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1. Master Thesis Outline 

The first part of the master thesis was the part of studying the preparing for the implementation 

of the T“M Algoƌithŵ. IŶ this stage eǆĐept of studǇiŶg oǀeƌ the X. )hu aŶd D. RaŵaŶaŶ ͞Face 

detection, pose estimation and landmark localization in the wild͟ papeƌ [1], other related paper 

had to be studied too in order to understand and analyze the algorithms structure and 

methodology. One of these paper is the one from which the TSM algorithms come from, the 

"Object Detection with Discriminatively Trained Part-Based Models" paper [2]. As the master 

thesis demanded general knowledge around the computer vision and pattern recognition, extra 

studǇiŶg oǀeƌ these Coŵputeƌ “ĐieŶĐe fields had to doŶe. Foƌ eǆaŵple, the ďook ͞Coŵputeƌ 
VisioŶ: A ŵodeƌŶ AppƌoaĐh͟ [24] by David Forsyth and Jean Ponce was used for that purpose. 

The difficulties on this stage was the fact that, without any background knowledge, in a short 

time period a lot of new Computer Science Fields had to be learned and combined in order to 

understand a state of the art algorithm. We have to refer that this master was done in the 

Microprocessors and Hardware department of TUC, a department not specialized in Computer 

Vision and Machine Learning fields. 

The second stage of the master thesis working was the implementation of the TSM algorithm 

using the C\C++ programming language. The algorithm was offered by the creators in Matlab 

script using some parts write in C++ as the Matlab tool did not offer implementation for every 

procedure. These procedures where the HOG, Convolution, Resize, Reduce and DT procedures. 

Although these procedures where already implemented in C++ the designer had implemented 

them using the Matlab array memory format. This means that this implementation was reading 

the array data column by column instead of line by line as the C array memory format does. For 

that reason this procedures had to be rewritten and debugged. 

  

Figure 1 - Matlab Arrays Memory Format Figure 2 - C Arrays Memory Format 

One of the greatest difficulties in the implementation of the TSM algorithm was the debugging 

procedure. Millions of data had to be tested in order to be sure that the procedures 

implementation had no errors. The solution to that problem was the usage of Matlab tool. Every 

procedure we implemented we called through the Matlab tool and we receive the return data 



inside the Matlab environment. Every part of the algorithm we implemented used inside the 

creators implementation and the ƌetuƌŶed data ǁeƌe Đoŵpaƌed ǁith the data the Đƌeatoƌ’s 
implementation return. These processing was much easier and faster than doing it in C\C++. 

Although this solution helped us a lot make us save a lot of time, it cost us a considerable 

amount of time on creating special libraries for formatting the data from the Matlab array 

memory format to C and vice versa. For the debugging procedure we had to create a full set 

library functions for converting all the data structures the TSM algorithm needed from the 

Matlab format to C and the opposite. Despite the effort of creating these libraries, the 

advantage we got worth the trouble. 

 

Figure 3 - Mat2C Library Diagram 

Another part of the implementation was the creation of different kind of versions of the 

algorithm. This part was not difficult but as long as the parallelism was used the time 

consumption of testing all these versions was extended. Every different parallelization 

technique had to be tested for all the versions to see its effect on the TSM algorithm execution 

time. Sometimes we had to take decisions in order to reject some versions because the number 

of versions would increase in an out of scope number. 

The Research part of this thesis was also a great time consumer. As happens in the research field 

there were techniques designed, that in the end were rejected as they did not offer any useful 

results and they are not mentioned in this thesis despite the fact that a lot of time was spent to 

be implemented and tested. During the research period a lot of time was also needed for testing 

the results of the implemented patches in order to see their effect in the TSM algorithm 

performance. We had to let the algorithm run for hours to get these results, as the sample 

images used for testing were 205 images of multiple, usually large, sizes. We needed about 10 

hours for a single test. Also a lot of Matlab scripts had to be written in order to make automatic 

the procedure of data analysis. The uncertainty of the research was a difficult but on the other 

hand constructive part of this thesis working time. 



At last the writing stage of this thesis was also a great time consumer. The main reason for this 

delay was the fact that this thesis had a huge amount of data analysis. For every graph 

presented in this thesis lots of data had to be processed. Hundreds of Excel files were used in 

order to process these data and create useful graphs by them. We also had to create our own 

profiler inside the TSM algorithm implementation code in order to derive the data needed for 

these analysis. Multiple Matlab scripts had to be written in order to profile the algorithms 

memory consumption and regularize the data in order to be graphically presented. This thesis 

contains 129 diagrams, 182 tables and 94 figures the majority of which are custom made. All 

those diagrams and tables shown in this thesis caused us a lot of effort and time but they are a 

necessary part of it we could not omit. 



2. Master Thesis Abstract 

IŶ this thesis a Ŷeǁ iŵpleŵeŶtatioŶ of the ͞Face Detection, Pose Estimation, and Landmark 

LoĐalizatioŶ iŶ the Wild͟ [1] algorithm by Xiangxin Zhu and Deva Ramanan is represented. This 

implementation was firstly designed for being used by embedded systems but finally it can also 

be used by large multiprocessors systems. This is because the modern embedded systems tend 

to be similar to what we used to call multiprocessor systems years ago. Because of the huge 

needs of the market in the area of embedded systems (smart-phone, tablets and more) the 

latest embedded system are in the category of small multiprocessor systems using from 2 to 4 

and even more cores in their central processing unit. 

Our implementation of the ͞FaĐe DeteĐtioŶ, Pose EstiŵatioŶ, aŶd LaŶdŵaƌk LoĐalizatioŶ iŶ the 
Wild͟ algoƌithŵ ǁas iŵpleŵeŶted iŶ ďasiĐ C\C++ as there is no usage of any external C\C++ 

library in the core of the algorithm. This gives the algorithm the ability to be used in both 

Windows and UNIX systems with no further changes. It also allows further improvements and 

alteration as it is easily readable for those who would like to use it for custom application. Our 

implementation gives the ability of customizing the functionality of the algorithm through a set 

of settings and parameters that can easily be modified. 

As this implementation is designed for usage in embedded systems the need of reducing 

memory consumption and processing speedup was encounter. For that reason a number of 

customizations were made in contrast to the original implementation of its creators. There were 

also pƌoduĐed a set of teĐhŶiƋues that soŵe ŵaǇ pull doǁŶ the algoƌithŵ’s peƌfoƌŵaŶĐe ďut iŶ 
contrast they offer extra speedup and memory saving. These techniques may be very useful for 

custom application. 

Despite any further speedup the main problem of making the face detection task a great time 

consumer is the fact that the image size in the one that makes it a long time processing. Large 

images compel the system to create large image pyramids in order to search them for face 

detection. In addition the larger the top image is the more time is needed to be processed. The 

main solution on this problem is proposed is the scaling of the original image to a smaller size in 

order to reduce the number of data needed to be processed. This solution makes the systems 

faster but they lose part of their performance as scaling an image to a smaller size makes small 

size faces to be unable for detection. Our implementation offers a method that scans the image 

pyramid faster for face detections in order to avoid detection processing in pyramid levels that 

seems to be empty of faces. This can be a very effective method for video application where 

empty faces frames can be faster processed and rejected. 



3. Related Work 

As far as we knew, no previous work was introduced jointly addressing the tasks of face 

detection, landmark localization and pose estimation until the June of 2012 when X. Zhu and D. 

RaŵaŶaŶ pƌoposed the ͞Face detection, pose estimation and landmark localization in the wild͟ 
[1] work. This work was supposed to be the state-of-the-art that time and was used as a 

baseline for further research leading to the presentation of more proposals for systems trying to 

make the face detection process a much faster and efficient. To succeed this, new models was 

used except of discriminant parts models like neural networks. The neural networks are 

considered to be the more efficient and fast models that can detect faces and estimate pose. 

We are not going to mention all of them but only the most recent like [3], [4], [5], [6] and [7]. 

The most similar work to [1] is the [8], [9] and [10]. 

Our work does not try to present a new face detection or object detection method but to make 

the Discriminant Part Models and Tree Structural Model systems faster and less memory 

consumption ones. For this reason the only related work that can be referred is the [25] that 

implements the same algorithm. The reason of choosing this algorithm is because except of face 

detection and pose estimation it also offer landmark localization of the 68 or 39 (depends on the 

viewing angle) human face landmarks. Another task it also implements is the face detection of 

faces in the range of over 60 degrees viewing angle. Many algorithms have been deployed since 

then, like [26], [27], [28], [29], [30], [31] and [32] but most of them do not offer all these tasks 

the same way. Many of them do not offer landmark localization at all or they detect few of 

them, the most significant for the face detection (ex. Eyes). The need of the landmarks 

localization demand the convolution procedure of at least 68 cascade windows of the image 

features space that is a very heavy procedure. Others does not offer pose estimation at all while 

the most of them that does, only offer pose estimation in the range of 60 degrees. Only the [25] 

does offeƌ the Đoŵplete set of tasks aŶd it’s the oŶe to Đoŵpaƌe ǁith. 

As far as we know, there are also many other freeware algorithms offered in the web but none 

of the uses the TSM method meaning that all of the have a lack of tasks. They usually offer face 

detection or/and pose estimation but not the 68 landmark localization or face detection in more 

centered faces as referred in the previous paragraph. Some of these algorithms are [3], [4], [5], 

[6], [7], [8] and [10]. 



4. TSM Algorithm Simple Description 

The ͞FaĐe DeteĐtioŶ, Pose EstiŵatioŶ, aŶd LaŶdŵaƌk LoĐalizatioŶ iŶ the Wild͟ [1] algorithm was 

created by Xiangxin Zhu and Deva Ramanan from the University of California, department of 

Computer Science on 2012. On this algorithm XiangXin Zhu and Deva Ramanan presented a 

unified model for face detection, pose estimation and landmark localization in the real world. It 

is a model based on a mixture of trees with a shared pool of parts, which represent facial 

landmarks, and used to capture topological changes due to viewpoint.  

The creators claimed for achieving reliable estimates of head pose and facial landmarks, 

paƌtiĐulaƌlǇ iŶ uŶĐoŶstƌaiŶed ͞iŶ the ǁild͟ iŵages. TheǇ pƌeseŶted a siŶgle ŵodel that 
simultaneously advanced the state of the art for all three. It is a novel but simple approach to 

encoding elastic deformation and three-dimensional structure using mixture of trees with a 

shaƌe pool of paƌts. TheǇ defiŶe a ͞paƌt͟ at eaĐh faĐial laŶdŵaƌk aŶd use gloďal ŵiǆtuƌes to 
model topological changes due to viewpoint. Different mixtures are authorized to share part 

templates which allow the model a large number of views with low complexity.  

They presented an extensive evaluation of their model for face detection, pose estimation and 

landmark localization. They compared to the state-of-the-art from both the academic 

community and commercial systems such as Google Picasa and face.com. In terms of face 

detection, their model substantially outperforms Viola-Jones and is on par with the commercial 

systems above. In terms of pose and landmark estimation, their results dominate even 

commercial systems. Their results are particularly impressive since their model is trained with 

hundreds of faces while commercial systems use up to billions of examples. 

No previous work had jointly addressed the task of face detection, pose estimation, and 

landmark estimation until then. Their system is also trained discriminatively, but with much less 

training data, particularly when compared to commercial systems. 

4.1. Face Detection Based on Parts Based Detection 

The ͞FaĐe DeteĐtioŶ, Pose EstiŵatioŶ, aŶd LaŶdŵaƌk LoĐalizatioŶ iŶ the Wild͟ [1] algorithm is 

ďased oŶ the ͞OďjeĐt DeteĐtioŶ ǁith DisĐƌiŵiŶatiǀelǇ TƌaiŶed Paƌt Based Models͟ [2] by Pedro F. 

Felzenswalb, Ross B. Girshick, David McAllester and Deva Ramanan. This algorithm is an object 

detection system based on mixtures of multi-scale deformable part models. In the Tree 

Structural Model (TSM) algorithm the mixtures are one scale deformable part models. 

The Deformable Parts Based Detector (DPBD) algorithm, it tries to detect specific parts of an 

object within an image using trained filters. After the object detection the usage of the mixtures 

of trees is taking place. The algorithm checks the locality of the detected parts and the location 



correspondence between those detected parts to make a conclusion if they are bringing forward 

the object we are looking for or they are just dispread parts within the image. As the filters used 

for object detection are all the same size, different size objects are detected in different scales 

of the image that is why it is based on mixtures of multi-scaled deformable part models. 

  

Figure 4 - DPBD Algorithm Root and Child Parts Detection Figure 5 - DPBD Algorithm Root and Child 

Parts Locality 

The DPBD algorithm uses a root filter to detect the object is looking for and a set of multiple 

filters to detect specific parts inside the object the root filter detects. The combination of those 

results gives the final approval of the correctness of the detection (Figure 4 and Figure 5). The 

set of filters used for the parts detection needs different scales of the image as these parts are 

obviously smaller that the main object. For example if a car is the object the algorithm is looking 

foƌ, the ǁheals, the lights aŶd otheƌ paƌts of it aƌe all sŵalleƌ thaŶ the Đaƌ’s shape itself, that is 
why the system is multi-scaled, as the algorithm has to search inside lower scales of the image 

to detect these parts. 

In the Figure 6 below the full diagram of the DPBD algorithm is shown. The algorithm uses two 

features maps of the image with resolution ratio of two. The small feature map is used for 

applying the root filter and the second one for the child parts filters. Adding the filteƌ’s 
responses of all the parts gives the final results of the detection procedure. 



 

Figure 6 - Deformable Parts Based Detection Algorithm Execution Flow Diagram 

4.2. TSM Face Detection Algorithm 

OŶ the ͞FaĐe DeteĐtioŶ, Pose EstiŵatioŶ, aŶd LaŶdŵaƌk 
LoĐalizatioŶ iŶ the Wild͟ [1] algorithm there is a small but 

important difference. This algorithm does not use a main root filter 

for the detection of human face but only the combination of a set 

of parts (Figure 7). This small difference gives us a good flexibility 

during the implementation. The algorithm is only trying to detect 

specific parts of the human face and checks the location 

correspondence to figure out if they fit to the face template it is 

trained. 

 

Figure 7 - Human Face 68 

Landmarks 



For the pose estimation, our algorithm uses 13 different pose model trees each of which 

represents a different point of viewing a human face by the step of 15 degrees viewing angle. 

The one achieving the best score is the one recognized. 

As described before, the filters used for detecting face landmarks are one size so in order to 

detect different sized faces within the image the algorithm has to apply the detection procedure 

oǀeƌ a seƌies of iŵage’s sĐaled Đopies. The deteĐtioŶ pƌoĐeduƌe does Ŷot use siŵple iŵages ďut 
the HOG descriptors of them. The series of the HOG images of the scaled copies of the original 

image is called the features pyramid of the image and it is described in detail in chapter 5.5. On 

all these HOG images the algorithm applies the detection procedure for all the different pose 

model trees. At the end of this procedure the algorithm selects the top detection as the most 

accurate. This is a simple abstract of the way the algorithm works. In the next chapter (Chapter 

5) a more detailed description is presented with deeper analysis on every stage of the 

algorithms detection procedure. 
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Figure 8 - TSM Algorithm Execution Flow 



5. TSM Algorithm Procedures Description 

The TSM algorithm it was used in this thesis uses some well-known and widely used procedures 

of the Computer Visio science field. In this chapter a short description on them is appose as they 

might not be already known by the reader. 

5.1. TSM Face Detection Algorithm 

IŶ the pƌeǀious Đhapteƌ the ǁaǇ the ͞FaĐe DeteĐtioŶ, Pose EstiŵatioŶ, aŶd LaŶdŵaƌk 
LoĐalizatioŶ iŶ the Wild͟ algoƌithŵ ǁoƌks ǁas desĐƌiďed iŶ a feǁ ǁoƌds. IŶ this Đhapteƌ a detail 
description of the algorithm is referred. 

The detection process consists of five sequential procedures.  

 Feature Pyramid: Having an image for processing, the algorithm firstly creates its image 

pyramid. By the image pyramid the algorithm gets the feature pyramid of the image by 

applying a HOG procedure.  

 Convolution Stage (Filter Responses): The next step is to convolve all the filters used for 

detecting facial landmarks with every level of the features pyramid. This means that using 

the Model of total 99 filters and having a feature pyramid of 20 levels, this step is a 

procedure of 1980 convolution procedures and the production of 1980 different results 

stored in 20 lists of 99 elements. This is a very heavy procedure. The result of a convolution 

between a filter and a pyramid level is called the «Response of the filter».  

 Distance Transformation (DT Scores): This procedure is the processing of the convolutions 

result in order the algorithm to decide whether there is useful information at the results. It 

is a procedure where the results of the parts over the features or in other words the 

landmarks over the image have to be partial combined in order to produce a face contour. 

For that purpose the algorithm is using a tree model where information about the position 

of each part according to its parental part exists. This process is achieved by applying 

multiple distance transformations and additions between the parts filter responses. All this 

processing is ends up to a results array called the «Score» of the procedure. This array data 

reveal the existence of any detections. 

 Find & Backtrack (Result Cache): As soon as the distance transformation stage finishes, the 

algorithm checks the final result for high-scored values. High scored values means face 

detection. By the time that high score values exists inside the score table the algorithm 

starts a process called «Backtrack» were the position of the landmarks within the image is 

estimated. The results of the Backtrack procedure are the results returned by the algorithm 



with information about the position of every landmark. All results are saved in a results 

table called «Results Cache». 

 Non-Maximum Supreme (NMS): At the end of the detection process, the algorithm has to 

make a selection between the detection results as many detections does not mean multiple 

faces within the image but also multiple detections of the same face.  

 

Figure 9 - TSM Algorithm Procedures Sequel 

A more detailed description of each phase of the detection process is represented in the 

following subchapters. 

5.2. Model 

The Tree structural model is used in the TSM algorithm for face recognition contains a variety of 

data and parameters used during the recognition and estimations procedures. We will describe 

the most important as it is necessary for understanding how the algorithm works. 

On a human face there are a lot of landmarks that can be used for 

face recognition as shown in Figure 10. Every landmark of this kind is 

called a part. A human face inside an image can be appeared through 

a variety of points of view depending on the angle the head of the 

faĐe’s oǁŶeƌ had the ŵoŵeŶt the iŵage ǁas Đaptuƌed. This iŶdiĐates 
that lots of the parts of the human face can probably not be visible on 

some points of view. Many parts of a human face can also look 

different when seen from different points of view. This point also 

indicates that a standard set of parts cannot be used for face 

deteĐtioŶ. Foƌ that ƌeasoŶ the algoƌithŵ’s ŵodel ĐoŶtaiŶs a set of 
different parts for every 15 degrees of viewing angle starting for -90 

degrees to +90 degrees for total 13 different pose angles. This method 

gives as also the pose estimation. 
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& Model 
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Figure 10 - Human Face 

Landmarks 



Every set of parts used for detecting faces in a specific point of view is called a component. As 

the angle distance of every component with its vicinal is only 15 degrees some parts may appear 

tiny defacements, so we can use the same part (landmark) to more than one components. 

Another characteristic of the human face is its proportion. This proportion produces a similarity 

between the mirrored components. As a result the majority of the parts that are used by a 

component can also be used by its mirror component. 

 

Figure 11 - TSM 13 Components 

The above remarks conclude to a model that can use only a few amount of parts for a total of 13 

components. The creators offer two Models for face detection. One using only 99 filters and one 

using 146. The second one appears to be more accurate as long as the detection results but the 

first one is faster. On this thesis we are mainly focused on the 99 filters model as we care more 

for a fast implementation running on embedded systems. Despite that no substantial difference 

exist between those two models and all the important information concerning the algorithm are 

referred for both models.  

In both 99 and 146 filters models the median component (centered pose of 0 degrees angle) 

uses 68 parts for its recognition. All the components used for recognizing faces at most of 45 

degrees viewing angle use the same amount of parts when the rest ones use only 39 parts. This 

means that a fusion of 710 to 99 (and 146) parts is achieved by using the same parts on multiple 

components. This is a very important achievement for the time performance of the algorithm as 

is explained later on chapter 6.  



 

Figure 12 - TSM Parts and Filters Connection Structure 

In both models (99 and 146 filters) the middle components (4-10) representing faces of -45 to 

45 degrees viewing angle use the same filters for landmark detection. The position between 

them is the criteria for individualizing them. On the other hand the filters used by the edge 

components (1-3 and 11-13) representing -90 to -60 and 60 to 90 degrees are not always the 

same. On the 146 filters model the left and the right edge components use their own set of 39 

filters. This is how the number 146 comes from (Table 1). On the other hand on the 99 filters 

ŵodel oŶlǇ the half of the edge ĐoŵpoŶeŶts paƌt’s filteƌs aƌe uŶiƋue ǁhile the ƌest aƌe 
borrowed by the parts of the middle components as also shown in Table 1. 

Table 1 - TSM Components Mutual Parts 

Filters 
Components 

1 2 3 4 5 6 7 8 9 10 11 12 13 

99 16/23 16/23 16/23 68 68 68 68 68 68 68 15/24 15/24 15/24 

146 39 39 39 68 68 68 68 68 68 68 39 39 39 

 

Every part of the model is associated with a three dimensional filter that is used in the detection 

process in order the landmark that the part represents inside the image to be discovered. 

Every component uses an amount of parts. These parts are connected in a tree style hierarchy. 

The reason of doing that is because the position of each part according to the rest ones inside 



the image produces the conclusion of a face existence. The tree model of the component 7 is 

shown in the Figure 13 below. 

 

 

Figure 13 - TSM Component 7 Parts Tree Structure 



5.3. Image Pyramid 

An image pyramid is a collection of multi-scaled representations of an image. The parameter 

«Levels» of an image pyramid is the number of scaled images in the pyramid and the «Interval» 

one is referring to the number of levels exist in the pyramid between two images with scale 

ratio of 2. In the Figure 14 below an image pyramid of 12 levels and interval parameter set to 4 

is presented. For further reading use [11]. 

 

Figure 14 - Image Pyramid Example 

5.4. HOG 

The Histogram of Oriented Gradients is feature descriptors used in image processing for object 

detection. There are more than one feature descriptors in computer vision but this one is 

considered to be the most accurate and suitable for human detection as described by Navneet 

Dalal and Bill Triggs in 2005 [12] aŶd that’s ǁhǇ it is used as a paƌt of T“M algoƌithŵ. IŶ the 
Figure 15 below a visual representation of the HOG descriptors of two images is shown. 

    

Figure 15 - Histogram of Oriented Gradients Descriptors Example 

The idea behind the HOG descriptors method is that the shape and the characteristics of the 

objects within an image can be described through the intensity of oriented gradients and edge 

directions. The way for doing that is by dividing the image into small boxes of pixels called cells 

and calculate the histograms of gradients direction or edge orientation within each cell. The 

combination of these histograms represents the descriptor. 



 
 

Figure 16 - HOG Cells and Blocks Figure 17 - TSM Algorithm HOG Procedure Data 

The improvement of the descriptor can be achieved using normalization methods against 

illumination differences and shadowing. This normalization is applied separately on groups of 

cells called blocks and not in the whole image at once for better accuracy (ex. Shadows). Using 

cells and blocks, the HOG descriptor method keeps a good tolerance against geometric and 

illuŵiŶatioŶ tƌaŶsfoƌŵatioŶs aŶd that’s a good. TƌaŶsfoƌŵatioŶs affeĐt ŵoƌe ǁheŶ usiŶg laƌge 
regions of pixels within a cell. 

In the TSM algorithm the HOG stage gets a 3 levels (colors) Width Height  array and returns a 

32 levels 
Width Height

Pixels Per Cell


 

 one. This array is the «Features image» of this image 

5.5. Feature Pyramid 

The first thing the TSM algorithm does is creating a feature pyramid of the image. A feature 

pyramid is similar to an image pyramid but instead of scaled patterns of the image it uses scaled 

patterns of the histogram of oriented gradients of the image. The creation of a feature pyramid 

demands the existence of the image pyramid as its more accurate to scale the image first and 

the get its HOG than create its HOG and scale it afterwards. The last option does not produce 

the desirable results as deferent scales of an image produce different kind of HOGs as is shown 

in Figure 18. 
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Figure 18 - Features Pyramid from Image Pyramid vs Scaled HOG Images 

In the Figure 18 above in the third column is presented the HOG images coming from the images 

at the second column. The first column images are getting blurred as moving downwards 

because they are smaller size than the top one in the scale noted at the first column. On the last 

column the HOG images comes from the top HOG image at the same column scaled by the scale 

factor at the corresponding first column. It is clearly visible that the HOG images at the third 

column are much more accurate than the ones at the forth column. This is why the features 

pyramid comes from the image pyramid and not by scaling the HOG images. As is obvious the 

features pyramid of the face detector algorithm is comes as the third column of the Figure 18. 

 

There are three parameters in the features pyramid that have to be explained 

 Interval: The Interval parameter defines the number of levels exists between two levels with 

scale ratio of two, as explained in chapter 5.3. This parameter defines a measurement of the 

density of the pyramid. A low density pyramid can cause the escape of detections as our 

model detects faces of a specific size. The higher the density is the more accurate the 

algorithm is. In addition to accuracy the higher the density is the more hardware resources 

are needed to execute the algorithm and the detection process last more time. The creators 

of the algorithm have define this parameter value to 5 as the most efficient. 



Interval = 2 

 

 

Interval = 3 

 
 

Figure 19 - TSM Algorithm Interval Parameter Impact 

In the Figure 19 above the features pyramid at the top is using an interval parameter of 2 in 

contrast to the bottom one using an Interval parameter of 3. As shown by the red lines over 

the images the most accurate detection is succeeded in the third level of the right features 

pyramid. The left pyramid fails to have such an accurate detection and it might probably 

miss the detection. 

 MinLevel: This parameter defines the minimum level of the image pyramid that will be used 

for detection. As the model detects faces of a specific size, the minimum this value is, the 

smaller is the size of the faces within the image that can be detected. The maximum is the 

MinLevel parameter value is the greater the size of the faces within the image must be. 

 MaxLevel: The MaxLevel parameter defines the 

length of the image pyramid and it affects the 

maximum size of a human face within the image 

that can be detected. If the MaxLevel parameter is 

low value then large faces within the image may 

not be detected. In contrast to the MinLevel 

parameter, this parameter affect much less the 

algorithm execution time and memory resources 

needed as in the end of the feature pyramid the 

iŵages’ size teŶd to ďe sŵalleƌ iŶ additioŶ to the 
beginning. 

Table 2 - TSM Features Pyramid  

Parameters Defaults 

Interval 5 

MinLevel 1 

sBin 4 

MaxLevel 

 

1

interval

min .
log

5
1

log 2

image size

sbin

  
     
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
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 Sbin: This parameter represents the number of pixels each side of the HOG cell tile uses. The 

value of this parameter affects the size of the features image the HOG process produces as 

described is chapter 5.4. As referred in this chapter the HOG process produces features 

images smaller than the original ones at a scale factor of the Sbin parameter value. This 

means that the features pyramid levels are all Sbin times smaller than the respective ones 

on the respective image pyramid. 

Table 3 - TSM Algorithm Features Pyramid per Image Size 

Image Size Levels Max Level Size Min Level Size 

320x240 18 86x66x32 13x11x32 

640x480 23 326x326x32 13x11x32 

800x600 25 406x306x32 13x11x32 

1024x768 27 518x518x32 13x11x32 

1280x960 28 646x646x32 13x11x32 

 

For building the features pyramid the algorithm creators used two procedures. The first one 

resizes the image according a scale factor and the second one creates an image half the input 

iŵage. That’s ďeĐause as eǆplaiŶed iŶ chapter 5.3 all the images in the pyramid with level 

distance equal to the Interval parameter have scale ratio equal to two. 



 

Figure 20 - TSM Algorithm Image Pyramid Creation Execution Flow 

5.6. Convolution 

The convolution process is a well-known one in the area of image processing. It is the procedure 

of applying a filter over an image. In the TSM algorithm the convolution process is used for part 

detection over the features images. As mentioned in chapter 5.2, the algoƌithŵ’s ŵodels 
ĐoŶtaiŶs a set of eitheƌ ϵϵ oƌ ϭϰϲ filteƌs. EaĐh filteƌ is used foƌ a huŵaŶ’s faĐe laŶdŵaƌk 
detection. By convolving each filter to the image features map, high score pixels appears in the 

place where the landmark exists. 

In the convolution process, the image is a HOG descriptors image, a 3D flexible array and the 

filter data is also a 3D array in the stable size of 5x5x32. The result of the convolution is in 

contrast a flexible 2D array as shown in Figure 21 below.  



 

Figure 21 - TSM Algorithm Convolution Procedure Data 

In the TSM algorithm the convolution process is repeated for all filters for every level of the 

features pyramid. In the creators implementation at Matlab the pyramid reaches the 23 levels 

for a 640x480 pixels image. This means that 2277 (23*99) convolution processes occur during 

the algorithm execution. This is the most memory and CPU consumption stage of the algorithm 

although it is the less complicated. In Table 4 the number of convolution procedures occur in the 

face detection one according to the input image size. 

Table 4 - Convolution Procedure Calls per Image Size 

Image Size Levels 99 filters Model 146 filters Model 

320x240 18 1,782 2,628 

640x480 23 2,277 3,358 

800x600 25 2,475 3,650 

1024x768 27 2,673 3,942 

1280x960 28 2,772 4,088 

 

In the Figure 22 below a visualization of the convolution results is shown.  
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Figure 22 - TSM Algorithm Convolution Results Examples (Visualized) 

By the convolution process a series of results arrays comes. These arrays are called as «Filters 

Responses» and consists one of the basic data structures of the algorithm as they allocate a 

great amount of memory. For every convolution process a filter response array comes. At the 

end of the convolution process the total number of arrays produced by the convolution process 

is equal to the number of the levels of the features pyramid multiplied with the number of filters 

used by the model. The total amount is the same shown in Table 4. 

 

Figure 23 - TSM Algorithm Filters Responses Data Structure 

5.7. Distance Transformation 

Distance transformation is a method used in computer vision, image processing and pattern 

recognition for comparison of binary images, especially when these images are results of feature 

detection. The distance transformation technique specifies the distance from each pixel to the 

nearest non-zero pixel. 



On a binary feature image the distance transformation produces an image map where all non-

feature pixel have a value corresponding to its distaŶĐe to the Ŷeaƌest featuƌed piǆels. It’s a 
representation of the features cost to each pixel. 

    

    

Figure 24 - Distance Transformation Examples 

In our algorithm the implementation of distance transformation is used is the Pedro F. 

Felzenszwalb and Daniel P. Huttenlocher [13] one as it is one of the fastest. The distance 

transformation stage does not contain just an execution of a distance transformation process 

but a sequential execution of the process for every part of the model tree. The algorithm climbs 

the tƌee fƌoŵ the leaǀes to the ƌoot addiŶg eaĐh paƌts’ sĐoƌe to its paƌeŶt’s oŶe just afteƌ it 
applies the distance transformation process as shown in Figure 25. 

 

Figure 25 - TSM Algorithm Distance Transformation Procedures 

In a simple trial of visualizing this process a summary of it is shown in Figure 26 and Figure 27. In 

Figure 26 a summary of this process applied on the model tree of component 13 is represented 

and an extendible representation of its last branch (68 to 61 leaf) in Figure 27. 



 

Figure 26 - TSM Algorithm DT Results of Component 7 Tree Example (Visualized) 

In the Figure 26 above is visible that after applying the distance transformation process multiple 

times at last the final image comes of this procedure is an image with high-score pixels (white 

pixels) in the place where the human faces exists. 

In the Figure 27 below a detailed representation of how the distance transformation procedure 

works on the detection process. Using the filters responses produced by the convolution 



procedure the algorithm applies the distance transformation process on it and add the parental 

filteƌ ƌespoŶse aĐĐoƌdiŶg to the pose’s ŵodel tƌee. 

 

 

Figure 27 - TSM Algorithm DT Results of Component 7 Tree Leafs 61-68 Example (Visualized) 

The result arrays form the distance transformation process are called as «DT Scores» and are 

those data that are passed in the next stage, the Backtrack stage (Chapter 5.8 and 5.9), for 

further processing. These arrays are two for every part of the pose tree, except from the root 

one, plus one with the whole tree score. The tree score array is the one where the detection is 

discovered while the others are used by the Backtrack procedure for the landmark localization 

one. The number of DT Score arrays produced in the TSM algorithm is large as shown in the 



Table 5 below and it is independent by the number of the filters the TSM algorithm model is 

using (99 or 146 filters). 

Table 5 - TSM Algorithm DT Scores Arrays per Image Size 

Image Size Levels DT Scores 

320x240 18 25,092 

640x480 23 32,062 

800x600 25 34,850 

1024x768 27 37,638 

1280x960 28 39,032 

 

5.8. Find 

At the end of the sequential distance transformation procedure the Find procedure is returning 

the coordinates of the high-scored pixels within the image. It just makes a selection of the 

scores values that is considered to be detection results. The Threshold parameter that defines 

the limit over which a pixel value is considered a detection is set by the creators in the value of -

0.65. 

 

Figure 28 - TSM Algorithm Find Procedure Results 

By observing the algorithm results during the profiling process (more details in chapter 6.2), we 

noticed that the find procedure discovers high-score values not only at the place of an existing 

human face but in different occasions. These occasions are, 

 One face, multiple poses detection: When a human face exists within an image during the 

detect process the majority of the poses trees produce high-score values. Small viewing 

angles differences at the pose trees is sensible to create similar results. 

 One face, multiple scale detection: When an image illustrating a human face is used for 

creating an image pyramid it is sensible that the models would detect the same face in 

multiple nearby levels of the features pyramid. As larger is the interval parameter, explained 

in chapter 5.5, of the features pyramid more the levels where the same face is detected 

would be. 



 One face, multiple high-scores: As is visible in Figure 28 above, after the distance 

transformation process the results around the highest score have similar values close to the 

highest one. The threshold used for selecting the highest value cannot be accurate as 

different images creates different high-scores. The threshold value comes after several tests 

using several different input images. As a result it is impossible for the algorithm to use a 

Threshold parameter value that would select only one high-score value after the DT process. 

More details about the find process results are presented in chapter 6.13.1. 

5.9. Backtrack 

Backtrack procedure is the part of the algorithm that makes on the landmark localization. Even if 

there was no interest in landmark localization, this stage would be needed for localizing the face 

detection. The Backtrack procedure is a resources cheap process and is only executed when 

detections come up. What is necessary to be mentioned is that the Backtrack procedure 

produces a landmark estimation set for every high-score pixel the find procedure discovers. This 

means that a series of landmark positioning sets candidates comes from the Backtrack 

procedure. The final selection of the most accurate sets comes from the NMS procedure based 

oŶ eaĐh ĐaŶdidate’s high-score value and its position within the image that is explained in 

chapter 5.10. 

All the Backtrack procedure results (Candidate detections) are stored in a Results Cache array. 

This array size is set to 10,000 results cells by the creators. Every time this array is full the NMS 

procedure (Chapter 5.10) is called in order to free array cells from inaccurate and duplicated 

detections.  

 

Figure 29 - TSM Algorithm Backtrack Procedure Results 

The Backtrack stage results are temporary saved in a data structure called «Results Cache». This 

data structure has a user defined size and its default one is 10,000 set by the algorithm creators. 

If this data structure is fully filled with detection results the NMS process is called in order to 

release data by rejecting the fake results. 



5.10. Non-Maximum Suppression (NMS) 

Non-maximum suppression (NMS) [14] process is used for selecting high-scoring detections and 

skipping the ones that are significantly covered by previously selected detections. As described 

in chapter 5.9 the TSM algorithm produce many detection results while trying to detect a face 

within an image. As it is obvious poses that are near the same area of viewing angles produce 

scores with low contrast. For this reason the algorithm has to find out which detections refer to 

the same face within the image and which ones to different faces as an image can contain more 

faces. Detections that refer to the same face would have the same locality with low overlapping 

differences. The NMS method detects these overlaps and keeps only the highest score 

detection, rejecting the rest. This method also makes clear the pose estimation.  

  

Figure 30 - TSM Algorithm One Face Multiple Detections Example 

There is a parameter on this process called «Overlap». This parameter defines the percentage of 

one detection box area that overlap another one in order those two detection boxes to be 

considered as overlapping boxes. Two overlapping boxes refer to the same face. The score that 

follows each one is the parameter that creates the dominated one. The lower score boxes are 

discarded. The default value of the Overlap parameter is set to 0.3. This value must be also a 

product of multiple tests by the creators. Experiments in some different values come up with 

faulty results as shown in Figure 31.  
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Figure 31 - TSM Algorithm Overlap Parameter Impact 



6. TSM Algorithm Implementation 

In this chapter an implementation analysis of the TSM algorithm will be quoted. On the 

implementation architecture we divide the algorithm in three separate modules (Figure 32) 

aĐĐoƌdiŶg to theiƌ ƌole aŶd theiƌ depeŶdeŶĐies. These thƌee ŵodules aƌe the ͞IŶput͟, the 
͞Output͟ aŶd the ͞FaĐe DeteĐtoƌ͟ oŶe. 

 

Figure 32 - TSM Algorithm Implementation Modules 

The inputs module is where the input data of the algorithm come up. The algorithm gets two 

basic inputs, a 3D array structure containing the image data and the model data structure. The 

image array has to be a three channel array, one for each color. In our implementation we used 

the OpenCV [27] libraries in order to read image files and decode them in array data structures. 

We used the OpenCV library as it provides a variety of functions for reading image files, it is very 

popular to the computer vision society and it is free licensed. For the model data structure we 

used the XML data format almost for the same reasons. To read XML data format files we used 

the open source library rapidXML [33]. This stage is fully independent as it can be easy replaced 

by any custom module using other methods for providing the face detector algorithm with the 

input data it needs in the format we described above.  



The output module is the one that gets the results from 

the face detector TSM algorithm and converts it in the 

format the user desires.  In our implementation we 

offer three output types, projection in the computer 

screen (for PCs), exporting in image format file (JPEG) 

aŶd iŶ XML foƌŵat file ĐoŶtaiŶiŶg the algoƌithŵ’s ƌesults 
data. For those three types we used the OpenCV and 

the rapidXML libraries as in the Inputs module. This 

module as the previous one is also fully independent 

and can be easily replaces by any custom implementation that a user can create. 

At last the ͞FaĐe DeteĐtoƌ͟ ŵodule is the oŶe ǁheƌe the faĐe deteĐtioŶ pƌoĐess takes plaĐe. The 
͞FaĐe DeteĐtoƌ͟ ŵodule ĐoŶsists of seǀeŶ diffeƌeŶt stages. This stages aƌe, 

1. The Features Pyramid stage produces the pyramid of image descriptors (HOG). This stage 

was described in chapter 5.5 and it was separated from the rest stages as an independent 

stage because the next ones have to wait for its outputs in order to start their execution. 

None stage can start running if at least one features image is produced. It is a preparations 

stage that creates the data needed for the recognition process to start. The convolution 

stage needs it and it has to wait for it. Extensive description of this stage exists in chapter 

6.6. 

2. The Detect stage represents the main detection process and it is the algorithms real body. 

The process followed inside this stage is what makes the algorithm so special that the 

creators claim it as state-of-art algorithm. This stage contains all the rest stages of the 

algorithm.  

3. The Components stage is the one where the detection procedure of a specific component 

takes place. In this stage, having a component as an input, the algorithm tries to detect it 

within all the levels of the Features Pyramid. This stage is executed one time for every 

component of the model. 

4. The Level stage contains all the procedures needed to detect one component in one level 

feature image. This stage is executed once for every level of the Features Pyramid for every 

ĐoŵpoŶeŶt of the algoƌithŵ’s ŵodel. 

5. The Convolution stage is the one where the convolution procedure takes place. The 

convolution process is described in chapter 5.6. The convolution stage is a very simple in 

complexity but with a heavy data processing one. It is better described by detail in chapter 

6.9. 

 

Figure 33 - TSM Algorithm Output Image 



6. The Distance Transformation stage is using the distance transformation algorithm for 

creating detection results, as described in chapter 5.7. It represents the algorithms main 

detection process as it produces the data where the detection comes from. Detailed 

description of its implementation exists in chapter 6.11. 

7. The Backtrack stage is the one where the landmark estimation takes place. It is a small but 

complex stage where the output data come from. It is the second pure representative of the 

detection algorithm. The Backtrack stage implementation is described in chapter 6.13. 

In the next subchapters we represent the implementation architecture as provided by the 

creators in combined Matlab and C++ scripts. We firstly created a similar implementation in 

pure C\C++ script in order to profile the algorithm and check our implementation correctness. In 

the chapters following we exhibit a set of improvements we applied in our implementation in 

order to make it faster and less memory consuming.  

6.1. Original Edition 

The fiƌst ǀeƌsioŶ ;ǀeƌsioŶ ϭ.ϭͿ of ouƌ iŵpleŵeŶtatioŶ ǁas a Đoŵplete ĐoŶǀeƌsioŶ of the Đƌeatoƌ’s 
edition in Matlab to C++ in order to check the correctness of our implementation and be able to 

profile it and watch its attitude during its execution. The flow diagram of this implementation is 

shown in Figure 34. 



 

Figure 34 - TSM v1.1 Algorithm Implementation Diagram 

As the number indexes indicates the algorithm flow follows the according flow, 

1. Features Pyramid Stage: Having an image and a model available, the algorithm firstly 

produces the Features pyramid as explained in chapter 5.5. 

2. Model Components: After the Features Pyramid is available the algorithm uses information 

aďout the pǇƌaŵid’s sĐales aŶd aƌƌaǇs’ sizes iŶ oƌdeƌ to update aŶd ĐalĐulate soŵe ŵodel’s 
parameters. 

3. Detect Stage: After having the Features Pyramid calculated and the necessary data updated 

iŶside the ŵodel the deteĐtioŶ pƌoĐess is ƌeadǇ to ďegiŶ. The Đƌeatoƌs’ editioŶ ďegiŶs the 
detection process trying to detect every component through the levels of the Features 

Pyramid. As seen in the graph two nested loops are used for this procedure separated as 

two different stages. 



4. Convolution Stage: At the Level stage, where the algorithms tries to detect a component 

through all the levels of the Features Pyramid, the algoƌithŵ ĐheĐks if the Filteƌs’ RespoŶses 
are calculated for each level of the Features Pyramid. If they are not, then it call the 

Convolution stage to calculate them. This happens because in multi-scaled models some 

parts of the component may use Filter Response of other levels of the Features Pyramid. 

That is why are called multi-scaled models. 

5. Distance Transformation Stage: At this moment the actual detection process starts for a 

specific level and component. The Filters Responses are necessary for this procedure. After 

the DT stage the Backtrack one follows and the detection results are stored in the Results 

Cache data structure. 

6. NMS: At the end of the Detect stage when all the components have completed the 

detection procedure through all levels of the Features Pyramid the NMS procedure has to 

be applied in order to collect the right detection as explained in chapter 5.10. 

The Feature Pyramid stage is the first process of the algorithms execution flow. This stage is 

using three main procedures implemented in C++ by the creators as shown in Figure 35. 

1. Resize: The Resize procedure is the one that reduces the size of an image in a custom scale 

factor that gets as an argument. The scale factor value can be between 1 and 0. 

2. Reduce: The Reduce procedure creates images in the half size of the source ones that gets 

as arguments. This procedure replaces the Resize one when the scale factor is 0.5 because it 

is a much faster one. 

3. HOG: The HOG procedure converts an image into its Histogram of Oriented Gradients 

descriptors. 



 

Figure 35 - TSM v1.1 Algorithm  FP Stage Implementation Diagram 

As seen in the Figure 35, the TSM algorithm uses the resized images to create half scaled ones 

with the Reduce procedure. By these images it gets the corresponding HOG images. After the 

algorithm completes the features pyramid (Temp pyramid), then it begins a padding procedure 

so the HOG images data arrays can be convolved later in the Convolution stage without any loss 

of information. 

6.2. Profiler 

Profiling the Face Detection TSM algorithm is not as simple as it may seem. This is because some 

parts of the algorithm are either image size or detection independent and some of them both.  

In the profiling process there are four types of dependencies in the different parts of the 

algorithm. 

 Image size dependencies: The image size dependencies come from the size of the image 

that is being processed by a part of the algorithm. 

 Pyramid dependencies: This kind of dependencies come from the number of levels the 

features pyramid has. If the input image size is large, the number of features images come 

out the features pyramid process would be larger than a smaller size image. 

 Detection dependencies: In chapter 5.7 the detection process is described of how the DT 

stage produces high-score values in the score array when face detection exists. By the 

results of the DT stage the execution of the Backtrack stage is depending as it is processing 

the detection results. If no detection results exists the Backtrack stage has no job to do. This 

is a detection dependency. 



 Model dependencies: The models proposed for the TSM algorithm affect its performance as 

they contain different number of filters. Each filter is convolved with the features images of 

the pyramid and this is time and memory consuming procedure. 

In the Table 6 below the dependencies table is presented showing the different stages and 

process dependencies as long as the time profiling of the algorithm. 

Table 6 - TSM Algorithm Time Dependencies 

Procedure Size Pyra Detect Model Description 

Features 

Pyramid Stage 
Yes Yes No No See Resize, Reduce and HOG procedure 

Resize 

Procedure 
Yes No No No 

Procedure calls are the same as interval 

parameter (Pyramid) (Chapter 5.5) 

Larger image means more execution time 

(Size) 

Reduce 

Procedure 
Yes Yes No No 

Larger pyramid means more procedure calls 

(Pyramid) (Chapter 5.5) 

Larger image means more execution time 

(Size) 

HOG Procedure Yes Yes No No 

Larger pyramid means more procedure calls 

(Pyramid) 

Larger image means more execution time 

(Size) 

Detect Stage Yes Yes Yes Yes 
See Convolution, DT and Backtrack stage. 

See NMS procedure 

Conv. Stage Yes Yes No Yes See Convolution procedure 

Convolution 

Procedure 
Yes Yes No Yes 

Larger image means more execution time 

(Size) 

Larger pyramid means more procedure calls 

(Pyramid) 

More filters means more procedure calls 

(Model) 

Component 

Stage 
Yes Yes Yes No See DT and Backtrack stages 

Level Stage Yes Yes Yes No See DT and Backtrack stages 

DT Stage Yes Yes No No See DT procedure 

DT Procedure Yes Yes No No 

Larger image means more execution time 

(Size) 

Larger pyramid means more procedure calls 

(Pyramid) 

Backtrack Stage Yes Yes Yes No See Find and Backtrack procedures 

Find Procedure Yes Yes No No 
Larger image means more execution time 

(Size) 



Larger pyramid means more procedure calls 

(Pyramid) 

Backtrack 

Procedure 
No No Yes No 

More high-score values detected more 

execution time. 

More detections means more data to 

process (Chapter 5.9) 

More detections means more procedure 

calls (Chapter 5.9) 

NMS Procedure No No Yes No 

More high values detected cause easier the 

results cache to full meaning more 

procedure calls (Chapter 5.10aaaaaa) 

More high values means more execution 

time 

 

As the execution time of the algorithm may varies due to hardware resources and the operating 

system workload, the time profiling of the algorithm is presented in percentages according to its 

total execution time. In chapter 10 a set of measurements for different hardware resources is 

appose.  

As long as the time profiling of the algorithm, the profiling process had to be done using a 

ǀaƌietǇ of iŵage’s sizes that ǁould also pƌoduĐe high deteĐtioŶ ƌesults. This ǁaǇ all these thƌee 
profiling dependencies are calculated inside the profiling process. In our profiling process we 

used images of the following sizes shown in Table 7. 

 

Table 7 - TSM Algorithm Profiling Images 

Sample Images Pixels Pixels (Mpx) FP Levels Max Faces 

320x240 76,800 0.1 Mpx 18 8 

640x480 307,200 0.3 Mpx 23 31 

800x600 480,000 0.5 Mpx 25 48 

1024x768 786,432 0.8 Mpx 27 79 

1280x960 1,228,800 1.2 Mpx 28 123 

1600x1200 1,920,000 1.9 Mpx 30 192 

 

In the Table 8 below the dependencies of the algorithm parts as long as their memory impact 

are shown. 

Table 8 - TSM Algorithm Memory Dependencies 

Procedure Size Pyra Detect Model Description 

Features Yes Yes No No See Resize, Reduce and HOG procedure 



Pyramid Stage 

Resize 

Procedure 
Yes No No No 

Larger images produce larger scaled images 

(Size) 

Reduce 

Procedure 
Yes Yes No No 

Larger images produce larger reduced images 

(Size) 

Larger pyramid means more Reduce 

procedure calls (Pyramid) 

HOG 

Procedure 
Yes Yes No No 

Larger images produce larger HOG images 

(Size) 

Larger pyramid means more HOG procedure 

calls (Pyramid) 

Detect Stage Yes Yes Yes Yes 
See Convolution, DT and Backtrack stage. See 

NMS procedure 

Convolution 

Stage 
Yes Yes No Yes See Convolution procedure 

Convolution 

Procedure 
Yes Yes No Yes 

Larger images produce larger filters 

responses images (Size) 

Larger pyramid means more procedure calls 

(Pyramid) 

More filters means more procedure calls 

(Model) 

Component 

Stage 
Yes Yes Yes No See DT and Backtrack stages 

Level Stage Yes Yes Yes No See DT and Backtrack stages 

DT Stage Yes Yes No No See DT procedure 

DT Procedure Yes Yes No No 

Larger images produce larger DT images. 

Larger pyramid means more DT procedure 

calls 

Backtrack 

Stage 
Yes Yes Yes No See Find and Backtrack procedures 

Find Procedure No Yes Yes No 

Larger pyramid means more Find procedure 

calls (Pyramid dependence) 

More high-score values detected more find 

results (Detections dependence) (Chapter 

5.8) 

Backtrack 

Procedure 
No No Yes No 

More high-score values detected produce 

more backtrack results. 

More detections means more Backtrack 

procedure calls 

NMS 

Procedure 
No No Yes No 

More high-score values detected produce 

detection results and results cache filling. 

More results cache fillings mean more NMS 

procedure calls 

 



At last these dependencies affect the memory needed for the basic TSM algorithm data 

structures used for the detection procedure. In the Table 9 above this dependencies are 

presented. 

Table 9 - TSM Algorithm Data Dependencies 

Procedure Size Pyra Detect Model Description 

Features 

Pyramid 
Yes Yes No No 

Larger images produce larger sub-scaled 

images and features images (Size) 

Larger images produce greater levels features 

pyramid (Pyramid) 

Filters 

Responses 
Yes No No Yes 

Larger features images produce larger Filters 

Responses (Size) 

More filters produce more Filter Responses 

(Model) 

DT Scores Yes Yes No No 

Larger images produce larger DT Scores (Size) 

Larger pyramid produce more DT scores arrays 

(Pyramid) 

Results Cache No No Yes No 
More detections produce more detection 

results 

 

As long as the memory profiling process a virtual profiler was created in order to produce the 

maximum memory consumption results assuming the worst case scenarios. For maximum 

memory consumption profiling, the profiler reacts as the detection process is achieving full 

detection results on all levels of the features pyramid on every pose tree. This way there is no 

case that can escape. This is the worst case of maximum memory consumption. This scenario is 

impossible to happen in real world but is accurate to predict the possible maximum memory 

consumption as it is used for different sized images and assuming the worst detection 

dependencies scenario. The first three dependencies (except Model) are calculated for the 

worst case by the profiler. 

On the other hand in total memory consumption profiling the virtual profiler assumes that the 

image is fully filled with faces but this faces cannot produce full detection results in every 

component at all levels as this scenario is out of sense and it would produce memory profiling 

results that would be misguided. Using different sizes images is the easy way to beat the image 

size and pyramid levels dependencies, but as long as the detection ones using the maximum 

consumption profiling scenarios it produces huge amounts of memory consumption that leads 

to misunderstandings and it is far away from the real life results. 

The only stage that is actually detection dependent is the Backtrack one. By this stage is also 

depended the NMS procedure calls. The Backtrack stage is the one that checks inside the score 

array, which comes from the Distance transformation stage, for high-score values and matches 

these values with the corresponding model tree landmarks for landmark and pose estimation. 



High-score values means face detection. If the Find procedure does not find high-score values 

the rest of the Backtrack stage is not executed. The whole Backtrack stage is difficult to be 

profiled as it is fully depended by the detection results. The Find procedure though is the only 

part of the backtrack stage that is always executed.  

When profiling the algorithm for maximum memory consumption we assume that the Backtrack 

stage is getting the maximum high-scores values from the Distance Transformation stage. It is 

like getting an image full of high-scored values. On the other hand when we profile the 

algorithm for total memory consumption this strategy gives as a huge amount of memory 

consumption that is very far away from the real life results and it would lead to incorrect 

conclusions. For that reason a series of tests were made in order to create a memory profiling 

model that could create the most secure and close to real life profiling. 

By testing the algorithm in different scales of faces, it was discovered that it is able to detect 

faces larger than 100 pixels high when using the 99 filters model and larger than 50 pixels when 

the ϭϰϲ filteƌs oŶe. With a ǁidth of the saŵe size iŶ piǆels, a faĐe’s aƌea is aďout ϭϬϬϬ aŶd ϮϱϬ 
pixels. This way it is easy to predict the maximum number of faces can be presented within an 

image according to its size using the functions (1) and (2). 

max99

. .

10000

image width image height
Faces

    
 (1) 

max146

. .

2500

image width image height
Faces

    
 (2) 

 

In the Distance Transformation stage not all face detections produce the same high-score 

values. A clear image of a face inside a laboratory environment produces more high-score values 

than a face within an into-the-wild environment. In addition a face of zero degrees angle 

produces more high-score values than another one with more degrees angle. Knowing that a 

faĐe’s aƌea is ϭϬϬϬ piǆels ǁithiŶ the iŵage aŶd also kŶoǁiŶg that a featuƌe iŵage has aďout ϭϲ 
times less pixels than its original (4 times smaller) it is sensible that the maximum high-score 

values that a face can produce in the Distance Transformation stage is about 625 values. This 

gives also a maximum face approximate function, the function (3). 

max

. .

600

HOG width HOG height
Faces

    
 (3) 

 

Another parameter that takes matter in the prediction of the Backtrack stage attitude according 

to the memory profiling is in how many levels a face within an image can create high-score 

values. Again, faces with angles and into-the-wild images produce fewer high-score values than 

faces with zero degrees angle and captured in laboratory environment.  



By testing the algorithm using both detectable images from laboratories and into the wild 

images a close prediction to the real maximum memory consumption can be exclaimed. The 

results showed that a face can be detected about at the 12% of the features pyramid levels 

succeeding an average of about 80 high-score values per component at each level. These results 

are shown in Table 10 below.  

Table 10 - Find Procedure Profiling Results 

 
_

%
with High Scores

Features Pyramid

Levels

Levels

 
 

with High Score

with High Score

Pixels

Find

 

 

 

Samples Max Average Min Max Average Min 

 99 Filters Model 

Top 10% 18.9 14.3 12.1 611 169 1 

Top 20% 28.6 17.2 9.18 611 128 1 

Top 50% 28.6 14.8 7.37 611 103 1 

All (100%) 28.6 11.6 0.31 611 79 1 

 146 Filters Model 

Top 10% 21.5 16.1 12.9 343 116 1 

Top 25% 24.0 16.8 10.7 343 91 1 

Top 50% 24.0 15.7 7.21 343 70 1 

All (100%) 24.0 11.8 0.32 343 53 1 

 

As seen in the Table 10 above the two Models offered for the algorithm creates much different 

results. It is obvious that using more filters the algorithm is more accurate at its detection 

producing less high-scores for the same or even better results. This is because every filter used 

in the 146 filters Model is better trained and more accurate on detecting human face landmarks. 

As also seen in the Table 10 the clearest the images are more concentrated are the high-score 

values inside the Feature Pyramid levels. In the results table, the maximum number of high-

score values reached by an image is 611 values, almost the same with the theoretical value 

calculated in the previous paragraph. This shows that the number of high-score values a face 

produces is much smaller than it real size in pixels. 

According to these measurements two basic functions were created in order to predict the 

number of high-value pixels result after the DT stage procedure. For creating these two 

functions and for prediction safety reasons the top 50% of the samples were used. These two 

functions are, 

99 Filters Model  

 0.15High ScoredLevels Round levels    (4) 



100Total High ScoredHighScores Components Levels     (5) 

  

146 Filters Model  

 0.15High ScoredLevels Round levels    (6) 

70Total High ScoredHighScores Components Levels     (7) 

 

The first function ((4) & (6)) gives the levels of the features pyramid that high-scored values 

appears cause of the faces within the image. The levels start counting always from the top in 

order to profile the Backtrack stage with the hardest amount of data even if it is image size 

independent. The second function ((5) & (7)) calculates the total number of high-score values 

detected by the find function in the whole algorithms execution. In Table 11 various cases 

results are presented for the 99 Filters Model. 

Table 11 - High-Score Pixels Profiler Results 

Image Size 320x240 640x480 800x600 1024x768 1280x960 

LevelsFeatures_Pyramid 18 23 25 27 28 

LevelsHigh-Scores 3 4 4 5 5 

H
ig

h
-S

co
re

d
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ix
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ls
 Faces High-Score Pixels 

1 3,900 5,200 5,200 6,500 6,500 

2 7,800 10,400 10,400 13,000 13,000 

3 11,700 15,600 15,600 19,500 19,500 

4 15,600 20,800 20,800 26,000 26,000 

5 19,500 26,000 26,000 32,500 32,500 

6 23,400 31,200 31,200 39,000 39,000 

 

One of the parameters affecting the maximum memory 

consumption of the algorithms is the Results cache memory. 

This data structure keeps the data returned from the Backtrack 

procedure in addition to some more information until the NMS 

process select the correct ones. This cache memory is defined 

to 10,000 detection results by the creators but it is easily 

changeable. For that reason the results cache memory is not 

included in the max memory consumption profiling as it affects 

the distribution statistics. In the table below the results cache 

max memory usage is shown according to its size. 

Table 12 - Results Cache Sizes 

Cache Size 

(Detections) 

Max Memory 

(Mbytes) 

10,000 11,24 

8,000 8,99 

6,000 6,74 

4,000 4,50 

2,000 2,25 



6.3. Original Edition Profiling 

Afteƌ the iŵpleŵeŶtatioŶ of the T“M algoƌithŵ’s ǀersion 1.1 a profiling process took place in 

oƌdeƌ to ǁatĐh the algoƌithŵs’ attitude duƌiŶg its eǆeĐutioŶ. IŶ the pƌofiliŶg pƌoĐess ǁe ǁatĐh 
only the «Face Detector» module as the rest (Inputs, Outputs) are customize according to every 

specific application and the main function. 

6.3.1. Time Profile 

In Table 13 the percentage of CPU holding time of each stage and procedure for different image 

sizes is shown. A graphic representation of these results is presented in Diagram 1. As it is 

apparent the main CPU time consumer is the Convolution stage. The second procedure that 

keeps the CPU busy is the Distance Transformation one. 

Table 13 - TSM v1.1 Execution Time Distribution (%) 

 320x240 640x480 800x600 1024x768 1200x960 Average 

Levels 18 23 25 27 28  

FP Stage 3.86 4.47 4.50 5.02 4.66 4.50 

Conv. Stage 64.3 65.9 66.3 66.3 66.8 65.9 

DT Stage 31.2 29.2 28.9 28.4 28.4 29.2 

Backtrack Stage 0.35 0.38 0.30 0.21 0.14 0.28 

Others 0.30 0.09 0.08 0.06 0.04 0.11 

 

  

Diagram 1 - TSM v1.1 Algorithm Execution Time Distribution per Stage 

As is shown in Diagram 1 the execution time of each stage is almost stable in ratio to the 

algorithms total execution time despite to the processed image size. 

In Diagram 2 the algoƌithŵs’ eǆeĐutioŶ tiŵeliŶe foƌ a ϲϰϬǆϰϴϬ size iŵage is shoǁŶ. What is 
conspicuous is that all the convolution processing takes place at the first run of the Component 

stage executed for the first component of the model. This is a useful note concerning the 

algoƌithŵ’s eǆeĐutioŶ floǁ foƌ fuƌtheƌ iŵpƌoǀeŵeŶts eǆposed iŶ the folloǁiŶg Đhapteƌs. 
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Diagram 2 - TSM v1.1 Algorithm Execution Timeline 

In the Diagram 3 below the time consumption incremental trend is shown. As seen the 

Convolution, DT and FP stages execution time is normally increased as the image size does. One 

the other hand the Backtrack stage has reversal trend. This is because the Backtrack stage 

consists from image size independent parts. As referred in chapter 5.9 the Backtrack stage is 

mainly detection dependent and that is why it is not following the same trend as the rest stages 

of the algorithm that are mainly image size dependent. 

 

Diagram 3 - TSM v1.1 Stages Execution Time Growth Trend per Image 

6.3.2. Memory 

A second type of profiling applied in the algorithm is the memory one. The memory 

consumption of the algorithm cannot be profiled accurate as the number of detection within the 

image affects extensively the memory consumption. For that reason we used for that process a 

memory profiling simulator that takes as parameters the worst cases of memory consumption 

so that the maximum memory consumption can be accurate forecasted as mentioned in chapter 

6.2.  

By profiling the algorithm memory usage in a variety of different size images we got 

ŵeasuƌeŵeŶts aďout the ŵeŵoƌǇ usage of the algoƌithŵ foƌ the featuƌes pǇƌaŵid’s aƌƌaǇs, the 
filters respoŶses’ aƌƌaǇs aŶd the ǁhole aŵouŶt of ŵeŵoƌǇ it ƌeƋuest fƌoŵ the opeƌatiŶg sǇsteŵ. 
All these measurements are shown in Table 14 and in Diagram 4. 
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Diagram 4 - TSM v1.1 Memory Consumption Distribution 

 Table 14 - TSM v1.1 Memory Consumption Distribution (%) 

 Image Size 320x240 640x480 800x600 1024x768 1200x960 Average 

 Total Usage 1.8 Gb 6.8 Gb 11.3 Gb 18.4 Gb 28.6 Gb  

S
ta

g
e

s 

FP stage 2.71 2.86 2.69 2.71 2.73 2.74 

Conv. stage 0.00 0.00 0.00 0.00 0.00 0.00 

DT stage 42.2 42.0 39.0 39.0 38.9 40.2 

Back. stage 23.4 23.5 26.1 26.1 26.2 25.1 

D
a

ta
 

F. Pyramid 1.34 1.29 1.20 1.19 1.18 1.24 

F. Responses 0.98 0.97 0.91 0.90 0.90 0.93 

DT Scores 13.9 13.8 12.9 12.8 12.8 13.3 

Results 14.1 15.1 17.0 17.1 17.1 16.1 

Others 1.39 0.38 0.24 0.16 0.11 0.46 

 

As seen in the graph the DT stage is the most memory consumer of the algorithm creating 

suspicious for memory leakages and possibilities of memory usage improvements. The second 

greater memory consumer of the algorithm is the Backtrack stage with the detection results in 

the third position. As seen the data structures needed for the detection (Features Pyramid, 

Filters Responses, DT Scores, Results Cache) use a small amount of memory in relation to the 

whole algorithm memory consumption. The DT Scores arrays are those that use the most 

memory unlike the rest ones. 

In the Diagram 5 below the incremental trend according to the image process size is presented. 

As seen all the stages memory consumption is normally increased as the image size does. The 

only stage that stay still is the Convolution stage that uses zero temporary memory for its 

procedure and the Results Cache memory that is a stable, image size, independent data 

structure. 
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Diagram 5 - TSM v1.1 Memory Consumption Growth Trend per Image 

6.3.3. Max Memory 

A third type of profiling is the maximum memory one. This is a very important measurement as 

it reveals the maximum memory needed for the algorithm to be able to be executed in the 

hardware. Unlikely, the total memory consumption profiler that is used only for checking the 

algorithm attitude during its execution, the max memory profiler is critically used for checking 

the hardware resources needed for the algorithm to be executed. In Table 15 below the 

distribution of the maximum memory consumption of the algorithm is shown. In this table the 

Results Cache memory is not contained as it is volatile and user determined as explained in 

chapter 6.2. Despite that, in the Results Cache table line, the incremental caused to the 

ŵaǆiŵuŵ ŵeŵoƌǇ ǁheŶ the default size Result CaĐhe is used is filled. The taďle’s ĐoŶteŶts aƌe 
graphically shown in the Diagram 6. 

 

Table 15 - TSM v1.1 Max Memory Consumption Distribution (%) 

Image Size 320x240 640x480 800x600 1024x768 1200x960 Average 

Pyramid Levels 18 23 25 27 28  

Max Usage 70 Mb 287 Mb 409 Mb 664 Mb 1,030 Mb  

FP Stage 0.00 0.00 0.00 0.00 0.00 0.00 

Conv. Stage 0.00 0.00 0.00 0.00 0.00 0.00 

DT Stage 0.00 0.00 0.00 0.00 0.00 0.00 

Backtrack Stage 31.6 30.0 31.1 31.9 32.4 31.4 

Features Pyramid 33.9 30.7 31.4 31.9 32.2 32.0 

Filters Responses 24.8 23.1 23.8 24.3 24.6 24.1 

DT Scores 7.81 7.43 7.68 7.88 8.00 7.76 
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Diagram 6 - TSM v1.1 Maximum Memory Distribution per Image 

Looking at the maximum memory distribution graph (Diagram 6) it is visible that the greatest 

parts of the maximum memory consumption are hold by the Backtrack stage temporary 

memory, the features pyramid data structure and the filters responses one. What is very 

important is that almost the one third of the maximum memory consists of temporary memory 

unlike the rest memory that consists of useful data structures. Another point is that the Results 

Cache data structure affects the maximum memory consumption of the algorithm more when 

the image size is used in getting smaller. As shown in the Table 15, above the increment on the 

maximum memory consumption of the algorithm when the default Result cache size is used 

reaches the 32% on a 320x240 image while this increment is only 2.2% for a 1200x960 one. This 

makes sensible that the Results Cache size should dynamically change according to the size of 

the processing image. 

In the Diagram 7 below the maximum memory distribution is incremental trend is presented. All 

the participants of the maximum memory consumption are increasing normally as the image 

size is increasing except of the Result cache that remains stable independent the image size.  
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Diagram 7 - TSM v1.1 Maximum Memory Consumption Trend per Image 

In the Diagram 8 a detailed memory profile of the algorithm is presented. In dark vertical line 

the Components loop is defined as described is chapter 6.1 (Figure 34). What is suspicious for 

memory leakage is the fact that the Features Pyramid data structure seems to consume more 

memory than the Filters Responses ones. For every level of the features Pyramid the algorithm 

uses an XxYx32 image and for its response to all filter a (X-4)x(Y-4)x99 array. This means that the 

Features Responses should use more memory than the features images. The memory profile 

graph above betrays a series of parental remains of the Parts Based Detector algorithm 

explained in next subchapter (chapter 6.4). 
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Diagram 8 - TSM v1.1 Algorithm Memory Profile 

6.4. DPBD Algorithm Remains 

Before starting analyzing the algorithm from the top to the bottom and proceed to changes in 

details, a series of small but crucial changes had to be made as they affect the whole algorithms 

execution and it would be better to referred before the in deep analysis. 

6.4.1. Removing the Model Components Process 

In the index 2 of the Figure 34 (Chapter 6.1) the algorithm uses some information produced in 

the features pyramid and updates some of the parameters of the model. This effect of the 

feature pyramid over the model comes from the multi-scale models of the DPBM algorithm. On 

the T“M algoƌithŵ’s oŶe-sĐale ŵodel this affeĐt is disappeaƌed aŶd the ͞Model CoŵpoŶeŶt͟ 
procedure can take place before the features pyramid process and even omitted. As the TSM 

faĐe deteĐtioŶ ŵodel’s paƌaŵeteƌs aƌe iŶdepeŶdeŶt fƌoŵ the featuƌes pǇƌaŵid’s iŶfoƌŵatioŶ 
the ͞Model CoŵpoŶeŶt͟ pƌoĐeduƌe ĐaŶ take plaĐe oŶĐe aŶd its effeĐt oǀeƌ it ĐaŶ ďe saǀed 
permanently in the model data structure file. 

As long as its contribution to time and memory saving, this change has no impact as it is a very 

fast and memory costless procedure. The removal of this process is not a crucial one and can be 

let as is, although for informational reasons it had to be referred. It is important though to refer 

that removing this procedure from the algorithm creates the need of creating a new model data 

structure with the data that the model components procedure calculates inside. 
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6.4.2. Convolution Process 

In the index 4 of the Figure 34 (Chapter 6.1), the algorithm calls the convolution procedure to 

calculate the filters responses over a specific level of the feature pyramid. These responses are 

saved and used for all the parts asking for their response to this specific level of the feature 

pyramid. At this point one more remain of the DPBM algorithm exists. The model uses a scale 

parameter for every part because of the multi-scale type of the DPBM algorithm where each 

parts of the model may needs different level response. On the TSM face detector algorithm all 

the parts of the model use the same level responses. This difference allow as to change the 

location inside the algorithm where the convolution process can take place and use less memory 

at its execution as shown in Figure 36. The effect of a change like this is described in chapter 

6.17 as it ĐhaŶges the ǁhole algoƌithŵs’ eǆeĐutioŶ floǁ. 

 

Figure 36 - TSM v1.2 Algorithm Execution Flow Changes 



6.4.3. Root Filter Interval Set 

As seen in Figure 35 in chapter 6.1 the 

memory allocated for the features 

pyramid is larger than the one that 

used for the Filter Responses. This 

reveals another remain of the parental 

DPBD algorithm. As shown in Figure 37, 

inside the red circle the algorithm 

creates a series of features images 

using the half sbin parameter value. 

This action creates an interval set at the 

top of the features pyramid that is two 

times smaller than its original image as 

referred in chapter 5.5. The reason the 

creators proceed at this implementation is probably because they need features images twice 

larger than the ones the parts need for all levels for the root part of every model as referred in 

chapter 4.1. In the TSM face detection algorithm the root part is similar to all the others and 

these interval set is actually not ever used. This is the reason why the features pyramid structure 

uses more memory, as its top interval set is never used in the convolution process and does not 

create filters responses. As a result this interval set can be removed from the features pyramid. 

By removing this top interval set from the Features Pyramid the results are got in the algorithm 

are those shown in Table 16 below. As seen in this table the Features Pyramid stage time 

consumption is reduced at the half of it. This is because the interval set of features images 

removed is the top one which means the greatest images set. As also seen in the same table the 

algorithŵ’s ŵaǆiŵuŵ ŵeŵoƌǇ ĐoŶsuŵptioŶ is sigŶifiĐaŶtlǇ ƌeduĐed ďǇ just ƌeŵoǀiŶg aŶ iŶteƌǀal 
set of features images. This is an indication of how great impact has the images size in the 

maximum memory consumption of the algorithm. 

Table 16 - Features Pyramid Extra Interval Set Removal Effect (TSM v1.1) (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

Levels 18 23 25 27 28  

Time 

TSM -2.01 -2.21 -2.23 -2.67 -2.06 -2.23 

FP Stage -51.4 -50.7 -48.8 -54.2 -49.2 -50.8 

Memory Usage 

TSM -2.30 -2.36 -2.20 -2.22 -2.23 2.26 

FP Stage -49.5 -49.4 -49.4 -49.4 -49.4 -49.4 

 

Figure 37 - Features Pyramid Stage Changes (TSM v1.2) 



Max Memory 

TSM -24.2 -30.2 -24.3 -24.3 -24.3 -25.5 

Features Pyramid -71.5 -73.1 -73.4 -73.7 -74.0 -73.1 

6.4.4. Double to Float 

At last another global change in the algorithm is the conversion of it in order to use float data 

types instead of the double ones. This small conversion reduces all the memory consumption to 

its half as the float data type is using 4 bytes instead of 8 ones. The algoƌithŵ’s aĐĐuƌaĐǇ iŶ Ŷot 
influenced at all and its execution time is reduced as shown in Table 17 below. 

Table 17 - TSM v1.1 Double to Float Effect (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

Time -6.13 -7.58 -7.69 -7.08 -7.62 -7.22 

Memory -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 

Max Memory -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 

 

A similar attempt of conversion the algorithm to run using normalized integer values was tried. 

The results were negative in this attempt as the algorithm lost a bit of its accuracy especially 

during the landmark localization and the time consumption was worst compared to the float 

version due to the continuous normalizations needed. 

By using the float data type instead of the double one and removing the extra features pyramid 

interval set the algorithm is now consider as an extended version of the original in order to 

individualize it from the original version 1.1. This version is called the 1.2 version of the 

algorithm. The differences are not much and not important but from this point every 

comparison with the primary version would be a reference to the version 1.2. 

6.5. TSM Original Version 1.2 

Afteƌ ƌeŵoǀiŶg the ƌeŵaiŶs of the DPBM algoƌithŵ fƌoŵ the Đƌeatoƌs’ editioŶ ;ϭ.ϭͿ as ƌefeƌƌed iŶ 
the previous chapter 6.4, the algorithm moves to the new 1.2 version. For this version is 

required to present the new profiling tables and graphs as they are going to be used as 

comparison data for the changes that will referred in the following chapters. In the Table 18 

below the time table is presented. 

Table 18 - TSM v1.2 Execution Time Distribution (%) 

 320x240 640x480 800x600 1024x768 1200x960 Average 

Levels 18 23 25 27 28  

FP Stage 1.91 2.25 2.36 2.37 2.42 2.26 



Conv. Stage 65.6 67.4 67.8 68.1 68.1 67.4 

DT Stage 31.9 29.9 29.5 29.3 29.3 30.0 

Backtrack Stage 0.37 0.39 0.31 0.22 0.15 0.29 

Others 0.30 0.09 0.08 0.06 0.04 0.11 

 

 

Diagram 9 - TSM v1.2 Execution Time Distribution per Stage 

As far as the memory consumption, the change of using double type data to float ones reduced 

the algorithm memory usage in the physical memory to the half but this is not a real change to 

the algoƌithŵs’ stƌuĐtuƌe. OŶ the otheƌ haŶd ƌeŵoǀiŶg the fiƌst iŶterval set of the Features 

Pyramid has reduced the size of the Features Pyramid data structure and the algorithm 

maximum memory consumption despite the data type used (float, double). The new memory 

consumption tables are presented below. 

 Table 19 - TSM v1.2 Memory Consumption Distribution (%) 

 

 320x240 640x480 800x600 1024x768 1200x960 Average 

Total Usage 0.86 Gb 3.3 Gb 5.5 Gb 9.0 Gb 14.0 Gb  

vs 1.1 -2.30 -2.36 -2.20 -2.22 -2.23 -2.26 

S
ta

g
e

s 

FP stage 1.40 1.48 1.39 1.40 1.41 1.42 

Conv. stage 0.00 0.00 0.00 0.00 0.00 0.00 

DT stage 43.2 43.0 39.9 39.9 39.8 41.2 

Back. stage 23.9 24.1 26.7 26.7 26.8 25.6 

Results 14.4 15.5 17.3 17.4 17.5 16.4 

D
a

ta
 

F. Pyramid 0.39 0.36 0.33 0.32 0.31 0.34 

F. Responses 1.01 1.00 0.93 0.93 0.92 0.96 

DT Scores 14.2 14.2 13.2 13.1 13.1 13.6 

Results Cache 1.30 0.34 0.20 0.12 0.08 0.41 

Others 0.13 0.06 0.04 0.04 0.03 0.06 

 

2.57 

67.7 

29.3 

0.33 0.10 

FP

Convolution

DT

Backtrack

Others



As far as the maximum memory consumption of the algorithm that is a more critical indicator 

affecting the algorithm execution ability over the hardware resources, the new maximum 

memory tables are below, 

Table 20 - TSM v1.2 Max Memory Consumption Distribution (%) 

 320x240 640x480 800x600 1024x768 1200x960 Average 

Pyramid Levels 23 25 27 28 30  

Max Usage 
27 Mb 100 Mb 155 Mb 251 Mb 390 Mb  

-24.2 -24.3 -24.3 -24.3 -24.3 -24.3 

FP Stage 0.00 0.00 0.00 0.00 0.00 0 

Conv. Stage 0.00 0.00 0.00 0.00 0.00 0 

DT Stage 0.00 0.00 0.00 0.00 0.00 0 

Backtrack Stage 41.7 38.7 40.4 41.7 42.5 41.0 

Features Pyramid 
12.7 11.84 11.64 11.45 11.30 11.79 

-24.2 -22.4 -24.3 -24.3 -24.3 -23.9 

Filters Responses 32.8 29.8 30.9 31.7 32.2 31.5 

DT Scores 10.3 9.6 10.0 10.3 10.5 10.1 

Others 2.48 1.35 1.21 1.11 1.06 1.44 

Results Cache 

(default) 
42.2 10.1 6.8 4.3 2.8 13.2 

 

As seen in the Table 20 above, the maximum memory consumption of the algorithm is totally 

affected by the removal of the DPMD algorithm remains. The maximum memory consumption is 

reduced about 24% and the Features Pyramid data structure is now participating at the 12% of 

the total maximum memory instead of the 32% at the original version (1.1). 

 

Diagram 10 - TSM v1.2 Max Memory Distribution per Image 

At last memory profile diagram (Diagram 11) of the version 1.2 of the algorithm is presented 

below. 
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Diagram 11 - TSM v1.2 Algorithm Memory Profile 

6.6. Features Pyramid Stage 

The Features Pyramid stage is the stage of the algorithm 

where the image pyramid is created and afterwards the 

features one. This stage is a short one but it is very critical 

as it is the first one executed by the algorithm. Its results 

are the input to the Detect stage and required to the 

detection process to start. In the Table 21 on the right the 

Features Pyramid stage characteristics are presented. 

The Features Pyramid stage consists by three main 

procedures, the Resize, the Reduce and the HOG one. The Resize and the Reduce one are those 

who create the image pyramid and scale the images in certain scales. The Resize procedure 

scales an image at any custom scale while the Reduce one scales images at their half size. The 

difference of these two procedures is the execution time they need to be completed. The HOG 

procedure is the one that creates the histogram of oriented gradients descriptors of an image. 

This procedure creates the Features Pyramid data structure and the actual output of the whole 

Features Pyramid stage. In the Table 22 below the execution time distribution is presented. 
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Table 21 - FP Stage to TSM (%) 

Image Time Memory Max 

320x240 1,91 1,40 0 

640x480 2,25 1,48 0 

800x600 2,36 1,39 0 

1024x768 2,37 1,40 0 

1280x960 2,42 1,41 0 

Average 2,26 1,42 0 



Table 22 - Features Pyramid Stage Execution Time Distribution (v1.1) (%) 

Procedure 320x240 640x480 800x600 1024x768 1280x960 Average 

Resize 13.6 18.2 22.3 23.9 23.9 20.4 

Reduce 10.0 10.8 11.1 10.5 11.1 10.7 

HOG 72.5 66.9 62.9 61.7 61.4 65.1 

Others 3.87 4.17 3.75 3.85 3.64 3.86 

 

 

Diagram 12 - FP Stage Execution Time Distribution per Procedure (v1.1) (%) 

As seen in Diagram 12 above the main time consumer of the Features Pyramid stage is the HOG 

procedure holding a little more than the 66% of the whole stage execution time. In chapter 6.6.2 

the HOG procedure is explained extended. 

As far as the memory consumption inside the Features Pyramid stage the distribution between 

the stage’s pƌoĐeduƌes is shoǁŶ iŶ the Table 23. 

Table 23 - Features Pyramid Stage Memory Consumption Distribution (v1.1) (%) 

Procedure 320x240 640x480 800x600 1024x768 1280x960 Average 

FP Stage 12 Mb 49 Mb 77 Mb 126 Mb 197 Mb  

Resize 22.3 21.7 21.6 21.6 21.5 21.7 

Reduce 15.3 15.4 15.4 15.4 15.4 15.4 

HOG 12.4 12.3 12.3 12.2 12.2 12.3 

Others 50.0 50.6 50.7 50.8 50.9 50.6 

Features Pyramid +27.9 +24.1 +23.4 +22.8 +22.3 +24.1 

 

The Table 23 shoǁs that the ŵaiŶ ĐoŶsuŵeƌ of the Featuƌes PǇƌaŵid stage’s ŵeŵoƌǇ is the 
temporary one and not the memory consumed inside its main procedures. The reason for this is 

the temporary image and features pyramids that are created as shown in the Figure 35 (chapter 

6.1). This is also visible in the Diagram 13 below where the memory profiling of the stage is 

presented. On the last line of this table the Features Pyramid output size is presented in ratio 

ǁith the stage’s ŵeŵoƌǇ ĐoŶsuŵptioŶ. 
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Diagram 13 - Features Pyramid Stage Memory Profile (v1.1) 

In the Diagram 13 above the memory consumption profile of the Features Pyramid stage is 

shown. As seen the temporary features pyramid and the image pyramid are the main 

consumers. As seen in the beginning of the graph the image pyramid is using an image at the 

original size for the first level and holds this image until the end as input to the resize 

procedures. On the other hand, all the rest images of the image pyramid are used for a while 

and then they are released. The temporary features pyramid is filled with HOG images and at 

the end is released while the final features Pyramid is created when padding the HOG images.  

At the next chapters the Resize, Reduce and HOG procedures are analyzed and memory and 

time improvements are presented. 

6.6.1. Resize 

The resize procedure is the one for scaling an image to any custom size. In our implementation 

is the one that resize the image at the scale of the first interval set of the image pyramid. After 

that the reduce procedure creates the rest levels of the pyramid. Both the Resize and the 

Reduce procedures implementation were provided by the algorithm creators in C\C++ script. 

The Reduce procedure is the one that takes an image and returns a copy of it in the half size. In 

our implementation this procedure takes the scaled images of the first interval set and creates 

copies half of those images for the next sets of intervals as shown in Figure 20 (Chapter 5.5). 

That is because the reduce procedure is much faster than the Resize one as the scale factor is 

already known (0.5) and its implementation is customized for it. In Table 24 the amount of time 

the reduce procedure needs in addition to the resize one is shown. 
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Table 24 - Reduce to Resize Procedures Comparison (%) 

Image 320x240 640x480 800x600 1024x768 1280x960 Average 

Time 75.1% 73.5% 70.6% 66.2% 66.3% 70.3% 

Memory 98.2% 98.6% 98.8% 99.1% 99.3% 98.8% 

 

In the Table 25 below a memory comparison between the Resize and the Reduce procedure is 

presented. As seen the reduce procedure has a little better memory consumption profile. 

Table 25 - Resize & Reduce Procedures Memory Profile 

Input 
Resize 3X Y    

Reduce 3X Y    

Output 

Resize     3X scale Y scale     33% 

Reduce     3X scale Y scale     33,5% 

Temporary 

Resize         3 3 6X scale Y X Y X scale Y scale            67% 

Reduce   3X scale Y    66,5% 

Max 

Resize      3 3 6X scale Y X Y scale         99,6% 

Reduce      3 3X scale Y scale X scale Y         100% 

 

In Diagram 14 below the ratio of memory consumption and execution time needed by each 

procedure is shown according to the size of the image they use. As seen, both procedures react 

the same way to image size increments.  

 



 

Diagram 14 - Resize and Reduce Procedure Growth Trend per Image 

6.6.2. HOG 

The HOG procedure is the one that creates the Histogram of Oriented gradients descriptor 

described in chapter 5.4. This procedure is the greatest time consumer of the Features Pyramid 

stage as shown in Diagram 12 and Table 22 (Chapter 6.6). In Table 26 below the memory profile 

of the HOG procedure is presented. 

Table 26 - HOG Procedure Memory Profile 

Input 3X Y    

Output    6 6 32
4 4

X Y     61% 

Temporary    2 2 19
4 4

X Y     38% 

Max          6 6 32 2 2 19
4 4 4 4

X Y X Y          100% 

 

As it is sensible the larger an image is the more memory is needed for the HOG procedure. As 

shown in Diagram 15 the ratio of memory consumption between different levels of the features 

pyramid is exponential both in temporary and the results memory which are increasing as the 

image sizes increases. The perpendicular thin red line in this graph shows how greater is the 

memory needed for the first interval set of the features pyramid in addition to the rest levels. 
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Diagram 15 - HOG Procedure Max Memory per Level 
Diagram 16 - HOG Procedure Time Consumption 

per Level 

At the Diagram 16, the time consumption that each level needs at different size images is 

shown. The HOG procedure has the same attitude at time consumption as in the memory one. 

Again the red thin line in the graph divides the time consumption needed for the first interval 

set. 

As seen in Figure 35 (Chapter 6.1) the Features Pyramid is not created directly by the results of 

this procedure but the arrays are padded first. This happens in order to have an accurate 

convolution process later. The padding procedure costs in the Features Pyramid stage a small 

amount of time and temporary memory. These costs can be avoided if the padding procedure 

could be done inside the HOG procedure saving its results in previously padded arrays. This 

technique produces a new flow diagram of the Features Pyramid stage as shown in Figure 38. 
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Figure 38 - Features Pyramid Stage Execution Flow (v1.3) 

In order to nest the padding procedure inside the HOG one a series of changes inside the 

procedure in the way the memory pointers are used was made. The time cost of this change is 

closed to zero and it could not be able to be measured in action, it is only theoretically 

understandable, although the total time consumption of the Features Pyramid stage was 

reduced. The results of this improvement in the Features Pyramid stage are shown in Table 27 

(Chapter 6.6.3). 

6.6.3. Features Pyramid Stage v1.3 

At the chapter 6.6.2 a new version of the HOG procedure was presented. This version creates 

already padded HOG images changing the Features Pyramid stage flow diagram as shown in the 

Figure 38. This change in addition to implementation changes inside the stages procedures 

Đaused ĐhaŶges to the stage’s tiŵe aŶd ŵeŵoƌǇ taďles as shoǁŶ ďeloǁ. IŶ Table 27 the effect of 

these changes on the execution time of stage is presented. 

Table 27 - Features Pyramid Stage Execution Time Distribution (v1.3) (%) 

Procedures 320x240 640x480 800x600 1024x768 1280x960 Average 

v1.2 -3.46 -3.25 -4.25 -2.27 -3.82 -3.41 

Resize 16.2 20.2 22.1 21.7 22.4 20.5 

Reduce 11.0 10.4 10.1 10.0 10.2 10.3 

HOG 72.3 68.4 66.8 67.2 66.6 68.3 

Others 0.53 1.03 0.93 1.00 0.89 0.88 

 

By the Table 27 data it is visible that the changes inside the Features Pyramid stage and its 

procedures reduced the execution time of it for about 3.5%. This reduction is actually caused 



because of the removal of the HOG images padding procedure in the end of the stage as it is 

visible in this table. 

As far as the memory consumption of the Features Pyramid stage the Table 28 shows the effect 

of the changes. 

Table 28 - Features Pyramid Stage Memory Consumption Distribution (v1.3) (%) 

Procedures 320x240 640x480 800x600 1024x768 1280x960 Average 

FP Stage -13.2 -16.8 -17.6 -18.2 -18.7 -16.9 

Resize 25.6 26.1 26.2 26.4 26.4 26.2 

Reduce 17.6 18.5 18.7 18.8 18.9 18.5 

HOG 20.9 18.1 17.6 17.1 16.7 18.1 

Others 35.9 37.2 37.5 37.7 37.9 37.2 

Features Pyramid 32.2 29.0 28.4 27.8 27.4 29.0 

 

The removal of the temporary features pyramid is the main reason of the reduction of the 

memory consumption of the Features Pyramid stage for about 17%. This was the effect of the 

new HOG procedure implementation that creates already padded HOG images. In the Diagram 

17 the new memory profiling graph is presented. 

 

Diagram 17 - Features Pyramid Stage Memory Profile (v1.3) 

As seen in the Diagram 17 above the Features Pyramid output is creating during the execution 

of the Features Pyramid stage. The main memory consumers are the image pyramid that is used 

temporary and the output data of the stage, the Features Pyramid. 
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The features Pyramid stage does not participate at the maximum memory consumption limit the 

algorithm reaches. For this reason the memory consumption reduction is not an important 

achievement on this version (see version 3.x, Chapters 6.19 and 6.20). On the other hand, the 

speedup of the stage’s eǆeĐutioŶ tiŵe is aĐtuallǇ the iŵpoƌtaŶt ĐhaŶge aĐhieǀed. EǀeŶ if the 
Features Pyramid stage is a short one, is very important to make shorter as the detection 

procedure needs its output results in order to begin, as mentioned in the first paragraph of this 

chapter. 

6.7. Features Pyramid 

The Features Pyramid data structure is a global one 

created inside the features pyramid stage and used 

at the detection process. It handles the HOG 

images of the image pyramid as described in 

chapter 5.5. Its life time starts at the end of the 

features pyramid stage and finish at the end of the 

detect stage as shown in Diagram 8 (Chapter 6.5). 

What is worth to focus on is the fact that it holds a 

noticeable amount of memory at the maximum memory consumption index. 

By using the new version of the HOG procedure, described in chapter 6.6.2, the HOG images 

come of, are already padded and immediately registered in the Features Pyramid data structure 

as shown in the Figure 38. So, actually the Features Pyramid data structure is created during the 

Features Pyramid stage and is released during the Detect stage. The features images are not 

useful by the time the Filter Responses are calculated and they are immediately released after 

that. Even though this data structure participates on the maximum memory consumption 

indicator. As shown in the Table 20 (Chapter 6.5) the Feature Pyramid holds about the 12% of 

the algorithms data structures memory. 

6.8. Image Pyramid 

One sensible question would probably be why the algorithm creates the features pyramid of the 

image and not the simple image one transferring the HOG procedure inside the detection 

procedure just before the convolution stage as shown in the Figure 39 below. 

Table 1 - Features Pyramid Max Memory 

Image FP/TSM Levels Memory 

320x240 12.7% 18 3.4 Mb 

640x480 11.8% 23 11.9 Mb 

800x600 11.6% 25 18.0 Mb 

1024x768 11.4% 27 28.8 Mb 

1280x960 11.3% 28 44.0 Mb 



 

Figure 39 - Image Pyramid in TSM Algorithm 

As far as the time consumption this change would not offer any serious benefit, as in a single 

core CPU the results are the same. On the other hand as far as the memory consumption, the 

features pyramid needs less memory than the image one. As shown in the Diagram 18 below 

the size of the image pyramid is larger than the features one for the majority of image sizes until 

the pyramids coming from an image sized 304x228 pixels and lower. These are very small 

images where the algorithm anyway consumes very low memory. 

 



 

Diagram 18 - Image vs Features Pyramid Memory Consumption 

Table 29 - Image vs Features Pyramid 

Levels 28 26 24 22 20 18 

Image Size 1213x909 919x689 697x523 528x396 400x300 304x228 

Image Pyramid 54.7 Mb 31.4 Mb 18.0 Mb 10.4 Mb 5.9 Mb 2.0 Mb 

Features Pyramid 39.8 Mb 23.5 Mb 14.0 Mb 8.4 Mb 5.1 Mb 1.9 Mb 

Features/Image 72.9% 74.9% 77.5% 81.0% 85.6% 99.9% 

 

In the Table 29 above the Image and the Features Pyramids sizes are shown. At the last line the 

ratio between them is also shown. In the next chapters various versions of the algorithm are 

presented. In some of them the features pyramid data structure does not participate at all in the 

maximum memory consumption formation of the algorithm and gives the ability of choosing the 

image pyramid instead of the features one. 

6.9. Convolution 

The convolution stage is implemented by the convolution 

procedure which was implemented in C++ by the creators 

and it is the most important procedure of the algorithm as 

uses the most resources of the hardware and any small 

improvement on it can cause large improvement to the 

whole algorithm execution. As shown in Table 30 the 

convolution process uses almost the 68% of the complete 

algorithms execution time. This means that it is very 

important to find ways to decrease this procedure 

execution time.  In the following graph below (Diagram 19) in the thick lines the time needed for 

the convolution process according to the features pyramid levels is shown.  
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Table 30 - Convolution to TSM (%) 

Images Time Mem 

640x480 65.6 0 

800x600 67.4 0 

1024x768 67.8 0 

1280x960 68.1 0 

1600x1200 68.1 0 

Average 67.4 0 



 

Diagram 19 - Convolution Procedure Time Consumption per Level 

In chapter 5.6 the convolution process is described. By this description and by looking at the 

convolution procedure memory table (Table 31) it is clear that the convolution procedure is a 

very simple one with a very heavy work to execute. It is actually a many data to a simple process 

procedure and that is why no great improvements can be applied to it. By looking at the 

memory table (Table 31) it is easy understandable that the convolution procedure has no space 

for memory saving improvements. 

Table 31 - Convolution Procedure Memory Profile 

Input 32 5 5 32X Y       

Output X Y  100% 

Temporary 0 0% 

Max 32 5 5 32X Y X Y        100% 

 

IŶ the Đƌeatoƌs’ iŵpleŵeŶtatioŶ, the ĐoŶǀolutioŶ pƌoĐeduƌe desigŶ ǁas used foƌ fleǆiďle filteƌs 
size. By customizing the convolution procedure design for using only 5 5 32   sized filters we 

got the Table 32 results. By executing the convolution process at once and for all the Features 

Pyramid levels, not any extra speedup was succeeded but actually a tiny latency. This might be 

caused by memory bandwidth overflows. 

Table 32 - Convolution Procedure Time Improvements (v1.3) (%) 

Image Size 320x240 640x480 800x600 1200x768 1280x960 Average 

Customized for 5x5x32 -13.3 -12.8 -12.9 -12.9 -13.2 -13.0 

+ all levels at once -13.1 -12.6 -12.7 -12.8 -13.0 -12.8 

 

The reduction of the execution time needed for the convolution procedure by almost 13% is a 

ǀeƌǇ iŵpoƌtaŶt ĐhaŶge as the ĐoŶǀolutioŶ pƌoĐeduƌe holds the ϲϳ% of the ǁhole algoƌithŵ’s 
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execution time. As shown in the Table 32 above the average of 13% of reducing the Convolution 

stage execution time, an about 8.7% reduction is succeeded in the whole algorithm execution 

time. This is a great result! 

6.10. Filters Responses 

The Filters Responses is a set of arrays used for holding the results of the convolution process 

between the filters used for landmark detection and the HOG images of the features pyramid 

data stƌuĐtuƌe. These aƌƌaǇs’ data Đoŵe fƌoŵ the CoŶǀolutioŶ “tage. What ŵakes this data 
structure worth to refer is the great amount of memory used that affects the algorithms 

maximum memory consumption as shown in Table 33. 

Table 33 - Filters Responses to TSM Max Memory 

Image FR/TSM (%) Levels Memory 

320x240 32.8 18 8.7 Mb 

640x480 33.1 23 33.2 Mb 

800x600 33.1 25 51.3 Mb 

1024x768 33.2 27 83.3 Mb 

1280x960 33.2 28 129.2 Mb 

 

In the Diagram 20 below the memory consumption of every level at different sizes of images is 

presented. As is visible the top levels of the Features Pyramid creates high memory size Filters 

Responses. Reducing the MinLevel parameter of the Features Pyramid, it would cause great 

reduce on the algorithm memory consumption (see Chapter 9.4). 

 

Diagram 20 - Filters Responses Memory Consumption per Level 
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6.11. Distance Transformation Stage 

The Distance transformation (DT) stage is the one explained 

in chapter 5.7. This stage is used by the algorithm for every 

pose map tree, (a component) at every Features Pyramid 

level. It creates a copy of the filter response of every part of 

the component and it starts a series of DT processes and 

matrix additions as explained in chapter 5.7 (Figure 25). The 

Distance transformation stage main part consists by the DT 

procedure which applies an extended version of the Distance 

Transformation process (Chapter 5.7) created by the 

algoƌithŵ’s Đƌeatoƌ, iŵpleŵeŶted iŶ C++. 

In the Table 35 and Table 36 the Distance Transformation time and memory usage distribution is 

shown. As is clearly visible the main time and memory consumer of the Distance Transformation 

stage is the DT procedure. What is also visible from the same tables is that the percentage of 

memory and time usage that the DT stage holds remains almost the same independently the 

used iŵage’s size. At this poiŶt a detailed aŶalǇsis of the DT pƌoĐeduƌe ǁill ďe Ƌuoted iŶ chapter 

6.11.1. 

Table 35 - DT Stage Execution Time Distribution (v1.1) (%) 

Image 320x240 640x480 800x600 1024x768 1280x960 Average 

DT proc 92.8 92.1 92.1 91.9 91.8 92.1 

Others 7.19 7.95 7.95 8.07 8.20 7.87 

 

Table 36 - DT Stage Memory Consumption Distribution (v1.1) (%) 

Image 320x240 640x480 800x600 1024x768 1280x960 Average 

DT proc 66.7 66.7 66.7 66.7 66.7 66.7 

Others 33.3 33.3 33.3 33.3 33.3 33.3 

 

6.11.1. Distance Transformation 

In the Face Detection TSM algorithm the creators create an extended the Pedro F. Felzenszwalb 

and Daniel P. Huttenlocher [13] implementation in C\C++. The Distance transformation 

procedure as shown in Table 35 holds about the 92% of the DT stage execution time and 

consumes the 27.5% (Table 37) of the temporary memory the stage uses.  

Table 34 - DT Stage to TSM (%) 

Images Time Mem Max 

320x240 31.9 37.7 0 

640x480 29.9 37.6 0 

800x600 29.5 35.2 0 

1024x768 29.3 35.2 0 

1280x960 29.3 35.2 0 

Average 30.0 36.2 0 



Table 37 - DT Procedure to TSM (%) 

Image Size 320x240 640x480 800x600 1024x768 1200x960 Average 

Time 29.6% 27.5% 27.1% 26.9% 26.9% 27.6% 

Memory 28.8% 28.7% 26.6% 26.6% 26.6% 27.5% 

DT proc Calls 16,031 17,425 18,819 19,516 20,910 18,886 

 

The distance transformation procedure implementation given by the creators is almost like the 

pseudo-code in Table 38. This implementation uses a lot of temporary memory and creates a 

great amount of system memory allocations calls. This fact in addition to the number of times 

this procedure is called (Table 37) during the detection process produces a huge amount of 

memory consumption and system memory allocation calls as shown in Table 37. 

Table 38 - DT Procedure Original Version Implementation (v1.1) 

For  y=1;  y=Image→height;  y++  

Temp = DT-1D( Image→line(y) ) Apply Distance Transformation to every line 

  

For  x=1;  x=Image→width;  x++  

dt = DT-1D( Temp→row(x) ) Apply Distance Transformation to every row 

  

 

In contrast to this version a new one was created in order to reduce the memory consumption 

and memory allocation system calls. To achieve that a unique temporary memory buffer was 

created and used for all the instances of 1D transformation function. This way we reduce the 

system calls for a great amount. In order to extent this version of the distance transformation 

procedure to multiprocessing computing an instance of this buffer is created for every thread 

that may execute the 1D-DT function. The pseudo code of this version of distance 

transformation procedure is shown in Table 39 below. The reduction of memory allocation calls 

bring also an execution time improvement as is also shown in the same table. 

Table 39 - DT Procedure New Version Implementation (v1.3) 

tmp = Array[ max(x,y), getMaxThreads() ] Allocate temporary 

memory 

  

For  y=1;  y=Image→height;  y++  

    Temp = DT-1D( Image→line(y), tmp[0, currentThread() ) Apply DT to every line 

  

For  x=1;  x=Image→width;  x++  

    dt = DT-1D( Temp→row(x) , Temp[0, currentThread() ) Apply DT to every line 

  



 

Table 40 - DT Procedure Memory Profile (v1.1 & v1.3) 

Versions Version 1.1 Version 1.3 

Inputs X Y   X Y   

Outputs  3 X Y   42.9%  3 X Y   59.8% 

Temp  4 X Y   57.1%    2 max ,X Y X Y    40.2% 

Max    4 max ,X Y X Y    57.3%    4 max ,X Y X Y    79.9% 

 

Table 41 - DT Procedure Versions Memory Profile Comparison (1.1 vs 1.3) 

 Original v1.1 New v1.3 Profit Ratio 

Temp 

Memory 
 4 X Y      X Y X Y2 max ,     X Y2    ≈2 

Memory 

Allocation 
 X Y2 2  

 
4  2 X Y    X Y0.5 1     

       

As seen in the Table 41 above, the new version of the DT procedure consumes almost two times 

less temporary memory and keeps the number of the memory allocation calls stable, 

independent of the image size. 

Table 42 - DT Procedure Versions Comparison 

 Images 320x240 640x480 800x600 1024x768 1200x960 

 Levels 18 23 25 27 28 

Memory 

v1.1 251.3 Mb 955.9 Mb 1,475 Mb 2,395 Mb 3,712 Mb 

v1.3 129.1 Mb 485.0 Mb 746.4 Mb 1,209 Mb 1,870 Mb 

v1.3 / v1.1 51.5 % 50.7 % 50.6 % 50.5 & 50.4 % 

Allocations 

v1.1 1,556,320 3,132,520 3,923,460 5,015,440 6,242,320 

v1.3 51,120 65,320 71,000 76,680 79,520 

v1.3 / v1.1 3.28 % 2.09 % 1.81 % 1.53 % 1.27 % 

Memory

Calls
 

v1.1 40 76 94 119 149 

v1.3 632 1,856 2,628 3,941 5,880 

Time v1.3 / v1.1 82.0 % 88.8 % 91.3 % 92.6 % 93.9 % 

 



 

Diagram 21 - DT Procedure Versions Resources Consumption (v1.1 & v1.3) 

As seen in Table 42 and visualized in the Diagram 21, the greatest advantage of the new version 

of the DT procedure is the huge reduction of memory allocation calls. This reduction is also 

responsible for the small reduction on the DT procedure execution time. In addition a great 

reduction at the temporary memory is also achieved reducing the memory needed at the half 

amount. As seen in the Diagram 22, the reduction of the memory allocation calls has greater 

impact in the algorithm execution time when small size images are used while its impact is less 

in larger images. This is caused because in small images the ratio between the allocation calls 

and the size of memory used is larger than in the large ones. 

 

Diagram 22 - DT Versions Growth Trend per Image (v1.1 & v1.3) 

In Diagram 22 above the effect of the image size used in the algorithm to the execution time and 

the memory needed by the DT procedure is shown. As seen, the memory allocation calls are 

image size independent in the new version. The small increment in the diagram is only caused 

by the enlargement of the features pyramid levels as shown in the black dotted line. The lines 
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gradients also show that the new version is the similarly affected by the image size as the old 

one as far as the memory consumption and the execution time needed. 

6.11.2. DT Stage v1.3 

In addition to the new version of the DT procedure, one final improvement one the DT stage 

that has to do with the temporary usage of the parts filters responses come from the 

convolution stage applied. As shown in Figure 40, eaĐh paƌt’s filteƌ ƌespoŶse gets the distaŶĐe 
transformation process applied on it and the result is added to its parental part filter response. 

This way the filter responses have to be copied to temporary arrays in order to retain their data 

as they are used from multiple parts of different components.  

 

Figure 40 - DT Stage Execution Flow (v1.1) 

The implementation of the DT stage is shown in Table 43 as a pseudo-code implementation. The 

memory allocations and the memory consumption of the original version of every execution of 

the DT stage are shown in Table 45 below. 

Table 43 - DT Stage Original Implementation (v1.1) 

For  k=1;  k=Parts→length;  k++  

    Parts(k) →score = Copy( Responces( 

Parts(k)→filterID ) ) Copy Array Data 

  

For  k=Parts→length;  k=2;  k--  

    Child = Parts(k)  

    Parent = Parts( Child→parent )  

    dt = DT( Child→score ) Apply DT to Filter Response 

    Parent→score += dt Add DT Score to Parent FR 

  

 



Trying to create a less memory consuming version of DT stage finally we end up in a new version 

as shown in the pseudo-code below (Table 44). This version takes advantage of the fact that the 

majority of parent-Đhild ƌelatioŶships iŶside the paƌts of a ŵodel’s tƌee aƌe seƋueŶtial. This 
expression means that having a part with id N its parent id is N-1. This is what we call a 

sequential relationship. In Figure 26 (Chapter 5.7) a series of sequential relationships existences 

aƌe shoǁŶ. OŶ ouƌ Ŷeǁ iŵpleŵeŶtatioŶ of DT stage a siŶgle aƌƌaǇ’s ŵeŵoƌǇ is used foƌ a ǁhole 
sequential relationship and only when this continuity breaks a new array memory block is 

allocated. This way all the processes read their data from this array and save their results again 

on it. The filters responses data are used as read only arrays and no need of coping them exists. 

Table 44 - DT Stage New Implementation (v1.3) 

For  k=Parts→length;  k=2;  k--  

    Child = Parts(k)  

    Parent = Parts( Child→parent )  

    If( !Child→score ) 

        Child →score = Copy( Responses( Child→filterID ) ) 
Points to F. Response 

  

    Child→score = DT( Child→score) Apply DT 

    If( !Parent→score ) Parent→score = Responces( 
Parent→filterID ) Points to F.Response 

    Child→score += Parent→score 
Add Parent F.Response to 

DT Score 

    Parent→score = Child→score 
Parent Points to Arrays 

Sum 

  

 

 

Figure 41 - DT Stage Execution Flow (v1.3) 



Finally a comparison between the new (v1.3) and the original (v1.1) implementation is shown in 

Table 45. It is clear that the new version of the DT stage implementation the memory allocations 

and consumption is much less than the original. The profits of this change is shown in the last 

column. 

Table 45 - DT Stage Versions Comparison (1.1 vs 1.3) 

 Average v1.1 Average v1.3 v1.1/v1.3 

DT Procedure Calls 54 54 1 

Memory Allocations 164 10 ≈ϭϲ.ϰ 

Memory Consumption  164 X Y    10 X Y   ≈ϭϲ.ϰ 

Array Additions 54 54 1 

 

At last the final improvement of the DT stage memory consumption and execution time by 

applying both the DT procedure and the DT stage new implementation versions can be seen in 

Table 46. As seen both in time and memory consumption the new version achieves a great 

improvement not as far as the DT stage but also for the TSM algorithm as the DT stage is the 

second more important stage of the algorithm. 

Table 46 - DT Stage Consumption Improvement (v1.3) (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

Time -20.0 -14.9 -12.8 -11.7 -10.6 -14.0 

Temporary Memory -64.2 -64.4 -64.4 -64.5 -64.5 -64.4 

 

These improvements in both time and memory inside the DT stage are very important as the DT 

stage is the second most important as far as the detection procedure and most consuming stage 

as far as the hardware resources needed for the algorithm. 

6.12. DT Scores Data Structure 

The DT scores data structure is the output data of 

the DT stage. This data is a series of tables 

containing information about the parts filters 

ƌespoŶses’ ƌesults ǁheŶ the DT pƌoĐeduƌe is applied 
to them. The algorithm keeps two table for every 

part of each component. This tables are used by the 

Backtrack procedure in order to make the landmark 

estimation. For every component the DT stage 

except of these parts scores, it return a table 

containing the whole component score as described in chapter 5.7. This table reveals if there is 

a face detection within the image and is used by the Find procedure. 

Table 47 - DT Scores Memory Profile (%) 

Image Max Mem Mem (Mb) 

320x240 10.3 14.2 123.5 Mb 

640x480 10.6 14.2 470.8 Mb 

800x600 10.7 13.2 728.9 Mb 

1024x768 10.8 13.1 1.183 Mb 

1280x960 10.8 13.1 1.835 Mb 

Average 10.6 13.6  



The DT scores data are one of the shareholder of the algorithm maximum memory consumption 

holding the 10.6% of it. The memory consumption of this data structure is increasing as the 

image size increase as shown in the Diagram 23. What is significant is the fact that the DT Scores 

constitutes the 13.6% of the whole memory usage of the algorithm much larger than the 

Features Pyramid and the Filters Responses data structures. 

 

Diagram 23 - DT Scores Memory Consumption per Image 

6.13. Backtrack Stage 

The Backtrack stage is the one that handles the 

possible face detection and identifies the landmarks. 

The first job the Backtrack stage has to do is to check 

the DT stage scores array for high-score values. This is 

the Find procedure job. If no high-score values are 

detected the Backtrack stage is over. On the other 

hand when high-score values are detected the 

Backtrack procedure is the one that makes the 

landmark estimation according to the position of the 

high-score values and the scale of the corresponding feature image. Finally the results of the 

Backtrack procedure in combination with the Find procedure ones are filling the results cache. 

Whenever the result cache is fully filled the NMS procedure is applied to select the correct 

results, but this process is explained in chapter X. The Backtrack stage flow diagram is shown in 

Figure 42 below. 
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Table 48 - Backtrack Stage to TSM (%) 

Images Time Mem Max 

320x240 0.37 24.0 41.7 

640x480 0.39 24.1 43.1 

800x600 0.31 26.7 43.3 

1024x768 0.22 26.7 43.5 

1280x960 0.15 26.8 43.7 

Average 0.29 25.7 43.1 



 

Figure 42 - Backtrack Stage Execution Flow Diagram 

As long as the time consumption, the Backtrack stage uses a tiny percentage less than 0.5% of 

the algorithms execution time and for that reason very few attention is given to that part of the 

stage. In contrast this stage consumes about the 25% of the algorithms memory consumption 

and holds the 43% of the maximum one and that is why more attention to memory 

consumption improvements is given.  In Table 50 the memory consumption distribution of the 

Backtrack stage is shown.  

Table 49 - Backtrack Stage Execution Time Distribution (v1.1) (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

Find 7.73 4.70 5.10 6.26 8.34 6.43 

Backtrack 62.4 52.8 53.9 55.0 52.4 55.3 

Others 29.9 42.5 41.0 38.7 39.3 38.3 

 

As referred in chapter 6.2 the Backtrack stage is in a way independent from the image size. This 

stage’s attitude duƌiŶg the algoƌithŵ eǆeĐutioŶ is fullǇ depeŶdeŶt ďǇ the Ŷuŵďeƌ of the 
detection occur. This means that the algorithm may make the minimum usage of this stage if no 

faces are detected and either the maximum when plenty of faces are detected. This is why it 

very difficult to profile it. In our profiling process we assume that the Backtrack process makes 

full detection at every level and component when we are looking for the maximum memory 

consumption. On the other hand when profiling for total memory consumption we assume that 

the image is full of faces and we use the profiling settings explained is chapter 6.2. Under these 

cases the memory profile table of the Backtrack stage is shown in Table 48. 



Table 50 - Backtrack Stage Memory Consumption Distribution (v1.1) (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

Find 0.60 0.60 0.60 0.60 0.60 0.60 

Backtrack 33.7 33.7 33.7 33.7 33.7 33.7 

Others 65.7 65.7 65.7 65.7 65.7 65.7 

 

At this point an extensive analysis of the two basic procedures of the Backtrack stage is given 

and after that a small improvement as far as the memory consumption is presented. 

6.13.1. Find 

The find procedure is the one that checks the Distance Transformation stage scores array for 

high-score values and returns a vector of indexes to the corresponding pixels. The find 

procedure is the only part of the Backtrack stage that is executed for every component at every 

level of the features pyramid. The time needed for this procedure is closed to zero, as it is a very 

simple and fast procedure. As far as the memory consumption it is described in the Table 51 

below. 

Table 51 - Find Procedure Memory Profile 

Input X Y   

Output 2 _
_

High ScoreP
Buffer Size

Buffer Size

 
  
 

 100% 

Temporary 0 0% 

Max 2 _
_

X Y
Buffer Size

Buffer Size

 
  
 

 100% 

 

In the Table 51 above the memory consumption is directly depended by two parameters. The 

first parameter, PHigh-Scores, is the number of high-scores detected inside the DT stage results and 

is unpredictable. The only prediction can be made is that it cannot be larger than the DT scores 

array size. In the chapter 6.2, statistics about the high-score values produced in the DT stage 

according to the model used and faces exist within the image.  

On the other hand, the Buffer_Size parameter is the size of a buffer used in order to minimize 

the memory consumption of this procedure and avoid the temporary memory used to save the 

find process results. If this buffer is completely filled, another block of memory of the same size 

is allocated. This type of implementation of the find procedure makes it image size independent 

as the memory usage is only affected by the number of detections.  

The decision for the default memory buffer size was the result of profiling the find procedure 

using series of images both in laboratory and into-the-wild environment. The Diagram 24 shows 



the probability density of the profiling results. On this graph the high-score values discovered by 

the Find procedure every time it was called are shown. This results come from the same tests 

that produced the data tables in chapter 6.2, where the Find procedure profiling is presented. 

  

Diagram 24 - Find Procedure High-Score Values Probability Density 

In this diagram it is visible that the probability density curve 

has global maximum close to the lower values. As seen in the 

Table 52 more than 50% of the results are entered in the area 

between 1 and 50. This means that as the buffer size 

increases the wasted memory will also increasing. On the 

other hand when the buffer size increases the buffer 

reallocation calls will be decreased. By analyzing the Diagram 

24 data, the folloǁiŶg taďles’ ƌesults ƌetuƌŶ. IŶ the Table 53 the buffer reallocations per useful 

find procedure are presented, while in Table 54 the size of memory wasted. 

Table 53 - Find Buffer Reallocations per Find 

Buffer 10 20 30 40 50 60 70 80 90 100 

Top10 17.8 9.0 6.5 4.8 3.9 3.2 3.1 2.4 2.3 2.3 

Top25 13.5 7.0 4.5 3.6 2.9 2.8 2.2 2.1 2.1 2.0 

Top50 11.0 5.4 3.7 2.9 2.7 2.1 2.0 2.0 1.9 1.8 

All 8.1 4.3 3.3 2.5 2.4 1.8 1.8 1.7 1.6 1.3 

 

Table 54 - Find Buffer Unused Memory per Find (Bytes) 

Buffer 10 20 30 40 50 60 70 80 90 100 

Top10 37 49 101 92 115 88 187 84 158 230 

Top25 30 48 27 67 65 167 93 168 231 291 

Top50 26 20 32 46 134 89 150 214 265 315 
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Table 52 - High-Scores per Find 

< 10 21.4 % 

< 20 33.8 % 

< 50 54.0 % 

< 100 70.7 % 

< 200 89.3 % 



All 7 28 82 90 160 125 177 229 275 201 

 

What is interesting in these results is the size of useless memory consumed by the find 

procedure and the number of system reallocation call according to the buffer size. The ideal size 

of the Find Buffer would produce the minimum system reallocation calls and the minimum 

wasted memory. In the Table 55 below the results of Reallocation Calls x Wasted Memory are 

shown. The desirable buffer size is when the results are lower.  

Table 55 - Find Buffer Reallocations x Unused Memory Indicator 

Buffer 10 20 30 40 50 60 70 80 90 100 Proposal 

Top10 166 112 164 111 113 70 144 50 91 130 80.60 

Top25 103 84 30 60 47 117 50 89 119 146 70.50 

Top50 70 27 30 33 92 46 76 105 125 143 60.40 

All 14 31 68 57 96 58 78 98 113 65 60.40 

 

  

Diagram 25 - Find Buffer Calls x Unused Memory Graph 
Diagram 26 - Find Buffer Calls And Unused 

Memory Graph 

As seen in the Diagram 25, according to the data of Table 55, the ideal size of the find buffer is 

60 memory blocks. This size produces the lowest Reallocation Calls x Wasted Memory results for 

most samples sets. Using this size for the Find buffer memory the time and memory 

consumption of the Find procedure is as shown in the Table 56 below. In this table is obvious 

that this procedure is really a tiny procedure inside the whole detection procedure. 

Table 56 - Find to Backtrack Stage (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

Time 9.67 5.50 6.24 7.86 10.63 7.98 

Memory 0.60 0.60 0.60 0.60 0.60 0.60 
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6.13.2. Backtrack 

The Backtrack procedure is the one that calculates the landmarks localization after a face is 

detected. The output data of this procedure are used in the results cache and are part of the 

algorithms final output results. The Backtrack procedure is using a series of correlation between 

the high-score values detected in order to correlate them with the corresponding parts 

(landmarks). This is a simple procedure with a simple complexity running every time the find one 

detects high-score values. No important improvements were made in procedure that worth to 

be reported. In fact this procedure uses less than the 0.15% of the algorithms execution time. In 

Table 57 the memory profiling of this procedure is presented. As seen this procedure as the 

whole Backtrack stage is image size independent. Its execution time is decreasing as the image 

size in increasing because all the other size dependent parts of the algorithm are increasing and 

it stays stable. 

Table 57 - Backtrack Procedure Memory Profile 

Input 2 High ScoreP    

Output 4 High ScoreP Parts   66% 

Temporary 3 2High Score High ScoreP Parts P      34% 

Max 3 6High Score High ScoreP Parts P      100% 

 

Table 58 - Backtrack Procedure to Backtrack Stage (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

Time 62.4 52.8 53.9 55.0 52.4 55.3 

Memory 33.7 33.7 33.7 33.7 33.7 33.7 

 

The Backtrack procedure results in addition to the Find ones are used at the end of the 

Backtrack stage to fill the face detection algorithms results for face detection. At the creators 

design the Backtrack output data are a bit processed and copied at the results cache data 

structure. In our implementation the Backtrack procedure return its results in a ready to use 

from the results cache form. This way the Backtrack stage gains time and saves memory. 

6.13.3. Backtrack Stage v1.3 

In chapters 6.13.1 and 6.13.2 the implementation of the Find and Backtrack procedures was 

described. This two procedures where implemented in Matlab script by the creators so no 

further improvements can be made as they are designed by the beginning at the maximum 

memory saving mode could be achieved. At Table 50 the ͞Otheƌ͟ liŶe ƌepƌeseŶt a data ĐopǇ 
process that transfers data from the Backtrack output results to the results cache with a small 

processing. At this point a small modification inside the Backtrack procedure could skip this copy 



and processing procedure, as done in the HOG procedure at Features Pyramid stage in chapter 

6.6. By doing this modification, changing the data structure and using multiple pointers, the 

memory saving succeeded is shown in Table 59. 

Table 59 - Backtrack Stage Version Comparison (1.3 vs 1.1) (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

Time -20.0 -20.8 -24.8 -27.4 -28.3 -24.2 

Memory -65.7 -65.7 -65.7 -65.7 -65.7 -65.7 

Max Memory -24.4 -24.4 -24.4 -24.4 -24.4 -24.4 

 

As seen in the Table 59 the ŵeŵoƌǇ ĐoŶsuŵptioŶ ƌeduĐtioŶ is the saŵe size as the ͞Otheƌ͟ liŶe 
memory consumption in Table 50. This happens because by the time the Backtrack procedure 

returns its results in the format the results cache needs, there is no need for extra processing 

and no need of temporary memory for that processing. This also gains speedup in the Backtrack 

stage aŶd the ŵost iŵpoƌtaŶt is that it Đause a total ƌeduĐtioŶ of aďout ϭϬ% of the algoƌithŵ’s 
maximum memory. 

6.14. Results Cache 

The Results Cache is a data structure where the 

detection data are saved. The default Result 

Cache size can hold up to 10,000 detection 

results. This means that the Results cache data 

structure can carry this data by the first 

detection moment until the end of the 

algorithms execution where the NMS 

procedure selects the correct detections as 

described in chapter 5.10. This amount of 

memory affects the maximum memory consumption of the algorithm. In Table 60 the increment 

of the maximum memory consumption that a full Results Cache can cause is shown in the 

second column. At the third column the total memory used by the algorithm is shown. As is 

visible about 29.9% of the total memory consumption is allocated for saving detection results. 

When the Result Cache cannot hold more data the NMS procedure applies, in order to clear the 

Result Cache from the useless detection as described in chapter 5.10. These amounts of data 

removed from the Results Cache are considered to be temporary results memory. According to 

the profiling rules set in chapter 6.2 the maximum Results Cache temporary memory is shown in 

Table 60 ;͞Meŵ͟ ĐoluŵŶ). The Results cache temporary memory is Results cache size 

independent as at the end only a few detection are forwarded as detection results equal to the 

number of faces detected. 

Table 60 - Results Cache to TSM Memory (%) 

Image Max Mem Mem (Mb) 

320x240 +42.2 27.9 137 Mb 

640x480 +11.2 28.2 526 Mb 

800x600 +7.26 31.0 972 Mb 

1024x768 +4.47 31.1 1,581 Mb 

1280x960 +2.89 31.1 2,458 Mb 

Average +13.6 29.9  



Table 61 - Results Cache Max Memory Participation (%) 

Size 320x240 640x480 800x600 1024x768 1280x960 

10,000 +42.2 +11.2 +7.26 +4.47 +2.89 

8,000 +33.8 +8.97 +5.81 +3.58 +2.31 

6,000 +25.3 +6.73 +4.35 +2.68 +1.73 

4,000 +16.9 +4.49 +2.90 +1.79 +1.15 

2,000 +8.44 +2.24 +1.45 +0.89 +0.58 

 

The effect of the Results Cache to the global algorithms maximum memory consumption is 

affected by the size of the Results cache. In the Table 61 above the participation of the Results 

cache in the algorithms maximum memory consumption according to its size is presented. As 

seen in this table the larger the image is, less the maximum memory consumption is affected. 

That is because the results cache memory consumption is the same independently the image 

size, in addition to the rest parts of the algorithm. 

 

Diagram 27 - Results Cache Participation in TSM Max Memory per Image 

The temporary memory consumption values are profiled for the worst case scenarios using 

perfect images full filled with human faces. The Table 62 below introduces cases closer to real 

life. 

Table 62 - Results Cache Real Temporary Memory (10,000) (%) 

Faces 320x240 640x480 800x600 1024x768 1280x960 

1 0.90 0.31 0.19 0.14 0.09 

2 1.79 0.63 0.37 0.29 0.19 

3 2.69 0.94 0.56 0.43 0.28 

4 3.58 1.25 0.75 0.57 0.37 

5 4.48 1.56 0.93 0.72 0.46 
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6.15. Non-Maximum Suppression (NMS) 

The NMS procedure is executed at least once in the detection process but it is also called 

whenever the algorithm wants to clear its results cache memory. In the implementation of the 

algorithm a cache memory is used for keeping the list of the results of each component and 

level detection process. Depending on the memory resources of our hardware the size of it can 

vary. Small sized cache can cause the call of this procedure in order to make a selection of the 

useful results as explained in chapter 5.10. A large sized cache is using memory resources that 

might be needed and affect the algorithms max memory consumption. The size of the results 

cache can vary depending on the application used and the available hardware resources. More 

details about the usage of the results cache memory is referred in chapter 6.14. In this chapter 

we focus on the usage of the NMS procedure. In Table 63 the NMS procedure profile is shown 

Table 63 - NMS Procedure Memory Profile 

Input 
    Re_ 9 4 sultsCache Size AVG Find AVG Parts     

 50 100 21,850 _TopAVG Find Cache Size    
 

Output 
      Re_ 4 sultsCache Size Faces AVG Find AVG Parts      

 50 100 21,846 _TopAVG Find Cache Size    
0% 

Temporary 12 _Cache Size  100% 

Max 12 _Cache Size  100% 

 

The NMS procedure as the Backtrack stage does, is image size independent. It is only affected by 

the results cache contents. If the results cache is full, depending on its size it needs more time to 

execute. Using the creators default cache size at the size of 10,000 the NMS execution of a full 

one is about 0.1% to 0.03% of the algorithms execution time. Even if the NMS procedure is 

called multiple times the effect to the whole algorithm execution is tiny. The same fact comes 

with the memory consumption of the NSM procedure as seen in Table 64. These mean that the 

NMS procedure is a costless one in addition to the Max memory limitation that can cost when it 

is emptying the results cache memory or keeping the results memory cache in smaller size. 

Table 64 - NMS Consumption (Results Cache = 10,000) (%) 

Calls 320x240 640x480 800x600 1024x768 1280x960 

Time 

1 0.16 0.10 0.07 0.05 0.03 

2 0.32 0.20 0.15 0.10 0.07 

3 0.48 0.30 0.22 0.15 0.10 

4 0.64 0.40 0.29 0.20 0.14 

5 0.80 0.49 0.37 0.24 0.17 



Memory 

1 0.06 0.01 0.01 0.01 0.00 

2 0.11 0.03 0.02 0.01 0.01 

3 0.17 0.04 0.03 0.02 0.01 

4 0.22 0.06 0.03 0.02 0.01 

5 0.28 0.07 0.04 0.03 0.02 

 

In the Diagram 28 below the number of the NMS procedure calls are presented according to the 

result cache memory size and the samples group used. The Top10 samples groups (Chapter 6.2) 

is shown using dotted lines, the Top50 the dashed lines and the continuous is for all. As is visible 

when the results cache size is large (as the default) the NMS procedure is called few times even 

when the number of detection results is great. 

 

Diagram 28 - NMS Procedure Calls per Results Cache Size 

6.16. TSM Face Detector v1.3 

After applying all those changes inside the stages described in the previous chapters the 

algorithms execution time is affected as shown in Table 65 below. In this table the impact of the 

changes inside each stage is also shown. At this stage, using all these changes inside every stage 

the algorithm is reached to an extended new version, version 1.3. 

Table 65 - TSM v1.3 Execution Time Comparison (Compared to v1.2) (%) 

 320x240 640x480 800x600 1024x768 1200x960 Average 

Levels 18 23 25 27 28  

TSM -15.1 -13.2 -12.6 -12.3 -12.2 -13.1 

F. Pyramid -0.07 -0.07 -0.10 -0.05 -0.09 -0.08 

Convolution -8.75 -8.64 -8.74 -8.81 -8.98 -8.78 
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DT -6.38 -4.46 -3.76 -3.43 -3.11 -4.23 

Backtrack -0.07 -0.08 -0.08 -0.06 -0.04 -0.07 

 

In the table is clear that the reduction of the algorithms execution time is the reduction of the 

Convolution stage one. The 8.8% of the total 13% is caused by the convolution stage. The 

second main participant at this reduction is the Distance Transformation stage with 

correspondence at about 4.2%. These results are very sensible as this two stages hold the main 

paƌts of the algoƌithŵ’s execution time as presented in Diagram 9and Table 18 (Chapter 6.5). 

In the Diagram 29 and Diagram 30 below compared to the corresponding Diagram 9 (Chapter 

6.5) makes it clear that despite this changes, the algorithms time distribution has not actually 

change. As seen in both graphs the Convolution stage still stays at the top of the time 

consumption pyramid using almost the 67.5% of the algorithms total time. It is clear that the 

algorithms execution time is dependent by the amount of the processed data used in the 

Convolution stage primary, and in the DT stage secondary. As described in chapters 6.9 and 6.11 

the best effort for accelerating the convolution and distance transformation process was given. 

For further improvement of this procedures other techniques have to be used (ex. Chapter 8 - 

multithreading) that are explained in following chapters. 

  

Diagram 29 - TSM v1.3 Execution Time Distribution 
Diagram 30 - TSM v1.3 Execution Time 

Distribution per Stage 

In the Table 66 below the new memory distribution of the algorithm is shown. The same 

distribution table is also graphically displayed in Diagram 31 below it. As seen the memory 

distribution ratios has change a bit as a result of the changes inside the DT and the Backtrack 

stages. The effect of those changes are shown in the Table 66. As seen in this table the greatest 

memory consumer is the temporary results. This is because in the profile process the scenario of 

a full faces image is used as explained in chapter 6.2. On the other hand the DT stage and its 

output data, the DT scores, are still the main memory consumers. Despite that, the DT stage 

memory reduction achieved, caused about 26.5% memory reduction to the whole algorithm.  
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 Table 66 - TSM v1.3 Memory Consumption Distribution (Comparisons to v1.2) (%) 

 

 320x240 640x480 800x600 1024x768 1200x960 Average 

TSM 
0.49 Gb 1.87 Gb 3.13 Gb 5.08 Gb 7.90 Gb  

-43.6 -43.8 -43.5 -43.5 -43.5 -43.6 

S
ta

g
e

s 

F. Pyramid 
2.16 2.19 2.03 2.03 2.03 2.09 

-0.18 -0.25 -0.24 -0.26 -0.26 -0.24 

Convolution 0.00 0.00 0.00 0.00 0.00 0.00 

DT 
27.4 27.2 25.1 25.1 25.1 26.0 

-27.7 -27.7 -25.7 -25.7 -25.7 -26.5 

Backtrack 
14.6 14.7 16.2 16.3 16.3 15.6 

-15.7 -15.8 -17.5 -17.6 -17.6 -16.8 

D
a

ta
 

F. Pyramid 0.69 0.64 0.58 0.57 0.56 0.61 

F. Responses 1.78 1.78 1.64 1.64 1.64 1.69 

DT Scores 25.2 25.2 23.3 23.3 23.2 24.0 

Results 25.6 27.6 30.7 30.9 31.0 29.1 

Others 0.23 0.10 0.08 0.06 0.06 0.11 

 

 

Diagram 31 - TSM v1.3 Memory Consumption Distribution 

What is worth to mention is that most of the memory consumption shown in Table 66 and 

Diagram 31 is used for useful data that cannot be avoid. For example a part of the 2% of the 

memory used in the Features Pyramid stage is used for the images of the image pyramid. This 

data are used temporary but they cannot be avoided as they are necessary for the procedure. 

The results memory that consumes about 29% of the memory is used for saving the detections 

results that are also useful and important data. Only the Backtrack and DT stage memory usage 

of 41.5% is actually real temporary memory. 

0

50

100

150

200

250

FP Stage DT Stage Backtrack

Stage

Results F. Pyramid F. Responses DT Scores Others

M
b

y
te

s 

640x480 800x600 1024x768 1200x960 1600x1200



In addition, the maximum memory consumption distribution is formed as shown in the Table 67 

below. By the Table 67 data it is obvious that the maximum memory consumption factor is 

ĐƌitiĐallǇ ĐoŶstitute ďǇ the algoƌithŵ’s ĐƌitiĐal data stƌuĐtuƌe as the DT sĐoƌes, the filteƌs 
responses and the results cache. The Backtrack stage temporary memory is the only temporary 

memory that participates the maximum memory consumption.  

Table 67 - TSM v1.3 Maximum Memory Consumption (Comparisons to v1.2) (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

TSM v1.3 
20.5 Mb 77.8 Mb 121 Mb 196 Mb 304 Mb  

-22.3 -22.2 -22.0 -21.9 -21.9 -22.1 

FP Stage 0 0 0 0 0 0 

Conv. Stage 0 0 0 0 0 0 

DT Stage 0 0 0 0 0 0 

Backtrack Stage 
40.9 41.9 42.1 42.2 42.3 41.9 

-10.2 -10.5 -10.5 -10.6 -10.6 -10.5 

F. Pyramid 
0 0 0 0 0 0 

-12.7 -11.8 -11.6 -11.4 -11.3 -11.8 

F. Responses 42.5 42.6 42.6 42.5 42.5 42.5 

DT Scores 13.4 13.7 13.8 13.8 13.8 13.7 

Others 3.22 1.74 1.55 1.43 1.35 1.86 

Results Cache +54.7 +14.4 +9.33 +5.74 +3.70 +17.6 

 

 

Diagram 32 - TSM v1.3 Maximum Memory Consumption Distribution per Image 

As seen in the Table 67 the maximum memory consumption of the algorithm is decreased about 

22%. This is basically because in this version of the algorithm the features pyramid images are 

released every time the filters responses are calculated. Despite the great decrease of the 

algorithms total memory consumption the maximum memory one was actually reduced at least 

as only the Backtrack stage part of it succeed a real decrement. The great reduction of the 
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memory used in the DT stage is outshined by the memory needed in the Backtrack one as 

shown in the Diagram 33. 

 

Diagram 33 - TSM Algorithm v1.3 Memory Profile 

The maximum memory consumption has reached at an end on this version. A new version 

(version 2.x) of the algorithm is presented in the next chapter (chapter 6.17) that is customized 

for further decrease of the maximum memory consumption. The differences of the next 

versions relatively to the version 1.x of the algorithm is that by the version 2.x and above the 

algorithm execution flow and its architecture is changed and customized losing its parental 

relation with the Parts Based Detection algorithm. 

6.17. TSM Face Detector v2.1 

In this chapter a new version of the TSM algorithm is presented. This version is called version 

2.1. The reason that it is dissociated by the version 1.x is because in this version the algorithm is 

customized to the face detection procedure disconnected by its parental algorithm, the DPBD 

algorithm. This separation gives also the ability of changing the algorithms execution flow. In the 

Figure 34 (Chapter 6.3) the execution flow of the Detect stage of the original version of the TSM 

algorithm is shown. At the Figure 43 below version 2.x Detect stage execution flow is shown. 

This execution flow comes from taking advantage of the one scale model used in the face 

detection TSM algorithm in contrast to the multi scale models used in the DPBD one.  
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Figure 43 - TSM Algorithm v2.1 Detect Stage Execution Flow 

This new version of the Detect stage (Figure 43) of the algorithm does not reduce at all the 

temporary memory consumption of the algorithm, what it improves is the management of the 

maximum memory consumption. On this version of the detect stage inverts the levels and 

components stage so it can release the Filters Responses after the end of every level stage 

execution. The reduction of the maximum memory consumption relatively to the original 

version (1.2) is shown in Table 68. 

Table 68 - TSM v2.1 Maximum Memory Consumption (Compared to v1.2) (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

TSM 
16.3 Mb 60.8 Mb 93.8 Mb 152 Mb 236 Mb  

-38.9 -39.4 -39.4 -39.5 -39.5 -39.3 

FP Stage 0 0 0 0 0 0 

Conv. Stage 0 0 0 0 0 0 

DT Stage 0 0 0 0 0 0 

Backtrack Stage 
51.7 53.7 54.1 54.4 54.6 53.7 

-10.2 -10.5 -10.5 -10.6 -10.6 -10.5 

F. Pyramid 
16.4 15.1 14.8 14.5 14.3 15.0 

-2.73 -2.67 -2.66 -2.64 -2.63 -2.67 

F. Responses 
12.4 12.9 13.0 13.0 13.1 12.9 

-25.2 -25.3 -25.3 -25.3 -25.2 -25.3 

DT Scores 16.9 17.6 17.7 17.8 17.8 17.5 



Others 
2.65 0.71 0.46 0.28 0.18 0.86 

-0.87 -0.92 -0.93 -0.94 -0.95 -0.92 

Results Cache +69.1 +18.5 +12.0 +7.4 +4.8 +22.4 

 

 

Diagram 34 - TSM v2.1 Maximum Memory Consumption Distribution per Image 

As is visible in the Table 68 the Features Pyramid data structure participates in the maximum 

memory distribution but this is necessary in order to achieve the Filters Responses data 

structure reduction. In version 1.3 the Features Pyramid data structure does not join the data 

structures participating the maximum memory consumption but the Filters Responses data 

structure is fully included. On the other hand in the version 2.1 the Features Pyramid data 

structure is included almost completed but the Filters Responses one is included only by its first 

level reducing the total maximum memory for 25%. 

 

Diagram 35 - TSM Algorithm v2.1 Memory Profile 
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As seen in the Diagram 35, where the maximum memory consumption profiler is presented, the 

maximum memory consumption is reached at the point of the first level (bigger size image). At 

this point it is visible that the biggest size HOG image Filters Responses are added to the rest of 

the Features Pyramid HOG images waiting for the convolution procedure in the following levels 

detection procedure. This fact produced the idea of the version 2.2 of the detect stage referred 

in the next chapter (Chapter 6.17). 

 

Except of the maximum memory consumption factor, the version 2.1 changes have also impact 

to the algorithms execution time. This impact is tiny and shown in Table 69. 

 

Table 69 - TSM v2.1 Execution Time Comparison (%) 

 320x240 640x480 800x600 1024x768 1200x960 Average 

Levels 18 23 25 27 28  

Vs TSM v1.2 -15.7 -14.4 -13.7 -13.4 -13.3 -14.1 

Vs TSM v1.3 -0.61 -1.35 -1.27 -1.22 -1.25 -1.14 

 

 

Diagram 36 - TSM v2.1 Algorithm Timeline Profile 

At last in the algorithms timeline profile in the Diagram 36 it is visible the new execution flow 

and how the convolution procedure takes place just in the beginning of every level stage. 

6.18. TSM Face Detector v2.2 

The T“M algoƌithŵ’s ǀeƌsioŶ Ϯ.Ϯ is alŵost the saŵe ǁith the Ϯ.ϭ oŶe ǁith oŶlǇ oŶe ĐhaŶge, the 
order the features pyramid levels are forwarded to the Level stage. On the version 2.1 the 

algorithm starts the detection procedure from the top to the last level of the features pyramid. 

As shown in the Diagram 34 (Chapter 6.17), the features pyramid data structure participates at 

the maximum memory consumption of the algorithm. The time that the top level of the features 

pyramid enters the level stage and its detection procedure begins, the features pyramid data 

stƌuĐtuƌe is full of the ƌest leǀel’s featuƌes iŵages. This ǁaǇ the ŵost ŵeŵoƌǇ ĐoŶsuŵiŶg leǀel 
(the top) reaches its maximum memory consumption while the features pyramid is full of 

features images. This can be changed if the order that the algorithm forwards the levels of the 

features pyramid change. If the algorithm begins the detection procedure from the last to the 

top level, the features pyramid data structure will be empty when the top levels detection 

procedure begins. This way the version 2.2 of the TSM algorithm is created. 

The timeline profile of this version of the algorithm is shown in the Diagram 37. It is visible that 

the algoƌithŵ’s iŵage pǇƌaŵid ĐƌeatioŶ takes plaĐe iŶ the ďegiŶŶiŶg as also that the diǀeƌse 
level detection described before.  
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Diagram 37 - TSM v2.2 Algorithm Timeline Profile 

At the next graph (Diagram 38) the memory profiling of the algorithm is shown. In this graph is 

also visible that the as the features pyramid stage is empting from the features images data the 

base on which the level stage begins is lower. 

 

Diagram 38 - TSM v2.2 Algorithm Memory Profile 

Observing the algorithms maximum memory profiling at the Diagram 38, it reveals that the 

maximum memory consumption of the algorithm is reached during the greatest size image 

detection as in the previous version (2.1) of the algorithm. As seen in the same graph at the time 

of the maximum memory consumption point the features pyramid are fully released. 
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Diagram 39 - TSM v2.2 Maximum Memory Consumption Distribution per Image 

At the Diagram 39 above the maximum memory consumption distribution is presented using 

the data of the Table 70 below. 

Table 70 - TSM v2.2 Maximum Memory Consumption (Compared to v1.2) (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

TSM v2.2 
13.6 Mb 51.6 Mb 79.9 Mb 130 Mb 202 Mb  

-49.0 -48.5 -48.4 -48.3 -48.1 -48.5 

FP Stage 0 0 0 0 0 0 

Conv. Stage 0 0 0 0 0 0 

DT Stage 0 0 0 0 0 0 

Backtrack Stage 
61.8 63.3 63.5 63.6 63.7 63.2 

-10.2 -10.5 -10.5 -10.6 -10.6 -10.5 

F. Pyramid 
0 0 0 0 0 0 

-12.7 -11.8 -11.6 -11.4 -11.3 -11.8 

F. Responses 
14.8 15.2 15.2 15.3 15.3 15.1 

-25.2 -25.3 -25.3 -25.3 -25.2 -25.3 

DT Scores 20.2 20.7 20.8 20.8 20.8 20.7 

Others 
3.17 0.84 0.54 0.33 0.21 1.02 

-0.87 -0.92 -0.93 -0.94 -0.95 -0.92 

Results Cache +82.7 +21.8 +14.07 +8.65 +5.56 +26.6 

 

The time results of the 2.2 version of the algorithm are presented in Table 71. This taďle’s data is 
clearly sensible as the change of the order may cause a tiny speedup cause of better memory 

management but there is not any important change that could affect the time consumption of 

the algorithm. 

Table 71 - TSM v2.2 Execution Time Comparison (%) 

 320x240 640x480 800x600 1024x768 1200x960 Average 

Levels 18 23 25 27 28  

Vs v1.2 -15.7 -14.5 -14.0 -13.5 -13.3 -14.2 
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Vs v1.3 -0.68 -1.45 -1.62 -1.34 -1.31 -1.28 

Vs v2.1 -0.07 -0.10 -0.36 -0.13 -0.06 -0.14 

 

6.19. TSM Face Detector v3.1 

The TSM algorithm version 3.1 is very similar to the 2.x ones. The main change is the unification 

of the Features Pyramid stage with the Detect one and the order in which the features pyramid 

levels are pushed to the Level stage. In the version 2.1 the levels were pushed ascending. In the 

version 2.2 they were pushed descending. In this version they are pushed as soon as an image in 

the image pyramid is created as shown in the Figure 44 below. 

 

Figure 44 - TSM Algorithm v3.1 Execution Flow Diagram 

What is obvious is that as the scaled images are pushed to the Level stage for detection there is 

no need for the features pyramid data structure to exist. The HOG procedure takes place just 

before the Convolution one and the features images are released just after. What is although 

needed is the temporary image pyramid to hold the scaled images longer than in the other 

versions. As described in the chapter 5.5, the features pyramid stage uses the scaled images as 

inputs in the Reduce procedure to create half copies of them. So the algorithm in this version 

cannot release scaled images from the image pyramid as long as it has not create their next 

interval ones. A tactic can be used here is the algorithm to create the next interval scaled image 

immediately in order to be able to release the ones used in the Level stage. This way the image 

pyramid can hold smaller sized images in order to reduce the maximum memory consumption 

that appears during the Level stage. Unfortunately, the maximum memory consumption of the 

TSM algorithm appears during the detection procedure of the first level of the pyramid where 

the unscaled resource image is used that is needed not only for the next interval scaled image 

but also for the rest scaled images of the first interval set of images in the pyramid. This means 



that there is no way to avoid it as shown in Figure 44 above. By applying this execution flow the 

time results coming of are the following shown in Table 72 below. 

Table 72 - TSM v3.1 Execution Time Comparison (%) 

 320x240 640x480 800x600 1024x768 1200x960 Average 

Levels 18 23 25 27 28  

v1.3 -15.1 -13.2 -12.6 -12.3 -12.2 -13.1 

v2.1 -15.7 -14.4 -13.7 -13.4 -13.3 -14.1 

v2.2 -15.7 -14.2 -13.5 -13.5 -13.3 -14.1 

v3.1 -22.7 -17.2 -16.0 -14.3 -14.0 -16.8 

 

The version 3.1, as the Table 72 shows, is faster than the rest versions. This is probably caused 

by the memory cashing of the data used. The results of the scaling processing are probably 

saved in the cache memory and stay there as they are used immediately by the HOG procedure. 

As soon as the HOG processing is finished, its results data are used in the convolution procedure 

and the filters responses coming from this are used in the level detection stage for face 

detection. This sequential usage of data benefits the cashing process inside the CPU cache 

memory. 

On the other hand the non-sequential order the pyramid levels are pushed to the detection 

procedure creates other problems that are not visible until this chapter but in the next chapters 

(ex. Chapter 9). Another problem also is that this version has definitely lost its relation with its 

parental algorithm and cannot be used at all for multi-scaled model in contrast to the other 

versions that can with only small changes. 

The timeline profile of the version 3.1 of the algorithm is shown in the Diagram 40. It is visible 

that the sequence of the levels send for detection is not ascending but they follow the sequence 

of the Features Pyramid stage loop. 

 

Diagram 40 - TSM Algorithm v3.1 Timeline Profile 

At the next graph (Diagram 41) the memory profiling of the algorithm is shown.  
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Diagram 41 - TSM Algorithm v3.1 Memory Profile 

The Diagram 41, reveals that in the 3.1 version of the algorithm a new participant in the 

formation of the maximum memory appears. This participant is an image pyramid level. In the 

chapter 6.8 it was explained how larger is the image pyramid compared to the features one. In 

this version is inevitable the usage of the image pyramid instead of the features one and the 

cost of this change is paid in memory consumption. As referred in a previous paragraph this fact 

cannot be avoided as the image used in the first level of the pyramid is used as source not only 

for the Reduce procedure (next interval level) but also for the Resize one (All levels of the first 

interval set). 

Table 73 - TSM v3.1 Maximum Memory Distribution (Compared to v1.2) (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

TSM v2.3 
14.5 Mb 55.3 Mb 85.7 Mb 139 Mb 217 Mb  

-45.5 -44.9 -44.7 -44.5 -44.3 -44.8 

FP Stage 0 0 0 0 0 0 

Conv. Stage 0 0 0 0 0 0 

DT Stage 0 0 0 0 0 0 

Backtrack Stage 
57.9 59.1 59.2 59.3 59.4 59.0 

-10.2 -10.5 -10.5 -10.6 -10.6 -10.5 

Image Pyramid 
6.35 6.67 6.72 6.77 6.80 6.66 

-12.7 -11.8 -11.6 -11.4 -11.3 -11.8 

F. Responses 13.9 14.2 14.2 14.2 14.2 14.1 
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-25.2 -25.3 -25.3 -25.3 -25.2 -25.3 

DT Scores 18.9 19.3 19.4 19.4 19.4 19.3 

Others 
2.97 0.78 0.50 0.31 0.20 0.95 

-0.87 -0.92 -0.93 -0.94 -0.95 -0.92 

Results Cache +77.5 +20.3 +13.1 +8.06 +5.18 +24.8 

 

At the Diagram 42Diagram 41 below it is visible the participation of the image pyramid at the 

formation of the maximum memory consumption value of the algorithm as just explained in the 

paragraph above. 

 

Diagram 42 - TSM v3.1 Maximum Memory Distribution per Image 

This version has two basic disadvantages. The First and most significant is the inconsecutive 

order of forwarding the levels of the pyramid to the detection procedure. The second one, less 

significant or even not significant is the usage of Image pyramid that is more memory costly. 

Both these disadvantages are exceeded in the next subversion of the version 3.x of the TSM 

algorithm, presented in the next chapter (Chapter 6.20). 

6.20. TSM Face Detector v3.2 

In the version 3.1 of the TSM algorithm two main disadvantages are referred. The most 

significant disadvantage is the fact that the algorithm in this version is passing the pyramid 

levels to the detect stage in an inconsecutive series. This execution flow is repaired in this 

versioŶ so that the deteĐtioŶ pƌoĐeduƌe ĐaŶ ďe applied iŶ the pǇƌaŵid’s leǀels asĐeŶdiŶg to theiƌ 
size starting from the top level. To achieve this change the execution flow of the features 

pyramid stage, as presented in the chapter 5.5, changes and the algorithm calculates the levels 

of the image pyramid in a sequential way. This way demand to the algorithm to hold in the 

memory at least a set of interval of the image pyramid in order to be able to use it for the next 

one as shown in the Figure 45 below. 
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Figure 45 - TSM Algorithm v3.2 Execution Flow Diagram 

The second disadvantage of the 3.1 version of the algorithm is the fact that the first level of the 

image pyramid joins the parts of data forming the algorithm maximum memory consumption. 

This level is the largest one coming from the source image and it is needed for the calculation of 

the rest scaled images in the first interval set of the image pyramid. In the chapter 6.6.1 a 

version of the Resize procedure using 8 bit images instead of 32 bit ones was introduced. This 

version can be used in the version 3.2 in customized to get an 8 bit image as input and return a 

32 bit one as output. This way the source image can be used as an 8 bit image using only the 

25% of the memory reducing the maximum memory consumption. In the Table 74 below the 

maximum memory consumption of this version is shown. 

Table 74 - TSM v3.2 Maximum Memory Distribution (Compared to v1.2) (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

TSM v3.2 
13.8 Mb 52.5 Mb 81.3 Mb 132 Mb 206 Mb  

-48.1 -47.6 -47.5 -47.3 -47.2 -47.5 

FP Stage 0 0 0 0 0 0 

Conv. Stage 0 0 0 0 0 0 

DT Stage 0 0 0 0 0 0 

Backtrack Stage 
60.8 62.2 62.4 62.5 62.6 62.1 

-10.2 -10.5 -10.5 -10.6 -10.6 -10.5 

Image Pyramid 
1.67 1.76 1.77 1.78 1.79 1.75 

-11.9 -10.9 -10.7 -10.5 -10.4 -10.9 

F. Responses 14.6 14.9 15.0 15.0 15.0 14.9 



-25.2 -25.3 -25.3 -25.3 -25.2 -25.3 

DT Scores 19.9 20.3 20.4 20.4 20.4 20.3 

Others 
3.12 0.82 0.53 0.33 0.21 1.00 

-0.87 -0.92 -0.93 -0.94 -0.95 -0.92 

Results Cache +81.3 +21.4 +13.8 +8.49 +5.46 +26.1 

 

 

Diagram 43 - TSM v3.2 Maximum Memory Distribution per Image 

As seen in the Diagram 43 above as the memory consumption of the TSM algorithm is reducing 

the most significant part of it is the results cache and the Backtrack stage temporary memory 

which is affected also by the detection results. This makes it clear that the number of detection 

within the image is significantly affecting its maximum memory consumption. In chapter 7.2 a 

patch that changes this attitude is presented. In the Diagram 44 below the memory profile of 

the version 3.2 of the TSM algorithm is presented. 
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Diagram 44 - TSM Algorithm v3.2 Memory Profile 

 

 

Diagram 45 - TSM Algorithm v3.2 Timeline Profile 

As seen in the Diagram 44 and Diagram 45 the seƋueŶtial floǁ of the pǇƌaŵid’s leǀels passiŶg to 
the Detect stage is recovered. It is also visible in the Diagram 44 that the first level of the image 

pyramid consumes much lower memory from the next one even if its size is laƌgeƌ. That’s 
because it is saved in the 8 bit format. 

As far as the execution time needed for this version, as it is sensible, it has not changed 

relatively to the version 3.1 as shown in the Table 75 below. 

Table 75 - TSM v3.2 Execution Time Comparison (%) 

 320x240 640x480 800x600 1024x768 1200x960 Average 

Levels 18 23 25 27 28  

v1.2 -23,0 -17,2 -16,3 -14,4 -14,2 -17,0 

v1.3 -9,22 -4,66 -4,17 -2,44 -2,25 -4,55 

v2.1 -8,66 -3,36 -2,94 -1,23 -1,02 -3,44 
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v2.2 -8,60 -3,52 -3,16 -1,11 -0,96 -3,47 

v3.1 -0,28 -0,09 -0,36 -0,13 -0,20 -0,21 

 

6.21. TSM Face Detector All Versions 

At this last chapter of Chapter 6 a quick summary about the different versions of the algorithm 

are appose. Firstly the main change between the versions 1.x and 2.x has to do with the 

execution flow of the algorithm. As seen in Figure 46 in version 1.x the execution flow of the 

Detect stage is using two nested loops. The outer loop is the one iterating between the different 

components (pose trees) and the inner one with the different levels of the features pyramid. 

The convolution process takes place inside the components loop. As the filters responses data 

are used by all components every calculation of filters responses occur at the first iteration of 

the component loop is required until the last iteration. This way the filters response data are 

calculated for all levels at the first iteration of the component loop as shown in the timeline 

Diagram 2 and used until the end of the component loop as shown in Diagram 8 in chapter 6.3. 

 

Figure 46 - TSM Algorithm v1.x Diagram 

On the other hand in the execution flow of the version 2.x the two nested loops change sides. 

The levels loop becomes the outer loop and the components one the inner. The convolution 

process takes place inside the outer loop, the levels loop and calculates the filters responses of 

each level as shown in Figure 47. This way, as the face detector uses one scale models, after the 

end of the components loop the ĐoƌƌespoŶdiŶg leǀel’s filteƌs ƌespoŶses aƌe Ŷote Ŷeeded aŶǇ 
more and can be released. This is visible also in the timeline profile of the version 2.1 in Diagram 

36s (Chapter 6.17). 



 

Figure 47 - TSM Algorithm v2.x Diagram 

The algorithm versions 3.x are actually use the same execution flow with very small differences 

compared to the 2.x versions. This difference is that they merge the Features Pyramid stage with 

the Detect one and they detection procedure begins immediately when a features image is 

created as shown in the Figure 48 below. 

 

Figure 48 - TSM Algorithm v3.x Diagram 

The comparison between all the version of the TSM algorithm can be appose as a summary of 

the algorithm version history. At the Diagram 46 below the time execution comparison is 

presented. As is visible the version 2.x is at least faster than the version 1.3. The greatest speed 

up improvements was achieved from the transition of the version 1.2 to 1.3. In the Table 76 the 

time execution ratio are shown. 



 

Diagram 46 - TSM Algorithm Execution Time Versions Comparison 

 

Table 76 - TSM Algorithm All Versions Execution Time Comparison (%) 

Version 320x240 640x480 800x600 1024x768 1280x960 Average 

v1.2 100 100 100 100 100 100 

v1.3 84.9 86.8 87.4 87.7 87.8 86.9 

v2.1 84.3 85.6 86.3 86.6 86.7 85.9 

v2.2 84.3 85.8 86.5 86.5 86.7 85.9 

v3.1 77.3 82.8 84.0 85.7 86.0 83.2 

v3.2 77.0 82.8 83.7 85.6 85.8 83.0 

 

As far as the memory consumption the Diagram 47 below shows the differences between each 

version of the algorithm. As happened with the time execution the same happens as far as the 

memory consumption. The greatest improvement achieved at the version 1.3 of the algorithm. 

As shown in the Diagram 47 and in the Table 77 data, the memory consumption of the algorithm 

is the same in all the versions greater than the 1.3. It is obvious that in this version the memory 

consumption improvements have reached to ceil. 
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Diagram 47 - TSM Algorithm All Versions Memory Consumption Comparison 

 

Table 77 - TSM Algorithm All Versions Memory Comparison (%) 

Version 320x240 640x480 800x600 1024x768 1280x960 Average 

v1.2 100 100 100 100 100 100 

v1.3 56.4 56.2 56.5 56.5 56.5 56.4 

v2.1 56.4 56.2 56.5 56.5 56.5 56.4 

v2.2 56.4 56.2 56.5 56.5 56.5 56.4 

v3.1 56.4 56.2 56.5 56.5 56.5 56.4 

v3.2 56.4 56.2 56.5 56.5 56.5 56.4 

 

At last, as long as the maximum memory consumption of the algorithm, the comparison graph 

(Diagram 48) and table (Table 78) have different indications. As seen the maximum memory 

consumption is finally reduced at less than its half for all 2.x versions of the algorithm reaching 

the minimum of 51% relatively to the original version 1.2. 

 

Diagram 48 - TSM Algorithm All Versions Maximum Memory Consumption Comparison 
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Table 78 - TSM Algorithm All Versions Maximum Memory Consumption Comparison (%) 

Version 320x240 640x480 800x600 1024x768 1280x960 Average 

v1.2 100 100 100 100 100 100 

v1.3 77.1 77.7 77.8 78.0 78.1 77.7 

v2.1 61.1 60.6 60.6 60.5 60.5 60.7 

v2.2 51.0 51.5 51.6 51.7 51.9 51.5 

v3.1 54.5 55.1 55.3 55.5 55.7 55.2 

v3.2 51.9 52.4 52.5 52.7 52.8 52.5 

 

Until this chapter many changes have been made inside the algorithms stages and procedures 

and the execution flow of the algorithm has been modified. The results of these changes have 

offer a reduction to the execution time by 17%, to the memory consumption by 43.6% and by 

48.5% to the maximum memory consumption. Especially as far as the memory consumption the 

improvement is very significant. As shown in Table 79 below, the algorithm, using 1280x960 size 

images needs less than 512Mbytes of RAM to be executed instead of the 1Gbyte needed in the 

original version 1.1. This makes the algorithm available to be used in embedded system with low 

hardware resources! 

Table 79 - TSM Algorithm All Versions Max Memory Requirements (Mbytes) 

Version 320x240 640x480 800x600 1024x768 1280x960 

v1.1 (double) 70 265 409 664 1030 

v1.1 35 132 205 332 515 

v1.2 27 100 155 251 390 

v1.3 21 78 121 196 304 

v2.1 16 61 94 152 236 

v2.2 14 52 80 130 202 

v3.1 15 55 86 139 217 

v3.2 14 53 81 132 206 

 

CoŵpaƌiŶg the algoƌithŵ’s ǀeƌsioŶs pƌeseŶted, tǁo of theŵ seeŵs to ďe Đoŵpleted. The ǀeƌsioŶ 
3.2 is the fastest one but the version 2.2 is the most memory saving. According to the Table 76 

and Table 78, the difference between these two versions is small both in time and memory 

consumption. Although, the execution time is preferred instead of the maximum memory 

consumption as the last one difference does not seems to be critical at all in contrast to the 

execution time one, so the final version can be consider the 3.2. 

All these changes are implementation changes that do not affect the algorithms creators design 

and accuracy. In the next chapters more modifications are appose that either change the 

Đƌeatoƌs desigŶ addiŶg Ŷeǁ teĐhŶiƋues oƌ affeĐt the algoƌithŵ’s aĐĐuƌaĐǇ. 



7. TSM System Default Patches 

In the chapter 9 some patches for the TSM algorithm are presented trying to make the 

algorithm a faster one. These patches though reduce the algorithm reliability and detection 

efficiency. For that reason these patches are called alternative patches. In this chapter two 

special patches are presented as they contribute to the memory and execution time 

improvement without affecting at all the algorithm detection performance. For that reason 

these two patches are called default patches and they are included in all the x.x.2 versions of the 

TSM algorithm. 

7.1. Short Pyramid 

In chapter 6.2 it was mentioned that the Face Detector algorithm is designed to detect faces in 

the size of 100 pixels high (50 pixels on 146 filters model). The image pyramid is used in order to 

detect larger faces by scaling the image and match the faces on that size. Any faces smaller than 

the 100 pixels high are not able to be detected. 

The algorithm, as explained in chapter 4.2, uses histograms of oriented gradient in order to 

detect the existing faces by using its model filters. As explained in chapter 5.4, a HOG image is 

about four times smaller than the original it comes from. This means that a features canvas 

containing a face must be larger than 35 pixels. 

In chapter 5.5 the mathematic type calculating the number of the image pyramid levels is 

referred. This type is the one shown in function (8) below and its results are shown in the Table 

80. As seen in this table the last 11 levels of the image pyramid created have image height less 

than 100 pixels while the last six less than 50. This make it sensible that even if human faces are 

contained within these images, the algorithm is not able to detect them. 
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Table 80 - Features Pyramid Level Images High Size 

Image Size Levels Bottom 12 levels 

320x240 18 105 91 80 69 60 53 46 40 35 30 27 23 

640x480 23 105 91 80 69 60 53 46 40 35 30 27 23 

800x600 25 99 87 75 66 57 50 44 38 33 29 25 22 



1024x768 27 96 84 73 64 56 48 42 37 32 28 24 21 

1280x960 28 105 91 80 69 60 53 46 40 35 30 27 23 

 

By testing the algorithm without using these levels of the image pyramid in the detection 

process there was no affect in the detection results. By this conclusion there is no need of using 

this levels of the image pyramid that is having a small effect on the algorithms execution as it is 

explained in later. 

According to the conclusions of the previous paragraph the 

levels of the images of the Table 80 should be as shown in 

the Table 81. As seen the number of levels is almost reduced 

to the half. These numbers comes from a new mathematic 

type that calculates the image pyramid levels until they get 

to a size not smaller than the limit of 100 pixels height. This 

mathematic type is the one shown in function (9). The 

Heightmin parameter is the minimum size of a detectable face 

which is 100 pixels for the 99 filters model, as explained before. 
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By applying this change in the algorithm there is an impact to its execution time. By reducing the 

number of levels in the image and also the features pyramid the whole algorithm is affected. 

First of all, the Image Pyramid stage is speeded up as the less levels the image pyramid has the 

less scaled images have to be produced and of course less features images have to be created. 

The creation of HOG descriptors is a costly procedure as far as the time and memory usage. To 

continue, as the image pyramid is shoƌteƌ, theƌe aƌe less featuƌes iŵages to applǇ the ŵodel’s 
filters that means less call of the convolution procedure. The convolution process is the most 

time consumer procedure as explained in chapter 6. At last, shorter feature pyramid means less 

levels for face detection (DT stage, Backtrack stage). This small change causes a wide impact to 

the whole algorithm. 

On the other hand this change cause the reduction of the Image pyramid levels by rejecting its 

bottom levels. This means that this levels corresponds to the smallest features images. Small 

images consume few amount of time for their execution in the most parts of the algorithm as 

for example explained in chapter 6.9 where the convolution process is described. Even if the half 

of the image pyramid is rejected, the execution time cost that is saved by this change is much 

smaller than if one of the top levels of the image pyramid was rejected. All these claims are 

visible in Table 82 and in the Diagram 49.  

Table 81 - Short Pyramid Levels 

Image Size 
Model 

99 146 

320x240 7 12 

640x480 12 17 

800x600 13 18 

1024x768 15 20 

1280x960 17 22 



Table 82 - Short Pyramid Patch Time Effect on TSM (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

v2.2 -16.3 -4.45 -3.42 -1.94 -1.18 -5.45 

v3.2 -14.2 -3.53 -2.64 -1.80 -0.91 -4.61 

 

 

Diagram 49 - TSM Algorithm Execution Time per Level 

As seen in the Table 82, even if the pyramid is reduced in its half the time reduction is not more 

than 4.5%. As the image size is getting larger the rejection of the highest levels of the pyramid 

seems to be insignificant. This is because as the image is getting larger the lower levels of the 

pyramid tend to be larger and this affects the execution time of the most stages of the algorithm 

exponentially as referred in the corresponding chapters (ex. Convolution, Chapter 6.9). 

As far as the impact of this change to the memory consumption, the reduction is not so 

important. The temporary memory consumption is sensible reduced as the features pyramid 

levels are reduced. In addition, the maximum memory consumption is not expected to be 

reduced as it is clearly depended by the top level of the pyramid and its detection procedure 

(see Chapter 6.18 and 6.20Ϳ. This patĐh iŶ the algoƌithŵ’s desigŶ is aĐtuallǇ a tiŵe saǀiŶg oŶe 
and no changes relative to memory consumption are applied. In the next chapter (chapter 9.1) 

the ͞FiŶd ǀϮ.Ϭ͟ patĐh is a ŵeŵoƌǇ ĐoŶsuŵptioŶ iŵpƌoǀeŵeŶt oŶe. 

At last after removing all these levels of the pyramid, the relations of the functions (4) and (6) 

(Chapter 6.3) have to change, as they do not longer represent the real number of levels of the 

feature pyramid that contain high-score values. Testing the algorithm in the image sample 

referred in chapter 6.3, the new results are as presented in the Table 83 below. As sensible the 

high-score values per find data are still the same. 
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Table 83 - Levelswith-High-Scores / LevelsFeatures_Pyramid (%) 

 99 Filters Model 146 Filter Models 

Samples Max Average Min Max Average Min 

Top 10% 29.0 23.0 18.9 29.9 20.1 15.1 

Top 20% 55.0 29.4 14.2 31.2 21.5 13.6 

Top 50% 55.0 25.0 13.0 31.2 20.2 8.88 

All (100%) 55.0 19.6 0.48 31.2 15.0 0.43 

 

From the data contained in Table 83 the functions (4) and (6) (Chapter 6.3) has to be converted 

to the functions (10) and (11) as shown below. 

99 Filters Model  

 0.25High ScoredLevels Round levels    (10) 

146 Filters Model  

 0.20High ScoredLevels Round levels    (11) 

 

By applying the Pyramid patch to the TSM algorithm the versions using it are changed to x.x.1. 

For example when this patch is used with the version 3.2 this version is now called the 3.2.1 one. 

This is useful when more patches and versions are applied or combined to one or more versions. 

7.2. Find v2.0 

In chapter 6.13 the Backtrack stage is described. The execution flow of the Backtrack stage starts 

form the Find procedure that discovers the high-scored values come from the DT stage and 

forwards them to the Backtrack procedure where the last one makes the landmark estimation. 

At last the NMS procedure is the one that selects the correct ones by rejecting the overlapping 

ones. The Backtrack procedure is the most time and memory consuming one in the Backtrack 

stage and unfortunately increases the algorithms maximum memory consumption at a notable 

amount. The reason that the Backtrack procedure is using this great amount of resources is that 

it uses a complex way to estimate the landmarks and a lot of memory to store the results. In 

addition to this the algorithm needs a large amount of results cache memory to store this great 

amount of results coming from the Backtrack stage. The memory needed for storing the results 

in the results cache memory is also increasing the maximum memory consumption of the 

algorithm. 

As described in chapter 6.12 a face within an image produce a number of high-score values 

duƌiŶg the DT stage. Fƌoŵ all those ǀalues oŶlǇ oŶe is the top aŶd it’s the oŶe used as the ƌeal 
detection result. The rest ones are considered as overlapping results. Overlapping results are 

produced around the top high-score value in the same level DT scores result image and in the 



near levels images. In chapter 7 it is described that, after testing the algorithm along a series of 

testing images, the result was that a detected face produce high-score values at the 20% of the 

features pyramid levels with a mean number of high-scores of 80 pixels per Find procedure 

executed. From all those high-score values only one is the top that results to the final detection. 

   

Figure 49 - Image DT Scores Array Example (Find Input) 

For selecting the top high-score value that return the real face detection the algorithm is using 

the NMS procedure as described in chapter 5.10. The NMS procedure is used every time the 

Results cache is full in order to release space and at the end of the detection procedure in order 

to select the real results. 

All these problems can be distinguish using a technique that rejects the overlapping results 

before they are forwarded to the Backtrack procedure. This way the workload of the Backtrack 

procedure can be greatly decreased in addition to the memory consumption reduction. 

Additionally, the results cache memory can be also abridged. The technique we propose for that 

purpose is a new implementation (version 2.0) of the Find procedure that would discover only 

the highest value of a high-value pixels neighborhood as shown in the Figure 50. 

 

Figure 50 - Find v2.0 Procedure Diagram 

As shown in the Find v2.0 procedure execution graph (Figure 50), the v1.0 Find procedure is 

used to discover high-score values. If High-score values are discovered the patch saves the 

highest one in a list and removes it and its neighbors from the DT scores table. Afterwards it 

calls again the v1.0 Find procedure and repeats the same procedure. The reason of repeating 

this procedure is because when there are more than one faces inside the image, more high-



scores values neighborhoods would exist. Graphically the impact of the Find procedure patch 

over the DT scores table is shown in Figure 51 below. 

  

Figure 51 - Find v2.0 Results on the DT Score Array Example 

The advantage of this Find procedure version is that it mostly discovers only one high-score 

value for every face detection. This is very important as only substantial high-score values are 

passed to the Backtrack one. This change create new conditions around the Backtrack stage that 

repeal the statistic results of the chapter 6.2.  

In chapter 6.2 a presentation of the statistics results as far as the number of high-score values 

produced during the detection process is presented. This data come from the usage of the Find 

v1.0 procedure. By using the new version a new set of data comes on. Using the same image 

and applying the same experimental process the results using the new version of Find procedure 

are presented in the Table 84 below. 

Table 84 - Find v2.0 Pixelswith-High-Scores / (Levelswith-High-Scores x Components) 

 v2.0 v1.0 Profit 

Samples Max Average Min Max Average Min Max Average Min 

 99 Filters Model 

Top 10% 5 1.6 1 611 169 1 -99.2 -99.1 0 

Top 20% 5 1.5 1 611 128 1 -99.2 -98.8 0 

Top 50% 5 1.4 1 611 103 1 -99.2 -98.6 0 

All (100%) 5 1.3 1 611 79 1 -99.2 -98.4 0 

 146 Filters Model 

Top 10% 5 1.2 1 343 116 1 -98.5 -99.0 0 

Top 25% 5 1.1 1 343 91 1 -98.5 -98.8 0 

Top 50% 5 1.1 1 343 70 1 -98.5 -98.4 0 

All (100%) 5 1.1 1 343 53 1 -98.5 -97.9 0 

 



In the Table 84 above the great effect of the version 2.0 of the Find procedure is shown. As seen 

in the right columns the average number of High-Score values is reduced for more than 98% 

compared to the 1.0 one. This is great decrement with many impacts on the whole Backtrack 

stage as presented in the next paragraphs. 

In chapter 6.2 the number of levels with high-score values is estimated after testing the 

algorithm. By changing the Find procedure this number changed also at the top10, top20 and 

top50 samples (Table 85Ϳ. OŶ the otheƌ haŶd it’s the saŵe ǁheŶ all the saŵples aƌe used. This 
difference is caused because, by the time the Find v2.0 procedure is used, every face within an 

image creates only one high-score value. In our sample images only one face appears within it 

so the sensible result would be one High-score value per Find procedure or none. What is shown 

in Table 84 above is that the testing results show even five high-score values to appear. This is 

because sometimes the DT score of a component might create multiple neighborhoods of high-

score values in the area where face exists. This phenomenon appears usually at the levels close 

to the right one where the face is not yet in the right size (about 100 pixels high) to be detected. 

Table 85 - Find v2.0 Levelswith-High-Scores / LevelsFeatures_Pyramid (%) 

 Original Version New Version 

Samples Max Average Samples Max Average Samples 

 99 Filters Model 

Top 10% 18.9 14.3 12.1 23.4 11.8 0.3 

Top 20% 28.6 17.2 9.2 23.4 12.7 0.3 

Top 50% 28.6 14.8 7.4 28.6 13.7 0.3 

All (100%) 28.6 11.6 0.3 28.6 11.6 0.3 

 146 Filters Model 

Top 10% 21.5 15.8 6.1 21.5 16.1 12.9 

Top 25% 24.0 14.5 3.7 24.0 16.8 10.7 

Top 50% 24.0 14.8 3.7 24.0 15.7 7.2 

All (100%) 24.0 11.8 0.3 24.0 11.8 0.3 

 

Another great impact of this new version of the Find procedure is over the output results of the 

whole Backtrack stage. As the number of high-scored values is reduced to more than 98% the 

number of the Backtrack stage results is also reduced at the same percentage. This change 

implies the need of reducing the results cache memory. As referred in Chapter X the default 

ƌesult’s ĐaĐhe ŵeŵoƌǇ is ϭϬ,ϬϬϬ deteĐtioŶ ƌesults. UsiŶg the new Find procedure this number is 

sensible to be reduced by 98% less, to the size of 200. This change means that the maximum 

memory consumption can be reduced by a remarkable amount of memory. 

On the Table 86 below the impact of the Find v2.0 procedure as far as the execution time of the 

algorithm and its stages is shown. As seen in this table the execution time consumption of the 



whole Backtrack stage is greatly reduced due to the Backtrack procedure time consumption 

reduction despite the Find one increase. Although the impact of this reduction is tiny on the 

ǁhole FaĐe DeteĐtioŶ algoƌithŵ’s eǆeĐutioŶ tiŵe as the BaĐktƌaĐk stage ĐoŶsuŵes oŶlǇ aďout 
the 0.25% of the algorithm execution time. 

Table 86 - Find v2.0 Execution Time Impact on TSM v3.2.1 (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

Find +77.3 +93.7 +92.9 +117 +103 +96.9 

Backtrack -96.7 -95.4 -94.7 -94.0 -92.5 -94.6 

Back. Stage -84.3 -87.3 -84.8 -78.5 -72.0 -81.4 

NMS -99.4 -93.9 -99.6 -96.0 -94.6 -96.7 

TSM -0.42 -0.24 -0.18 -0.11 -0.07 -0.20 

 

On the other hand the impact of the new version (v2.0) of the Find procedure as far as the 

memory consumption is much larger than the time one. In the Table 87 below the temporary 

memory consumption reduction is shown. As seen in this table the Find procedure temporary 

memory consumption is increased but this incremental caused a huge reduction in the 

temporary memory consumption of the Backtrack and NMS procedure as also the Backtrack 

stage and the temporary results. This is a great achievement as the Backtrack stage and the 

temporary results data constitute a large part of the total temporary memory consumption. As 

shown in the Table 87 the TSM algorithm temporary memory consumption is actually reduced 

about 45% by the usage of the new version of the Find procedure. 

Table 87 - Find v2.0 Impact on TSM v3.2.1 Memory Consumption (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

Find +50.0 +50.0 +50.0 +50.0 +50.0 +50.0 

Backtrack -99.8 -99.7 -99.7 -99.7 -99.7 -99.7 

Back. Stage -97.1 -97.1 -97.1 -97.0 -97.0 -97.1 

NMS -98.0 -98.0 -98.0 -98.0 -98.0 -98.0 

Results -99.7 -99.7 -99.7 -99.7 -99.7 -99.7 

TSM v3.2.1 -39.7 -43.8 -43.7 -47.7 -47.5 -44.5 

 

As far as the maximum memory consumption, as seen in Table 88 below, is reduced by about 

61.5% as a result of the Backtrack stage 99% reduction. The Backtrack stage was one of the main 

participants at the maximum memory consumption formation and limiting its memory 

consumption the whole algorithms maximum memory consumption is affected. In addition to 

that the Results cache size reduction and the precocious rejection of the overlapping detection 

cause also a reduction of the impact of it over the maximum memory consumption. As seen in 

the table, the analogous of the default size result cache can cause about 1% incremental on the 

algoƌithŵ’s ŵaǆiŵuŵ ŵeŵoƌǇ ĐoŶsuŵptioŶ. 



Table 88 - Find v2.0 Maximum Memory Consumption Impact on TSM v3.2.1 (%) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

TSM v3.2.1 
5.47 Mb 20.1 Mb 31.0 Mb 50.2 Mb 78.0 Mb  

-60.4 -61.7 -61.9 -62.0 -62.1 -61.6 

Conv. Stage 0 0 0 0 0 0 

DT Stage 0 0 0 0 0 0 

Backtrack Stage 
0.90 1.18 1.19 1.20 1.20 1.13 

-99.4 -99.3 -99.3 -99.3 -99.3 -99.3 

F. Responses 36.8 39.0 39.3 39.5 39.6 38.8 

DT Score 50.2 53.1 53.5 53.8 54.0 52.9 

Image Pyramid 4.2 4.6 4.6 4.7 4.7 4.6 

Others 7.88 2.15 1.39 0.86 0.55 2.57 

Results Cache 

(200) 

2.32 1.12 0.73 0.45 0.29 0.98 

-98.9 -98.0 -98.0 -98.0 -98.0 -98.2 

 

As is visible in the Diagram 50 ďeloǁ the ŵaiŶ ŵodulatoƌs of the algoƌithŵ’s ŵaǆiŵuŵ ŵeŵoƌǇ 
are the Filters Responses and the DT scores. These two data structure hold about the 91.5% of 

the algoƌithŵ’s ŵaǆiŵuŵ ŵeŵoƌǇ ĐoŶsuŵption (the 96% on the 2.2.2 version!). These two data 

structure are very critical and their data cannot be reduced. The version 2.0 of the Find 

procedure has managed to reach the maximum memory consumption to a floor with no ability 

for further significant reduction. 

  

Diagram 50 - TSM v3.2.2 Maximum Memory 

Consumption per Image 

Diagram 51 - TSM v3.2.2 Maximum Memory 

Profiling 

By the time the maximum memory consumption of the TSM algorithm is formed almost at all by 

predictable known parameters it can be easily predicted with a simple function as the function 

(12). This function calculates in a very simple mode the maximum memory consumption using 

only two parameters, the image width and height. The results of the function (12) compared to 

the real ones are presented in Diagram 52. 
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In the Diagram 52 below a graphical view of the TSM algorithm memory profile is shown. As 

seen, the Results Cache and the Backtrack stage lines are now almost at the bottom of the 

diagram.  

 

Diagram 52 - TSM Algorithm v3.2.2 Memory Profile 

By applying the Find v2.0 procedure to the version 2.2.1 of the algorithm its maximum memory 

consumption was also reduced. In the Table 89 below its new maximum memory consumption 

is pƌeseŶted. As seeŶ iŶ the ͞MďǇtes͟ liŶes ďoth ǀeƌsioŶs Ŷeed less thaŶ ϭϬϬ MegaďǇtes of 
memory to ƌuŶ. IŶ the ͞V“ ϭ.Ϯ͟ liŶes it is ǀisiďle that afteƌ all the ĐhaŶges applied to the T“M 
algorithm until these two versions are created, the maximum memory consumption of the 

algorithm is reduced about 80%. This is a great reduction. This makes also the algorithm able to 

run in very low resources hardware! 

Table 89 - TSM Basic Versions Maximum Memory Consumption 

  320x240 640x480 800x600 1024x768 1280x960 

v2.2.2 
Mbytes 5.25 Mb 19.2 Mb 29.5 Mb 47.9 Mb 74.3 Mb 

Vs 1.2 -80.3% -80.9% -80.9% -80.9% -80.9% 

v3.2.2 
Mbytes 5.47 Mb 20.1 Mb 31.0 Mb 50.2 Mb 78.0 Mb 

Vs 1.2 -79.5% -80.0% -80.0% -80.0% -80.0% 
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The Find patch importance is very high because it totally released the algorithm from a very high 

memory consumption. In the single thread versions this might not look so significant but as is 

presented in later chapters (chapter 8) where parallelized versions are introduced, the absence 

of this patch would probably cause a lot of problems. 



8. Multi-Threading Implementation 

In this chapter the conversion of the TSM algorithm implementation of a single thread one to a 

multi-threading one using the OMP library [34]. Every stage and procedure is tested using 

multiple CPU cores and the best combination and distribution of cores are finally used to 

succeed the best execution time speed and memory consumption. To this task the modern 

haƌdǁaƌe ďoaƌds’ aǀailaďle resources are considered. The versions presented in chapter 6 are 

tested in order to discover the most efficient one when multithreading technology is used and 

at last one more version of the algorithm is presented in chapter 8.9.3, that is designed totally 

for multiple cores CPU. 

8.1. Features Pyramid 

The Features Pyramid stage consumes a small part of the whole algorithms execution time but it 

precedes the Detect one. This means that while the Features Pyramid stage is executed the 

Detect one waits for it and all the hardware resources are available to be used. This fact allows 

the use of any of the hardware resources in order to speed it up and abridge the Detect stage 

execution. For that reason the usage of the OMP technology is applied to the Features Pyramid 

stage in order to take advantage of it. The OMP technology is applied to the three main 

procedures of this stage, the Resize, the Reduce and the HOG one and also at the whole stage. 

Of course, as the number of CPUs in the hardware is limited there are two types of using the 

multiprocessors technology. Either focus it on one process at a time or share it around multiple 

procedures. Both tactics were tested. 

8.1.1. 1
st

 Tactic 

The first tactic is the one where the multiprocessors technology is focused on every procedure 

in order to speed it up individually as shown in Figure 52 below. The parallelization efficiency of 

every procedure contained in the Features Pyramid stage is explained in previous chapters. 



 

Figure 52 - Features Pyramid Stage OMP Diagram - 1
st

 Tactic 

By applying this tactic in the Features Pyramid stage the following results come on as shown in 

Table 90. 

Table 90 - FP Stage OMP Execution Time - 1
st

 Tactic (%) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 55.9 61.1 58.5 64.8 62.0 x1.7 

3 42.7 46.4 43.1 46.7 43.2 x2.3 

4 38.4 38.6 36.7 38.8 36.6 x2.6 

5 32.7 36.2 33.2 36.8 34.2 x2.9 

6 35.6 34.0 34.4 35.8 33.1 x2.9 

7 41.1 33.5 35.9 33.5 30.1 x2.9 

8 43.7 33.3 35.8 31.1 29.7 x2.9 

 

The two graphs below shows the time consumption of the Features Pyramid stage according to 

the CPU cores used (Diagram 53) and its speedup efficiency (Diagram 54). In the Diagram 53 is 

visible that the speedup of this tactic is image size independent and that the speedup is gained 

by the use of more cores is reducing. This is also visible by the Diagram 54 where the efficiency 

of the number of CPU cores used is decreasing as more cores are used. According to the 

Diagram 53 the usage of 3-4 CPU cores added make the Feature Pyramid stage much faster 

when any additional cores does not offer any significant acceleration of the procedure. 



  

Diagram 53 - FP Stage OMP Execution Time 

(1
st

 Tactic) 

Diagram 54 - FP Stage OMP Execution Time 

Efficiency (1
st

 Tactic) 

As far as the memory consumption of this tactic is actually almost the same when one core only 

is used. This is because the memory consumption of the parallelized versions of the Resize, 

Reduce and HOG procedures is insignificant. 

8.1.2. 2
nd

 tactic 

The second parallelization tactic is the one where multiple procedures where shared in multiple 

processors cores as shown in Figure 53 below. 
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Figure 53 - Features Pyramid Stage OMP Diagram - 2
nd

 Tactic 

Using this tactic the results for the whole Features Pyramid stage is improved according to the 

single version of the algorithm. According to the Table 91 the most efficient results comes when 

the hardware can support a parallelization of five CPU cores. Using more cores does not offer 

better results and that is because the number of five cores is equal to the value of the interval 

parameter. Any other CPU cores more than the five cores are not used by this tactic and stays 

idle. This is not a disadvantage for this tactic because the idle cores can probably be used in 

nested parallelization as explained later. 

Table 91 - FP Stage OMP Execution Time - 2
nd

 Tactic (%) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 77.4 76.2 76.3 74.5 72.0 x1.3 

3 60.4 55.7 53.5 54.0 51.8 x1.8 

4 60.7 56.1 53.8 53.9 52.4 x1.8 

5 34.0 30.6 29.9 31.2 29.5 x3.2 

6 34.4 30.2 30.0 31.3 29.8 x3.2 

7 32.4 30.5 30.0 30.3 30.1 x3.3 

8 32.8 32.4 29.9 30.6 29.0 x3.2 

 



  

Diagram 55 - FP Stage OMP Execution Time 

(2
nd

 Tactic) 

Diagram 56 - FP Stage OMP Execution Time 

Efficiency (2
nd

 Tactic) 

In the Diagram 55 above it is visible that the usage of more than five CPU cores is useless as 

explained in the previous paragraph. What seems strange is the path that the time curves when 

four CPU cores are used. At this point is important to be explained that on this tactic the time 

speedup is achieved by the reduction of the features pyramid stage loop iterations. On the 

single core version this loop iterates for «interval» times. When used two cores the number of 

loop iterations are the half, etc. The value of the «Interval» variable is 5 on the algorithm, so 

ǁheŶ used thƌee aŶd fouƌ Đoƌes of the CPU the Ŷuŵďeƌ of iteƌatioŶs of the stage’s loop is oŶ 
both cases two! This is why the Features Pyramid stage does not gain any speedup. 

As far as the memory consumption of this tactic it is obvious that it is not the same as in the 

tactic 1. While multiple thread execute different procedures inside the Features Pyramid stage 

multiple data are calculated and created simultaneously. Looking at the Figure 53 above it is 

obvious that a simultaneous creation of the image pyramid and the features pyramid would 

allocate a great amount of memory that would also increase the stages maximum memory 

ĐoŶsuŵptioŶ that Đould affeĐt the ǁhole algoƌithŵ’s eǆeĐutioŶ tiŵe. The Featuƌes pǇƌaŵid 
stage maximum memory consumption is reached while the algorithm is in the first Reduce 

procedure as by that time the first level of the image pyramid is in use and cannot be released 

and the first level of the Features Pyramid is already produced (function (13)). This amount of 

memory can be multiplied by the number of the CPU cores used estimating the differences in 

the image sizes are used (function (14)). 

max . [0] . [0] . [int ] 0.5 . [0]FPstage I Pyramid F Pyramid I Pyramid erval I Pyramid    
  

(13) 
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In the function (13) expression the 0.5 . [0]I Pyramid  parameter, represents the Reduce 

procedure temporary memory. By these functions results the Table 92 presents the amount of 

memory needed for the Features Pyramid stage depending on the number of CPU cores used. 

Table 92 - FP Stage OMP 2
nd

 Tactic Max Memory (Mbytes) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 +% 

1 2.3 9.1 14 23 36  

2 4.1 16 25 41 63 +76% 

3 5.5 21 33 54 84 +134% 

4 6.6 25 39 64 100 +178% 

5 7.4 29 44 72 112 +212% 

TSM 5.3 19 30 48 74  

 

As seen in the Table 92 the features pyramid stage maximum memory consumption is increasing 

the same percentage for all image sizes. This comes from the stable ratio between the image 

and features pyramid levels sizes. In the Features Pyramid stage all the data and procedures all 

image size dependent and this creates this stable ratio. While the features pyramid stage 

maximum memory consumption is extremely increasing when using multiple CPU cores, it 

seems to affect the whole algorithms maximum memory consumption (TSM line). This means 

that the seĐoŶd’s taĐtiĐ ŵeŵoƌǇ ĐoŶsuŵptioŶ iŶĐƌeŵeŶt should ďe ĐoŶsideƌaďle ďefoƌe used. 

By comparing these two tactics it is obvious that the most suitable is the 1
st

 one as it is the 

fastest one, more efficient and it does not affect the algorithm maximum memory consumption. 

The 2
nd

 parallelization tactic is only faster when more than 1 CPU is used in the hardware 

resource and the speedup it gains is just a little better than the one the 1
st

 tactic offers. As seen 

in the diagrams below the 1
st

 parallelization tactic is succeeding the best results both in 

execution time and the efficiency on 1 CPU hardware resource. 

  

Diagram 57 - FP Stage OMP Execution Time 

(All Tactics) 

Diagram 58 - FP Stage OMP Execution Time 

Efficiency (All Tactics) 
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8.2. Resize 

The Resize procedure uses less than 0.70% of the whole algorithm execution. Despite that it is a 

tiny part of the algorithm it is a part of the Features Pyramid stage that precede the Detect one 

that is the main time consumer. The fact that it precedes makes it desirable to speed up this 

process in order to abridge the detect stage execution. On the other hand at the features 

pyramid stage all the hardware resources are available  

In the Table 93 ďeloǁ the Resize pƌoĐeduƌe’s tiŵe ĐoŶsuŵptioŶ is Ŷot staďlǇ deĐƌeasiŶg foƌ all 
image sizes. As is visible also in the Diagram 59 below, the Resize procedure is reducing its 

execution time rapidly until the fourth CPU core and by that time it starts an unstable reaction 

to the CPU cores added. This instability is not unique for all image sizes but follows different 

attitude in each of them. This fact makes the Resize procedure unsafe and unreliable for used 

for more than 4 CPU cores.  

Table 93 - Resize Procedure OMP Execution Time (%) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 73.4 87.9 75.9 87.2 80.8 x1.2 

3 65.7 80.9 64.5 70.4 60.4 x1.5 

4 68.5 69.1 55.3 57.0 51.7 x1.7 

5 55.1 70.9 53.1 59.8 50.9 x1.7 

6 51.9 70.1 56.0 60.4 51.2 x1.7 

7 52.3 67.3 65.6 57.9 45.6 x1.8 

8 56.6 68.1 64.6 51.6 44.8 x1.8 

 

  

Diagram 59 - Resize Procedure OMP Execution Time 
Diagram 60 - Resize Procedure OMP Execution Time 

Efficiency 
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In the Diagram 60 above the CPU cores usage efficiency is represented. As is visible the Resize 

procedure parallelization efficiency is not very good. It seems that using many cores on that 

procedure is actually speeds up its execution time but this speedup is not proportional to the 

cores sacrificed on it. 

As shown in the diagrams the best number of CPU cores to be used for this procedure is up to 

three cores. The decision as long as the number of cores to be offered for this procedure is 

complicate because there may be multiple ways of doing that according to the global strategy 

used for the Feature Pyramid stage. 

8.3. Reduce 

The Reduce procedure is open to parallelism using multithreading (OMP) as it contains very 

simple loops that can handle parallelism. Although looking the whole algorithm, Reduce 

procedure takes place in a very small part of it so that it would be preferable to spend resources 

to more significant stages of the algorithm. What is very important though is that the Reduce 

procedure is a part of the features pyramid module that is necessary for the detection to start. 

Foƌ this ƌeasoŶ is iŵpoƌtaŶt to aĐĐeleƌate this stage’s pƌoĐess iŶ oƌdeƌ to shoƌteŶ the deteĐtioŶ 
process beginning. We have all the hardware resources available while the detection stage is 

disabled. In the Table 94 below the time consumption results after testing the Reduce 

procedure using a multicore CPU is shown. 

Table 94 - Reduce Procedure OMP Execution Time (%) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 63.9 65.0 70.0 68.1 67.4 x1.5 

3 35.9 36.8 38.3 38.4 37.0 x2.7 

4 36.4 36.9 38.0 37.2 36.6 x2.7 

5 36.0 36.9 36.9 37.6 36.5 x2.7 

6 36.6 36.7 39.9 37.6 36.3 x2.7 

7 36.2 36.3 39.4 37.6 36.3 x2.7 

8 36.5 36.8 36.9 38.0 37.0 x2.7 

 



  

Diagram 61 - Resize Procedure OMP Execution Time 
Diagram 62 - Resize Procedure OMP Execution Time 

Efficiency 

As seen in the Diagram 61 aďoǀe the ReduĐe pƌoĐeduƌe’s eǆeĐutioŶ tiŵe is gƌeatlǇ ƌeduĐed uŶtil 
the usage of the third CPU core. By the fourth one and upper no more speedup appears. This is 

also visible in the Diagram 62 where the CPU cores usage efficiency is stably decreased when 

using more than three CPU cores. As also seen the Reduce procedure time speedup is accurate 

similar corresponding to the image size. As seen in the Diagram 61 and Diagram 62 the best 

number of CPU cores to be used is about two or three cores. It is worth to remind that the 

Reduce procedure is a small part of the Features Pyramid and is more complicated how the CPU 

cores are about to be shared as other procedure may need the more. 

8.4. HOG 

The HOG procedure is the one that creates the Histogram of Oriented gradients descriptor 

described in chapter 5.4. This procedure is open to parallelism using multithreading (OMP) as it 

contains loops that can handle parallelism. Looking the whole algorithm, the HOG procedure is 

the third most time consuming part of it even if it hold only a small percentage of the whole 

algorithm execution time. It is very significant to reduce its execution time as the feature images 

it creates are the input data to the detection procedure and to be accurate to the Convolution 

stage which is the greatest time consumer of the TSM algorithm. The execution time of the HOG 

procedure when parallelism is applied on it is shown in the Table 95 below. 

Table 95 - HOG Procedure OMP Execution Time (%) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 56.2 55.2 52.7 53.1 52.7 x1.9 

3 37.5 37.0 36.0 35.5 37.8 x2.7 

4 30.3 28.6 27.5 28.4 29.3 x3.5 
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5 24.0 24.1 23.7 25.0 23.9 x4.1 

6 21.7 21.4 20.4 20.9 22.3 x4.7 

7 19.0 18.2 17.8 18.2 18.2 x5.5 

8 17.4 16.9 15.1 15.6 16.0 x6.2 

 

  

Diagram 63 - HOG Procedure OMP Execution Time Diagram 64 - HOG Procedure OMP Execution Time 

Efficiency 

As seen in the Table 95 and also in Diagram 64 the HOG procedure is more efficient to the 

parallelism. The more CPU cores used the more the execution time is decreased. There is no 

limit to the number of CPU cores used. The HOG procedure is the most time consuming 

procedure in the Features Pyramid stage and probably is better if the majority of the CPU cores 

are going to be available for this procedure when the v2.x is used. 

As seen in the Diagram 64 the larger the image is the more efficient is the usage of multicore 

CPUs. It is also visible that the efficiency of using more CPU cores in the HOG procedure is stable 

and pleasantly good as even when using eight CPU cores, the efficiency does not fall under the 

75%. 

8.5. Convolution 

The convolution procedure is the most important one of the algorithm as uses the most 

resources of the hardware and any small improvement on it can cause large improvement to the 

whole algorithm execution. It has a very low complexity and handles a lot of data processing. 

Parallelism can cause much more acceleration on it not only by multithreading usage but also 

with other techniques like GPU usage.  
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On the multiprocessor technology the highest performance parallelism is achieved when the 

parallelization is applied over different filters and not inside the convolution process of a filter 

with the features image as shown in the Figure 54 below. 

 

Figure 54 - Convolution Procedure OMP Diagram 

By applying this parallelization in the convolution stage the results as long as the execution time 

are shown in Table 96 below. 

Table 96 - Convolution Procedure OMP Execution Time (%) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 50.6 50.5 50.5 50.5 50.5 x2.0 

3 33.5 33.4 33.4 33.4 33.4 x3.0 

4 25.4 25.3 25.3 25.3 25.3 x4.0 

5 20.3 20.3 20.2 20.2 20.2 x4.9 

6 17.2 17.2 17.2 17.2 17.2 x5.8 

7 15.2 15.2 15.2 15.2 15.2 x6.6 

8 13.2 13.2 13.2 13.2 13.1 x7.6 

 



  

Diagram 65 - Convolution Procedure OMP 

Execution Time 

Diagram 66 - Convolution Procedure OMP 

Execution Time Efficiency 

As seen in the diagrams and also in the Table 96, the multiprocessors parallelization technique 

creates great results as long as the Convolution stage. Just the usage of a 2
nd

 CPU core achieved 

a speedup twice the time needed when using a simple core CPU. As shown in the last column in 

the Table 96 every CPU core added in the parallelization process gives the same size speedup. 

This is a very pleasant fact as the Convolution process is the one that needed most a time 

execution decrement. It is also very pleasant the fact that the use of every CPU core offers very 

efficient speedup with the efficiency index to be always over the 95%. 

The convolution procedure is the one that probably deserves the most the bound of the 

hardware resources. It is very important to focus all the CPU cores at this stage as this 

parallelization tactic returns the highest results. 

8.6. Distance Transformation 

The Distance transformation stage cannot be parallelized as this process is sequential as 

explained in chapter 5.7. The parallelization technique can although used inside the Distance 

Transformation procedure that handles the main part of this stage. The Distance transformation 

procedure owns the 96.5% of this stage and about the 30% of the whole algorithm so it is very 

useful if a parallelized technique could reduce its execution time. By testing the OMP technology 

in the DT procedure the results are as shown in Table 97 below. 

Table 97 - Distance Transformation Procedure OMP Execution Time (%) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 84.7 70.1 65.6 63.0 62.3 x1.5 

3 67.7 51.6 49.1 45.8 44.2 x2.0 
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4 69.5 46.7 41.9 39.5 36.3 x2.2 

5 70.3 42.7 37.7 34.1 31.2 x2.5 

6 71.0 42.0 38.0 33.4 28.3 x2.6 

7 80.6 43.3 37.5 32.6 26.7 x2.6 

8 87.7 44.3 38.2 30.3 29.4 x2.5 

 

  

Diagram 67 - DT Procedure OMP Execution Time Diagram 68 - DT Procedure OMP Execution Time 

Efficiency 

As seen in the Table 97 above and in the Diagram 67, the Distance Transformation procedure is 

actually gains speedup until the usage of the third core of the CPU. After the third CPU core the 

speedup is affected by the size of the image. In addition the efficiency graph shows that the DT 

procedure parallelization is not very efficient as its efficiency is stably reducing. If the hardware 

resources are available maybe the usage of six CPU cores would be useful but on the other hand 

by observing the Diagram 67 the usage of 3 cores might be the best choice. What is also visible, 

especially in Diagram 68, is that the image size affects the parallelization efficiency. It seems that 

as larger is the image, more CPU cores can be used efficiently. 

8.7. Backtrack Stage 

The Backtrack stage consists of two basic procedures, the Find one and the Backtrack one. The 

Backtrack procedure cannot be parallelized as its processing is sequential and sequence 

depended. This is not a problem as far as the Find v2.0 patch is used that extremely reduced its 

execution time. On the other hand after the usage of the Find v2.0 patch the Find procedure 

increased its execution time and it is the main time consumer of the Backtrack stage. The Find 

procedure can be parallelized but is contains a great part of critical procedures. Anyway, the 

Backtrack stage holds only the 0.05% of algorithms execution time. As far as the Find procedure, 

the speed up gain using the multicore processors is shown in Table 98 below. 
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Table 98 - Find Procedure OMP Execution Time (v2.0) (%) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 82.1 64.5 63.6 50.5 50.2 x1.7 

3 65.0 57.2 56.5 48.5 51.1 x1.8 

4 76.4 65.7 59.8 56.1 58.1 x1.6 

5 75.4 63.1 61.2 58.9 60.4 x1.6 

6 67.5 67.2 63.9 58.6 59.9 x1.6 

7 67.5 74.5 61.3 62.0 57.3 x1.6 

8 81.4 70.1 57.4 61.9 56.5 x1.6 

 

  

Diagram 69 - Find v2.0 Procedure OMP Execution 

Time 

Diagram 70 - Find v2.0 Procedure OMP Execution 

Time Efficiency 

The Table 98 and also the two diagrams (Diagram 69, Diagram 70) above makes it clear that the 

usage of parallelization techniques are efficient in the Find procedure when using only 2 CPU 

cores. Probably the existence of critical data are the reason of the negative efficiency and 

unstable attitude when more CPU cores are used. It is also visible in the Diagram 70 that the 

Find procedure parallelization is more efficient when used for large images in contrast to the 

small ones. 

The Find procedure and the whole Backtrack stage are holds suĐh a sŵall paƌt of the algoƌithŵ’s 
eǆeĐutioŶ tiŵe that eitheƌ usiŶg paƌallelizatioŶ oƌ Ŷot ǁould pƌoďaďlǇ affeĐt the algoƌithŵ’s 
execution time in an unnoticeable level. 

8.8. Level Stage 

The Level detection stage is the main stage of the TSM algorithm. It is the stage where the 

convolution stage results are processed and the detection results come from. It contains the 

Distance Transformation procedure repeated by multiple times for every component of the 
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algoƌithŵ’s ŵodel. It is the ŵost Đoŵpleǆ paƌt of the ǁhole algorithm. In this chapter a series of 

tests over this part is presented in order to discover the most effective parallelization tactic. 

8.8.1. 1
st

 Tactic  

The first parallelization tactic uses the parallelization of the Distance Transformation and Find 

procedure inside this stage, as the Backtrack one cannot be parallelized. The results of this tactic 

is presented in the Table 99 below, 

Table 99 - Level Stage OMP 1
st

 Tactic Execution Time (%) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 90.2 76.0 71.2 68.2 68.0 x1.4 

3 75.1 59.2 56.9 53.1 51.6 x1.7 

4 76.5 54.0 49.1 46.6 43.6 x1.9 

5 78.0 50.7 45.7 42.1 39.1 x2.1 

6 78.3 49.9 45.9 40.7 36.6 x2.1 

7 87.7 50.5 45.7 40.5 34.6 x2.1 

8 96.7 51.9 46.0 37.4 37.1 x2.1 

 

  

Diagram 71 - Level Stage OMP Execution Time 

(1
st

 Tactic) 

Diagram 72 - Level Stage OMP Execution Time 

Efficiency (1
st

 Tactic) 

As seen in the Table 99 and Diagram 71 the Levels stage reaction to this tactic is not linear. The 

levels stage is speeding up at the usage of the first CPU cores but at the end it seems to lose its 

acceleration. This is sensible as it follows the attitude of the DT stage (Chapter 8.6) which is the 

main stage contained by the levels stage. This attitude reacts negatively to this parallelization 

tactic efficiency as shown in the Diagram 72 aďoǀe. As it is ǀisiďle this taĐtiĐ’s effiĐieŶĐǇ is 
reducing continuously as the number of CPU cores is increased.  
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Another characteristic of the first parallelization tactic is that it is not so image size independent. 

As seen in the graphs the smaller the size of the image is the less efficient is this tactic. This is 

very obvious with the smallest tested image of 320x240 pixels where the speedup is gained is 

very low and it tends to become lower as the CPU cores are increasing.  

As far as the memory consumption of this tactic is not actually affected as the DT and Find 

procedure parallelization does not consumes any significant amount of memory. 

8.8.2. 2
nd

 Tactic 

As done in the Feature Pyramid stage where a loop procedure exists, the second parallelization 

tactic is a tactic that separates the loop in different CPU cores (Figure 55). In practice every CPU 

cores undertakes a component stage execution of the level. The number of components is 

enough (13) to bind all available cores. The negative affect of this tactic is that it consumes much 

more memory than the single core one. The increase of the memory consumption of this stage 

when using this tactic is shown in the Table 100 below. 

In the second parallelization tactic a new execution flow diagram is applied as shown in the 

Figure 55 below where the multiple threads of the CPU are distributed to every component 

stage procedure. This way multiple components detection procedure can run in parallel. 

 

Figure 55 - Level Stage OMP 2
nd

 Tactic Diagram 

In the Table 100 below the effect of the 2
nd

 parallelization tactic is shown as far as the time 

consumption of the Level stage. As seen in this table the Level stage gains as great speedup, up 



to five times, when used with more than five CPU cores. It is also visible that the Level stage is 

gaining a very efficient speedup even from the usage of the first extra CPU core in contrast to 

the 1
st

 tactic. 

Table 100 - Level Stage OMP 2
nd

 Tactic Execution Time (%) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 53.4 52.1 51.7 53.7 51.5 x1.9 

3 38.7 37.1 36.5 36.9 36.5 x2.7 

4 28.9 28.2 27.9 28.1 28.0 x3.5 

5 28.0 27.8 27.8 28.1 27.3 x3.6 

6 19.4 19.3 18.4 19.4 18.7 x5.3 

7 20.5 19.7 19.0 19.5 19.0 x5.1 

8 20.4 19.4 18.9 19.4 19.1 x5.1 

 

  

Diagram 73 - Level Stage OMP Execution Time 

(2
nd

 Tactic) 

Diagram 74 - Level Stage OMP Execution Time 

Efficiency (2
nd

 Tactic) 

The results of this tactic as shown in the Table 100 and Diagram 73 is that the execution time of 

the level stage is reducing rapidly until the fourth CPU core. By the fifth core and the usage of 

the second CPU of the testing hardware the stages execution time stops reducing significantly. 

What is extremely positive is that the usage of extra CPU cores in this tactic produces a very 

good efficiency that always stays over 60%. 

Except of the time effect, the 2
nd

 parallelization tactic increases also the memory consumption. 

As referred in chapter 6.20 the maximum memory consumption of the TSM algorithm is reached 

at the Level stage when applied in the top image pyramid level. The maximum memory 

consumption at this point can be predicted using the function (15). In this function the 

algoƌithŵ’s ŵaǆiŵuŵ ŵeŵoƌǇ is the suŵ of the Filteƌs RespoŶses, plus the DT “Đoƌes pƌoduĐed 
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in the DT stage (the same for every component), plus the Backtrack stage temporary memory, 

all during the execution of the Level stage for the features pyramid top level. At last the memory 

consumed by the Model and other data, that is a stable size, is added. 

When more CPU cores are used what is parallelized is actually the Component stage. The Filters 

Responses are the same for all threads. What is private is the DT and Backtrack stages that are 

executed multiple times in the different CPU cores. This means that the maximum memory 

consumption can be predicted using the expression of function (16). 

max
.Responses[0] DT.Scores[0] Backtrack[0] Others   FD F  (15) 

 max
.Responses[0] Others DT.Scores[0] Backtrack[0]    FD F Cores  (16) 

 

Using the function (16) the memory consumption of this stage is multiplied by the number of 

cores used as presented in Table 101 below. 

Table 101 - TSM v3.2.2 Level Stage OMP 2
nd

 Tactic Max Memory (Mbytes) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Average 

1 core 5.47 20.1 31.0 50.2 78.0  

2 cores 8.27 31.0 47.9 77.9 121 +54% 

3 cores 11.1 41.9 64.9 106 164 +108% 

4 cores 13.9 52.8 81.8 133 207 +162% 

5 cores 16.6 63.7 98.8 161 250 +216% 

6 cores 19.4 74.6 116 188 293 +270% 

7 cores 22.2 85.6 133 216 336 +324% 

8 cores 25.0 96.5 150 244 379 +378% 

 

As seen in the Table 101 the usage of a full eight CPU cores parallelization can cause up to 380% 

memory consumption incremental. It is obvious by the data of the Table 101 that this 

parallelization technique has a heavy memory consumption cost. On the other hand, 

considering the relationship between CPU cores and RAM memory that is usually offered in the 

hardware market, this increment in the maximum memory consumption is not prohibitive. It 

would be unusual an eight cores CPU hardware with less than one Gigabyte of RAM memory! 

At this point is very important to refer to the Find v2.0 patch described in chapter 7.2. At this 

chapter the memory reduction that was gained using this patch was appose. This reduction is 

proved very significant on this 2
nd

 parallelization tactic as it keeps low the memory consumption 

incremental. In the Table 102 below the maximum memory consumption of this tactic without 

using the Find v2.0 patch is presented in order to be understandable the benefits this patch 

offered. 



Table 102 - TSM v3.2.2 Level Stage OMP 2
nd

 Tactic Max Memory (Mbytes) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Average 

1 core 13.8 52.5 81.3 132 206  

2 cores 25.0 95.8 149 242 377 +82.4% 

3 cores 36.1 139 216 352 547 +165% 

4 cores 47.3 182 283 461 718 +247% 

5 cores 58.4 226 351 571 889 +329% 

6 cores 69.5 269 418 681 1,060 +412% 

7 cores 80.7 312 485 791 1,231 +494% 

8 cores 91.8 356 552 900 1,401 +577% 

 

As seen in the Table 102 above, the maximum memory consumption of the algorithm when 

using the 2
nd

 parallelization tactic would be much larger creating questions about the ability of 

using it at any hardware. As seen in the 8 cores line the maximum memory consumption 

reaches even more than one gigabyte of memory. 

8.8.3. 3
rd

 Tactic 

At last, a combination of these two tactics is tested. This 3
rd

 tactic used the parallelized version 

of the DT and Find procedure and on the same time shares component detection on several CPU 

cores. On the Table 103 the results of this tactic when used until two CPU cores for the 2nd 

tactic while the rest cores are shared to the 1st tactic. In the next table, Table 104, the same 

result when the 2nd tactic uses until four CPU cores. 

Table 103 - Level Stage OMP 3
rd

 Tactic Execution Time (%) 

(Tactic 2 = 2 cores) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 54.9 52.3 52.1 52.5 52.5 x1.9 

3 58.6 51.4 47.9 45.9 44.5 x2.0 

4 53.0 50.0 46.6 41.8 40.6 x2.2 

5 58.8 45.9 42.0 36.5 34.0 x2.4 

6 59.6 49.1 43.9 40.6 36.5 x2.2 

7 67.4 52.2 45.1 38.5 33.4 x2.2 

8 81.6 61.5 52.8 44.7 37.7 x1.9 

 

Table 104 - Level Stage OMP 3
rd

 Tactic Execution Time (%) 

(Tactic 2 = 4 cores) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 54.5 52.4 52.4 52.9 52.1 x1.9 

3 37.7 36.1 36.5 37.1 35.9 x2.7 



4 28.8 27.7 27.3 27.1 26.7 x3.6 

5 28.7 28.7 27.8 27.9 27.9 x3.5 

6 31.8 29.5 28.3 29.3 28.0 x3.4 

7 49.0 40.8 35.0 31.6 28.4 x2.8 

8 28.8 25.5 23.8 23.1 22.2 x4.1 

 

  

Diagram 75 - Level Stage OMP Execution Time 

(All Tactics) 

Diagram 76 - Level Stage OMP Execution Time 

Efficiency (All Tactic) 

As seen in these two graphs, according to the Table 99, Table 100, Table 103 and Table 104, the 

3
rd

 parallelization tactic is not gaining any special speedup by the time parallelization is applied 

in the DT and Find stage. When it is using only two CPU cores for the component stage 

parallelization it seems that there is no worth using it, as until the 3
rd

 CPU core, it is having the 

same result as using the 2
nd

 tactic on its own. When using 4 cores for the component stage 

parallelization the results also does not seems to be better than using the 2
nd

 parallelization 

tactic on its own with maximum of four CPU cores. 

The 3
rd

 parallelization tactic does not seems at all to produce any beneficial result as shown in 

Diagram 75 above. As shown in the Diagram 76, the 2
nd

 tactic seems to be more efficient than 

the others, consuming memory that does not seems to produce memory issues. Even if the Find 

v2.0 patch is not in use the 2
nd

 parallelization tactic would also be preferable as even when used 

with only 2 or three CPU cores succeeds better results in contrast to the 1
st

 tactic even when the 

last one uses all the eight CPU cores. 

8.9. TSM Algorithm 

After examining the effect of parallelism in most of the stages and procedures of the algorithm, 

in this chapter a comparison of every stage and procedure according to its efficiency is appose. 

In the Table 105 below the efficiency of every stage of the algorithm that is referred in previous 

chapters. 
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Table 105 - TSM Procedures & Stage OMP Efficiency 

Stage 
Memory 

Charge 

CPU Cores 

2 3 4 5 6 7 8 

Resize No 0.62 0.49 0.42 0.35 0.29 0.25 0.22 

Reduce No 0.75 0.90 0.68 0.54 0.45 0.38 0.34 

HOG No 0.93 0.91 0.87 0.83 0.78 0.78 0.77 

FP Stage 
Yes 0.66 0.60 0.45 0.64 0.53 0.46 0.40 

No 0.83 0.75 0.66 0.58 0.48 0.41 0.37 

Convolution No 0.99 1.00 0.99 0.99 0.97 0.94 0.95 

DT No 0.73 0.66 0.56 0.50 0.43 0.37 0.32 

Find No 0.83 0.61 0.40 0.32 0.26 0.22 0.19 

Level Stage 
Yes 0.95 0.90 0.89 0.72 0.88 0.73 0.64 

No 0.68 0.57 0.48 0.41 0.35 0.31 0.26 

 

The Table 105 is a parallelization map giving useful information of how the parallelization affects 

the algorithms parts and proposing the parts that the CPU cores have to be focused. It is also 

shows when the parallelization affects the memory consumption of the TSM algorithm warning 

for memory issues. Using this table, two parallelization tactics are presented for the whole 

algorithm. The 1
st

 tactic is using the most time efficient tactics of the algorithŵs’ paƌts ǁhile the 
2

nd
 one is using the most memory consumption efficient tactics of the DT and Features Pyramid 

stages. In the next subchapters the impact of those two tactics over the two latest versions of 

the algorithm is appose. 

8.9.1. TSM Algorithm v2.2 

In the Table 105 (Chapter 8.9) the green bolded lines show the parallelized procedure with the 

higher efficiency that can be used in order to achieve the highest speedup. By using the most 

efficient tactics of the algorithms in version 2.2.2 the results are as shown in the Table 106 

below. 

Table 106 - TSM v2.2.2 OMP Execution Time (Time Efficient Version) (%) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 51.5 51.2 50.9 51.5 51.5 x1.9 

3 35.6 34.9 34.8 34.8 34.4 x2.9 

4 27.2 26.7 26.5 26.6 26.3 x3.8 

5 23.6 23.1 22.9 23.0 22.9 x4.3 

6 18.9 18.4 18.3 18.3 18.0 x5.4 

7 17.2 17.1 16.9 17.0 16.8 x5.9 

8 15.7 15.8 15.5 15.7 15.6 x6.4 

 



  

Diagram 77 - TSM v2.2.2 OMP Execution Time 

(Time Efficient) 

Diagram 78 - TSM v2.2.2 OMP Execution Time 

Efficiency (Time Efficient) 

In the Diagram 77 the Table 106 data are figured. As seen in the graph the 1
st
 parallelization 

tactic of the 2.2.2 version of the TSM algorithm is image size independent. It is very pleasant 

that using eight CPU cores produce a speedup of 6.4 times faster. As shown in the Diagram 78 

the algorithms parallelization efficiency is always higher than 80% and more than 95% for the 

first four cores used. This is a very positive result! 

As far as the memory consumption of the algorithm when using this tactic the maximum 

memory consumption of the algorithms is presented in the Table 107 below.  

Table 107 - TSM v2.2.2 OMP Max Memory Consumption (Mbytes) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 

1 5,3 19 30 48 74 

2 8,1 30 46 76 117 

3 11 41 63 103 160 

4 14 52 80 131 203 

5 16 63 97 158 246 

6 19 74 114 186 289 

7 22 85 131 214 332 

8 25 96 148 241 375 

 

As seen in the Table 107 above the maximum memory consumption needed for the algorithm, 

even when eight CPU cores are used, seems not to be prohibited according to the usual 

hardware designs in the market. It is almost unusual to have a hardware with more than 4 CPU 

cores and less than 2 gigabytes of memory. In addition it is also unusual to have an 8 cores CPU 
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(2 CPUs) with less than 4 gigabyte memory. Even the embedded systems are usually designed 

with 0.5 or 1 gigabytes of memory and 2 or 4 cores CPU. 

On the other hand the image processing algorithms usually use small sized images at the size of 

640x480 (0.3 megapixels). As seen in the Table 107 the algorithm consumes less than 100 

megabytes of memory for images of this size. This observations show that this tactic can be used 

for any hardware design. 

Nevertheless the fact that the 1
st

 tactic hardware requirements is suitable for the majority of the 

embedded systems in the market a second parallelization tactic is appose as a CPU cores 

independent version. This tactic uses the parallelized versions on every procedure that keeps 

the maximum memory consumption stable. This tactic time results are shown in the Table 108 

below. 

Table 108 - TSM v2.2.2 OMP Execution Time (Memory Efficient Version) (%) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 62.1 57.4 56.3 56.6 52.5 x1.8 

3 46.2 40.9 39.8 39.8 38.4 x2.4 

4 40.8 32.9 31.8 31.5 32.5 x3.0 

5 37.5 28.4 28.6 27.2 26.0 x3.4 

6 36.9 25.5 24.9 24.3 25.0 x3.8 

7 35.0 23.6 22.9 21.8 21.2 x4.2 

8 34.7 23.2 21.9 20.4 19.5 x4.4 

 

  

Diagram 79 - TSM v2.2.2 OMP Execution Time 

(Memory Efficient) 

Diagram 80 - TSM v2.2.2 OMP Execution Time 

Efficiency (Memory Efficient) 
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As seen in the Table 108 the algorithms speedup is increasing a bit as the image size is greater. 

On the Diagram 80 is also visible a fall of the algorithms efficiency as the image size is getting 

smaller. These tables show that the 2
nd

 parallelization tactic can be efficiently used for large 

sized images as this tactic holds the maximum memory consumption low and also its execution 

time is approaching the execution time of the 1
st

 tactic as the image size is getting larger. 

The 2
nd

 tactic maximum memory consumption is the same with the single core algorithms 

implementation shown in the Table 107 above corresponding line. 

8.9.2. TSM Algorithm v3.2 

Applying the 1
st

 parallelization tactic in the version 3.2 of the algorithm (Chapter 6.20), the 

execution time impact is as shown in the Table 109 below. As seen in this table the 3.2 version 

of the algorithm succeeds up to 6.4 times. It is very positive that even from the usage of a 

second CPU core the execution time is decreased to its half.  

Table 109 - TSM v3.2.2 OMP Execution Time (Time Efficient Version) (%) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 51.6 51.3 51.2 51.9 51.1 x1.9 

3 35.3 34.9 34.7 34.8 34.7 x2.9 

4 26.7 26.6 26.5 26.5 26.6 x3.8 

5 22.8 23.1 23.1 23.1 23.0 x4.3 

6 18.4 18.5 18.2 18.3 18.2 x5.5 

7 17.3 17.2 17.0 17.0 17.0 x5.8 

8 16.3 15.8 15.6 15.7 15.7 x6.3 

 

  

Diagram 81 - TSM v3.2.2 OMP Execution Time 

(Time Efficient) 

Diagram 82 - TSM v3.2.2 OMP Execution Time 

Efficiency (Time Efficient) 
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In the Diagram 81 and Diagram 82, it is extremely obvious that the 1
st

 parallelization tactic is 

totally image size independent. This is also visible by the data of the Table 109. The algorithm is 

speeding up during all the extra CPU cores used and its efficiency is always very high over the 

80% holding it over the 95% for the four primal cores (1 CPU). The impact of this tactic is very 

positive. 

In the Table 110, the impact of the 1
st

 parallelization tactic is shown. As seen in this table even 

ǁheŶ usiŶg ŵoƌe thaŶ oŶe CPU aŶd laƌge sized iŵages the algoƌithŵ’s ŵaǆiŵuŵ ŵeŵoƌǇ does 
not exceed the 400 megabytes. Although, as referred in previous chapters, the combination of 

CPU cores and RAM memory appears in the hardware market does not make the usage of this 

version of the algorithm prohibited. 

Table 110 - TSM v3.2.2 OMP Max Memory Consumption (Mbytes)  

CPUs 320x240 640x480 800x600 1024x768 1280x960 Average 

1 5,5 20 31 50 78  

2 8,3 31 48 78 121 +54.0 % 

3 11 42 65 106 164 +108 % 

4 14 53 82 133 207 +162 % 

5 17 64 99 161 250 +216 % 

6 19 75 116 188 293 +270 % 

7 22 86 133 216 336 +324 % 

8 25 96 150 244 379 +378 % 

 

The 1
st

 parallelization tactics is the fastest one using a sensible amount of memory available at 

the majority of the hardware designs in the market. Although it is important to present the 

impact of the 2
nd

 parallelization tactic on this version of the algorithm. This impact in the 

algoƌithŵ’s eǆeĐutioŶ tiŵe is shoǁŶ iŶ the Table 111. 

Table 111 - TSM v3.2.2 OMP Execution Time (Memory Efficient Version) (%) 

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup 

2 62.9 58.9 57.5 56.8 56.6 x1.7 

3 46.6 42.0 41.3 40.3 39.6 x2.4 

4 41.4 34.8 33.3 32.7 31.5 x2.9 

5 38.3 30.3 28.8 27.9 26.8 x3.3 

6 36.3 28.1 26.9 25.5 23.9 x3.6 

7 38.0 26.8 25.4 24.0 21.9 x3.8 

8 39.4 26.1 24.1 21.6 21.5 x4.0 

 



  

TSM v3.2.2 OMP Execution Time (Memory Efficient) 
TSM v3.2.2 OMP Execution Time Efficiency (Memory 

Efficient) 

In contrast to the 1st parallelization tactic, the 2nd one of the 3.2.2 version of the algorithm 

does not react the same way to all image sizes. As seen this tactic is more efficient to the larger 

images. As seen in the Diagram 82 the algorithms efficiency is decreasing linearly as the number 

of CPU cores is increasing falling under the 60% at the last 2 cores. This is the main difference 

between this and the 1st tactic which keeps its efficiency high for all usable CPU cores. 

The 2nd tactic maximum memory consumption is the same with the single core algorithms 

implementation shown in the Table 110 above corresponding line. 

8.9.3. TSM Algorithm v4.1 

On this chapter a last version of the algorithm is presented, designed for multi CPU systems 

using more than 1 CPUs. As presented in chapter 8.9, many of the algorithms stages and 

procedures shows reduction of their parallelization efficiency while the CPU cores used are 

increasing. In this version the maximum efficiency of all procedures is tried to be succeeded. In 

the Diagram 83 below the efficiency of all procedures is presented according to the CPU cores 

used. As seen in this graph, in the most procedures the maximum efficiency is when using less 

cores and only the HOG and the Convolution procedures keep their efficiency high despite the 

usage of multiple CPU cores. 
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Diagram 83 - TSM OMP Procedures Efficiency per CPU Core 

According to the Diagram 83 above, the HOG and the Convolution procedures are the most 

efficient and the most stable, all the rest are either inefficient or unstable. This version of the 

TSM algorithm (v4.1) is based on focusing on these two procedures offering the majority of the 

hardware resources to them. The idea of this last version is based on splitting the algorithm is 

two sections trying to get the maximum efficiency of each of them. As seen in the Figure 56 

below the first section is an extension of the Features Pyramid stage containing the HOG and 

the Convolution procedures that are the most efficient ones and the second one the Level stage 

that is less efficient and its maximum efficiency is reached when using low number of cores. 

These two section have to share the hardware resources (CPU cores) in a way that would offer 

the maximum efficiency to the algorithm. 
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Figure 56 - TSM Algorithm v4.1 Execution Flow Diagram 

In the Figure 56 above a complicated execution flow graph is presented. At the beginning, the 

algorithm uses all the available CPU cores in order to calculate the HOG descriptors and the 

Filter Responses of the first level of the Image Pyramid. No resize procedure is needed for the 

top level of the Features pyramid as it uses the image on its original size. This level is also the 

one with the greatest size image so the most time consuming level. The HOG and the 

Convolution procedures on the other hand are the most efficient ones worth to the usage of the 

full CPU resources. After the first level Filters Responses are calculated the algorithm separates 

the available CPU cores in the two sections. The first section is calculating the features images 

and the Filters Responses of every level while and the second one executes the level stage 

looking for detections. The Level stage section needs the Filters Responses data structure as 

input and this is the reason why the algorithm calculates the first level Filters Responses outside 

the sections section. If the algorithm do that inside the first section the second would be idle, 

waiting the first one to finish the first level calculations in order to use it. In this design the 



second stage starts immediately its execution as its input data are already calculated while the 

first seĐtioŶ ĐalĐulates the Ŷeǆt leǀel’s Filteƌs RespoŶses. 

The idea behind this execution design is the usage of as many as it can CPU cores to the most 

efficient and also most time consuming procedure. This procedure is the Convolution one. The 

HOG procedure is added to the same section cause of its sequential relationship with the 

Convolution one and mainly because of its very high efficiency in parallelism. On the other hand, 

while most of the CPU cores are allocated to the section one, less cores are busy to the section 

two where other procedures are executing that need less execution time and are less efficient. 

This technique is hiding in a way the time consumption of the procedures executed in the 

section two behind the consumption time of the section one. 

Another though that motivated this version is to limit the number of CPU cores used in the Level 

stage parallelization in order to reduce the maximum memory consumption it consumes. Using 

the CPU cores at the Convolution procedure that creates zero temporary memory the algorithm 

can succeed high execution time efficiency with less memory consumption. At the same time 

the time the algorithm can execute the Section two without the need of allocating the great 

amount of memory that the each Component stage needs. 

Between those two sections there is unfortunately a dependency. This dependency is that the 

output data of the section one (Filters Responses) are the input of the section two (Level Stage). 

It is obvious that the section two has to wait for a while the section one to finish some of its 

calculations. The ideal usage of this version would be a balanced share of the CPU cores 

between those two sections so that when the first section finishes the calculations of a levels 

Filters Responses, the second section would start the components detection on the same level.  

There are two moments where the section two waits the section one. The first time is when the 

section two waits the section one to calculate the first level Filters Responses. The second 

moment is when the first section finishes its procedure and the whole algorithm has to wait the 

section two to finish. As referred above the section two cannot finish before the section one as 

it uses its outputs as an input. This means that the section one will always finish a levels 

component detection time earlier than the section two. As far as this type of «waiting», the 

solution is to start the detection from the top to the bottom of the Image Pyramid so that the 

last components detection of section two would use the smallest image Filters Responses which 

is the less time consuming level. This solution transfer the «waiting» problem to beginning 

where the section two has to wait for the first calculated Filters Responses. The solution to this 

problem is as designed in this version and figured in Figure 56, where the algorithm uses all its 

aǀailaďle CPU Đoƌes iŶ oƌdeƌ to ĐalĐulate the fiƌst leǀel’s Filteƌs RespoŶses. This ǁay the first 

levels HOG and Convolution procedure occurs outside the sections section and no cores have to 

set idle. 



Using the data of the efficiency and execution time tables, a performance function was created 

for the algorithm version 3.1 in order to predict the algorithm performance according to the 

CPU cores used in each section. This function is depending on two more function as shown 

below. 

2 1x x x   (17) 

. .*Ft x t ef xF F
 

(18) 

    . .x . . 1 .x1 . 1 . 20.25 0.75 ,t x t t x t x t t x t xFD HOG Conv MAX HOG Conv IPstage Comp      
 

(19) 

 

In function (17), the x2 is the number of cores used in section 2 and x1 are the cores used in the 

section 1. X is the number of CPU cores available by the hardware. 

In function (18), Ft.x is the execution time percentage needed by the procedure F during the 

algorithms execution, when Ft is the execution time percentage needed by the procedure 

when no parallelism techniques are used and Fef.x the efficiency of the procedure F when 

parallelism techniques are used with x number of CPU cores. 

At last the function (19) is the algorithms version 3.2 performance function according to the CPU 

cores used in each section. As seen in the first part of the function the performance of the HOG 

and Convolution procedures when executed for the first level of the Image Pyramid are 

multiplied by the number of 0.25. This is because the first level of the Image Pyramid holds the 

25% of the whole Image Pyramid data as explained in chapter 6.10. At the second part of the 

function (19) the execution time of each section is calculated and the greater is kept. What is 

not calculated, because it is very hard to be predicted in contrast to its significance, is the delay 

that the section 1 can cause to section 2. This delay is insignificant as it affects the function 

result only when both sections needs almost the same time and also because it has a very small 

value as it concerns the last level of the Image pyramid that is the smallest one and the 

detection procedure is extremely fast.  

Using function (19) with the data of the execution time and efficiency tables (the average 

efficiency as far as the image size) the results come of are shown in Table 112 below, 

Table 112 - TSM v4.1.2 Execution Time Simulation 

Available 

Cores 

Section 2 cores v3.2 

Sim 

v3.2 

Real 1 2 3 4 5 6 7 

8 33.4 18.6 13.8 15.7 19.9 28.8 54.1 15.6 15.8 

7 33.7 19.0 16.0 20.2 29.1 54.4  17.0 17.1 

6 34.1 19.3 20.6 29.4 54.8   18.2 18.3 



5 34.6 21.1 29.9 55.3    23.0 23.0 

4 35.5 30.8 56.1     26.5 26.6 

3 36.8 57.5      34.9 34.9 

2 60.4       51.5 51.4 

 

As shown in the Table 112 above the simulated results show that this version (4.1.2) is going to 

be faster than the version 3.2.2 when using more than one CPU hardware resources but slower 

for single CPU hardware. The simulated results also shows that this design of the algorithm 

works better when 2 or 3 CPU cores are offered to the Section 2. Using this data, the version 

4.1.2 was tested in real world and its results are shown in the following tables. 

Table 113 - TSM v4.1.2 Execution Time 

Cores 
Section 2 cores 320x240 v3.2 

 

Section 2 cores 640x320 v3.2 

1 2 3 4 Time Mem 1 2 3 4 Time Mem 

8 23.9 19.8 18.3 21.6 16.0 39.4 20.6 16.5 14.4 17.4 15.6 26.1 

7 23.1 19.5 21.6 24.5 17.1 38.0 20.5 16.7 17.2 21.3 17.0 26.8 

6 26.0 20.5 26.0 32.5 18.1 36.3 20.8 18.1 21.3 29.2 18.2 28.1 

5 24.9 23.7 32.6 59.3 22.4 38.3 22.1 21.2 29.6 54.5 22.8 30.3 

4 28.0 34.0 60.6  26.3 41.4 26.1 30.6 55.4  26.3 34.8 

3 35.7 62.5   34.7 46.6 33.2 56.9   34.5 42.0 

2 66.7    50.7 62.9 60.2    50.7 58.9 

  

Cores 
Section 2 cores 800x600 v3.2 

 

Section 2 cores 1024x768 v3.2 

1 2 3 4 Time Mem 1 2 3 4 Time Mem 

8 20.6 15.9 14.3 16.6 15.5 24.1 20.1 16.3 13.8 16.6 15.5 21.6 

7 21.0 16.5 16.8 21.0 16.9 25.4 20.2 16.2 16.7 20.6 16.8 24.0 

6 21.2 17.9 21.1 29.4 18.1 26.9 20.4 17.7 20.8 29.2 18.1 25.5 

5 22.6 21.1 29.5 54.7 22.9 28.8 22.1 20.9 29.4 54.7 22.8 27.9 

4 26.4 30.5 55.6  26.3 33.3 25.7 30.4 55.4  26.1 32.7 

3 33.8 57.0   34.5 41.3 33.7 56.8   34.3 40.3 

2 60.2    50.9 57.5 59.8    51.2 56.8 

  

Cores 
Section 2 cores 1280x960 v3.2  Section 2 cores 1600x1200 v3.2 

1 2 3 1 Time Mem  1 2 3 1 Time Mem 

8 20.4 15.6 14.3 16.6 15.8 21.5  20.2 15.3 14.4 16.6 15.6 19.5 

7 20.4 16.4 16.8 20.8 17.0 21.9  20.3 16.9 16.7 20.6 16.9 20.9 

6 20.2 18.3 20.9 29.5 18.2 23.9  20.5 18.6 20.9 29.6 18.2 23.2 

5 22.4 21.1 29.9 55.4 23.1 26.8  22.8 21.2 29.9 55.6 22.9 26.1 

4 26.5 30.6 56.2  26.7 31.5  27.0 30.7 56.4  26.2 31.2 



3 34.5 57.5   34.9 39.6  34.7 57.7   34.5 38.7 

2 60.4    51.3 56.6  60.6    51.2 52.3 

 

As seen in the Table 113 the version 4.1.2 of the TSM algorithm is faster than any other version 

especially when used with 2 CPUs. The speedup of the 4.1.2 version is not so significant but 

combined with the maximum memory advantages it offers it could replace the version 3.2.2. As 

seen in these tables the version 4.1.2 it is much faster than the memory efficient edition 

(«Mem» column) of the 3.2.2 version. This means that this version is ideal when used with 

multi-CPUs hardware and large images. 

In version 4.1 the TSM algorithm is split in two parallel section where each of them has its own 

memory consumption. The section 1 is creating Features images and the Filters Responses. The 

Features images data are locally created and released just after the calculation of corresponding 

Filter Responses but the Filter Responses are released by the section 2 after the level detection 

is completed. The section 2 uses the Filter Responses created in section 1 while the rest data it 

uses are locally created and released. The detection results are created inside the section 2 but 

they are calculated as global memory consumption because their size is dependent by the size 

of the Results Cache data structure. They also have a very small size after the Find v2.0 patch 

(Chapter 7.2). 

 

Figure 57 - TSM v4.1 Maximum Memory Sections Diagram 

As shown in Figure 57 above the maximum memory consumption is actually formed by the level 

every section is and the distance between the two sections level. As greater this distance is so 

larger is the memory consumption. It is obvious that maximum memory consumption of both 

sections is reached when they execute its procedures at the top level of image pyramid, actually 

at their first run. On the other hand the Filter Responses of each level is always greater than the 

HOG image of the same level. This means that the Filters Responses that are created by the 

seĐtioŶ ϭ aƌe oǀeƌlappiŶg the seĐtioŶ’s ŵeŵoƌǇ. WheŶ the seĐtioŶ Ϯ fiŶishes its pƌoĐessiŶg oŶ a 



level then the Filters Responses of this level is released.  So as it is sensible the maximum 

memory consumption of the algorithms is reached when the section 2 is on the first level and 

the section 1 on the last one. This way the all levels Filter Responses are hold in the memory 

increasing the algorithms maximum memory consumption like in the Figure 58. 

 

Figure 58 - TSM v4.1 Filters Responses Section Usage Diagram 

To reduce the maximum memory consumption of this version the distance between the 

execution levels of every section has to be limited to the minimum. This can be achieved by 

obligating the section 1 to wait for the section 2 on a specific maximum distance. If the section 2 

is faster or equal to the section 1 this problem does not appears. On the other hand if the 

section 1 is faster, then this problem is getting larger. This means that the best distance limit 

that would not affect the algorithm execution time is 1 meaning that when section 2 is 

processing the level N the section is processing the level N+1. This way the maximum memory 

consumption is equal to the following function result, 

max Scection2[1] Filter_Responses[1 2] Features_Image[2]M MM M     (20) 

max Scection2[1] Filter_Responses[1 3] Features_Image[3]M MM M     (21) 

 

On the other hand in the real world execution of the TSM algorithm such an ideal 

synchronization between these two sections cannot be achieved. This means that the Filters 

Responses of N+1 Level must be already calculated when the Section 2 finishes the processing of 

the level N. This means that when the Section 2 is finishing the level N processing the Section 1 

has to start processing the level N+2 in order to avoid at any chance that there is no possibility 

of Section 2 to wait for Section 1. The conclusion is that the distance limit that should be set in 

order to avoid section waiting and at the same time minimum maximum memory consumption 

is 2. The results using this options are as shown in Table 114 below, 



Table 114 - TSM v4.1 Maximum Memory Consumption Comparison 

Version Cores 320x240 640x480 800x600 1024x768 1280x960 Average 

v3.2.2 
1 5.60 Mb 20.3 Mb 31.2 Mb 50.5 Mb 78.2 Mb  

8 +347% +375% +379% +383% +385% +374% 

V2.2.2 8 +345% +370% +375% +378% +380% +370% 

V4.1.2 8 
+151% +162% +163% +165% +165% +161% 

14.0 Mb 53.2 Mb 82.2 Mb 134 Mb 208 Mb  

 

As seen in the Table 114 above, the version 4.1.2 of the algorithm is using almost the half 

memory of the rest parallelized versions and less than three times the memory a single core 

version uses. 

To summarize, the version 4.1.2 of the algorithm is 

succeeding execution times similar to the rest parallelized 

version with a tiny, insignificant speedup. On the other 

hand the memory consumption of this version is about the 

half of the rest parallelized version. As seen in the Table 

115, the TSM algorithm consumption is not large according 

to the available memory a multi-core hardware design 

usually dispose. The conclusion is that this version could probably be very useful when used for 

large size images where the memory consumption and the execution time are really high and 

small percentage differences can be noticeable sizes in real world. For example in a 3200x2400 

pixels image the version 4.1.2 is 10.2% faster than the version 3.2.2. 

8.9.4. TSM Algorithm Versions Comparison 

After presenting the three version (v2.2.2, v3.2.2, v4.1.2) of the TSM algorithm using OMP 

parallelization technology a last survey has to be done. From these three version the most 

efficient is the 3.2.2 version. 

Table 116 - TSM OMP Versions Execution Time Comparison (%) 

Version 1 2 3 4 5 6 7 8 

V3.2.2 (Mem) 51.0 34.6 26.3 22.8 18.1 16.9 15.7 51.0 

V3.2.2 (Time) 58.5 41.9 34.7 30.4 28.1 27.2 26.6 58.5 

V4.1.2 61.5 34.2 26.6 21.6 18.5 17.1 15.0 61.5 

 

The version 4.1.2 is a special version that has to be customized carefully according to the 

hardware resources offered in order to warranty its performance. As referred in chapter 8.9.3, 

this version is suitable for multiprocessors systems processing large size images, either wise the 

Table 115 – TSM v4.1.2 vs v3.2.2 

Image 3200x2400 

Time 89.8% 

Memory 30.8% 

Memory v3.2 2,427 Mb 

Memory v4.1 749 Mb 



profit it can offer is few in contrast to its instability of performance if it is not correctly 

customized. 

Table 117 - TSM OMP Versions Max Memory Comparison (%) 

Version 1 2 3 4 5 6 7 8 

V3.2.2 (Mem) 0 0 0 0 0 0 0 0 

V3.2.2 (Time) 0 +54 +108 +162 +216 +270 +324 +378 

V4.1.2 +118 +54 +54 +54 +108 +108 +108 +161 

 

On the other hand the version 3.2.2 is stably faster than the version 2.2.2 and its memory 

consumption is insignificantly higher. It offer good performance without any further 

customization at any kind of hardware resource. Both these version can be used with the 

memory efficient editions described in chapters 8.9.1 and 8.9.2, but in our opinion there is no 

reason for doing that as the time efficient editions consume affordable memory related to the 

modern embedded systems capabilities. The usage of the Find v2.0 patch has a major role on 

that. 

As every procedure of the TSM algorithm has a different parallelization efficiency the execution 

time distribution is different according to the CPU cores used at the parallelized versions. The 

execution time distribution of the version 3.2.2 of the TSM algorithm is shown in the Table 118 

below. 

Table 118 - TSM v3.2.2 Execution Time Distribution (%) 

CPU Cores 1 2 3 4 5 6 7 8 

Resize 
0.95 1.43 1.63 1.96 2.28 2.86 3.13 3.52 

+0 +0.49 +0.69 +1.01 +1.33 +1.92 +2.19 +2.57 

HOG 
1.72 1.72 1.74 1.80 1.75 2.30 2.27 2.44 

+0 +0 +0.02 +0.08 +0.03 +0.58 +0.55 +0.72 

Convolution 
66.1 65.0 63.3 63.0 58.2 62.2 58.7 55.4 

+0 -1.16 -2.82 -3.17 -7.96 -3.92 -7.39 -10.7 

Level Stage 
31.2 31.8 33.2 33.1 37.6 32.4 35.6 38.2 

+0 +0.64 +2.01 +1.94 +6.43 +1.22 +4.40 +7.10 

 

As seen in this table the Convolution procedure tends to participate less as the CPU cores 

number increases. This is very sensible as this procedure has very high efficiency at the 

parallelization technology and its execution time tends to reduce more than the rest 

procedures. That is why the other procedures tend to increase its participation. As seen in the 

same table the Resize (and Reduce) procedure and the Level stage participation in the algorithm 

execution time increased much more as these two participants efficiency is not as high as the 

two others when used too many CPU cores. 



 

Diagram 84 - TSM Algorithm v3.2.2 OMP Execution Time Distribution Impact 

1 2 3 4 5 6 7 8
CPU Cores 

Convolution Level Stage HOG Resize



9. TSM System Alternative Patches 

In this chapter some patches over the TSM algorithm design are presented. These patches aim 

to improve the algorithm memory consumption or speed up the detection procedure or both. 

All of these improvements affect the algorithm detection performance making the algorithm 

less reliable or detection efficient but much faster. The goal is the ratio of speedup to the 

detection performance fall to be the greatest it can be achieved. 

By studying the relations between the procedures execution time and the data structures (Filter 

Responses, Features Images, etc) of different levels of Features Pyramids, a stable ratio between 

them is discovered strictly connected with the image size. Using 5 as the value of the Interval 

paƌaŵeteƌ ;default aŶd pƌoposed ďǇ the ĐƌeatoƌsͿ the eǆeĐutioŶ tiŵe Ŷeeded foƌ a leǀels’ filteƌs 
responses, for example, to be calculated is given by the function (22) . The same ratio occurs 

also when refer to memory consumption on the Filters Responses data structure, as shows the 

function (23). 

Another ratio between the Features Pyramid levels is the ratio between a level and its following. 

Function (24) and (25) shows the relation between a level and the rest pyramid including it. The 

Functions (26) and (27) express the relation between a level and the following ones. 

  0.75 ( 1)Time level Time level    (22) 
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1
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 



    (26) 

1

Mem( ) 0.33 Mem( )
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
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Using the functions (22) to (27) it is easy to predict the memory and execution time speedup can 

be achieved when the MinLevel parameter value changes. If for example the first level of the 

Features Pyramid is skipped the benefit that would be gained is a speedup of 25% at the 

Convolution stage. A 25% speedup would also cause the same speedup at the execution time of 

the whole algorithm as skipping a level in the Feature Pyramid, means also skipping a level in the 

Convolution and the detection procedures. 



This conclusion is the basic idea behind most of the next alternative patches (Chapter 9.3 to 9.8) 

that try to speed up the algorithm by skipping the execution of some of the most time 

consuming procedures (Convolution, DT Stage). Skipping the convolution procedure in some 

levels of the features pyramid would cause a significant execution time saving, especially if these 

levels are from the top ones. The same applies to the Level stage execution where the detection 

procedures is applied. 

9.1. NMS Limit 

The NMS procedure is the one that selects the best detection results within a multiple set of 

values appear in the area of a detected human face, as described in chapter 5.10. In the owners 

implementation the NMS procedure sorts the detected results ascending and starting from the 

highest results checks the rest ones for overlaps, rejecting the overlapping ones. One detail in 

this implementation is that the NMS procedure after sorting the detections results it 

automatically rejects the lowest values without processing. The number of the detections 

results that are rejected is defiŶed ďǇ the ͞NM“ liŵit͟ paƌaŵeteƌ ǁhiĐh default ǀalue is the ϳϬ% 
of the default Results Cache size. By examining the algorithms results setting this parameter 

value to zero, the algorithm accuracy change. The effect of this technique is double. Firstly, the 

majority of the detections in that area of lowest 70% are usually faulty detection, so this 

rejection protects the algorithm results from fake detection that decrease its reliability. On the 

other hand within this area sometimes correct detections exist, that unfortunately are rejected, 

decreasing the algorithm detection efficiency (Diagram 85). This sacrifice of correct detection 

against the fake ones is probably decided cause of the greater ratio of faulty against correct 

results in this area. 

 

Diagram 85 - Results Cache NMS Limit Parameter Example 

In the Table 119 below the results of testing the algorithm using a set of 205 images used by the 

creators of the algorithm also for testing, are shown. At this table, the detections of the 

algorithm according to the threshold variable value is presented when using the 99 filters 

model. 

 Table 119 - NMS Limit Results using 99 Filters Model 

Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 

NMS Limit 70% 

Detected 89.1 87.8 86.1 82.9 82.5 82.1 80.8 - 

Sorted Results 

Faulty Face #1 Face #2 Face #3 Face #4 Face #5 Highest 30% Lowest 70%



Missed 10.9 12.2 13.9 17.1 17.5 17.9 19.2 - 

Fake 21.8 15.3 10.6 8.27 4.93 3.27 1.82 - 

Reliability 71.4 75.8 78.1 77.1 79.1 79.8 79.6 - 

Fake/Real 15.0 10.9 4.25 1.84 1.57 1.08 0.82 - 

NMS Limit 0% 

Detected 93.2 91.2 90.4 88.2 85.5 84.8 83.1 80.3 

Missed 6.84 8.76 9.62 11.8 14.5 15.2 16.9 19.7 

Fake 47.9 36.7 23.9 16.4 9.50 6.37 3.95 2.59 

Reliability 50.2 59.6 70.4 75.2 78.4 80.2 80.4 78.7 

 

As seen in the Table 119, the default threshold variable value produce totally different results on 

the algoƌithŵ ǁheŶ the ͞NM“ Liŵit͟ paƌaŵeteƌ is set to ϳϬ%. As seen, the number of face 

detections is slightly increased when on the other hand the number of fake detections is 

increased by more than two tiŵes. The ƌatio ďetǁeeŶ the fake aŶd the ƌeal faĐes that the ͞NM“ 
Liŵit͟ paƌaŵeteƌ ƌejeĐts, ĐhaŶges aĐĐoƌdiŶg to the ͞Thƌeshold͟ paƌaŵeteƌ ǀalue. The loǁeƌ this 
parameteƌ is the laƌgeƌ is this ƌatio. As seeŶ iŶ this taďle ͞Fake/Real͟ liŶe, the ƌatio ďetǁeeŶ fake 
and real faces rejected starts from 15 ǁheŶ the ͞Thƌeshold͟ paƌaŵeteƌ ǀalue is -0.70 while it is 

less thaŶ oŶe foƌ ͞Thƌeshold͟ paƌaŵeteƌ ǀalues gƌeateƌ thaŶ -0.45. As seen in this table the 

ƌeliaďilitǇ of the algoƌithŵ ǁith the ͞NM“ Liŵit͟ paƌaŵeteƌ disaďled is ďetteƌ as loŶg as the 
͞Fake/Real͟ faĐe ƌatio is gƌeateƌ thaŶ ϭ.ϱ. WheŶ the ͞Thƌeshold͟ paƌaŵeteƌ ǀalue is gƌeateƌ 
than -0.50 the version of the algorithm ǁithout the use of the ͞NM“ Liŵit͟ paƌaŵeteƌs suĐĐeeds 
better reliability. 

  

Diagram 86 - TSM Algorithm Performance with NMS Limit Disabled (99 Filters Model) 

In the Diagram 86 above as is visible the Threshold parameter value is inversely analogous to the 

number of face detections. As it is increasing, the number of face detections (real or faulty) is 

decreasing. On the other hand as the Threshold variable is increasing the number of missed 

deteĐtioŶs is iŶĐƌeasiŶg. The ͞ReliaďilitǇ͟ iŶdiĐatoƌ is the oŶe that ƌeǀeals the ďest ƌatio ďetǁeeŶ 
successful detections, missed detections and fake ones. The function that gives this indicator is 

the (28) below 
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As far as the 146 filters Model the results of the same testing procedure are shown in the Table 

120 below. 

 Table 120 - NMS Limit Results using 146 Filters Model 

Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 

NMS Limit 70% 

Detected 88.5 86.3 84.2 82.5 78.8 77.4 - 

Missed 11.5 13.7 15.8 17.5 21.2 22.6 - 

Fake 10.8 7.13 5.06 3.26 2.12 1.36 - 

Reliability 79.9 81.0 80.6 80.2 77.5 76.5 - 

Fake/Real 2.48 1.45 0.79 0.62 0.33 0.33 - 

NMS Limit 0% 

Detected 93.4 90.6 88.2 85.3 81.4 79.3 76.5 

Missed 6.62 9.40 11.8 14.7 18.6 20.7 23.5 

Fake 19.7 12.4 8.02 5.00 3.05 2.11 1.65 

Reliability 76.0 80.3 81.9 81.6 79.4 77.9 75.5 

 

In the Table 120 aďoǀe the iŵpaĐt of disaďliŶg the ͞NM“ Liŵit͟ paƌaŵeteƌ iŶ the NM“ 
procedure is much lower than in the 99 filters model. This is because the 146 filters model is 

more accurate as it uses more and better trained filters for the landmark detection. This is also 

depicted in the relation between the fake and the real face detections inside the 70% of results 

ƌejeĐted ďǇ the ͞NM“ Liŵit͟ parameter. This relation is 2.5 fake detections for every correct one 

when in the 99 filters model this relation is 15 ǁheŶ the ͞Thƌeshold͟ paƌaŵeteƌ ǀalue is -0.70. 

What is iŶteƌestiŶg is that the ͞NM“ Liŵit͟ paƌaŵeteƌ has Ŷegatiǀe iŵpaĐt oŶ the algoƌithŵ 
results when values lower than -Ϭ.ϲϱ oŶ the ͞Thƌeshold͟ paƌaŵeteƌ aƌe used.  



  

Diagram 87 - TSM Algorithm Performance with NMS Limit Disabled (Both Models) 

At the Diagram 87 above the effect of different values of the Threshold parameter is shown for 

both models. This effect is the same as described in the corresponding paragraph for the 99 

filters Model. It is sensible that when the Threshold parameter is reducing the number of real 

and also fake face detection to increase and the opposite when increasing. The only difference is 

that the 146 filters model is more accurate creating much less fake detections. On the other 

hand the detection efficiency is better for the 99 filters model as it is more abstract. The 

iŶteƌestiŶg poiŶt of those tǁo ŵodels is that as the ͞Thƌeshold͟ paƌaŵeteƌ ǀalue is iŶĐƌeasiŶg 
their reliability is converging. This is very encouraging as the 99 filters model is much faster than 

the 146 filters one and it can succeed pretty good reliability and detection efficiency than can 

make it more preferable. 

As ƌefeƌƌed iŶ this Đhapteƌ’s paƌagƌaphs, the ͞NM“ Liŵit͟ paƌaŵeteƌ has a positiǀe iŵpaĐt iŶ the 

algoƌithŵ’s ƌesults ǁheŶ the ͞Thƌeshold͟ paƌaŵeteƌ ǀalue is loǁ at ďoth Models. The disaďliŶg 
of the ͞NM“ Liŵit͟ paƌaŵeteƌ is Ŷot a ǁise deĐisioŶ if it is Ŷot ƌeplaĐed ďǇ aŶotheƌ ŵethod that 
would be able to increase the algorithms reliability by rejecting the fake faces. This method is 

appose in the next chapter, chapter 9.2.  

9.2. Dynamic Threshold 

A static value on the Threshold parameter might not be always efficient. Sometimes in a sharp 

image the faces within it can produce many high-score values much higher than the Threshold 

parameter value. In addition fake faces may be detected with high-score values much lower 

than the real faces ones but still over the Threshold parameter limit. In our implementation a 

new proposal to this problem is presented using a dynamic Threshold value. By examining the 

fake results values a ratio between the correct detection and the fake one was discovered. 

Usually the better the sharpness of an image is the easier for an image processing algorithm to 

have accurate results. A common technique for making an image processing algorithm more 

independent of this parameter is the normalization method. A similar technique is the one we 
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create for that purpose. First of all, the NMS procedure does not reject the lowest detection 

ƌesults usiŶg the ͞NM“ Liŵit͟ paƌaŵeteƌ ďut iŶ additioŶ the ƌesults aƌe Đoŵpaƌed aŵoŶg 
themselves. The results that their values are less than the Ratio parameter value of the highest 

one are rejected.  

 

Figure 59 - Dynamic Threshold Patch Execution Flow Diagram 

On the Table 121 below the results of the Face Detection TSM algorithm using different values 

of the Ratio and Threshold parameters for the 99 filters Model is shown. As seen in the table the 

most critical parameter is the reliability of the algorithm. As greater it is the more reliable the 

algorithm is. A second important parameter is the number of detected faces as the more face 

detection the algorithm achieves the more efficient it is. The desirable result is the algorithm to 

detect as more faces it can with the maximum percentage of reliability. 

Table 121 - Dynamic Threshold Patch Results with 99 Filters Model 

Threshold Ratio Detected Missed Fake Reliability Precision Recall 

-0.70 

Original 89.1 10.9 21.8 71.4 0.78 0.89 

0% 93.2 6.84 47.9 50.2 0.52 0.93 

5% 91.2 8.76 33.7 62.3 0.66 0.91 

10% 90.6 9.40 20.5 73.5 0.80 0.91 

15% 87.8 12.2 13.7 77.1 0.86 0.88 

20% 86.1 13.9 7.99 80.1 0.92 0.86 

25% 83.8 16.2 4.39 80.7 0.96 0.84 

30% 81.4 18.6 1.55 80.4 0.98 0.81 

35% 79.3 20.7 1.07 78.6 0.99 0.79 

-0.65 

Original 87.8 12.2 15.3 75.8 0.85 0.88 

0% 91.2 8.76 36.7 59.6 0.63 0.91 

5% 90.8 9.19 22.4 71.9 0.78 0.91 

10% 88.2 11.8 14.7 76.6 0.85 0.88 

15% 86.3 13.7 8.18 80.2 0.92 0.86 

20% 84.2 15.8 5.29 80.4 0.95 0.84 

25% 81.8 18.2 1.54 80.8 0.98 0.82 

30% 79.5 20.5 1.06 78.8 0.99 0.79 

Detection Results 
Normilize Results to 
be greater than zero 

Normilize Results to 
the maximum one 

Reject Results lower 
than Ratio variable 



-0.60 

Original 86.1 13.9 10.6 78.1 0.89 0.86 

0% 90.4 9.62 23.9 70.4 0.76 0.90 

5% 88.0 12.0 14.3 76.7 0.86 0.88 

10% 85.7 14.3 8.86 79.1 0.91 0.86 

15% 84.8 15.2 5.48 80.9 0.95 0.85 

20% 82.5 17.5 1.78 81.3 0.98 0.82 

25% 79.9 20.1 1.06 79.2 0.99 0.80 

-0.55 

Original 82.9 17.1 8.27 77.1 0.92 0.83 

0% 88.2 11.8 16.4 75.2 0.84 0.88 

5% 85.9 14.1 9.26 79.0 0.91 0.86 

10% 85.3 14.7 6.12 80.8 0.94 0.85 

15% 82.9 17.1 2.51 81.2 0.97 0.83 

20% 80.6 19.4 1.05 79.9 0.99 0.81 

-0.50 

Original 82.5 17.5 4.93 79.1 0.95 0.82 

0% 85.5 14.5 9.50 78.4 0.90 0.85 

5% 84.8 15.2 6.59 80.0 0.93 0.85 

10% 82.9 17.1 3.48 80.5 0.97 0.83 

15% 80.3 19.7 1.05 79.7 0.99 0.80 

-0.45 

Original 82.1 17.9 3.27 79.8 0.97 0.82 

0% 84.8 15.2 6.37 80.2 0.94 0.85 

5% 82.9 17.1 3.96 80.2 0.96 0.83 

10% 81.2 18.8 1.55 80.2 0.98 0.81 

15% 78.8 21.2 0.81 78.3 0.99 0.79 

-0.40 

Original 80.8 19.2 1.82 79.6 0.98 0.81 

0% 83.1 16.9 3.95 80.4 0.96 0.83 

5% 81.4 18.6 2.06 80.0 0.98 0.81 

10% 78.8 21.2 0.81 78.3 0.99 0.79 

15% 77.1 22.9 0.82 76.6 0.99 0.77 

 

As seen in the Table 121 the Ratio ǀaƌiaďle iŵpƌoǀes the algoƌithŵ’s peƌfoƌŵaŶĐe at aďout ϭ.ϱ% 
as far as its Maximum Reliability and 4.1% its maximum successful detections. At every value of 

the Threshold parameter the Dynamic Threshold patch increases the reliability and efficiency 

indexes about 1-2%. These increments on the TSM algorithm performance indexes is not very 

significant as the numbers reveal but they show that the Dynamic Threshold patch is an 

successful suďstitute of the ͞NM“ Liŵit͟ paƌaŵeteƌ.  

As the Threshold parameter value is increasing the Ratio techniques does not seems to offer any 

positive results, but on the other hand when low values are set to Threshold parameter, a small 

value of the Ratio one offers a much better performance to the algorithm results. The 



conclusion is that a Ratio of 0.05 to 0.15 can be usefully used when low Threshold parameter 

value is used aiming on high face detections rates, as shown in Diagram 88. As seen in the 

Diagram 88, the results of the algorithm when the Ratio parameter is used is better in all 

indexes. In the Diagram 88 the impact of the Ratio technique in the results when used with -0.65 

(continuous) and -0.60 (dashed) Threshold variable values is shown. 

  

Diagram 88 - Dynamic Threshold Patch Impact on 

Threshold Low Values (99 Filters Model) 

Diagram 89 - Dynamic Threshold Patch Performance 

Impact (99 Filters Models) 

As seen in Diagram 88, the results reliability is stƌoŶglǇ iŶĐƌeased ǁheŶ the ͞Ratio͟ paƌaŵeteƌ is 
set to 5% while the face detection rate is not actually reduced. As described above this 

phenomenon is smaller when used with -0.60 Threshold parameter value than with -0.65. 
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Threshold = -0.65 Threshold = -0.65, Ratio = 0.15 

Figure 60 - Dynamic Threshold Patch Performance Examples 

As described above the usage of the Ratio parameter is a useful technique giving the algorithm a 

portion of stability as it rejects the fake face detection even when the Threshold parameter 

value is lower than it should. As seen in the Table 121 a Ratio value of 5-15% gives always a 

satisfactory result. 

As far as the 146 filters Model the results applying the Ratio parameter is shown in the Table 

122 below. 

Table 122 - Dynamic Threshold Patch Results with 146 Filters Model 

Threshold Ratio Detected Missed Fake Reliability Precision Recall 

-0.70 

Original 88.5 11.5 10.8 79.9 0.89 0.88 

0% 93.4 6.62 19.7 76.0 0.80 0.93 

5% 92.3 7.69 12.0 82.0 0.88 0.92 

10% 89.5 10.5 8.11 83.0 0.92 0.90 

15% 87.6 12.4 5.96 83.0 0.94 0.88 

20% 85.7 14.3 4.75 82.2 0.95 0.86 

25% 82.1 17.9 3.52 79.7 0.96 0.82 

-0.65 

Original 86.3 13.7 7.13 81.0 0.93 0.86 

0% 90.6 9.40 12.4 80.3 0.88 0.91 

5% 89.1 10.9 7.95 82.7 0.92 0.89 

10% 87.4 12.6 5.76 83.0 0.94 0.87 

15% 85.3 14.7 4.77 81.8 0.95 0.85 

-0.60 

Original 84.2 15.8 5.06 80.6 0.95 0.84 

0% 88.2 11.8 8.02 81.9 0.92 0.88 

5% 86.3 13.7 5.16 82.4 0.95 0.86 

10% 84.6 15.4 4.35 81.5 0.96 0.85 

15% 81.6 18.4 3.05 79.6 0.97 0.82 

-0.55 Original 82.5 17.5 3.26 80.2 0.97 0.82 



0% 85.3 14.7 5.00 81.6 0.95 0.85 

5% 83.1 16.9 3.47 80.7 0.97 0.83 

10% 81.2 18.8 2.31 79.7 0.98 0.81 

-0.50 

Original 78.8 21.2 2.12 77.5 0.98 0.79 

0% 81.4 18.6 3.05 79.4 0.97 0.81 

5% 80.8 19.2 2.33 79.2 0.98 0.81 

10% 78.8 21.2 1.60 77.8 0.98 0.79 

 

By the application of the Ratio parameter, the detection efficiency and the reliability of the 

algorithm is increased as seen in the Table 122 overcoming the results of the original version. 

This is very important as by reducing the Threshold parameter value to the -0.70 the algorithm 

face detection efficiency is increasing and by using the Ration parameter value to a 10 

percentage the algorithm results are better in all indexes. The same thing is observed when the 

threshold variable is set to -0.65 and the ratio one to 10%.  

 

Diagram 90 - Dynamic Threshold Patch Performance Impact (146 Filters Model) 

As a ĐoŶĐlusioŶ the disaďliŶg of the ͞NM“ Liŵit͟ paƌaŵeteƌ of NM“ pƌoĐeduƌe ƌeǀealed a 
number of valid face detections but also a larger number of invalid ones. The number of fake 

face detections can ďe ƌeduĐed ďǇ iŶĐƌeasiŶg the ǀalue of the ͞Thƌeshold͟ ǀaƌiaďle ďut this 
change cause also a small decrement of the algorithms detection efficiency. At last the Dynamic 

Thƌeshold patĐh usiŶg the Ratio paƌaŵeteƌ is the oŶe that ĐaŶ ƌeplaĐe the ͞NM“ Liŵit͟ oŶe in 

the NMS procedure. The Ratio parameter is more efficient and also fairer as it is not dependent 

by the number of detections but by the detected faces sharpness. The results tables are the 

proof. 
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9.3. Interval 

The greatest consumer of execution time of the algorithm is the Convolution stage (Diagram 30, 

Chapter 6.20) where the Filter Responses are produced. The Convolution stage duration is 

depended on two parameters. The first parameter is the number of filters used by the model 

parts and the second one is the number of levels the features pyramid has. The larger the 

feature pyramid is the more time is needed for the convolution procedure. The length of the 

features pyramid is also affecting the number of the Level stage calls that uses the Distance 

Transformation stage which is the second greatest time consumer (Diagram 30, Chapter 6.20). 

The Convolution and the DT stage consumes about the 96% of the whole algorithm execution. 

In chapter 7, the Short Pyramid patch reduced the number of levels in an important amount, as 

explained. Although the number of levels reduced is closely to its half, the levels of the features 

pyramid that was removed was the latest. The latest levels of the feature pyramid have actually 

the smallest sizes and that was the reason that even if the length of the features pyramid was 

reduced about to its half, the reduction of the execution time of the algorithm was reduced for 

only about 4%. It would be a very pleasant if there was a way of reducing the number of levels 

of the features pyramid removing levels from the top. 

Removing levels from the top of the Feature pyramid would remove the ability from the 

algorithm of detecting small faces within the images. If for example the first level of the feature 

pyramid is removed then the ability of the algorithm to detect faces in the size of 100 pixels high 

within the image would be greatly reduced. If the algorithm is used for an application than does 

not tries to detect very small face within large images then it would not be a problem but this is 

the subject of chapter 9.4. 

In this chapter, a method of reducing the number of the top levels of the features pyramid of 

the algorithm aiming on reducing its execution time is appose. In the chapter 5.5 the ͞IŶteƌǀal͟ 
parameter was introduced. This parameter determines the number of scaled images, inside the 

features pyramid, between two images with scale ratio of two. In this chapter the impact of the 

reduction of this parameter value is going to be examined.  

The T“M algoƌithŵ Đƌeatoƌs set the ͞IŶteƌǀal͟ paƌaŵeteƌ 
value to five as the default value. Changing this parameter 

value to four would change the whole features pyramid 

images scale and this is why the impact of this change 

cannot be calculated using the execution time of the 

algoƌithŵ ǁheŶ used ǁith otheƌ ͞IŶteƌǀal͟ paƌaŵeteƌ 
values. In the Table 123 the number of the levels of the 

features pyramid according to the Interval parameter is 

Table 123 - FP Levels per Interval 

Image Size 
Interval 

5 4 3 

320x240 7 6 4 

640x480 12 10 7 

800x600 13 11 8 

1024x768 15 12 9 

1280x960 17 14 10 



presented. What is very important on this change is not only the execution time gain but its 

impact on the algorithms detection efficiency and its reliability. 

The algoƌithŵs eǆeĐutioŶ tiŵe ǁheŶ the ͞iŶteƌǀal͟ paƌaŵeteƌ is ƌeduĐed to four is shown in the 

Table 124 when this change is applied to the version 3.2.2. As seen in this table, the execution 

time gained is noticeable, about 20%. If the Interval parameter is further reduced to three the 

execution time is almost twice reduced to 37.8%. These reductions is very positive but they have 

aŶ iŵpaĐt oŶ the algoƌithŵ’s peƌfoƌŵaŶĐe as shoǁŶ iŶ the Ŷeǆt taďle ;Table 125). 

Table 124 - TSM v3.2.2 Interval Patch Execution Time (%) 

Interval 320x240 640x480 800x600 1024x768 1280x960 Average 

4 -28.3 -19.8 -18.5 -18.7 -17.7 -20.6 

3 -45.4 -37.0 -35.9 -35.7 -35.2 -37.8 

 

Table 125 - TSM Algorithm Interval Patch Performance (%) 

Threshold -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 

Interval 5 

Detected 91.2 90.4 88.2 85.5 84.8 83.1 

Missed 8.76 9.62 11.8 14.5 15.2 16.9 

Fake 36.7 23.9 16.4 9.50 6.37 3.95 

Reliability 59.6 70.4 75.2 78.4 80.2 80.4 

Interval 4 

Detected 86.3 84.0 82.3 80.1 77.4 75.0 

Missed 13.7 16.0 17.7 19.9 22.6 25.0 

Fake 27.9 17.3 11.5 7.18 3.21 1.13 

Reliability 64.7 71.5 74.3 75.5 75.4 74.4 

Interval 3 

Detected 72.0 69.9 66.9 65.4 62.8 61.1 

Missed 28.0 30.1 33.1 34.6 37.2 38.9 

Fake 19.0 10.7 5.44 3.16 1.01 0.35 

Reliability 61.6 64.5 64.4 64.0 62.4 61.0 

 

In the Table 125 above the detection efficiency and the reliability results are not as positive as 

the execution time gain. As seen the reduction of the Interval parameter to four causes 5 to 10 

percent reduction of the algorithms detection efficiency while its reliability is also low. The 

results are even worst when the interval variable is set to three where the algorithms detection 

efficiency and reliability is getting lower than 70%.  

The detection efficiency and the reliability of the algorithms seems to reduce a lot when the 

interval parameter value is change and is reducing. On the other hand the execution time 



speedup gained is significant reaching the 20%. Reducing the Interval parameter value seems to 

be a risk as it makes the algorithm less reliable and efficient and it does not seems to worth it. 

This technique reduces the algorithm efficiency so much that it would not be advisable to be 

used in combined to other patches presented in this thesis. On the other hand, other patches 

that do not affect significantly the algorithms efficiency can be combined offering similar 

execution time speedup without making the algorithm unreliable. 

9.4. Canvas 

As referred in the previous chapters, the features pyramid levels consumes time according to 

theiƌ iŵage size. UsiŶg the ͞IŶteƌǀal͟ paƌaŵeteƌ set to fiǀe, the tiŵe Ŷeeded foƌ the fiƌst leǀel of 
the features pyramid is about the 25% of the time needed for all the features pyramid levels. 

The time needed for the next level is about 19% etc. To sum up, the first interval set of levels (1 

to interval) needs about the 75% of the whole features pyramid levels. All these leads to the 

conclusion that if the algorithm skipped even one level from the top of the features pyramid this 

ǁould sigŶifiĐaŶtlǇ ƌeduĐe the algoƌithŵ’s eǆeĐutioŶ tiŵe. 

In this chapter one method for speeding up the algorithm is presented sacrificing a part of its 

reliability and detection efficiency, but controllable. In this method two new parameters are 

imported in the algorithm implementation that gives the opportunity of sacrificing the ability of 

the algorithm to detect very small or very large faces within the image but gaining time 

consumption. 

These tǁo paƌaŵeteƌs aƌe the ͞MiŶ FaĐe͟ aŶd the ͞Maǆ FaĐe͟ defiŶiŶg the ŵiŶiŵuŵ aŶd the 
ŵaǆiŵuŵ faĐe size aĐĐoƌdiŶg to the iŵage’s size that the algoƌithŵ ǁould tƌǇ to deteĐt. This 
way the levels used for detecting faces larger or smaller than this percentages would be skipped 

by the algorithm. 

The algorithm detects large faces in the latest levels of the image pyramid. This means that 

ǁheŶ the ͞Maǆ FaĐe͟ paƌaŵeteƌ is ƌeduĐiŶg the algoƌithŵ skips leǀels asĐeŶdiŶg staƌtiŶg fƌoŵ 
the last level. As far as the time consumption profit of this change will not be great as the latest 

a leǀel is iŶ the featuƌes pǇƌaŵid, the less eǆeĐutioŶ tiŵe Ŷeeds. This ǁaǇ ǁheŶ the ͞Maǆ FaĐe͟ 
parameter is reduced the execution time saved would be too few in contrast to the reliability 

that it ŵaǇ lose. Foƌ that ƌeasoŶ the ͞Maǆ FaĐe͟ parameter should be reduced only if the 

algorithm is used in applications that do not try to detect faces conceiving large part of the 

image. 



  

  

Figure 61 - Faces Size Within the Image Examples 

As far as the small faces, these are detected in the top levels of the features pyramid so in the 

laƌgest featuƌes iŵages. IŶ ĐoŶtƌast to the ͞Maǆ FaĐe͟ paƌaŵeteƌ, the ͞MiŶ FaĐe͟ oŶe is ŵuĐh 
more significant as far as the saving of execution time. Even if the algorithm skips one level from 

the top, its execution time is reduced by 25%. This is a very important reduction. So, if the 

algorithm is used for detecting large faces within images, then it would be very helpful if the 

͞MiŶ faĐe͟ paƌaŵeteƌ ǁould ďe iŶĐƌeased iŶ oƌdeƌ soŵe of the top levels of the features 

pyramid would be skipped and the algorithm could gain a significant speed up. 

In previous chapters has been referred that 

the algorithm can detect faces with the 

minimum size of 100 pixels. This makes it 

oďǀious that the ͞MiŶ FaĐe͟ paƌaŵeteƌ does 
not always has a real effect to the algorithm. 

As the Table 126 shows the minimum face 

size that the algorithm can detect in specific 

image sizes is larger as the image size is 

Table 126 - TSM Minimum Detectable Face (%) 

Image Size 99 Model 146 Model 

320x240 41.7 20.8 

640x480 20.8 10.4 

800x600 16.7 8.33 

1024x768 13.0 6.51 

1280x960 10.4 5.21 



smaller. As seen in this table when the image height is 240 pixels the algorithm can detect faces 

laƌgeƌ thaŶ the ϰϭ.ϳ% of the iŵage height. This ĐoŶĐludes that if the ͞MiŶ FaĐe͟ paƌaŵeteƌ is set 
to 25% it would have no impact to the algorithms execution. In the Table 126 below the faces 

size that ĐaŶ ďe deteĐted ďǇ the featuƌes pǇƌaŵid’s leǀels aƌe shoǁŶ. 

The execution time saving for every level of the pyramid skipped using these parameters are 

shown in the Table 127 ďeloǁ. As seeŶ iŶ this taďle, settiŶg the ͞MiŶ FaĐe͟ paƌaŵeteƌ ǀalue to 
30% can gain a speedup up to 68.4% for a very large image (1028x960) and at least 25% for a 

small one (640x480). This is a very important speedup that can be easily used when the image 

classification is known. If for example the algorithm is used for images with a close capture of 

faces then the top levels of the features pyramid are useless, while if the face capture is from 

large distance, then the bottom levels are the ones that are useless. 

Table 127 - Max/MinFace Parameters Execution Time Profit (%) 

 Detectable Face Size per Level (%)  Profit Approach 

Level 320x240 640x480 800x600 1024x768 1280x960 Level 
MaxFace 

;Bot→TopͿ 
MinFace 

;Top→BotͿ 

1 45.8 24.1 19.9 15.9 13.1 25.0 74.4 -0% 

2 54.2 30.7 26.3 21.7 18.3 18.8 55.7 -25.0 

3 62.5 37.3 32.7 27.5 23.6 14.1 41.6 -43.8 

4 70.8 43.9 39.1 33.3 28.9 10.5 31.1 -57.8 

5 79.2 50.5 45.5 39.1 34.1 7.91 23.2 -68.4 

6 87.5 57.1 51.9 44.9 39.4 5.93 17.2 -76.3 

7 95.8 63.7 58.3 50.7 44.7 4.45 12.8 -82.2 

8  70.3 64.7 56.5 49.9 3.34 9.45 -86.7 

9  76.9 71.2 62.3 55.2 2.50 6.94 -90.0 

10  83.5 77.6 68.1 60.5 1.88 5.07 -92.5 

11  90.1 84.0 73.9 65.7 1.41 3.66 -94.4 

12  96.7 90.4 79.7 71.0 1.06 2.60 -95.8 

13   96.8 85.5 76.3 0.79 1.81 -96.8 

14    91.3 81.6 0.59 1.22 -97.6 

15    97.1 86.8 0.45 0.77 -98.2 

16     92.1 0.33 0.44 -98.7 

17     97.4 0.25 -0% -99.0 

Range ±4.2 ±3.3 ±3.2 ±2.9 ±2.6    

 

In the Figure 61 the size of multiple faces according to the image size are shown. As seen in 

these images a face must be too zoomed in to the camera to take place in a large part within the 

images as happens in the bottom left image in Figure 61. The most common distance can make 

a face holding the 10% to 50% of the image height and that makes it difficult to ƌaise the ͞MiŶ 



Leǀel͟ paƌaŵeteƌ ǀalue ďeĐause it ƌaises the possiďilitǇ of affeĐtiŶg the algoƌithŵs deteĐtioŶ 
effiĐieŶĐǇ. What ŵight ǁoƌth a tƌǇ is to iŶĐƌease the ǀalue of the ͞MiŶ Leǀel͟ paƌaŵeteƌ at suĐh 
a small quantity that the algorithm could at least skip the top level of the features pyramid and 

gain a 25% time speedup. 

OŶ the otheƌ haŶd the ͞Maǆ FaĐe͟ paƌaŵeteƌs as seeŶ iŶ these iŵages ĐaŶ easilǇ ďe ƌeduĐed foƌ 
a significant amount as it is very unusual for a face to be captured at such a close zoom that it 

can conceive larger than 70% or at most 80%. The bad news is that the levels of the features 

pyramid that could be skipped by this parameter are the smallest ones and the speedup the 

algorithm can gain very insignificant. Although, it seems that a ͞Maǆ FaĐe͟ paƌaŵeteƌ ǀalue 
eƋual to ϴϬ% is ǀeƌǇ possiďle to haǀe a tiŶǇ, iŶsigŶifiĐaŶt iŵpaĐt to the algoƌithŵ’s deteĐtioŶ 
efficiency. 

The heartening fact is that as the pyramid size is decreasing, all the levels of the pyramid 

execution time participation is increasing. As seen in the Table 128 below the last level of the 

pyramid is using the 5.78% of the whole pyramid detection time on a 7 levels while in a 17 levels 

pyramid only 0.33%. This means that a MaxFace Parameter value set to 80% can offer about 

13% reduction on the execution time of a 320x240 image and about 5% on a 640x480 image 

when the corresponding reduction is less than 2% on a 1280x960 image. On the other hand the 

top levels participation is always very significant and skipping them can be proved very useful in 

large size images as mentioned before. 

Table 128 - Max/MinFace Execution Time Profit per Image Size 

 320x240 640x480 800x600 1024x768 1280x960 

Level Face Profit Face Profit Face Profit Face Profit Face Profit 

1 45.8 27.4 24.1 24.5 19.9 24.4 15.9 24.2 13.1 24.1 

2 54.2 21.3 30.7 18.9 26.3 18.6 21.7 18.5 18.3 18.3 

3 62.5 16.3 37.3 14.3 32.7 14.2 27.5 14.0 23.6 13.9 

4 70.8 12.4 43.9 11.0 39.1 10.8 33.3 10.7 28.9 10.6 

5 79.2 9.56 50.5 8.28 45.5 8.29 39.1 8.14 34.1 8.06 

6 87.5 7.24 57.1 6.31 51.9 6.25 44.9 6.16 39.4 6.11 

7 95.8 5.78 63.7 4.91 58.3 4.82 50.7 4.74 44.7 4.70 

8   70.3 3.75 64.7 3.66 56.5 3.59 49.9 3.57 

9   76.9 2.87 71.2 2.81 62.3 2.78 55.2 2.74 

10   83.5 2.20 77.6 2.20 68.1 2.13 60.5 2.06 

11   90.1 1.67 84.0 1.66 73.9 1.60 65.7 1.57 

12   96.7 1.33 90.4 1.28 79.7 1.23 71.0 1.23 

13     96.8 0.99 85.5 0.96 76.3 0.94 

14       91.3 0.74 81.6 0.71 

15       97.1 0.57 86.8 0.55 



16         92.1 0.42 

17         97.4 0.33 

Range ±4.2  ±3.3  ±3.2  ±2.9  ±2.6  

 

9.5. 68 Filters Model 

One of the major advantages of this TSM algorithm as referred in the Related Work chapter 

(Chapter 3) is its ability to detect faces until the viewing angle of ±90 degrees. Many related 

algorithms used for face detection are trained to detect centered faces. As described in chapter 

4, the algorithm is using parts based mixtures of trees to detect faces and estimate their pose. 

For the detection and pose estimation of faces in the area of ±60 to ±90 degrees viewing angle 

the algorithm is using six pose trees which use 78 filters (146 filters model). These 78 filters are 

compressed to 39 ones on the 99 filters model. The existence of these extra pose trees and 

filters cost to the TSM algorithm extra time and memory consumption as they extend the 

execution time of the Convolution and Level stage and also enlarge the Filters Responses arrays 

list which is one of the main participants on the maximum memory consumption formation. 

As far as the memory consumption of the TSM algorithm, the impact of removing the edge pose 

trees is as shown in Table 129 below. The Filters Responses data memory is reduced to its 68/99 

as it is sensible. The impact of this reduction ends to a reduction of about 12% to the total 

maximum memory consumption. 

As far as the execution time consumption, the impact of the 68 filters model to the TSM 

algorithm is reaching the -31% as the Table 129 shows. This is a significant reduction as the 

algorithm needs the two thirds of the time needed in the 99 filters model when the 68 one is 

used. 

Table 129 - TSM v3.2.2 68 Filters Model Performance (Compared to 99 Model) 

 320x240 640x480 800x600 1024x768 1280x960 Average 

Memory 
4.84 Mb 17.6 Mb 27.2 Mb 44.0 Mb 68.3 Mb  

-11.5% -12.2% -12.3% -12.4% -12.4% -12.2% 

Time -31.2% -31.3% -31.1% -31.2% -30.9% -31.1% 

 

The disadvantage if using the 68 filters model is the fact that the algorithm is now able to detect 

faces of ±45o viewing angle. The performance of the algorithm is not actually change as far as 

the 68 filters poses. Any difference in the reliability and detection efficiency is shown in the 

Table 130 below is caused by the removal of the 39 filters poses from the aggregation of the 

testing results. As seen in the results table below the algorithm results in faces of ±45o viewing 

angle are even better than the 99 filters model. Its performance fall starts when it is asked to 



detect faces in greater viewing angles where the detection efficiency is reducing, luring its 

reliability as the fake detection results are stable. 

Table 130 - TSM 68 Filters Model Results 

Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 

 -45
o
 to +45

o
 

Detected 98.2 94.6 90.4 88.3 85.8 82.6 79.5 76.9 

Missed 1.81 5.44 9.59 11.7 14.2 17.4 20.5 23.1 

Fake 29.8 22.0 15.1 9.31 4.89 3.04 1.29 0.00 

Reliability 69.3 74.6 77.9 81.0 82.1 80.6 78.7 76.9 

 -60
o
 to +60

o
 

Detected 91.1 87.7 83.9 82.0 79.6 76.7 73.8 71.4 

Missed 8.89 12.3 16.1 18.0 20.4 23.3 26.2 28.6 

Fake 29.8 22.0 15.1 9.31 4.89 3.04 1.29 0.00 

Reliability 65.7 70.3 73.0 75.6 76.4 74.9 73.1 71.4 

 -75
o
 to +75

o
 

Detected 86.5 83.3 79.7 77.9 75.6 72.8 70.1 67.8 

Missed 13.5 16.7 20.3 22.1 24.4 27.2 29.9 32.2 

Fake 29.8 22.0 15.1 9.31 4.89 3.04 1.29 0.00 

Reliability 63.3 67.5 69.8 72.1 72.7 71.2 69.5 67.8 

 -90
o
 to +90

o
 

Detected 81.0 78.0 74.6 72.9 70.7 68.2 65.6 63.5 

Missed 19.0 22.0 25.4 27.1 29.3 31.8 34.4 36.5 

Fake 29.8 22.0 15.1 9.31 4.89 3.04 1.29 0.00 

Reliability 60.3 63.9 65.8 67.8 68.2 66.7 65.0 63.5 

 

9.6. Detection Components 

As realized already by the algorithm characteristics, the main execution time consumers are the 

Convolution and the Component detection processing. In this chapter a technique that can 

reduce the time consumption of the Component stage. 

During the component detection procedure the nearby components produce similar high-score 

values as referred in 5.1. This means that if the component 7 (0
o
 viewing angle) is removed by 

the model a corresponding face can continue be detected by the components next to it (6 and 8, 

±15
o
). As the components diverge from the same component the detection results are reducing 

as shown in the Diagram 91 below.  



  

  

Diagram 91 - Components High-Score Results Example 

In the 99 filters model the seven components in the middle refers to the face poses from -45 to 

45 degrees and they all use the same filters. The distance between the landmarks is the criteria 

for the pose estimation. On the other hand the six components at the edges, refer to the -90 to -

60 and 60 to 90 degrees are using a complex of filters, half of which are also used in the middle 

components. This is why in Diagram 91 above the face detection of a face on 0 degrees creates 

such lower scores on the edge components while in the middle ones the scores are close. In the 

Diagram 91 the detection scores of a face in the angle of 75 degrees is presented. Only the 

components close to the left edge components of the middle components succeed a detection 

but even though their scores are much lower than the ones of the right edge components. This 

is caused due to the common filters used by both 68 and 39 parts components. 
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Diagram 92 - Components High-Score Results per Viewing Angle Example 

In the Diagram 92 above some examples of components scores in various angles faces are 

shown. 

The existence of 13 components increases the efficiency of the face detection algorithm but it 

actually aims on the pose estimation and not to a general face detection. All those properties of 

the algorithm gives the idea of splitting the algorithm in two similar but with different scope 

sections. The first section aims on the face detection and the second one on the pose 

estimation. If the first section detects a face within the image of a pyramid level then the second 

section is executed on the same image. It works as the Backtrack stage where the Backtrack 

procedure applies only when high-score values are detected by the find procedure. 

The Face Detection section is using for the detection procedure one or a few more components 

instead of using all of them. These called the detection components. The Threshold parameter 

value on this section is a little lower in order to be more efficient in the face detection 

procedure and the detection components can detect faces belonging to other viewing angles far 

away from them. If in this procedure no faces are detected then the Pose Estimation section is 

not executed. On the other hand when a face is detected the rest components are used on the 

Pose Estimation section which is executed in order to achieve an accurate detection with pose 

estimation. The Threshold parameter value on the Pose Estimation section is as usual. The 

benefit of this patch is that it reduced the times the component stage execution is executed as it 

overtakes empty images faster than the original version.  

-90-60-30 0 30 60 90 -90-60-30 0 30 60 90 -90-60-30 0 30 60 90 -90 -60 -30 0 30 60 90



 

Figure 62 - Detection Components Patch Execution Flow Diagram 

The ideal component for the face detection section seems to be the component 7 that 

ƌepƌeseŶts the zeƌo degƌee aŶgle of a huŵaŶ faĐe. It’s the ideal as it ĐaŶ Đƌeate high-score 

values in the detection procedure for both sides of the human face as it is symmetric. As the aim 

of the face detection procedure is the detection of faces in all thirteen poses, the threshold 

parameter value of this section must be lower than in the pose estimation one. As shown in the 

Diagram 91 and Diagram 92 the seventh component creates low scores on the faces belong to 

the edge components and this is a very important reason to reduce the threshold as this angles 

faces will not be detectable. On the other hand when low threshold is used on the face 

detection section, the more fake faces will be detected activating the pose estimation one. This 

would not create faulty detections as the pose estimation section uses the most efficient 

threshold value (Chapter 9.2) but it would cancel the advantage of the patch as it would treat to 

empty face levels as they contain faces. 

Table 131 - DC Patch Face Detection Section Results (DC Set 7) (%) 

Threshold -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 

Detected 86.5 84.2 80.6 78.2 75.0 72.2 

Missed 13.5 15.8 19.4 21.8 25.0 27.8 

Fake 35.0 25.2 17.5 10.1 6.90 3.98 

Reliability 59.0 65.6 68.8 71.9 71.1 70.1 

 

As seen in the Table 131 above, the parameter Threshold value of -0.60 is the most reliable. On 

the other hand its detection rating is not as high as in the lower values. At this point the 

reliability is not as significant as the pose estimation section would reject the fake faces from the 

results. The only way that this patch can affect the algorithms results is if faces are missed. Even 

if more fake faces are detected at the face detection section, they will be skipped during the 

pose estimation one where the usual Threshold parameter value will be used. So at this point of 



the face detection section what is significant is faces not to be missed. If fake faces are detected 

the punishment would be useless calls of the pose estimation section than would cost execution 

time. So the -0.75 to -0.60 might be the most efficient Threshold parameter value for the face 

detection section. In the Table 132 below, the results using different values of this variable are 

shown. 

Table 132 - DC Patch Results (DC Set 7) (%) 

DC  Threshold -0.75 -0.70 -0.65 

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 

Detected 84.6 84.0 82.1 84.6 84.0 81.6 83.3 82.7 80.8 

Missed 15.4 16.0 17.9 15.4 16.0 18.4 16.7 17.3 19.2 

Fake 9.59 6.43 4.00 9.59 6.43 4.02 9.09 6.30 4.06 

Reliability 77.6 79.4 79.3 77.6 79.4 78.9 76.9 78.3 78.1 

 

FD Threshold -0.60 -0.55 -0.50 

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 

Detected 83.1 82.5 80.6 82.3 81.6 79.5 81.6 81.0 78.8 

Missed 16.9 17.5 19.4 17.7 18.4 20.5 18.4 19.0 21.2 

Fake 9.11 6.08 4.07 8.98 6.14 4.12 9.05 6.19 4.16 

Reliability 76.7 78.3 77.9 76.1 77.5 76.9 75.5 76.9 76.2 

 

As presented in the Table 132 above the patch results are very close to the ones without it 

(Chapter 9.2). All the indexes values have change at least. What is not shown in this table is 

what kind of faces have been missed. In the Table 138 the detection analysis of all components 

is shown, revealing that the missed face detections are coming from the edge components. As 

seen the -90 and 90 degrees face detections were decreased about 20% while the middle 

components seems not to be affected. 

The patĐh’s effiĐieŶĐǇ ĐaŶ ďe iŵpƌoǀed if more components are used as detection components 

in the face detection section. The ideal components would be some of the edge components as 

they create high scores in the face angles where the component seven does not. This is because 

they use some different filters. By testing the patch using the components seven, three and 

eleven (-60
 o

, 0
 o

, 60
o
) the following results come of, as shown in Table 133. 

Table 133 - DC Patch Face Detection Section Results (DC Set 7-3-11) (%) 

Threshold -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 

Detected 89.1 87.8 85.0 83.1 82.9 81.0 

Missed 10.9 12.2 15.0 16.9 17.1 19.0 

Fake 21.5 12.2 7.87 4.89 3.24 1.81 



Reliability 71.6 78.3 79.3 79.7 80.7 79.8 

 

In the Table 133 the threshold used for testing is greater than when the patch used only the 

component seven. This is because the components three and eleven are used for the detection 

of faces in the angles of 60 to 90 (and -60 to -90) degrees instead of the component seven which 

is used for the detection of the rest centered viewing angles. As seen in the table the usage of a 

threshold of -0.45 is actually the most efficient, the same as the whole algorithms without it. At 

the usage of the same Detection threshold parameter value as seen in both Table 132 and Table 

133, the Detection section has much better reliability when using three components instead of 

only one. The full algorithms detection results using these three components as detection ones 

are shown in the Table 134 below. 

Table 134 - DC Patch Results (DC Set 7-3-11) (%) 

DC Threshold -0.60 -0.55 

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 

Detected 85.5 84.8 82.9 85.5 84.8 82.7 

Missed 14.5 15.2 17.1 14.5 15.2 17.3 

Fake 9.30 6.15 3.96 9.50 6.15 3.97 

Reliability 78.6 80.4 80.2 78.4 80.4 80.0 

 

FD Threshold -0.50 -0.45 

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 

Detected 85.5 84.8 82.3 84.2 84.2 81.8 

Missed 14.5 15.2 17.7 15.8 15.8 18.2 

Fake 9.30 6.15 3.99 6.19 6.19 4.01 

Reliability 78.6 80.4 79.5 79.8 79.8 79.1 

 

Looking at the results on the algorithms testing using this patch with those three components, it 

is visible that the algorithms reliability is not reduced at all. At the reliability line it appears that 

when the algorithm is used with this patch and detection threshold value larger than -0.50, the 

algorithm detection efficiency is not affeĐted. What is aĐtuallǇ iŵpoƌtaŶt is that the algoƌithŵ’s 
performance is not affected negatively and in contrast to the one component usage it is still 

effective in angles close to 90 degrees. 

At last, one more benefit of this patch is that the algorithm can avoid the calculation of some of 

the Filter Responses that are not used in the face detection procedure. The algorithm can 

calculate only the Filter Responses used by the detection components. If the face detection 

section makes a detection, then the rest Filters Responses have to be calculated for use in the 

pose estimation section. If no detections occur, the algorithm can skip these Filters Responses 



calculations. This is very important as the Filters Responses calculations are the main time 

consumer of the algorithm. 

When using the 99 filters model the usage of the components seven, three and eleven as 

detection ones on the patch is enough to fill all the Filters Responses tables. This is a 

considerable reason of using only one detection component. This would not reduce the 

algorithm efficiency if the algorithm is used for applications interested in faces with not great 

viewing angles. In applications like these this patch can be combined with the 68 filters model 

(Chapter 9.5). 

Another idea is to replace the components three and eleven with the four and ten ones. This 

means that the patch would use the same 68 filters for all the three detection components 

when used on the 99 filters model. Testing this version of the DC patch gets the following results 

of the Table 135 below. 

Table 135 - DC Patch Face Detection Section Results (DC Set 7-4-10) (%) 

Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 

Detected 92.5 90.8 89.7 87.6 85.0 84.4 

Missed 7.48 9.19 10.3 12.4 15.0 15.6 

Fake 48.2 36.7 23.8 16.5 9.55 6.40 

Reliability 49.7 59.5 70.1 74.7 78.0 79.8 

 

As did with the other two cases the algorithm was tested in different combinations between the 

Face Detection section and Pose estimation one threshold. The results are shown in the Table 

136 below. 

Table 136 - DC Patch Results (DC Set 7-4-10) (%) 

DC Threshold -0.75 -0.70 -0.65 

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 

Detected 85.0 84.4 82.5 85.0 84.4 82.5 85.0 84.4 82.5 

Missed 15.0 15.6 17.5 15.0 15.6 17.5 15.0 15.6 17.5 

Fake 9.55 6.40 3.98 9.55 6.40 3.98 9.55 6.40 3.98 

Reliability 78.0 79.8 79.8 78.0  79.8 79.8 78.0 79.8 79.8 

 

FD Threshold -0.60 -0.55 -0.50 

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 

Detected 84.6 84.0 82.1 83.8 82.9 81.2 83.8 82.9 81.0 

Missed 15.4 16.0 17.9 16.2 17.1 18.8 16.2 17.1 19.0 

Fake 9.38 6.21 4.00 9.26 6.28 4.04 9.26 6.28 4.05 

Reliability 77.8 79.6 79.3 77.2 78.5 78.5 77.2 78.5 78.3 

 



Finally a comparison table (Table 137) is used in order to see and compare the differences of 

using one and three detection components and which of them. As seen in this table the usage of 

the three 68 filters detection components (7, 4, 10) does not provide any crucial benefit in 

contrast of using only one. It only offers a small increment in the detection efficiency and the 

reliability but they can be matched if a lower FD Threshold parameter value is used to the one 

detection component method. Actually when using about -0.10 lower FD Threshold parameter 

value the one component detection method succeeds almost the same results with the 3 

components one (7, 4, 10). The 99 filters detection components (7, 3, 11) usage on the other 

hand offers much better result, close to the ones the algorithm succeeds without the patch.  

Table 137 - DC Patch Results Comparison (Threshold = -0.45) (%) 

D. Components C-7 ALL 

FD Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.50 -0.45 -0.40 

Detected 84.0 82.7 82.5 81.6 81.0 79.5 85.5 84.8 83.1 

Missed 16.0 17.3 17.5 18.4 19.0 20.5 14.5 15.2 16.9 

Fake 6.43 6.30 6.08 6.14 6.19 6.06 9.50 6.37 3.95 

Reliability 79.4 78.3 78.3 77.5 76.9 75.6 78.4 80.2 80.4 

D. Components C-7-4-10 ALL 

FD Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.50 -0.45 -0.40 

Detected 84.4 84.4 84.0 82.9 82.9 82.1 85.5 84.8 83.1 

Missed 15.6 15.6 16.0 17.1 17.1 17.9 14.5 15.2 16.9 

Fake 6.40 6.40 6.21 6.28 6.28 6.11 9.50 6.37 3.95 

Reliability 79.8 79.8 79.6 78.5 78.5 77.9 78.4 80.2 80.4 

D. Components C-7-3-11 ALL 

FD Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.50 -0.45 -0.40 

Detected 84.8 84.8 84.8 84.8 84.8 84.2 85.5 84.8 83.1 

Missed 15.2 15.2 15.2 15.2 15.2 15.8 14.5 15.2 16.9 

Fake 6.37 6.37 6.15 6.15 6.15 6.19 9.50 6.37 3.95 

Reliability 80.2 80.2 80.4 80.4 80.4 79.8 78.4 80.2 80.4 

 

One important difference between the 68 filters detection components (7, 7-4-10) and the 99 

oŶe is that the fiƌst’s ƌeliaďilitǇ is liŶeaƌ. The ϲϴ filteƌs ĐoŵpoŶeŶts ƌeliaďilitǇ is iŶĐƌeasiŶg as the 
face detection section threshold parameter value is decreasing. This is sensible as this way the 

face detection section makes more detections and calling for the final detection the pose 

estimation section. This creates better results but destroys the reason of using the detection 

section. If the detection section detects faces every time it is executed, then there is no 

execution time profit as the pose estimation section is also always executed. On the other hand 

the 99 filters detection components reliability is not linear making the detection section more 

efficient. As seen in the Table 137 data these detection components combination has its best 



reliability at the detection section threshold parameter value at -0.50 succeeding reliability 

better than the algorithm without this patch. This is a very important fact as these detection 

components can make the detection section very profitable, skipping the pose estimation one 

many times as explained before. 

One important comparison is between the two different sets of detection components that use 

the 68 filters. When using only the component seven the algorithms reliability is decreased 

about 1%, a difference that can be omitted if the Threshold parameter value is decreased as 

referred in the previous paragraph. The main difference between these two detection 

components sets is that when one detection component is used the algorithm is less efficient on 

great viewing angles as shown in the Table 138 below. As seen in this table when one detection 

component is used the algorithm is having great loss in the pose angles less than -60
O
 and more 

than 60
O
, almost the twice more than the three detection components set. Again the reduction 

of the FD Threshold parameter value can fix this problem. As far as the pose estimation, the 

algorithm accuracy is affected less than 1% on the 68 filters detection components models and 

almost 0% to the 99 one. 

Table 138 - DC Patch Missed Detections Viewing Angle Classification (%) 

D. Components C-7-3-11 C-7-4-10 C-7 

FD Threshold -60< -60<&<60 <60 -60< -60<&<60 <60 -60< -60<&<60 <60 

-0.70 0 0 0 -5.26 0.32 0 -10.5 0.95 -4.17 

-0.65 0 0 0 -5.26 0.32 0 -17.5 0.32 -4.17 

-0.60 -1.75 0.32 0 -8.77 0.63 -4.17 -17.5 0.32 -8.33 

-0.55 -1.75 0.32 0 -14.0 0.95 -16.7 -19.3 0.32 -20.8 

-0.50 -1.75 0.32 0 -14.0 0.95 -16.7 -22.8 0.32 -25.0 

 

Comparing the DC patch results with the ones that the algorithm succeeds without it, it is visible 

and at the same time sensible that the face detections efficiency is decreased a bit but in a very 

tiny amount. Using this patch, the algorithm can sacrifice a very small amount of its face 

detection efficiency and maybe a little bit of its reliability gaining execution time. Especially 

when the 68 filters detection components are used the algorithm except of skipping the 

components stage of many model components it can also skip the calculation of 31 filters 

responses saving a lot of execution time. 

The amount of execution time that the algorithm can save using these detection component is 

not able to be defined as it is detections dependent. The only thing can be done is to predict it 

using some of the algorithms characteristics according to previous tests mad 

In chapter 6.2, a profiling of the Find procedure was appose using the default threshold variable 

value of -0.65. After the NMS procedure changes (Chapter 9.1) application on the algorithm, the 

most suitable threshold variable value is set to -0.45. When using the 99 filters detection 



components the most efficient value of the detection threshold parameter is the -0.50 while for 

the 68 filters ones the minimum is the best. For that reason a profiling for multiple different 

values of the Threshold variable was done. By this testing, the data we need is the number of 

levels with high-score values a face produce to its corresponding component. This is a different 

pointer relatedly to the Levels with high-score values used in chapter 7. In this patch the 

maximum number of levels with high-score values that a face produce at every component is 

needed. This component is probably the one that will be detected as the correct pose of it. This 

way, according to the threshold parameter value, the number of levels in which the patch will 

execute the pose estimation section can be estimated. The profiling results are shown in Table 

139 below. 

Table 139 - DC Patch Max(LevelsHigh-Scores[Component]) % 

Threshold Max Average Min 

-0.75 92.3 44.1 11.8 

-0.70 92.3 42.6 11.8 

-0.65 84.6 39.9 6.25 

-0.60 71.4 37.1 6.25 

-0.55 69.2 36.1 6.25 

-0.50 69.2 34.1 6.25 

-0.45 61.5 32.7 6.25 

  

Another parameter for predicting the execution time profit of this patch is the time needed for 

the Component and Convolution stages. As referred in chapter 8.5 the relation between two 

sequential levels execution time is given by the function (31) below. As referred in the previous 

paragraph, the number of levels with high-score values produced by a detection is equal to the 

expression (32) where the  max LHS
AVG Threshold  is the average column of Table 140. In the 

function (32) the rounding is down in order to get safer results.  

  0.25 0.76 ( )  LTime L Time All   (31) 

    ( . )High Scores Max LHSMaxL Threshold AVG Threshold length F Pyramid     (32) 

 

Using the function (31) above the execution time graph of every level execution time is as 

shown in Diagram 93. In the Table 140 also is shown the value of  High ScoresMaxL Threshold  

on different image sizes and different Threshold parameter values. 



 

Table 140 - DC Patch MaxLHigh-Scores(Threshold)  

Threshold -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 

320x240 3 3 3 3 3 2 2 

640x480 5 5 5 4 4 4 4 

800x600 6 6 5 5 5 4 4 

1024x768 7 6 6 6 5 5 5 

1280x960 7 7 7 6 6 6 6 
 

Diagram 93 - Function (31) 

Diagram  

Combining the function (31) and (32) a prediction functions that tries to calculate the execution 

time saved in different situations is created, the function (33) below, that calculates the 

execution time of the detect stage when using this patch. 
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Another advantage of this patch appears when using the 68 filters detection components on the 

detection section. If only these filters are used then there is no reason for the Convolution stage 

to calculate the rest filters responses (31 filters). If a detection is discovered then it will be 

executed again to complete the calculations of the rest 31 filters responses. This gives an extra 

saving of execution time that might worth the usage of 68 filters detection components. For this 

case the function predicting the execution time needed for the Convolutions stage is the 

function (34). 

It is very complicate to make predictions of any case scenario of detections. It is obvious that 

when an image is full of faces with different scales then detections would occur through the 

whole features pyramid levels. On the other hand even if more than one faces exist within the 

image but these faces are the same scale (for example, a family photo) then all the detections 

would probably appear in the same levels of the features pyramid like only one existing. In order 

to present the advantages of this patch, this scenario is going to be used as it is a possible to real 

life images.  

1 3 5 7 9 11 13 15

T
(x

) 

Levels 



Figure 63 - Multiple Faces, Same Scale Image Example 
Figure 64 - Multiple Faces, Multiple Scales Image 

Example 

In the Table 141 below the execution time profit of no detections in the detection procedure 

according to the features pyramid level is shown at the last line. By this table, adding the profits, 

it is easy to predict some way what would final profit be for different detections scenarios. In 

our main scenario, described in the next paragraph, the total profit would be equal to the sum 

of the levels with no detections. As is visible in the last line the 68 filters components detection 

ŵodel  ĐaŶ ƌeduĐe the algoƌithŵ’s eǆeĐutioŶ tiŵe to its half ǁheŶ Ŷo deteĐtioŶ oĐĐuƌ ǁhile the 
99 filters one only for a quarter. 

Table 141 - DC Patch Execution Time Profit per Level (%) 

Levels 
Level Stage + Convolution Stage 

C-7-3-11 C-7-4-10 C-7 C-7-4-10 C-7 

1 -5.96 -5.35 -6.79 -10.6 -12.1 

2 -4.53 -4.07 -5.16 -8.07 -9.17 

3 -3.44 -3.09 -3.92 -6.14 -6.97 

4 -2.62 -2.35 -2.98 -4.66 -5.29 

5 -1.99 -1.79 -2.26 -3.54 -4.02 

6 -1.51 -1.36 -1.72 -2.69 -3.06 

7 -1.15 -1.03 -1.31 -2.05 -2.32 

8 -0.87 -0.78 -0.99 -1.56 -1.77 

9 -0.66 -0.60 -0.76 -1.18 -1.34 

10 -0.50 -0.45 -0.57 -0.90 -1.02 

11 -0.38 -0.34 -0.44 -0.68 -0.78 

12 -0.29 -0.26 -0.33 -0.52 -0.59 

13 -0.22 -0.20 -0.25 -0.39 -0.45 

14 -0.17 -0.15 -0.19 -0.30 -0.34 

15 -0.13 -0.11 -0.15 -0.23 -0.26 

16 -0.10 -0.09 -0.11 -0.17 -0.20 



17 -0.07 -0.07 -0.08 -0.13 -0.15 

All -24.6 -22.1 -28.0 -43.8 -49.8 

 

The Table 141 above presents the execution time profit when no detection occur within an 

image. This is very important if the TSM algorithm is used in video application where the empty 

frames detection procedure can be completed much faster. 

On the other hand, in real life applications it is more probable one or more detections, real or 

fake, to appear in the detection procedure. In the next tables the profiling of the DC patch is 

presented according to the profiling scenario where it is supposed that one or more, same scale, 

faces are detected, including a number of fake faces (Detection Noise).  

Table 142 - DC Patch Execution Time Reduction per Face Size (DC Set 7) (%) 

Faces 

Size 
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

50% 

-0.70 -21.2 -30.6 -33.5 -34.8 -35.3 -31.1 

-0.65 -22.7 -33.1 -36.0 -37.4 -38.1 -33.4 

-0.60 -24.5 -35.7 -38.5 -40.0 -40.9 -35.9 

-0.55 -25.6 -36.8 -39.5 -41.1 -42.1 -37.0 

40% 

-0.70 - -24.0 -28.9 -31.4 -32.8 -29.3 

-0.65 - -27.0 -31.7 -34.3 -35.7 -32.2 

-0.60 - -30.1 -34.6 -37.2 -38.8 -35.2 

-0.55 - -31.3 -35.7 -38.4 -40.0 -36.4 

30% 

-0.70 - -9.93 -19.0 -24.2 -27.3 -20.1 

-0.65 - -13.9 -22.5 -27.6 -30.7 -23.7 

-0.60 - -18.1 -26.1 -31.0 -34.2 -27.4 

-0.55 - -19.6 -27.5 -32.4 -35.6 -28.8 

20% 

-0.70 - - -12.3 -4.77 -11.8 -9.60 

-0.65 - - -14.8 -8.55 -16.4 -13.2 

-0.60 - - -17.5 -13.6 -21.2 -17.4 

-0.55 - - -18.5 -15.5 -23.0 -19.0 

 

Table 143 - DC Patch Execution Time Reduction per Face Size (DC Set 7-4-10) (%) 

Faces 

Size 
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

50% 

-0.65 -18.7 -26.9 -29.2 -30.1 -30.3 -27.0 

-0.60 -20.4 -29.3 -31.6 -32.6 -33.0 -29.3 

-0.55 -21.5 -30.7 -33.0 -34.1 -34.7 -30.8 

-0.50 -23.4 -32.5 -34.8 -36.0 -36.8 -32.7 



40% 

-0.65 - -21.5 -25.4 -27.3 -28.2 -25.6 

-0.60 - -24.4 -28.1 -30.0 -31.1 -28.4 

-0.55 - -25.9 -29.6 -31.7 -32.8 -30.0 

-0.50 - -28.0 -31.6 -33.7 -35.1 -32.1 

30% 

-0.65 - -10.0 -17.3 -21.4 -23.8 -18.1 

-0.60 - -13.8 -20.6 -24.6 -27.0 -21.5 

-0.55 - -15.6 -22.3 -26.4 -28.9 -23.3 

-0.50 - -18.4 -24.8 -28.8 -31.4 -25.9 

20% 

-0.65 - - -10.6 -4.69 -11.2 -8.82 

-0.60 - - -13.0 -9.31 -15.6 -12.6 

-0.55 - - -14.5 -11.5 -17.8 -14.6 

-0.50 - - -16.4 -15.0 -21.0 -17.5 

 

Table 144 - DC Patch Execution Time Reduction per Face Size (DC Set 7-3-11) (%) 

Faces 

Size 
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

50% 
-0.50 -13.4 -18.7 -20.0 -20.8 -21.3 -18.9 

-0.45 -14.0 -19.2 -20.4 -21.2 -21.7 -19.3 

40% 
-0.50 - -16.2 -18.3 -19.6 -20.4 -18.6 

-0.45 - -16.7 -18.7 -20.0 -20.8 -19.1 

30% 
-0.50 - -10.8 -14.5 -16.8 -18.3 -15.1 

-0.45 - -11.6 -15.1 -17.4 -18.8 -15.7 

20% 
-0.50 - - -9.75 -9.01 -12.5 -10.4 

-0.45 - - -10.2 -9.93 -13.3 -11.1 

 

As is visible in the Table 142, Table 143 and Table 144, the execution time profit of this patch is 

larger as the faces size is increasing. This is sensible because as the larger a detected face is the 

larger (to the bottom) the level detected is. Then the levels of the pyramid with detections are 

the smallest one and the largest are empty making the DC patch much more useful. The same 

phenomenon applies to the image size. The larger an image is the more profitable the DC patch 

is. This is because the larger an image is the larger is the pyramid created, making the 

corresponding to the face scale levels to move toward to the bottom ones. As small irregularity 

on this is cause on very small face size where the upper part of the detection range to the levels 

of the pyramid is expanding beyond the pyramid as explained in chapter 6.2. In some images 

very small faces cannot also be detected as described in chapter 9.4. 



 

Diagram 94 - Detection Components Sets Execution Time Profit per Face Size 

To summarize, a 10% to 30% of execution time can be saved when using the DC patch according 

to the detection component set is used. This means that this patch can be a bit profitable to the 

TSM algorithm execution time. This patch is a root patch for the next patches that are presented 

in the next chapters and give the algorithm the ability of extra time saving. 

9.7. Fast Pose Estimation 

In this chapter a new approach on the execution flow of the pose estimation section of the DC 

patch is presented. This approach aims on the same accuracy with less execution time needed. 

The pose estimation section consists by the component stage where the DT and Backtrack ones 

are contained. Inside this stage the algorithm applies the detection procedure for every pose 

tree in order to decide which one is the correct. The highest score is the parameter that defines 

the correctness. This patch is actually the next step of DC one and it can be considered as its 

extension or a later version. 
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In this patch a new way of estimating the right pose is 

introduced. The algorithm does not apply the detection 

procedure to all pose trees but makes decisions about 

the pose trees to be used in the component stage using 

information from the already used pose trees results. In 

the Figure 65 on the right, the execution flow of this 

patch is shown. At the beginning of every Level stage 

the algorithm executes the Component stage for the 

detection components used by the DC patch. This patch 

adds a Ŷeǁ data stƌuĐtuƌe, the ͞FaĐes͟. This data 
structure holds information about every face detected 

in the component stage. This data structure is explained 

in chapter 9.7.1. 

After the detection components has completed the face 

detection sectioŶ, the ͞Pose Peak DeteĐtioŶ͟ patĐh use 
the iŶfoƌŵatioŶ stoƌed iŶ the ͞FaĐes͟ data stƌuĐtuƌe list 
to decide which pose tree the pose estimation section 

should execute. Decisions are made after every 

component stage execution as the Faces data structures 

information are updated. The way this patch makes 

decisions is explained in chapter 9.7.2.  

When the Level stage is completed, then the algorithms uses again the information of the Faces 

data stƌuĐtuƌes thƌough the ͞FaĐe Peak DeteĐtioŶ͟ patĐh to deĐide ǁhiĐh faĐes haǀe Đoŵpleted 
their pose estimation procedure. The FPD patch uses the detection results from multiple levels 

in order to take these decisions as is described in chapter 9.7.2. 

The basic idea behind the FPE Patch is the application of the PPD one. The FPD patch is not 

mandatory but as it is explained in the chapter 9.7.3 is does not affect at all the algorithms 

detection performance and for this it is greatly recommended. The execution time profit these 

patched offer is presented in the corresponding chapters. 

9.7.1. Face Data Structure 

The Face structure (Table 145) is a data structure that can easily replace the Results Cache one. 

When a component stage is completed every high-score value of the DT score results is consider 

a detected face. Using the Find v2.0 procedure these results end to less than two high-score 

values per face detection. The algorithm then adds a Face data structure in the Faces array 

storing the high-score value of this detection. If this high-score value is the highest this Face has 

succeeded then it stores its detection result to the box variable. Every time a high-score value is 

 

Figure 65 - Fast Pose Estimation Patch 

Execution Flow Diagram 



discovered, the algorithm check if it overlaps an already added Face as exactly the NMS 

procedure does. If an overlap occurs then the high-score value is rejected. Even if it is rejected, 

the algorithm keeps the highest high-score values of every component at every level to the 

Scores array of this Face like keeping a high-score values log file. These information are used by 

the FPD (Chapter 9.7.2) and LPD (Chapter 9.7.3) patches. This processing may delay a little bit 

the component stage to be completed but it rejects the need of the NMS procedure at the end 

of the detection stage. It is like the NMS procedure to be applied for every new detection. 

Table 145 - Face Data Structure 

Box Detection results. The Backtrack stage output. 

Scores[13, 

length(FP)] 

Array holding the highest high-score value for every component stage 

executed. 

Completed Flag used when the detection procedure of this face is completed 

 

The Face data structure array can replace the Results Cache data structure as it contains the 

significant information the last one holds. The Results Cache according to the algorithm profiling 

presented in chapter 6.14, contains the amount of data as shown in the Table 146 below for a 

detection. The Scores array size is smaller than the Result data structure when the pyramid 

length is less than 21 levels. It is almost impossible to exceed twice the size of the Result data 

structure. As is visible in this table the Results Cache structure holds much more data per 

detection than the Face one that makes the last one more efficient. 

Table 146 - Face vs Results Cache Data Structures Size per Detection 

Data Structure Size 

Face    Re . 2 Result lenght Components length F P sult     

Results Cache 
      

 
Re .

3.4 . Re

High Scores High Scores
sult length Components length F P Levels AVG Pixels

length F P sult

    

  
 

 

As far as the time consumption needed for the Face data structure to check for overlaps, it is 

totally insignificant compared to the whole algorithm execution time and it replaces the time 

needed for the NMS procedure that is not needed any more. After the Find procedure 2.0 

version the execution time and the memory needed for the NMS procedure and the detections 

results were reduced so much that any further reduction seems totally insignificant compared to 

the whole algorithm consumptions. 

9.7.2. Pose Peak Detection 

The Pose Peak Detection patch is the one that compares a Face highest-score values across the 

component stages executed and decides if its pose estimation procedure is completed for the 

corresponding level or which pose tree should be used for the next component stage needed. As 



shown in graphs X in chapter X, at the DC patch, the highest-score value of every pose tree 

create the highest-scores curve for every face as the ones shown in the Diagram 95 below.  

 

Diagram 95 - Level Highest-Scores Curves Peaks Example 

Every curve draws a peak at the position of a pose tree which is consider to be the correct pose 

estimation of the detection. This peak is the one that the PPD patch is trying to detect. Using the 

maximum high-score (highest-score) of the pose trees components stage results the PPD patch 

searches the gradient that leads to that peak. The execution flow this patch follows is as the 

Figure 66 shows. 
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Figure 66 - Pose Peak Detection Patch Execution Flow Diagram 

The route that the PPD patch will follow until it discovers the pose peak is defined by the 

detection components (DC) used in the face detection section of the DC patch. If the 99 filters 

DC are used then the poses trees tree that is going to be followed is as shown in Figure 67. 

Otherwise for the 68 filters DC sets the poses trees tree is the ones on the Figure 68 and Figure 

69. When more than two faces are detected within the image the second one uses components 

stage results of the pose trees executed for the first one and if it is not enough, it can continue 

from the closest node to the leaf it belongs. 



 

 

Figure 67 - Detection Components PPD Tree for 99 Filters 

3 DC 

 

Figure 68 - Detection Components PPD Tree for 68 Filters 

3 DC 

Figure 69 - Detection Components PPD Tree for 

68 Filters 1 DC 

According to these three trees the Table 147 below shows the number of pose trees that have 

to be used in the component stage in order the patch can estimate a face pose correctly. As is 

ǀisiďle iŶ the ͞AVG͟ ĐoluŵŶ theƌe is Ŷo sigŶifiĐaŶt diffeƌeŶĐe ďetǁeeŶ these thƌee DC sets of the 
face detection section as far as the average components need to be executed until the patch 

makes a decision. The main difference between these three sets is their variance. As seen the 

three DC set variance is less than 1, meaning that the number of executions of the component 

stage will be always close their average value. As seen in the Table 147, the minimum number of 

the component stage executions is 4 while the maximum is 7 for the 99 filters DC set. On the 

other hand the 68 filters one DC set succeeds a minimum number of component stage 

executions to 3 while the maximum is 8. That is why its variance is about 3. 



Table 147 - PPD Patch Components Stage Execution Times per Pose 

Poses -90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90 

DC-7 7 7 6 5 4 3 3 4 5 6 7 8 8 

DC-7-4-10 6 6 5 5 5 5 5 6 5 5 5 6 6 

DC-7-3-11 5 5 4 6 6 5 5 6 7 7 4 5 5 

 

 VAR(All) AVG(All) AVG(-45
oч & ч+ϰϱo

) AVG(-60
oш & ш+ϲ0o

) 

DC-7 2.85 5.62 4.29 7.17 

DC-7-4-10 0.24 5.38 5.14 5.67 

DC-7-3-11 0.85 5.38 6.00 4.67 

 

As seen in the Table 147 above, the 99 filters DC set is faster when the detected faces belongs to 

the 39 filters components (±(60
O
-90

O
)) while the 68 filters ones are faster on the 68 filters 

components. What is also important for choosing one of these sets is their efficiency at face 

detection section and their time consumption profit as referred in the DC patch (chapter 9.6). 

Probably this would be the main criteria for using each one. 

  

Diagram 96 - Face Pose Peak Patch Example 

In the Diagram 96 above the Component stage executions are shown for the image to its left 

using the 68 filters one DC set at the face detection section of DC patch. As is visible the 

algorithm executed the component stage only for the pose models 4 to 9 (-45
O
 to 30

O
). At the 

top levels of the features pyramid, where the face is not clear yet, the results of the detection 

procedure lead to the -15
O
 pose tree, but as the feature pyramid level is reaching the 

appropriate scale the pose estimation approaches the correct pose tree (pose 0
o
). As seen, the 

number of pose trees used at every level is maximum at four. 

By testing the PPD patch the following results came from (Table 148). As far as the 99 filters DC 

set, the results are very positive as the algorithms performance seems not to have been affected 

at all compared to the results of the Table 134 (Chapter 9.6) and are almost similar to the results 
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of the algorithm without using any patch. Looking at the results when the 68 filters three DC 

sets what is observed is a small drop of the algorithm performance, about 1-2% on its reliability 

and detection efficiency indexes compared to the algorithm version without any patch and 

about 1% compared to the DC patch. On the other hand, the 68 filters one DC set performance 

is ŵuĐh loǁeƌ thaŶ the otheƌ tǁo sets. It is oďǀious that this set’s loǁ deteĐtioŶ effiĐieŶĐǇ iŶ the 
great viewing angles drops its total performance, although it can be useful for centered faces 

detection applications. 

Table 148 - PPD Patch Results Comparison (Threshold = -0.45) (%) 

DC Set DC-7 ALL 

FD Threshold -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.50 -0.45 -0.40 

Detected 78.8 77.8 76.9 75.6 75.0 73.3 85.5 84.8 83.1 

Missed 21.2 22.2 23.1 24.4 25.0 26.7 14.5 15.2 16.9 

Fake 5.38 5.70 5.26 5.09 5.39 4.72 9.50 6.37 3.95 

Reliability 75.5 74.3 73.8 72.7 71.9 70.7 78.4 80.2 80.4 

DC Set DC-7-4-10 ALL 

FD Threshold -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.50 -0.45 -0.40 

Detected 82.9 82.7 81.8 81.6 80.6 79.7 85.5 84.8 83.1 

Missed 17.1 17.3 18.2 18.4 19.4 20.3 14.5 15.2 16.9 

Fake 6.05 6.07 6.36 5.68 5.99 6.05 9.50 6.37 3.95 

Reliability 78.7 78.5 77.5 77.8 76.6 75.8 78.4 80.2 80.4 

DC Set DC-7-3-11 ALL 

FD Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.50 -0.45 -0.40 

Detected - 84.6 84.6 84.2 84.0 81.6 85.5 84.8 83.1 

Missed - 15.4 15.4 15.8 16.0 18.4 14.5 15.2 16.9 

Fake - 5.71 5.71 5.74 5.30 2.30 9.50 6.37 3.95 

Reliability - 80.5 80.5 80.1 80.2 80.1 78.4 80.2 80.4 

 

What is significant is the fact that the 68 filters one DC set needs a very low face detection 

threshold parameter value to succeed functional performance in contrast to the DC patch. This 

is because in the DC patch a detection of one face was enough to activate all components to be 

used in the pose estimation section. On the PPD patch this is not happening. On this patch only 

the components needed for the pose estimation of this detected face are used. This reveals the 

weakness of the 68 filters one DC set to respond to the detection efficiency the TSM algorithm 

has to offer. The 68 filters one DC would probably be useful if used with the 68 filters Model 

presented in chapter 9.5. 

 

 



At last, compared to the Table 134 (Chapter 9.6) is 

deduced that the effect of PPE patch is tiny to the 

algorithm detection efficiency and reliability as far 

as the face detection procedure. In addition 

comparing the pose estimation results of the 

algorithm with and without this patch the 

difference is about 1% as presented in Table 149. 

These results makes it obvious that this patch is 

safe enough to be used with the TSM algorithm as 

it can offer a reduction on its execution time without sacrificing any significant amount of its 

performance. 

As far as the execution time consumption profit using this patch, it is fully detection dependent. 

There is a huge variety of occasions that may occur so only the basic scenarios introduced in 

chapter 9.6 are going to be presented. In this patch another parameter affecting its 

performance is the viewing angle of the detected faces. If there are faces looking to all 

directions within the image, then it will be no execution time profit as all the pose trees will be 

necessary for the right pose estimations. If there is one face only within a level image or multiple 

looking at similar direction, then this patch will be proved useful. All these scenarios are 

presented in the Table 150 below. What is interesting in this patch is the fact that it also affects 

the fake detections detection procedure the same way it affects the real ones. This means that 

the execution time saving does not totally comes from the real faces detection procedure but 

also by the fake ones. 

Table 150 - PPD Patch Execution Time Reduction per DC Set (1 Face Scenario) (%) 

Faces 

Size 
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

 C-7-4-10 

50% 
-0.70 -33.9 -36.5 -37.4 -37.7 -37.7 -36.7 

-0.60 -34.8 -37.9 -38.7 -39.1 -39.2 -38.0 

40% 
-0.70 - -34.5 -36.0 -36.6 -37.0 -36.0 

-0.60 - -36.2 -37.5 -38.2 -38.6 -37.6 

30% 
-0.70 - -30.3 -33.0 -34.4 -35.3 -33.2 

-0.60 - -32.6 -34.9 -36.3 -37.2 -35.3 

20% 
-0.70 - - -30.9 -28.5 -30.6 -30.0 

-0.60 - - -32.3 -31.0 -33.2 -32.2 

 C-7-3-11 

50% 
-0.60 -20.6 -22.1 -22.5 -22.7 -22.8 -22.1 

-0.50 -21.0 -22.4 -22.8 -23.0 -23.2 -22.5 

40% -0.60 - -21.3 -21.9 -22.3 -22.5 -22.0 

Table 149 - FPE Patch Pose Estimation (%) 

Threshold FPE Patch No Patch 

-0.65 81.4 82.3 

-0.60 81.7 82.6 

-0.55 82.0 83.4 

-0.50 82.9 83.9 

-0.45 83.1 84.0 

-0.40 83.2 84.2 



-0.50 - -21.7 -22.3 -22.7 -22.9 -22.4 

30% 
-0.60 - -19.7 -20.8 -21.4 -21.9 -20.9 

-0.50 - -20.3 -21.3 -21.9 -22.3 -21.4 

20% 
-0.60 - - -19.6 -19.1 -20.1 -19.6 

-0.50 - - 20.0 -19.8 -20.7 -20.2 

 

At this scenario (Table 150), the algorithm, when using the 68 filters DC set (DC-7-4-10), does 

not calculate all of the edge 39 pose trees Filters Responses but just the half of them (19 or 20) 

according to the face direction. This gives an extra execution time saving. The same thing also 

applies on the next table (Table 151) where the execution time profit when multiple faces exist 

within an image having the same scale and looking at the same direction covering the viewing 

angle of 0 to +90 or 0 to -90 degrees. Of course, the 10% to 15% of the 68 filters DC set is not a 

product of these Filters Responses skipped but also the 31 Filters Responses skipped on the 

detection empty levels. 

Table 151 - PPD Patch Execution Time Reduction per DC Set (0
o→±90o

 Scenario) (%) 

Faces 

Size 
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

 DC-7-4-10 

50% 
-0.70 -30.6 -34.7 -36.0 -36.6 -36.8 -34.9 

-0.60 -32.1 -37.0 -38.2 -38.9 -39.3 -37.1 

40% 
-0.70 - -31.8 -34.0 -35.1 -35.7 -34.1 

-0.60 - -34.5 -36.5 -37.6 -38.3 -36.7 

30% 
-0.70 - -25.6 -29.6 -31.9 -33.3 -30.1 

-0.60 - -29.2 -32.7 -34.9 -36.3 -33.3 

20% 
-0.70 - - -26.6 -23.3 -26.4 -25.5 

-0.60 - - -28.9 -27.3 -30.6 -28.9 

 DC-7-3-11 

50% 
-0.60 -18.0 -20.8 -21.4 -21.8 -22.0 -20.8 

-0.50 -18.7 -21.3 -22.0 -22.4 -22.7 -21.4 

40% 
-0.60 - -19.4 -20.5 -21.1 -21.5 -20.6 

-0.50 - -20.1 -21.1 -21.8 -22.2 -21.3 

30% 
-0.60 - -16.4 -18.4 -19.6 -20.4 -18.7 

-0.50 - -17.4 -19.2 -20.4 -21.2 -19.5 

20% 
-0.60 - - -16.2 -15.3 -17.2 -16.2 

-0.50 - - -16.9 -16.5 -18.3 -17.2 

 

At the next last table (Table 152) the results of the 68 filters one DC set are also presented. This 

is because this table scenario produces the same results with the 68 filters Model when the 68 



filters DC sets (C-7, C-7-4-10) are used. This way a comparison between these two sets can be 

done. 

Table 152 - PPD Patch Execution Time Reduction per DC Set (-45
o→+ϰϱo

 Scenario) (%) 

Faces 

Size 
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

 DC-7 

50% 
-0.70 -38.6 -41.9 -43.0 -43.4 -43.6 -42.1 

-0.60 -39.8 -43.8 -44.8 -45.3 -45.6 -43.8 

40% 
-0.70 - -39.6 -41.3 -42.2 -42.7 -41.5 

-0.60 - -41.8 -43.3 -44.3 -44.9 -43.6 

30% 
-0.70 - -34.5 -37.8 -39.6 -40.8 -38.2 

-0.60 - -37.5 -40.3 -42.1 -43.2 -40.8 

20% 
-0.70 - - -35.4 -32.7 -35.2 -34.4 

-0.60 - - -37.2 -35.9 -38.6 -37.2 

 DC-7-4-10 

50% 
-0.70 -36.0 -38.3 -39.0 -39.3 -39.4 -38.4 

-0.60 -36.8 -39.5 -40.2 -40.5 -40.7 -39.6 

40% 
-0.70 - -36.7 -37.9 -38.5 -38.8 -38.0 

-0.60 - -38.2 -39.2 -39.9 -40.2 -39.4 

30% 
-0.70 - -33.4 -35.5 -36.8 -37.5 -35.8 

-0.60 - -35.3 -37.2 -38.4 -39.1 -37.5 

20% 
-0.70 - - -33.9 -32.1 -33.8 -33.3 

-0.60 - - -35.1 -34.2 -36.0 -35.1 

 DC-7-3-11 

50% 
-0.60 -15.4 -19.4 -20.4 -20.9 -21.2 -19.5 

-0.50 -16.4 -20.2 -21.2 -21.8 -22.1 -20.3 

40% 
-0.60 - -17.4 -19.0 -19.9 -20.5 -19.2 

-0.50 - -18.4 -19.9 -20.8 -21.4 -20.1 

30% 
-0.60 - -13.1 -15.9 -17.7 -18.8 -16.4 

-0.50 - -14.5 -17.1 -18.8 -20.0 -17.6 

20% 
-0.60 - - -12.8 -11.5 -14.2 -12.8 

-0.50 - - -13.7 -13.2 -15.8 -14.2 

 

As seen in the Table 152 above, when centered faces exist within an image the 99 filters DC set 

appears very lower execution time profit as, except of calculating the 31 Filters Responses of the 

edge pose trees, it also uses two 39 parts pose trees on the face detection section of the DC 

patch that is useless. 



It is also significant to be referred that the execution time profit difference between the two 68 

filters DC sets is actually insignificant. The usage of one DC instead of three does not actually 

offers any noticeable execution time saving and probably does not worth the usage in contrast 

to the performance impact it has. 

 

Diagram 97 - Pose Peak Detection Patch DC Sets Execution Time Profit 

As seen in the Diagram 97 above the 68 filters DC Set is always faster than the 99 filters one. 

That’s ďeĐause of the Filteƌs RespoŶses that aƌe Ŷot ĐalĐulated iŶ the deteĐtioŶ eŵptǇ leǀels. 
The fake detections useless processing does not seems to be able to reduce this performance. 

As far as the 68 filters DC set, it is obvious that it performs better on centered faces while the 99 

one prefers the more devious ones. Although for both DC sets the faces size makes the 

differences more intensive as it is getting smaller, leading its detections to the top levels of the 

pyramid. 

9.7.3. Level Peak Detection 

IŶ this Đhapteƌ the ͞Leǀels Peak DeteĐtioŶ͟ PatĐh is desĐƌiďed. As ƌefeƌƌed iŶ chapter 6.2, every 

face within an image produces a large number of high-score values both on nearby components 

and levels. This means that when a face detection is located in a level, then the same face would 

be detected also in previous and next levels. The LPD patch tries to discover this depictions and 

terminate the pose estimation procedure for this face. 

As happens with the neighbor components (PPD Patch, Chapter 9.7.2), the same happens with 

the high-score values of the neighbor levels. In the Diagram 98 (left) below the high-score values 

of components 5 to 9 across the features pyramid levels of the Diagram 96 (Chapter 9.7.2), are 

shown. As seen in this graph all the components highest-score curves across the levels are 
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creating a peak highlighted with red color in the same graph. The LPD patch is trying to locate 

this peak and terminate the pose estimation search for this face. After applying the LPD patch, 

the same image produces the Diagram 98 (Right). As seen in this graph, as soon as the highest 

peak aĐƌoss the ĐoŵpoŶeŶts aŶd leǀels is disĐoǀeƌed the algoƌithŵ stops seaƌĐhiŶg foƌ the faĐe’s 
pose estimation as it considers this procedure completed. 

 

  

 Diagram 98 - Level Peak Detection Patch Example 

The combination of the PPD and the LPD patches gives the completed Fast Pose Estimation 

Patch. In the Diagram 99 below the final highest-score results of the Diagram 96 (Chapter 9.7.2) 

when the FPE patch is completely used is shown. What is gained is not only the less pose trees 

component stage executions but also less component stage executions per pose model. 

  

Diagram 99 - Fast Pose Estimation Patch Example 

for TSM v3.2.2 

Diagram 100 - Fast Pose Estimation Patch Example 

for TSM v2.2.2 

As seen in the Diagram 99, the algorithm skips the execution of the component stage for the -

15
O
 and 15

O
 pose trees for two levels. These two levels are the ones with the smallest features 

images so the execution time saved is the least. In Chapter 6.18, the version 2.2.x of the 

algorithm was presented. In this version the algorithm executes the Level stage descending, 

starting from the bottom level. The Diagram 99 at this version would look like more with the 
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Diagram 100 at its right. At this version the execution time saving would be much larger than the 

3.2.x versions as the skipped levels would correspond to the largest features images. 

The LPD patch combined with the PPD one make up the Fast Pose Estimation patch. After 

testing these two patches together the results of the algorithm are as follow in the Table 153 

below. As seen, the algorithm performance results did not changed at all by the application of 

the LPD patch. The same applies for all the rest face detection threshold parameter values. This 

patch as expected does not affect at all the algorithm efficiency and reliability and this is very 

pleasant. 

Table 153 - Pose & Level Peak Detection Patches Results (FD Threshold = -0.65) (%) 

DT Set DC-7-3-11 

Threshold -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 

Detected 89.5 88.7 86.8 84.8 84.6 82.7 80.1 

Missed 10.5 11.3 13.2 15.2 15.4 17.3 19.9 

Fake 28.4 17.7 12.5 7.89 5.71 3.49 2.60 

Reliability 66.1 74.5 77.2 79.1 80.5 80.3 78.5 

 Without LPD Patch (only the PPD) 

Detected 89.5 88.7 86.8 84.8 84.6 82.7 80.1 

Missed 10.5 11.3 13.2 15.2 15.4 17.3 19.9 

Fake 28.4 17.7 12.5 7.89 5.71 3.49 2.60 

Reliability 66.1 74.5 77.2 79.1 80.5 80.3 78.5 

 

As far as the execution time reduction this patch can succeed is detection dependent as the PPD 

one. In some scenarios this profit is not significant as it is too small but although it is important 

to be presented as these results are the final results of the Fast Pose Estimation Patch. At the 

following results the assumption that the level highest-scores curves are symmetric or with a 

small slope to the bottom levels (negative round) in order not overestimated results to be 

presented. The maximum Levelswith-high-score values that are produced by a detection are shown in 

the Table 140 (Chapter 9.6). The detection procedure is applied to all of them without the LPD 

patch. The LPD patch configures the amount of levels that the detection procedure is applied as 

shown in the Table 154 below. The new maximum Levelswith-high-score values are shown in the 

Table 155. As seen in this table, the LPD patch affects mainly the larger images as these images 

are the ones with larger Levelswith-high-score. A peak needs at least 3 levels to be created and four to 

start offering a profit so as it is sensible this patches efficiency is increasing as the image size 

also does. 



Table 154 - LPD Patch Detection Procedure Levels 

Threshold -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 

320x240 3 3 3 3 3 3 3 

640x480 4 4 4 4 4 4 4 

800x600 5 5 4 4 4 4 4 

1024x768 5 5 5 5 4 4 4 

1280x960 5 5 5 5 5 5 5 
 

Table 155 - LPD 

Patch MaxLHigh-Scores 

No Patch 
LPD 

Patch 

3 3 

4 4 

5 4 

6 5 

7 5 

8 6 

9 6 

10 7 
 

1
1

2

 
  
 

High-Scores

High-Scores

MaxL
LPD - MaxL  (35) 

 

The function (35) above is the one that calculates the Levelswith-high-score of a detection when the 

LPD patch is used in the algorithm. 

In the Table 156 below the execution time profit of the FPE algorithm is presented as it is 

conformed after the usage of both PPD and LPD patches for the same scenarios as in chapter 

9.6. As happens to the PPD patch, the same way the LPD one is affecting the fake detections. 

The fake detections have the same characteristics with the real ones so LPD patch reduces the 

detection procedure of the fake faces also. 

Table 156 - LPD Patch Execution Time Reduction per DC Set (1 Face Scenario) (%) 

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

 DC-7-4-10 

50% 
-0.70 -34.3 -37.7 -38.6 -38.9 -39.1 -37.7 

-0.60 -35.1 -38.7 -39.5 -39.9 -40.1 -38.7 

40% 
-0.70 - -35.9 -37.3 -38.0 -38.4 -37.4 

-0.60 - -37.2 -38.4 -39.2 -39.6 -38.6 

30% 
-0.70 - -32.1 -34.6 -36.1 -37.0 -35.0 

-0.60 - -33.9 -36.1 -37.5 -38.3 -36.5 

20% 
-0.70 - - -33.6 -31.0 -32.8 -32.5 

-0.60 - - -34.3 -32.8 -34.9 -34.0 

 DC-7-3-11 

50% 
-0.60 -20.7 -22.4 -22.7 -22.9 -23.1 -22.3 

-0.50 -21.0 -22.6 -22.9 -23.2 -23.3 -22.6 

40% 
-0.60 - -21.7 -22.2 -22.6 -22.8 -22.3 

-0.50 - -22.0 -22.5 -22.9 -23.1 -22.6 

30% -0.60 - -20.2 -21.2 -21.8 -22.3 -21.4 



-0.50 - -20.6 -21.6 -22.2 -22.6 -21.7 

20% 
-0.60 - - -20.4 -19.8 -20.7 -20.3 

-0.50 - - -20.5 -20.3 -21.2 -20.7 

 

The results of the LPD patch in the result Table 156, Table 157 and Table 158 shows that this 

patch has greater impact on the large images than in the small ones. This is sensible as large 

image detections create large detection range over the levels giving the LPD patch the space to 

operate. Low Threshold parameter values also enables the LPD patch as this parameter affects 

the detection range either when it is for real detections or when it is for the fake ones that are 

increasing. The impact of this patch is increasing as the detected faces size is reducing because 

the faces detection level is getting closer to the top one where the impact of skipping even one 

level is getting greater. 

Table 157 - LPD Patch Execution Time Reduction per DC Set (0
o→±90o

 Scenario) (%) 

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

 DC-7-4-10 

50% 
-0.70 -31.0 -36.2 -37.4 -38.1 -38.4 -36.2 

-0.60 -32.2 -37.8 -39.0 -39.7 -40.1 -37.7 

40% 
-0.70 - -33.6 -35.6 -36.8 -37.4 -35.9 

-0.60 - -35.5 -37.4 -38.6 -39.3 -37.7 

30% 
-0.70 - -28.1 -31.8 -34.0 -35.3 -32.3 

-0.60 - -30.7 -34.1 -36.2 -37.5 -34.6 

20% 
-0.70 - - -30.3 -26.6 -29.3 -28.7 

-0.60 - - -31.3 -29.4 -32.5 -31.1 

 DC-7-3-11 

50% 
-0.60 -18.1 -21.2 -21.9 -22.3 -22.5 -21.2 

-0.50 -18.7 -21.6 -22.2 -22.7 -22.9 -21.6 

40% 
-0.60 - -19.9 -21.0 -21.6 -22.0 -21.2 

-0.50 - -20.5 -21.4 -22.1 -22.5 -21.6 

30% 
-0.60 - -17.2 -19.1 -20.3 -21.0 -19.4 

-0.50 - -18.0 -19.7 -20.9 -21.6 -20.0 

20% 
-0.60 - - -17.6 -16.5 -18.2 -17.4 

-0.50 - - -17.8 -17.4 -19.0 -18.1 

 

Table 158 - LPD Patch Execution Time Reduction per DC Set (-45
o→+ϰϱo

 Scenario) (%) 

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

 DC-7-4-10 

50% 
-0.70 -36.3 -39.1 -39.8 -40.1 -40.3 -39.1 

-0.60 -36.9 -39.9 -40.6 -41.0 -41.2 -39.9 



40% 
-0.70 - -37.7 -38.8 -39.4 -39.7 -38.9 

-0.60 - -38.7 -39.7 -40.4 -40.7 -39.9 

30% 
-0.70 - -34.7 -36.7 -37.9 -38.6 -37.0 

-0.60 - -36.1 -37.9 -39.1 -39.8 -38.2 

20% 
-0.70 - - -35.9 -33.9 -35.4 -35.0 

-0.60 - - -36.5 -35.4 -37.1 -36.3 

 DC-7-3-11 

50% 
-0.60 -15.5 -20.0 -21.0 -21.6 -21.9 -20.0 

-0.50 -16.4 -20.6 -21.5 -22.1 -22.5 -20.6 

40% 
-0.60 - -18.2 -19.7 -20.7 -21.2 -19.9 

-0.50 - -18.9 -20.4 -21.3 -21.9 -20.6 

30% 
-0.60 - -14.3 -17.0 -18.7 -19.8 -17.4 

-0.50 - -15.3 -17.9 -19.5 -20.6 -18.3 

20% 
-0.60 - - -14.8 -13.2 -15.7 -14.6 

-0.50 - - -15.2 -14.5 -16.9 -15.5 

 

 

Diagram 101 - Level Peak Detection Patch DC Sets Execution Time Profit 

Looking at the Diagram 101 above, what is obvious is that the LPD patch is just saving only a 

small amount of execution time. This amount is not over 3% and it could be considered 

insignificant for using this patch in the TSM algorithm. A reason for this small execution time 

profit is the fact that the levels skipped by the LPD patch is the smallest ones in the detection 

range of a detection (real or fake). In chapter X the version 2.2.2 is presented. In this version the 

algorithm forwards the pyramid levels to the detection procedure starting from the bottom to 

the top, exactly the opposite way the version 3.2.2 does (the main version). In the v2.2.2 of the 

algorithm the LPD patch would skip the largest levels of the detection range instead of the small 
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ones. This means that in this version the impact of the LPD patch would be greater than the 

v3.2.2. In the following tables the results of the LPD patch using the version 2.2.2 of the 

algorithm are presented. 

Table 159 - LPD Patch Execution Time Reduction per DC Set (1 Face Scenario) (v2.2.2) (%) 

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

 DC-7-4-10 

50% 
-0.70 -34.4 -38.7 -39.4 -39.9 -40.0 -38.5 

-0.60 -35.1 -39.3 -40.0 -40.5 -40.7 -39.1 

40% 
-0.70 - -37.4 -38.6 -39.3 -39.7 -38.7 

-0.60 - -38.0 -39.2 -39.9 -40.3 -39.4 

30% 
-0.70 - -34.5 -36.7 -38.1 -38.8 -37.0 

-0.60 - -35.3 -37.4 -38.8 -39.5 -37.8 

20% 
-0.70 - - -32.0 -34.6 -36.5 -34.4 

-0.60 - - -33.0 -35.5 -37.3 -35.3 

 DC-7-3-11 

50% 
-0.60 -20.7 -22.6 -22.9 -23.1 -23.2 -22.5 

-0.50 -21.0 -22.8 -23.1 -23.3 -23.4 -22.7 

40% 
-0.60 - -22.0 -22.5 -22.9 -23.1 -22.6 

-0.50 - -22.2 -22.7 -23.1 -23.3 -22.8 

30% 
-0.60 - -20.8 -21.7 -22.4 -22.7 -21.9 

-0.50 - -21.0 -21.9 -22.6 -22.9 -22.1 

20% 
-0.60 - - -19.8 -20.9 -21.7 -20.8 

-0.50 - - -20.0 -21.1 -22.0 -21.1 

 

Table 160 - LPD Patch Execution Time Reduction per DC Set (0
o→±90o

 Scenario) (v2.2.2) (%) 

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

 DC-7-4-10 

50% 
-0.70 -31.0 -37.5 -38.6 -39.2 -39.5 -37.2 

-0.60 -32.2 -38.5 -39.6 -40.3 -40.7 -38.3 

40% 
-0.70 - -35.6 -37.3 -38.4 -39.0 -37.6 

-0.60 - -36.7 -38.4 -39.5 -40.2 -38.7 

30% 
-0.70 - -31.4 -34.6 -36.6 -37.8 -35.1 

-0.60 - -32.7 -35.8 -37.8 -39.0 -36.3 

20% 
-0.70 - - -27.8 -31.6 -34.4 -31.3 

-0.60 - - -29.4 -33.1 -35.8 -32.8 

 DC-7-3-11 

50% 
-0.60 -18.1 -21.6 -22.2 -22.6 -22.8 -21.5 

-0.50 -18.7 -21.9 -22.5 -22.9 -23.1 -21.8 



40% 
-0.60 - -20.6 -21.6 -22.2 -22.5 -21.7 

-0.50 - -20.9 -21.8 -22.5 -22.9 -22.0 

30% 
-0.60 - -18.4 -20.1 -21.2 -21.9 -20.4 

-0.50 - -18.8 -20.4 -21.6 -22.2 -20.7 

20% 
-0.60 - - -16.5 -18.6 -20.1 -18.4 

-0.50 - - -17.0 -19.0 -20.5 -18.8 

 

Table 161 - LPD Patch Execution Time Reduction per DC Set (-45
o→45

o
 Scenario) (v2.2.2) (%) 

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

 DC-7-4-10 

50% 
-0.70 -36.3 -39.8 -40.4 -40.7 -40.9 -39.6 

-0.60 -36.9 -40.3 -40.9 -41.3 -41.5 -40.2 

40% 
-0.70 - -38.7 -39.7 -40.3 -40.6 -39.8 

-0.60 - -39.4 -40.3 -40.9 -41.2 -40.4 

30% 
-0.70 - -36.5 -38.2 -39.3 -39.9 -38.5 

-0.60 - -37.2 -38.9 -40.0 40.6 -39.2 

20% 
-0.70 - - -34.5 -36.6 -38.1 -36.4 

-0.60 - - -35.4 -37.4 -38.9 -37.2 

 DC-7-3-11 

50% 
-0.60 -15.5 -20.6 -21.5 -22.1 -22.4 -20.4 

-0.50 -16.4 -21.0 -21.9 -22.5 -22.8 -20.9 

40% 
-0.60 - -19.1 -20.5 -21.4 -22.0 -20.8 

-0.50 - -19.6 -20.9 -21.9 -22.4 -21.2 

30% 
-0.60 - -15.9 -18.4 -20.1 -21.0 -18.9 

-0.50 - -16.5 -18.9 -20.6 -21.5 -19.4 

20% 
-0.60 - - -13.2 -16.2 -18.4 -16.0 

-0.50 - - -13.9 -16.8 -19.0 -16.6 

 



 

Diagram 102 - Level Peak Detection Patch DC Sets Execution Time Profit (TSM v2.2.2) 

The Diagram 102 shows the results of the results tables above. As is seen in this graph the extra 

execution time saving came from the usage of the version 2.2.2 of the TSM algorithm is tiny in 

order this version to be considered for replacing the 3.2.2 one as the main version of the 

algorithm. 

The conclusion for this patch is that it offers an insignificant execution time profit to the TSM 

algorithm but it also does not cost anything in its detection performance. So, it is subjective if it 

is worth to use or not. Either ways it does not cost anything to the detection performance and 

there is no crucial reason for not using it. Many small execution time savings can produce a 

larger one like the Short Pyramid patch (Chapter 7). 

9.8. Pyramid Fast Pass 

In this chapter an extra patch for gaining execution time on the TSM algorithm is appose. This 

patch was inspired by the DC patch and the reduction of the interval parameter value. As 

introduced in the chapter 9.3 the reduction of the Interval parameter causes significant 

reduction of the algorithms detection performance. On this chapter a new technique is 

introduced that succeeds an important speedup without a significant reducing the algorithm 

detection performance. 

The ͞PǇƌaŵid Fast Pass͟ patĐh is usiŶg the DC patch with an extended procedure. In the PFP 

patch if the algorithm detects a face within the image in the face detection section then it 

forwards the specific level to the pose estimation section. On this patch the algorithm does not 

pass to the face detection section all the levels sequential but with a step of two levels. Starting 
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from the second level of the pyramid if the face detection section does not make any detection 

the next level passed will be the after the next level. On the other hand if the face detection 

section makes a detection then the next one will be passed to the same section as shown in the 

Figure 70 below.  

 

Figure 70 - Pyramid Fast Pass Patch Execution Flow Diagram 

The idea behind this patch is that if a face exists within the image then it will produce high-score 

values in more than one levels. If the algorithm checks for detections within the levels with a 

step of two then it will detect this face. After it detects it then it will check the levels near it for a 

more accurate detection. This can lead to the detection of more faces if they are in the same 

scale or close it. By starting from the second level of the pyramid, the algorithm has the chance 

to skip the greatest image size level meaning a reduction of the execution time by about 25%. 

This is e very good deal. 

At this point the usage of the Level Peak Detection patch would be very useful. According to the 

previous paragraph the algorithm has to check for detections all the levels where the detection 

range spreads plus two extra levels where the algorithm will not find anything and it will enable 

the double stepping again. This can be avoided if the LPD patch is used because as the algorithm 

makes a detection it can continue passing the next levels with a step of one until it detects the 

detection level peak curve. Looking at the level curve, the LPD patch can decide if the algorithm 

will have to continue passing the next levels or it will have to go back and apply the detection 

section to the last skipped level. The LPD patch would also decide when it is the time to increase 

the level step back to two as shown in Figure 71. 



 

Figure 71 - Pyramid Fast Pass & LPD Patch Execution Flow Diagram 

In the Table 85 in chapter 7.2, the average number of levels with high-scores appear in the 

features pyramid when a face exists within the image is shown. As seen in this table it is very 

important the face detection section threshold parameter value to create high-score values to 

more than one level on average so that this patch will not bypass detections. As seen in the 

values of Table 162 not all image sizes are able to create high-score values in enough levels 

when a face exists within them, making this patch able to be applied without causing serious 

detection skips. As is visible the small size image of 320x240 is just on the limit so the image size 

should be considerable for the usage of this patch. 

Table 162 - PFP Patch |LevelsHigh-Scores|Results per Threshold 

Threshold -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 

320X240 3 2 2 2 2 2 2 

640x480 5 5 4 4 4 4 3 

800x600 5 5 5 4 4 4 4 

1024x768 6 6 5 5 5 5 4 

1280x960 7 7 6 6 6 5 5 

 

By testing the face detection section using the Half Pyramid patch the following results come of, 

as shown in Table 163 below. 

Table 163 - Pyramid Fast Pass Patch Face Detection Section Results (%) 

Threshold -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 

DC Set DC-7-4-10 

Detected 86.8 84.2 80.8 78.4 76.9 73.9 70.5 

Missed 13.2 15.8 19.2 21.6 23.1 26.1 29.5 

Fake 37.6 30.8 22.1 13.6 8.40 4.95 2.08 

Reliability 56.9 61.3 65.7 69.8 71.9 71.2 69.5 

DC Set DC-7-3-11 

Detected - - 85.0 83.3 81.6 79.7 78.0 



Missed - - 15.0 16.7 18.4 20.3 22.0 

Fake - - 16.4 6.70 3.78 2.61 1.08 

Reliability - - 72.9 78.6 79.1 78.0 77.3 

 

As seen in the Table 163, the detection efficiency of the Detection section is reducing as the 

Threshold parameter value is increasing. It is very obvious that the 99 filters DC set is much 

more efficient than the 68 filters one. The 99 filters DC set reaches its maximum reliability 

without losing an important part of its detection efficiency when the 68 filters DC set appears a 

great loss. In the next tables (Table 164 and Table 165) the impact of all these results in the final 

detection results of the algorithm are shown. 

Table 164 - Pyramid Fast Pass & LPD Patch Results (DC Set 7-4-10) (%) 

FD Threshold -0.70 -0.65 

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 

Detected 84.6 84.2 82.3 84.2 83.8 82.1 

Missed 15.4 15.8 17.7 15.8 16.2 17.9 

Fake 7.91 5.74 3.51 7.51 5.31 3.27 

Reliability 78.9 80.1 79.9 78.8 80.0 79.8 

FD Threshold -0.60 -0.55 

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 

Detected 82.3 81.8 80.3 79.9 79.3 78.2 

Missed 17.7 18.2 19.7 20.1 20.7 21.8 

Fake 5.41 3.77 2.59 5.32 3.64 2.66 

Reliability 78.6 79.3 78.7 76.5 77.0 76.6 

 

Table 165 - Pyramid Fast Pass & LPD Patch Results (DC Set 7-3-11) (%) 

FD Threshold -0.70 -0.65 

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 

Detected 85.5 84.8 83.1 85.0 84.4 82.7 

Missed 14.5 15.2 16.9 15.0 15.6 17.3 

Fake 9.50 6.37 3.95 9.34 6.40 3.97 

Reliability 78.4 80.2 80.4 78.2 79.8 80.0 

FD Threshold -0.60 -0.55 

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 

Detected 83.1 82.7 81.4 81.6 81.0 79.5 

Missed 16.9 17.3 18.6 18.4 19.0 20.5 

Fake 5.58 3.73 2.56 5.45 3.32 2.36 

Reliability 79.2 80.1 79.7 78.0 78.8 78.0 

 



As is visible in the Table 165, as smaller is the Detection section threshold variable the better is 

the detection results. As is sensible, decreasing the detection section threshold variable can 

produce the same results as without using the PFP patch. If this reduction is applied the 

speedup of the algorithm will be reduced. In the 99 filters DC set the results are much better 

than those in the 68 filters one. This means that a greater detection threshold value can be 

used. The choice of the DC set and the detection threshold parameter value is a difficult one as 

every possible combination offer different pros and cons. It is a matter of the goals are set to 

the algorithm. If the reliability is the greatest factor the algorithm set up would be different than 

when the execution time is more important. 

As far as the execution time that can be saved using the PFP patch the Table 166 below can 

show the profit of every level skipped to the whole TSM algorithm execution time. As seen in 

this table, with the bold text, the profit on the execution time is summed at the last line of the 

table. When the detection section uses the 99 filters DC set that is more accurate, the algorithm 

reduces its execution time by 69.4% on empty faces images. In the same case the algorithm 

reduces its execution time by 77.6% for the 68 filters DC set. 

Table 166 - Pyramid Fast Pass Patch Execution Time Profit (No Face) (%) 

Levels Both 
DC Set 

C7-3-11 C7-4-10 

1 -25.0 -5.96 -10.6 

2 -19.0 -4.53 -8.07 

3 -14.4 -3.44 -6.14 

4 -11.0 -2.62 -4.66 

5 -8.34 -1.99 -3.54 

6 -6.34 -1.51 -2.69 

7 -4.82 -1.15 -2.05 

8 -3.66 -0.87 -1.56 

9 -2.78 -0.66 -1.18 

10 -2.11 -0.50 -0.90 

11 -1.61 -0.38 -0.68 

12 -1.22 -0.29 -0.52 

13 -0.93 -0.22 -0.39 

14 -0.71 -0.17 -0.30 

15 -0.54 -0.13 -0.23 

16 -0.41 -0.10 -0.17 

17 -0.31 -0.07 -0.13 

 

The advantage of this patch is extremely good as the algorithm finish the detection procedure 

very quickly when the image does not contain any face. This would be very useful on video 



applications where the useless frames would be skipped fast until a useful arrives. On the other 

hand when there are faces within the image, this patch acts differently as it is detection 

dependent. According to the number and the scale of the faces, the algorithm would react 

differently. The worst case scenario is when an image contains many faces in many scales as it 

would produce high-score values in all the levels of the features pyramid. A more common case 

is an image to contain one or more faces in the same scale like portraits or team photos. This is 

an average scenario where this patch can act in many ways as far as the time profit it succeeds. 

As referred in the chapter 9.6, the same scenarios are used in this patch. The results on these 

scenarios are shown in Table 167 below. 

Table 167 - Pyramid Fast Pass & LPD Patch Execution Time Reduction per DC Set (%) 

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

 DC-7-4-10 

50% 
-0.70 -32.9 -50.2 -54.8 -57.7 -59.6 -51.0 

-0.60 -35.6 -54.1 -58.0 -60.5 -62.2 -54.1 

40% 
-0.70 - -41.7 -48.8 -53.4 -56.4 -50.1 

-0.60 - -46.8 -52.8 -56.8 -59.5 -54.0 

30% 
-0.70 - -23.5 -36.1 -44.2 -49.4 -38.3 

-0.60 - -30.9 -41.8 -49.0 -53.7 -43.8 

20% 
-0.70 - - -31.1 -19.8 -29.8 -26.9 

-0.60 - - -32.9 -26.7 -37.1 -32.2 

 DC-7-3-11 

50% 
-0.70 -31.0 -47.4 -51.4 -53.9 -55.6 -47.9 

-0.60 -31.5 -47.8 -51.2 -53.5 -54.9 -47.8 

40% 
-0.70 - -40.1 -46.2 -50.2 -52.8 -47.3 

-0.60 - -41.4 -46.8 -50.3 -52.6 -47.8 

30% 
-0.70 - -24.3 -35.2 -42.2 -46.8 -37.1 

-0.60 - -27.7 -37.2 -43.5 -47.5 -39.0 

20% 
-0.70 - - -30.9 -21.0 -29.7 -27.2 

-0.60 - - -29.5 -24.2 -33.2 -28.9 

 

The results on the Table 167 above are very optimistic. As seen in this table the algorithm can 

reduce its execution time about its half. These are very useful results. What is changed in this 

patch is the speedup relation between the 99 and 68 filters DC sets. In contrast to the DC the 

execution time profit differences are reduced as the number of levels where the filters 

responses are calculated is also reduced. This means that if the 99 filters DC set is used the 

execution time loss will not be much while the algorithms reliability and detection efficiency will 

be also increased for a little. 



 

Diagram 103 – PFP & LPD Patch DC Sets Execution Time Profit 

Except of the LPD patch that does not affect the algorithm detection performance, the PFP 

patch can also be combined with the PPD one. The PPD patch has its impact on the algorithm 

detection performance and for that reason it is important to test these patch together in order 

to known what this combination impact on the detection performance would be. By doing this 

the results are as the Table 168 and Table 169 shows. 

Table 168 - Pyramid Fast Pass & PPD Patch Results (DC Set 7-4-10) (%) 

FD Threshold -0.75 -0.70 

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 

Detected 83.1 82.5 81.0 82.5 82.3 80.6 

Missed 16.9 17.5 19.0 17.5 17.7 19.4 

Fake 9.53 6.08 3.81 9.39 5.87 3.83 

Reliability 76.4 78.3 78.5 76.0 78.3 78.1 

  

FD Threshold -0.65 -0.60 

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 

Detected 73.9 73.1 71.2 73.9 72.9 70.9 

Missed 26.1 26.9 28.8 26.1 27.1 29.1 

Fake 5.21 2.84 1.77 4.95 2.85 1.78 

Reliability 71.0 71.5 70.3 71.2 71.3 70.0 

 

Table 169 - Pyramid Fast Pass & PPD Patch Results (DC Set 7-3-11) (%) 

FD Threshold -0.70 -0.65 
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Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 

Detected 85.0 84.8 82.9 84.0 83.5 82.1 

Missed 15.0 15.2 17.1 16.0 16.5 17.9 

Fake 7.87 5.25 3.48 7.31 5.10 3.27 

Reliability 79.3 81.0 80.5 78.8 80.0 79.8 

  

FD Threshold -0.60 -0.55 

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 

Detected 82.9 82.5 81.2 82.5 82.5 81.0 

Missed 17.1 17.5 18.8 17.5 17.5 19.0 

Fake 6.73 4.93 3.06 6.54 4.93 2.32 

Reliability 78.2 79.1 79.2 78.0 79.1 79.5 

 

As is seen in these tables the 99 filters DC set keeps having good performance with only a small 

reduction in its reliability which is a very good result. On the other hand when the PFP and PPD 

patches are combined with the 68 filters DC the performance is greatly reduced if the FD 

Threshold parameter value is low. These means that these two patches can be efficiently 

combined giving time performance speedup with only a small reduction in the detection 

performance. 

As far as the execution time saving from the usage of the PPD patch in combination with the PFP 

one the results are as shown in the Table 170, Table 171 and Table 172 below according to the 

scenario described in chapter 9.6. 

Table 170 - PFP & PPD Patch Execution Time Reduction per DC Set (1 Face) (%) 

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

 DC-7-4-10 

50% 
-0.70 -47.6 -58.0 -60.8 -62.6 -63.7 -58.5 

-0.60 -49.3 -60.4 -62.7 -64.3 -65.3 -60.4 

40% 
-0.70 - -53.0 -57.2 -60.0 -61.8 -58.0 

-0.60 - -56.0 -59.6 -62.1 -63.6 -60.3 

30% 
-0.70 - -42.0 -49.6 -54.4 -57.6 -50.9 

-0.60 - -46.4 -53.0 -57.3 -60.1 -54.2 

20% 
-0.70 - - -46.6 -39.7 -45.7 -44.0 

-0.60 - - -47.6 -43.9 -50.2 -47.2 

 DC-7-3-11 

50% 
-0.70 -39.4 -51.2 -54.0 -55.8 -57.0 -51.5 

-0.60 -39.8 -51.5 -53.9 -55.5 -56.5 -51.4 

40% -0.70 - -45.9 -50.3 -53.2 -55.0 -51.1 



-0.60 - -46.9 -50.7 -53.2 -54.9 -51.4 

30% 
-0.70 - -34.7 -42.4 -47.5 -50.7 -43.8 

-0.60 - -37.1 -43.9 -48.4 -51.2 -45.1 

20% 
-0.70 - - -39.4 -32.3 -38.5 -36.7 

-0.60 - - -38.4 -34.6 -41.0 -38.0 

 

Table 171 - PFP & PPD Patch Execution Time Reduction per DC Set (0
o→±90o

) (%) 

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

 DC-7-4-10 

50% 
-0.70 -44.1 -56.2 -59.4 -61.4 -62.7 -56.8 

-0.60 -46.0 -58.9 -61.6 -63.4 -64.5 -58.9 

40% 
-0.70 - -50.3 -55.2 -58.4 -60.5 -56.1 

-0.60 - -53.8 -58.0 -60.8 -62.7 -58.8 

30% 
-0.70 - -37.6 -46.4 -52.0 -55.7 -47.9 

-0.60 - -42.8 -50.4 -55.4 -58.6 -51.8 

20% 
-0.70 - - -42.9 -35.0 -42.0 -40.0 

-0.60 - - -44.2 -39.8 -47.1 -43.7 

 DC-7-3-11 

50% 
-0.70 -36.8 -50.0 -53.2 -55.2 -56.6 -50.4 

-0.60 -37.2 -50.3 -53.1 -54.9 -56.0 -50.3 

40% 
-0.70 - -44.1 -49.1 -52.3 -54.3 -49.9 

-0.60 - -45.2 -49.5 -52.3 -54.2 -50.3 

30% 
-0.70 - -31.5 -40.2 -45.8 -49.5 -41.7 

-0.60 - -34.2 -41.8 -46.9 -50.1 -43.2 

20% 
-0.70 - - -36.7 -28.8 -35.8 -33.8 

-0.60 - - -35.6 -31.3 -38.6 -35.2 

 

Table 172 - PFP & PPD Patch Execution Time Reduction per DC Set (-45
o→+ϰϱo

) (%) 

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average 

 DC-7-4-10 

50% 
-0.70 -43.7 -56.0 -59.2 -61.3 -62.6 -56.5 

-0.60 -45.6 -58.7 -61.5 -63.3 -64.5 -58.7 

40% 
-0.70 - -50.0 -55.0 -58.2 -60.3 -55.9 

-0.60 - -53.5 -57.8 -60.7 -62.5 -58.6 

30% 
-0.70 - -37.1 -46.0 -51.7 -55.4 -47.6 

-0.60 - -42.3 -50.0 -55.1 -58.4 -51.5 

20% 
-0.70 - - -42.5 -34.4 -41.5 -39.5 

-0.60 - - -43.7 -39.3 -46.7 -43.3 



 DC-7-3-11 

50% 
-0.70 -34.2 -48.9 -52.4 -54.7 -56.1 -49.2 

-0.60 -34.6 -49.2 -52.2 -54.2 -55.5 -49.2 

40% 
-0.70 - -42.3 -47.8 -51.3 -53.6 -48.8 

-0.60 - -43.5 -48.3 -51.4 -53.4 -49.2 

30% 
-0.70 - -28.3 -38.0 -44.2 -48.3 -39.7 

-0.60 - -31.3 -39.8 -45.3 -48.9 -41.3 

20% 
-0.70 - - -34.1 -25.3 -33.1 -30.9 

-0.60 - - -32.9 -28.1 -36.2 -32.4 

 

As seen in the execution time saving tables above the usage of the PPD patch in combination to 

the PFP one offer an execution time profit of about 5-10% which is more significant in small size 

images and less in the larger ones. As it is sensible the most significant part of the algorithm is 

the Convolution stage. Every time the filters responses calculation is skipped the execution time 

benefits are increasing significantly. 

 

Diagram 104 – PFP & PPD Patch DC Sets Execution Time Profit 
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10. Related Comparison 

In this chapter the comparison of this thesis implementation with the [25] one provided by the 

creators of the TSM system is presented. There are also other related algorithms as referred in 

chapter 3, but only a short description and tasks support comparison is appose in the next 

subchapters as related and no similar systems cannot easily compared. There are also no 

freeware implementation on C\C++ to many of the related systems as [3], [4], [6], [7], [8], [9] 

and [10]. On the other hand there are some freeware systems free to use in the web but they do 

not implement the same tasks in order to be compared as far as the time performance with this 

thesis and [25] implementation. 

Table 173 – Tests Hardware Specifications 

 System 1 System 2 System 3 

CPU Model 
Intel Core i7-4600U 

@2.70GHz 

Intel Core 2 Duo 

T8100 @2.10GHz 

Dual Core ARM 

Cortex-A9 @866MHz 

CPU Cores 4 2 2 

RAM Memory 8 GB 4 GB 512 MB 

Operating System 
VM Ubuntu 15.01 (no 

GUI) 
Ubuntu 14.04 (no GUI) Ubuntu 12.04 (no GUI) 

v3.2.2/Creators[25] -56.3 % -57.2 % -63.4 % 

 

As far as the [25] implementation of Hang Su, the open source code provided had to be 

customized as it uses some extra methods for making the detection process faster like scaling 

the input image to a small size one. This method makes the face detection process faster but it 

avoids the detection of small faces as described in chapter 9.4. This thesis implementation does 

not reduce the input image size and it was sensible that only same procedure systems can be 

compared. Studding the Hand Su C\C++ code of his implementation what is noted is that it is 

very similar to the TSM v1.2 described in chapter 6.5. 

Testing these two implementation in the same hardware resources as the ones shown in Table 

173 the following results came as the ones presented in Table 174. 

Table 174 - TSM v3.2.2 vs Creators Execution Time (%) 

System CPU Cores 320x240 640x480 800x600 1024x768 1280x960 Average 

1 

1 -50.9 -38.6 -32.5 -31.7 -29.4 -36.6 

2 -61.6 -46.1 -42.1 -41.4 -39.6 -46.2 

3 -61.6 -49.9 -50.4 -47.4 -47.6 -51.4 

4 -65.2 -53.2 -55.5 -54.1 -53.4 -56.3 

2 2 -76.5 -54.4 -52.7 -52.5 -49.6 -57.2 



3 2 -76.6 -56.7 -56.9 
Out of 

memory 

Out of 

memory 
-63.4 

 

In Table 174 it is visible that the TSM v3.2.2 algorithm implementation is getting faster as the 

number of CPU cores in the hardware is increasing. This is because the original version 

implemented by Hang Su is using the multithreading technique only in the convolution 

procedure and nowhere else. This makes us assume that the memory consumption of this 

implementation is similar to the memory consumption of the versions 1.2 or 1.3. On the other 

hand the absence of parallelization in the rest parts of the algorithm (ex. DT stage) makes it 

getting slower as the parallelization resources increase compared to the version 3.2.2. 

As referred in chapter 3 there are algorithms designed since the [1] published that some of 

them claim to have better detection performance and others to be faster. There are also some 

freeware libraries offering face detection implementing some of them. In the next subchapters 

the differences between these systems and the [1] is appose. 

10.1. Freeware Libraries 

Some of the related systems to this thesis are offered freely in the web ready to be used by 

anyone. The following subchapters present some of them and describe the differences between 

these ones and the implementation of this thesis and [25] that are based on [1] face detection 

method. 

10.1.1. OpenCV 

The OpenCV [27] library is the most famous and most used one. It uses the face detection 

method proposed by Viola and Jones in 2001 [17] and it is the most famous face detection 

algorithm. This algorithm is very fast but it only supports face detection without pose estimation 

and landmark localization. It is also efficient in frontal face detection. Although it is very famous 

it lacks on detection performance. Despite that it was the state-of-the-art algorithm of face 

detection task for many years. 



  

Figure 72 – OpenCV Face Detection Example 

10.1.2. Dlib C++ Library 

The Dlib [26] library is a C++ and Python library offering a variety of C++ libraries for multiple 

purposes, one of them is the image processing and the face detection. The Dlib library offers 

two different choices of face detection, the single face detection and the face detection with 

landmark localization. 

The single face detection system offer frontal face detection only (-45
o
 to +45

o
) using the object 

detection method of [2]. It does not offer though pose estimation. The extra landmark 

localization library is used after the face detection procedure using the data returned by the 

face detection task and uses the [15] only in the area of the image where the face is detected. 

This is a very good method for fast landmark localization. The difference with the [1] system is 

that the last one offers pose estimation and face detection on a greater range of viewing angles 

(-90
o
 to +90

o
). 

  

  Figure 73 – Dlib Face Detection and Landmark Localization Example 



10.1.3. Face SDK 

The Face SDK [30] library is a library for face 

detection, recognition and verification. This 

library is not referred to any known face 

detection algorithm and it only supports face 

detection. It detects the eyes, nose and mouth 

centers and by them it results to a face 

detection. No pose estimation and landmark 

localization is supported. The method used for 

the face detection makes it obvious that 

probable can support only frontal face 

detection. 

10.1.4. Flandmark 

This Flandmark [31] library uses the OpenCV library for face detection and by the returned data 

searches the area of the detected faces for seven critical landmarks. These landmarks are the 

edges of the eyes, the tip of the nose and the edges of the mouth. No other landmark 

localization is supported and also does not support pose estimation. The fact that the OpenCV 

library is used for face detection concludes that only frontal face detection is supported. 

  

Figure 75 – Flandmark Face Detection Example Figure 76 – Flandmark Landmarks 

Localization 

10.1.5. Semantic Vision Technologies 

The Semantic Visions technologies [32] library is based on the [5]. This system is based on the 

detection of 15 critical landmarks that result to a face detection. Although it provides face parts 

localization like the eyes, the nose and the mouth, no more landmark localization is offered. 

s  

Figure 74 – Face SDK Face Detection Example 



Besides it does not support pose estimation and the face detection is seems to be limited in 

frontal faces only. 

  

Figure 77 – Semantic Vision Technologies Face Detection and Landmark Localization Example 

10.1.6. FDLib 

The FDLib library [29] is based on the [16] 

algorithm publication. This system supports the 

face detection task without any of the pose 

estimation and landmark localization ones. It 

was published in 2005 and its one of the oldest 

face detection algorithms using neural networks 

for doing that. It is an old dated system and it 

would be unfair to be compared with modern 

systems. 

10.2. Latest Systems 

Except of the freeware libraries there are also other face detection systems as the ones referred 

in chapter 3. These systems does not offer their implementation freely for usage. In this 

subchapter a short reference on each one is made and their differences against the [1] are 

appose. 

10.2.1. Face Detection and Pose Estimation Based on Evaluating Facial Feature Selection 

This system [3] offers a face detection method based on Haar-like features as exactly Viola and 

Jones [17] algorithm does. What is different is that its features are more efficient. It firstly 

detects the face parts (eyes, nose and mouth) and this concludes to the face detection. The 

 

Figure 78 – FDLib Face Detection Example 



authors claim that this algorithm performs better than the [1]. Despite that this systems does 

not offer pose estimation and landmark localization and is also efficient only on frontal face 

detection. 

  

Figure 79 – Publication [3] Face Detection Example 

10.2.2. Head Pose Estimation Based On Detecting Facial Features 

This systems [4] is a sequel of [3]. It does not claim to succeed as good results as the [3] but it 

also offers the task of pose estimation. It uses the same Haar-like features as the [3] and it 

combines the face parts (eyes, nose and mouth) detected by the cascade windows in order to 

estimate the pose of the face. What it does not support is the 68 face landmark localization and 

also it is efficient in frontal face detection. 

10.2.3. Discrete area filters in accurate detection of faces and facial features 

This system [5] is offered as a freeware library to be used by anyone and it is described in 

chapter 10.1.5. 

 



10.2.4. Real-time High Performance Deformable Model for Face Detection in the Wild 

The creators of this system [6] claim to have 

design a much faster and efficient algorithm 

compared to [1]. As far as the face detection 

speed they claim to reach real-time 

performance. The differences are the fact that 

this systems does not localize all the 68 

landmarks of the human face but only some of 

them in order to complete the face detection 

task. In addition it is only able to classify the 

pose estimation in 9 classes of viewing angle 

when [1] uses 13. Its main advantage is the 

fact that it is very fast and efficient as the 

authors claim but it still lacks on the pose estimation accuracy and the full 68 landmark 

localization. 

10.2.5. Multi-view Face Detection Using Deep Convolutional Neural Networks 

This system [7] is one of the latest state-of-the-art ones using convolutional neural networks 

that are considered to be the best method for face detection right now. This system succeeds 

better detection performance compared to [1], detecting faces in the full viewing angle (-90
o
 to 

+90
o
). What is missing from this system is the pose estimation and the landmark localization 

that the [1] system supports. 

  

Figure 81 – Publication [7] Face Detection Example 

10.2.6. Face and Landmark Detection by Using Cascade of Classifiers 

This systems [8] is using face parts detection (eyes and mouth) in order to result to a complete 

face detection. The authors claim to succeed better results than the [1]. This systems though 

 

Figure 80 – Publication [6] Face Detection Example 



does not support pose estimation neither landmark localization. It only supports eyes and 

mouth localization and it works better for frontal face detection. 

  

Figure 82 – Publication [8] Face Detection Example 

10.2.7. Extensive Facial Landmark Localization with Coarse-to-fine Convolutional 

Network Cascade 

This system [9] is the most related to the [1]. It is using the same method for face detection but 

what is different is the fact that it splits the face detection task from the landmark localization 

one. It firstly uses the jaws landmarks for face detection and then it localizes the rest landmarks 

of the human face. This method provides it a better landmark localization than [1] and the 

whole process is faster as the most landmarks detection is applied in the face detected area. On 

the other hand this system only supports frontal face detection and does not supports pose 

estimation. This last task could be easily implemented as long as the landmark localization task 

exists. 

 

  Figure 83 – Publication [9] Face Detection Example 



10.2.8. Face detection by structural models 

This system [10] is also very similar to [1]. It uses the method, locating landmarks for the face 

detection process. In contrast to [1] it uses less landmarks than the global 68 human face ones 

that means that the process should sensibly be faster. The authors claim to succeed better 

detection performance than the [1] but their system does not support pose estimation. It is also 

efficient only on frontal face detection. 

 

  Figure 84 – Publication [10] Face Detection Example 



11. Future Work 

There are to areas where this thesis system can be extended in the future. The first area is the 

one of face detection, pose estimation and landmark localization and the second one is the area 

of object detection. 

As far as the face detection procedure TSM system can be separated in two sections. The first 

section could be the face detection one while the second the pose estimation and landmark 

localization one. In the face detection section the usage of less landmarks can be applied as the 

most systems ([5], [6], [7], [8] and [10]) after [1] do and as exactly the [9] does. This way the face 

detection procedure would be a much faster procedure. By the time the face detection 

procedure is completed then the pose estimation and landmark localization ones can be applied 

in the detected face area within the image (like [9]). By doing so the size of data have to be 

processed would be much less than in the whole image as the [1] does. At this section a 

validation of the face detection result can also be applied increasing the algorithms reliability. 

This execution flow would reduce in a large scale the execution time needed for the algorithm to 

complete the whole procedure. 

As far as the pose estimation task the system can be extended in a 

way that not only the yaw angle to be estimated but also the roll 

and the pitch angles. This task can be achieved not only by using 

shape models but also with relative models between the main 

critical face landmarks as [4] does. 

As far as the object detection area, this system can be easily 

transformed to an object detection system using tree structural 

models. As this thesis system implements the [1] that is based on 

the object detection system [2], this system can also be used as an 

object detection one. The only changes have to be done is to change the way the TSM system 

handles its memory consumption in order to hold the Filters Responses arrays when multi-scale 

TSM is used. 

There are also many other ways that can extend this TSM system that are left in the readers 

creativity! 

 

 

Figure 85 – Complete Pose 

Estimation 



12. Annex A – TSM Execution Times 

In this chapter the exact execution time of the TSM v3.2.2 system in seconds is presented in 

order the ability of using it in applications. As presented in Table 175 the TSM algorithm can 

complete the detection procedure in less than one second in the majority of the non-embedded 

systems for small sized images (320x240). For larger images the system need more than one 

second of time. 

Table 175 – TSM v3.2.2 Execution Time in Seconds 

CPU Model 
Intel Xeon E5430 

@2.66GHz (x2) 

Intel Core i7 

4600U 

@2.70GHz 

Intel Core 2 Duo 

T8100 @2.10GHz 

Dual Core ARM 

Cortex-A9 

@866MHz 

CPU Cores 8 4 2 2 

RAM Memory 12 GB 8 GB 4 GB 512 MB 

Operating 

System 

Ubuntu Server 

(no GUI) 

VM Ubuntu 

15.01 (no GUI) 

Ubuntu 14.04 (no 

GUI) 

Ubuntu 12.04 (no 

GUI) 

Image Size Execution Time (sec) 

320x240 0.287 0.590 0.747 7.325 

640x480 1.282 2.699 5.379 52.84 

800x600 2.028 3.957 8.525 83.65 

1024x768 3.421 6.528 14.25 143.0 

1280x960 5.390 10.20 22.56 220.4 

 

At the next table (Table 176) the exact execution time of the TSM algorithm in seconds is 

presented using the hardware system of the 2
nd

 column of Table 175. This is a virtual machine so 

that the number of CPU cores can be customized and the execution time needed for the 

algorithm can be tested using different number of CPU cores every time. The data of Table 175 

and Table 176 are the ones that create the statistical data of the Table 174. 

 Table 176 - TSM v3.2.2 and Creators Execution Time (sec) 

CPU Cores TSM 320x240 640x480 800x600 1024x768 1280x960 

1 
Original 2.20 7.96 12.0 19.9 29.7 

v3.2.2 1.08 4.89 8.10 13.6 21.0 

2 
Original 1.85 6.06 8.93 14.7 21.9 

v3.2.2 0.71 3.27 5.17 8.60 13.2 

3 
Original 1.72 5.88 8.96 14.2 21.8 

v3.2.2 0.66 2.95 4.45 7.46 11.4 

4 
Original 1.70 5.76 8.89 14.2 21.9 

v3.2.2 0.59 2.70 3.96 6.53 10.2 
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