.6 3.05 79.4 0.97 0.81
5% 80.8 19.2 2.33 79.2 0.98 0.81
10% 78.8 21.2 1.60 77.8 0.98 0.79

By the application of the Ratio parameter, the detection efficiency and the reliability of the
algorithm is increased as seen in the Table 122 overcoming the results of the original version.
This is very important as by reducing the Threshold parameter value to the -0.70 the algorithm
face detection efficiency is increasing and by using the Ration parameter value to a 10
percentage the algorithm results are better in all indexes. The same thing is observed when the
threshold variable is set to -0.65 and the ratio one to 10%.

1.00

0.95
.5 0.90
8]
9 Ratio 15%
& 08 Ratio 10%

Ratio 5%
\
0.80 Ratio 0%
= = = Original
0.75
0.75 0.80 0.85 0.90 0.95 1.00

Recall

Diagram 90 - Dynamic Threshold Patch Performance Impact (146 Filters Model)

As a conclusion the disabling of the “NMS Limit” parameter of NMS procedure revealed a
number of valid face detections but also a larger number of invalid ones. The number of fake
face detections can be reduced by increasing the value of the “Threshold” variable but this
change cause also a small decrement of the algorithms detection efficiency. At last the Dynamic
Threshold patch using the Ratio parameter is the one that can replace the “NMS Limit” one in
the NMS procedure. The Ratio parameter is more efficient and also fairer as it is not dependent
by the number of detections but by the detected faces sharpness. The results tables are the
proof.

9.3. Interval

The greatest consumer of execution time of the algorithm is the Convolution stage (Diagram 30,
Chapter 6.20) where the Filter Responses are produced. The Convolution stage duration is
depended on two parameters. The first parameter is the number of filters used by the model
parts and the second one is the number of levels the features pyramid has. The larger the
feature pyramid is the more time is needed for the convolution procedure. The length of the
features pyramid is also affecting the number of the Level stage calls that uses the Distance
Transformation stage which is the second greatest time consumer (Diagram 30, Chapter 6.20).
The Convolution and the DT stage consumes about the 96% of the whole algorithm execution.

In chapter 7, the Short Pyramid patch reduced the number of levels in an important amount, as
explained. Although the number of levels reduced is closely to its half, the levels of the features
pyramid that was removed was the latest. The latest levels of the feature pyramid have actually
the smallest sizes and that was the reason that even if the length of the features pyramid was
reduced about to its half, the reduction of the execution time of the algorithm was reduced for
only about 4%. It would be a very pleasant if there was a way of reducing the number of levels
of the features pyramid removing levels from the top.

Removing levels from the top of the Feature pyramid would remove the ability from the
algorithm of detecting small faces within the images. If for example the first level of the feature
pyramid is removed then the ability of the algorithm to detect faces in the size of 100 pixels high
within the image would be greatly reduced. If the algorithm is used for an application than does
not tries to detect very small face within large images then it would not be a problem but this is
the subject of chapter 9.4.

In this chapter, a method of reducing the number of the top levels of the features pyramid of
the algorithm aiming on reducing its execution time is appose. In the chapter 5.5 the “Interval”
parameter was introduced. This parameter determines the number of scaled images, inside the
features pyramid, between two images with scale ratio of two. In this chapter the impact of the
reduction of this parameter value is going to be examined.

The TSM algorithm creators set the “Interval” parameter

value to five as the default value. Changing this parameter Interval
, Image Size

value to four would change the whole features pyramid 5 4

images scale and this is why the impact of this change 320x240 7 6

640x480 12 10
800x600 13 11

1024x768 15 12
values. In the Table 123 the number of the levels of the 1280x960 17 14 10

cannot be calculated using the execution time of the
algorithm when used with other “Interval” parameter

O 00N P W

features pyramid according to the Interval parameter is

presented. What is very important on this change is not only the execution time gain but its
impact on the algorithms detection efficiency and its reliability.

III

The algorithms execution time when the “interval” parameter is reduced to four is shown in the
Table 124 when this change is applied to the version 3.2.2. As seen in this table, the execution
time gained is noticeable, about 20%. If the Interval parameter is further reduced to three the
execution time is almost twice reduced to 37.8%. These reductions is very positive but they have

an impact on the algorithm’s performance as shown in the next table (Table 125).

Table 124 - TSM v3.2.2 Interval Patch Execution Time (%)

320x240 640x480 800x600 1024x768 1280x960 Average
-28.3 -19.8 -18.5 -18.7 -17.7 -20.6
-45.4 -37.0 -35.9 -35.7 -35.2 -37.8

Table 125 - TSM Algorithm Interval Patch Performance (%)

Ll 065 -0.60 -0.55 -0.50 -0.45 -0.40
91.2 90.4 88.2 85.5 84.8 83.1
| Missed [ERE 9.62 11.8 14.5 15.2 16.9
| Fake DR 23.9 16.4 9.50 6.37 3.95

Reliability [JEEN 70.4 75.2 78.4 80.2 80.4
86.3 84.0 82.3 80.1 77.4 75.0
| Missed [NER 16.0 17.7 19.9 22.6 25.0
| rake PR 17.3 11.5 7.18 3.21 1.13

Reliability [JRNEN 715 743 75.5 75.4 74.4
72.0 69.9 66.9 65.4 62.8 61.1
| Missed [PENY 30.1 33.1 34.6 37.2 38.9
| Fake TN 10.7 5.44 3.16 1.01 0.35

Reliability [N 64.5 64.4 64.0 62.4 61.0

In the Table 125 above the detection efficiency and the reliability results are not as positive as
the execution time gain. As seen the reduction of the Interval parameter to four causes 5 to 10
percent reduction of the algorithms detection efficiency while its reliability is also low. The
results are even worst when the interval variable is set to three where the algorithms detection
efficiency and reliability is getting lower than 70%.

The detection efficiency and the reliability of the algorithms seems to reduce a lot when the
interval parameter value is change and is reducing. On the other hand the execution time

speedup gained is significant reaching the 20%. Reducing the Interval parameter value seems to
be a risk as it makes the algorithm less reliable and efficient and it does not seems to worth it.
This technique reduces the algorithm efficiency so much that it would not be advisable to be
used in combined to other patches presented in this thesis. On the other hand, other patches
that do not affect significantly the algorithms efficiency can be combined offering similar
execution time speedup without making the algorithm unreliable.

9.4. Canvas

As referred in the previous chapters, the features pyramid levels consumes time according to
their image size. Using the “Interval” parameter set to five, the time needed for the first level of
the features pyramid is about the 25% of the time needed for all the features pyramid levels.
The time needed for the next level is about 19% etc. To sum up, the first interval set of levels (1
to interval) needs about the 75% of the whole features pyramid levels. All these leads to the
conclusion that if the algorithm skipped even one level from the top of the features pyramid this
would significantly reduce the algorithm’s execution time.

In this chapter one method for speeding up the algorithm is presented sacrificing a part of its
reliability and detection efficiency, but controllable. In this method two new parameters are
imported in the algorithm implementation that gives the opportunity of sacrificing the ability of
the algorithm to detect very small or very large faces within the image but gaining time
consumption.

These two parameters are the “Min Face” and the “Max Face” defining the minimum and the
maximum face size according to the image’s size that the algorithm would try to detect. This
way the levels used for detecting faces larger or smaller than this percentages would be skipped
by the algorithm.

The algorithm detects large faces in the latest levels of the image pyramid. This means that
when the “Max Face” parameter is reducing the algorithm skips levels ascending starting from
the last level. As far as the time consumption profit of this change will not be great as the latest
a level is in the features pyramid, the less execution time needs. This way when the “Max Face”
parameter is reduced the execution time saved would be too few in contrast to the reliability
that it may lose. For that reason the “Max Face” parameter should be reduced only if the
algorithm is used in applications that do not try to detect faces conceiving large part of the
image.

L V3

Figure 61 - Faces Size Within the Image Examples

As far as the small faces, these are detected in the top levels of the features pyramid so in the
largest features images. In contrast to the “Max Face” parameter, the “Min Face” one is much
more significant as far as the saving of execution time. Even if the algorithm skips one level from
the top, its execution time is reduced by 25%. This is a very important reduction. So, if the
algorithm is used for detecting large faces within images, then it would be very helpful if the
“Min face” parameter would be increased in order some of the top levels of the features
pyramid would be skipped and the algorithm could gain a significant speed up.

In previous chapters has been referred that [& SR RIS K F VT T 015 o o) o e Lo 6

the algorithm can detect faces with the Image Size 99 Model 146 Model
minimum size of 100 pixels. This makes it 320x240 41.7 20.8
obvious that the “Min Face” parameter does 640x480 20.8 10.4
not always has a real effect to the algorithm. 800x600 16.7 8.33
As the Table 126 shows the minimum face 1024x768 13.0 6.51
size that the algorithm can detect in specific 1280x960 104 521

image sizes is larger as the image size is

smaller. As seen in this table when the image height is 240 pixels the algorithm can detect faces
larger than the 41.7% of the image height. This concludes that if the “Min Face” parameter is set
to 25% it would have no impact to the algorithms execution. In the Table 126 below the faces
size that can be detected by the features pyramid’s levels are shown.

The execution time saving for every level of the pyramid skipped using these parameters are
shown in the Table 127 below. As seen in this table, setting the “Min Face” parameter value to
30% can gain a speedup up to 68.4% for a very large image (1028x960) and at least 25% for a
small one (640x480). This is a very important speedup that can be easily used when the image
classification is known. If for example the algorithm is used for images with a close capture of
faces then the top levels of the features pyramid are useless, while if the face capture is from
large distance, then the bottom levels are the ones that are useless.

Table 127 - Max/MinFace Parameters Execution Time Profit (%)

- Detectable Face Size per Level (%) Profit Approach
m 320x240 640x480 800x600 1024x768 1280x960 Level (x:x_:::;) (T“:L"_F)T;:t)
0| 458 241 199 159 131 250 744 0%
0 542 307 263 21.7 183 188 557 -25.0
.| 625 373 327 275 236 141 416 43.8
L 708 439 391 333 289 105 311 57.8
.| 792 505 455 391 341 791 232 68.4
L0 875 571 519 449 394 593 172 76.3
958 637 583 507 447 445 128 82.2
EN 703 647 565 499 334 945 86.7
9 | 769 712 623 552 250 6.94 -90.0
| 10 | 835 776 681 605 188 5.07 92.5
| 11 | 90.1 840 739 657 141 3.66 94.4
| 12 | 9.7 904 79.7 710 106 260 95.8
| 13 | 9.8 855 763 079 181 -96.8
B 91.3 81.6 059 122 97.6
| 15 | 97.1 868 045 077 98.2
| 16 | 921 033 044 98.7
97.4 025 0% -99.0

+42 33 432 29 +2.6

In the Figure 61 the size of multiple faces according to the image size are shown. As seen in
these images a face must be too zoomed in to the camera to take place in a large part within the
images as happens in the bottom left image in Figure 61. The most common distance can make
a face holding the 10% to 50% of the image height and that makes it difficult to raise the “Min

|I’

Level” parameter value because it raises the possibility of affecting the algorithms detection
efficiency. What might worth a try is to increase the value of the “Min Level” parameter at such
a small quantity that the algorithm could at least skip the top level of the features pyramid and

gain a 25% time speedup.

On the other hand the “Max Face” parameters as seen in these images can easily be reduced for
a significant amount as it is very unusual for a face to be captured at such a close zoom that it
can conceive larger than 70% or at most 80%. The bad news is that the levels of the features
pyramid that could be skipped by this parameter are the smallest ones and the speedup the
algorithm can gain very insignificant. Although, it seems that a “Max Face” parameter value
equal to 80% is very possible to have a tiny, insignificant impact to the algorithm’s detection
efficiency.

The heartening fact is that as the pyramid size is decreasing, all the levels of the pyramid
execution time participation is increasing. As seen in the Table 128 below the last level of the
pyramid is using the 5.78% of the whole pyramid detection time on a 7 levels while in a 17 levels
pyramid only 0.33%. This means that a MaxFace Parameter value set to 80% can offer about
13% reduction on the execution time of a 320x240 image and about 5% on a 640x480 image
when the corresponding reduction is less than 2% on a 1280x960 image. On the other hand the
top levels participation is always very significant and skipping them can be proved very useful in
large size images as mentioned before.

Table 128 - Max/MinFace Execution Time Profit per Image Size

320x240 640x480 800x600 1024x768 1280x960
Level Face Profit Face Profit Face Profit Face Profit Face Profit
45.8 27.4 24.1 24.5 19.9 24.4 15.9 24.2 13.1 24.1
54.2 21.3 30.7 18.9 26.3 18.6 21.7 18.5 18.3 18.3
62.5 16.3 37.3 14.3 32.7 14.2 27.5 14.0 23.6 13.9
70.8 12.4 43.9 11.0 39.1 10.8 33.3 10.7 28.9 10.6
79.2 9.56 50.5 8.28 45.5 8.29 39.1 8.14 34.1 8.06
87.5 7.24 57.1 6.31 51.9 6.25 44.9 6.16 39.4 6.11
95.8 5.78 63.7 491 58.3 4.82 50.7 4.74 44.7 4.70
70.3 3.75 64.7 3.66 56.5 3.59 49.9 3.57
76.9 2.87 71.2 2.81 62.3 2.78 55.2 2.74
83.5 2.20 77.6 2.20 68.1 2.13 60.5 2.06
90.1 1.67 84.0 1.66 73.9 1.60 65.7 1.57
96.7 1.33 90.4 1.28 79.7 1.23 71.0 1.23
96.8 0.99 85.5 0.96 76.3 0.94
91.3 0.74 81.6 0.71
97.1 0.57 86.8 0.55

921 0.42
97.4 0.33
4.2 3.3 13.2 2.9 2.6

9.5. 68 Filters Model

One of the major advantages of this TSM algorithm as referred in the Related Work chapter
(Chapter 3) is its ability to detect faces until the viewing angle of +90 degrees. Many related
algorithms used for face detection are trained to detect centered faces. As described in chapter
4, the algorithm is using parts based mixtures of trees to detect faces and estimate their pose.
For the detection and pose estimation of faces in the area of +60 to +90 degrees viewing angle
the algorithm is using six pose trees which use 78 filters (146 filters model). These 78 filters are
compressed to 39 ones on the 99 filters model. The existence of these extra pose trees and
filters cost to the TSM algorithm extra time and memory consumption as they extend the
execution time of the Convolution and Level stage and also enlarge the Filters Responses arrays
list which is one of the main participants on the maximum memory consumption formation.

As far as the memory consumption of the TSM algorithm, the impact of removing the edge pose
trees is as shown in Table 129 below. The Filters Responses data memory is reduced to its 68/99
as it is sensible. The impact of this reduction ends to a reduction of about 12% to the total
maximum memory consumption.

As far as the execution time consumption, the impact of the 68 filters model to the TSM
algorithm is reaching the -31% as the Table 129 shows. This is a significant reduction as the
algorithm needs the two thirds of the time needed in the 99 filters model when the 68 one is

used.

Table 129 - TSM v3.2.2 68 Filters Model Performance (Compared to 99 Model)
320x240 640x480 800x600 1024x768 1280x960 Average

4.84 Mb 17.6 Mb 27.2 Mb 44.0 Mb 68.3 Mb
Memory

-11.5% -12.2% -12.3% -12.4% -12.4% -12.2%
Time -31.2% -31.3% -31.1% -31.2% -30.9% -31.1%

The disadvantage if using the 68 filters model is the fact that the algorithm is now able to detect
faces of +450 viewing angle. The performance of the algorithm is not actually change as far as
the 68 filters poses. Any difference in the reliability and detection efficiency is shown in the
Table 130 below is caused by the removal of the 39 filters poses from the aggregation of the
testing results. As seen in the results table below the algorithm results in faces of 450 viewing
angle are even better than the 99 filters model. Its performance fall starts when it is asked to

detect faces in greater viewing angles where the detection efficiency is reducing, luring its
reliability as the fake detection results are stable.

Table 130 - TSM 68 Filters Model Results

Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35
-45° to +45°
Detected 98.2 94.6 90.4 88.3 85.8 82.6 79.5 76.9

1.81 5.44 9.59 11.7 14.2 17.4 20.5 23.1
29.8 22.0 15.1 9.31 4.89 3.04 1.29 0.00
Reliability 69.3 74.6 77.9 81.0 82.1 80.6 78.7 76.9
-60° to +60°

Detected 91.1 87.7 83.9 82.0 79.6 76.7 73.8 71.4
8.89 12.3 16.1 18.0 20.4 23.3 26.2 28.6
29.8 22.0 15.1 9.31 4.89 3.04 1.29 0.00
Reliability 65.7 70.3 73.0 75.6 76.4 74.9 73.1 71.4
-75° to +75°

Detected 86.5 83.3 79.7 77.9 75.6 72.8 70.1 67.8
13.5 16.7 20.3 22.1 24.4 27.2 29.9 32.2
29.8 22.0 15.1 9.31 4.89 3.04 1.29 0.00
Reliability 63.3 67.5 69.8 72.1 72.7 71.2 69.5 67.8
-90° to +90°

Detected 81.0 78.0 74.6 72.9 70.7 68.2 65.6 63.5
19.0 22.0 25.4 27.1 29.3 31.8 34.4 36.5
29.8 22.0 15.1 9.31 4.89 3.04 1.29 0.00
Reliability 60.3 63.9 65.8 67.8 68.2 66.7 65.0 63.5

9.6. Detection Components

As realized already by the algorithm characteristics, the main execution time consumers are the
Convolution and the Component detection processing. In this chapter a technique that can
reduce the time consumption of the Component stage.

During the component detection procedure the nearby components produce similar high-score
values as referred in 5.1. This means that if the component 7 (0° viewing angle) is removed by
the model a corresponding face can continue be detected by the components next to it (6 and 8,
+15°). As the components diverge from the same component the detection results are reducing
as shown in the Diagram 91 below.

High-Score Value

-90-75-60-45-30-15 0 15 30 45 60 75 90
Viewing Angle

High-Score Value

-90-75-60-45-30-15 0 15 30 45 60 75 90
Viewing Angle

Diagram 91 - Components High-Score Results Example

In the 99 filters model the seven components in the middle refers to the face poses from -45 to
45 degrees and they all use the same filters. The distance between the landmarks is the criteria
for the pose estimation. On the other hand the six components at the edges, refer to the -90 to -
60 and 60 to 90 degrees are using a complex of filters, half of which are also used in the middle
components. This is why in Diagram 91 above the face detection of a face on 0 degrees creates
such lower scores on the edge components while in the middle ones the scores are close. In the
Diagram 91 the detection scores of a face in the angle of 75 degrees is presented. Only the
components close to the left edge components of the middle components succeed a detection
but even though their scores are much lower than the ones of the right edge components. This
is caused due to the common filters used by both 68 and 39 parts components.

WO e

-90-60-30 0 30 60 90 -90-60-30 0 30 60 90 -90-60-30 0 30 60 90 -90-60-30 0 30 60 90
Diagram 92 - Components High-Score Results per Viewing Angle Example

In the Diagram 92 above some examples of components scores in various angles faces are
shown.

The existence of 13 components increases the efficiency of the face detection algorithm but it
actually aims on the pose estimation and not to a general face detection. All those properties of
the algorithm gives the idea of splitting the algorithm in two similar but with different scope
sections. The first section aims on the face detection and the second one on the pose
estimation. If the first section detects a face within the image of a pyramid level then the second
section is executed on the same image. It works as the Backtrack stage where the Backtrack
procedure applies only when high-score values are detected by the find procedure.

The Face Detection section is using for the detection procedure one or a few more components
instead of using all of them. These called the detection components. The Threshold parameter
value on this section is a little lower in order to be more efficient in the face detection
procedure and the detection components can detect faces belonging to other viewing angles far
away from them. If in this procedure no faces are detected then the Pose Estimation section is
not executed. On the other hand when a face is detected the rest components are used on the
Pose Estimation section which is executed in order to achieve an accurate detection with pose
estimation. The Threshold parameter value on the Pose Estimation section is as usual. The
benefit of this patch is that it reduced the times the component stage execution is executed as it
overtakes empty images faster than the original version.

Level Stage

(Face Detection Section

- e . o o

Detection Pose Trees
Detection Threshold

[S

Pose Estimation Section

Component Stage

o o -

Rest Pose Trees

PE Threshold

Component Stage

e

o - -

Figure 62 - Detection Components Patch Execution Flow Diagram

The ideal component for the face detection section seems to be the component 7 that
represents the zero degree angle of a human face. It’s the ideal as it can create high-score
values in the detection procedure for both sides of the human face as it is symmetric. As the aim
of the face detection procedure is the detection of faces in all thirteen poses, the threshold
parameter value of this section must be lower than in the pose estimation one. As shown in the
Diagram 91 and Diagram 92 the seventh component creates low scores on the faces belong to
the edge components and this is a very important reason to reduce the threshold as this angles
faces will not be detectable. On the other hand when low threshold is used on the face
detection section, the more fake faces will be detected activating the pose estimation one. This
would not create faulty detections as the pose estimation section uses the most efficient
threshold value (Chapter 9.2) but it would cancel the advantage of the patch as it would treat to
empty face levels as they contain faces.

Table 131 - DC Patch Face Detection Section Results (DC Set 7) (%)

Threshold 0.75 -0.70 -0.65 -0.60 -0.55 -0.50
86.5 84.2 80.6 78.2 75.0 722
| Missed ~ [BEEE 15.8 19.4 21.8 25.0 27.8

35.0 25.2 17.5 10.1 6.90 3.98

Reliability 59.0 65.6 68.8 71.9 71.1 70.1

As seen in the Table 131 above, the parameter Threshold value of -0.60 is the most reliable. On

the other hand its detection rating is not as high as in the lower values. At this point the
reliability is not as significant as the pose estimation section would reject the fake faces from the
results. The only way that this patch can affect the algorithms results is if faces are missed. Even
if more fake faces are detected at the face detection section, they will be skipped during the
pose estimation one where the usual Threshold parameter value will be used. So at this point of

the face detection section what is significant is faces not to be missed. If fake faces are detected
the punishment would be useless calls of the pose estimation section than would cost execution
time. So the -0.75 to -0.60 might be the most efficient Threshold parameter value for the face
detection section. In the Table 132 below, the results using different values of this variable are
shown.

Table 132 - DC Patch Results (DC Set 7) (%)

DC Threshold -0.75 -0.70 -0.65
Threshold -0.50 -045 -0.40 -050 -045 -040 -0.50 -0.45 -0.40
Detected 84.6 84.0 82.1 84.6 84.0 81.6 83.3 82.7 80.8

154 16.0 17.9 154 16.0 18.4 16.7 17.3 19.2

9.59 6.43 4.00 9.59 6.43 4.02 9.09 6.30 4.06

Reliability 77.6 79.4 79.3 77.6 79.4 78.9 76.9 78.3 78.1

FD Threshold -0.60 -0.55 -0.50
Threshold -0.50 -045 -0.40 -050 -045 -040 -0.50 -0.45 -0.40
Detected 83.1 82.5 80.6 82.3 81.6 79.5 81.6 81.0 78.8
16.9 17.5 19.4 17.7 18.4 20.5 18.4 19.0 21.2
9.11 6.08 4.07 8.98 6.14 4.12 9.05 6.19 4.16
Reliability 76.7 78.3 77.9 76.1 77.5 76.9 75.5 76.9 76.2

As presented in the Table 132 above the patch results are very close to the ones without it
(Chapter 9.2). All the indexes values have change at least. What is not shown in this table is
what kind of faces have been missed. In the Table 138 the detection analysis of all components
is shown, revealing that the missed face detections are coming from the edge components. As
seen the -90 and 90 degrees face detections were decreased about 20% while the middle
components seems not to be affected.

The patch’s efficiency can be improved if more components are used as detection components
in the face detection section. The ideal components would be some of the edge components as
they create high scores in the face angles where the component seven does not. This is because
they use some different filters. By testing the patch using the components seven, three and
eleven (-60°, 0°, 60°) the following results come of, as shown in Table 133.

Table 133 - DC Patch Face Detection Section Results (DC Set 7-3-11) (%)

-0.65 -0.60 -0.55 -0.50 -0.45 -0.40
89.1 87.8 85.0 83.1 82.9 81.0
| Missed [T 12.2 15.0 16.9 17.1 19.0
[Fake [P 12.2 7.87 4.89 3.24 1.81

~

Reliability 1.6 78.3 79.3 79.7 80.7 79.8

In the Table 133 the threshold used for testing is greater than when the patch used only the
component seven. This is because the components three and eleven are used for the detection
of faces in the angles of 60 to 90 (and -60 to -90) degrees instead of the component seven which
is used for the detection of the rest centered viewing angles. As seen in the table the usage of a
threshold of -0.45 is actually the most efficient, the same as the whole algorithms without it. At
the usage of the same Detection threshold parameter value as seen in both Table 132 and Table
133, the Detection section has much better reliability when using three components instead of
only one. The full algorithms detection results using these three components as detection ones
are shown in the Table 134 below.

Table 134 - DC Patch Results (DC Set 7-3-11) (%)

050 -045 040 -050 045 -0.40
85.5 84.8 82.9 85.5 84.8 82.7
[Missed ~ [ETE 15.2 17.1 14.5 15.2 17.3
I 6.15 3.96 9.50 6.15 3.97
78.6 80.4 80.2 78.4 80.4 80.0

050 -045 040 -050 045 -0.40
85.5 84.8 82.3 84.2 84.2 81.8
[Missed [V 15.2 17.7 15.8 15.8 18.2
[Fake RN 6.15 3.99 6.19 6.19 4.01
78.6 80.4 795 79.8 79.8 79.1

Looking at the results on the algorithms testing using this patch with those three components, it
is visible that the algorithms reliability is not reduced at all. At the reliability line it appears that
when the algorithm is used with this patch and detection threshold value larger than -0.50, the
algorithm detection efficiency is not affected. What is actually important is that the algorithm’s
performance is not affected negatively and in contrast to the one component usage it is still
effective in angles close to 90 degrees.

At last, one more benefit of this patch is that the algorithm can avoid the calculation of some of
the Filter Responses that are not used in the face detection procedure. The algorithm can
calculate only the Filter Responses used by the detection components. If the face detection
section makes a detection, then the rest Filters Responses have to be calculated for use in the
pose estimation section. If no detections occur, the algorithm can skip these Filters Responses

calculations. This is very important as the Filters Responses calculations are the main time

consumer of the algorithm.

When using the 99 filters model the usage of the components seven, three and eleven as
detection ones on the patch is enough to fill all the Filters Responses tables. This is a
considerable reason of using only one detection component. This would not reduce the
algorithm efficiency if the algorithm is used for applications interested in faces with not great
viewing angles. In applications like these this patch can be combined with the 68 filters model
(Chapter 9.5).

Another idea is to replace the components three and eleven with the four and ten ones. This
means that the patch would use the same 68 filters for all the three detection components
when used on the 99 filters model. Testing this version of the DC patch gets the following results
of the Table 135 below.

Table 135 - DC Patch Face Detection Section Results (DC Set 7-4-10) (%)

0.70 -0.65 -0.60 -0.55 -0.50 -0.45
92.5 90.8 89.7 87.6 85.0 84.4
I s 9.19 103 12.4 15.0 15.6
[Fake LR 36.7 23.8 16.5 9.55 6.40
49.7 59.5 70.1 74.7 78.0 79.8

As did with the other two cases the algorithm was tested in different combinations between the
Face Detection section and Pose estimation one threshold. The results are shown in the Table
136 below.

Table 136 - DC Patch Results (DC Set 7-4-10) (%)

DC Threshold -0.75 -0.70 -0.65

Threshold -0.50 -045 -040 -0.50 -0.45 -0.40 -0.50 -0.45 -0.40
Detected 85.0 84.4 82.5 85.0 84.4 82.5 85.0 84.4 82.5
15.0 15.6 17.5 15.0 15.6 17.5 15.0 15.6 17.5
9.55 6.40 3.98 9.55 6.40 3.98 9.55 6.40 3.98
Reliability 78.0 79.8 79.8 78.0 79.8 79.8 78.0 79.8 79.8

FD Threshold -0.60 -0.55 -0.50

Threshold -0.50 -045 -040 -0.50 -0.45 -0.40 -0.50 -0.45 -0.40
Detected 84.6 84.0 82.1 83.8 82.9 81.2 83.8 82.9 81.0
15.4 16.0 17.9 16.2 17.1 18.8 16.2 17.1 19.0
9.38 6.21 4.00 9.26 6.28 4.04 9.26 6.28 4.05
Reliability 77.8 79.6 79.3 77.2 78.5 78.5 77.2 78.5 78.3

Finally a comparison table (Table 137) is used in order to see and compare the differences of
using one and three detection components and which of them. As seen in this table the usage of
the three 68 filters detection components (7, 4, 10) does not provide any crucial benefit in
contrast of using only one. It only offers a small increment in the detection efficiency and the
reliability but they can be matched if a lower FD Threshold parameter value is used to the one
detection component method. Actually when using about -0.10 lower FD Threshold parameter
value the one component detection method succeeds almost the same results with the 3
components one (7, 4, 10). The 99 filters detection components (7, 3, 11) usage on the other
hand offers much better result, close to the ones the algorithm succeeds without the patch.

Table 137 - DC Patch Results Comparison (Threshold = -0.45) (%)

070 -0.65 -0.60 -0.55 -0.50 -0.45
840 827 825 8l6 810 795
PSR 160 173 175 184 190 205
Fake

643 630 608 614 619 6.06
794 783 783 775 769 756
070 -0.65 -0.60 -0.55 -0.50 -0.45 | -0.50 -0.45 -0.40
844 844 840 829 829 821 | 855 848 831
| Missed
Fake

|
|
|
|
|
|
|
|
15.6 15.6 16.0 17.1 17.1 17.9 ‘ 14.5 15.2 16.9
|
|
|
|
|
|
|
|

ALL
-0.50 -045 -0.40
85.5 84.8 83.1
14.5 15.2 16.9
9.50 6.37 3.95
78.4 80.2 80.4
ALL

640 640 621 628 628 611 | 950 637 3.95
798 798 796 785 785 779 | 784 802 804
c7-3-11 ALL
070 -0.65 -0.60 -0.55 -0.50 -0.45 | -0.50 -0.45 -0.40
| Missed |
Fake

84.8 84.8 84.8 84.8 84.8 84.2 85.5 84.8 83.1
Reliability

15.2 15.2 15.2 15.2 15.2 15.8 14.5 15.2 16.9
6.37 6.37 6.15 6.15 6.15 6.19 9.50 6.37 3.95
One important difference between the 68 filters detection components (7, 7-4-10) and the 99

80.2 80.2 80.4 80.4 80.4 79.8 78.4 80.2 80.4

one is that the first’s reliability is linear. The 68 filters components reliability is increasing as the
face detection section threshold parameter value is decreasing. This is sensible as this way the
face detection section makes more detections and calling for the final detection the pose
estimation section. This creates better results but destroys the reason of using the detection
section. If the detection section detects faces every time it is executed, then there is no
execution time profit as the pose estimation section is also always executed. On the other hand
the 99 filters detection components reliability is not linear making the detection section more
efficient. As seen in the Table 137 data these detection components combination has its best

reliability at the detection section threshold parameter value at -0.50 succeeding reliability
better than the algorithm without this patch. This is a very important fact as these detection
components can make the detection section very profitable, skipping the pose estimation one
many times as explained before.

One important comparison is between the two different sets of detection components that use
the 68 filters. When using only the component seven the algorithms reliability is decreased
about 1%, a difference that can be omitted if the Threshold parameter value is decreased as
referred in the previous paragraph. The main difference between these two detection
components sets is that when one detection component is used the algorithm is less efficient on
great viewing angles as shown in the Table 138 below. As seen in this table when one detection
component is used the algorithm is having great loss in the pose angles less than -60° and more
than 60°, almost the twice more than the three detection components set. Again the reduction
of the FD Threshold parameter value can fix this problem. As far as the pose estimation, the

algorithm accuracy is affected less than 1% on the 68 filters detection components models and
almost 0% to the 99 one.

Table 138 - DC Patch Missed Detections Viewing Angle Classification (%)

c-7-3-11 C-7-4-10 7

-60< -60<&<60 <60 -60< -60<&<60 <60 -60< -60<&<60 <60
0 0 526 032 0 -105 095 -417
0 0 526 032 0 -175 032 -417

175 032 0 877 063 417 -17.5 032 -833

175 032 0 -140 095 -167 -193 032 -20.8

175 032 0 -140 095 -167 -22.8 032 250

Comparing the DC patch results with the ones that the algorithm succeeds without it, it is visible
and at the same time sensible that the face detections efficiency is decreased a bit but in a very
tiny amount. Using this patch, the algorithm can sacrifice a very small amount of its face
detection efficiency and maybe a little bit of its reliability gaining execution time. Especially
when the 68 filters detection components are used the algorithm except of skipping the
components stage of many model components it can also skip the calculation of 31 filters
responses saving a lot of execution time.

The amount of execution time that the algorithm can save using these detection component is
not able to be defined as it is detections dependent. The only thing can be done is to predict it
using some of the algorithms characteristics according to previous tests mad

In chapter 6.2, a profiling of the Find procedure was appose using the default threshold variable
value of -0.65. After the NMS procedure changes (Chapter 9.1) application on the algorithm, the
most suitable threshold variable value is set to -0.45. When using the 99 filters detection

components the most efficient value of the detection threshold parameter is the -0.50 while for
the 68 filters ones the minimum is the best. For that reason a profiling for multiple different
values of the Threshold variable was done. By this testing, the data we need is the number of
levels with high-score values a face produce to its corresponding component. This is a different
pointer relatedly to the Levels with high-score values used in chapter 7. In this patch the
maximum number of levels with high-score values that a face produce at every component is
needed. This component is probably the one that will be detected as the correct pose of it. This
way, according to the threshold parameter value, the number of levels in which the patch will
execute the pose estimation section can be estimated. The profiling results are shown in Table
139 below.

Table 139 - DC Patch Max(Levelsyigh-scores[COmponent]) %

Max Average Min
92.3 44.1 11.8
92.3 42.6 11.8
B 84.6 39.9 6.25
| 060 | 714 37.1 6.25
| o055 | 69.2 36.1 6.25
| o050 | 69.2 34.1 6.25
| o045 | 61.5 32.7 6.25

Another parameter for predicting the execution time profit of this patch is the time needed for
the Component and Convolution stages. As referred in chapter 8.5 the relation between two
sequential levels execution time is given by the function (31) below. As referred in the previous
paragraph, the number of levels with high-score values produced by a detection is equal to the

expression (32) where the AVG,__ . (theshold) is the average column of Table 140. In the

function (32) the rounding is down in order to get safer results.

Time(L) ~0.25-0.76" - Time(All) (31)
MaxLy,,, o (Threshold) = ”AVGMM_ LHS (Threshold) xlength(F .Pyramid)|| (32)

Using the function (31) above the execution time graph of every level execution time is as

shown in Diagram 93. In the Table 140 also is shown the value of MaxL (Threshold)

‘High—Scores

on different image sizes and different Threshold parameter values.

Table 140 - DC Patch MaxLyigh-scores(Threshold)

103l d=a0els/| -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45

= 3 3 3 3 3 2 2
- e 5 (5 5 4 | 4 a4 | a
e 6 6 5 5 5 4 a4
e 7 6 6 6 5 [5 |5

1 3 5 7 9 11 13 15
Levels P 7 7 7 6 6 6 6

Diagram 93 - Function (31)
Diagram

Combining the function (31) and (32) a prediction functions that tries to calculate the execution
time saved in different situations is created, the function (33) below, that calculates the
execution time of the detect stage when using this patch.

' 13-C et ec
TLevel = TI_zvel - X TLevel (.X) (33)
1 3 x=L[no_face]
, 31
TConv = TConv ——X Z TConv ('x) (34)
99 x=L[no_face]

Another advantage of this patch appears when using the 68 filters detection components on the
detection section. If only these filters are used then there is no reason for the Convolution stage
to calculate the rest filters responses (31 filters). If a detection is discovered then it will be
executed again to complete the calculations of the rest 31 filters responses. This gives an extra
saving of execution time that might worth the usage of 68 filters detection components. For this
case the function predicting the execution time needed for the Convolutions stage is the
function (34).

It is very complicate to make predictions of any case scenario of detections. It is obvious that
when an image is full of faces with different scales then detections would occur through the
whole features pyramid levels. On the other hand even if more than one faces exist within the
image but these faces are the same scale (for example, a family photo) then all the detections
would probably appear in the same levels of the features pyramid like only one existing. In order
to present the advantages of this patch, this scenario is going to be used as it is a possible to real
life images.

Figure 64 - Multiple Faces, Multiple Scales Image
Example

Figure 63 - Multiple Faces, Same Scale Image Example

In the Table 141 below the execution time profit of no detections in the detection procedure
according to the features pyramid level is shown at the last line. By this table, adding the profits,
it is easy to predict some way what would final profit be for different detections scenarios. In
our main scenario, described in the next paragraph, the total profit would be equal to the sum
of the levels with no detections. As is visible in the last line the 68 filters components detection
model can reduce the algorithm’s execution time to its half when no detection occur while the
99 filters one only for a quarter.

Table 141 - DC Patch Execution Time Profit per Level (%)

Level Stage + Convolution Stage

m C-7-3-11 C-7-4-10 c7 C-7-4-10 c7

. 59 5.35 6.79 -10.6 -12.1
| 2 EEE -4.07 5.16 -8.07 9.17
L 3 -3.09 3.92 6.14 6.97
B - 2.35 2.98 -4.66 5.29
S N K- -1.79 2.26 3.54 -4.02
| s EEE -1.36 172 -2.69 -3.06
-1.15 -1.03 -1.31 -2.05 2.32
b s 0.78 -0.99 -1.56 -1.77
L o0es -0.60 0.76 1.18 134
| 10 RN -0.45 0.57 -0.90 -1.02
| 11 EEER 0.34 0.4 0.68 0.78
b o 0.26 0.33 0.52 -0.59
B o 0.20 0.25 0.39 -0.45
B o 0.15 0.19 -0.30 034
| 15 EEEE 0.11 0.15 0.23 -0.26
B oo -0.09 0.11 0.17 0.20

-0.07 0.07 0.08 0.13 0.15

-24.6 -22.1 -28.0 -43.8 -49.8

The Table 141 above presents the execution time profit when no detection occur within an
image. This is very important if the TSM algorithm is used in video application where the empty
frames detection procedure can be completed much faster.

On the other hand, in real life applications it is more probable one or more detections, real or
fake, to appear in the detection procedure. In the next tables the profiling of the DC patch is
presented according to the profiling scenario where it is supposed that one or more, same scale,
faces are detected, including a number of fake faces (Detection Noise).

Table 142 - DC Patch Execution Time Reduction per Face Size (DC Set 7) (%)

E Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

-0.70 -21.2 -30.6 -33.5 -34.8 -35.3 -31.1

-0.65 -22.7 -33.1 -36.0 -37.4 -38.1 -33.4
50%

-0.60 -24.5 -35.7 -38.5 -40.0 -40.9 -35.9

-0.55 -25.6 -36.8 -39.5 -41.1 -42.1 -37.0

-0.70 = -24.0 -28.9 -31.4 -32.8 -29.3

-0.65 = -27.0 -31.7 -34.3 -35.7 -32.2
40%

-0.60 = -30.1 -34.6 -37.2 -38.8 -35.2

-0.55 = -31.3 -35.7 -38.4 -40.0 -36.4

-0.70 = -9.93 -19.0 -24.2 -27.3 -20.1

-0.65 = -13.9 -22.5 -27.6 -30.7 -23.7
30%

-0.60 = -18.1 -26.1 -31.0 -34.2 -27.4

-0.55 = -19.6 -27.5 -32.4 -35.6 -28.8

-0.70 = = -12.3 -4.77 -11.8 -9.60

-0.65 = = -14.8 -8.55 -16.4 -13.2
20%

-0.60 = = -17.5 -13.6 -21.2 -17.4

-0.55 = = -18.5 -15.5 -23.0 -19.0

Table 143 - DC Patch Execution Time Reduction per Face Size (DC Set 7-4-10) (%)

E Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

-0.65 -18.7 -26.9 -29.2 -30.1 -30.3 -27.0

-0.60 -20.4 -29.3 -31.6 -32.6 -33.0 -29.3
50%

-0.55 -21.5 -30.7 -33.0 -34.1 -34.7 -30.8

-0.50 -23.4 -32.5 -34.8 -36.0 -36.8 -32.7

-0.65 S -21.5 -25.4 -27.3 -28.2 -25.6

-0.60 = -24.4 -28.1 -30.0 -31.1 -28.4
40%

-0.55 = -25.9 -29.6 -31.7 -32.8 -30.0

-0.50 = -28.0 -31.6 -33.7 -35.1 -32.1

-0.65 - -10.0 -17.3 -21.4 -23.8 -18.1

-0.60 = -13.8 -20.6 -24.6 -27.0 -21.5
30%

-0.55 = -15.6 -22.3 -26.4 -28.9 -23.3

-0.50 = -18.4 -24.8 -28.8 -31.4 -25.9

-0.65 - - -10.6 -4.69 -11.2 -8.82

-0.60 = = -13.0 -9.31 -15.6 -12.6
20%

-0.55 = = -14.5 -11.5 -17.8 -14.6

-0.50 = = -16.4 -15.0 -21.0 -17.5

Table 144 - DC Patch Execution Time Reduction per Face Size (DC Set 7-3-11) (%)

E Threshold 320x240 640x480 800x600 1024x768 1280x960 Average
-0.50 -13.4 -18.7 -20.0 -20.8 -21.3 -18.9
50%
-0.45 -14.0 -19.2 -20.4 -21.2 -21.7 -19.3
-0.50 - -16.2 -18.3 -19.6 -20.4 -18.6
40%
-0.45 - -16.7 -18.7 -20.0 -20.8 -19.1
-0.50 - -10.8 -14.5 -16.8 -18.3 -15.1
30%
-0.45 - -11.6 -15.1 -17.4 -18.8 -15.7
-0.50 - - -9.75 -9.01 -12.5 -10.4
20%
-0.45 - - -10.2 -9.93 -13.3 -11.1

As is visible in the Table 142, Table 143 and Table 144, the execution time profit of this patch is
larger as the faces size is increasing. This is sensible because as the larger a detected face is the
larger (to the bottom) the level detected is. Then the levels of the pyramid with detections are
the smallest one and the largest are empty making the DC patch much more useful. The same
phenomenon applies to the image size. The larger an image is the more profitable the DC patch
is. This is because the larger an image is the larger is the pyramid created, making the
corresponding to the face scale levels to move toward to the bottom ones. As small irregularity
on this is cause on very small face size where the upper part of the detection range to the levels
of the pyramid is expanding beyond the pyramid as explained in chapter 6.2. In some images
very small faces cannot also be detected as described in chapter 9.4.

40

c-7
= 31.1
S
< ¢-7-4-10 293 53 0
& 30 256 :
§ c-7-3-11
e " 391 18.6 18.9
= 154
C
o 9.6
5 83
o 10 AG4
x
w
0
0.2 0.3 Faces Size 0.4 0.5

Diagram 94 - Detection Components Sets Execution Time Profit per Face Size

To summarize, a 10% to 30% of execution time can be saved when using the DC patch according
to the detection component set is used. This means that this patch can be a bit profitable to the
TSM algorithm execution time. This patch is a root patch for the next patches that are presented
in the next chapters and give the algorithm the ability of extra time saving.

9.7. Fast Pose Estimation

In this chapter a new approach on the execution flow of the pose estimation section of the DC
patch is presented. This approach aims on the same accuracy with less execution time needed.
The pose estimation section consists by the component stage where the DT and Backtrack ones
are contained. Inside this stage the algorithm applies the detection procedure for every pose
tree in order to decide which one is the correct. The highest score is the parameter that defines

the correctness. This patch is actually the next step of DC one and it can be considered as its
extension or a later version.

In this patch a new way of estimating the right pose is — -

introduced. The algorithm does not apply the detection ,/ Detect Stage \
procedure to all pose trees but makes decisions about
the pose trees to be used in the component stage using Level Stage
information from the already used pose trees results. In

Face Detection Section

the Figure 65 on the right, the execution flow of this
patch is shown. At the beginning of every Level stage
the algorithm executes the Component stage for the Pose Estimation Section
detection components used by the DC patch. This patch
adds a new data structure, the “Faces”. This data Hacss
structure holds information about every face detected
in the component stage. This data structure is explained

. Faces Pose Peak Patch
in chapter 9.7.1.

After the detection components has completed the face

detection section, the “Pose Peak Detection” patch use Faces Level Peak Patch
the information stored in the “Faces” data structure list

to decide which pose tree the pose estimation section

Figure 65 - Fast Pose Estimation Patch

should execute. Decisions are made after every > '
Execution Flow Diagram

component stage execution as the Faces data structures
information are updated. The way this patch makes
decisions is explained in chapter 9.7.2.

When the Level stage is completed, then the algorithms uses again the information of the Faces
data structures through the “Face Peak Detection” patch to decide which faces have completed
their pose estimation procedure. The FPD patch uses the detection results from multiple levels
in order to take these decisions as is described in chapter 9.7.2.

The basic idea behind the FPE Patch is the application of the PPD one. The FPD patch is not
mandatory but as it is explained in the chapter 9.7.3 is does not affect at all the algorithms
detection performance and for this it is greatly recommended. The execution time profit these
patched offer is presented in the corresponding chapters.

9.7.1.Face Data Structure

The Face structure (Table 145) is a data structure that can easily replace the Results Cache one.
When a component stage is completed every high-score value of the DT score results is consider
a detected face. Using the Find v2.0 procedure these results end to less than two high-score
values per face detection. The algorithm then adds a Face data structure in the Faces array
storing the high-score value of this detection. If this high-score value is the highest this Face has
succeeded then it stores its detection result to the box variable. Every time a high-score value is

discovered, the algorithm check if it overlaps an already added Face as exactly the NMS
procedure does. If an overlap occurs then the high-score value is rejected. Even if it is rejected,
the algorithm keeps the highest high-score values of every component at every level to the
Scores array of this Face like keeping a high-score values log file. These information are used by
the FPD (Chapter 9.7.2) and LPD (Chapter 9.7.3) patches. This processing may delay a little bit
the component stage to be completed but it rejects the need of the NMS procedure at the end
of the detection stage. It is like the NMS procedure to be applied for every new detection.

Table 145 - Face Data Structure

Box Detection results. The Backtrack stage output.

Scores[13, Array holding the highest high-score value for every component stage
length(FP)] executed.

Completed Flag used when the detection procedure of this face is completed

The Face data structure array can replace the Results Cache data structure as it contains the
significant information the last one holds. The Results Cache according to the algorithm profiling
presented in chapter 6.14, contains the amount of data as shown in the Table 146 below for a
detection. The Scores array size is smaller than the Result data structure when the pyramid
length is less than 21 levels. It is almost impossible to exceed twice the size of the Result data
structure. As is visible in this table the Results Cache structure holds much more data per
detection than the Face one that makes the last one more efficient.

Table 146 - Face vs Results Cache Data Structures Size per Detection

Data Structure Size

Face Result +lenght (Components) x length(F.P) ~ 2-Result

Result - (/ength(Components) x length(F.P)x Levels,,

ligh—Scores

x AVG (Pixels

Results Cache High—Scores))

~3.4-length(F.P)-Result

As far as the time consumption needed for the Face data structure to check for overlaps, it is
totally insignificant compared to the whole algorithm execution time and it replaces the time
needed for the NMS procedure that is not needed any more. After the Find procedure 2.0
version the execution time and the memory needed for the NMS procedure and the detections
results were reduced so much that any further reduction seems totally insignificant compared to
the whole algorithm consumptions.

9.7.2. Pose Peak Detection

The Pose Peak Detection patch is the one that compares a Face highest-score values across the
component stages executed and decides if its pose estimation procedure is completed for the
corresponding level or which pose tree should be used for the next component stage needed. As

shown in graphs X in chapter X, at the DC patch, the highest-score value of every pose tree
create the highest-scores curve for every face as the ones shown in the Diagram 95 below.

—@—00 Face
—@— 300 Face
—@— 600 Face
900 Face

Highest-Scores

90 75 60 45 30 15 0 -15 -30 -45 -60 -75 -90

Pose Trees
Diagram 95 - Level Highest-Scores Curves Peaks Example

Every curve draws a peak at the position of a pose tree which is consider to be the correct pose
estimation of the detection. This peak is the one that the PPD patch is trying to detect. Using the
maximum high-score (highest-score) of the pose trees components stage results the PPD patch
searches the gradient that leads to that peak. The execution flow this patch follows is as the

Figure 66 shows.

Next Pose Tree(Level)

Face Detection Section (Level)
For Every Face

C = Index(Max(Face—HS(Level-1)))

Exists(Face—HS(Level, C)) Pose Estimation Section(C)

C = Index(Max(Face—HS(Level, C))

Exists(Face—HS(Level, C-1) !

Exists(Face—HS(Level, C+1) F

! False if c=60°
? False if c=-60°

Figure 66 - Pose Peak Detection Patch Execution Flow Diagram

The route that the PPD patch will follow until it discovers the pose peak is defined by the
detection components (DC) used in the face detection section of the DC patch. If the 99 filters
DC are used then the poses trees tree that is going to be followed is as shown in Figure 67.
Otherwise for the 68 filters DC sets the poses trees tree is the ones on the Figure 68 and Figure
69. When more than two faces are detected within the image the second one uses components
stage results of the pose trees executed for the first one and if it is not enough, it can continue
from the closest node to the leaf it belongs.

99 Filters Tree

68 Filters Tree

Figure 67 - Detection Components PPD Tree for 99 Filters
3DC

68 Filters Tree (3)

Figure 68 - Detection Components PPD Tree for 68 Filters Figure 69 - Detection Components PPD Tree for
3DC 68 Filters 1 DC

According to these three trees the Table 147 below shows the number of pose trees that have
to be used in the component stage in order the patch can estimate a face pose correctly. As is
visible in the “AVG” column there is no significant difference between these three DC sets of the
face detection section as far as the average components need to be executed until the patch
makes a decision. The main difference between these three sets is their variance. As seen the
three DC set variance is less than 1, meaning that the number of executions of the component
stage will be always close their average value. As seen in the Table 147, the minimum number of
the component stage executions is 4 while the maximum is 7 for the 99 filters DC set. On the
other hand the 68 filters one DC set succeeds a minimum number of component stage
executions to 3 while the maximum is 8. That is why its variance is about 3.

Table 147 - PPD Patch Components Stage Execution Times per Pose

90 -75 60 -45 -30 -15 0 15 30 45 60 75 90
DC-7 7 7 6 5 4 3 3
DC-7-4-10 6 6 5 5 5 5 5 6 5 5 5 6 6
DC-7-3-11 5 5

VAR(AI) AVG(AI) AVG(-45°< & <+45°) AVG(-60°> & 2+60°)
DC-7 2.85 5.62 4.29 7.17
DC-7-4-10 0.24 5.38 5.14 5.67
DC-7-3-11 0.85 5.38 6.00 4.67

As seen in the Table 147 above, the 99 filters DC set is faster when the detected faces belongs to
the 39 filters components (+(60°-90°)) while the 68 filters ones are faster on the 68 filters
components. What is also important for choosing one of these sets is their efficiency at face
detection section and their time consumption profit as referred in the DC patch (chapter 9.6).
Probably this would be the main criteria for using each one.

—0—30 —8—15 —8—0 -15 —@—-30 =—@=-45

_\\

<

Highest-Scores

1 2 3 4 5 6 7 8 9 10 11 12 13
Levels

Diagram 96 - Face Pose Peak Patch Example

In the Diagram 96 above the Component stage executions are shown for the image to its left
using the 68 filters one DC set at the face detection section of DC patch. As is visible the
algorithm executed the component stage only for the pose models 4 to 9 (-45° to 30°). At the
top levels of the features pyramid, where the face is not clear yet, the results of the detection
procedure lead to the -15° pose tree, but as the feature pyramid level is reaching the
appropriate scale the pose estimation approaches the correct pose tree (pose 0°). As seen, the
number of pose trees used at every level is maximum at four.

By testing the PPD patch the following results came from (Table 148). As far as the 99 filters DC
set, the results are very positive as the algorithms performance seems not to have been affected
at all compared to the results of the Table 134 (Chapter 9.6) and are almost similar to the results

of the algorithm without using any patch. Looking at the results when the 68 filters three DC
sets what is observed is a small drop of the algorithm performance, about 1-2% on its reliability
and detection efficiency indexes compared to the algorithm version without any patch and
about 1% compared to the DC patch. On the other hand, the 68 filters one DC set performance
is much lower than the other two sets. It is obvious that this set’s low detection efficiency in the
great viewing angles drops its total performance, although it can be useful for centered faces
detection applications.

Table 148 - PPD Patch Results Comparison (Threshold = -0.45) (%)
DC-7 | ALL
-0.75 -0.70 -0.65 -0.60 -0.55 -0.50 ‘ -0.50 -0.45 -0.40
78.8 77.8 76.9 75.6 75.0 73.3 ‘ 85.5 84.8 83.1
21.2 22.2 23.1 24.4 25.0 26.7 ‘ 14.5 15.2 16.9
5.38 5.70 5.26 5.09 5.39 4.72 ‘ 9.50 6.37 3.95
75.5 74.3 73.8 72.7 71.9 70.7 ‘ 78.4 80.2 80.4
DC-7-4-10 | ALL
-0.75 -0.70 -0.65 -0.60 -0.55 -0.50 ‘ -0.50 -0.45 -0.40
82.9 82.7 81.8 81.6 80.6 79.7 ‘ 85.5 84.8 83.1
17.1 17.3 18.2 18.4 194 20.3 ‘ 14.5 15.2 16.9
|
|
|
|
|
|
|
|

DC Set
FD Threshold
Detected

Reliability
DC Set

FD Threshold
Detected

6.05 6.07 6.36 5.68 5.99 6.05 9.50 6.37 3.95
78.7 78.5 77.5 77.8 76.6 75.8 78.4 80.2 80.4
DC-7-3-11 ALL
-0.70 -0.65 -060 -0.55 -0.50 -0.45 | -0.50 -045 -0.40
= 84.6 84.6 84.2 84.0 81.6 85.5 84.8 83.1
= 15.4 15.4 15.8 16.0 18.4 14.5 15.2 16.9
= 5.71 5.71 5.74 5.30 2.30 9.50 6.37 3.95
= 80.5 80.5 80.1 80.2 80.1 78.4 80.2 80.4

Reliability
DC Set

FD Threshold
Detected

Reliability

What is significant is the fact that the 68 filters one DC set needs a very low face detection
threshold parameter value to succeed functional performance in contrast to the DC patch. This
is because in the DC patch a detection of one face was enough to activate all components to be
used in the pose estimation section. On the PPD patch this is not happening. On this patch only
the components needed for the pose estimation of this detected face are used. This reveals the
weakness of the 68 filters one DC set to respond to the detection efficiency the TSM algorithm
has to offer. The 68 filters one DC would probably be useful if used with the 68 filters Model
presented in chapter 9.5.

At last, compared to the Table 134 (Chapter 9.6) is |5 05 R 2l 2o o i e)

deduced that the effect of PPE patch is tiny to the Threshold FPE Patch No Patch

algorithm detection efficiency and reliability as far 065 81.4 82.3
as the face detection procedure. In addition -0.60 81.7 82.6
comparing the pose estimation results of the -0.55 82.0 83.4
algorithm with and without this patch the 2050 829 83.9
difference is about 1% as presented in Table 149. -0.45 83.1 84.0
These results makes it obvious that this patch is -0.40 83.2 842

safe enough to be used with the TSM algorithm as
it can offer a reduction on its execution time without sacrificing any significant amount of its
performance.

As far as the execution time consumption profit using this patch, it is fully detection dependent.
There is a huge variety of occasions that may occur so only the basic scenarios introduced in
chapter 9.6 are going to be presented. In this patch another parameter affecting its
performance is the viewing angle of the detected faces. If there are faces looking to all
directions within the image, then it will be no execution time profit as all the pose trees will be
necessary for the right pose estimations. If there is one face only within a level image or multiple
looking at similar direction, then this patch will be proved useful. All these scenarios are
presented in the Table 150 below. What is interesting in this patch is the fact that it also affects
the fake detections detection procedure the same way it affects the real ones. This means that
the execution time saving does not totally comes from the real faces detection procedure but

also by the fake ones.

Table 150 - PPD Patch Execution Time Reduction per DC Set (1 Face Scenario) (%)
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

C-7-4-10

S0 -0.70 33.9 36.5 37.4 37.7 37.7 36.7
-0.60 34.8 37.9 38.7 39.1 -39.2 -38.0
-0.70 ; 345 -36.0 -36.6 -37.0 -36.0
-0.60 - -36.2 37.5 38.2 38.6 37.6
-0.70 - -30.3 -33.0 34.4 353 332
-0.60 - 32,6 34.9 36.3 37.2 -35.3
o -0.70 ; ; -30.9 285 -30.6 -30.0
-0.60 ; ; 32.3 31.0 133.2 32.2

I Y
o -0.60 -20.6 22.1 225 22.7 22.8 22.1
-0.50 21.0 224 22.8 23.0 23.2 225

40% -0.60 = -21.3 -21.9 -22.3 -22.5 -22.0

. 050 - 217 223 22.7 22.9 -22.4
-0.60 . 197 208 214 219 -20.9

30%
-0.50 . 203 213 219 223 214
-0.60 . . 196 19.1 20.1 196

20%
-0.50 - - 20.0 19.8 -20.7 -20.2

At this scenario (Table 150), the algorithm, when using the 68 filters DC set (DC-7-4-10), does
not calculate all of the edge 39 pose trees Filters Responses but just the half of them (19 or 20)
according to the face direction. This gives an extra execution time saving. The same thing also
applies on the next table (Table 151) where the execution time profit when multiple faces exist
within an image having the same scale and looking at the same direction covering the viewing
angle of 0 to +90 or 0 to -90 degrees. Of course, the 10% to 15% of the 68 filters DC set is not a
product of these Filters Responses skipped but also the 31 Filters Responses skipped on the

detection empty levels.

Table 151 - PPD Patch Execution Time Reduction per DC Set (0°->+90° Scenario) (%)
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

DC-7-4-10

S0 -0.70 30.6 347 -36.0 36.6 36.8 34.9
-0.60 32.1 37.0 -38.2 138.9 39.3 37.1
-0.70 - 31.8 -34.0 -35.1 -35.7 341
-0.60 - 34.5 -36.5 37.6 383 36.7
-0.70 ; 256 296 319 333 30.1
-0.60 - 29.2 32.7 34.9 36.3 33.3
o -0.70 _ _ -26.6 233 26.4 255
-0.60 - ; 289 27.3 30.6 289
s T
S0 -0.60 -18.0 -20.8 214 21.8 22.0 -20.8
-0.50 187 213 220 224 227 214

-0.60 = -19.4 -20.5 -21.1 -21.5 -20.6
40%

-0.50 = -20.1 -21.1 -21.8 -22.2 -21.3

-0.60 = -16.4 -18.4 -19.6 -20.4 -18.7
30%

-0.50 = -17.4 -19.2 -20.4 -21.2 -19.5

-0.60 = = -16.2 -15.3 -17.2 -16.2
20%

-0.50 = = -16.9 -16.5 -18.3 -17.2

At the next last table (Table 152) the results of the 68 filters one DC set are also presented. This
is because this table scenario produces the same results with the 68 filters Model when the 68

filters DC sets (C-7, C-7-4-10) are used. This way a comparison between these two sets can be
done.

Table 152 - PPD Patch Execution Time Reduction per DC Set (-45°->+45° Scenario) (%)

E Threshold 320x240 640x480 800x600 1024x768 1280x960 Average
- A
-0.70 -38.6 -41.9 -43.0 -43.4 -43.6 421
-0.60 -39.8 43.8 44.8 -45.3 -45.6 -43.8
-0.70 - 396 413 422 427 415
-0.60 - 418 43.3 -44.3 -44.9 -43.6
-0.70 - 345 37.8 -39.6 -40.8 -38.2
-0.60 - 37.5 40.3 421 432 -40.8
-0.70 - - 35.4 327 352 34.4
-0.60 - - 37.2 -35.9 -38.6 -37.2
I ™
S0 -0.70 36.0 383 -39.0 -39.3 39.4 38.4
-0.60 -36.8 -39.5 -40.2 -40.5 -40.7 -39.6
-0.70 - 36.7 -37.9 -38.5 -38.8 -38.0
- -0.60 ; 382 -39.2 -39.9 -40.2 39.4
-0.70 - 33.4 -35.5 -36.8 -37.5 -35.8
- -0.60 - -35.3 37.2 -38.4 -39.1 -37.5
-0.70 - - 33.9 32.1 -33.8 -33.3
- -0.60 - - 35.1 -34.2 -36.0 35.1
I T
oo -0.60 15.4 19.4 0.4 -20.9 212 195
-0.50 16.4 20.2 212 218 221 203
-0.60 - 17.4 -19.0 -19.9 -20.5 -19.2
-0.50 - -18.4 -19.9 -20.8 214 -20.1
-0.60 - 131 159 17.7 1838 -16.4
-0.50 - 145 171 -18.8 -20.0 17.6
-0.60 - - 12.8 115 142 12.8
-0.50 - - 13.7 132 -15.8 142

As seen in the Table 152 above, when centered faces exist within an image the 99 filters DC set
appears very lower execution time profit as, except of calculating the 31 Filters Responses of the
edge pose trees, it also uses two 39 parts pose trees on the face detection section of the DC
patch that is useless.

It is also significant to be referred that the execution time profit difference between the two 68
filters DC sets is actually insignificant. The usage of one DC instead of three does not actually
offers any noticeable execution time saving and probably does not worth the usage in contrast
to the performance impact it has.

DC-7-4-10 DC-7-3-11 —— 1 Face
- = =0>%90 = ececeeens 455445

50
X 40
=
o
o 30
(0]
£
}—
c 20
Rel
=
>
[S)
£ 10
[NN]

0

0.2 0.25 0.3 0.35 0.4 0.45 0.5
Faces Size

Diagram 97 - Pose Peak Detection Patch DC Sets Execution Time Profit

As seen in the Diagram 97 above the 68 filters DC Set is always faster than the 99 filters one.
That’s because of the Filters Responses that are not calculated in the detection empty levels.
The fake detections useless processing does not seems to be able to reduce this performance.
As far as the 68 filters DC set, it is obvious that it performs better on centered faces while the 99
one prefers the more devious ones. Although for both DC sets the faces size makes the
differences more intensive as it is getting smaller, leading its detections to the top levels of the
pyramid.

9.7.3.Level Peak Detection

In this chapter the “Levels Peak Detection” Patch is described. As referred in chapter 6.2, every
face within an image produces a large number of high-score values both on nearby components
and levels. This means that when a face detection is located in a level, then the same face would
be detected also in previous and next levels. The LPD patch tries to discover this depictions and
terminate the pose estimation procedure for this face.

As happens with the neighbor components (PPD Patch, Chapter 9.7.2), the same happens with
the high-score values of the neighbor levels. In the Diagram 98 (left) below the high-score values
of components 5 to 9 across the features pyramid levels of the Diagram 96 (Chapter 9.7.2), are

shown. As seen in this graph all the components highest-score curves across the levels are

creating a peak highlighted with red color in the same graph. The LPD patch is trying to locate
this peak and terminate the pose estimation search for this face. After applying the LPD patch,
the same image produces the Diagram 98 (Right). As seen in this graph, as soon as the highest
peak across the components and levels is discovered the algorithm stops searching for the face’s

pose estimation as it considers this procedure completed.

Highest-Scores
Highest-Scores

1 2 3 45 6 7 8 9 10 11 12 13 1 2 3 45 6 7 8 9 1011 12 13
Levels Levels

Diagram 98 - Level Peak Detection Patch Example

The combination of the PPD and the LPD patches gives the completed Fast Pose Estimation
Patch. In the Diagram 99 below the final highest-score results of the Diagram 96 (Chapter 9.7.2)
when the FPE patch is completely used is shown. What is gained is not only the less pose trees

component stage executions but also less component stage executions per pose model.

Highest-Scores
Highest-Scores
iR
(6]

1 2 3 45 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13
Levels Levels

Diagram 99 - Fast Pose Estimation Patch Example Diagram 100 - Fast Pose Estimation Patch Example
for TSM v3.2.2 for TSM v2.2.2

As seen in the Diagram 99, the algorithm skips the execution of the component stage for the -
15° and 15° pose trees for two levels. These two levels are the ones with the smallest features
images so the execution time saved is the least. In Chapter 6.18, the version 2.2.x of the
algorithm was presented. In this version the algorithm executes the Level stage descending,
starting from the bottom level. The Diagram 99 at this version would look like more with the

Diagram 100 at its right. At this version the execution time saving would be much larger than the
3.2.x versions as the skipped levels would correspond to the largest features images.

The LPD patch combined with the PPD one make up the Fast Pose Estimation patch. After
testing these two patches together the results of the algorithm are as follow in the Table 153
below. As seen, the algorithm performance results did not changed at all by the application of
the LPD patch. The same applies for all the rest face detection threshold parameter values. This
patch as expected does not affect at all the algorithm efficiency and reliability and this is very

pleasant.

Table 153 - Pose & Level Peak Detection Patches Results (FD Threshold = -0.65) (%)

DC-7-3-11

-0.65 060 -055 050 -045 040 -035
89.5 88.7 86.8 84.8 84.6 82.7 80.1
Il s 11.3 132 15.2 15.4 17.3 19.9
| Fake [IPLV 17.7 12.5 7.89 5.71 3.49 2.60
66.1 74.5 77.2 79.1 80.5 80.3 785
e outPD e oy the D)
89.5 88.7 86.8 84.8 84.6 82.7 80.1
| Missed [T 113 132 15.2 15.4 17.3 19.9
| Fake [PEY 17.7 12.5 7.89 5.71 3.49 2.60
66.1 74.5 77.2 79.1 80.5 80.3 78.5

As far as the execution time reduction this patch can succeed is detection dependent as the PPD
one. In some scenarios this profit is not significant as it is too small but although it is important
to be presented as these results are the final results of the Fast Pose Estimation Patch. At the
following results the assumption that the level highest-scores curves are symmetric or with a
small slope to the bottom levels (negative round) in order not overestimated results to be
presented. The maximum Levels,-nigh-score Values that are produced by a detection are shown in
the Table 140 (Chapter 9.6). The detection procedure is applied to all of them without the LPD
patch. The LPD patch configures the amount of levels that the detection procedure is applied as
shown in the Table 154 below. The new maximum Levelsyim-pigh-score Values are shown in the
Table 155. As seen in this table, the LPD patch affects mainly the larger images as these images
are the ones with larger Levels,n-nigh-score- A peak needs at least 3 levels to be created and four to
start offering a profit so as it is sensible this patches efficiency is increasing as the image size
also does.

Table 154 - LPD Patch Detection Procedure Levels Table 155 - LPD
Patch MaxLyer-scor
00 075 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 | ekl
LPD
Bl : 3 3 3 3 3 3 NoPatch -
640x480 4 4 4 4 4 4 4 5 5
800x600 5 5 4 4 4 4 4 . .
1024x768 5 5 5 5 4 4 4 : .
1280x960 5 5 5 5 5 5 5 . :
7 5
MaxL,.. +1
LPD - IVlaXI'High-Scores = g Seores + 1 (35) 8 o
2 9 6
10 7

The function (35) above is the one that calculates the Levels,m-nign-score Of @ detection when the
LPD patch is used in the algorithm.

In the Table 156 below the execution time profit of the FPE algorithm is presented as it is
conformed after the usage of both PPD and LPD patches for the same scenarios as in chapter
9.6. As happens to the PPD patch, the same way the LPD one is affecting the fake detections.
The fake detections have the same characteristics with the real ones so LPD patch reduces the
detection procedure of the fake faces also.

Table 156 - LPD Patch Execution Time Reduction per DC Set (1 Face Scenario) (%)

|11 Threshold 320x240 640x480 800x600 1024x768 1280x960 Average
I ™
-0.70 -34.3 -37.7 -38.6 -38.9 -39.1 -37.7
-0.60 -35.1 -38.7 -39.5 -39.9 -40.1 -38.7

-0.70 - -35.9 37.3 -38.0 -38.4 37.4
-0.60 - 37.2 -38.4 -39.2 39.6 -38.6

-0.70 - 321 346 -36.1 -37.0 -35.0
-0.60 - -33.9 -36.1 -37.5 -38.3 -36.5

-0.70 - - 336 -31.0 -32.8 32,5
-0.60 - - 34.3 32.8 34.9 34.0
s T T
o -0.60 -20.7 224 227 229 23.1 223
-0.50 21.0 226 22.9 23.2 233 226

-0.60 ; 217 222 226 22.8 223
- -0.50 - 220 225 229 23.1 226
[30% Y - 202 212 218 223 214

. os0 - 206 -216 222 226 21.7
o -0.60 - . 204 198 207 -203
: -0.50 - . 205 -203 212 207

The results of the LPD patch in the result Table 156, Table 157 and Table 158 shows that this
patch has greater impact on the large images than in the small ones. This is sensible as large
image detections create large detection range over the levels giving the LPD patch the space to
operate. Low Threshold parameter values also enables the LPD patch as this parameter affects
the detection range either when it is for real detections or when it is for the fake ones that are
increasing. The impact of this patch is increasing as the detected faces size is reducing because
the faces detection level is getting closer to the top one where the impact of skipping even one
level is getting greater.

Table 157 - LPD Patch Execution Time Reduction per DC Set (0°>+90° Scenario) (%)

|01 Threshold 320x240 640x480 800x600 1024x768 1280x960 Average
e DC-7-4-10
-0.70 310 362 374 -381 384 362
- -0.60 322 378 390 -397 401 377
-0.70 - 336 356 -36.8 374 359
- -0.60 - 355 374 386 393 377
-0.70 - 281 318 340 353 323
- -0.60 - 307 341 362 375 346
-0.70 - - 303 2656 293 287
- -0.60 - - 313 294 325 311
I ™

-0.60 181 212 219 -22.3 225 -21.2
-0.50 187 216 222 -22.7 -22.9 -21.6
-0.60 : 199 -21.0 -21.6 -22.0 -21.2
- -0.50 - 205 -214 -22.1 -22.5 -21.6
-0.60 - 172 -19.1 -20.3 -21.0 -19.4
- -0.50 - 180 -19.7 -20.9 -21.6 -20.0
-0.60 - - -17.6 -16.5 -18.2 -17.4
- -0.50 - - -17.8 -17.4 -19.0 -18.1

Table 158 - LPD Patch Execution Time Reduction per DC Set (-45°->+45° Scenario) (%)
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

-0.70 -36.3 -39.1 -39.8 -40.1 -40.3 -39.1

-0.60 -36.9 -39.9 -40.6 -41.0 -41.2 -39.9

o -0.70 - 37.7 -38.8 39.4 -39.7 -38.9
- -0.60 ; 387 -39.7 -40.4 -40.7 -39.9
o -0.70 ; 34,7 -36.7 -37.9 -38.6 -37.0
- -0.60 ; 36.1 -37.9 39.1 39.8 -38.2
o -0.70 ; ; -35.9 -33.9 354 -35.0
- -0.60 ; - 365 -35.4 371 -36.3
o -0.60 -15.5 -20.0 -21.0 216 21.9 -20.0
- -0.50 -16.4 2206 215 221 PP 20,6
o -0.60 ; -18.2 19.7 207 212 -19.9
- -0.50 - -18.9 -20.4 213 21.9 206
o -0.60 ; 143 -17.0 -18.7 -19.8 174
- -0.50 - -15.3 179 195 206 -183
o -0.60 ; - -14.8 1322 -15.7 -14.6
- -0.50 -] -15.2 145 -16.9 -15.5
DC-7-4-10 DC-7-4-10 LPD DC-7-3-11
DC-7-3-11 LPD 1 Face - = = (0->490
......... -45->445
50
£ 40
-
o 30
Q
£
'—
c 20
kel
3
0 10
w
0
0.2 0.25 0.3 0.35 0.4 0.45 0.5

Faces Size

Diagram 101 - Level Peak Detection Patch DC Sets Execution Time Profit

Looking at the Diagram 101 above, what is obvious is that the LPD patch is just saving only a
small amount of execution time. This amount is not over 3% and it could be considered
insignificant for using this patch in the TSM algorithm. A reason for this small execution time
profit is the fact that the levels skipped by the LPD patch is the smallest ones in the detection
range of a detection (real or fake). In chapter X the version 2.2.2 is presented. In this version the
algorithm forwards the pyramid levels to the detection procedure starting from the bottom to
the top, exactly the opposite way the version 3.2.2 does (the main version). In the v2.2.2 of the
algorithm the LPD patch would skip the largest levels of the detection range instead of the small

ones. This means that in this version the impact of the LPD patch would be greater than the
v3.2.2. In the following tables the results of the LPD patch using the version 2.2.2 of the

algorithm are presented.

Table 159 - LPD Patch Execution Time Reduction per DC Set (1 Face Scenario) (v2.2.2) (%)

|| Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

e DC-7-4-10

-0.70 344 387 -394 -39.9 -40.0 -38.5
-0.60 351 393 400 -40.5 407 -39.1

-0.70 = -37.4 -38.6 -39.3 -39.7 -38.7
40%

-0.60 = -38.0 -39.2 -39.9 -40.3 -39.4

-0.70 = -34.5 -36.7 -38.1 -38.8 -37.0
30%

-0.60 = -35.3 -37.4 -38.8 -39.5 -37.8

-0.70 = = -32.0 -34.6 -36.5 -34.4
20%

-0.60 - - -33.0 -35.5 -37.3 -35.3

I ™ TS
50% -0.60 -20.7 -22.6 -22.9 -23.1 -23.2 -22.5
-0.50 -21.0 -22.8 -23.1 -23.3 -23.4 -22.7

-0.60 - -22.0 -22.5 -22.9 -23.1 -22.6

40%
-0.50 - -22.2 -22.7 -23.1 -23.3 -22.8
-0.60 - -20.8 -21.7 -22.4 -22.7 -21.9

30%
-0.50 - -21.0 -21.9 -22.6 -22.9 -22.1
-0.60 - - -19.8 -20.9 -21.7 -20.8

20%
-0.50 - - -20.0 -21.1 -22.0 -21.1
Table 160 - LPD Patch Execution Time Reduction per DC Set (0°->+90° Scenario) (v2.2.2) (%)
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

e
-0.70 -31.0 375 -38.6 -39.2 395 37.2
-0.60 32.2 385 39.6 40.3 40.7 38.3
-0.70 - -35.6 -37.3 -38.4 -39.0 -37.6
-0.60 - 36.7 -38.4 39.5 -40.2 38.7
-0.70 - 314 346 -36.6 37.8 35.1
-0.60 ; 32.7 35.8 37.8 139.0 36.3

20% -0.70 - - -27.8 -31.6 -34.4 -31.3
-0.60 - - -29.4 -33.1 -35.8 -32.8

I ™
-0.60 -18.1 -21.6 -22.2 -22.6 -22.8 -21.5

50%
-0.50 -18.7 -21.9 -22.5 -22.9 -23.1 -21.8

-0.60 = -20.6 -21.6 -22.2 -22.5 -21.7
40%

-0.50 = -20.9 -21.8 -22.5 -22.9 -22.0

-0.60 = -18.4 -20.1 -21.2 -21.9 -20.4
30%

-0.50 = -18.8 -20.4 -21.6 -22.2 -20.7

-0.60 = = -16.5 -18.6 -20.1 -18.4
20%

-0.50 = = -17.0 -19.0 -20.5 -18.8

Table 161 - LPD Patch Execution Time Reduction per DC Set (-45°>45° Scenario) (v2.2.2) (%)

|| Threshold 320x240 640x480 800x600 1024x768 1280x960 Average
I ™
-0.70 363 398 404 -407 409 396
- -0.60 369 403 -409 -413 415 -40.2
-0.70 . 387 397 -403 406 -39.8
- -0.60 . 394 -403 -409 412 -404
-0.70 . 365 382 -393 399 385
- -0.60 . 372 389 -40.0 40.6 -39.2
-0.70 - - 345 366 381 364
- -0.60 . . 354 374 389 372
T e T
-0.60 155 -206 215 221 224 204
-0.50 164 210 219 225 228 -209
-0.60 . 191 205 214 220 208
- -0.50 . 196 209 -219 224 212
-0.60 - 159 184 201 210 -189
- -0.50 - 165 -189 -206 215 194
-0.60 - . 132 -162 184 -16.0
- -0.50 . . 139 -1638 190 -16.6

DC-7-4-10 v2 DC-7-4-10 v3 DC-7-3-11v2
DC-7-3-11v3 1 Face - = =0->190
......... -45-5+45

50
& 40
E
o
o 30
(]
S
'_
c 20
i)
e
>
(&}
£ 10
w

0

0.2 0.25 0.3 0.35 0.4 0.45 0.5

Faces Size

Diagram 102 - Level Peak Detection Patch DC Sets Execution Time Profit (TSM v2.2.2)

The Diagram 102 shows the results of the results tables above. As is seen in this graph the extra
execution time saving came from the usage of the version 2.2.2 of the TSM algorithm is tiny in
order this version to be considered for replacing the 3.2.2 one as the main version of the
algorithm.

The conclusion for this patch is that it offers an insignificant execution time profit to the TSM
algorithm but it also does not cost anything in its detection performance. So, it is subjective if it
is worth to use or not. Either ways it does not cost anything to the detection performance and
there is no crucial reason for not using it. Many small execution time savings can produce a
larger one like the Short Pyramid patch (Chapter 7).

9.8. Pyramid Fast Pass

In this chapter an extra patch for gaining execution time on the TSM algorithm is appose. This
patch was inspired by the DC patch and the reduction of the interval parameter value. As
introduced in the chapter 9.3 the reduction of the Interval parameter causes significant
reduction of the algorithms detection performance. On this chapter a new technique is

introduced that succeeds an important speedup without a significant reducing the algorithm
detection performance.

The “Pyramid Fast Pass” patch is using the DC patch with an extended procedure. In the PFP
patch if the algorithm detects a face within the image in the face detection section then it
forwards the specific level to the pose estimation section. On this patch the algorithm does not
pass to the face detection section all the levels sequential but with a step of two levels. Starting

from the second level of the pyramid if the face detection section does not make any detection
the next level passed will be the after the next level. On the other hand if the face detection
section makes a detection then the next one will be passed to the same section as shown in the
Figure 70 below.

=0

Yes

Detection?

Figure 70 - Pyramid Fast Pass Patch Execution Flow Diagram

The idea behind this patch is that if a face exists within the image then it will produce high-score
values in more than one levels. If the algorithm checks for detections within the levels with a
step of two then it will detect this face. After it detects it then it will check the levels near it for a
more accurate detection. This can lead to the detection of more faces if they are in the same
scale or close it. By starting from the second level of the pyramid, the algorithm has the chance
to skip the greatest image size level meaning a reduction of the execution time by about 25%.
This is e very good deal.

At this point the usage of the Level Peak Detection patch would be very useful. According to the
previous paragraph the algorithm has to check for detections all the levels where the detection
range spreads plus two extra levels where the algorithm will not find anything and it will enable
the double stepping again. This can be avoided if the LPD patch is used because as the algorithm
makes a detection it can continue passing the next levels with a step of one until it detects the
detection level peak curve. Looking at the level curve, the LPD patch can decide if the algorithm
will have to continue passing the next levels or it will have to go back and apply the detection
section to the last skipped level. The LPD patch would also decide when it is the time to increase
the level step back to two as shown in Figure 71.

LPD Patch

Yes No

Detection?

Figure 71 - Pyramid Fast Pass & LPD Patch Execution Flow Diagram

In the Table 85 in chapter 7.2, the average number of levels with high-scores appear in the
features pyramid when a face exists within the image is shown. As seen in this table it is very
important the face detection section threshold parameter value to create high-score values to
more than one level on average so that this patch will not bypass detections. As seen in the
values of Table 162 not all image sizes are able to create high-score values in enough levels
when a face exists within them, making this patch able to be applied without causing serious
detection skips. As is visible the small size image of 320x240 is just on the limit so the image size
should be considerable for the usage of this patch.

Table 162 - PFP Patch |Levelsyigh-scores | Results per Threshold
el -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45

3
640x480 5
800x600 5
1024x768 6
1280x960 7

N oo N
o U 1 AN
o A~ BN
o A~ BN
au b BN
g A b W N

By testing the face detection section using the Half Pyramid patch the following results come of,
as shown in Table 163 below.

Table 163 - Pyramid Fast Pass Patch Face Detection Section Results (%)
Threshold -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45

Detected 86.8 84.2 80.8 78.4 76.9 73.9 70.5
13.2 15.8 19.2 21.6 23.1 26.1 29.5
37.6 30.8 22.1 13.6 8.40 4.95 2.08
Reliability 56.9 61.3 65.7 69.8 71.9 71.2 69.5

DC Set
Detected

DC-7-3-11
85.0 83.3 81.6 79.7 78.0

m - - 15.0 16.7 18.4 20.3 22.0
m - - 16.4 6.70 3.78 2.61 1.08
Reliability - - 72.9 78.6 79.1 78.0 77.3

As seen in the Table 163, the detection efficiency of the Detection section is reducing as the
Threshold parameter value is increasing. It is very obvious that the 99 filters DC set is much
more efficient than the 68 filters one. The 99 filters DC set reaches its maximum reliability
without losing an important part of its detection efficiency when the 68 filters DC set appears a
great loss. In the next tables (Table 164 and Table 165) the impact of all these results in the final
detection results of the algorithm are shown.

Table 164 - Pyramid Fast Pass & LPD Patch Results (DC Set 7-4-10) (%)

-0.70 -0.65

-0.50 -0.45 -0.40 -0.50 -0.45 -0.40
84.6 84.2 82.3 84.2 83.8 82.1
| Missed [EEEY 15.8 17.7 15.8 16.2 17.9
[Fake BRI 5.74 3.51 7.51 5.31 3.27
78.9 80.1 79.9 78.8 80.0 79.8
-0.60 -0.55

-0.50 -0.45 -0.40 -0.50 -0.45 -0.40
82.3 81.8 80.3 79.9 79.3 78.2
I 18.2 19.7 20.1 20.7 21.8
[Fake EWH 3.77 2.59 5.32 3.64 2.66
78.6 793 78.7 76.5 77.0 76.6

Table 165 - Pyramid Fast Pass & LPD Patch Results (DC Set 7-3-11) (%)

-0.70 -0.65

-0.50 -0.45 -0.40 -0.50 -0.45 -0.40
85.5 84.8 83.1 85.0 84.4 82.7
| Missed TR 15.2 16.9 15.0 15.6 17.3
S o 6.37 3.95 9.34 6.40 3.97
78.4 80.2 80.4 78.2 79.8 80.0
-0.60 -0.55

-0.50 -0.45 -0.40 -0.50 -0.45 -0.40
83.1 82.7 81.4 81.6 81.0 79.5
| Missed [T 17.3 18.6 18.4 19.0 20.5
[Fake R 3.73 2.56 5.45 3.32 2.36
79.2 80.1 79.7 78.0 78.8 78.0

As is visible in the Table 165, as smaller is the Detection section threshold variable the better is
the detection results. As is sensible, decreasing the detection section threshold variable can
produce the same results as without using the PFP patch. If this reduction is applied the
speedup of the algorithm will be reduced. In the 99 filters DC set the results are much better
than those in the 68 filters one. This means that a greater detection threshold value can be
used. The choice of the DC set and the detection threshold parameter value is a difficult one as
every possible combination offer different pros and cons. It is a matter of the goals are set to
the algorithm. If the reliability is the greatest factor the algorithm set up would be different than
when the execution time is more important.

As far as the execution time that can be saved using the PFP patch the Table 166 below can
show the profit of every level skipped to the whole TSM algorithm execution time. As seen in
this table, with the bold text, the profit on the execution time is summed at the last line of the
table. When the detection section uses the 99 filters DC set that is more accurate, the algorithm
reduces its execution time by 69.4% on empty faces images. In the same case the algorithm
reduces its execution time by 77.6% for the 68 filters DC set.

Table 166 - Pyramid Fast Pass Patch Execution Time Profit (No Face) (%)

Both DC Set
C7-3-11 C7-4-10

-25.0 -5.96 -10.6
-19.0 -4.53 -8.07
-14.4 -3.44 -6.14
-11.0 -2.62 -4.66
-8.34 -1.99 -3.54
-6.34 -1.51 -2.69
-4.82 -1.15 -2.05
-3.66 -0.87 -1.56
-2.78 -0.66 -1.18
-2.11 -0.50 -0.90
-1.61 -0.38 -0.68
-1.22 -0.29 -0.52
-0.93 -0.22 -0.39
-0.71 -0.17 -0.30
-0.54 -0.13 -0.23
-0.41 -0.10 -0.17
-0.31 -0.07 -0.13

The advantage of this patch is extremely good as the algorithm finish the detection procedure
very quickly when the image does not contain any face. This would be very useful on video

applications where the useless frames would be skipped fast until a useful arrives. On the other
hand when there are faces within the image, this patch acts differently as it is detection
dependent. According to the number and the scale of the faces, the algorithm would react
differently. The worst case scenario is when an image contains many faces in many scales as it
would produce high-score values in all the levels of the features pyramid. A more common case
is an image to contain one or more faces in the same scale like portraits or team photos. This is
an average scenario where this patch can act in many ways as far as the time profit it succeeds.

As referred in the chapter 9.6, the same scenarios are used in this patch. The results on these
scenarios are shown in Table 167 below.

Table 167 - Pyramid Fast Pass & LPD Patch Execution Time Reduction per DC Set (%)

{11 Threshold 320x240 640x480 800x600 1024x768 1280x960 Average
I 7
-0.70 32,9 -50.2 54.8 57.7 -59.6 51.0
-0.60 -35.6 54.1 -58.0 -60.5 62.2 54.1

-0.70 - 417 48.8 53.4 56.4 50.1
-0.60 - 46.8 52.8 -56.8 -59.5 -54.0

-0.70 - 235 36.1 -44.2 49.4 -38.3
-0.60 - 1309 418 -49.0 53.7 43.8

-0.70 - - 311 198 29.8 -26.9
-0.60 - - 32,9 26.7 37.1 322

I T
S0 -0.70 31.0 47.4 514 53.9 55.6 47.9
-0.60 315 -47.8 512 -53.5 54.9 47.8

-0.70 - -40.1 -46.2 -50.2 52.8 47.3
-0.60 - 414 46.8 -50.3 52.6 47.8

-0.70 - 243 -35.2 422 46.8 -37.1
-0.60 - 27.7 37.2 -43.5 47.5 -39.0

-0.70 ; - -30.9 21.0 29.7 272
-0.60 - - 29.5 24.2 33.2 289

The results on the Table 167 above are very optimistic. As seen in this table the algorithm can
reduce its execution time about its half. These are very useful results. What is changed in this
patch is the speedup relation between the 99 and 68 filters DC sets. In contrast to the DC the
execution time profit differences are reduced as the number of levels where the filters
responses are calculated is also reduced. This means that if the 99 filters DC set is used the
execution time loss will not be much while the algorithms reliability and detection efficiency will
be also increased for a little.

60

50
S
s
§ 40
[a W
Q
£ 30
|_
C
o
2 20
(8]
g ———DC-7-4-10
w
10
= DC-7-3-11
0
0.2 0.25 0.3 0.35 0.4 0.45 0.5

Faces Size

Diagram 103 — PFP & LPD Patch DC Sets Execution Time Profit

Except of the LPD patch that does not affect the algorithm detection performance, the PFP
patch can also be combined with the PPD one. The PPD patch has its impact on the algorithm
detection performance and for that reason it is important to test these patch together in order
to known what this combination impact on the detection performance would be. By doing this
the results are as the Table 168 and Table 169 shows.

Table 168 - Pyramid Fast Pass & PPD Patch Results (DC Set 7-4-10) (%)
FD Threshold -0.75 -0.70
Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40
Detected 83.1 82.5 81.0 82.5 82.3 80.6
16.9 17.5 19.0 17.5 17.7 19.4
9.53 6.08 3.81 9.39 5.87 3.83
Reliability 76.4 78.3 78.5 76.0 78.3 78.1

FD Threshold -0.65 -0.60

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40

Detected 73.9 73.1 71.2 73.9 72.9 70.9
26.1 26.9 28.8 26.1 27.1 29.1
5.21 2.84 1.77 4.95 2.85 1.78

Reliability 71.0 71.5 70.3 71.2 71.3 70.0

Table 169 - Pyramid Fast Pass & PPD Patch Results (DC Set 7-3-11) (%)
FD Threshold -0.70 -0.65

-0.50 -0.45 -0.40 -0.50 -0.45 -0.40
85.0 84.8 82.9 84.0 83.5 82.1
I o 15.2 17.1 16.0 16.5 17.9
[Fake [V 5.25 3.48 7.31 5.10 3.27
793 81.0 80.5 78.8 80.0 79.8
I
-0.60 -0.55

-0.50 -0.45 -0.40 -0.50 -0.45 -0.40
82.9 82.5 81.2 82.5 82.5 81.0
I 17.5 18.8 17.5 17.5 19.0
O s 4.93 3.06 6.54 4.93 2.32
78.2 79.1 79.2 78.0 79.1 79.5

As is seen in these tables the 99 filters DC set keeps having good performance with only a small
reduction in its reliability which is a very good result. On the other hand when the PFP and PPD
patches are combined with the 68 filters DC the performance is greatly reduced if the FD
Threshold parameter value is low. These means that these two patches can be efficiently
combined giving time performance speedup with only a small reduction in the detection
performance.

As far as the execution time saving from the usage of the PPD patch in combination with the PFP
one the results are as shown in the Table 170, Table 171 and Table 172 below according to the
scenario described in chapter 9.6.

Table 170 - PFP & PPD Patch Execution Time Reduction per DC Set (1 Face) (%)

|11 Threshold 320x240 640x480 800x600 1024x768 1280x960 Average
e DC-7-4-10

-0.70 476 580 -60.8 62.6 63.7 58.5

-0.60 493 604 627 643 653 604

-0.70 - 530 572 -60.0 618 -580

-0.60 - 560 596 621 636 -60.3

-0.70 - 420 496 -54.4 57.6 -50.9

-0.60 - 464 530 573 60.1 -54.2

-0.70 : : 46.6 39.7 45.7 44.0

-0.60 . . 476 439 502 -47.2

I T

S0 -0.70 394 512 540 5538 570 515

-0.60 398 515 539 555 565 514

[40% N[- 459 503 53.2 55.0 51.1

-0.60 = -46.9 -50.7 -53.2 -54.9 -51.4

-0.70 = -34.7 -42.4 -47.5 -50.7 -43.8
-0.60 = -37.1 -43.9 -48.4 -51.2 -45.1
-0.70 = = -39.4 -32.3 -38.5 -36.7
-0.60 = = -38.4 -34.6 -41.0 -38.0

Table 171 - PFP & PPD Patch Execution Time Reduction per DC Set (0°>+90°) (%)

|11 Threshold 320x240 640x480 800x600 1024x768 1280x960 Average
e DC-7-4-10

-0.70 -44.1 56.2 59.4 61.4 62.7 56.8

-0.60 -46.0 -58.9 61.6 63.4 -64.5 -58.9

-0.70 - -50.3 55.2 58.4 -60.5 56.1

-0.60 - 53.8 58.0 -60.8 62.7 58.8

-0.70 - 376 46.4 52,0 55.7 47.9

-0.60 - 428 50.4 55.4 58.6 51.8

-0.70 - - 429 -35.0 42.0 -40.0

-0.60 - - 44.2 -39.8 471 43.7

I T

S0 -0.70 36.8 50.0 53.2 55.2 56.6 50.4

-0.60 37.2 50.3 53.1 549 -56.0 50.3

-0.70 - 441 49.1 523 543 -49.9

- -0.60 - -45.2 -49.5 523 542 -50.3

-0.70 - 315 40.2 45.8 49.5 41.7

- -0.60 - 342 41.8 -46.9 -50.1 -43.2

-0.70 - - -36.7 -28.8 -35.8 -33.8

- -0.60 - - -35.6 31.3 -38.6 -35.2

Table 172 - PFP & PPD Patch Execution Time Reduction per DC Set (-45°>+45°) (%)
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

-0.70 -43.7 -56.0 -59.2 -61.3 -62.6 -56.5
-0.60 -45.6 -58.7 -61.5 -63.3 -64.5 -58.7
-0.70 - -50.0 -55.0 -58.2 -60.3 -55.9
-0.60 - -53.5 -57.8 -60.7 -62.5 -58.6
-0.70 - -37.1 -46.0 -51.7 -55.4 -47.6
-0.60 - -42.3 -50.0 -55.1 -58.4 -51.5
-0.70 - - -42.5 -34.4 -41.5 -39.5

-0.60 = = -43.7 -39.3 -46.7 -43.3

DC-7-3-11

o -0.70 -34.2 -48.9 -52.4 -54.7 -56.1 -49.2
: -0.60 -34.6 -49.2 -52.2 -54.2 -55.5 -49.2
-0.70 = -42.3 -47.8 -51.3 -53.6 -48.8

40%
-0.60 = -43.5 -48.3 -51.4 -53.4 -49.2
-0.70 = -28.3 -38.0 -44.2 -48.3 -39.7

30%
-0.60 = -31.3 -39.8 -45.3 -48.9 -41.3
-0.70 = = -34.1 -25.3 -33.1 -30.9

20%
-0.60 = = -32.9 -28.1 -36.2 -32.4

As seen in the execution time saving tables above the usage of the PPD patch in combination to
the PFP one offer an execution time profit of about 5-10% which is more significant in small size
images and less in the larger ones. As it is sensible the most significant part of the algorithm is
the Convolution stage. Every time the filters responses calculation is skipped the execution time
benefits are increasing significantly.

DC-7-4-10

DC-7-3-11 e 1 Face - = = 0190

......... -45-5+45
70

No PPD (68) No PPD (99)

60

o o e ST ¢ PP TR ¢ S e s D o e oW

cowe

50

40

30

20

Execution Time Profit (%)

10

0.2 0.3 0.4 0.5
Faces Size

Diagram 104 — PFP & PPD Patch DC Sets Execution Time Profit

10. Related Comparison

In this chapter the comparison of this thesis implementation with the [25] one provided by the
creators of the TSM system is presented. There are also other related algorithms as referred in
chapter 3, but only a short description and tasks support comparison is appose in the next
subchapters as related and no similar systems cannot easily compared. There are also no
freeware implementation on C\C++ to many of the related systems as [3], [4], [6], [7], [8], [9]
and [10]. On the other hand there are some freeware systems free to use in the web but they do
not implement the same tasks in order to be compared as far as the time performance with this
thesis and [25] implementation.

Table 173 — Tests Hardware Specifications

System 1 System 2 System 3
CPU Model Intel Core i7-4600U Intel Core 2 Duo Dual Core ARM
@2.70GHz T8100 @2.10GHz Cortex-A9 @866MHz
CPU Cores 4 2 2
RAM Memory 8 GB 4GB 512 MB
Operating System VM Uburg;l}S.Ol fie Ubuntu 14.04 (no GUI) Ubuntu 12.04 (no GUI)
v3.2.2/Creators[25] -56.3% -57.2% -63.4%

As far as the [25] implementation of Hang Su, the open source code provided had to be
customized as it uses some extra methods for making the detection process faster like scaling
the input image to a small size one. This method makes the face detection process faster but it
avoids the detection of small faces as described in chapter 9.4. This thesis implementation does
not reduce the input image size and it was sensible that only same procedure systems can be
compared. Studding the Hand Su C\C++ code of his implementation what is noted is that it is
very similar to the TSM v1.2 described in chapter 6.5.

Testing these two implementation in the same hardware resources as the ones shown in Table
173 the following results came as the ones presented in Table 174.

Table 174 - TSM v3.2.2 vs Creators Execution Time (%)
CPUCores 320x240 640x480 800x600 1024x768 1280x960 Average

-50.9 -38.6 -32.5 -31.7 -29.4 -36.6
2 -61.6 -46.1 -42.1 -41.4 -39.6 -46.2
3 -61.6 -49.9 -50.4 -47.4 -47.6 -51.4
4 -65.2 -53.2 -55.5 -54.1 -53.4 -56.3
2 -76.5 -54.4 -52.7 -52.5 -49.6 -57.2

2 -76.6 -56.7 -56.9 Qi et Ot o -63.4
memory memory

In Table 174 it is visible that the TSM v3.2.2 algorithm implementation is getting faster as the
number of CPU cores in the hardware is increasing. This is because the original version
implemented by Hang Su is using the multithreading technique only in the convolution
procedure and nowhere else. This makes us assume that the memory consumption of this
implementation is similar to the memory consumption of the versions 1.2 or 1.3. On the other
hand the absence of parallelization in the rest parts of the algorithm (ex. DT stage) makes it
getting slower as the parallelization resources increase compared to the version 3.2.2.

As referred in chapter 3 there are algorithms designed since the [1] published that some of
them claim to have better detection performance and others to be faster. There are also some
freeware libraries offering face detection implementing some of them. In the next subchapters
the differences between these systems and the [1] is appose.

10.1. Freeware Libraries

Some of the related systems to this thesis are offered freely in the web ready to be used by
anyone. The following subchapters present some of them and describe the differences between
these ones and the implementation of this thesis and [25] that are based on [1] face detection
method.

10.1.1. OpencCV

The OpenCV [27] library is the most famous and most used one. It uses the face detection
method proposed by Viola and Jones in 2001 [17] and it is the most famous face detection
algorithm. This algorithm is very fast but it only supports face detection without pose estimation
and landmark localization. It is also efficient in frontal face detection. Although it is very famous
it lacks on detection performance. Despite that it was the state-of-the-art algorithm of face
detection task for many years.

Figure 72 — OpenCV Face Detection Example

10.1.2. Dlib C++ Library

The Dlib [26] library is a C++ and Python library offering a variety of C++ libraries for multiple
purposes, one of them is the image processing and the face detection. The Dlib library offers
two different choices of face detection, the single face detection and the face detection with
landmark localization.

The single face detection system offer frontal face detection only (-45° to +45°) using the object
detection method of [2]. It does not offer though pose estimation. The extra landmark
localization library is used after the face detection procedure using the data returned by the
face detection task and uses the [15] only in the area of the image where the face is detected.
This is a very good method for fast landmark localization. The difference with the [1] system is
that the last one offers pose estimation and face detection on a greater range of viewing angles
(-90° to +90°).

Figure 73 — Dlib Face Detection and Landmark Localization Example

10.1.3. Face SDK

The Face SDK [30] library is a library for face
detection, recognition and verification. This
library is not referred to any known face
detection algorithm and it only supports face
detection. It detects the eyes, nose and mouth
centers and by them it results to a face
detection. No pose estimation and landmark
localization is supported. The method used for
the face detection makes it obvious that

probable can support only frontal face Figure 74 — Face SDK Face Detection Example

detection.

10.1.4. Flandmark

This Flandmark [31] library uses the OpenCV library for face detection and by the returned data
searches the area of the detected faces for seven critical landmarks. These landmarks are the
edges of the eyes, the tip of the nose and the edges of the mouth. No other landmark
localization is supported and also does not support pose estimation. The fact that the OpenCV
library is used for face detection concludes that only frontal face detection is supported.

Figure 75 — Flandmark Face Detection Example Figure 76 — Flandmark Landmarks
Localization

10.1.5. Semantic Vision Technologies

The Semantic Visions technologies [32] library is based on the [5]. This system is based on the
detection of 15 critical landmarks that result to a face detection. Although it provides face parts
localization like the eyes, the nose and the mouth, no more landmark localization is offered.

Besides it does not support pose estimation and the face detection is seems to be limited in

frontal faces only.

Figure 77 — Semantic Vision Technologies Face Detection and Landmark Localization Example

10.1.6. FDLib

The FDLib library [29] is based on the [16]
algorithm publication. This system supports the
face detection task without any of the pose
estimation and landmark localization ones. It
was published in 2005 and its one of the oldest
face detection algorithms using neural networks
for doing that. It is an old dated system and it
would be unfair to be compared with modern

systems.

Figure 78 — FDLib Face Detection Example

10.2. Latest Systems

Except of the freeware libraries there are also other face detection systems as the ones referred
in chapter 3. These systems does not offer their implementation freely for usage. In this
subchapter a short reference on each one is made and their differences against the [1] are
appose.

10.2.1. Face Detection and Pose Estimation Based on Evaluating Facial Feature Selection

This system [3] offers a face detection method based on Haar-like features as exactly Viola and
Jones [17] algorithm does. What is different is that its features are more efficient. It firstly
detects the face parts (eyes, nose and mouth) and this concludes to the face detection. The

authors claim that this algorithm performs better than the [1]. Despite that this systems does
not offer pose estimation and landmark localization and is also efficient only on frontal face
detection.

fotolia fucka Fokeka

et AW ""&
ade. 17 e L
Figure 79 — Publication [3] Face Detection Example

10.2.2. Head Pose Estimation Based On Detecting Facial Features

This systems [4] is a sequel of [3]. It does not claim to succeed as good results as the [3] but it
also offers the task of pose estimation. It uses the same Haar-like features as the [3] and it
combines the face parts (eyes, nose and mouth) detected by the cascade windows in order to
estimate the pose of the face. What it does not support is the 68 face landmark localization and
also it is efficient in frontal face detection.

10.2.3. Discrete area filters in accurate detection of faces and facial features

This system [5] is offered as a freeware library to be used by anyone and it is described in
chapter 10.1.5.

10.2.4. Real-time High Performance Deformable Model for Face Detection in the Wild

=R

The creators of this system [6] claim to have
design a much faster and efficient algorithm
compared to [1]. As far as the face detection
speed they claim to reach real-time
performance. The differences are the fact that
this systems does not localize all the 68
landmarks of the human face but only some of
them in order to complete the face detection
task. In addition it is only able to classify the

pose estimation in 9 classes of viewing angle
when [1] uses 13. Its main advantage is the Figure 80— Publication [6] Face Detection Example
fact that it is very fast and efficient as the

authors claim but it still lacks on the pose estimation accuracy and the full 68 landmark
localization.

10.2.5. Multi-view Face Detection Using Deep Convolutional Neural Networks

This system [7] is one of the latest state-of-the-art ones using convolutional neural networks
that are considered to be the best method for face detection right now. This system succeeds
better detection performance compared to [1], detecting faces in the full viewing angle (-90° to
+90°). What is missing from this system is the pose estimation and the landmark localization
that the [1] system supports.

Figure 81 — Publication [7] Face Detection Example

10.2.6. Face and Landmark Detection by Using Cascade of Classifiers

This systems [8] is using face parts detection (eyes and mouth) in order to result to a complete
face detection. The authors claim to succeed better results than the [1]. This systems though

does not support pose estimation neither landmark localization. It only supports eyes and
mouth localization and it works better for frontal face detection.

Figure 82 — Publication [8] Face Detection Example

10.2.7. Extensive Facial Landmark Localization with Coarse-to-fine Convolutional
Network Cascade

This system [9] is the most related to the [1]. It is using the same method for face detection but
what is different is the fact that it splits the face detection task from the landmark localization
one. It firstly uses the jaws landmarks for face detection and then it localizes the rest landmarks
of the human face. This method provides it a better landmark localization than [1] and the
whole process is faster as the most landmarks detection is applied in the face detected area. On
the other hand this system only supports frontal face detection and does not supports pose
estimation. This last task could be easily implemented as long as the landmark localization task
exists.

Figure 83 — Publication [9] Face Detection Example

10.2.8. Face detection by structural models

This system [10] is also very similar to [1]. It uses the method, locating landmarks for the face
detection process. In contrast to [1] it uses less landmarks than the global 68 human face ones
that means that the process should sensibly be faster. The authors claim to succeed better
detection performance than the [1] but their system does not support pose estimation. It is also
efficient only on frontal face detection.

Figure 84 — Publication [10] Face Detection Example

11. Future Work

There are to areas where this thesis system can be extended in the future. The first area is the
one of face detection, pose estimation and landmark localization and the second one is the area
of object detection.

As far as the face detection procedure TSM system can be separated in two sections. The first
section could be the face detection one while the second the pose estimation and landmark
localization one. In the face detection section the usage of less landmarks can be applied as the
most systems ([5], [6], [7], [8] and [10]) after [1] do and as exactly the [9] does. This way the face
detection procedure would be a much faster procedure. By the time the face detection
procedure is completed then the pose estimation and landmark localization ones can be applied
in the detected face area within the image (like [9]). By doing so the size of data have to be
processed would be much less than in the whole image as the [1] does. At this section a
validation of the face detection result can also be applied increasing the algorithms reliability.
This execution flow would reduce in a large scale the execution time needed for the algorithm to
complete the whole procedure.

As far as the pose estimation task the system can be extended in a
way that not only the yaw angle to be estimated but also the roll
and the pitch angles. This task can be achieved not only by using
shape models but also with relative models between the main
critical face landmarks as [4] does.

As far as the object detection area, this system can be easily
transformed to an object detection system using tree structural

Figure 85 — Complete Pose
Estimation

models. As this thesis system implements the [1] that is based on
the object detection system [2], this system can also be used as an
object detection one. The only changes have to be done is to change the way the TSM system
handles its memory consumption in order to hold the Filters Responses arrays when multi-scale
TSM is used.

There are also many other ways that can extend this TSM system that are left in the readers
creativity!

12. Annex A —TSM Execution Times

In this chapter the exact execution time of the TSM v3.2.2 system in seconds is presented in
order the ability of using it in applications. As presented in Table 175 the TSM algorithm can
complete the detection procedure in less than one second in the majority of the non-embedded
systems for small sized images (320x240). For larger images the system need more than one

second of time.

Table 175 — TSM v3.2.2 Execution Time in Seconds

Intel Xeon E5430 IidiCerialy Intel Core 2 Duo SEIEEIOY
CPU Model @2.66GHz (x2) 4600U 78100 @2.10GHz Cortex-A9
’ @2.70GHz ’ @866MHz
CPU Cores 8 4 2 2
RAM Memory 12 GB 8 GB 4 GB 512 MB
Operating Ubuntu Server VM Ubuntu Ubuntu 14.04 (no Ubuntu 12.04 (no
System (no GUI) 15.01 (no GUI) GUI) GUI)
Execution Time (sec)
B 0.287 0.590 0.747 7.325
640x480 1.282 2.699 5.379 52.84
800x600 2.028 3.957 8.525 83.65

1024x768 3.421 6.528 14.25 143.0
1280x960 5.390 10.20 22.56 220.4

At the next table (Table 176) the exact execution time of the TSM algorithm in seconds is

presented using the hardware system of the 2™ column of Table 175. This is a virtual machine so
that the number of CPU cores can be customized and the execution time needed for the
algorithm can be tested using different number of CPU cores every time. The data of Table 175
and Table 176 are the ones that create the statistical data of the Table 174.

Table 176 - TSM v3.2.2 and Creators Execution Time (sec)

TSM 320x240 640x480 800x600 1024x768 1280x960
Original 2.20 7.96 12.0 19.9 29.7
v3.2.2 1.08 4.89 8.10 13.6 21.0
Original 1.85 6.06 8.93 14.7 21.9
_ v3.2.2 0.71 3.27 5.17 8.60 13.2
Original 1.72 5.88 8.96 14.2 21.8
_ v3.2.2 0.66 2.95 4.45 7.46 11.4
Original 1.70 5.76 8.89 14.2 21.9
_ v3.2.2 0.59 2.70 3.96 6.53 10.2

13. Bibliography

[1] X. Zhu, D. Ramanan. "Face detection, pose estimation and landmark localization in the wild"
Computer Vision and Pattern Recognition (CVPR) Providence, June 2012.

[2] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan, “Object
Detection with Discriminatively Trained Part Based Models”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 32, No. 9, Sep. 2010

[3] Hiyam Hatem, Zou Beiji, Raed Majeed, Mohammed Lutf and Jumana Waleed, “Face
Detection and Pose Estimation Based on Evaluating Facial Feature Selection” International
Journal of Hybrid Information Technology, Vol. 8, No. 2, 2015

[4] Hiyam Hatem, Zou Beiji, Raed Majeed, Jumana Waleed and Mohammed Lutf “Head Pose
Estimation Based On Detecting Facial Features” International Journal of Multimedia and
Ubiquitous Engineering, Vol. 10, No. 3, 2015

[5] Jacek Naruniec, “Discrete area filters in accurate detection of faces and facial features”
Image and Vision Computing 32, 2014

[6] Junjie Yan, Xucong Zhang, Zhen Lei and Stan Z. Li “Real-time High Performance Deformable
Model for Face Detection in the Wild” Chinese Academy of Sciences

[7] Sachin Sudhakar Farfade, Mohammad Saberian and Li-Jia Li “Multi-view Face Detection Using
Deep Convolutional Neural Networks”, Yahoo 2015

[8] Hakan Cevikalp, Bill Triggs and Vojtech Franc “Face and Landmark Detection by Using
Cascade of Classifiers”, Automatic Face and Gesture Recognition (FG), 2013

[9] Erjin Zhou, Haogiang Fan, Zhimin Cao, Yuning Jiang and Qi Yin “Extensive Facial Landmark
Localization with Coarse-to-fine Convolutional Network Cascade” International Conference
of Computer Visio (ICCV), 2013

[10] Junjie Yan, Xuzong Zhang, Zhen Lei and Stan Z. Li “Face detection by structural models”,
Image and Vision Computing 32, 2014

[11] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt and J. M. Ogden, “Pyramid methods in
image processing”, RCA Engineer, 1984

[12] Navneet Dalal and Bill Triggs, “Histograms of Oriented Gradients for Human Detection”,
Computer Vision and Pattern Recognition, (CVPR) 2005

[13] P. Felzenszwalb and D. Huttenlocher, “Distance Transforms of Sampled Functions”, Theory
of Computing, Vol. 8, No. 19, September 2012
[14] Rasmus Rothe , Matthieu Guillaumin , and Luc Van Gool, “Non-Maximum Suppression for

Object Detection by Passing Messages between Windows”, Pattern Recognition, (ICPR) 2006

[15] Vahid Kazemi and Josephine Sullivan, “One Millisecond Face Alignment with an Ensemble of
Regression Trees”, (CVPR) 2014

[16] W Kienzle, G Baklr, M Franz, and B Schélkopf, “Face Detection: Efficient and Rank
Deficient”, July 2005

[17] Paul Viola and Michael Jones, “Rapid Object Detection using a Boosted Cascade of Simple
Features”, (CVPR) 2001

14. Web Sources

[18] http://www.ece.tuc.gr/4516.html (Technical University of Crete, Electronics Laboratory)

[19] http://www.ece.tuc.gr/4515.html| (Technical University of Crete, Electronic Circuits and

Renewable Energy Sources Laborartoty)

[20] http://www.ece.tuc.gr/4514.html| (Technical University of Crete, Microprocessors and

Hardware Laboratory)

[21] http://www.ece.tuc.gr/4512.html| (Technical University of Crete, Intelligence Systems

Laboratory)

[22] http://cordis.europa.eu/project/rcn/97141 en.html (SAFEMETAL)

[23] http://www.tsi.gr/?page id=498&|ang=en (EXEHON)

[24] http://luthuli.cs.uiuc.edu/~daf/book/book.html (Computer Vision: A Modern Approach)

[25] https://people.cs.umass.edu/~hsu/ (Hang Su TSM Algorithm Implementation)

[26] http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html (Dlib)

[27] http://opencv.org/ (OpenCV)

[28] http://chenlab.ece.cornell.edu/projects/FaceTracking/ (Advanced Multimedia Processing
Lab)

[29] http://people.kyb.tuebingen.mpg.de/kienzle/facedemo/facedemo.htm (fdlib)

[30] http://facesdk.eu/main_en (FaceSDK)

[31] http://cmp.felk.cvut.cz/~uricamic/flandmark/ (Flandmark)

[32] http://www.semanticvisiontech.com/ (Semantic Vision Technologies)

[33] http://rapidxml.sourceforge.net/ (RapidXML)

[34] http://openmp.org/ (OMP)

http://www.ece.tuc.gr/4516.html
http://www.ece.tuc.gr/4515.html
http://www.ece.tuc.gr/4514.html
http://www.ece.tuc.gr/4512.html
http://cordis.europa.eu/project/rcn/97141_en.html
http://www.tsi.gr/?page_id=498&lang=en
http://luthuli.cs.uiuc.edu/~daf/book/book.html
https://people.cs.umass.edu/~hsu/
http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html
http://opencv.org/
http://chenlab.ece.cornell.edu/projects/FaceTracking/
http://people.kyb.tuebingen.mpg.de/kienzle/facedemo/facedemo.htm
http://facesdk.eu/main_en
http://cmp.felk.cvut.cz/~uricamic/flandmark/
http://www.semanticvisiontech.com/
http://rapidxml.sourceforge.net/
http://openmp.org/

