
Master Thesis

͞Pattern Recognition and Machine Learning Applications

for Embedded Systems͟

Technical University of Crete

Department of Microprocessors and Hardware

Panos Kalodimas (Author)

Yannis Papaeystathiou (Supervisor)

Chania (Greece), April 2016

CHAPTERS

1. Master Thesis Outline.. 17

2. Master Thesis Abstract .. 20

3. Related Work ... 21

4. TSM Algorithm Simple Description.. 22

4.1. Face Detection Based on Parts Based Detection .. 22

4.2. TSM Face Detection Algorithm .. 24

5. TSM Algorithm Procedures Description .. 28

5.1. TSM Face Detection Algorithm .. 28

5.2. Model .. 29

5.3. Image Pyramid ... 33

5.4. HOG ... 33

5.5. Feature Pyramid .. 34

5.6. Convolution ... 38

5.7. Distance Transformation ... 40

5.8. Find .. 44

5.9. Backtrack ... 45

5.10. Non-Maximum Suppression (NMS) ... 46

6. TSM Algorithm Implementation .. 48

6.1. Original Edition .. 50

6.2. Profiler ... 53

6.3. Original Edition Profiling .. 61

6.3.1. Time Profile ... 61

6.3.2. Memory ... 62

6.3.3. Max Memory ... 64

6.4. DPBD Algorithm Remains .. 67

6.4.1. Removing the Model Components Process .. 67

6.4.2. Convolution Process .. 68

6.4.3. Root Filter Interval Set ... 69

6.4.4. Double to Float .. 70

6.5. TSM Original Version 1.2 ... 70

6.6. Features Pyramid Stage ... 73

6.6.1. Resize ... 75

6.6.2. HOG ... 77

6.6.3. Features Pyramid Stage v1.3 ... 79

6.7. Features Pyramid ... 81

6.8. Image Pyramid ... 81

6.9. Convolution ... 83

6.10. Filters Responses ... 85

6.11. Distance Transformation Stage ... 86

6.11.1. Distance Transformation ... 86

6.11.2. DT Stage v1.3 ... 90

6.12. DT Scores Data Structure ... 92

6.13. Backtrack Stage ... 93

6.13.1. Find .. 95

6.13.2. Backtrack ... 98

6.13.3. Backtrack Stage v1.3 .. 98

6.14. Results Cache ... 99

6.15. Non-Maximum Suppression (NMS) ... 101

6.16. TSM Face Detector v1.3 ... 102

6.17. TSM Face Detector v2.1 ... 106

6.18. TSM Face Detector v2.2 ... 109

6.19. TSM Face Detector v3.1 ... 112

6.20. TSM Face Detector v3.2 ... 115

6.21. TSM Face Detector All Versions ... 119

7. TSM System Default Patches ... 124

7.1. Short Pyramid .. 124

7.2. Find v2.0 .. 127

8. Multi-Threading Implementation .. 135

8.1. Features Pyramid ... 135

8.1.1. 1
st

 Tactic ... 135

8.1.2. 2
nd

 tactic ... 137

8.2. Resize ... 141

8.3. Reduce ... 142

8.4. HOG ... 143

8.5. Convolution ... 144

8.6. Distance Transformation ... 146

8.7. Backtrack Stage ... 147

8.8. Level Stage ... 148

8.8.1. 1
st

 Tactic ... 149

8.8.2. 2
nd

 Tactic .. 150

8.8.3. 3
rd

 Tactic .. 153

8.9. TSM Algorithm ... 154

8.9.1. TSM Algorithm v2.2 ... 155

8.9.2. TSM Algorithm v3.2 ... 158

8.9.3. TSM Algorithm v4.1 ... 160

8.9.4. TSM Algorithm Versions Comparison .. 168

9. TSM System Alternative Patches ... 171

9.1. NMS Limit .. 172

9.2. Dynamic Threshold .. 175

9.3. Interval... 180

9.4. Canvas .. 183

9.5. 68 Filters Model ... 187

9.6. Detection Components ... 188

9.7. Fast Pose Estimation.. 202

9.7.1. Face Data Structure ... 203

9.7.2. Pose Peak Detection .. 204

9.7.3. Level Peak Detection ... 213

9.8. Pyramid Fast Pass .. 221

10. Related Comparison .. 231

10.1. Freeware Libraries ... 232

10.1.1. OpenCV .. 232

10.1.2. Dlib C++ Library .. 233

10.1.3. Face SDK .. 234

10.1.4. Flandmark .. 234

10.1.5. Semantic Vision Technologies ... 234

10.1.6. FDLib .. 235

10.2. Latest Systems ... 235

10.2.1. Face Detection and Pose Estimation Based on Evaluating Facial Feature Selection

 235

10.2.2. Head Pose Estimation Based On Detecting Facial Features 236

10.2.3. Discrete area filters in accurate detection of faces and facial features 236

10.2.4. Real-time High Performance Deformable Model for Face Detection in the Wild

 237

10.2.5. Multi-view Face Detection Using Deep Convolutional Neural Networks 237

10.2.6. Face and Landmark Detection by Using Cascade of Classifiers 237

10.2.7. Extensive Facial Landmark Localization with Coarse-to-fine Convolutional

Network Cascade ... 238

10.2.8. Face detection by structural models ... 239

11. Future Work .. 240

12. Annex A – TSM Execution Times ... 241

13. Bibliography ... 242

14. Web Sources .. 244

 FIGURES

Figure 1 - Matlab Arrays Memory Format ... 17

Figure 2 - C Arrays Memory Format .. 17

Figure 3 - Mat2C Library Diagram ... 18

Figure 4 - DPBD Algorithm Root and Child Parts Detection .. 23

Figure 5 - DPBD Algorithm Root and Child Parts Locality .. 23

Figure 6 - Deformable Parts Based Detection Algorithm Execution Flow Diagram 24

Figure 7 - Human Face 68 Landmarks ... 24

Figure 8 - TSM Algorithm Execution Flow ... 27

Figure 9 - TSM Algorithm Procedures Sequel .. 29

Figure 10 - Human Face Landmarks .. 29

Figure 11 - TSM 13 Components ... 30

Figure 12 - TSM Parts and Filters Connection Structure ... 31

Figure 13 - TSM Component 7 Parts Tree Structure ... 32

Figure 14 - Image Pyramid Example .. 33

Figure 15 - Histogram of Oriented Gradients Descriptors Example .. 33

Figure 16 - HOG Cells and Blocks ... 34

Figure 17 - TSM Algorithm HOG Procedure Data .. 34

Figure 18 - Features Pyramid from Image Pyramid vs Scaled HOG Images 35

Figure 19 - TSM Algorithm Interval Parameter Impact ... 36

Figure 20 - TSM Algorithm Image Pyramid Creation Execution Flow ... 38

Figure 21 - TSM Algorithm Convolution Procedure Data .. 39

Figure 22 - TSM Algorithm Convolution Results Examples (Visualized) .. 40

Figure 23 - TSM Algorithm Filters Responses Data Structure ... 40

Figure 24 - Distance Transformation Examples ... 41

Figure 25 - TSM Algorithm Distance Transformation Procedures ... 41

Figure 26 - TSM Algorithm DT Results of Component 7 Tree Example (Visualized) 42

Figure 27 - TSM Algorithm DT Results of Component 7 Tree Leafs 61-68 Example (Visualized) .. 43

Figure 28 - TSM Algorithm Find Procedure Results ... 44

Figure 29 - TSM Algorithm Backtrack Procedure Results .. 45

Figure 30 - TSM Algorithm One Face Multiple Detections Example ... 46

Figure 31 - TSM Algorithm Overlap Parameter Impact ... 47

Figure 32 - TSM Algorithm Implementation Modules ... 48

Figure 33 - TSM Algorithm Output Image ... 49

Figure 34 - TSM v1.1 Algorithm Implementation Diagram ... 51

Figure 35 - TSM v1.1 Algorithm FP Stage Implementation Diagram .. 53

Figure 36 - TSM v1.2 Algorithm Execution Flow Changes ... 68

Figure 37 - Features Pyramid Stage Changes (TSM v1.2) .. 69

Figure 38 - Features Pyramid Stage Execution Flow (v1.3) ... 79

Figure 39 - Image Pyramid in TSM Algorithm .. 82

Figure 40 - DT Stage Execution Flow (v1.1) ... 90

Figure 41 - DT Stage Execution Flow (v1.3) ... 91

Figure 42 - Backtrack Stage Execution Flow Diagram ... 94

Figure 43 - TSM Algorithm v2.1 Detect Stage Execution Flow .. 107

Figure 44 - TSM Algorithm v3.1 Execution Flow Diagram ... 112

Figure 45 - TSM Algorithm v3.2 Execution Flow Diagram ... 116

Figure 46 - TSM Algorithm v1.x Diagram ... 119

Figure 47 - TSM Algorithm v2.x Diagram ... 120

Figure 48 - TSM Algorithm v3.x Diagram ... 120

Figure 49 - Image DT Scores Array Example (Find Input) .. 128

Figure 50 - Find v2.0 Procedure Diagram .. 128

Figure 51 - Find v2.0 Results on the DT Score Array Example ... 129

Figure 52 - Features Pyramid Stage OMP Diagram - 1
st

 Tactic .. 136

Figure 53 - Features Pyramid Stage OMP Diagram - 2
nd

 Tactic ... 138

Figure 54 - Convolution Procedure OMP Diagram .. 145

Figure 55 - Level Stage OMP 2
nd

 Tactic Diagram ... 150

Figure 56 - TSM Algorithm v4.1 Execution Flow Diagram ... 162

Figure 57 - TSM v4.1 Maximum Memory Sections Diagram ... 166

Figure 58 - TSM v4.1 Filters Responses Section Usage Diagram ... 167

Figure 59 - Dynamic Threshold Patch Execution Flow Diagram .. 176

Figure 60 - Dynamic Threshold Patch Performance Examples .. 179

Figure 61 - Faces Size Within the Image Examples.. 184

Figure 62 - Detection Components Patch Execution Flow Diagram ... 191

Figure 63 - Multiple Faces, Same Scale Image Example .. 199

Figure 64 - Multiple Faces, Multiple Scales Image Example ... 199

Figure 65 - Fast Pose Estimation Patch Execution Flow Diagram.. 203

Figure 66 - Pose Peak Detection Patch Execution Flow Diagram .. 206

Figure 67 - Detection Components PPD Tree for 99 Filters 3 DC .. 207

Figure 68 - Detection Components PPD Tree for 68 Filters 3 DC .. 207

Figure 69 - Detection Components PPD Tree for 68 Filters 1 DC .. 207

Figure 70 - Pyramid Fast Pass Patch Execution Flow Diagram .. 222

Figure 71 - Pyramid Fast Pass & LPD Patch Execution Flow Diagram ... 223

Figure 72 – OpenCV Face Detection Example ... 233

Figure 73 – Dlib Face Detection and Landmark Localization Example .. 233

Figure 74 – Face SDK Face Detection Example .. 234

Figure 75 – Flandmark Face Detection Example ... 234

Figure 76 – Flandmark Landmarks Localization .. 234

Figure 77 – Semantic Vision Technologies Face Detection and Landmark Localization Example235

Figure 78 – FDLib Face Detection Example ... 235

Figure 79 – Publication [3] Face Detection Example ... 236

Figure 80 – Publication [6] Face Detection Example ... 237

Figure 81 – Publication [7] Face Detection Example ... 237

Figure 82 – Publication [8] Face Detection Example ... 238

Figure 83 – Publication [9] Face Detection Example ... 238

Figure 84 – Publication [10] Face Detection Example ... 239

Figure 85 – Complete Pose Estimation .. 240

 TABLES

Table 1 - TSM Components Mutual Parts .. 31

Table 2 - TSM Features Pyramid .. 36

Table 3 - TSM Algorithm Features Pyramid per Image Size .. 37

Table 4 - Convolution Procedure Calls per Image Size .. 39

Table 5 - TSM Algorithm DT Scores Arrays per Image Size.. 44

Table 6 - TSM Algorithm Time Dependencies ... 54

Table 7 - TSM Algorithm Profiling Images ... 55

Table 8 - TSM Algorithm Memory Dependencies ... 56

Table 9 - TSM Algorithm Data Dependencies .. 57

Table 10 - Find Procedure Profiling Results ... 59

Table 11 - High-Score Pixels Profiler Results ... 60

Table 12 - Results Cache Sizes ... 60

Table 13 - TSM v1.1 Execution Time Distribution (%) ... 61

Table 14 - TSM v1.1 Memory Consumption Distribution (%) .. 63

Table 15 - TSM v1.1 Max Memory Consumption Distribution (%) .. 64

Table 16 - Features Pyramid Extra Interval Set Removal Effect (TSM v1.1) (%)............................ 69

Table 17 - TSM v1.1 Double to Float Effect (%) ... 70

Table 18 - TSM v1.2 Execution Time Distribution (%) ... 70

Table 19 - TSM v1.2 Memory Consumption Distribution (%) .. 71

Table 20 - TSM v1.2 Max Memory Consumption Distribution (%) .. 72

Table 21 - FP Stage to TSM (%) .. 73

Table 22 - Features Pyramid Stage Execution Time Distribution (v1.1) (%) 74

Table 23 - Features Pyramid Stage Memory Consumption Distribution (v1.1) (%) 74

Table 24 - Reduce to Resize Procedures Comparison (%) ... 76

Table 25 - Resize & Reduce Procedures Memory Profile .. 76

Table 26 - HOG Procedure Memory Profile... 77

Table 27 - Features Pyramid Stage Execution Time Distribution (v1.3) (%) 79

Table 28 - Features Pyramid Stage Memory Consumption Distribution (v1.3) (%) 80

Table 29 - Image vs Features Pyramid ... 83

Table 30 - Convolution to TSM (%) .. 83

Table 31 - Convolution Procedure Memory Profile .. 84

Table 32 - Convolution Procedure Time Improvements (v1.3) (%) ... 84

Table 33 - Filters Responses to TSM Max Memory ... 85

Table 34 - DT Stage to TSM (%) ... 86

Table 35 - DT Stage Execution Time Distribution (v1.1) (%) .. 86

Table 36 - DT Stage Memory Consumption Distribution (v1.1) (%) .. 86

Table 37 - DT Procedure to TSM (%) ... 86

Table 38 - DT Procedure Original Version Implementation (v1.1) .. 87

Table 39 - DT Procedure New Version Implementation (v1.3) ... 87

Table 40 - DT Procedure Memory Profile (v1.1 & v1.3) .. 88

Table 41 - DT Procedure Versions Memory Profile Comparison (1.1 vs 1.3) 88

Table 42 - DT Procedure Versions Comparison ... 88

Table 43 - DT Stage Original Implementation (v1.1) ... 90

Table 44 - DT Stage New Implementation (v1.3) .. 91

Table 45 - DT Stage Versions Comparison (1.1 vs 1.3) .. 92

Table 46 - DT Stage Consumption Improvement (v1.3) (%) .. 92

Table 47 - DT Scores Memory Profile (%) .. 92

Table 48 - Backtrack Stage to TSM (%) .. 93

Table 49 - Backtrack Stage Execution Time Distribution (v1.1) (%) .. 94

Table 50 - Backtrack Stage Memory Consumption Distribution (v1.1) (%) 95

Table 51 - Find Procedure Memory Profile ... 95

Table 52 - High-Scores per Find ... 96

Table 53 - Find Buffer Reallocations per Find.. 96

Table 54 - Find Buffer Unused Memory per Find (Bytes) .. 96

Table 55 - Find Buffer Reallocations x Unused Memory Indicator .. 97

Table 56 - Find to Backtrack Stage (%) .. 97

Table 57 - Backtrack Procedure Memory Profile .. 98

Table 58 - Backtrack Procedure to Backtrack Stage (%) .. 98

Table 59 - Backtrack Stage Version Comparison (1.3 vs 1.1) (%) .. 99

Table 60 - Results Cache to TSM Memory (%) .. 99

Table 61 - Results Cache Max Memory Participation (%) ... 100

Table 62 - Results Cache Real Temporary Memory (10,000) (%) .. 100

Table 63 - NMS Procedure Memory Profile .. 101

Table 64 - NMS Consumption (Results Cache = 10,000) (%) ... 101

Table 65 - TSM v1.3 Execution Time Comparison (Compared to v1.2) (%) 102

Table 66 - TSM v1.3 Memory Consumption Distribution (Comparisons to v1.2) (%) 104

Table 67 - TSM v1.3 Maximum Memory Consumption (Comparisons to v1.2) (%) 105

Table 68 - TSM v2.1 Maximum Memory Consumption (Compared to v1.2) (%) 107

Table 69 - TSM v2.1 Execution Time Comparison (%) ... 109

Table 70 - TSM v2.2 Maximum Memory Consumption (Compared to v1.2) (%) 111

Table 71 - TSM v2.2 Execution Time Comparison (%) ... 111

Table 72 - TSM v3.1 Execution Time Comparison (%) ... 113

Table 73 - TSM v3.1 Maximum Memory Distribution (Compared to v1.2) (%)........................... 114

Table 74 - TSM v3.2 Maximum Memory Distribution (Compared to v1.2) (%)........................... 116

Table 75 - TSM v3.2 Execution Time Comparison (%) ... 118

Table 76 - TSM Algorithm All Versions Execution Time Comparison (%) 121

Table 77 - TSM Algorithm All Versions Memory Comparison (%) ... 122

Table 78 - TSM Algorithm All Versions Maximum Memory Consumption Comparison (%) 123

Table 79 - TSM Algorithm All Versions Max Memory Requirements (Mbytes) 123

Table 80 - Features Pyramid Level Images High Size ... 124

Table 81 - Short Pyramid Levels .. 125

Table 82 - Short Pyramid Patch Time Effect on TSM (%)... 126

Table 83 - Levelswith-High-Scores / LevelsFeatures_Pyramid (%)... 127

Table 84 - Find v2.0 Pixelswith-High-Scores / (Levelswith-High-Scores x Components) 129

Table 85 - Find v2.0 Levelswith-High-Scores / LevelsFeatures_Pyramid (%) ... 130

Table 86 - Find v2.0 Execution Time Impact on TSM v3.2.1 (%) ... 131

Table 87 - Find v2.0 Impact on TSM v3.2.1 Memory Consumption (%) 131

Table 88 - Find v2.0 Maximum Memory Consumption Impact on TSM v3.2.1 (%) 132

Table 89 - TSM Basic Versions Maximum Memory Consumption .. 133

Table 90 - FP Stage OMP Execution Time - 1
st

 Tactic (%) .. 136

Table 91 - FP Stage OMP Execution Time - 2
nd

 Tactic (%) ... 138

Table 92 - FP Stage OMP 2
nd

 Tactic Max Memory (Mbytes) ... 140

Table 93 - Resize Procedure OMP Execution Time (%) ... 141

Table 94 - Reduce Procedure OMP Execution Time (%).. 142

Table 95 - HOG Procedure OMP Execution Time (%) .. 143

Table 96 - Convolution Procedure OMP Execution Time (%) .. 145

Table 97 - Distance Transformation Procedure OMP Execution Time (%) 146

Table 98 - Find Procedure OMP Execution Time (v2.0) (%) .. 148

Table 99 - Level Stage OMP 1
st

 Tactic Execution Time (%) .. 149

Table 100 - Level Stage OMP 2
nd

 Tactic Execution Time (%) ... 151

Table 101 - TSM v3.2.2 Level Stage OMP 2
nd

 Tactic Max Memory (Mbytes) 152

Table 102 - TSM v3.2.2 Level Stage OMP 2
nd

 Tactic Max Memory (Mbytes) 153

Table 103 - Level Stage OMP 3
rd

 Tactic Execution Time (%).. 153

Table 104 - Level Stage OMP 3
rd

 Tactic Execution Time (%).. 153

Table 105 - TSM Procedures & Stage OMP Efficiency ... 155

Table 106 - TSM v2.2.2 OMP Execution Time (Time Efficient Version) (%) 155

Table 107 - TSM v2.2.2 OMP Max Memory Consumption (Mbytes) .. 156

Table 108 - TSM v2.2.2 OMP Execution Time (Memory Efficient Version) (%) 157

Table 109 - TSM v3.2.2 OMP Execution Time (Time Efficient Version) (%) 158

Table 110 - TSM v3.2.2 OMP Max Memory Consumption (Mbytes) .. 159

Table 111 - TSM v3.2.2 OMP Execution Time (Memory Efficient Version) (%) 159

Table 112 - TSM v4.1.2 Execution Time Simulation .. 164

Table 113 - TSM v4.1.2 Execution Time .. 165

Table 114 - TSM v4.1 Maximum Memory Consumption Comparison .. 168

Table 115 – TSM v4.1.2 vs v3.2.2 .. 168

Table 116 - TSM OMP Versions Execution Time Comparison (%) ... 168

Table 117 - TSM OMP Versions Max Memory Comparison (%) .. 169

Table 118 - TSM v3.2.2 Execution Time Distribution (%) .. 169

Table 119 - NMS Limit Results using 99 Filters Model .. 172

Table 120 - NMS Limit Results using 146 Filters Model .. 174

Table 121 - Dynamic Threshold Patch Results with 99 Filters Model ... 176

Table 122 - Dynamic Threshold Patch Results with 146 Filters Model 179

Table 123 - FP Levels per Interval .. 181

Table 124 - TSM v3.2.2 Interval Patch Execution Time (%) ... 182

Table 125 - TSM Algorithm Interval Patch Performance (%)... 182

Table 126 - TSM Minimum Detectable Face (%) ... 184

Table 127 - Max/MinFace Parameters Execution Time Profit (%) .. 185

Table 128 - Max/MinFace Execution Time Profit per Image Size .. 186

Table 129 - TSM v3.2.2 68 Filters Model Performance (Compared to 99 Model) 187

Table 130 - TSM 68 Filters Model Results ... 188

Table 131 - DC Patch Face Detection Section Results (DC Set 7) (%) .. 191

Table 132 - DC Patch Results (DC Set 7) (%) .. 192

Table 133 - DC Patch Face Detection Section Results (DC Set 7-3-11) (%).................................. 192

Table 134 - DC Patch Results (DC Set 7-3-11) (%) ... 193

Table 135 - DC Patch Face Detection Section Results (DC Set 7-4-10) (%).................................. 194

Table 136 - DC Patch Results (DC Set 7-4-10) (%) ... 194

Table 137 - DC Patch Results Comparison (Threshold = -0.45) (%) ... 195

Table 138 - DC Patch Missed Detections Viewing Angle Classification (%) 196

Table 139 - DC Patch Max(LevelsHigh-Scores[Component]) % .. 197

Table 140 - DC Patch MaxLHigh-Scores(Threshold) ... 198

Table 141 - DC Patch Execution Time Profit per Level (%) .. 199

Table 142 - DC Patch Execution Time Reduction per Face Size (DC Set 7) (%)............................ 200

Table 143 - DC Patch Execution Time Reduction per Face Size (DC Set 7-4-10) (%) 200

Table 144 - DC Patch Execution Time Reduction per Face Size (DC Set 7-3-11) (%) 201

Table 145 - Face Data Structure .. 204

Table 146 - Face vs Results Cache Data Structures Size per Detection 204

Table 147 - PPD Patch Components Stage Execution Times per Pose .. 208

Table 148 - PPD Patch Results Comparison (Threshold = -0.45) (%) ... 209

Table 149 - FPE Patch Pose Estimation (%) ... 210

Table 150 - PPD Patch Execution Time Reduction per DC Set (1 Face Scenario) (%) 210

Table 151 - PPD Patch Execution Time Reduction per DC Set (0
o→±ϵϬo

 Scenario) (%) 211

Table 152 - PPD Patch Execution Time Reduction per DC Set (-45
o→+ϰϱo

 Scenario) (%) 212

Table 153 - Pose & Level Peak Detection Patches Results (FD Threshold = -0.65) (%) 215

Table 154 - LPD Patch Detection Procedure Levels ... 216

Table 155 - LPD Patch MaxLHigh-Scores .. 216

Table 156 - LPD Patch Execution Time Reduction per DC Set (1 Face Scenario) (%) 216

Table 157 - LPD Patch Execution Time Reduction per DC Set (0
o→±ϵϬo

 Scenario) (%) 217

Table 158 - LPD Patch Execution Time Reduction per DC Set (-45
o→+ϰϱo

 Scenario) (%) 217

Table 159 - LPD Patch Execution Time Reduction per DC Set (1 Face Scenario) (v2.2.2) (%) 219

Table 160 - LPD Patch Execution Time Reduction per DC Set (0
o→±ϵϬo

 Scenario) (v2.2.2) (%) . 219

Table 161 - LPD Patch Execution Time Reduction per DC Set (-45
o→ϰϱo

 Scenario) (v2.2.2) (%) 220

Table 162 - PFP Patch |LevelsHigh-Scores|Results per Threshold .. 223

Table 163 - Pyramid Fast Pass Patch Face Detection Section Results (%) 223

Table 164 - Pyramid Fast Pass & LPD Patch Results (DC Set 7-4-10) (%) 224

Table 165 - Pyramid Fast Pass & LPD Patch Results (DC Set 7-3-11) (%) 224

Table 166 - Pyramid Fast Pass Patch Execution Time Profit (No Face) (%) 225

Table 167 - Pyramid Fast Pass & LPD Patch Execution Time Reduction per DC Set (%) 226

Table 168 - Pyramid Fast Pass & PPD Patch Results (DC Set 7-4-10) (%) 227

Table 169 - Pyramid Fast Pass & PPD Patch Results (DC Set 7-3-11) (%) 227

Table 170 - PFP & PPD Patch Execution Time Reduction per DC Set (1 Face) (%) 228

Table 171 - PFP & PPD Patch Execution Time Reduction per DC Set (0
o→±ϵϬo

) (%) 229

Table 172 - PFP & PPD Patch Execution Time Reduction per DC Set (-45
o→+ϰϱo

) (%) 229

Table 173 – Tests Hardware Specifications ... 231

Table 174 - TSM v3.2.2 vs Creators Execution Time (%) ... 231

Table 175 – TSM v3.2.2 Execution Time in Seconds.. 241

Table 176 - TSM v3.2.2 and Creators Execution Time (sec) .. 241

DIAGRAMS

Diagram 1 - TSM v1.1 Algorithm Execution Time Distribution per Stage 61

Diagram 2 - TSM v1.1 Algorithm Execution Timeline .. 62

Diagram 3 - TSM v1.1 Stages Execution Time Growth Trend per Image 62

Diagram 4 - TSM v1.1 Memory Consumption Distribution ... 63

Diagram 5 - TSM v1.1 Memory Consumption Growth Trend per Image 64

Diagram 6 - TSM v1.1 Maximum Memory Distribution per Image ... 65

Diagram 7 - TSM v1.1 Maximum Memory Consumption Trend per Image 66

Diagram 8 - TSM v1.1 Algorithm Memory Profile ... 67

Diagram 9 - TSM v1.2 Execution Time Distribution per Stage .. 71

Diagram 10 - TSM v1.2 Max Memory Distribution per Image .. 72

Diagram 11 - TSM v1.2 Algorithm Memory Profile ... 73

Diagram 12 - FP Stage Execution Time Distribution per Procedure (v1.1) (%) 74

Diagram 13 - Features Pyramid Stage Memory Profile (v1.1) ... 75

Diagram 14 - Resize and Reduce Procedure Growth Trend per Image ... 77

Diagram 15 - HOG Procedure Max Memory per Level .. 78

Diagram 16 - HOG Procedure Time Consumption per Level ... 78

Diagram 17 - Features Pyramid Stage Memory Profile (v1.3) ... 80

Diagram 18 - Image vs Features Pyramid Memory Consumption .. 83

Diagram 19 - Convolution Procedure Time Consumption per Level ... 84

Diagram 20 - Filters Responses Memory Consumption per Level .. 85

Diagram 21 - DT Procedure Versions Resources Consumption (v1.1 & v1.3) 89

Diagram 22 - DT Versions Growth Trend per Image (v1.1 & v1.3) .. 89

Diagram 23 - DT Scores Memory Consumption per Image ... 93

Diagram 24 - Find Procedure High-Score Values Probability Density ... 96

Diagram 25 - Find Buffer Calls x Unused Memory Graph.. 97

Diagram 26 - Find Buffer Calls And Unused Memory Graph ... 97

Diagram 27 - Results Cache Participation in TSM Max Memory per Image................................ 100

Diagram 28 - NMS Procedure Calls per Results Cache Size ... 102

Diagram 29 - TSM v1.3 Execution Time Distribution ... 103

Diagram 30 - TSM v1.3 Execution Time Distribution per Stage .. 103

Diagram 31 - TSM v1.3 Memory Consumption Distribution ... 104

Diagram 32 - TSM v1.3 Maximum Memory Consumption Distribution per Image 105

Diagram 33 - TSM Algorithm v1.3 Memory Profile ... 106

Diagram 34 - TSM v2.1 Maximum Memory Consumption Distribution per Image 108

Diagram 35 - TSM Algorithm v2.1 Memory Profile ... 108

Diagram 36 - TSM v2.1 Algorithm Timeline Profile ... 109

Diagram 37 - TSM v2.2 Algorithm Timeline Profile ... 110

Diagram 38 - TSM v2.2 Algorithm Memory Profile ... 110

Diagram 39 - TSM v2.2 Maximum Memory Consumption Distribution per Image 111

Diagram 40 - TSM Algorithm v3.1 Timeline Profile ... 113

Diagram 41 - TSM Algorithm v3.1 Memory Profile ... 114

Diagram 42 - TSM v3.1 Maximum Memory Distribution per Image ... 115

Diagram 43 - TSM v3.2 Maximum Memory Distribution per Image ... 117

Diagram 44 - TSM Algorithm v3.2 Memory Profile ... 118

Diagram 45 - TSM Algorithm v3.2 Timeline Profile ... 118

Diagram 46 - TSM Algorithm Execution Time Versions Comparison .. 121

Diagram 47 - TSM Algorithm All Versions Memory Consumption Comparison 122

Diagram 48 - TSM Algorithm All Versions Maximum Memory Consumption Comparison 122

Diagram 49 - TSM Algorithm Execution Time per Level .. 126

Diagram 50 - TSM v3.2.2 Maximum Memory Consumption per Image 132

Diagram 51 - TSM v3.2.2 Maximum Memory Profiling ... 132

Diagram 52 - TSM Algorithm v3.2.2 Memory Profile .. 133

Diagram 53 - FP Stage OMP Execution Time (1
st

 Tactic) ... 137

Diagram 54 - FP Stage OMP Execution Time Efficiency (1
st

 Tactic) ... 137

Diagram 55 - FP Stage OMP Execution Time (2
nd

 Tactic) .. 139

Diagram 56 - FP Stage OMP Execution Time Efficiency (2
nd

 Tactic) .. 139

Diagram 57 - FP Stage OMP Execution Time (All Tactics) ... 140

Diagram 58 - FP Stage OMP Execution Time Efficiency (All Tactics) ... 140

Diagram 59 - Resize Procedure OMP Execution Time ... 141

Diagram 60 - Resize Procedure OMP Execution Time Efficiency .. 141

Diagram 61 - Resize Procedure OMP Execution Time ... 143

Diagram 62 - Resize Procedure OMP Execution Time Efficiency .. 143

Diagram 63 - HOG Procedure OMP Execution Time ... 144

Diagram 64 - HOG Procedure OMP Execution Time Efficiency ... 144

Diagram 65 - Convolution Procedure OMP Execution Time ... 146

Diagram 66 - Convolution Procedure OMP Execution Time Efficiency 146

Diagram 67 - DT Procedure OMP Execution Time... 147

Diagram 68 - DT Procedure OMP Execution Time Efficiency .. 147

Diagram 69 - Find v2.0 Procedure OMP Execution Time .. 148

Diagram 70 - Find v2.0 Procedure OMP Execution Time Efficiency .. 148

Diagram 71 - Level Stage OMP Execution Time (1
st

 Tactic) ... 149

Diagram 72 - Level Stage OMP Execution Time Efficiency (1
st

 Tactic) .. 149

Diagram 73 - Level Stage OMP Execution Time (2
nd

 Tactic) .. 151

Diagram 74 - Level Stage OMP Execution Time Efficiency (2
nd

 Tactic) .. 151

Diagram 75 - Level Stage OMP Execution Time (All Tactics) ... 154

Diagram 76 - Level Stage OMP Execution Time Efficiency (All Tactic) .. 154

Diagram 77 - TSM v2.2.2 OMP Execution Time (Time Efficient) ... 156

Diagram 78 - TSM v2.2.2 OMP Execution Time Efficiency (Time Efficient) 156

Diagram 79 - TSM v2.2.2 OMP Execution Time (Memory Efficient) ... 157

Diagram 80 - TSM v2.2.2 OMP Execution Time Efficiency (Memory Efficient) 157

Diagram 81 - TSM v3.2.2 OMP Execution Time (Time Efficient) ... 158

Diagram 82 - TSM v3.2.2 OMP Execution Time Efficiency (Time Efficient) 158

Diagram 83 - TSM OMP Procedures Efficiency per CPU Core ... 161

Diagram 84 - TSM Algorithm v3.2.2 OMP Execution Time Distribution Impact 170

Diagram 85 - Results Cache NMS Limit Parameter Example ... 172

Diagram 86 - TSM Algorithm Performance with NMS Limit Disabled (99 Filters Model) 173

Diagram 87 - TSM Algorithm Performance with NMS Limit Disabled (Both Models) 175

Diagram 88 - Dynamic Threshold Patch Impact on Threshold Low Values (99 Filters Model) ... 178

Diagram 89 - Dynamic Threshold Patch Performance Impact (99 Filters Models) 178

Diagram 90 - Dynamic Threshold Patch Performance Impact (146 Filters Model) 180

Diagram 91 - Components High-Score Results Example ... 189

Diagram 92 - Components High-Score Results per Viewing Angle Example 190

Diagram 93 - Function (31) Diagram ... 198

Diagram 94 - Detection Components Sets Execution Time Profit per Face Size 202

Diagram 95 - Level Highest-Scores Curves Peaks Example ... 205

Diagram 96 - Face Pose Peak Patch Example .. 208

Diagram 97 - Pose Peak Detection Patch DC Sets Execution Time Profit 213

Diagram 98 - Level Peak Detection Patch Example ... 214

Diagram 99 - Fast Pose Estimation Patch Example for TSM v3.2.2 ... 214

Diagram 100 - Fast Pose Estimation Patch Example for TSM v2.2.2 ... 214

Diagram 101 - Level Peak Detection Patch DC Sets Execution Time Profit 218

Diagram 102 - Level Peak Detection Patch DC Sets Execution Time Profit (TSM v2.2.2)............ 221

Diagram 103 – PFP & LPD Patch DC Sets Execution Time Profit ... 227

Diagram 104 – PFP & PPD Patch DC Sets Execution Time Profit ... 230

1. Master Thesis Outline

The first part of the master thesis was the part of studying the preparing for the implementation

of the T“M Algoƌithŵ. IŶ this stage eǆĐept of studǇiŶg oǀeƌ the X.)hu aŶd D. RaŵaŶaŶ ͞Face

detection, pose estimation and landmark localization in the wild͟ papeƌ [1], other related paper

had to be studied too in order to understand and analyze the algorithms structure and

methodology. One of these paper is the one from which the TSM algorithms come from, the

"Object Detection with Discriminatively Trained Part-Based Models" paper [2]. As the master

thesis demanded general knowledge around the computer vision and pattern recognition, extra

studǇiŶg oǀeƌ these Coŵputeƌ “ĐieŶĐe fields had to doŶe. Foƌ eǆaŵple, the ďook ͞Coŵputeƌ
VisioŶ: A ŵodeƌŶ AppƌoaĐh͟ [24] by David Forsyth and Jean Ponce was used for that purpose.

The difficulties on this stage was the fact that, without any background knowledge, in a short

time period a lot of new Computer Science Fields had to be learned and combined in order to

understand a state of the art algorithm. We have to refer that this master was done in the

Microprocessors and Hardware department of TUC, a department not specialized in Computer

Vision and Machine Learning fields.

The second stage of the master thesis working was the implementation of the TSM algorithm

using the C\C++ programming language. The algorithm was offered by the creators in Matlab

script using some parts write in C++ as the Matlab tool did not offer implementation for every

procedure. These procedures where the HOG, Convolution, Resize, Reduce and DT procedures.

Although these procedures where already implemented in C++ the designer had implemented

them using the Matlab array memory format. This means that this implementation was reading

the array data column by column instead of line by line as the C array memory format does. For

that reason this procedures had to be rewritten and debugged.

Figure 1 - Matlab Arrays Memory Format Figure 2 - C Arrays Memory Format

One of the greatest difficulties in the implementation of the TSM algorithm was the debugging

procedure. Millions of data had to be tested in order to be sure that the procedures

implementation had no errors. The solution to that problem was the usage of Matlab tool. Every

procedure we implemented we called through the Matlab tool and we receive the return data

inside the Matlab environment. Every part of the algorithm we implemented used inside the

creators implementation and the ƌetuƌŶed data ǁeƌe Đoŵpaƌed ǁith the data the Đƌeatoƌ’s
implementation return. These processing was much easier and faster than doing it in C\C++.

Although this solution helped us a lot make us save a lot of time, it cost us a considerable

amount of time on creating special libraries for formatting the data from the Matlab array

memory format to C and vice versa. For the debugging procedure we had to create a full set

library functions for converting all the data structures the TSM algorithm needed from the

Matlab format to C and the opposite. Despite the effort of creating these libraries, the

advantage we got worth the trouble.

Figure 3 - Mat2C Library Diagram

Another part of the implementation was the creation of different kind of versions of the

algorithm. This part was not difficult but as long as the parallelism was used the time

consumption of testing all these versions was extended. Every different parallelization

technique had to be tested for all the versions to see its effect on the TSM algorithm execution

time. Sometimes we had to take decisions in order to reject some versions because the number

of versions would increase in an out of scope number.

The Research part of this thesis was also a great time consumer. As happens in the research field

there were techniques designed, that in the end were rejected as they did not offer any useful

results and they are not mentioned in this thesis despite the fact that a lot of time was spent to

be implemented and tested. During the research period a lot of time was also needed for testing

the results of the implemented patches in order to see their effect in the TSM algorithm

performance. We had to let the algorithm run for hours to get these results, as the sample

images used for testing were 205 images of multiple, usually large, sizes. We needed about 10

hours for a single test. Also a lot of Matlab scripts had to be written in order to make automatic

the procedure of data analysis. The uncertainty of the research was a difficult but on the other

hand constructive part of this thesis working time.

At last the writing stage of this thesis was also a great time consumer. The main reason for this

delay was the fact that this thesis had a huge amount of data analysis. For every graph

presented in this thesis lots of data had to be processed. Hundreds of Excel files were used in

order to process these data and create useful graphs by them. We also had to create our own

profiler inside the TSM algorithm implementation code in order to derive the data needed for

these analysis. Multiple Matlab scripts had to be written in order to profile the algorithms

memory consumption and regularize the data in order to be graphically presented. This thesis

contains 129 diagrams, 182 tables and 94 figures the majority of which are custom made. All

those diagrams and tables shown in this thesis caused us a lot of effort and time but they are a

necessary part of it we could not omit.

2. Master Thesis Abstract

IŶ this thesis a Ŷeǁ iŵpleŵeŶtatioŶ of the ͞Face Detection, Pose Estimation, and Landmark

LoĐalizatioŶ iŶ the Wild͟ [1] algorithm by Xiangxin Zhu and Deva Ramanan is represented. This

implementation was firstly designed for being used by embedded systems but finally it can also

be used by large multiprocessors systems. This is because the modern embedded systems tend

to be similar to what we used to call multiprocessor systems years ago. Because of the huge

needs of the market in the area of embedded systems (smart-phone, tablets and more) the

latest embedded system are in the category of small multiprocessor systems using from 2 to 4

and even more cores in their central processing unit.

Our implementation of the ͞FaĐe DeteĐtioŶ, Pose EstiŵatioŶ, aŶd LaŶdŵaƌk LoĐalizatioŶ iŶ the
Wild͟ algoƌithŵ ǁas iŵpleŵeŶted iŶ ďasiĐ C\C++ as there is no usage of any external C\C++

library in the core of the algorithm. This gives the algorithm the ability to be used in both

Windows and UNIX systems with no further changes. It also allows further improvements and

alteration as it is easily readable for those who would like to use it for custom application. Our

implementation gives the ability of customizing the functionality of the algorithm through a set

of settings and parameters that can easily be modified.

As this implementation is designed for usage in embedded systems the need of reducing

memory consumption and processing speedup was encounter. For that reason a number of

customizations were made in contrast to the original implementation of its creators. There were

also pƌoduĐed a set of teĐhŶiƋues that soŵe ŵaǇ pull doǁŶ the algoƌithŵ’s peƌfoƌŵaŶĐe ďut iŶ
contrast they offer extra speedup and memory saving. These techniques may be very useful for

custom application.

Despite any further speedup the main problem of making the face detection task a great time

consumer is the fact that the image size in the one that makes it a long time processing. Large

images compel the system to create large image pyramids in order to search them for face

detection. In addition the larger the top image is the more time is needed to be processed. The

main solution on this problem is proposed is the scaling of the original image to a smaller size in

order to reduce the number of data needed to be processed. This solution makes the systems

faster but they lose part of their performance as scaling an image to a smaller size makes small

size faces to be unable for detection. Our implementation offers a method that scans the image

pyramid faster for face detections in order to avoid detection processing in pyramid levels that

seems to be empty of faces. This can be a very effective method for video application where

empty faces frames can be faster processed and rejected.

3. Related Work

As far as we knew, no previous work was introduced jointly addressing the tasks of face

detection, landmark localization and pose estimation until the June of 2012 when X. Zhu and D.

RaŵaŶaŶ pƌoposed the ͞Face detection, pose estimation and landmark localization in the wild͟
[1] work. This work was supposed to be the state-of-the-art that time and was used as a

baseline for further research leading to the presentation of more proposals for systems trying to

make the face detection process a much faster and efficient. To succeed this, new models was

used except of discriminant parts models like neural networks. The neural networks are

considered to be the more efficient and fast models that can detect faces and estimate pose.

We are not going to mention all of them but only the most recent like [3], [4], [5], [6] and [7].

The most similar work to [1] is the [8], [9] and [10].

Our work does not try to present a new face detection or object detection method but to make

the Discriminant Part Models and Tree Structural Model systems faster and less memory

consumption ones. For this reason the only related work that can be referred is the [25] that

implements the same algorithm. The reason of choosing this algorithm is because except of face

detection and pose estimation it also offer landmark localization of the 68 or 39 (depends on the

viewing angle) human face landmarks. Another task it also implements is the face detection of

faces in the range of over 60 degrees viewing angle. Many algorithms have been deployed since

then, like [26], [27], [28], [29], [30], [31] and [32] but most of them do not offer all these tasks

the same way. Many of them do not offer landmark localization at all or they detect few of

them, the most significant for the face detection (ex. Eyes). The need of the landmarks

localization demand the convolution procedure of at least 68 cascade windows of the image

features space that is a very heavy procedure. Others does not offer pose estimation at all while

the most of them that does, only offer pose estimation in the range of 60 degrees. Only the [25]

does offeƌ the Đoŵplete set of tasks aŶd it’s the oŶe to Đoŵpaƌe ǁith.

As far as we know, there are also many other freeware algorithms offered in the web but none

of the uses the TSM method meaning that all of the have a lack of tasks. They usually offer face

detection or/and pose estimation but not the 68 landmark localization or face detection in more

centered faces as referred in the previous paragraph. Some of these algorithms are [3], [4], [5],

[6], [7], [8] and [10].

4. TSM Algorithm Simple Description

The ͞FaĐe DeteĐtioŶ, Pose EstiŵatioŶ, aŶd LaŶdŵaƌk LoĐalizatioŶ iŶ the Wild͟ [1] algorithm was

created by Xiangxin Zhu and Deva Ramanan from the University of California, department of

Computer Science on 2012. On this algorithm XiangXin Zhu and Deva Ramanan presented a

unified model for face detection, pose estimation and landmark localization in the real world. It

is a model based on a mixture of trees with a shared pool of parts, which represent facial

landmarks, and used to capture topological changes due to viewpoint.

The creators claimed for achieving reliable estimates of head pose and facial landmarks,

paƌtiĐulaƌlǇ iŶ uŶĐoŶstƌaiŶed ͞iŶ the ǁild͟ iŵages. TheǇ pƌeseŶted a siŶgle ŵodel that
simultaneously advanced the state of the art for all three. It is a novel but simple approach to

encoding elastic deformation and three-dimensional structure using mixture of trees with a

shaƌe pool of paƌts. TheǇ defiŶe a ͞paƌt͟ at eaĐh faĐial laŶdŵaƌk aŶd use gloďal ŵiǆtuƌes to
model topological changes due to viewpoint. Different mixtures are authorized to share part

templates which allow the model a large number of views with low complexity.

They presented an extensive evaluation of their model for face detection, pose estimation and

landmark localization. They compared to the state-of-the-art from both the academic

community and commercial systems such as Google Picasa and face.com. In terms of face

detection, their model substantially outperforms Viola-Jones and is on par with the commercial

systems above. In terms of pose and landmark estimation, their results dominate even

commercial systems. Their results are particularly impressive since their model is trained with

hundreds of faces while commercial systems use up to billions of examples.

No previous work had jointly addressed the task of face detection, pose estimation, and

landmark estimation until then. Their system is also trained discriminatively, but with much less

training data, particularly when compared to commercial systems.

4.1. Face Detection Based on Parts Based Detection

The ͞FaĐe DeteĐtioŶ, Pose EstiŵatioŶ, aŶd LaŶdŵaƌk LoĐalizatioŶ iŶ the Wild͟ [1] algorithm is

ďased oŶ the ͞OďjeĐt DeteĐtioŶ ǁith DisĐƌiŵiŶatiǀelǇ TƌaiŶed Paƌt Based Models͟ [2] by Pedro F.

Felzenswalb, Ross B. Girshick, David McAllester and Deva Ramanan. This algorithm is an object

detection system based on mixtures of multi-scale deformable part models. In the Tree

Structural Model (TSM) algorithm the mixtures are one scale deformable part models.

The Deformable Parts Based Detector (DPBD) algorithm, it tries to detect specific parts of an

object within an image using trained filters. After the object detection the usage of the mixtures

of trees is taking place. The algorithm checks the locality of the detected parts and the location

correspondence between those detected parts to make a conclusion if they are bringing forward

the object we are looking for or they are just dispread parts within the image. As the filters used

for object detection are all the same size, different size objects are detected in different scales

of the image that is why it is based on mixtures of multi-scaled deformable part models.

Figure 4 - DPBD Algorithm Root and Child Parts Detection Figure 5 - DPBD Algorithm Root and Child

Parts Locality

The DPBD algorithm uses a root filter to detect the object is looking for and a set of multiple

filters to detect specific parts inside the object the root filter detects. The combination of those

results gives the final approval of the correctness of the detection (Figure 4 and Figure 5). The

set of filters used for the parts detection needs different scales of the image as these parts are

obviously smaller that the main object. For example if a car is the object the algorithm is looking

foƌ, the ǁheals, the lights aŶd otheƌ paƌts of it aƌe all sŵalleƌ thaŶ the Đaƌ’s shape itself, that is
why the system is multi-scaled, as the algorithm has to search inside lower scales of the image

to detect these parts.

In the Figure 6 below the full diagram of the DPBD algorithm is shown. The algorithm uses two

features maps of the image with resolution ratio of two. The small feature map is used for

applying the root filter and the second one for the child parts filters. Adding the filteƌ’s
responses of all the parts gives the final results of the detection procedure.

Figure 6 - Deformable Parts Based Detection Algorithm Execution Flow Diagram

4.2. TSM Face Detection Algorithm

OŶ the ͞FaĐe DeteĐtioŶ, Pose EstiŵatioŶ, aŶd LaŶdŵaƌk
LoĐalizatioŶ iŶ the Wild͟ [1] algorithm there is a small but

important difference. This algorithm does not use a main root filter

for the detection of human face but only the combination of a set

of parts (Figure 7). This small difference gives us a good flexibility

during the implementation. The algorithm is only trying to detect

specific parts of the human face and checks the location

correspondence to figure out if they fit to the face template it is

trained.

Figure 7 - Human Face 68

Landmarks

For the pose estimation, our algorithm uses 13 different pose model trees each of which

represents a different point of viewing a human face by the step of 15 degrees viewing angle.

The one achieving the best score is the one recognized.

As described before, the filters used for detecting face landmarks are one size so in order to

detect different sized faces within the image the algorithm has to apply the detection procedure

oǀeƌ a seƌies of iŵage’s sĐaled Đopies. The deteĐtioŶ pƌoĐeduƌe does Ŷot use siŵple iŵages ďut
the HOG descriptors of them. The series of the HOG images of the scaled copies of the original

image is called the features pyramid of the image and it is described in detail in chapter 5.5. On

all these HOG images the algorithm applies the detection procedure for all the different pose

model trees. At the end of this procedure the algorithm selects the top detection as the most

accurate. This is a simple abstract of the way the algorithm works. In the next chapter (Chapter

5) a more detailed description is presented with deeper analysis on every stage of the

algorithms detection procedure.

The Image

Create Feature

Pyramid

Pose Model

Trees

Detect each

Pose within

the Image

Compare

Results

Select the

highest scores

Figure 8 - TSM Algorithm Execution Flow

5. TSM Algorithm Procedures Description

The TSM algorithm it was used in this thesis uses some well-known and widely used procedures

of the Computer Visio science field. In this chapter a short description on them is appose as they

might not be already known by the reader.

5.1. TSM Face Detection Algorithm

IŶ the pƌeǀious Đhapteƌ the ǁaǇ the ͞FaĐe DeteĐtioŶ, Pose EstiŵatioŶ, aŶd LaŶdŵaƌk
LoĐalizatioŶ iŶ the Wild͟ algoƌithŵ ǁoƌks ǁas desĐƌiďed iŶ a feǁ ǁoƌds. IŶ this Đhapteƌ a detail
description of the algorithm is referred.

The detection process consists of five sequential procedures.

 Feature Pyramid: Having an image for processing, the algorithm firstly creates its image

pyramid. By the image pyramid the algorithm gets the feature pyramid of the image by

applying a HOG procedure.

 Convolution Stage (Filter Responses): The next step is to convolve all the filters used for

detecting facial landmarks with every level of the features pyramid. This means that using

the Model of total 99 filters and having a feature pyramid of 20 levels, this step is a

procedure of 1980 convolution procedures and the production of 1980 different results

stored in 20 lists of 99 elements. This is a very heavy procedure. The result of a convolution

between a filter and a pyramid level is called the «Response of the filter».

 Distance Transformation (DT Scores): This procedure is the processing of the convolutions

result in order the algorithm to decide whether there is useful information at the results. It

is a procedure where the results of the parts over the features or in other words the

landmarks over the image have to be partial combined in order to produce a face contour.

For that purpose the algorithm is using a tree model where information about the position

of each part according to its parental part exists. This process is achieved by applying

multiple distance transformations and additions between the parts filter responses. All this

processing is ends up to a results array called the «Score» of the procedure. This array data

reveal the existence of any detections.

 Find & Backtrack (Result Cache): As soon as the distance transformation stage finishes, the

algorithm checks the final result for high-scored values. High scored values means face

detection. By the time that high score values exists inside the score table the algorithm

starts a process called «Backtrack» were the position of the landmarks within the image is

estimated. The results of the Backtrack procedure are the results returned by the algorithm

with information about the position of every landmark. All results are saved in a results

table called «Results Cache».

 Non-Maximum Supreme (NMS): At the end of the detection process, the algorithm has to

make a selection between the detection results as many detections does not mean multiple

faces within the image but also multiple detections of the same face.

Figure 9 - TSM Algorithm Procedures Sequel

A more detailed description of each phase of the detection process is represented in the

following subchapters.

5.2. Model

The Tree structural model is used in the TSM algorithm for face recognition contains a variety of

data and parameters used during the recognition and estimations procedures. We will describe

the most important as it is necessary for understanding how the algorithm works.

On a human face there are a lot of landmarks that can be used for

face recognition as shown in Figure 10. Every landmark of this kind is

called a part. A human face inside an image can be appeared through

a variety of points of view depending on the angle the head of the

faĐe’s oǁŶeƌ had the ŵoŵeŶt the iŵage ǁas Đaptuƌed. This iŶdiĐates
that lots of the parts of the human face can probably not be visible on

some points of view. Many parts of a human face can also look

different when seen from different points of view. This point also

indicates that a standard set of parts cannot be used for face

deteĐtioŶ. Foƌ that ƌeasoŶ the algoƌithŵ’s ŵodel ĐoŶtaiŶs a set of
different parts for every 15 degrees of viewing angle starting for -90

degrees to +90 degrees for total 13 different pose angles. This method

gives as also the pose estimation.

Image

& Model
Feature Pyramid Convolution

Distance
Transformation

Find & Backtrack NMS

Figure 10 - Human Face

Landmarks

Every set of parts used for detecting faces in a specific point of view is called a component. As

the angle distance of every component with its vicinal is only 15 degrees some parts may appear

tiny defacements, so we can use the same part (landmark) to more than one components.

Another characteristic of the human face is its proportion. This proportion produces a similarity

between the mirrored components. As a result the majority of the parts that are used by a

component can also be used by its mirror component.

Figure 11 - TSM 13 Components

The above remarks conclude to a model that can use only a few amount of parts for a total of 13

components. The creators offer two Models for face detection. One using only 99 filters and one

using 146. The second one appears to be more accurate as long as the detection results but the

first one is faster. On this thesis we are mainly focused on the 99 filters model as we care more

for a fast implementation running on embedded systems. Despite that no substantial difference

exist between those two models and all the important information concerning the algorithm are

referred for both models.

In both 99 and 146 filters models the median component (centered pose of 0 degrees angle)

uses 68 parts for its recognition. All the components used for recognizing faces at most of 45

degrees viewing angle use the same amount of parts when the rest ones use only 39 parts. This

means that a fusion of 710 to 99 (and 146) parts is achieved by using the same parts on multiple

components. This is a very important achievement for the time performance of the algorithm as

is explained later on chapter 6.

Figure 12 - TSM Parts and Filters Connection Structure

In both models (99 and 146 filters) the middle components (4-10) representing faces of -45 to

45 degrees viewing angle use the same filters for landmark detection. The position between

them is the criteria for individualizing them. On the other hand the filters used by the edge

components (1-3 and 11-13) representing -90 to -60 and 60 to 90 degrees are not always the

same. On the 146 filters model the left and the right edge components use their own set of 39

filters. This is how the number 146 comes from (Table 1). On the other hand on the 99 filters

ŵodel oŶlǇ the half of the edge ĐoŵpoŶeŶts paƌt’s filteƌs aƌe uŶiƋue ǁhile the ƌest aƌe
borrowed by the parts of the middle components as also shown in Table 1.

Table 1 - TSM Components Mutual Parts

Filters
Components

1 2 3 4 5 6 7 8 9 10 11 12 13

99 16/23 16/23 16/23 68 68 68 68 68 68 68 15/24 15/24 15/24

146 39 39 39 68 68 68 68 68 68 68 39 39 39

Every part of the model is associated with a three dimensional filter that is used in the detection

process in order the landmark that the part represents inside the image to be discovered.

Every component uses an amount of parts. These parts are connected in a tree style hierarchy.

The reason of doing that is because the position of each part according to the rest ones inside

the image produces the conclusion of a face existence. The tree model of the component 7 is

shown in the Figure 13 below.

Figure 13 - TSM Component 7 Parts Tree Structure

5.3. Image Pyramid

An image pyramid is a collection of multi-scaled representations of an image. The parameter

«Levels» of an image pyramid is the number of scaled images in the pyramid and the «Interval»

one is referring to the number of levels exist in the pyramid between two images with scale

ratio of 2. In the Figure 14 below an image pyramid of 12 levels and interval parameter set to 4

is presented. For further reading use [11].

Figure 14 - Image Pyramid Example

5.4. HOG

The Histogram of Oriented Gradients is feature descriptors used in image processing for object

detection. There are more than one feature descriptors in computer vision but this one is

considered to be the most accurate and suitable for human detection as described by Navneet

Dalal and Bill Triggs in 2005 [12] aŶd that’s ǁhǇ it is used as a paƌt of T“M algoƌithŵ. IŶ the
Figure 15 below a visual representation of the HOG descriptors of two images is shown.

Figure 15 - Histogram of Oriented Gradients Descriptors Example

The idea behind the HOG descriptors method is that the shape and the characteristics of the

objects within an image can be described through the intensity of oriented gradients and edge

directions. The way for doing that is by dividing the image into small boxes of pixels called cells

and calculate the histograms of gradients direction or edge orientation within each cell. The

combination of these histograms represents the descriptor.

Figure 16 - HOG Cells and Blocks Figure 17 - TSM Algorithm HOG Procedure Data

The improvement of the descriptor can be achieved using normalization methods against

illumination differences and shadowing. This normalization is applied separately on groups of

cells called blocks and not in the whole image at once for better accuracy (ex. Shadows). Using

cells and blocks, the HOG descriptor method keeps a good tolerance against geometric and

illuŵiŶatioŶ tƌaŶsfoƌŵatioŶs aŶd that’s a good. TƌaŶsfoƌŵatioŶs affeĐt ŵoƌe ǁheŶ usiŶg laƌge
regions of pixels within a cell.

In the TSM algorithm the HOG stage gets a 3 levels (colors) Width Height array and returns a

32 levels
Width Height

Pixels Per Cell


 

 one. This array is the «Features image» of this image

5.5. Feature Pyramid

The first thing the TSM algorithm does is creating a feature pyramid of the image. A feature

pyramid is similar to an image pyramid but instead of scaled patterns of the image it uses scaled

patterns of the histogram of oriented gradients of the image. The creation of a feature pyramid

demands the existence of the image pyramid as its more accurate to scale the image first and

the get its HOG than create its HOG and scale it afterwards. The last option does not produce

the desirable results as deferent scales of an image produce different kind of HOGs as is shown

in Figure 18.

 Original Image HOG from Image Pyramid HOG from Scale

1
1

1
2

1
4

1
16

Figure 18 - Features Pyramid from Image Pyramid vs Scaled HOG Images

In the Figure 18 above in the third column is presented the HOG images coming from the images

at the second column. The first column images are getting blurred as moving downwards

because they are smaller size than the top one in the scale noted at the first column. On the last

column the HOG images comes from the top HOG image at the same column scaled by the scale

factor at the corresponding first column. It is clearly visible that the HOG images at the third

column are much more accurate than the ones at the forth column. This is why the features

pyramid comes from the image pyramid and not by scaling the HOG images. As is obvious the

features pyramid of the face detector algorithm is comes as the third column of the Figure 18.

There are three parameters in the features pyramid that have to be explained

 Interval: The Interval parameter defines the number of levels exists between two levels with

scale ratio of two, as explained in chapter 5.3. This parameter defines a measurement of the

density of the pyramid. A low density pyramid can cause the escape of detections as our

model detects faces of a specific size. The higher the density is the more accurate the

algorithm is. In addition to accuracy the higher the density is the more hardware resources

are needed to execute the algorithm and the detection process last more time. The creators

of the algorithm have define this parameter value to 5 as the most efficient.

Interval = 2

Interval = 3

Figure 19 - TSM Algorithm Interval Parameter Impact

In the Figure 19 above the features pyramid at the top is using an interval parameter of 2 in

contrast to the bottom one using an Interval parameter of 3. As shown by the red lines over

the images the most accurate detection is succeeded in the third level of the right features

pyramid. The left pyramid fails to have such an accurate detection and it might probably

miss the detection.

 MinLevel: This parameter defines the minimum level of the image pyramid that will be used

for detection. As the model detects faces of a specific size, the minimum this value is, the

smaller is the size of the faces within the image that can be detected. The maximum is the

MinLevel parameter value is the greater the size of the faces within the image must be.

 MaxLevel: The MaxLevel parameter defines the

length of the image pyramid and it affects the

maximum size of a human face within the image

that can be detected. If the MaxLevel parameter is

low value then large faces within the image may

not be detected. In contrast to the MinLevel

parameter, this parameter affect much less the

algorithm execution time and memory resources

needed as in the end of the feature pyramid the

iŵages’ size teŶd to ďe sŵalleƌ iŶ additioŶ to the
beginning.

Table 2 - TSM Features Pyramid

Parameters Defaults

Interval 5

MinLevel 1

sBin 4

MaxLevel

 

1

interval

min .
log

5
1

log 2

image size

sbin

  
     
        




 Sbin: This parameter represents the number of pixels each side of the HOG cell tile uses. The

value of this parameter affects the size of the features image the HOG process produces as

described is chapter 5.4. As referred in this chapter the HOG process produces features

images smaller than the original ones at a scale factor of the Sbin parameter value. This

means that the features pyramid levels are all Sbin times smaller than the respective ones

on the respective image pyramid.

Table 3 - TSM Algorithm Features Pyramid per Image Size

Image Size Levels Max Level Size Min Level Size

320x240 18 86x66x32 13x11x32

640x480 23 326x326x32 13x11x32

800x600 25 406x306x32 13x11x32

1024x768 27 518x518x32 13x11x32

1280x960 28 646x646x32 13x11x32

For building the features pyramid the algorithm creators used two procedures. The first one

resizes the image according a scale factor and the second one creates an image half the input

iŵage. That’s ďeĐause as eǆplaiŶed iŶ chapter 5.3 all the images in the pyramid with level

distance equal to the Interval parameter have scale ratio equal to two.

Figure 20 - TSM Algorithm Image Pyramid Creation Execution Flow

5.6. Convolution

The convolution process is a well-known one in the area of image processing. It is the procedure

of applying a filter over an image. In the TSM algorithm the convolution process is used for part

detection over the features images. As mentioned in chapter 5.2, the algoƌithŵ’s ŵodels
ĐoŶtaiŶs a set of eitheƌ ϵϵ oƌ ϭϰϲ filteƌs. EaĐh filteƌ is used foƌ a huŵaŶ’s faĐe laŶdŵaƌk
detection. By convolving each filter to the image features map, high score pixels appears in the

place where the landmark exists.

In the convolution process, the image is a HOG descriptors image, a 3D flexible array and the

filter data is also a 3D array in the stable size of 5x5x32. The result of the convolution is in

contrast a flexible 2D array as shown in Figure 21 below.

Figure 21 - TSM Algorithm Convolution Procedure Data

In the TSM algorithm the convolution process is repeated for all filters for every level of the

features pyramid. In the creators implementation at Matlab the pyramid reaches the 23 levels

for a 640x480 pixels image. This means that 2277 (23*99) convolution processes occur during

the algorithm execution. This is the most memory and CPU consumption stage of the algorithm

although it is the less complicated. In Table 4 the number of convolution procedures occur in the

face detection one according to the input image size.

Table 4 - Convolution Procedure Calls per Image Size

Image Size Levels 99 filters Model 146 filters Model

320x240 18 1,782 2,628

640x480 23 2,277 3,358

800x600 25 2,475 3,650

1024x768 27 2,673 3,942

1280x960 28 2,772 4,088

In the Figure 22 below a visualization of the convolution results is shown.

Image Lips Nose

Model

Jaw Eyebrow

Eyes Nostril

Figure 22 - TSM Algorithm Convolution Results Examples (Visualized)

By the convolution process a series of results arrays comes. These arrays are called as «Filters

Responses» and consists one of the basic data structures of the algorithm as they allocate a

great amount of memory. For every convolution process a filter response array comes. At the

end of the convolution process the total number of arrays produced by the convolution process

is equal to the number of the levels of the features pyramid multiplied with the number of filters

used by the model. The total amount is the same shown in Table 4.

Figure 23 - TSM Algorithm Filters Responses Data Structure

5.7. Distance Transformation

Distance transformation is a method used in computer vision, image processing and pattern

recognition for comparison of binary images, especially when these images are results of feature

detection. The distance transformation technique specifies the distance from each pixel to the

nearest non-zero pixel.

On a binary feature image the distance transformation produces an image map where all non-

feature pixel have a value corresponding to its distaŶĐe to the Ŷeaƌest featuƌed piǆels. It’s a
representation of the features cost to each pixel.

Figure 24 - Distance Transformation Examples

In our algorithm the implementation of distance transformation is used is the Pedro F.

Felzenszwalb and Daniel P. Huttenlocher [13] one as it is one of the fastest. The distance

transformation stage does not contain just an execution of a distance transformation process

but a sequential execution of the process for every part of the model tree. The algorithm climbs

the tƌee fƌoŵ the leaǀes to the ƌoot addiŶg eaĐh paƌts’ sĐoƌe to its paƌeŶt’s oŶe just afteƌ it
applies the distance transformation process as shown in Figure 25.

Figure 25 - TSM Algorithm Distance Transformation Procedures

In a simple trial of visualizing this process a summary of it is shown in Figure 26 and Figure 27. In

Figure 26 a summary of this process applied on the model tree of component 13 is represented

and an extendible representation of its last branch (68 to 61 leaf) in Figure 27.

Figure 26 - TSM Algorithm DT Results of Component 7 Tree Example (Visualized)

In the Figure 26 above is visible that after applying the distance transformation process multiple

times at last the final image comes of this procedure is an image with high-score pixels (white

pixels) in the place where the human faces exists.

In the Figure 27 below a detailed representation of how the distance transformation procedure

works on the detection process. Using the filters responses produced by the convolution

procedure the algorithm applies the distance transformation process on it and add the parental

filteƌ ƌespoŶse aĐĐoƌdiŶg to the pose’s ŵodel tƌee.

Figure 27 - TSM Algorithm DT Results of Component 7 Tree Leafs 61-68 Example (Visualized)

The result arrays form the distance transformation process are called as «DT Scores» and are

those data that are passed in the next stage, the Backtrack stage (Chapter 5.8 and 5.9), for

further processing. These arrays are two for every part of the pose tree, except from the root

one, plus one with the whole tree score. The tree score array is the one where the detection is

discovered while the others are used by the Backtrack procedure for the landmark localization

one. The number of DT Score arrays produced in the TSM algorithm is large as shown in the

Table 5 below and it is independent by the number of the filters the TSM algorithm model is

using (99 or 146 filters).

Table 5 - TSM Algorithm DT Scores Arrays per Image Size

Image Size Levels DT Scores

320x240 18 25,092

640x480 23 32,062

800x600 25 34,850

1024x768 27 37,638

1280x960 28 39,032

5.8. Find

At the end of the sequential distance transformation procedure the Find procedure is returning

the coordinates of the high-scored pixels within the image. It just makes a selection of the

scores values that is considered to be detection results. The Threshold parameter that defines

the limit over which a pixel value is considered a detection is set by the creators in the value of -

0.65.

Figure 28 - TSM Algorithm Find Procedure Results

By observing the algorithm results during the profiling process (more details in chapter 6.2), we

noticed that the find procedure discovers high-score values not only at the place of an existing

human face but in different occasions. These occasions are,

 One face, multiple poses detection: When a human face exists within an image during the

detect process the majority of the poses trees produce high-score values. Small viewing

angles differences at the pose trees is sensible to create similar results.

 One face, multiple scale detection: When an image illustrating a human face is used for

creating an image pyramid it is sensible that the models would detect the same face in

multiple nearby levels of the features pyramid. As larger is the interval parameter, explained

in chapter 5.5, of the features pyramid more the levels where the same face is detected

would be.

 One face, multiple high-scores: As is visible in Figure 28 above, after the distance

transformation process the results around the highest score have similar values close to the

highest one. The threshold used for selecting the highest value cannot be accurate as

different images creates different high-scores. The threshold value comes after several tests

using several different input images. As a result it is impossible for the algorithm to use a

Threshold parameter value that would select only one high-score value after the DT process.

More details about the find process results are presented in chapter 6.13.1.

5.9. Backtrack

Backtrack procedure is the part of the algorithm that makes on the landmark localization. Even if

there was no interest in landmark localization, this stage would be needed for localizing the face

detection. The Backtrack procedure is a resources cheap process and is only executed when

detections come up. What is necessary to be mentioned is that the Backtrack procedure

produces a landmark estimation set for every high-score pixel the find procedure discovers. This

means that a series of landmark positioning sets candidates comes from the Backtrack

procedure. The final selection of the most accurate sets comes from the NMS procedure based

oŶ eaĐh ĐaŶdidate’s high-score value and its position within the image that is explained in

chapter 5.10.

All the Backtrack procedure results (Candidate detections) are stored in a Results Cache array.

This array size is set to 10,000 results cells by the creators. Every time this array is full the NMS

procedure (Chapter 5.10) is called in order to free array cells from inaccurate and duplicated

detections.

Figure 29 - TSM Algorithm Backtrack Procedure Results

The Backtrack stage results are temporary saved in a data structure called «Results Cache». This

data structure has a user defined size and its default one is 10,000 set by the algorithm creators.

If this data structure is fully filled with detection results the NMS process is called in order to

release data by rejecting the fake results.

5.10. Non-Maximum Suppression (NMS)

Non-maximum suppression (NMS) [14] process is used for selecting high-scoring detections and

skipping the ones that are significantly covered by previously selected detections. As described

in chapter 5.9 the TSM algorithm produce many detection results while trying to detect a face

within an image. As it is obvious poses that are near the same area of viewing angles produce

scores with low contrast. For this reason the algorithm has to find out which detections refer to

the same face within the image and which ones to different faces as an image can contain more

faces. Detections that refer to the same face would have the same locality with low overlapping

differences. The NMS method detects these overlaps and keeps only the highest score

detection, rejecting the rest. This method also makes clear the pose estimation.

Figure 30 - TSM Algorithm One Face Multiple Detections Example

There is a parameter on this process called «Overlap». This parameter defines the percentage of

one detection box area that overlap another one in order those two detection boxes to be

considered as overlapping boxes. Two overlapping boxes refer to the same face. The score that

follows each one is the parameter that creates the dominated one. The lower score boxes are

discarded. The default value of the Overlap parameter is set to 0.3. This value must be also a

product of multiple tests by the creators. Experiments in some different values come up with

faulty results as shown in Figure 31.

0.3 0.7 1

Figure 31 - TSM Algorithm Overlap Parameter Impact

6. TSM Algorithm Implementation

In this chapter an implementation analysis of the TSM algorithm will be quoted. On the

implementation architecture we divide the algorithm in three separate modules (Figure 32)

aĐĐoƌdiŶg to theiƌ ƌole aŶd theiƌ depeŶdeŶĐies. These thƌee ŵodules aƌe the ͞IŶput͟, the
͞Output͟ aŶd the ͞FaĐe DeteĐtoƌ͟ oŶe.

Figure 32 - TSM Algorithm Implementation Modules

The inputs module is where the input data of the algorithm come up. The algorithm gets two

basic inputs, a 3D array structure containing the image data and the model data structure. The

image array has to be a three channel array, one for each color. In our implementation we used

the OpenCV [27] libraries in order to read image files and decode them in array data structures.

We used the OpenCV library as it provides a variety of functions for reading image files, it is very

popular to the computer vision society and it is free licensed. For the model data structure we

used the XML data format almost for the same reasons. To read XML data format files we used

the open source library rapidXML [33]. This stage is fully independent as it can be easy replaced

by any custom module using other methods for providing the face detector algorithm with the

input data it needs in the format we described above.

The output module is the one that gets the results from

the face detector TSM algorithm and converts it in the

format the user desires. In our implementation we

offer three output types, projection in the computer

screen (for PCs), exporting in image format file (JPEG)

aŶd iŶ XML foƌŵat file ĐoŶtaiŶiŶg the algoƌithŵ’s ƌesults
data. For those three types we used the OpenCV and

the rapidXML libraries as in the Inputs module. This

module as the previous one is also fully independent

and can be easily replaces by any custom implementation that a user can create.

At last the ͞FaĐe DeteĐtoƌ͟ ŵodule is the oŶe ǁheƌe the faĐe deteĐtioŶ pƌoĐess takes plaĐe. The
͞FaĐe DeteĐtoƌ͟ ŵodule ĐoŶsists of seǀeŶ diffeƌeŶt stages. This stages aƌe,

1. The Features Pyramid stage produces the pyramid of image descriptors (HOG). This stage

was described in chapter 5.5 and it was separated from the rest stages as an independent

stage because the next ones have to wait for its outputs in order to start their execution.

None stage can start running if at least one features image is produced. It is a preparations

stage that creates the data needed for the recognition process to start. The convolution

stage needs it and it has to wait for it. Extensive description of this stage exists in chapter

6.6.

2. The Detect stage represents the main detection process and it is the algorithms real body.

The process followed inside this stage is what makes the algorithm so special that the

creators claim it as state-of-art algorithm. This stage contains all the rest stages of the

algorithm.

3. The Components stage is the one where the detection procedure of a specific component

takes place. In this stage, having a component as an input, the algorithm tries to detect it

within all the levels of the Features Pyramid. This stage is executed one time for every

component of the model.

4. The Level stage contains all the procedures needed to detect one component in one level

feature image. This stage is executed once for every level of the Features Pyramid for every

ĐoŵpoŶeŶt of the algoƌithŵ’s ŵodel.

5. The Convolution stage is the one where the convolution procedure takes place. The

convolution process is described in chapter 5.6. The convolution stage is a very simple in

complexity but with a heavy data processing one. It is better described by detail in chapter

6.9.

Figure 33 - TSM Algorithm Output Image

6. The Distance Transformation stage is using the distance transformation algorithm for

creating detection results, as described in chapter 5.7. It represents the algorithms main

detection process as it produces the data where the detection comes from. Detailed

description of its implementation exists in chapter 6.11.

7. The Backtrack stage is the one where the landmark estimation takes place. It is a small but

complex stage where the output data come from. It is the second pure representative of the

detection algorithm. The Backtrack stage implementation is described in chapter 6.13.

In the next subchapters we represent the implementation architecture as provided by the

creators in combined Matlab and C++ scripts. We firstly created a similar implementation in

pure C\C++ script in order to profile the algorithm and check our implementation correctness. In

the chapters following we exhibit a set of improvements we applied in our implementation in

order to make it faster and less memory consuming.

6.1. Original Edition

The fiƌst ǀeƌsioŶ ;ǀeƌsioŶ ϭ.ϭͿ of ouƌ iŵpleŵeŶtatioŶ ǁas a Đoŵplete ĐoŶǀeƌsioŶ of the Đƌeatoƌ’s
edition in Matlab to C++ in order to check the correctness of our implementation and be able to

profile it and watch its attitude during its execution. The flow diagram of this implementation is

shown in Figure 34.

Figure 34 - TSM v1.1 Algorithm Implementation Diagram

As the number indexes indicates the algorithm flow follows the according flow,

1. Features Pyramid Stage: Having an image and a model available, the algorithm firstly

produces the Features pyramid as explained in chapter 5.5.

2. Model Components: After the Features Pyramid is available the algorithm uses information

aďout the pǇƌaŵid’s sĐales aŶd aƌƌaǇs’ sizes iŶ oƌdeƌ to update aŶd ĐalĐulate soŵe ŵodel’s
parameters.

3. Detect Stage: After having the Features Pyramid calculated and the necessary data updated

iŶside the ŵodel the deteĐtioŶ pƌoĐess is ƌeadǇ to ďegiŶ. The Đƌeatoƌs’ editioŶ ďegiŶs the
detection process trying to detect every component through the levels of the Features

Pyramid. As seen in the graph two nested loops are used for this procedure separated as

two different stages.

4. Convolution Stage: At the Level stage, where the algorithms tries to detect a component

through all the levels of the Features Pyramid, the algoƌithŵ ĐheĐks if the Filteƌs’ RespoŶses
are calculated for each level of the Features Pyramid. If they are not, then it call the

Convolution stage to calculate them. This happens because in multi-scaled models some

parts of the component may use Filter Response of other levels of the Features Pyramid.

That is why are called multi-scaled models.

5. Distance Transformation Stage: At this moment the actual detection process starts for a

specific level and component. The Filters Responses are necessary for this procedure. After

the DT stage the Backtrack one follows and the detection results are stored in the Results

Cache data structure.

6. NMS: At the end of the Detect stage when all the components have completed the

detection procedure through all levels of the Features Pyramid the NMS procedure has to

be applied in order to collect the right detection as explained in chapter 5.10.

The Feature Pyramid stage is the first process of the algorithms execution flow. This stage is

using three main procedures implemented in C++ by the creators as shown in Figure 35.

1. Resize: The Resize procedure is the one that reduces the size of an image in a custom scale

factor that gets as an argument. The scale factor value can be between 1 and 0.

2. Reduce: The Reduce procedure creates images in the half size of the source ones that gets

as arguments. This procedure replaces the Resize one when the scale factor is 0.5 because it

is a much faster one.

3. HOG: The HOG procedure converts an image into its Histogram of Oriented Gradients

descriptors.

Figure 35 - TSM v1.1 Algorithm FP Stage Implementation Diagram

As seen in the Figure 35, the TSM algorithm uses the resized images to create half scaled ones

with the Reduce procedure. By these images it gets the corresponding HOG images. After the

algorithm completes the features pyramid (Temp pyramid), then it begins a padding procedure

so the HOG images data arrays can be convolved later in the Convolution stage without any loss

of information.

6.2. Profiler

Profiling the Face Detection TSM algorithm is not as simple as it may seem. This is because some

parts of the algorithm are either image size or detection independent and some of them both.

In the profiling process there are four types of dependencies in the different parts of the

algorithm.

 Image size dependencies: The image size dependencies come from the size of the image

that is being processed by a part of the algorithm.

 Pyramid dependencies: This kind of dependencies come from the number of levels the

features pyramid has. If the input image size is large, the number of features images come

out the features pyramid process would be larger than a smaller size image.

 Detection dependencies: In chapter 5.7 the detection process is described of how the DT

stage produces high-score values in the score array when face detection exists. By the

results of the DT stage the execution of the Backtrack stage is depending as it is processing

the detection results. If no detection results exists the Backtrack stage has no job to do. This

is a detection dependency.

 Model dependencies: The models proposed for the TSM algorithm affect its performance as

they contain different number of filters. Each filter is convolved with the features images of

the pyramid and this is time and memory consuming procedure.

In the Table 6 below the dependencies table is presented showing the different stages and

process dependencies as long as the time profiling of the algorithm.

Table 6 - TSM Algorithm Time Dependencies

Procedure Size Pyra Detect Model Description

Features

Pyramid Stage
Yes Yes No No See Resize, Reduce and HOG procedure

Resize

Procedure
Yes No No No

Procedure calls are the same as interval

parameter (Pyramid) (Chapter 5.5)

Larger image means more execution time

(Size)

Reduce

Procedure
Yes Yes No No

Larger pyramid means more procedure calls

(Pyramid) (Chapter 5.5)

Larger image means more execution time

(Size)

HOG Procedure Yes Yes No No

Larger pyramid means more procedure calls

(Pyramid)

Larger image means more execution time

(Size)

Detect Stage Yes Yes Yes Yes
See Convolution, DT and Backtrack stage.

See NMS procedure

Conv. Stage Yes Yes No Yes See Convolution procedure

Convolution

Procedure
Yes Yes No Yes

Larger image means more execution time

(Size)

Larger pyramid means more procedure calls

(Pyramid)

More filters means more procedure calls

(Model)

Component

Stage
Yes Yes Yes No See DT and Backtrack stages

Level Stage Yes Yes Yes No See DT and Backtrack stages

DT Stage Yes Yes No No See DT procedure

DT Procedure Yes Yes No No

Larger image means more execution time

(Size)

Larger pyramid means more procedure calls

(Pyramid)

Backtrack Stage Yes Yes Yes No See Find and Backtrack procedures

Find Procedure Yes Yes No No
Larger image means more execution time

(Size)

Larger pyramid means more procedure calls

(Pyramid)

Backtrack

Procedure
No No Yes No

More high-score values detected more

execution time.

More detections means more data to

process (Chapter 5.9)

More detections means more procedure

calls (Chapter 5.9)

NMS Procedure No No Yes No

More high values detected cause easier the

results cache to full meaning more

procedure calls (Chapter 5.10aaaaaa)

More high values means more execution

time

As the execution time of the algorithm may varies due to hardware resources and the operating

system workload, the time profiling of the algorithm is presented in percentages according to its

total execution time. In chapter 10 a set of measurements for different hardware resources is

appose.

As long as the time profiling of the algorithm, the profiling process had to be done using a

ǀaƌietǇ of iŵage’s sizes that ǁould also pƌoduĐe high deteĐtioŶ ƌesults. This ǁaǇ all these thƌee
profiling dependencies are calculated inside the profiling process. In our profiling process we

used images of the following sizes shown in Table 7.

Table 7 - TSM Algorithm Profiling Images

Sample Images Pixels Pixels (Mpx) FP Levels Max Faces

320x240 76,800 0.1 Mpx 18 8

640x480 307,200 0.3 Mpx 23 31

800x600 480,000 0.5 Mpx 25 48

1024x768 786,432 0.8 Mpx 27 79

1280x960 1,228,800 1.2 Mpx 28 123

1600x1200 1,920,000 1.9 Mpx 30 192

In the Table 8 below the dependencies of the algorithm parts as long as their memory impact

are shown.

Table 8 - TSM Algorithm Memory Dependencies

Procedure Size Pyra Detect Model Description

Features Yes Yes No No See Resize, Reduce and HOG procedure

Pyramid Stage

Resize

Procedure
Yes No No No

Larger images produce larger scaled images

(Size)

Reduce

Procedure
Yes Yes No No

Larger images produce larger reduced images

(Size)

Larger pyramid means more Reduce

procedure calls (Pyramid)

HOG

Procedure
Yes Yes No No

Larger images produce larger HOG images

(Size)

Larger pyramid means more HOG procedure

calls (Pyramid)

Detect Stage Yes Yes Yes Yes
See Convolution, DT and Backtrack stage. See

NMS procedure

Convolution

Stage
Yes Yes No Yes See Convolution procedure

Convolution

Procedure
Yes Yes No Yes

Larger images produce larger filters

responses images (Size)

Larger pyramid means more procedure calls

(Pyramid)

More filters means more procedure calls

(Model)

Component

Stage
Yes Yes Yes No See DT and Backtrack stages

Level Stage Yes Yes Yes No See DT and Backtrack stages

DT Stage Yes Yes No No See DT procedure

DT Procedure Yes Yes No No

Larger images produce larger DT images.

Larger pyramid means more DT procedure

calls

Backtrack

Stage
Yes Yes Yes No See Find and Backtrack procedures

Find Procedure No Yes Yes No

Larger pyramid means more Find procedure

calls (Pyramid dependence)

More high-score values detected more find

results (Detections dependence) (Chapter

5.8)

Backtrack

Procedure
No No Yes No

More high-score values detected produce

more backtrack results.

More detections means more Backtrack

procedure calls

NMS

Procedure
No No Yes No

More high-score values detected produce

detection results and results cache filling.

More results cache fillings mean more NMS

procedure calls

At last these dependencies affect the memory needed for the basic TSM algorithm data

structures used for the detection procedure. In the Table 9 above this dependencies are

presented.

Table 9 - TSM Algorithm Data Dependencies

Procedure Size Pyra Detect Model Description

Features

Pyramid
Yes Yes No No

Larger images produce larger sub-scaled

images and features images (Size)

Larger images produce greater levels features

pyramid (Pyramid)

Filters

Responses
Yes No No Yes

Larger features images produce larger Filters

Responses (Size)

More filters produce more Filter Responses

(Model)

DT Scores Yes Yes No No

Larger images produce larger DT Scores (Size)

Larger pyramid produce more DT scores arrays

(Pyramid)

Results Cache No No Yes No
More detections produce more detection

results

As long as the memory profiling process a virtual profiler was created in order to produce the

maximum memory consumption results assuming the worst case scenarios. For maximum

memory consumption profiling, the profiler reacts as the detection process is achieving full

detection results on all levels of the features pyramid on every pose tree. This way there is no

case that can escape. This is the worst case of maximum memory consumption. This scenario is

impossible to happen in real world but is accurate to predict the possible maximum memory

consumption as it is used for different sized images and assuming the worst detection

dependencies scenario. The first three dependencies (except Model) are calculated for the

worst case by the profiler.

On the other hand in total memory consumption profiling the virtual profiler assumes that the

image is fully filled with faces but this faces cannot produce full detection results in every

component at all levels as this scenario is out of sense and it would produce memory profiling

results that would be misguided. Using different sizes images is the easy way to beat the image

size and pyramid levels dependencies, but as long as the detection ones using the maximum

consumption profiling scenarios it produces huge amounts of memory consumption that leads

to misunderstandings and it is far away from the real life results.

The only stage that is actually detection dependent is the Backtrack one. By this stage is also

depended the NMS procedure calls. The Backtrack stage is the one that checks inside the score

array, which comes from the Distance transformation stage, for high-score values and matches

these values with the corresponding model tree landmarks for landmark and pose estimation.

High-score values means face detection. If the Find procedure does not find high-score values

the rest of the Backtrack stage is not executed. The whole Backtrack stage is difficult to be

profiled as it is fully depended by the detection results. The Find procedure though is the only

part of the backtrack stage that is always executed.

When profiling the algorithm for maximum memory consumption we assume that the Backtrack

stage is getting the maximum high-scores values from the Distance Transformation stage. It is

like getting an image full of high-scored values. On the other hand when we profile the

algorithm for total memory consumption this strategy gives as a huge amount of memory

consumption that is very far away from the real life results and it would lead to incorrect

conclusions. For that reason a series of tests were made in order to create a memory profiling

model that could create the most secure and close to real life profiling.

By testing the algorithm in different scales of faces, it was discovered that it is able to detect

faces larger than 100 pixels high when using the 99 filters model and larger than 50 pixels when

the ϭϰϲ filteƌs oŶe. With a ǁidth of the saŵe size iŶ piǆels, a faĐe’s aƌea is aďout ϭϬϬϬ aŶd ϮϱϬ
pixels. This way it is easy to predict the maximum number of faces can be presented within an

image according to its size using the functions (1) and (2).

max99

. .

10000

image width image height
Faces

    
 (1)

max146

. .

2500

image width image height
Faces

    
 (2)

In the Distance Transformation stage not all face detections produce the same high-score

values. A clear image of a face inside a laboratory environment produces more high-score values

than a face within an into-the-wild environment. In addition a face of zero degrees angle

produces more high-score values than another one with more degrees angle. Knowing that a

faĐe’s aƌea is ϭϬϬϬ piǆels ǁithiŶ the iŵage aŶd also kŶoǁiŶg that a featuƌe iŵage has aďout ϭϲ
times less pixels than its original (4 times smaller) it is sensible that the maximum high-score

values that a face can produce in the Distance Transformation stage is about 625 values. This

gives also a maximum face approximate function, the function (3).

max

. .

600

HOG width HOG height
Faces

    
 (3)

Another parameter that takes matter in the prediction of the Backtrack stage attitude according

to the memory profiling is in how many levels a face within an image can create high-score

values. Again, faces with angles and into-the-wild images produce fewer high-score values than

faces with zero degrees angle and captured in laboratory environment.

By testing the algorithm using both detectable images from laboratories and into the wild

images a close prediction to the real maximum memory consumption can be exclaimed. The

results showed that a face can be detected about at the 12% of the features pyramid levels

succeeding an average of about 80 high-score values per component at each level. These results

are shown in Table 10 below.

Table 10 - Find Procedure Profiling Results

_

%
with High Scores

Features Pyramid

Levels

Levels

 

with High Score

with High Score

Pixels

Find

 

 

Samples Max Average Min Max Average Min

 99 Filters Model

Top 10% 18.9 14.3 12.1 611 169 1

Top 20% 28.6 17.2 9.18 611 128 1

Top 50% 28.6 14.8 7.37 611 103 1

All (100%) 28.6 11.6 0.31 611 79 1

 146 Filters Model

Top 10% 21.5 16.1 12.9 343 116 1

Top 25% 24.0 16.8 10.7 343 91 1

Top 50% 24.0 15.7 7.21 343 70 1

All (100%) 24.0 11.8 0.32 343 53 1

As seen in the Table 10 above the two Models offered for the algorithm creates much different

results. It is obvious that using more filters the algorithm is more accurate at its detection

producing less high-scores for the same or even better results. This is because every filter used

in the 146 filters Model is better trained and more accurate on detecting human face landmarks.

As also seen in the Table 10 the clearest the images are more concentrated are the high-score

values inside the Feature Pyramid levels. In the results table, the maximum number of high-

score values reached by an image is 611 values, almost the same with the theoretical value

calculated in the previous paragraph. This shows that the number of high-score values a face

produces is much smaller than it real size in pixels.

According to these measurements two basic functions were created in order to predict the

number of high-value pixels result after the DT stage procedure. For creating these two

functions and for prediction safety reasons the top 50% of the samples were used. These two

functions are,

99 Filters Model

 0.15High ScoredLevels Round levels   (4)

100Total High ScoredHighScores Components Levels    (5)

146 Filters Model

 0.15High ScoredLevels Round levels   (6)

70Total High ScoredHighScores Components Levels    (7)

The first function ((4) & (6)) gives the levels of the features pyramid that high-scored values

appears cause of the faces within the image. The levels start counting always from the top in

order to profile the Backtrack stage with the hardest amount of data even if it is image size

independent. The second function ((5) & (7)) calculates the total number of high-score values

detected by the find function in the whole algorithms execution. In Table 11 various cases

results are presented for the 99 Filters Model.

Table 11 - High-Score Pixels Profiler Results

Image Size 320x240 640x480 800x600 1024x768 1280x960

LevelsFeatures_Pyramid 18 23 25 27 28

LevelsHigh-Scores 3 4 4 5 5

H
ig

h
-S

co
re

d
 P

ix
e

ls
 Faces High-Score Pixels

1 3,900 5,200 5,200 6,500 6,500

2 7,800 10,400 10,400 13,000 13,000

3 11,700 15,600 15,600 19,500 19,500

4 15,600 20,800 20,800 26,000 26,000

5 19,500 26,000 26,000 32,500 32,500

6 23,400 31,200 31,200 39,000 39,000

One of the parameters affecting the maximum memory

consumption of the algorithms is the Results cache memory.

This data structure keeps the data returned from the Backtrack

procedure in addition to some more information until the NMS

process select the correct ones. This cache memory is defined

to 10,000 detection results by the creators but it is easily

changeable. For that reason the results cache memory is not

included in the max memory consumption profiling as it affects

the distribution statistics. In the table below the results cache

max memory usage is shown according to its size.

Table 12 - Results Cache Sizes

Cache Size

(Detections)

Max Memory

(Mbytes)

10,000 11,24

8,000 8,99

6,000 6,74

4,000 4,50

2,000 2,25

6.3. Original Edition Profiling

Afteƌ the iŵpleŵeŶtatioŶ of the T“M algoƌithŵ’s ǀersion 1.1 a profiling process took place in

oƌdeƌ to ǁatĐh the algoƌithŵs’ attitude duƌiŶg its eǆeĐutioŶ. IŶ the pƌofiliŶg pƌoĐess ǁe ǁatĐh
only the «Face Detector» module as the rest (Inputs, Outputs) are customize according to every

specific application and the main function.

6.3.1. Time Profile

In Table 13 the percentage of CPU holding time of each stage and procedure for different image

sizes is shown. A graphic representation of these results is presented in Diagram 1. As it is

apparent the main CPU time consumer is the Convolution stage. The second procedure that

keeps the CPU busy is the Distance Transformation one.

Table 13 - TSM v1.1 Execution Time Distribution (%)

 320x240 640x480 800x600 1024x768 1200x960 Average

Levels 18 23 25 27 28

FP Stage 3.86 4.47 4.50 5.02 4.66 4.50

Conv. Stage 64.3 65.9 66.3 66.3 66.8 65.9

DT Stage 31.2 29.2 28.9 28.4 28.4 29.2

Backtrack Stage 0.35 0.38 0.30 0.21 0.14 0.28

Others 0.30 0.09 0.08 0.06 0.04 0.11

Diagram 1 - TSM v1.1 Algorithm Execution Time Distribution per Stage

As is shown in Diagram 1 the execution time of each stage is almost stable in ratio to the

algorithms total execution time despite to the processed image size.

In Diagram 2 the algoƌithŵs’ eǆeĐutioŶ tiŵeliŶe foƌ a ϲϰϬǆϰϴϬ size iŵage is shoǁŶ. What is
conspicuous is that all the convolution processing takes place at the first run of the Component

stage executed for the first component of the model. This is a useful note concerning the

algoƌithŵ’s eǆeĐutioŶ floǁ foƌ fuƌtheƌ iŵpƌoǀeŵeŶts eǆposed iŶ the folloǁiŶg Đhapteƌs.

0

10

20

30

FP Conv. DT Backtrack Others

T
im

e

320x240

640x480

800x600

1024x768

1200x960

4.50

65.9

29.2

0.28 0.11

FP Conv DT

Backtrack Others

Diagram 2 - TSM v1.1 Algorithm Execution Timeline

In the Diagram 3 below the time consumption incremental trend is shown. As seen the

Convolution, DT and FP stages execution time is normally increased as the image size does. One

the other hand the Backtrack stage has reversal trend. This is because the Backtrack stage

consists from image size independent parts. As referred in chapter 5.9 the Backtrack stage is

mainly detection dependent and that is why it is not following the same trend as the rest stages

of the algorithm that are mainly image size dependent.

Diagram 3 - TSM v1.1 Stages Execution Time Growth Trend per Image

6.3.2. Memory

A second type of profiling applied in the algorithm is the memory one. The memory

consumption of the algorithm cannot be profiled accurate as the number of detection within the

image affects extensively the memory consumption. For that reason we used for that process a

memory profiling simulator that takes as parameters the worst cases of memory consumption

so that the maximum memory consumption can be accurate forecasted as mentioned in chapter

6.2.

By profiling the algorithm memory usage in a variety of different size images we got

ŵeasuƌeŵeŶts aďout the ŵeŵoƌǇ usage of the algoƌithŵ foƌ the featuƌes pǇƌaŵid’s aƌƌaǇs, the
filters respoŶses’ aƌƌaǇs aŶd the ǁhole aŵouŶt of ŵeŵoƌǇ it ƌeƋuest fƌoŵ the opeƌatiŶg sǇsteŵ.
All these measurements are shown in Table 14 and in Diagram 4.

Components Features Pyramid Convolution DT Backtrack

0

5

10

15

20

320x240 640x480 800x600 1024x768 1200x960

FP Conv DT

Backtrack Others TSM

Data

Diagram 4 - TSM v1.1 Memory Consumption Distribution

 Table 14 - TSM v1.1 Memory Consumption Distribution (%)

 Image Size 320x240 640x480 800x600 1024x768 1200x960 Average

 Total Usage 1.8 Gb 6.8 Gb 11.3 Gb 18.4 Gb 28.6 Gb

S
ta

g
e

s

FP stage 2.71 2.86 2.69 2.71 2.73 2.74

Conv. stage 0.00 0.00 0.00 0.00 0.00 0.00

DT stage 42.2 42.0 39.0 39.0 38.9 40.2

Back. stage 23.4 23.5 26.1 26.1 26.2 25.1

D
a

ta

F. Pyramid 1.34 1.29 1.20 1.19 1.18 1.24

F. Responses 0.98 0.97 0.91 0.90 0.90 0.93

DT Scores 13.9 13.8 12.9 12.8 12.8 13.3

Results 14.1 15.1 17.0 17.1 17.1 16.1

Others 1.39 0.38 0.24 0.16 0.11 0.46

As seen in the graph the DT stage is the most memory consumer of the algorithm creating

suspicious for memory leakages and possibilities of memory usage improvements. The second

greater memory consumer of the algorithm is the Backtrack stage with the detection results in

the third position. As seen the data structures needed for the detection (Features Pyramid,

Filters Responses, DT Scores, Results Cache) use a small amount of memory in relation to the

whole algorithm memory consumption. The DT Scores arrays are those that use the most

memory unlike the rest ones.

In the Diagram 5 below the incremental trend according to the image process size is presented.

As seen all the stages memory consumption is normally increased as the image size does. The

only stage that stay still is the Convolution stage that uses zero temporary memory for its

procedure and the Results Cache memory that is a stable, image size, independent data

structure.

0

200

400

600

800

1,000

1,200

1,400

FP Stage DT Stage Backtrack

Stage

Results Features

Pyramid

Filters

Responses

DT Scores Results

Cache

Others

M
b

y
te

s

320x240

640x480

800x600

1024x768

1200x960

Diagram 5 - TSM v1.1 Memory Consumption Growth Trend per Image

6.3.3. Max Memory

A third type of profiling is the maximum memory one. This is a very important measurement as

it reveals the maximum memory needed for the algorithm to be able to be executed in the

hardware. Unlikely, the total memory consumption profiler that is used only for checking the

algorithm attitude during its execution, the max memory profiler is critically used for checking

the hardware resources needed for the algorithm to be executed. In Table 15 below the

distribution of the maximum memory consumption of the algorithm is shown. In this table the

Results Cache memory is not contained as it is volatile and user determined as explained in

chapter 6.2. Despite that, in the Results Cache table line, the incremental caused to the

ŵaǆiŵuŵ ŵeŵoƌǇ ǁheŶ the default size Result CaĐhe is used is filled. The taďle’s ĐoŶteŶts aƌe
graphically shown in the Diagram 6.

Table 15 - TSM v1.1 Max Memory Consumption Distribution (%)

Image Size 320x240 640x480 800x600 1024x768 1200x960 Average

Pyramid Levels 18 23 25 27 28

Max Usage 70 Mb 287 Mb 409 Mb 664 Mb 1,030 Mb

FP Stage 0.00 0.00 0.00 0.00 0.00 0.00

Conv. Stage 0.00 0.00 0.00 0.00 0.00 0.00

DT Stage 0.00 0.00 0.00 0.00 0.00 0.00

Backtrack Stage 31.6 30.0 31.1 31.9 32.4 31.4

Features Pyramid 33.9 30.7 31.4 31.9 32.2 32.0

Filters Responses 24.8 23.1 23.8 24.3 24.6 24.1

DT Scores 7.81 7.43 7.68 7.88 8.00 7.76

0

5

10

15

20

320x240 640x480 800x600 1024x768 1200x960

Image TSM FP Stage

Conv. Stage DT Stage Back. Stage

Others Results F. Pyramid

F. Responses DT Scores Results Cache

Others 1.88 0.94 0.91 0.84 0.80 1.08

Results Cache

(default)
+32.0 +7.82 +5.49 +3.39 +2.18 +10.2

Diagram 6 - TSM v1.1 Maximum Memory Distribution per Image

Looking at the maximum memory distribution graph (Diagram 6) it is visible that the greatest

parts of the maximum memory consumption are hold by the Backtrack stage temporary

memory, the features pyramid data structure and the filters responses one. What is very

important is that almost the one third of the maximum memory consists of temporary memory

unlike the rest memory that consists of useful data structures. Another point is that the Results

Cache data structure affects the maximum memory consumption of the algorithm more when

the image size is used in getting smaller. As shown in the Table 15, above the increment on the

maximum memory consumption of the algorithm when the default Result cache size is used

reaches the 32% on a 320x240 image while this increment is only 2.2% for a 1200x960 one. This

makes sensible that the Results Cache size should dynamically change according to the size of

the processing image.

In the Diagram 7 below the maximum memory distribution is incremental trend is presented. All

the participants of the maximum memory consumption are increasing normally as the image

size is increasing except of the Result cache that remains stable independent the image size.

0 100 200 300 400 500

320x240

640x480

800x600

1024x768

1200x960

Mbytes

Backtrack Stage Feature Pyramid Filter Responses

DT Scores Others Results

Diagram 7 - TSM v1.1 Maximum Memory Consumption Trend per Image

In the Diagram 8 a detailed memory profile of the algorithm is presented. In dark vertical line

the Components loop is defined as described is chapter 6.1 (Figure 34). What is suspicious for

memory leakage is the fact that the Features Pyramid data structure seems to consume more

memory than the Filters Responses ones. For every level of the features Pyramid the algorithm

uses an XxYx32 image and for its response to all filter a (X-4)x(Y-4)x99 array. This means that the

Features Responses should use more memory than the features images. The memory profile

graph above betrays a series of parental remains of the Parts Based Detector algorithm

explained in next subchapter (chapter 6.4).

0

2

4

6

8

10

12

14

16

640x480 800x600 1024x768 1200x960 1600x1200

Image TSM Backtrack F.Pyramid

F.Responses DT Scores Others Results

Diagram 8 - TSM v1.1 Algorithm Memory Profile

6.4. DPBD Algorithm Remains

Before starting analyzing the algorithm from the top to the bottom and proceed to changes in

details, a series of small but crucial changes had to be made as they affect the whole algorithms

execution and it would be better to referred before the in deep analysis.

6.4.1. Removing the Model Components Process

In the index 2 of the Figure 34 (Chapter 6.1) the algorithm uses some information produced in

the features pyramid and updates some of the parameters of the model. This effect of the

feature pyramid over the model comes from the multi-scale models of the DPBM algorithm. On

the T“M algoƌithŵ’s oŶe-sĐale ŵodel this affeĐt is disappeaƌed aŶd the ͞Model CoŵpoŶeŶt͟
procedure can take place before the features pyramid process and even omitted. As the TSM

faĐe deteĐtioŶ ŵodel’s paƌaŵeteƌs aƌe iŶdepeŶdeŶt fƌoŵ the featuƌes pǇƌaŵid’s iŶfoƌŵatioŶ
the ͞Model CoŵpoŶeŶt͟ pƌoĐeduƌe ĐaŶ take plaĐe oŶĐe aŶd its effeĐt oǀeƌ it ĐaŶ ďe saǀed
permanently in the model data structure file.

As long as its contribution to time and memory saving, this change has no impact as it is a very

fast and memory costless procedure. The removal of this process is not a crucial one and can be

let as is, although for informational reasons it had to be referred. It is important though to refer

that removing this procedure from the algorithm creates the need of creating a new model data

structure with the data that the model components procedure calculates inside.

0

20

40

60

80

100

120

140

M
b

y
te

s

Time
Components TSM FP Stage

Backtrack Stage DT Scores DT Stage

Filters Responses Results Cache Features Pyramid

6.4.2. Convolution Process

In the index 4 of the Figure 34 (Chapter 6.1), the algorithm calls the convolution procedure to

calculate the filters responses over a specific level of the feature pyramid. These responses are

saved and used for all the parts asking for their response to this specific level of the feature

pyramid. At this point one more remain of the DPBM algorithm exists. The model uses a scale

parameter for every part because of the multi-scale type of the DPBM algorithm where each

parts of the model may needs different level response. On the TSM face detector algorithm all

the parts of the model use the same level responses. This difference allow as to change the

location inside the algorithm where the convolution process can take place and use less memory

at its execution as shown in Figure 36. The effect of a change like this is described in chapter

6.17 as it ĐhaŶges the ǁhole algoƌithŵs’ eǆeĐutioŶ floǁ.

Figure 36 - TSM v1.2 Algorithm Execution Flow Changes

6.4.3. Root Filter Interval Set

As seen in Figure 35 in chapter 6.1 the

memory allocated for the features

pyramid is larger than the one that

used for the Filter Responses. This

reveals another remain of the parental

DPBD algorithm. As shown in Figure 37,

inside the red circle the algorithm

creates a series of features images

using the half sbin parameter value.

This action creates an interval set at the

top of the features pyramid that is two

times smaller than its original image as

referred in chapter 5.5. The reason the

creators proceed at this implementation is probably because they need features images twice

larger than the ones the parts need for all levels for the root part of every model as referred in

chapter 4.1. In the TSM face detection algorithm the root part is similar to all the others and

these interval set is actually not ever used. This is the reason why the features pyramid structure

uses more memory, as its top interval set is never used in the convolution process and does not

create filters responses. As a result this interval set can be removed from the features pyramid.

By removing this top interval set from the Features Pyramid the results are got in the algorithm

are those shown in Table 16 below. As seen in this table the Features Pyramid stage time

consumption is reduced at the half of it. This is because the interval set of features images

removed is the top one which means the greatest images set. As also seen in the same table the

algorithŵ’s ŵaǆiŵuŵ ŵeŵoƌǇ ĐoŶsuŵptioŶ is sigŶifiĐaŶtlǇ ƌeduĐed ďǇ just ƌeŵoǀiŶg aŶ iŶteƌǀal
set of features images. This is an indication of how great impact has the images size in the

maximum memory consumption of the algorithm.

Table 16 - Features Pyramid Extra Interval Set Removal Effect (TSM v1.1) (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

Levels 18 23 25 27 28

Time

TSM -2.01 -2.21 -2.23 -2.67 -2.06 -2.23

FP Stage -51.4 -50.7 -48.8 -54.2 -49.2 -50.8

Memory Usage

TSM -2.30 -2.36 -2.20 -2.22 -2.23 2.26

FP Stage -49.5 -49.4 -49.4 -49.4 -49.4 -49.4

Figure 37 - Features Pyramid Stage Changes (TSM v1.2)

Max Memory

TSM -24.2 -30.2 -24.3 -24.3 -24.3 -25.5

Features Pyramid -71.5 -73.1 -73.4 -73.7 -74.0 -73.1

6.4.4. Double to Float

At last another global change in the algorithm is the conversion of it in order to use float data

types instead of the double ones. This small conversion reduces all the memory consumption to

its half as the float data type is using 4 bytes instead of 8 ones. The algoƌithŵ’s aĐĐuƌaĐǇ iŶ Ŷot
influenced at all and its execution time is reduced as shown in Table 17 below.

Table 17 - TSM v1.1 Double to Float Effect (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

Time -6.13 -7.58 -7.69 -7.08 -7.62 -7.22

Memory -50.0 -50.0 -50.0 -50.0 -50.0 -50.0

Max Memory -50.0 -50.0 -50.0 -50.0 -50.0 -50.0

A similar attempt of conversion the algorithm to run using normalized integer values was tried.

The results were negative in this attempt as the algorithm lost a bit of its accuracy especially

during the landmark localization and the time consumption was worst compared to the float

version due to the continuous normalizations needed.

By using the float data type instead of the double one and removing the extra features pyramid

interval set the algorithm is now consider as an extended version of the original in order to

individualize it from the original version 1.1. This version is called the 1.2 version of the

algorithm. The differences are not much and not important but from this point every

comparison with the primary version would be a reference to the version 1.2.

6.5. TSM Original Version 1.2

Afteƌ ƌeŵoǀiŶg the ƌeŵaiŶs of the DPBM algoƌithŵ fƌoŵ the Đƌeatoƌs’ editioŶ ;ϭ.ϭͿ as ƌefeƌƌed iŶ
the previous chapter 6.4, the algorithm moves to the new 1.2 version. For this version is

required to present the new profiling tables and graphs as they are going to be used as

comparison data for the changes that will referred in the following chapters. In the Table 18

below the time table is presented.

Table 18 - TSM v1.2 Execution Time Distribution (%)

 320x240 640x480 800x600 1024x768 1200x960 Average

Levels 18 23 25 27 28

FP Stage 1.91 2.25 2.36 2.37 2.42 2.26

Conv. Stage 65.6 67.4 67.8 68.1 68.1 67.4

DT Stage 31.9 29.9 29.5 29.3 29.3 30.0

Backtrack Stage 0.37 0.39 0.31 0.22 0.15 0.29

Others 0.30 0.09 0.08 0.06 0.04 0.11

Diagram 9 - TSM v1.2 Execution Time Distribution per Stage

As far as the memory consumption, the change of using double type data to float ones reduced

the algorithm memory usage in the physical memory to the half but this is not a real change to

the algoƌithŵs’ stƌuĐtuƌe. OŶ the otheƌ haŶd ƌeŵoǀiŶg the fiƌst iŶterval set of the Features

Pyramid has reduced the size of the Features Pyramid data structure and the algorithm

maximum memory consumption despite the data type used (float, double). The new memory

consumption tables are presented below.

 Table 19 - TSM v1.2 Memory Consumption Distribution (%)

 320x240 640x480 800x600 1024x768 1200x960 Average

Total Usage 0.86 Gb 3.3 Gb 5.5 Gb 9.0 Gb 14.0 Gb

vs 1.1 -2.30 -2.36 -2.20 -2.22 -2.23 -2.26

S
ta

g
e

s

FP stage 1.40 1.48 1.39 1.40 1.41 1.42

Conv. stage 0.00 0.00 0.00 0.00 0.00 0.00

DT stage 43.2 43.0 39.9 39.9 39.8 41.2

Back. stage 23.9 24.1 26.7 26.7 26.8 25.6

Results 14.4 15.5 17.3 17.4 17.5 16.4

D
a

ta

F. Pyramid 0.39 0.36 0.33 0.32 0.31 0.34

F. Responses 1.01 1.00 0.93 0.93 0.92 0.96

DT Scores 14.2 14.2 13.2 13.1 13.1 13.6

Results Cache 1.30 0.34 0.20 0.12 0.08 0.41

Others 0.13 0.06 0.04 0.04 0.03 0.06

2.57

67.7

29.3

0.33 0.10

FP

Convolution

DT

Backtrack

Others

As far as the maximum memory consumption of the algorithm that is a more critical indicator

affecting the algorithm execution ability over the hardware resources, the new maximum

memory tables are below,

Table 20 - TSM v1.2 Max Memory Consumption Distribution (%)

 320x240 640x480 800x600 1024x768 1200x960 Average

Pyramid Levels 23 25 27 28 30

Max Usage
27 Mb 100 Mb 155 Mb 251 Mb 390 Mb

-24.2 -24.3 -24.3 -24.3 -24.3 -24.3

FP Stage 0.00 0.00 0.00 0.00 0.00 0

Conv. Stage 0.00 0.00 0.00 0.00 0.00 0

DT Stage 0.00 0.00 0.00 0.00 0.00 0

Backtrack Stage 41.7 38.7 40.4 41.7 42.5 41.0

Features Pyramid
12.7 11.84 11.64 11.45 11.30 11.79

-24.2 -22.4 -24.3 -24.3 -24.3 -23.9

Filters Responses 32.8 29.8 30.9 31.7 32.2 31.5

DT Scores 10.3 9.6 10.0 10.3 10.5 10.1

Others 2.48 1.35 1.21 1.11 1.06 1.44

Results Cache

(default)
42.2 10.1 6.8 4.3 2.8 13.2

As seen in the Table 20 above, the maximum memory consumption of the algorithm is totally

affected by the removal of the DPMD algorithm remains. The maximum memory consumption is

reduced about 24% and the Features Pyramid data structure is now participating at the 12% of

the total maximum memory instead of the 32% at the original version (1.1).

Diagram 10 - TSM v1.2 Max Memory Distribution per Image

At last memory profile diagram (Diagram 11) of the version 1.2 of the algorithm is presented

below.

0 100 200 300 400

320x240

640x480

800x600

1024x768

1200x960

Backtrack Filter Responses Pyramid DT Scores Others Results

Diagram 11 - TSM v1.2 Algorithm Memory Profile

6.6. Features Pyramid Stage

The Features Pyramid stage is the stage of the algorithm

where the image pyramid is created and afterwards the

features one. This stage is a short one but it is very critical

as it is the first one executed by the algorithm. Its results

are the input to the Detect stage and required to the

detection process to start. In the Table 21 on the right the

Features Pyramid stage characteristics are presented.

The Features Pyramid stage consists by three main

procedures, the Resize, the Reduce and the HOG one. The Resize and the Reduce one are those

who create the image pyramid and scale the images in certain scales. The Resize procedure

scales an image at any custom scale while the Reduce one scales images at their half size. The

difference of these two procedures is the execution time they need to be completed. The HOG

procedure is the one that creates the histogram of oriented gradients descriptors of an image.

This procedure creates the Features Pyramid data structure and the actual output of the whole

Features Pyramid stage. In the Table 22 below the execution time distribution is presented.

0

20

40

60

80

100

M
b

y
te

s

Time

Components TSM FP Stage

Backtrack Stage DT Scores DT Stage

Filters Responses Results Cache Features Pyramid

Table 21 - FP Stage to TSM (%)

Image Time Memory Max

320x240 1,91 1,40 0

640x480 2,25 1,48 0

800x600 2,36 1,39 0

1024x768 2,37 1,40 0

1280x960 2,42 1,41 0

Average 2,26 1,42 0

Table 22 - Features Pyramid Stage Execution Time Distribution (v1.1) (%)

Procedure 320x240 640x480 800x600 1024x768 1280x960 Average

Resize 13.6 18.2 22.3 23.9 23.9 20.4

Reduce 10.0 10.8 11.1 10.5 11.1 10.7

HOG 72.5 66.9 62.9 61.7 61.4 65.1

Others 3.87 4.17 3.75 3.85 3.64 3.86

Diagram 12 - FP Stage Execution Time Distribution per Procedure (v1.1) (%)

As seen in Diagram 12 above the main time consumer of the Features Pyramid stage is the HOG

procedure holding a little more than the 66% of the whole stage execution time. In chapter 6.6.2

the HOG procedure is explained extended.

As far as the memory consumption inside the Features Pyramid stage the distribution between

the stage’s pƌoĐeduƌes is shoǁŶ iŶ the Table 23.

Table 23 - Features Pyramid Stage Memory Consumption Distribution (v1.1) (%)

Procedure 320x240 640x480 800x600 1024x768 1280x960 Average

FP Stage 12 Mb 49 Mb 77 Mb 126 Mb 197 Mb

Resize 22.3 21.7 21.6 21.6 21.5 21.7

Reduce 15.3 15.4 15.4 15.4 15.4 15.4

HOG 12.4 12.3 12.3 12.2 12.2 12.3

Others 50.0 50.6 50.7 50.8 50.9 50.6

Features Pyramid +27.9 +24.1 +23.4 +22.8 +22.3 +24.1

The Table 23 shoǁs that the ŵaiŶ ĐoŶsuŵeƌ of the Featuƌes PǇƌaŵid stage’s ŵeŵoƌǇ is the
temporary one and not the memory consumed inside its main procedures. The reason for this is

the temporary image and features pyramids that are created as shown in the Figure 35 (chapter

6.1). This is also visible in the Diagram 13 below where the memory profiling of the stage is

presented. On the last line of this table the Features Pyramid output size is presented in ratio

ǁith the stage’s ŵeŵoƌǇ ĐoŶsuŵptioŶ.

20.5

9.18

66.3

4.01

Resize Reduce HOG Others

Diagram 13 - Features Pyramid Stage Memory Profile (v1.1)

In the Diagram 13 above the memory consumption profile of the Features Pyramid stage is

shown. As seen the temporary features pyramid and the image pyramid are the main

consumers. As seen in the beginning of the graph the image pyramid is using an image at the

original size for the first level and holds this image until the end as input to the resize

procedures. On the other hand, all the rest images of the image pyramid are used for a while

and then they are released. The temporary features pyramid is filled with HOG images and at

the end is released while the final features Pyramid is created when padding the HOG images.

At the next chapters the Resize, Reduce and HOG procedures are analyzed and memory and

time improvements are presented.

6.6.1. Resize

The resize procedure is the one for scaling an image to any custom size. In our implementation

is the one that resize the image at the scale of the first interval set of the image pyramid. After

that the reduce procedure creates the rest levels of the pyramid. Both the Resize and the

Reduce procedures implementation were provided by the algorithm creators in C\C++ script.

The Reduce procedure is the one that takes an image and returns a copy of it in the half size. In

our implementation this procedure takes the scaled images of the first interval set and creates

copies half of those images for the next sets of intervals as shown in Figure 20 (Chapter 5.5).

That is because the reduce procedure is much faster than the Resize one as the scale factor is

already known (0.5) and its implementation is customized for it. In Table 24 the amount of time

the reduce procedure needs in addition to the resize one is shown.

0

2

4

6

8

10

12

14

16

M
b

y
te

s

Time
Levels FP Stage Image Pyramid
Temp Pyramid Features Pyramid HOG
Resize Reduce

Table 24 - Reduce to Resize Procedures Comparison (%)

Image 320x240 640x480 800x600 1024x768 1280x960 Average

Time 75.1% 73.5% 70.6% 66.2% 66.3% 70.3%

Memory 98.2% 98.6% 98.8% 99.1% 99.3% 98.8%

In the Table 25 below a memory comparison between the Resize and the Reduce procedure is

presented. As seen the reduce procedure has a little better memory consumption profile.

Table 25 - Resize & Reduce Procedures Memory Profile

Input
Resize 3X Y 

Reduce 3X Y 

Output

Resize     3X scale Y scale    33%

Reduce     3X scale Y scale    33,5%

Temporary

Resize         3 3 6X scale Y X Y X scale Y scale           67%

Reduce   3X scale Y   66,5%

Max

Resize      3 3 6X scale Y X Y scale        99,6%

Reduce      3 3X scale Y scale X scale Y        100%

In Diagram 14 below the ratio of memory consumption and execution time needed by each

procedure is shown according to the size of the image they use. As seen, both procedures react

the same way to image size increments.

Diagram 14 - Resize and Reduce Procedure Growth Trend per Image

6.6.2. HOG

The HOG procedure is the one that creates the Histogram of Oriented gradients descriptor

described in chapter 5.4. This procedure is the greatest time consumer of the Features Pyramid

stage as shown in Diagram 12 and Table 22 (Chapter 6.6). In Table 26 below the memory profile

of the HOG procedure is presented.

Table 26 - HOG Procedure Memory Profile

Input 3X Y 

Output    6 6 32
4 4

X Y    61%

Temporary    2 2 19
4 4

X Y    38%

Max          6 6 32 2 2 19
4 4 4 4

X Y X Y         100%

As it is sensible the larger an image is the more memory is needed for the HOG procedure. As

shown in Diagram 15 the ratio of memory consumption between different levels of the features

pyramid is exponential both in temporary and the results memory which are increasing as the

image sizes increases. The perpendicular thin red line in this graph shows how greater is the

memory needed for the first interval set of the features pyramid in addition to the rest levels.

0

1

2

3

4

5

6

7

8

9

320x240 640x480 800x600 1024x768 1280x960

Resize Time

Reduce Time

Resize Memory

Reduce Memory

Diagram 15 - HOG Procedure Max Memory per Level
Diagram 16 - HOG Procedure Time Consumption

per Level

At the Diagram 16, the time consumption that each level needs at different size images is

shown. The HOG procedure has the same attitude at time consumption as in the memory one.

Again the red thin line in the graph divides the time consumption needed for the first interval

set.

As seen in Figure 35 (Chapter 6.1) the Features Pyramid is not created directly by the results of

this procedure but the arrays are padded first. This happens in order to have an accurate

convolution process later. The padding procedure costs in the Features Pyramid stage a small

amount of time and temporary memory. These costs can be avoided if the padding procedure

could be done inside the HOG procedure saving its results in previously padded arrays. This

technique produces a new flow diagram of the Features Pyramid stage as shown in Figure 38.

0

10

20

30

40

50

60

70

0 5 10 15 20 25

M
b

y
te

s

Levels

320x240

640x480

800x600

1024x768

1280x960

First Interval Set

0 5 10 15 20 25

T
im

e

Levels

Figure 38 - Features Pyramid Stage Execution Flow (v1.3)

In order to nest the padding procedure inside the HOG one a series of changes inside the

procedure in the way the memory pointers are used was made. The time cost of this change is

closed to zero and it could not be able to be measured in action, it is only theoretically

understandable, although the total time consumption of the Features Pyramid stage was

reduced. The results of this improvement in the Features Pyramid stage are shown in Table 27

(Chapter 6.6.3).

6.6.3. Features Pyramid Stage v1.3

At the chapter 6.6.2 a new version of the HOG procedure was presented. This version creates

already padded HOG images changing the Features Pyramid stage flow diagram as shown in the

Figure 38. This change in addition to implementation changes inside the stages procedures

Đaused ĐhaŶges to the stage’s tiŵe aŶd ŵeŵoƌǇ taďles as shoǁŶ ďeloǁ. IŶ Table 27 the effect of

these changes on the execution time of stage is presented.

Table 27 - Features Pyramid Stage Execution Time Distribution (v1.3) (%)

Procedures 320x240 640x480 800x600 1024x768 1280x960 Average

v1.2 -3.46 -3.25 -4.25 -2.27 -3.82 -3.41

Resize 16.2 20.2 22.1 21.7 22.4 20.5

Reduce 11.0 10.4 10.1 10.0 10.2 10.3

HOG 72.3 68.4 66.8 67.2 66.6 68.3

Others 0.53 1.03 0.93 1.00 0.89 0.88

By the Table 27 data it is visible that the changes inside the Features Pyramid stage and its

procedures reduced the execution time of it for about 3.5%. This reduction is actually caused

because of the removal of the HOG images padding procedure in the end of the stage as it is

visible in this table.

As far as the memory consumption of the Features Pyramid stage the Table 28 shows the effect

of the changes.

Table 28 - Features Pyramid Stage Memory Consumption Distribution (v1.3) (%)

Procedures 320x240 640x480 800x600 1024x768 1280x960 Average

FP Stage -13.2 -16.8 -17.6 -18.2 -18.7 -16.9

Resize 25.6 26.1 26.2 26.4 26.4 26.2

Reduce 17.6 18.5 18.7 18.8 18.9 18.5

HOG 20.9 18.1 17.6 17.1 16.7 18.1

Others 35.9 37.2 37.5 37.7 37.9 37.2

Features Pyramid 32.2 29.0 28.4 27.8 27.4 29.0

The removal of the temporary features pyramid is the main reason of the reduction of the

memory consumption of the Features Pyramid stage for about 17%. This was the effect of the

new HOG procedure implementation that creates already padded HOG images. In the Diagram

17 the new memory profiling graph is presented.

Diagram 17 - Features Pyramid Stage Memory Profile (v1.3)

As seen in the Diagram 17 above the Features Pyramid output is creating during the execution

of the Features Pyramid stage. The main memory consumers are the image pyramid that is used

temporary and the output data of the stage, the Features Pyramid.

0

2

4

6

8

10

12

M
b

y
te

s

Time
Levels FP Stage Image Pyramid

Features Pyramid HOG Resize

Reduce

The features Pyramid stage does not participate at the maximum memory consumption limit the

algorithm reaches. For this reason the memory consumption reduction is not an important

achievement on this version (see version 3.x, Chapters 6.19 and 6.20). On the other hand, the

speedup of the stage’s eǆeĐutioŶ tiŵe is aĐtuallǇ the iŵpoƌtaŶt ĐhaŶge aĐhieǀed. EǀeŶ if the
Features Pyramid stage is a short one, is very important to make shorter as the detection

procedure needs its output results in order to begin, as mentioned in the first paragraph of this

chapter.

6.7. Features Pyramid

The Features Pyramid data structure is a global one

created inside the features pyramid stage and used

at the detection process. It handles the HOG

images of the image pyramid as described in

chapter 5.5. Its life time starts at the end of the

features pyramid stage and finish at the end of the

detect stage as shown in Diagram 8 (Chapter 6.5).

What is worth to focus on is the fact that it holds a

noticeable amount of memory at the maximum memory consumption index.

By using the new version of the HOG procedure, described in chapter 6.6.2, the HOG images

come of, are already padded and immediately registered in the Features Pyramid data structure

as shown in the Figure 38. So, actually the Features Pyramid data structure is created during the

Features Pyramid stage and is released during the Detect stage. The features images are not

useful by the time the Filter Responses are calculated and they are immediately released after

that. Even though this data structure participates on the maximum memory consumption

indicator. As shown in the Table 20 (Chapter 6.5) the Feature Pyramid holds about the 12% of

the algorithms data structures memory.

6.8. Image Pyramid

One sensible question would probably be why the algorithm creates the features pyramid of the

image and not the simple image one transferring the HOG procedure inside the detection

procedure just before the convolution stage as shown in the Figure 39 below.

Table 1 - Features Pyramid Max Memory

Image FP/TSM Levels Memory

320x240 12.7% 18 3.4 Mb

640x480 11.8% 23 11.9 Mb

800x600 11.6% 25 18.0 Mb

1024x768 11.4% 27 28.8 Mb

1280x960 11.3% 28 44.0 Mb

Figure 39 - Image Pyramid in TSM Algorithm

As far as the time consumption this change would not offer any serious benefit, as in a single

core CPU the results are the same. On the other hand as far as the memory consumption, the

features pyramid needs less memory than the image one. As shown in the Diagram 18 below

the size of the image pyramid is larger than the features one for the majority of image sizes until

the pyramids coming from an image sized 304x228 pixels and lower. These are very small

images where the algorithm anyway consumes very low memory.

Diagram 18 - Image vs Features Pyramid Memory Consumption

Table 29 - Image vs Features Pyramid

Levels 28 26 24 22 20 18

Image Size 1213x909 919x689 697x523 528x396 400x300 304x228

Image Pyramid 54.7 Mb 31.4 Mb 18.0 Mb 10.4 Mb 5.9 Mb 2.0 Mb

Features Pyramid 39.8 Mb 23.5 Mb 14.0 Mb 8.4 Mb 5.1 Mb 1.9 Mb

Features/Image 72.9% 74.9% 77.5% 81.0% 85.6% 99.9%

In the Table 29 above the Image and the Features Pyramids sizes are shown. At the last line the

ratio between them is also shown. In the next chapters various versions of the algorithm are

presented. In some of them the features pyramid data structure does not participate at all in the

maximum memory consumption formation of the algorithm and gives the ability of choosing the

image pyramid instead of the features one.

6.9. Convolution

The convolution stage is implemented by the convolution

procedure which was implemented in C++ by the creators

and it is the most important procedure of the algorithm as

uses the most resources of the hardware and any small

improvement on it can cause large improvement to the

whole algorithm execution. As shown in Table 30 the

convolution process uses almost the 68% of the complete

algorithms execution time. This means that it is very

important to find ways to decrease this procedure

execution time. In the following graph below (Diagram 19) in the thick lines the time needed for

the convolution process according to the features pyramid levels is shown.

0

20

40

60

80

100

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

M
b

y
te

s

Levels

Image

Features

Table 30 - Convolution to TSM (%)

Images Time Mem

640x480 65.6 0

800x600 67.4 0

1024x768 67.8 0

1280x960 68.1 0

1600x1200 68.1 0

Average 67.4 0

Diagram 19 - Convolution Procedure Time Consumption per Level

In chapter 5.6 the convolution process is described. By this description and by looking at the

convolution procedure memory table (Table 31) it is clear that the convolution procedure is a

very simple one with a very heavy work to execute. It is actually a many data to a simple process

procedure and that is why no great improvements can be applied to it. By looking at the

memory table (Table 31) it is easy understandable that the convolution procedure has no space

for memory saving improvements.

Table 31 - Convolution Procedure Memory Profile

Input 32 5 5 32X Y    

Output X Y 100%

Temporary 0 0%

Max 32 5 5 32X Y X Y       100%

IŶ the Đƌeatoƌs’ iŵpleŵeŶtatioŶ, the ĐoŶǀolutioŶ pƌoĐeduƌe desigŶ ǁas used foƌ fleǆiďle filteƌs
size. By customizing the convolution procedure design for using only 5 5 32  sized filters we

got the Table 32 results. By executing the convolution process at once and for all the Features

Pyramid levels, not any extra speedup was succeeded but actually a tiny latency. This might be

caused by memory bandwidth overflows.

Table 32 - Convolution Procedure Time Improvements (v1.3) (%)

Image Size 320x240 640x480 800x600 1200x768 1280x960 Average

Customized for 5x5x32 -13.3 -12.8 -12.9 -12.9 -13.2 -13.0

+ all levels at once -13.1 -12.6 -12.7 -12.8 -13.0 -12.8

The reduction of the execution time needed for the convolution procedure by almost 13% is a

ǀeƌǇ iŵpoƌtaŶt ĐhaŶge as the ĐoŶǀolutioŶ pƌoĐeduƌe holds the ϲϳ% of the ǁhole algoƌithŵ’s

1 3 5 7 9 11 13 15 17 19 21 23 25 27

T
im

e

Levels

1280x960

1024x768

800x600

640x480

320x240

execution time. As shown in the Table 32 above the average of 13% of reducing the Convolution

stage execution time, an about 8.7% reduction is succeeded in the whole algorithm execution

time. This is a great result!

6.10. Filters Responses

The Filters Responses is a set of arrays used for holding the results of the convolution process

between the filters used for landmark detection and the HOG images of the features pyramid

data stƌuĐtuƌe. These aƌƌaǇs’ data Đoŵe fƌoŵ the CoŶǀolutioŶ “tage. What ŵakes this data
structure worth to refer is the great amount of memory used that affects the algorithms

maximum memory consumption as shown in Table 33.

Table 33 - Filters Responses to TSM Max Memory

Image FR/TSM (%) Levels Memory

320x240 32.8 18 8.7 Mb

640x480 33.1 23 33.2 Mb

800x600 33.1 25 51.3 Mb

1024x768 33.2 27 83.3 Mb

1280x960 33.2 28 129.2 Mb

In the Diagram 20 below the memory consumption of every level at different sizes of images is

presented. As is visible the top levels of the Features Pyramid creates high memory size Filters

Responses. Reducing the MinLevel parameter of the Features Pyramid, it would cause great

reduce on the algorithm memory consumption (see Chapter 9.4).

Diagram 20 - Filters Responses Memory Consumption per Level

0

5

10

15

20

25

30

35

1 2 3 4 6 7 8 9 1011121314151617181920

M
b

y
te

s

Levels

320x240

640x480

800x600

1024x768

1280x960

6.11. Distance Transformation Stage

The Distance transformation (DT) stage is the one explained

in chapter 5.7. This stage is used by the algorithm for every

pose map tree, (a component) at every Features Pyramid

level. It creates a copy of the filter response of every part of

the component and it starts a series of DT processes and

matrix additions as explained in chapter 5.7 (Figure 25). The

Distance transformation stage main part consists by the DT

procedure which applies an extended version of the Distance

Transformation process (Chapter 5.7) created by the

algoƌithŵ’s Đƌeatoƌ, iŵpleŵeŶted iŶ C++.

In the Table 35 and Table 36 the Distance Transformation time and memory usage distribution is

shown. As is clearly visible the main time and memory consumer of the Distance Transformation

stage is the DT procedure. What is also visible from the same tables is that the percentage of

memory and time usage that the DT stage holds remains almost the same independently the

used iŵage’s size. At this poiŶt a detailed aŶalǇsis of the DT pƌoĐeduƌe ǁill ďe Ƌuoted iŶ chapter

6.11.1.

Table 35 - DT Stage Execution Time Distribution (v1.1) (%)

Image 320x240 640x480 800x600 1024x768 1280x960 Average

DT proc 92.8 92.1 92.1 91.9 91.8 92.1

Others 7.19 7.95 7.95 8.07 8.20 7.87

Table 36 - DT Stage Memory Consumption Distribution (v1.1) (%)

Image 320x240 640x480 800x600 1024x768 1280x960 Average

DT proc 66.7 66.7 66.7 66.7 66.7 66.7

Others 33.3 33.3 33.3 33.3 33.3 33.3

6.11.1. Distance Transformation

In the Face Detection TSM algorithm the creators create an extended the Pedro F. Felzenszwalb

and Daniel P. Huttenlocher [13] implementation in C\C++. The Distance transformation

procedure as shown in Table 35 holds about the 92% of the DT stage execution time and

consumes the 27.5% (Table 37) of the temporary memory the stage uses.

Table 34 - DT Stage to TSM (%)

Images Time Mem Max

320x240 31.9 37.7 0

640x480 29.9 37.6 0

800x600 29.5 35.2 0

1024x768 29.3 35.2 0

1280x960 29.3 35.2 0

Average 30.0 36.2 0

Table 37 - DT Procedure to TSM (%)

Image Size 320x240 640x480 800x600 1024x768 1200x960 Average

Time 29.6% 27.5% 27.1% 26.9% 26.9% 27.6%

Memory 28.8% 28.7% 26.6% 26.6% 26.6% 27.5%

DT proc Calls 16,031 17,425 18,819 19,516 20,910 18,886

The distance transformation procedure implementation given by the creators is almost like the

pseudo-code in Table 38. This implementation uses a lot of temporary memory and creates a

great amount of system memory allocations calls. This fact in addition to the number of times

this procedure is called (Table 37) during the detection process produces a huge amount of

memory consumption and system memory allocation calls as shown in Table 37.

Table 38 - DT Procedure Original Version Implementation (v1.1)

For y=1; y=Image→height; y++

Temp = DT-1D(Image→line(y)) Apply Distance Transformation to every line

For x=1; x=Image→width; x++

dt = DT-1D(Temp→row(x)) Apply Distance Transformation to every row

In contrast to this version a new one was created in order to reduce the memory consumption

and memory allocation system calls. To achieve that a unique temporary memory buffer was

created and used for all the instances of 1D transformation function. This way we reduce the

system calls for a great amount. In order to extent this version of the distance transformation

procedure to multiprocessing computing an instance of this buffer is created for every thread

that may execute the 1D-DT function. The pseudo code of this version of distance

transformation procedure is shown in Table 39 below. The reduction of memory allocation calls

bring also an execution time improvement as is also shown in the same table.

Table 39 - DT Procedure New Version Implementation (v1.3)

tmp = Array[max(x,y), getMaxThreads()] Allocate temporary

memory

For y=1; y=Image→height; y++

 Temp = DT-1D(Image→line(y), tmp[0, currentThread()) Apply DT to every line

For x=1; x=Image→width; x++

 dt = DT-1D(Temp→row(x) , Temp[0, currentThread()) Apply DT to every line

Table 40 - DT Procedure Memory Profile (v1.1 & v1.3)

Versions Version 1.1 Version 1.3

Inputs X Y X Y

Outputs  3 X Y  42.9%  3 X Y  59.8%

Temp  4 X Y  57.1%    2 max ,X Y X Y   40.2%

Max    4 max ,X Y X Y   57.3%    4 max ,X Y X Y   79.9%

Table 41 - DT Procedure Versions Memory Profile Comparison (1.1 vs 1.3)

 Original v1.1 New v1.3 Profit Ratio

Temp

Memory
 4 X Y     X Y X Y2 max ,    X Y2   ≈2

Memory

Allocation
 X Y2 2  

4  2 X Y   X Y0.5 1   

As seen in the Table 41 above, the new version of the DT procedure consumes almost two times

less temporary memory and keeps the number of the memory allocation calls stable,

independent of the image size.

Table 42 - DT Procedure Versions Comparison

 Images 320x240 640x480 800x600 1024x768 1200x960

 Levels 18 23 25 27 28

Memory

v1.1 251.3 Mb 955.9 Mb 1,475 Mb 2,395 Mb 3,712 Mb

v1.3 129.1 Mb 485.0 Mb 746.4 Mb 1,209 Mb 1,870 Mb

v1.3 / v1.1 51.5 % 50.7 % 50.6 % 50.5 & 50.4 %

Allocations

v1.1 1,556,320 3,132,520 3,923,460 5,015,440 6,242,320

v1.3 51,120 65,320 71,000 76,680 79,520

v1.3 / v1.1 3.28 % 2.09 % 1.81 % 1.53 % 1.27 %

Memory

Calls

v1.1 40 76 94 119 149

v1.3 632 1,856 2,628 3,941 5,880

Time v1.3 / v1.1 82.0 % 88.8 % 91.3 % 92.6 % 93.9 %

Diagram 21 - DT Procedure Versions Resources Consumption (v1.1 & v1.3)

As seen in Table 42 and visualized in the Diagram 21, the greatest advantage of the new version

of the DT procedure is the huge reduction of memory allocation calls. This reduction is also

responsible for the small reduction on the DT procedure execution time. In addition a great

reduction at the temporary memory is also achieved reducing the memory needed at the half

amount. As seen in the Diagram 22, the reduction of the memory allocation calls has greater

impact in the algorithm execution time when small size images are used while its impact is less

in larger images. This is caused because in small images the ratio between the allocation calls

and the size of memory used is larger than in the large ones.

Diagram 22 - DT Versions Growth Trend per Image (v1.1 & v1.3)

In Diagram 22 above the effect of the image size used in the algorithm to the execution time and

the memory needed by the DT procedure is shown. As seen, the memory allocation calls are

image size independent in the new version. The small increment in the diagram is only caused

by the enlargement of the features pyramid levels as shown in the black dotted line. The lines

0%

20%

40%

60%

80%

100%

Memory Calls Time

v1.3 v1.1

0

2

4

6

8

10

12

14

16

640x480 800x600 1024x768 1200x960 1600x1200

Time v1.1 Time v1.3 Memory v1.1

Memory v1.3 Calls v1.1 Calls v1.3

Levels Temp/Calls v1.1 Temp/Calls v1.3

gradients also show that the new version is the similarly affected by the image size as the old

one as far as the memory consumption and the execution time needed.

6.11.2. DT Stage v1.3

In addition to the new version of the DT procedure, one final improvement one the DT stage

that has to do with the temporary usage of the parts filters responses come from the

convolution stage applied. As shown in Figure 40, eaĐh paƌt’s filteƌ ƌespoŶse gets the distaŶĐe
transformation process applied on it and the result is added to its parental part filter response.

This way the filter responses have to be copied to temporary arrays in order to retain their data

as they are used from multiple parts of different components.

Figure 40 - DT Stage Execution Flow (v1.1)

The implementation of the DT stage is shown in Table 43 as a pseudo-code implementation. The

memory allocations and the memory consumption of the original version of every execution of

the DT stage are shown in Table 45 below.

Table 43 - DT Stage Original Implementation (v1.1)

For k=1; k=Parts→length; k++

 Parts(k) →score = Copy(Responces(

Parts(k)→filterID)) Copy Array Data

For k=Parts→length; k=2; k--

 Child = Parts(k)

 Parent = Parts(Child→parent)

 dt = DT(Child→score) Apply DT to Filter Response

 Parent→score += dt Add DT Score to Parent FR

Trying to create a less memory consuming version of DT stage finally we end up in a new version

as shown in the pseudo-code below (Table 44). This version takes advantage of the fact that the

majority of parent-Đhild ƌelatioŶships iŶside the paƌts of a ŵodel’s tƌee aƌe seƋueŶtial. This
expression means that having a part with id N its parent id is N-1. This is what we call a

sequential relationship. In Figure 26 (Chapter 5.7) a series of sequential relationships existences

aƌe shoǁŶ. OŶ ouƌ Ŷeǁ iŵpleŵeŶtatioŶ of DT stage a siŶgle aƌƌaǇ’s ŵeŵoƌǇ is used foƌ a ǁhole
sequential relationship and only when this continuity breaks a new array memory block is

allocated. This way all the processes read their data from this array and save their results again

on it. The filters responses data are used as read only arrays and no need of coping them exists.

Table 44 - DT Stage New Implementation (v1.3)

For k=Parts→length; k=2; k--

 Child = Parts(k)

 Parent = Parts(Child→parent)

 If(!Child→score)

 Child →score = Copy(Responses(Child→filterID))
Points to F. Response

 Child→score = DT(Child→score) Apply DT

 If(!Parent→score) Parent→score = Responces(
Parent→filterID) Points to F.Response

 Child→score += Parent→score
Add Parent F.Response to

DT Score

 Parent→score = Child→score
Parent Points to Arrays

Sum

Figure 41 - DT Stage Execution Flow (v1.3)

Finally a comparison between the new (v1.3) and the original (v1.1) implementation is shown in

Table 45. It is clear that the new version of the DT stage implementation the memory allocations

and consumption is much less than the original. The profits of this change is shown in the last

column.

Table 45 - DT Stage Versions Comparison (1.1 vs 1.3)

 Average v1.1 Average v1.3 v1.1/v1.3

DT Procedure Calls 54 54 1

Memory Allocations 164 10 ≈ϭϲ.ϰ

Memory Consumption  164 X Y   10 X Y  ≈ϭϲ.ϰ

Array Additions 54 54 1

At last the final improvement of the DT stage memory consumption and execution time by

applying both the DT procedure and the DT stage new implementation versions can be seen in

Table 46. As seen both in time and memory consumption the new version achieves a great

improvement not as far as the DT stage but also for the TSM algorithm as the DT stage is the

second more important stage of the algorithm.

Table 46 - DT Stage Consumption Improvement (v1.3) (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

Time -20.0 -14.9 -12.8 -11.7 -10.6 -14.0

Temporary Memory -64.2 -64.4 -64.4 -64.5 -64.5 -64.4

These improvements in both time and memory inside the DT stage are very important as the DT

stage is the second most important as far as the detection procedure and most consuming stage

as far as the hardware resources needed for the algorithm.

6.12. DT Scores Data Structure

The DT scores data structure is the output data of

the DT stage. This data is a series of tables

containing information about the parts filters

ƌespoŶses’ ƌesults ǁheŶ the DT pƌoĐeduƌe is applied
to them. The algorithm keeps two table for every

part of each component. This tables are used by the

Backtrack procedure in order to make the landmark

estimation. For every component the DT stage

except of these parts scores, it return a table

containing the whole component score as described in chapter 5.7. This table reveals if there is

a face detection within the image and is used by the Find procedure.

Table 47 - DT Scores Memory Profile (%)

Image Max Mem Mem (Mb)

320x240 10.3 14.2 123.5 Mb

640x480 10.6 14.2 470.8 Mb

800x600 10.7 13.2 728.9 Mb

1024x768 10.8 13.1 1.183 Mb

1280x960 10.8 13.1 1.835 Mb

Average 10.6 13.6

The DT scores data are one of the shareholder of the algorithm maximum memory consumption

holding the 10.6% of it. The memory consumption of this data structure is increasing as the

image size increase as shown in the Diagram 23. What is significant is the fact that the DT Scores

constitutes the 13.6% of the whole memory usage of the algorithm much larger than the

Features Pyramid and the Filters Responses data structures.

Diagram 23 - DT Scores Memory Consumption per Image

6.13. Backtrack Stage

The Backtrack stage is the one that handles the

possible face detection and identifies the landmarks.

The first job the Backtrack stage has to do is to check

the DT stage scores array for high-score values. This is

the Find procedure job. If no high-score values are

detected the Backtrack stage is over. On the other

hand when high-score values are detected the

Backtrack procedure is the one that makes the

landmark estimation according to the position of the

high-score values and the scale of the corresponding feature image. Finally the results of the

Backtrack procedure in combination with the Find procedure ones are filling the results cache.

Whenever the result cache is fully filled the NMS procedure is applied to select the correct

results, but this process is explained in chapter X. The Backtrack stage flow diagram is shown in

Figure 42 below.

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 1011121314151617181920

M
b

y
te

s

Level

320x240

640x480

800x600

1024x768

1280x960

Table 48 - Backtrack Stage to TSM (%)

Images Time Mem Max

320x240 0.37 24.0 41.7

640x480 0.39 24.1 43.1

800x600 0.31 26.7 43.3

1024x768 0.22 26.7 43.5

1280x960 0.15 26.8 43.7

Average 0.29 25.7 43.1

Figure 42 - Backtrack Stage Execution Flow Diagram

As long as the time consumption, the Backtrack stage uses a tiny percentage less than 0.5% of

the algorithms execution time and for that reason very few attention is given to that part of the

stage. In contrast this stage consumes about the 25% of the algorithms memory consumption

and holds the 43% of the maximum one and that is why more attention to memory

consumption improvements is given. In Table 50 the memory consumption distribution of the

Backtrack stage is shown.

Table 49 - Backtrack Stage Execution Time Distribution (v1.1) (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

Find 7.73 4.70 5.10 6.26 8.34 6.43

Backtrack 62.4 52.8 53.9 55.0 52.4 55.3

Others 29.9 42.5 41.0 38.7 39.3 38.3

As referred in chapter 6.2 the Backtrack stage is in a way independent from the image size. This

stage’s attitude duƌiŶg the algoƌithŵ eǆeĐutioŶ is fullǇ depeŶdeŶt ďǇ the Ŷuŵďeƌ of the
detection occur. This means that the algorithm may make the minimum usage of this stage if no

faces are detected and either the maximum when plenty of faces are detected. This is why it

very difficult to profile it. In our profiling process we assume that the Backtrack process makes

full detection at every level and component when we are looking for the maximum memory

consumption. On the other hand when profiling for total memory consumption we assume that

the image is full of faces and we use the profiling settings explained is chapter 6.2. Under these

cases the memory profile table of the Backtrack stage is shown in Table 48.

Table 50 - Backtrack Stage Memory Consumption Distribution (v1.1) (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

Find 0.60 0.60 0.60 0.60 0.60 0.60

Backtrack 33.7 33.7 33.7 33.7 33.7 33.7

Others 65.7 65.7 65.7 65.7 65.7 65.7

At this point an extensive analysis of the two basic procedures of the Backtrack stage is given

and after that a small improvement as far as the memory consumption is presented.

6.13.1. Find

The find procedure is the one that checks the Distance Transformation stage scores array for

high-score values and returns a vector of indexes to the corresponding pixels. The find

procedure is the only part of the Backtrack stage that is executed for every component at every

level of the features pyramid. The time needed for this procedure is closed to zero, as it is a very

simple and fast procedure. As far as the memory consumption it is described in the Table 51

below.

Table 51 - Find Procedure Memory Profile

Input X Y

Output 2 _
_

High ScoreP
Buffer Size

Buffer Size

 
  
 

 100%

Temporary 0 0%

Max 2 _
_

X Y
Buffer Size

Buffer Size

 
  
 

 100%

In the Table 51 above the memory consumption is directly depended by two parameters. The

first parameter, PHigh-Scores, is the number of high-scores detected inside the DT stage results and

is unpredictable. The only prediction can be made is that it cannot be larger than the DT scores

array size. In the chapter 6.2, statistics about the high-score values produced in the DT stage

according to the model used and faces exist within the image.

On the other hand, the Buffer_Size parameter is the size of a buffer used in order to minimize

the memory consumption of this procedure and avoid the temporary memory used to save the

find process results. If this buffer is completely filled, another block of memory of the same size

is allocated. This type of implementation of the find procedure makes it image size independent

as the memory usage is only affected by the number of detections.

The decision for the default memory buffer size was the result of profiling the find procedure

using series of images both in laboratory and into-the-wild environment. The Diagram 24 shows

the probability density of the profiling results. On this graph the high-score values discovered by

the Find procedure every time it was called are shown. This results come from the same tests

that produced the data tables in chapter 6.2, where the Find procedure profiling is presented.

Diagram 24 - Find Procedure High-Score Values Probability Density

In this diagram it is visible that the probability density curve

has global maximum close to the lower values. As seen in the

Table 52 more than 50% of the results are entered in the area

between 1 and 50. This means that as the buffer size

increases the wasted memory will also increasing. On the

other hand when the buffer size increases the buffer

reallocation calls will be decreased. By analyzing the Diagram

24 data, the folloǁiŶg taďles’ ƌesults ƌetuƌŶ. IŶ the Table 53 the buffer reallocations per useful

find procedure are presented, while in Table 54 the size of memory wasted.

Table 53 - Find Buffer Reallocations per Find

Buffer 10 20 30 40 50 60 70 80 90 100

Top10 17.8 9.0 6.5 4.8 3.9 3.2 3.1 2.4 2.3 2.3

Top25 13.5 7.0 4.5 3.6 2.9 2.8 2.2 2.1 2.1 2.0

Top50 11.0 5.4 3.7 2.9 2.7 2.1 2.0 2.0 1.9 1.8

All 8.1 4.3 3.3 2.5 2.4 1.8 1.8 1.7 1.6 1.3

Table 54 - Find Buffer Unused Memory per Find (Bytes)

Buffer 10 20 30 40 50 60 70 80 90 100

Top10 37 49 101 92 115 88 187 84 158 230

Top25 30 48 27 67 65 167 93 168 231 291

Top50 26 20 32 46 134 89 150 214 265 315

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 200 400

P
ro

b
a

b
il

it
y

 D
e

n
si

ty

High-Score values

All 100%

Top 25%

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 200 400

P
ro

b
a

b
il

it
y

 D
e

n
si

ty

High-Score values

Top 50%

Top 10%

Table 52 - High-Scores per Find

< 10 21.4 %

< 20 33.8 %

< 50 54.0 %

< 100 70.7 %

< 200 89.3 %

All 7 28 82 90 160 125 177 229 275 201

What is interesting in these results is the size of useless memory consumed by the find

procedure and the number of system reallocation call according to the buffer size. The ideal size

of the Find Buffer would produce the minimum system reallocation calls and the minimum

wasted memory. In the Table 55 below the results of Reallocation Calls x Wasted Memory are

shown. The desirable buffer size is when the results are lower.

Table 55 - Find Buffer Reallocations x Unused Memory Indicator

Buffer 10 20 30 40 50 60 70 80 90 100 Proposal

Top10 166 112 164 111 113 70 144 50 91 130 80.60

Top25 103 84 30 60 47 117 50 89 119 146 70.50

Top50 70 27 30 33 92 46 76 105 125 143 60.40

All 14 31 68 57 96 58 78 98 113 65 60.40

Diagram 25 - Find Buffer Calls x Unused Memory Graph
Diagram 26 - Find Buffer Calls And Unused

Memory Graph

As seen in the Diagram 25, according to the data of Table 55, the ideal size of the find buffer is

60 memory blocks. This size produces the lowest Reallocation Calls x Wasted Memory results for

most samples sets. Using this size for the Find buffer memory the time and memory

consumption of the Find procedure is as shown in the Table 56 below. In this table is obvious

that this procedure is really a tiny procedure inside the whole detection procedure.

Table 56 - Find to Backtrack Stage (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

Time 9.67 5.50 6.24 7.86 10.63 7.98

Memory 0.60 0.60 0.60 0.60 0.60 0.60

10 20 30 40 50 60 70 80 90 100

Buffer Size

Top10

Top25

Top50

All

10 20 30 40 50 60 70 80 90 100

Buffer Size

6.13.2. Backtrack

The Backtrack procedure is the one that calculates the landmarks localization after a face is

detected. The output data of this procedure are used in the results cache and are part of the

algorithms final output results. The Backtrack procedure is using a series of correlation between

the high-score values detected in order to correlate them with the corresponding parts

(landmarks). This is a simple procedure with a simple complexity running every time the find one

detects high-score values. No important improvements were made in procedure that worth to

be reported. In fact this procedure uses less than the 0.15% of the algorithms execution time. In

Table 57 the memory profiling of this procedure is presented. As seen this procedure as the

whole Backtrack stage is image size independent. Its execution time is decreasing as the image

size in increasing because all the other size dependent parts of the algorithm are increasing and

it stays stable.

Table 57 - Backtrack Procedure Memory Profile

Input 2 High ScoreP 

Output 4 High ScoreP Parts  66%

Temporary 3 2High Score High ScoreP Parts P     34%

Max 3 6High Score High ScoreP Parts P     100%

Table 58 - Backtrack Procedure to Backtrack Stage (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

Time 62.4 52.8 53.9 55.0 52.4 55.3

Memory 33.7 33.7 33.7 33.7 33.7 33.7

The Backtrack procedure results in addition to the Find ones are used at the end of the

Backtrack stage to fill the face detection algorithms results for face detection. At the creators

design the Backtrack output data are a bit processed and copied at the results cache data

structure. In our implementation the Backtrack procedure return its results in a ready to use

from the results cache form. This way the Backtrack stage gains time and saves memory.

6.13.3. Backtrack Stage v1.3

In chapters 6.13.1 and 6.13.2 the implementation of the Find and Backtrack procedures was

described. This two procedures where implemented in Matlab script by the creators so no

further improvements can be made as they are designed by the beginning at the maximum

memory saving mode could be achieved. At Table 50 the ͞Otheƌ͟ liŶe ƌepƌeseŶt a data ĐopǇ
process that transfers data from the Backtrack output results to the results cache with a small

processing. At this point a small modification inside the Backtrack procedure could skip this copy

and processing procedure, as done in the HOG procedure at Features Pyramid stage in chapter

6.6. By doing this modification, changing the data structure and using multiple pointers, the

memory saving succeeded is shown in Table 59.

Table 59 - Backtrack Stage Version Comparison (1.3 vs 1.1) (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

Time -20.0 -20.8 -24.8 -27.4 -28.3 -24.2

Memory -65.7 -65.7 -65.7 -65.7 -65.7 -65.7

Max Memory -24.4 -24.4 -24.4 -24.4 -24.4 -24.4

As seen in the Table 59 the ŵeŵoƌǇ ĐoŶsuŵptioŶ ƌeduĐtioŶ is the saŵe size as the ͞Otheƌ͟ liŶe
memory consumption in Table 50. This happens because by the time the Backtrack procedure

returns its results in the format the results cache needs, there is no need for extra processing

and no need of temporary memory for that processing. This also gains speedup in the Backtrack

stage aŶd the ŵost iŵpoƌtaŶt is that it Đause a total ƌeduĐtioŶ of aďout ϭϬ% of the algoƌithŵ’s
maximum memory.

6.14. Results Cache

The Results Cache is a data structure where the

detection data are saved. The default Result

Cache size can hold up to 10,000 detection

results. This means that the Results cache data

structure can carry this data by the first

detection moment until the end of the

algorithms execution where the NMS

procedure selects the correct detections as

described in chapter 5.10. This amount of

memory affects the maximum memory consumption of the algorithm. In Table 60 the increment

of the maximum memory consumption that a full Results Cache can cause is shown in the

second column. At the third column the total memory used by the algorithm is shown. As is

visible about 29.9% of the total memory consumption is allocated for saving detection results.

When the Result Cache cannot hold more data the NMS procedure applies, in order to clear the

Result Cache from the useless detection as described in chapter 5.10. These amounts of data

removed from the Results Cache are considered to be temporary results memory. According to

the profiling rules set in chapter 6.2 the maximum Results Cache temporary memory is shown in

Table 60 ;͞Meŵ͟ ĐoluŵŶ). The Results cache temporary memory is Results cache size

independent as at the end only a few detection are forwarded as detection results equal to the

number of faces detected.

Table 60 - Results Cache to TSM Memory (%)

Image Max Mem Mem (Mb)

320x240 +42.2 27.9 137 Mb

640x480 +11.2 28.2 526 Mb

800x600 +7.26 31.0 972 Mb

1024x768 +4.47 31.1 1,581 Mb

1280x960 +2.89 31.1 2,458 Mb

Average +13.6 29.9

Table 61 - Results Cache Max Memory Participation (%)

Size 320x240 640x480 800x600 1024x768 1280x960

10,000 +42.2 +11.2 +7.26 +4.47 +2.89

8,000 +33.8 +8.97 +5.81 +3.58 +2.31

6,000 +25.3 +6.73 +4.35 +2.68 +1.73

4,000 +16.9 +4.49 +2.90 +1.79 +1.15

2,000 +8.44 +2.24 +1.45 +0.89 +0.58

The effect of the Results Cache to the global algorithms maximum memory consumption is

affected by the size of the Results cache. In the Table 61 above the participation of the Results

cache in the algorithms maximum memory consumption according to its size is presented. As

seen in this table the larger the image is, less the maximum memory consumption is affected.

That is because the results cache memory consumption is the same independently the image

size, in addition to the rest parts of the algorithm.

Diagram 27 - Results Cache Participation in TSM Max Memory per Image

The temporary memory consumption values are profiled for the worst case scenarios using

perfect images full filled with human faces. The Table 62 below introduces cases closer to real

life.

Table 62 - Results Cache Real Temporary Memory (10,000) (%)

Faces 320x240 640x480 800x600 1024x768 1280x960

1 0.90 0.31 0.19 0.14 0.09

2 1.79 0.63 0.37 0.29 0.19

3 2.69 0.94 0.56 0.43 0.28

4 3.58 1.25 0.75 0.57 0.37

5 4.48 1.56 0.93 0.72 0.46

0

10

20

30

40

2000 4000 6000 8000 10000

Results Cache

320x240 640x480 800x600

1024x768 1280x960

6.15. Non-Maximum Suppression (NMS)

The NMS procedure is executed at least once in the detection process but it is also called

whenever the algorithm wants to clear its results cache memory. In the implementation of the

algorithm a cache memory is used for keeping the list of the results of each component and

level detection process. Depending on the memory resources of our hardware the size of it can

vary. Small sized cache can cause the call of this procedure in order to make a selection of the

useful results as explained in chapter 5.10. A large sized cache is using memory resources that

might be needed and affect the algorithms max memory consumption. The size of the results

cache can vary depending on the application used and the available hardware resources. More

details about the usage of the results cache memory is referred in chapter 6.14. In this chapter

we focus on the usage of the NMS procedure. In Table 63 the NMS procedure profile is shown

Table 63 - NMS Procedure Memory Profile

Input
    Re_ 9 4 sultsCache Size AVG Find AVG Parts   

 50 100 21,850 _TopAVG Find Cache Size  

Output
      Re_ 4 sultsCache Size Faces AVG Find AVG Parts    

 50 100 21,846 _TopAVG Find Cache Size  
0%

Temporary 12 _Cache Size 100%

Max 12 _Cache Size 100%

The NMS procedure as the Backtrack stage does, is image size independent. It is only affected by

the results cache contents. If the results cache is full, depending on its size it needs more time to

execute. Using the creators default cache size at the size of 10,000 the NMS execution of a full

one is about 0.1% to 0.03% of the algorithms execution time. Even if the NMS procedure is

called multiple times the effect to the whole algorithm execution is tiny. The same fact comes

with the memory consumption of the NSM procedure as seen in Table 64. These mean that the

NMS procedure is a costless one in addition to the Max memory limitation that can cost when it

is emptying the results cache memory or keeping the results memory cache in smaller size.

Table 64 - NMS Consumption (Results Cache = 10,000) (%)

Calls 320x240 640x480 800x600 1024x768 1280x960

Time

1 0.16 0.10 0.07 0.05 0.03

2 0.32 0.20 0.15 0.10 0.07

3 0.48 0.30 0.22 0.15 0.10

4 0.64 0.40 0.29 0.20 0.14

5 0.80 0.49 0.37 0.24 0.17

Memory

1 0.06 0.01 0.01 0.01 0.00

2 0.11 0.03 0.02 0.01 0.01

3 0.17 0.04 0.03 0.02 0.01

4 0.22 0.06 0.03 0.02 0.01

5 0.28 0.07 0.04 0.03 0.02

In the Diagram 28 below the number of the NMS procedure calls are presented according to the

result cache memory size and the samples group used. The Top10 samples groups (Chapter 6.2)

is shown using dotted lines, the Top50 the dashed lines and the continuous is for all. As is visible

when the results cache size is large (as the default) the NMS procedure is called few times even

when the number of detection results is great.

Diagram 28 - NMS Procedure Calls per Results Cache Size

6.16. TSM Face Detector v1.3

After applying all those changes inside the stages described in the previous chapters the

algorithms execution time is affected as shown in Table 65 below. In this table the impact of the

changes inside each stage is also shown. At this stage, using all these changes inside every stage

the algorithm is reached to an extended new version, version 1.3.

Table 65 - TSM v1.3 Execution Time Comparison (Compared to v1.2) (%)

 320x240 640x480 800x600 1024x768 1200x960 Average

Levels 18 23 25 27 28

TSM -15.1 -13.2 -12.6 -12.3 -12.2 -13.1

F. Pyramid -0.07 -0.07 -0.10 -0.05 -0.09 -0.08

Convolution -8.75 -8.64 -8.74 -8.81 -8.98 -8.78

0

5

10

15

20

25

0 1 2 3 4 5 6 7Faces

10000

8000

6000

4000

2000

DT -6.38 -4.46 -3.76 -3.43 -3.11 -4.23

Backtrack -0.07 -0.08 -0.08 -0.06 -0.04 -0.07

In the table is clear that the reduction of the algorithms execution time is the reduction of the

Convolution stage one. The 8.8% of the total 13% is caused by the convolution stage. The

second main participant at this reduction is the Distance Transformation stage with

correspondence at about 4.2%. These results are very sensible as this two stages hold the main

paƌts of the algoƌithŵ’s execution time as presented in Diagram 9and Table 18 (Chapter 6.5).

In the Diagram 29 and Diagram 30 below compared to the corresponding Diagram 9 (Chapter

6.5) makes it clear that despite this changes, the algorithms time distribution has not actually

change. As seen in both graphs the Convolution stage still stays at the top of the time

consumption pyramid using almost the 67.5% of the algorithms total time. It is clear that the

algorithms execution time is dependent by the amount of the processed data used in the

Convolution stage primary, and in the DT stage secondary. As described in chapters 6.9 and 6.11

the best effort for accelerating the convolution and distance transformation process was given.

For further improvement of this procedures other techniques have to be used (ex. Chapter 8 -

multithreading) that are explained in following chapters.

Diagram 29 - TSM v1.3 Execution Time Distribution
Diagram 30 - TSM v1.3 Execution Time

Distribution per Stage

In the Table 66 below the new memory distribution of the algorithm is shown. The same

distribution table is also graphically displayed in Diagram 31 below it. As seen the memory

distribution ratios has change a bit as a result of the changes inside the DT and the Backtrack

stages. The effect of those changes are shown in the Table 66. As seen in this table the greatest

memory consumer is the temporary results. This is because in the profile process the scenario of

a full faces image is used as explained in chapter 6.2. On the other hand the DT stage and its

output data, the DT scores, are still the main memory consumers. Despite that, the DT stage

memory reduction achieved, caused about 26.5% memory reduction to the whole algorithm.

FP Convolution DT Backtrack Others

T
im

e

320x240 640x480 800x600

1024x768 1280x960

2.51

67.4

29.6

0.26
0.21

FP Stage Convolution

DT Stage Backtrack Stage

Others

 Table 66 - TSM v1.3 Memory Consumption Distribution (Comparisons to v1.2) (%)

 320x240 640x480 800x600 1024x768 1200x960 Average

TSM
0.49 Gb 1.87 Gb 3.13 Gb 5.08 Gb 7.90 Gb

-43.6 -43.8 -43.5 -43.5 -43.5 -43.6

S
ta

g
e

s

F. Pyramid
2.16 2.19 2.03 2.03 2.03 2.09

-0.18 -0.25 -0.24 -0.26 -0.26 -0.24

Convolution 0.00 0.00 0.00 0.00 0.00 0.00

DT
27.4 27.2 25.1 25.1 25.1 26.0

-27.7 -27.7 -25.7 -25.7 -25.7 -26.5

Backtrack
14.6 14.7 16.2 16.3 16.3 15.6

-15.7 -15.8 -17.5 -17.6 -17.6 -16.8

D
a

ta

F. Pyramid 0.69 0.64 0.58 0.57 0.56 0.61

F. Responses 1.78 1.78 1.64 1.64 1.64 1.69

DT Scores 25.2 25.2 23.3 23.3 23.2 24.0

Results 25.6 27.6 30.7 30.9 31.0 29.1

Others 0.23 0.10 0.08 0.06 0.06 0.11

Diagram 31 - TSM v1.3 Memory Consumption Distribution

What is worth to mention is that most of the memory consumption shown in Table 66 and

Diagram 31 is used for useful data that cannot be avoid. For example a part of the 2% of the

memory used in the Features Pyramid stage is used for the images of the image pyramid. This

data are used temporary but they cannot be avoided as they are necessary for the procedure.

The results memory that consumes about 29% of the memory is used for saving the detections

results that are also useful and important data. Only the Backtrack and DT stage memory usage

of 41.5% is actually real temporary memory.

0

50

100

150

200

250

FP Stage DT Stage Backtrack

Stage

Results F. Pyramid F. Responses DT Scores Others

M
b

y
te

s

640x480 800x600 1024x768 1200x960 1600x1200

In addition, the maximum memory consumption distribution is formed as shown in the Table 67

below. By the Table 67 data it is obvious that the maximum memory consumption factor is

ĐƌitiĐallǇ ĐoŶstitute ďǇ the algoƌithŵ’s ĐƌitiĐal data stƌuĐtuƌe as the DT sĐoƌes, the filteƌs
responses and the results cache. The Backtrack stage temporary memory is the only temporary

memory that participates the maximum memory consumption.

Table 67 - TSM v1.3 Maximum Memory Consumption (Comparisons to v1.2) (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

TSM v1.3
20.5 Mb 77.8 Mb 121 Mb 196 Mb 304 Mb

-22.3 -22.2 -22.0 -21.9 -21.9 -22.1

FP Stage 0 0 0 0 0 0

Conv. Stage 0 0 0 0 0 0

DT Stage 0 0 0 0 0 0

Backtrack Stage
40.9 41.9 42.1 42.2 42.3 41.9

-10.2 -10.5 -10.5 -10.6 -10.6 -10.5

F. Pyramid
0 0 0 0 0 0

-12.7 -11.8 -11.6 -11.4 -11.3 -11.8

F. Responses 42.5 42.6 42.6 42.5 42.5 42.5

DT Scores 13.4 13.7 13.8 13.8 13.8 13.7

Others 3.22 1.74 1.55 1.43 1.35 1.86

Results Cache +54.7 +14.4 +9.33 +5.74 +3.70 +17.6

Diagram 32 - TSM v1.3 Maximum Memory Consumption Distribution per Image

As seen in the Table 67 the maximum memory consumption of the algorithm is decreased about

22%. This is basically because in this version of the algorithm the features pyramid images are

released every time the filters responses are calculated. Despite the great decrease of the

algorithms total memory consumption the maximum memory one was actually reduced at least

as only the Backtrack stage part of it succeed a real decrement. The great reduction of the

0 50 100 150 200 250 300 350

320x240

640x480

800x600

1024x768

1280x960

Mbytes

Backtrack F. Responses DT Scores Others Results Cache

memory used in the DT stage is outshined by the memory needed in the Backtrack one as

shown in the Diagram 33.

Diagram 33 - TSM Algorithm v1.3 Memory Profile

The maximum memory consumption has reached at an end on this version. A new version

(version 2.x) of the algorithm is presented in the next chapter (chapter 6.17) that is customized

for further decrease of the maximum memory consumption. The differences of the next

versions relatively to the version 1.x of the algorithm is that by the version 2.x and above the

algorithm execution flow and its architecture is changed and customized losing its parental

relation with the Parts Based Detection algorithm.

6.17. TSM Face Detector v2.1

In this chapter a new version of the TSM algorithm is presented. This version is called version

2.1. The reason that it is dissociated by the version 1.x is because in this version the algorithm is

customized to the face detection procedure disconnected by its parental algorithm, the DPBD

algorithm. This separation gives also the ability of changing the algorithms execution flow. In the

Figure 34 (Chapter 6.3) the execution flow of the Detect stage of the original version of the TSM

algorithm is shown. At the Figure 43 below version 2.x Detect stage execution flow is shown.

This execution flow comes from taking advantage of the one scale model used in the face

detection TSM algorithm in contrast to the multi scale models used in the DPBD one.

0

10

20

30

40

50

60

70

80

M
b

y
te

s

Time

Components TSM Backtrack DT Scores

DT Stage F. Pyramid F. Responses Results Cache

Figure 43 - TSM Algorithm v2.1 Detect Stage Execution Flow

This new version of the Detect stage (Figure 43) of the algorithm does not reduce at all the

temporary memory consumption of the algorithm, what it improves is the management of the

maximum memory consumption. On this version of the detect stage inverts the levels and

components stage so it can release the Filters Responses after the end of every level stage

execution. The reduction of the maximum memory consumption relatively to the original

version (1.2) is shown in Table 68.

Table 68 - TSM v2.1 Maximum Memory Consumption (Compared to v1.2) (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

TSM
16.3 Mb 60.8 Mb 93.8 Mb 152 Mb 236 Mb

-38.9 -39.4 -39.4 -39.5 -39.5 -39.3

FP Stage 0 0 0 0 0 0

Conv. Stage 0 0 0 0 0 0

DT Stage 0 0 0 0 0 0

Backtrack Stage
51.7 53.7 54.1 54.4 54.6 53.7

-10.2 -10.5 -10.5 -10.6 -10.6 -10.5

F. Pyramid
16.4 15.1 14.8 14.5 14.3 15.0

-2.73 -2.67 -2.66 -2.64 -2.63 -2.67

F. Responses
12.4 12.9 13.0 13.0 13.1 12.9

-25.2 -25.3 -25.3 -25.3 -25.2 -25.3

DT Scores 16.9 17.6 17.7 17.8 17.8 17.5

Others
2.65 0.71 0.46 0.28 0.18 0.86

-0.87 -0.92 -0.93 -0.94 -0.95 -0.92

Results Cache +69.1 +18.5 +12.0 +7.4 +4.8 +22.4

Diagram 34 - TSM v2.1 Maximum Memory Consumption Distribution per Image

As is visible in the Table 68 the Features Pyramid data structure participates in the maximum

memory distribution but this is necessary in order to achieve the Filters Responses data

structure reduction. In version 1.3 the Features Pyramid data structure does not join the data

structures participating the maximum memory consumption but the Filters Responses data

structure is fully included. On the other hand in the version 2.1 the Features Pyramid data

structure is included almost completed but the Filters Responses one is included only by its first

level reducing the total maximum memory for 25%.

Diagram 35 - TSM Algorithm v2.1 Memory Profile

0 50 100 150 200 250

320x240

640x480

800x600

1024x768

1280x960

Backtrack Filter Responses DT Scores Pyramid Others Results

0

10

20

30

40

50

60

M
b

y
te

s

Time

Levels TSM Backtrack Stage DT Scores

DT Stage F. Responses Results Cache F. Pyramid

As seen in the Diagram 35, where the maximum memory consumption profiler is presented, the

maximum memory consumption is reached at the point of the first level (bigger size image). At

this point it is visible that the biggest size HOG image Filters Responses are added to the rest of

the Features Pyramid HOG images waiting for the convolution procedure in the following levels

detection procedure. This fact produced the idea of the version 2.2 of the detect stage referred

in the next chapter (Chapter 6.17).

Except of the maximum memory consumption factor, the version 2.1 changes have also impact

to the algorithms execution time. This impact is tiny and shown in Table 69.

Table 69 - TSM v2.1 Execution Time Comparison (%)

 320x240 640x480 800x600 1024x768 1200x960 Average

Levels 18 23 25 27 28

Vs TSM v1.2 -15.7 -14.4 -13.7 -13.4 -13.3 -14.1

Vs TSM v1.3 -0.61 -1.35 -1.27 -1.22 -1.25 -1.14

Diagram 36 - TSM v2.1 Algorithm Timeline Profile

At last in the algorithms timeline profile in the Diagram 36 it is visible the new execution flow

and how the convolution procedure takes place just in the beginning of every level stage.

6.18. TSM Face Detector v2.2

The T“M algoƌithŵ’s ǀeƌsioŶ Ϯ.Ϯ is alŵost the saŵe ǁith the Ϯ.ϭ oŶe ǁith oŶlǇ oŶe ĐhaŶge, the
order the features pyramid levels are forwarded to the Level stage. On the version 2.1 the

algorithm starts the detection procedure from the top to the last level of the features pyramid.

As shown in the Diagram 34 (Chapter 6.17), the features pyramid data structure participates at

the maximum memory consumption of the algorithm. The time that the top level of the features

pyramid enters the level stage and its detection procedure begins, the features pyramid data

stƌuĐtuƌe is full of the ƌest leǀel’s featuƌes iŵages. This ǁaǇ the ŵost ŵeŵoƌǇ ĐoŶsuŵiŶg leǀel
(the top) reaches its maximum memory consumption while the features pyramid is full of

features images. This can be changed if the order that the algorithm forwards the levels of the

features pyramid change. If the algorithm begins the detection procedure from the last to the

top level, the features pyramid data structure will be empty when the top levels detection

procedure begins. This way the version 2.2 of the TSM algorithm is created.

The timeline profile of this version of the algorithm is shown in the Diagram 37. It is visible that

the algoƌithŵ’s iŵage pǇƌaŵid ĐƌeatioŶ takes plaĐe iŶ the ďegiŶŶiŶg as also that the diǀeƌse
level detection described before.

Time

Feature Pyramid Convolution DT Backtrack

Diagram 37 - TSM v2.2 Algorithm Timeline Profile

At the next graph (Diagram 38) the memory profiling of the algorithm is shown. In this graph is

also visible that the as the features pyramid stage is empting from the features images data the

base on which the level stage begins is lower.

Diagram 38 - TSM v2.2 Algorithm Memory Profile

Observing the algorithms maximum memory profiling at the Diagram 38, it reveals that the

maximum memory consumption of the algorithm is reached during the greatest size image

detection as in the previous version (2.1) of the algorithm. As seen in the same graph at the time

of the maximum memory consumption point the features pyramid are fully released.

Time
FP Stage Convolution DT Backtrack

0

10

20

30

40

50

M
b

y
te

s

Time

Levels Face Detector Backtrack Stage DT Scores

DT Stage F. Responses F. Pyramid Cache Results

Diagram 39 - TSM v2.2 Maximum Memory Consumption Distribution per Image

At the Diagram 39 above the maximum memory consumption distribution is presented using

the data of the Table 70 below.

Table 70 - TSM v2.2 Maximum Memory Consumption (Compared to v1.2) (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

TSM v2.2
13.6 Mb 51.6 Mb 79.9 Mb 130 Mb 202 Mb

-49.0 -48.5 -48.4 -48.3 -48.1 -48.5

FP Stage 0 0 0 0 0 0

Conv. Stage 0 0 0 0 0 0

DT Stage 0 0 0 0 0 0

Backtrack Stage
61.8 63.3 63.5 63.6 63.7 63.2

-10.2 -10.5 -10.5 -10.6 -10.6 -10.5

F. Pyramid
0 0 0 0 0 0

-12.7 -11.8 -11.6 -11.4 -11.3 -11.8

F. Responses
14.8 15.2 15.2 15.3 15.3 15.1

-25.2 -25.3 -25.3 -25.3 -25.2 -25.3

DT Scores 20.2 20.7 20.8 20.8 20.8 20.7

Others
3.17 0.84 0.54 0.33 0.21 1.02

-0.87 -0.92 -0.93 -0.94 -0.95 -0.92

Results Cache +82.7 +21.8 +14.07 +8.65 +5.56 +26.6

The time results of the 2.2 version of the algorithm are presented in Table 71. This taďle’s data is
clearly sensible as the change of the order may cause a tiny speedup cause of better memory

management but there is not any important change that could affect the time consumption of

the algorithm.

Table 71 - TSM v2.2 Execution Time Comparison (%)

 320x240 640x480 800x600 1024x768 1200x960 Average

Levels 18 23 25 27 28

Vs v1.2 -15.7 -14.5 -14.0 -13.5 -13.3 -14.2

0 50 100 150 200

ϯϮϬǆ…

ϲϰϬǆ…

ϴϬϬǆ…

ϭϬϮϰ…

ϭϮϴϬ…

Mbytes

Filter Responses DT Scores Backtrack Others Results

Vs v1.3 -0.68 -1.45 -1.62 -1.34 -1.31 -1.28

Vs v2.1 -0.07 -0.10 -0.36 -0.13 -0.06 -0.14

6.19. TSM Face Detector v3.1

The TSM algorithm version 3.1 is very similar to the 2.x ones. The main change is the unification

of the Features Pyramid stage with the Detect one and the order in which the features pyramid

levels are pushed to the Level stage. In the version 2.1 the levels were pushed ascending. In the

version 2.2 they were pushed descending. In this version they are pushed as soon as an image in

the image pyramid is created as shown in the Figure 44 below.

Figure 44 - TSM Algorithm v3.1 Execution Flow Diagram

What is obvious is that as the scaled images are pushed to the Level stage for detection there is

no need for the features pyramid data structure to exist. The HOG procedure takes place just

before the Convolution one and the features images are released just after. What is although

needed is the temporary image pyramid to hold the scaled images longer than in the other

versions. As described in the chapter 5.5, the features pyramid stage uses the scaled images as

inputs in the Reduce procedure to create half copies of them. So the algorithm in this version

cannot release scaled images from the image pyramid as long as it has not create their next

interval ones. A tactic can be used here is the algorithm to create the next interval scaled image

immediately in order to be able to release the ones used in the Level stage. This way the image

pyramid can hold smaller sized images in order to reduce the maximum memory consumption

that appears during the Level stage. Unfortunately, the maximum memory consumption of the

TSM algorithm appears during the detection procedure of the first level of the pyramid where

the unscaled resource image is used that is needed not only for the next interval scaled image

but also for the rest scaled images of the first interval set of images in the pyramid. This means

that there is no way to avoid it as shown in Figure 44 above. By applying this execution flow the

time results coming of are the following shown in Table 72 below.

Table 72 - TSM v3.1 Execution Time Comparison (%)

 320x240 640x480 800x600 1024x768 1200x960 Average

Levels 18 23 25 27 28

v1.3 -15.1 -13.2 -12.6 -12.3 -12.2 -13.1

v2.1 -15.7 -14.4 -13.7 -13.4 -13.3 -14.1

v2.2 -15.7 -14.2 -13.5 -13.5 -13.3 -14.1

v3.1 -22.7 -17.2 -16.0 -14.3 -14.0 -16.8

The version 3.1, as the Table 72 shows, is faster than the rest versions. This is probably caused

by the memory cashing of the data used. The results of the scaling processing are probably

saved in the cache memory and stay there as they are used immediately by the HOG procedure.

As soon as the HOG processing is finished, its results data are used in the convolution procedure

and the filters responses coming from this are used in the level detection stage for face

detection. This sequential usage of data benefits the cashing process inside the CPU cache

memory.

On the other hand the non-sequential order the pyramid levels are pushed to the detection

procedure creates other problems that are not visible until this chapter but in the next chapters

(ex. Chapter 9). Another problem also is that this version has definitely lost its relation with its

parental algorithm and cannot be used at all for multi-scaled model in contrast to the other

versions that can with only small changes.

The timeline profile of the version 3.1 of the algorithm is shown in the Diagram 40. It is visible

that the sequence of the levels send for detection is not ascending but they follow the sequence

of the Features Pyramid stage loop.

Diagram 40 - TSM Algorithm v3.1 Timeline Profile

At the next graph (Diagram 41) the memory profiling of the algorithm is shown.

Time

FP Stage Convolution DT Backtrack

Diagram 41 - TSM Algorithm v3.1 Memory Profile

The Diagram 41, reveals that in the 3.1 version of the algorithm a new participant in the

formation of the maximum memory appears. This participant is an image pyramid level. In the

chapter 6.8 it was explained how larger is the image pyramid compared to the features one. In

this version is inevitable the usage of the image pyramid instead of the features one and the

cost of this change is paid in memory consumption. As referred in a previous paragraph this fact

cannot be avoided as the image used in the first level of the pyramid is used as source not only

for the Reduce procedure (next interval level) but also for the Resize one (All levels of the first

interval set).

Table 73 - TSM v3.1 Maximum Memory Distribution (Compared to v1.2) (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

TSM v2.3
14.5 Mb 55.3 Mb 85.7 Mb 139 Mb 217 Mb

-45.5 -44.9 -44.7 -44.5 -44.3 -44.8

FP Stage 0 0 0 0 0 0

Conv. Stage 0 0 0 0 0 0

DT Stage 0 0 0 0 0 0

Backtrack Stage
57.9 59.1 59.2 59.3 59.4 59.0

-10.2 -10.5 -10.5 -10.6 -10.6 -10.5

Image Pyramid
6.35 6.67 6.72 6.77 6.80 6.66

-12.7 -11.8 -11.6 -11.4 -11.3 -11.8

F. Responses 13.9 14.2 14.2 14.2 14.2 14.1

0

10

20

30

40

50

60

M
b

y
te

s

Time
Levels TSM Backtrack Stage DT Scores

DT Stage F. Responses Image Pyramid Cache Results

-25.2 -25.3 -25.3 -25.3 -25.2 -25.3

DT Scores 18.9 19.3 19.4 19.4 19.4 19.3

Others
2.97 0.78 0.50 0.31 0.20 0.95

-0.87 -0.92 -0.93 -0.94 -0.95 -0.92

Results Cache +77.5 +20.3 +13.1 +8.06 +5.18 +24.8

At the Diagram 42Diagram 41 below it is visible the participation of the image pyramid at the

formation of the maximum memory consumption value of the algorithm as just explained in the

paragraph above.

Diagram 42 - TSM v3.1 Maximum Memory Distribution per Image

This version has two basic disadvantages. The First and most significant is the inconsecutive

order of forwarding the levels of the pyramid to the detection procedure. The second one, less

significant or even not significant is the usage of Image pyramid that is more memory costly.

Both these disadvantages are exceeded in the next subversion of the version 3.x of the TSM

algorithm, presented in the next chapter (Chapter 6.20).

6.20. TSM Face Detector v3.2

In the version 3.1 of the TSM algorithm two main disadvantages are referred. The most

significant disadvantage is the fact that the algorithm in this version is passing the pyramid

levels to the detect stage in an inconsecutive series. This execution flow is repaired in this

versioŶ so that the deteĐtioŶ pƌoĐeduƌe ĐaŶ ďe applied iŶ the pǇƌaŵid’s leǀels asĐeŶdiŶg to theiƌ
size starting from the top level. To achieve this change the execution flow of the features

pyramid stage, as presented in the chapter 5.5, changes and the algorithm calculates the levels

of the image pyramid in a sequential way. This way demand to the algorithm to hold in the

memory at least a set of interval of the image pyramid in order to be able to use it for the next

one as shown in the Figure 45 below.

0 50 100 150 200

320x240

640x480

800x600

1024x768

1280x960

Mbytes

Backtrack DT Scores F. Responses Image Pyramid Others Results

Figure 45 - TSM Algorithm v3.2 Execution Flow Diagram

The second disadvantage of the 3.1 version of the algorithm is the fact that the first level of the

image pyramid joins the parts of data forming the algorithm maximum memory consumption.

This level is the largest one coming from the source image and it is needed for the calculation of

the rest scaled images in the first interval set of the image pyramid. In the chapter 6.6.1 a

version of the Resize procedure using 8 bit images instead of 32 bit ones was introduced. This

version can be used in the version 3.2 in customized to get an 8 bit image as input and return a

32 bit one as output. This way the source image can be used as an 8 bit image using only the

25% of the memory reducing the maximum memory consumption. In the Table 74 below the

maximum memory consumption of this version is shown.

Table 74 - TSM v3.2 Maximum Memory Distribution (Compared to v1.2) (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

TSM v3.2
13.8 Mb 52.5 Mb 81.3 Mb 132 Mb 206 Mb

-48.1 -47.6 -47.5 -47.3 -47.2 -47.5

FP Stage 0 0 0 0 0 0

Conv. Stage 0 0 0 0 0 0

DT Stage 0 0 0 0 0 0

Backtrack Stage
60.8 62.2 62.4 62.5 62.6 62.1

-10.2 -10.5 -10.5 -10.6 -10.6 -10.5

Image Pyramid
1.67 1.76 1.77 1.78 1.79 1.75

-11.9 -10.9 -10.7 -10.5 -10.4 -10.9

F. Responses 14.6 14.9 15.0 15.0 15.0 14.9

-25.2 -25.3 -25.3 -25.3 -25.2 -25.3

DT Scores 19.9 20.3 20.4 20.4 20.4 20.3

Others
3.12 0.82 0.53 0.33 0.21 1.00

-0.87 -0.92 -0.93 -0.94 -0.95 -0.92

Results Cache +81.3 +21.4 +13.8 +8.49 +5.46 +26.1

Diagram 43 - TSM v3.2 Maximum Memory Distribution per Image

As seen in the Diagram 43 above as the memory consumption of the TSM algorithm is reducing

the most significant part of it is the results cache and the Backtrack stage temporary memory

which is affected also by the detection results. This makes it clear that the number of detection

within the image is significantly affecting its maximum memory consumption. In chapter 7.2 a

patch that changes this attitude is presented. In the Diagram 44 below the memory profile of

the version 3.2 of the TSM algorithm is presented.

0 50 100 150 200

320x240

640x480

800x600

1024x768

1280x960

Mbytes

Backtrack DT Scores F. Responses Image Pyramid Others Results

Diagram 44 - TSM Algorithm v3.2 Memory Profile

Diagram 45 - TSM Algorithm v3.2 Timeline Profile

As seen in the Diagram 44 and Diagram 45 the seƋueŶtial floǁ of the pǇƌaŵid’s leǀels passiŶg to
the Detect stage is recovered. It is also visible in the Diagram 44 that the first level of the image

pyramid consumes much lower memory from the next one even if its size is laƌgeƌ. That’s
because it is saved in the 8 bit format.

As far as the execution time needed for this version, as it is sensible, it has not changed

relatively to the version 3.1 as shown in the Table 75 below.

Table 75 - TSM v3.2 Execution Time Comparison (%)

 320x240 640x480 800x600 1024x768 1200x960 Average

Levels 18 23 25 27 28

v1.2 -23,0 -17,2 -16,3 -14,4 -14,2 -17,0

v1.3 -9,22 -4,66 -4,17 -2,44 -2,25 -4,55

v2.1 -8,66 -3,36 -2,94 -1,23 -1,02 -3,44

0

10

20

30

40

50
M

b
y

te
s

Time
Levels TSM Backtrack Stage DT Scores

DT Stage F. Responses Image Pyramid Cache Results

Time

FP Stage Convolution DT Backtrack

v2.2 -8,60 -3,52 -3,16 -1,11 -0,96 -3,47

v3.1 -0,28 -0,09 -0,36 -0,13 -0,20 -0,21

6.21. TSM Face Detector All Versions

At this last chapter of Chapter 6 a quick summary about the different versions of the algorithm

are appose. Firstly the main change between the versions 1.x and 2.x has to do with the

execution flow of the algorithm. As seen in Figure 46 in version 1.x the execution flow of the

Detect stage is using two nested loops. The outer loop is the one iterating between the different

components (pose trees) and the inner one with the different levels of the features pyramid.

The convolution process takes place inside the components loop. As the filters responses data

are used by all components every calculation of filters responses occur at the first iteration of

the component loop is required until the last iteration. This way the filters response data are

calculated for all levels at the first iteration of the component loop as shown in the timeline

Diagram 2 and used until the end of the component loop as shown in Diagram 8 in chapter 6.3.

Figure 46 - TSM Algorithm v1.x Diagram

On the other hand in the execution flow of the version 2.x the two nested loops change sides.

The levels loop becomes the outer loop and the components one the inner. The convolution

process takes place inside the outer loop, the levels loop and calculates the filters responses of

each level as shown in Figure 47. This way, as the face detector uses one scale models, after the

end of the components loop the ĐoƌƌespoŶdiŶg leǀel’s filteƌs ƌespoŶses aƌe Ŷote Ŷeeded aŶǇ
more and can be released. This is visible also in the timeline profile of the version 2.1 in Diagram

36s (Chapter 6.17).

Figure 47 - TSM Algorithm v2.x Diagram

The algorithm versions 3.x are actually use the same execution flow with very small differences

compared to the 2.x versions. This difference is that they merge the Features Pyramid stage with

the Detect one and they detection procedure begins immediately when a features image is

created as shown in the Figure 48 below.

Figure 48 - TSM Algorithm v3.x Diagram

The comparison between all the version of the TSM algorithm can be appose as a summary of

the algorithm version history. At the Diagram 46 below the time execution comparison is

presented. As is visible the version 2.x is at least faster than the version 1.3. The greatest speed

up improvements was achieved from the transition of the version 1.2 to 1.3. In the Table 76 the

time execution ratio are shown.

Diagram 46 - TSM Algorithm Execution Time Versions Comparison

Table 76 - TSM Algorithm All Versions Execution Time Comparison (%)

Version 320x240 640x480 800x600 1024x768 1280x960 Average

v1.2 100 100 100 100 100 100

v1.3 84.9 86.8 87.4 87.7 87.8 86.9

v2.1 84.3 85.6 86.3 86.6 86.7 85.9

v2.2 84.3 85.8 86.5 86.5 86.7 85.9

v3.1 77.3 82.8 84.0 85.7 86.0 83.2

v3.2 77.0 82.8 83.7 85.6 85.8 83.0

As far as the memory consumption the Diagram 47 below shows the differences between each

version of the algorithm. As happened with the time execution the same happens as far as the

memory consumption. The greatest improvement achieved at the version 1.3 of the algorithm.

As shown in the Diagram 47 and in the Table 77 data, the memory consumption of the algorithm

is the same in all the versions greater than the 1.3. It is obvious that in this version the memory

consumption improvements have reached to ceil.

0

20

40

60

80

100

320x240 640x480 800x600 1024x768 1280x960

v1.2 v1.3 v2.1 v2.2 v3.1 v3.2

Diagram 47 - TSM Algorithm All Versions Memory Consumption Comparison

Table 77 - TSM Algorithm All Versions Memory Comparison (%)

Version 320x240 640x480 800x600 1024x768 1280x960 Average

v1.2 100 100 100 100 100 100

v1.3 56.4 56.2 56.5 56.5 56.5 56.4

v2.1 56.4 56.2 56.5 56.5 56.5 56.4

v2.2 56.4 56.2 56.5 56.5 56.5 56.4

v3.1 56.4 56.2 56.5 56.5 56.5 56.4

v3.2 56.4 56.2 56.5 56.5 56.5 56.4

At last, as long as the maximum memory consumption of the algorithm, the comparison graph

(Diagram 48) and table (Table 78) have different indications. As seen the maximum memory

consumption is finally reduced at less than its half for all 2.x versions of the algorithm reaching

the minimum of 51% relatively to the original version 1.2.

Diagram 48 - TSM Algorithm All Versions Maximum Memory Consumption Comparison

0

20

40

60

80

100

320x240 640x480 800x600 1024x768 1280x960

v1.2 v1.3 v2.1 v2.2 v3.1 v3.2

0

20

40

60

80

100

320x240 640x480 800x600 1024x768 1280x960

v1.2 v1.3 v2.1 v2.2 v3.1 v3.2

Table 78 - TSM Algorithm All Versions Maximum Memory Consumption Comparison (%)

Version 320x240 640x480 800x600 1024x768 1280x960 Average

v1.2 100 100 100 100 100 100

v1.3 77.1 77.7 77.8 78.0 78.1 77.7

v2.1 61.1 60.6 60.6 60.5 60.5 60.7

v2.2 51.0 51.5 51.6 51.7 51.9 51.5

v3.1 54.5 55.1 55.3 55.5 55.7 55.2

v3.2 51.9 52.4 52.5 52.7 52.8 52.5

Until this chapter many changes have been made inside the algorithms stages and procedures

and the execution flow of the algorithm has been modified. The results of these changes have

offer a reduction to the execution time by 17%, to the memory consumption by 43.6% and by

48.5% to the maximum memory consumption. Especially as far as the memory consumption the

improvement is very significant. As shown in Table 79 below, the algorithm, using 1280x960 size

images needs less than 512Mbytes of RAM to be executed instead of the 1Gbyte needed in the

original version 1.1. This makes the algorithm available to be used in embedded system with low

hardware resources!

Table 79 - TSM Algorithm All Versions Max Memory Requirements (Mbytes)

Version 320x240 640x480 800x600 1024x768 1280x960

v1.1 (double) 70 265 409 664 1030

v1.1 35 132 205 332 515

v1.2 27 100 155 251 390

v1.3 21 78 121 196 304

v2.1 16 61 94 152 236

v2.2 14 52 80 130 202

v3.1 15 55 86 139 217

v3.2 14 53 81 132 206

CoŵpaƌiŶg the algoƌithŵ’s ǀeƌsioŶs pƌeseŶted, tǁo of theŵ seeŵs to ďe Đoŵpleted. The ǀeƌsioŶ
3.2 is the fastest one but the version 2.2 is the most memory saving. According to the Table 76

and Table 78, the difference between these two versions is small both in time and memory

consumption. Although, the execution time is preferred instead of the maximum memory

consumption as the last one difference does not seems to be critical at all in contrast to the

execution time one, so the final version can be consider the 3.2.

All these changes are implementation changes that do not affect the algorithms creators design

and accuracy. In the next chapters more modifications are appose that either change the

Đƌeatoƌs desigŶ addiŶg Ŷeǁ teĐhŶiƋues oƌ affeĐt the algoƌithŵ’s aĐĐuƌaĐǇ.

7. TSM System Default Patches

In the chapter 9 some patches for the TSM algorithm are presented trying to make the

algorithm a faster one. These patches though reduce the algorithm reliability and detection

efficiency. For that reason these patches are called alternative patches. In this chapter two

special patches are presented as they contribute to the memory and execution time

improvement without affecting at all the algorithm detection performance. For that reason

these two patches are called default patches and they are included in all the x.x.2 versions of the

TSM algorithm.

7.1. Short Pyramid

In chapter 6.2 it was mentioned that the Face Detector algorithm is designed to detect faces in

the size of 100 pixels high (50 pixels on 146 filters model). The image pyramid is used in order to

detect larger faces by scaling the image and match the faces on that size. Any faces smaller than

the 100 pixels high are not able to be detected.

The algorithm, as explained in chapter 4.2, uses histograms of oriented gradient in order to

detect the existing faces by using its model filters. As explained in chapter 5.4, a HOG image is

about four times smaller than the original it comes from. This means that a features canvas

containing a face must be larger than 35 pixels.

In chapter 5.5 the mathematic type calculating the number of the image pyramid levels is

referred. This type is the one shown in function (8) below and its results are shown in the Table

80. As seen in this table the last 11 levels of the image pyramid created have image height less

than 100 pixels while the last six less than 50. This make it sensible that even if human faces are

contained within these images, the algorithm is not able to detect them.

 

 1
int

min ,Height
log

5
1

log 2

  
  

     
 
  
 

image image

pyramid
erval

Width

sbin
Levels floor (8)

Table 80 - Features Pyramid Level Images High Size

Image Size Levels Bottom 12 levels

320x240 18 105 91 80 69 60 53 46 40 35 30 27 23

640x480 23 105 91 80 69 60 53 46 40 35 30 27 23

800x600 25 99 87 75 66 57 50 44 38 33 29 25 22

1024x768 27 96 84 73 64 56 48 42 37 32 28 24 21

1280x960 28 105 91 80 69 60 53 46 40 35 30 27 23

By testing the algorithm without using these levels of the image pyramid in the detection

process there was no affect in the detection results. By this conclusion there is no need of using

this levels of the image pyramid that is having a small effect on the algorithms execution as it is

explained in later.

According to the conclusions of the previous paragraph the

levels of the images of the Table 80 should be as shown in

the Table 81. As seen the number of levels is almost reduced

to the half. These numbers comes from a new mathematic

type that calculates the image pyramid levels until they get

to a size not smaller than the limit of 100 pixels height. This

mathematic type is the one shown in function (9). The

Heightmin parameter is the minimum size of a detectable face

which is 100 pixels for the 99 filters model, as explained before.

2

min

log interval
image

pyarmid

Height
Levels

Height

  
   

  
 (9)

By applying this change in the algorithm there is an impact to its execution time. By reducing the

number of levels in the image and also the features pyramid the whole algorithm is affected.

First of all, the Image Pyramid stage is speeded up as the less levels the image pyramid has the

less scaled images have to be produced and of course less features images have to be created.

The creation of HOG descriptors is a costly procedure as far as the time and memory usage. To

continue, as the image pyramid is shoƌteƌ, theƌe aƌe less featuƌes iŵages to applǇ the ŵodel’s
filters that means less call of the convolution procedure. The convolution process is the most

time consumer procedure as explained in chapter 6. At last, shorter feature pyramid means less

levels for face detection (DT stage, Backtrack stage). This small change causes a wide impact to

the whole algorithm.

On the other hand this change cause the reduction of the Image pyramid levels by rejecting its

bottom levels. This means that this levels corresponds to the smallest features images. Small

images consume few amount of time for their execution in the most parts of the algorithm as

for example explained in chapter 6.9 where the convolution process is described. Even if the half

of the image pyramid is rejected, the execution time cost that is saved by this change is much

smaller than if one of the top levels of the image pyramid was rejected. All these claims are

visible in Table 82 and in the Diagram 49.

Table 81 - Short Pyramid Levels

Image Size
Model

99 146

320x240 7 12

640x480 12 17

800x600 13 18

1024x768 15 20

1280x960 17 22

Table 82 - Short Pyramid Patch Time Effect on TSM (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

v2.2 -16.3 -4.45 -3.42 -1.94 -1.18 -5.45

v3.2 -14.2 -3.53 -2.64 -1.80 -0.91 -4.61

Diagram 49 - TSM Algorithm Execution Time per Level

As seen in the Table 82, even if the pyramid is reduced in its half the time reduction is not more

than 4.5%. As the image size is getting larger the rejection of the highest levels of the pyramid

seems to be insignificant. This is because as the image is getting larger the lower levels of the

pyramid tend to be larger and this affects the execution time of the most stages of the algorithm

exponentially as referred in the corresponding chapters (ex. Convolution, Chapter 6.9).

As far as the impact of this change to the memory consumption, the reduction is not so

important. The temporary memory consumption is sensible reduced as the features pyramid

levels are reduced. In addition, the maximum memory consumption is not expected to be

reduced as it is clearly depended by the top level of the pyramid and its detection procedure

(see Chapter 6.18 and 6.20Ϳ. This patĐh iŶ the algoƌithŵ’s desigŶ is aĐtuallǇ a tiŵe saǀiŶg oŶe
and no changes relative to memory consumption are applied. In the next chapter (chapter 9.1)

the ͞FiŶd ǀϮ.Ϭ͟ patĐh is a ŵeŵoƌǇ ĐoŶsuŵptioŶ iŵpƌoǀeŵeŶt oŶe.

At last after removing all these levels of the pyramid, the relations of the functions (4) and (6)

(Chapter 6.3) have to change, as they do not longer represent the real number of levels of the

feature pyramid that contain high-score values. Testing the algorithm in the image sample

referred in chapter 6.3, the new results are as presented in the Table 83 below. As sensible the

high-score values per find data are still the same.

0 5 10 15 20 25

T
im

e

Levels

320x240

640x480

800x600

1024x768

1280x960

Table 83 - Levelswith-High-Scores / LevelsFeatures_Pyramid (%)

 99 Filters Model 146 Filter Models

Samples Max Average Min Max Average Min

Top 10% 29.0 23.0 18.9 29.9 20.1 15.1

Top 20% 55.0 29.4 14.2 31.2 21.5 13.6

Top 50% 55.0 25.0 13.0 31.2 20.2 8.88

All (100%) 55.0 19.6 0.48 31.2 15.0 0.43

From the data contained in Table 83 the functions (4) and (6) (Chapter 6.3) has to be converted

to the functions (10) and (11) as shown below.

99 Filters Model

 0.25High ScoredLevels Round levels   (10)

146 Filters Model

 0.20High ScoredLevels Round levels   (11)

By applying the Pyramid patch to the TSM algorithm the versions using it are changed to x.x.1.

For example when this patch is used with the version 3.2 this version is now called the 3.2.1 one.

This is useful when more patches and versions are applied or combined to one or more versions.

7.2. Find v2.0

In chapter 6.13 the Backtrack stage is described. The execution flow of the Backtrack stage starts

form the Find procedure that discovers the high-scored values come from the DT stage and

forwards them to the Backtrack procedure where the last one makes the landmark estimation.

At last the NMS procedure is the one that selects the correct ones by rejecting the overlapping

ones. The Backtrack procedure is the most time and memory consuming one in the Backtrack

stage and unfortunately increases the algorithms maximum memory consumption at a notable

amount. The reason that the Backtrack procedure is using this great amount of resources is that

it uses a complex way to estimate the landmarks and a lot of memory to store the results. In

addition to this the algorithm needs a large amount of results cache memory to store this great

amount of results coming from the Backtrack stage. The memory needed for storing the results

in the results cache memory is also increasing the maximum memory consumption of the

algorithm.

As described in chapter 6.12 a face within an image produce a number of high-score values

duƌiŶg the DT stage. Fƌoŵ all those ǀalues oŶlǇ oŶe is the top aŶd it’s the oŶe used as the ƌeal
detection result. The rest ones are considered as overlapping results. Overlapping results are

produced around the top high-score value in the same level DT scores result image and in the

near levels images. In chapter 7 it is described that, after testing the algorithm along a series of

testing images, the result was that a detected face produce high-score values at the 20% of the

features pyramid levels with a mean number of high-scores of 80 pixels per Find procedure

executed. From all those high-score values only one is the top that results to the final detection.

Figure 49 - Image DT Scores Array Example (Find Input)

For selecting the top high-score value that return the real face detection the algorithm is using

the NMS procedure as described in chapter 5.10. The NMS procedure is used every time the

Results cache is full in order to release space and at the end of the detection procedure in order

to select the real results.

All these problems can be distinguish using a technique that rejects the overlapping results

before they are forwarded to the Backtrack procedure. This way the workload of the Backtrack

procedure can be greatly decreased in addition to the memory consumption reduction.

Additionally, the results cache memory can be also abridged. The technique we propose for that

purpose is a new implementation (version 2.0) of the Find procedure that would discover only

the highest value of a high-value pixels neighborhood as shown in the Figure 50.

Figure 50 - Find v2.0 Procedure Diagram

As shown in the Find v2.0 procedure execution graph (Figure 50), the v1.0 Find procedure is

used to discover high-score values. If High-score values are discovered the patch saves the

highest one in a list and removes it and its neighbors from the DT scores table. Afterwards it

calls again the v1.0 Find procedure and repeats the same procedure. The reason of repeating

this procedure is because when there are more than one faces inside the image, more high-

scores values neighborhoods would exist. Graphically the impact of the Find procedure patch

over the DT scores table is shown in Figure 51 below.

Figure 51 - Find v2.0 Results on the DT Score Array Example

The advantage of this Find procedure version is that it mostly discovers only one high-score

value for every face detection. This is very important as only substantial high-score values are

passed to the Backtrack one. This change create new conditions around the Backtrack stage that

repeal the statistic results of the chapter 6.2.

In chapter 6.2 a presentation of the statistics results as far as the number of high-score values

produced during the detection process is presented. This data come from the usage of the Find

v1.0 procedure. By using the new version a new set of data comes on. Using the same image

and applying the same experimental process the results using the new version of Find procedure

are presented in the Table 84 below.

Table 84 - Find v2.0 Pixelswith-High-Scores / (Levelswith-High-Scores x Components)

 v2.0 v1.0 Profit

Samples Max Average Min Max Average Min Max Average Min

 99 Filters Model

Top 10% 5 1.6 1 611 169 1 -99.2 -99.1 0

Top 20% 5 1.5 1 611 128 1 -99.2 -98.8 0

Top 50% 5 1.4 1 611 103 1 -99.2 -98.6 0

All (100%) 5 1.3 1 611 79 1 -99.2 -98.4 0

 146 Filters Model

Top 10% 5 1.2 1 343 116 1 -98.5 -99.0 0

Top 25% 5 1.1 1 343 91 1 -98.5 -98.8 0

Top 50% 5 1.1 1 343 70 1 -98.5 -98.4 0

All (100%) 5 1.1 1 343 53 1 -98.5 -97.9 0

In the Table 84 above the great effect of the version 2.0 of the Find procedure is shown. As seen

in the right columns the average number of High-Score values is reduced for more than 98%

compared to the 1.0 one. This is great decrement with many impacts on the whole Backtrack

stage as presented in the next paragraphs.

In chapter 6.2 the number of levels with high-score values is estimated after testing the

algorithm. By changing the Find procedure this number changed also at the top10, top20 and

top50 samples (Table 85Ϳ. OŶ the otheƌ haŶd it’s the saŵe ǁheŶ all the saŵples aƌe used. This
difference is caused because, by the time the Find v2.0 procedure is used, every face within an

image creates only one high-score value. In our sample images only one face appears within it

so the sensible result would be one High-score value per Find procedure or none. What is shown

in Table 84 above is that the testing results show even five high-score values to appear. This is

because sometimes the DT score of a component might create multiple neighborhoods of high-

score values in the area where face exists. This phenomenon appears usually at the levels close

to the right one where the face is not yet in the right size (about 100 pixels high) to be detected.

Table 85 - Find v2.0 Levelswith-High-Scores / LevelsFeatures_Pyramid (%)

 Original Version New Version

Samples Max Average Samples Max Average Samples

 99 Filters Model

Top 10% 18.9 14.3 12.1 23.4 11.8 0.3

Top 20% 28.6 17.2 9.2 23.4 12.7 0.3

Top 50% 28.6 14.8 7.4 28.6 13.7 0.3

All (100%) 28.6 11.6 0.3 28.6 11.6 0.3

 146 Filters Model

Top 10% 21.5 15.8 6.1 21.5 16.1 12.9

Top 25% 24.0 14.5 3.7 24.0 16.8 10.7

Top 50% 24.0 14.8 3.7 24.0 15.7 7.2

All (100%) 24.0 11.8 0.3 24.0 11.8 0.3

Another great impact of this new version of the Find procedure is over the output results of the

whole Backtrack stage. As the number of high-scored values is reduced to more than 98% the

number of the Backtrack stage results is also reduced at the same percentage. This change

implies the need of reducing the results cache memory. As referred in Chapter X the default

ƌesult’s ĐaĐhe ŵeŵoƌǇ is ϭϬ,ϬϬϬ deteĐtioŶ ƌesults. UsiŶg the new Find procedure this number is

sensible to be reduced by 98% less, to the size of 200. This change means that the maximum

memory consumption can be reduced by a remarkable amount of memory.

On the Table 86 below the impact of the Find v2.0 procedure as far as the execution time of the

algorithm and its stages is shown. As seen in this table the execution time consumption of the

whole Backtrack stage is greatly reduced due to the Backtrack procedure time consumption

reduction despite the Find one increase. Although the impact of this reduction is tiny on the

ǁhole FaĐe DeteĐtioŶ algoƌithŵ’s eǆeĐutioŶ tiŵe as the BaĐktƌaĐk stage ĐoŶsuŵes oŶlǇ aďout
the 0.25% of the algorithm execution time.

Table 86 - Find v2.0 Execution Time Impact on TSM v3.2.1 (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

Find +77.3 +93.7 +92.9 +117 +103 +96.9

Backtrack -96.7 -95.4 -94.7 -94.0 -92.5 -94.6

Back. Stage -84.3 -87.3 -84.8 -78.5 -72.0 -81.4

NMS -99.4 -93.9 -99.6 -96.0 -94.6 -96.7

TSM -0.42 -0.24 -0.18 -0.11 -0.07 -0.20

On the other hand the impact of the new version (v2.0) of the Find procedure as far as the

memory consumption is much larger than the time one. In the Table 87 below the temporary

memory consumption reduction is shown. As seen in this table the Find procedure temporary

memory consumption is increased but this incremental caused a huge reduction in the

temporary memory consumption of the Backtrack and NMS procedure as also the Backtrack

stage and the temporary results. This is a great achievement as the Backtrack stage and the

temporary results data constitute a large part of the total temporary memory consumption. As

shown in the Table 87 the TSM algorithm temporary memory consumption is actually reduced

about 45% by the usage of the new version of the Find procedure.

Table 87 - Find v2.0 Impact on TSM v3.2.1 Memory Consumption (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

Find +50.0 +50.0 +50.0 +50.0 +50.0 +50.0

Backtrack -99.8 -99.7 -99.7 -99.7 -99.7 -99.7

Back. Stage -97.1 -97.1 -97.1 -97.0 -97.0 -97.1

NMS -98.0 -98.0 -98.0 -98.0 -98.0 -98.0

Results -99.7 -99.7 -99.7 -99.7 -99.7 -99.7

TSM v3.2.1 -39.7 -43.8 -43.7 -47.7 -47.5 -44.5

As far as the maximum memory consumption, as seen in Table 88 below, is reduced by about

61.5% as a result of the Backtrack stage 99% reduction. The Backtrack stage was one of the main

participants at the maximum memory consumption formation and limiting its memory

consumption the whole algorithms maximum memory consumption is affected. In addition to

that the Results cache size reduction and the precocious rejection of the overlapping detection

cause also a reduction of the impact of it over the maximum memory consumption. As seen in

the table, the analogous of the default size result cache can cause about 1% incremental on the

algoƌithŵ’s ŵaǆiŵuŵ ŵeŵoƌǇ ĐoŶsuŵptioŶ.

Table 88 - Find v2.0 Maximum Memory Consumption Impact on TSM v3.2.1 (%)

 320x240 640x480 800x600 1024x768 1280x960 Average

TSM v3.2.1
5.47 Mb 20.1 Mb 31.0 Mb 50.2 Mb 78.0 Mb

-60.4 -61.7 -61.9 -62.0 -62.1 -61.6

Conv. Stage 0 0 0 0 0 0

DT Stage 0 0 0 0 0 0

Backtrack Stage
0.90 1.18 1.19 1.20 1.20 1.13

-99.4 -99.3 -99.3 -99.3 -99.3 -99.3

F. Responses 36.8 39.0 39.3 39.5 39.6 38.8

DT Score 50.2 53.1 53.5 53.8 54.0 52.9

Image Pyramid 4.2 4.6 4.6 4.7 4.7 4.6

Others 7.88 2.15 1.39 0.86 0.55 2.57

Results Cache

(200)

2.32 1.12 0.73 0.45 0.29 0.98

-98.9 -98.0 -98.0 -98.0 -98.0 -98.2

As is visible in the Diagram 50 ďeloǁ the ŵaiŶ ŵodulatoƌs of the algoƌithŵ’s ŵaǆiŵuŵ ŵeŵoƌǇ
are the Filters Responses and the DT scores. These two data structure hold about the 91.5% of

the algoƌithŵ’s ŵaǆiŵuŵ ŵeŵoƌǇ ĐoŶsuŵption (the 96% on the 2.2.2 version!). These two data

structure are very critical and their data cannot be reduced. The version 2.0 of the Find

procedure has managed to reach the maximum memory consumption to a floor with no ability

for further significant reduction.

Diagram 50 - TSM v3.2.2 Maximum Memory

Consumption per Image

Diagram 51 - TSM v3.2.2 Maximum Memory

Profiling

By the time the maximum memory consumption of the TSM algorithm is formed almost at all by

predictable known parameters it can be easily predicted with a simple function as the function

(12). This function calculates in a very simple mode the maximum memory consumption using

only two parameters, the image width and height. The results of the function (12) compared to

the real ones are presented in Diagram 52.

0 20 40 60 80

320x240

640x480

800x600

ϭϬϮϰǆϳ…

ϭϮϴϬǆϵ…

Mbytes

Backtrack Stage F. Responses DT Scores

Image Pyramid Others Results Cache

0

20

40

60

80

100

320x240 640x480 800x600 1024x768 1280x960

Profile

Real

   M

Model
Mem Heigth age Width age

ax

.filters 136
Im Im 3

16

     
 

 (12)

In the Diagram 52 below a graphical view of the TSM algorithm memory profile is shown. As

seen, the Results Cache and the Backtrack stage lines are now almost at the bottom of the

diagram.

Diagram 52 - TSM Algorithm v3.2.2 Memory Profile

By applying the Find v2.0 procedure to the version 2.2.1 of the algorithm its maximum memory

consumption was also reduced. In the Table 89 below its new maximum memory consumption

is pƌeseŶted. As seeŶ iŶ the ͞MďǇtes͟ liŶes ďoth ǀeƌsioŶs Ŷeed less thaŶ ϭϬϬ MegaďǇtes of
memory to ƌuŶ. IŶ the ͞V“ ϭ.Ϯ͟ liŶes it is ǀisiďle that afteƌ all the ĐhaŶges applied to the T“M
algorithm until these two versions are created, the maximum memory consumption of the

algorithm is reduced about 80%. This is a great reduction. This makes also the algorithm able to

run in very low resources hardware!

Table 89 - TSM Basic Versions Maximum Memory Consumption

 320x240 640x480 800x600 1024x768 1280x960

v2.2.2
Mbytes 5.25 Mb 19.2 Mb 29.5 Mb 47.9 Mb 74.3 Mb

Vs 1.2 -80.3% -80.9% -80.9% -80.9% -80.9%

v3.2.2
Mbytes 5.47 Mb 20.1 Mb 31.0 Mb 50.2 Mb 78.0 Mb

Vs 1.2 -79.5% -80.0% -80.0% -80.0% -80.0%

0

2

4

6

8

10

12

14

16

18

20

M
b

y
te

s

Time

Levels TSM DT Scores F. Responses

Image Pyramid DT Stage Backtrack Stage Result Cache

The Find patch importance is very high because it totally released the algorithm from a very high

memory consumption. In the single thread versions this might not look so significant but as is

presented in later chapters (chapter 8) where parallelized versions are introduced, the absence

of this patch would probably cause a lot of problems.

8. Multi-Threading Implementation

In this chapter the conversion of the TSM algorithm implementation of a single thread one to a

multi-threading one using the OMP library [34]. Every stage and procedure is tested using

multiple CPU cores and the best combination and distribution of cores are finally used to

succeed the best execution time speed and memory consumption. To this task the modern

haƌdǁaƌe ďoaƌds’ aǀailaďle resources are considered. The versions presented in chapter 6 are

tested in order to discover the most efficient one when multithreading technology is used and

at last one more version of the algorithm is presented in chapter 8.9.3, that is designed totally

for multiple cores CPU.

8.1. Features Pyramid

The Features Pyramid stage consumes a small part of the whole algorithms execution time but it

precedes the Detect one. This means that while the Features Pyramid stage is executed the

Detect one waits for it and all the hardware resources are available to be used. This fact allows

the use of any of the hardware resources in order to speed it up and abridge the Detect stage

execution. For that reason the usage of the OMP technology is applied to the Features Pyramid

stage in order to take advantage of it. The OMP technology is applied to the three main

procedures of this stage, the Resize, the Reduce and the HOG one and also at the whole stage.

Of course, as the number of CPUs in the hardware is limited there are two types of using the

multiprocessors technology. Either focus it on one process at a time or share it around multiple

procedures. Both tactics were tested.

8.1.1. 1
st

 Tactic

The first tactic is the one where the multiprocessors technology is focused on every procedure

in order to speed it up individually as shown in Figure 52 below. The parallelization efficiency of

every procedure contained in the Features Pyramid stage is explained in previous chapters.

Figure 52 - Features Pyramid Stage OMP Diagram - 1
st

 Tactic

By applying this tactic in the Features Pyramid stage the following results come on as shown in

Table 90.

Table 90 - FP Stage OMP Execution Time - 1
st

 Tactic (%)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 55.9 61.1 58.5 64.8 62.0 x1.7

3 42.7 46.4 43.1 46.7 43.2 x2.3

4 38.4 38.6 36.7 38.8 36.6 x2.6

5 32.7 36.2 33.2 36.8 34.2 x2.9

6 35.6 34.0 34.4 35.8 33.1 x2.9

7 41.1 33.5 35.9 33.5 30.1 x2.9

8 43.7 33.3 35.8 31.1 29.7 x2.9

The two graphs below shows the time consumption of the Features Pyramid stage according to

the CPU cores used (Diagram 53) and its speedup efficiency (Diagram 54). In the Diagram 53 is

visible that the speedup of this tactic is image size independent and that the speedup is gained

by the use of more cores is reducing. This is also visible by the Diagram 54 where the efficiency

of the number of CPU cores used is decreasing as more cores are used. According to the

Diagram 53 the usage of 3-4 CPU cores added make the Feature Pyramid stage much faster

when any additional cores does not offer any significant acceleration of the procedure.

Diagram 53 - FP Stage OMP Execution Time

(1
st

 Tactic)

Diagram 54 - FP Stage OMP Execution Time

Efficiency (1
st

 Tactic)

As far as the memory consumption of this tactic is actually almost the same when one core only

is used. This is because the memory consumption of the parallelized versions of the Resize,

Reduce and HOG procedures is insignificant.

8.1.2. 2
nd

 tactic

The second parallelization tactic is the one where multiple procedures where shared in multiple

processors cores as shown in Figure 53 below.

0

20

40

60

80

100

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

Figure 53 - Features Pyramid Stage OMP Diagram - 2
nd

 Tactic

Using this tactic the results for the whole Features Pyramid stage is improved according to the

single version of the algorithm. According to the Table 91 the most efficient results comes when

the hardware can support a parallelization of five CPU cores. Using more cores does not offer

better results and that is because the number of five cores is equal to the value of the interval

parameter. Any other CPU cores more than the five cores are not used by this tactic and stays

idle. This is not a disadvantage for this tactic because the idle cores can probably be used in

nested parallelization as explained later.

Table 91 - FP Stage OMP Execution Time - 2
nd

 Tactic (%)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 77.4 76.2 76.3 74.5 72.0 x1.3

3 60.4 55.7 53.5 54.0 51.8 x1.8

4 60.7 56.1 53.8 53.9 52.4 x1.8

5 34.0 30.6 29.9 31.2 29.5 x3.2

6 34.4 30.2 30.0 31.3 29.8 x3.2

7 32.4 30.5 30.0 30.3 30.1 x3.3

8 32.8 32.4 29.9 30.6 29.0 x3.2

Diagram 55 - FP Stage OMP Execution Time

(2
nd

 Tactic)

Diagram 56 - FP Stage OMP Execution Time

Efficiency (2
nd

 Tactic)

In the Diagram 55 above it is visible that the usage of more than five CPU cores is useless as

explained in the previous paragraph. What seems strange is the path that the time curves when

four CPU cores are used. At this point is important to be explained that on this tactic the time

speedup is achieved by the reduction of the features pyramid stage loop iterations. On the

single core version this loop iterates for «interval» times. When used two cores the number of

loop iterations are the half, etc. The value of the «Interval» variable is 5 on the algorithm, so

ǁheŶ used thƌee aŶd fouƌ Đoƌes of the CPU the Ŷuŵďeƌ of iteƌatioŶs of the stage’s loop is oŶ
both cases two! This is why the Features Pyramid stage does not gain any speedup.

As far as the memory consumption of this tactic it is obvious that it is not the same as in the

tactic 1. While multiple thread execute different procedures inside the Features Pyramid stage

multiple data are calculated and created simultaneously. Looking at the Figure 53 above it is

obvious that a simultaneous creation of the image pyramid and the features pyramid would

allocate a great amount of memory that would also increase the stages maximum memory

ĐoŶsuŵptioŶ that Đould affeĐt the ǁhole algoƌithŵ’s eǆeĐutioŶ tiŵe. The Featuƌes pǇƌaŵid
stage maximum memory consumption is reached while the algorithm is in the first Reduce

procedure as by that time the first level of the image pyramid is in use and cannot be released

and the first level of the Features Pyramid is already produced (function (13)). This amount of

memory can be multiplied by the number of the CPU cores used estimating the differences in

the image sizes are used (function (14)).

max . [0] . [0] . [int] 0.5 . [0]FPstage I Pyramid F Pyramid I Pyramid erval I Pyramid    

(13)

0

max

2
. [] . [] . [int]

3

t

t cores

FPstage I Pyramid t F Pyramid t I Pyramid t erval




    (14)

0

20

40

60

80

100

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

In the function (13) expression the 0.5 . [0]I Pyramid parameter, represents the Reduce

procedure temporary memory. By these functions results the Table 92 presents the amount of

memory needed for the Features Pyramid stage depending on the number of CPU cores used.

Table 92 - FP Stage OMP 2
nd

 Tactic Max Memory (Mbytes)

CPUs 320x240 640x480 800x600 1024x768 1280x960 +%

1 2.3 9.1 14 23 36

2 4.1 16 25 41 63 +76%

3 5.5 21 33 54 84 +134%

4 6.6 25 39 64 100 +178%

5 7.4 29 44 72 112 +212%

TSM 5.3 19 30 48 74

As seen in the Table 92 the features pyramid stage maximum memory consumption is increasing

the same percentage for all image sizes. This comes from the stable ratio between the image

and features pyramid levels sizes. In the Features Pyramid stage all the data and procedures all

image size dependent and this creates this stable ratio. While the features pyramid stage

maximum memory consumption is extremely increasing when using multiple CPU cores, it

seems to affect the whole algorithms maximum memory consumption (TSM line). This means

that the seĐoŶd’s taĐtiĐ ŵeŵoƌǇ ĐoŶsuŵptioŶ iŶĐƌeŵeŶt should ďe ĐoŶsideƌaďle ďefoƌe used.

By comparing these two tactics it is obvious that the most suitable is the 1
st

 one as it is the

fastest one, more efficient and it does not affect the algorithm maximum memory consumption.

The 2
nd

 parallelization tactic is only faster when more than 1 CPU is used in the hardware

resource and the speedup it gains is just a little better than the one the 1
st

 tactic offers. As seen

in the diagrams below the 1
st

 parallelization tactic is succeeding the best results both in

execution time and the efficiency on 1 CPU hardware resource.

Diagram 57 - FP Stage OMP Execution Time

(All Tactics)

Diagram 58 - FP Stage OMP Execution Time

Efficiency (All Tactics)

0

20

40

60

80

100

1 2 3 4 5 6 7 8
CPU Cores

1st

2nd

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8
CPU Cores

1st

2nd

8.2. Resize

The Resize procedure uses less than 0.70% of the whole algorithm execution. Despite that it is a

tiny part of the algorithm it is a part of the Features Pyramid stage that precede the Detect one

that is the main time consumer. The fact that it precedes makes it desirable to speed up this

process in order to abridge the detect stage execution. On the other hand at the features

pyramid stage all the hardware resources are available

In the Table 93 ďeloǁ the Resize pƌoĐeduƌe’s tiŵe ĐoŶsuŵptioŶ is Ŷot staďlǇ deĐƌeasiŶg foƌ all
image sizes. As is visible also in the Diagram 59 below, the Resize procedure is reducing its

execution time rapidly until the fourth CPU core and by that time it starts an unstable reaction

to the CPU cores added. This instability is not unique for all image sizes but follows different

attitude in each of them. This fact makes the Resize procedure unsafe and unreliable for used

for more than 4 CPU cores.

Table 93 - Resize Procedure OMP Execution Time (%)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 73.4 87.9 75.9 87.2 80.8 x1.2

3 65.7 80.9 64.5 70.4 60.4 x1.5

4 68.5 69.1 55.3 57.0 51.7 x1.7

5 55.1 70.9 53.1 59.8 50.9 x1.7

6 51.9 70.1 56.0 60.4 51.2 x1.7

7 52.3 67.3 65.6 57.9 45.6 x1.8

8 56.6 68.1 64.6 51.6 44.8 x1.8

Diagram 59 - Resize Procedure OMP Execution Time
Diagram 60 - Resize Procedure OMP Execution Time

Efficiency

0

20

40

60

80

100

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

In the Diagram 60 above the CPU cores usage efficiency is represented. As is visible the Resize

procedure parallelization efficiency is not very good. It seems that using many cores on that

procedure is actually speeds up its execution time but this speedup is not proportional to the

cores sacrificed on it.

As shown in the diagrams the best number of CPU cores to be used for this procedure is up to

three cores. The decision as long as the number of cores to be offered for this procedure is

complicate because there may be multiple ways of doing that according to the global strategy

used for the Feature Pyramid stage.

8.3. Reduce

The Reduce procedure is open to parallelism using multithreading (OMP) as it contains very

simple loops that can handle parallelism. Although looking the whole algorithm, Reduce

procedure takes place in a very small part of it so that it would be preferable to spend resources

to more significant stages of the algorithm. What is very important though is that the Reduce

procedure is a part of the features pyramid module that is necessary for the detection to start.

Foƌ this ƌeasoŶ is iŵpoƌtaŶt to aĐĐeleƌate this stage’s pƌoĐess iŶ oƌdeƌ to shoƌteŶ the deteĐtioŶ
process beginning. We have all the hardware resources available while the detection stage is

disabled. In the Table 94 below the time consumption results after testing the Reduce

procedure using a multicore CPU is shown.

Table 94 - Reduce Procedure OMP Execution Time (%)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 63.9 65.0 70.0 68.1 67.4 x1.5

3 35.9 36.8 38.3 38.4 37.0 x2.7

4 36.4 36.9 38.0 37.2 36.6 x2.7

5 36.0 36.9 36.9 37.6 36.5 x2.7

6 36.6 36.7 39.9 37.6 36.3 x2.7

7 36.2 36.3 39.4 37.6 36.3 x2.7

8 36.5 36.8 36.9 38.0 37.0 x2.7

Diagram 61 - Resize Procedure OMP Execution Time
Diagram 62 - Resize Procedure OMP Execution Time

Efficiency

As seen in the Diagram 61 aďoǀe the ReduĐe pƌoĐeduƌe’s eǆeĐutioŶ tiŵe is gƌeatlǇ ƌeduĐed uŶtil
the usage of the third CPU core. By the fourth one and upper no more speedup appears. This is

also visible in the Diagram 62 where the CPU cores usage efficiency is stably decreased when

using more than three CPU cores. As also seen the Reduce procedure time speedup is accurate

similar corresponding to the image size. As seen in the Diagram 61 and Diagram 62 the best

number of CPU cores to be used is about two or three cores. It is worth to remind that the

Reduce procedure is a small part of the Features Pyramid and is more complicated how the CPU

cores are about to be shared as other procedure may need the more.

8.4. HOG

The HOG procedure is the one that creates the Histogram of Oriented gradients descriptor

described in chapter 5.4. This procedure is open to parallelism using multithreading (OMP) as it

contains loops that can handle parallelism. Looking the whole algorithm, the HOG procedure is

the third most time consuming part of it even if it hold only a small percentage of the whole

algorithm execution time. It is very significant to reduce its execution time as the feature images

it creates are the input data to the detection procedure and to be accurate to the Convolution

stage which is the greatest time consumer of the TSM algorithm. The execution time of the HOG

procedure when parallelism is applied on it is shown in the Table 95 below.

Table 95 - HOG Procedure OMP Execution Time (%)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 56.2 55.2 52.7 53.1 52.7 x1.9

3 37.5 37.0 36.0 35.5 37.8 x2.7

4 30.3 28.6 27.5 28.4 29.3 x3.5

0

20

40

60

80

100

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

5 24.0 24.1 23.7 25.0 23.9 x4.1

6 21.7 21.4 20.4 20.9 22.3 x4.7

7 19.0 18.2 17.8 18.2 18.2 x5.5

8 17.4 16.9 15.1 15.6 16.0 x6.2

Diagram 63 - HOG Procedure OMP Execution Time Diagram 64 - HOG Procedure OMP Execution Time

Efficiency

As seen in the Table 95 and also in Diagram 64 the HOG procedure is more efficient to the

parallelism. The more CPU cores used the more the execution time is decreased. There is no

limit to the number of CPU cores used. The HOG procedure is the most time consuming

procedure in the Features Pyramid stage and probably is better if the majority of the CPU cores

are going to be available for this procedure when the v2.x is used.

As seen in the Diagram 64 the larger the image is the more efficient is the usage of multicore

CPUs. It is also visible that the efficiency of using more CPU cores in the HOG procedure is stable

and pleasantly good as even when using eight CPU cores, the efficiency does not fall under the

75%.

8.5. Convolution

The convolution procedure is the most important one of the algorithm as uses the most

resources of the hardware and any small improvement on it can cause large improvement to the

whole algorithm execution. It has a very low complexity and handles a lot of data processing.

Parallelism can cause much more acceleration on it not only by multithreading usage but also

with other techniques like GPU usage.

0

20

40

60

80

100

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

On the multiprocessor technology the highest performance parallelism is achieved when the

parallelization is applied over different filters and not inside the convolution process of a filter

with the features image as shown in the Figure 54 below.

Figure 54 - Convolution Procedure OMP Diagram

By applying this parallelization in the convolution stage the results as long as the execution time

are shown in Table 96 below.

Table 96 - Convolution Procedure OMP Execution Time (%)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 50.6 50.5 50.5 50.5 50.5 x2.0

3 33.5 33.4 33.4 33.4 33.4 x3.0

4 25.4 25.3 25.3 25.3 25.3 x4.0

5 20.3 20.3 20.2 20.2 20.2 x4.9

6 17.2 17.2 17.2 17.2 17.2 x5.8

7 15.2 15.2 15.2 15.2 15.2 x6.6

8 13.2 13.2 13.2 13.2 13.1 x7.6

Diagram 65 - Convolution Procedure OMP

Execution Time

Diagram 66 - Convolution Procedure OMP

Execution Time Efficiency

As seen in the diagrams and also in the Table 96, the multiprocessors parallelization technique

creates great results as long as the Convolution stage. Just the usage of a 2
nd

 CPU core achieved

a speedup twice the time needed when using a simple core CPU. As shown in the last column in

the Table 96 every CPU core added in the parallelization process gives the same size speedup.

This is a very pleasant fact as the Convolution process is the one that needed most a time

execution decrement. It is also very pleasant the fact that the use of every CPU core offers very

efficient speedup with the efficiency index to be always over the 95%.

The convolution procedure is the one that probably deserves the most the bound of the

hardware resources. It is very important to focus all the CPU cores at this stage as this

parallelization tactic returns the highest results.

8.6. Distance Transformation

The Distance transformation stage cannot be parallelized as this process is sequential as

explained in chapter 5.7. The parallelization technique can although used inside the Distance

Transformation procedure that handles the main part of this stage. The Distance transformation

procedure owns the 96.5% of this stage and about the 30% of the whole algorithm so it is very

useful if a parallelized technique could reduce its execution time. By testing the OMP technology

in the DT procedure the results are as shown in Table 97 below.

Table 97 - Distance Transformation Procedure OMP Execution Time (%)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 84.7 70.1 65.6 63.0 62.3 x1.5

3 67.7 51.6 49.1 45.8 44.2 x2.0

0

20

40

60

80

100

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

4 69.5 46.7 41.9 39.5 36.3 x2.2

5 70.3 42.7 37.7 34.1 31.2 x2.5

6 71.0 42.0 38.0 33.4 28.3 x2.6

7 80.6 43.3 37.5 32.6 26.7 x2.6

8 87.7 44.3 38.2 30.3 29.4 x2.5

Diagram 67 - DT Procedure OMP Execution Time Diagram 68 - DT Procedure OMP Execution Time

Efficiency

As seen in the Table 97 above and in the Diagram 67, the Distance Transformation procedure is

actually gains speedup until the usage of the third core of the CPU. After the third CPU core the

speedup is affected by the size of the image. In addition the efficiency graph shows that the DT

procedure parallelization is not very efficient as its efficiency is stably reducing. If the hardware

resources are available maybe the usage of six CPU cores would be useful but on the other hand

by observing the Diagram 67 the usage of 3 cores might be the best choice. What is also visible,

especially in Diagram 68, is that the image size affects the parallelization efficiency. It seems that

as larger is the image, more CPU cores can be used efficiently.

8.7. Backtrack Stage

The Backtrack stage consists of two basic procedures, the Find one and the Backtrack one. The

Backtrack procedure cannot be parallelized as its processing is sequential and sequence

depended. This is not a problem as far as the Find v2.0 patch is used that extremely reduced its

execution time. On the other hand after the usage of the Find v2.0 patch the Find procedure

increased its execution time and it is the main time consumer of the Backtrack stage. The Find

procedure can be parallelized but is contains a great part of critical procedures. Anyway, the

Backtrack stage holds only the 0.05% of algorithms execution time. As far as the Find procedure,

the speed up gain using the multicore processors is shown in Table 98 below.

0

20

40

60

80

100

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

Table 98 - Find Procedure OMP Execution Time (v2.0) (%)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 82.1 64.5 63.6 50.5 50.2 x1.7

3 65.0 57.2 56.5 48.5 51.1 x1.8

4 76.4 65.7 59.8 56.1 58.1 x1.6

5 75.4 63.1 61.2 58.9 60.4 x1.6

6 67.5 67.2 63.9 58.6 59.9 x1.6

7 67.5 74.5 61.3 62.0 57.3 x1.6

8 81.4 70.1 57.4 61.9 56.5 x1.6

Diagram 69 - Find v2.0 Procedure OMP Execution

Time

Diagram 70 - Find v2.0 Procedure OMP Execution

Time Efficiency

The Table 98 and also the two diagrams (Diagram 69, Diagram 70) above makes it clear that the

usage of parallelization techniques are efficient in the Find procedure when using only 2 CPU

cores. Probably the existence of critical data are the reason of the negative efficiency and

unstable attitude when more CPU cores are used. It is also visible in the Diagram 70 that the

Find procedure parallelization is more efficient when used for large images in contrast to the

small ones.

The Find procedure and the whole Backtrack stage are holds suĐh a sŵall paƌt of the algoƌithŵ’s
eǆeĐutioŶ tiŵe that eitheƌ usiŶg paƌallelizatioŶ oƌ Ŷot ǁould pƌoďaďlǇ affeĐt the algoƌithŵ’s
execution time in an unnoticeable level.

8.8. Level Stage

The Level detection stage is the main stage of the TSM algorithm. It is the stage where the

convolution stage results are processed and the detection results come from. It contains the

Distance Transformation procedure repeated by multiple times for every component of the

0

20

40

60

80

100

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

algoƌithŵ’s ŵodel. It is the ŵost Đoŵpleǆ paƌt of the ǁhole algorithm. In this chapter a series of

tests over this part is presented in order to discover the most effective parallelization tactic.

8.8.1. 1
st

 Tactic

The first parallelization tactic uses the parallelization of the Distance Transformation and Find

procedure inside this stage, as the Backtrack one cannot be parallelized. The results of this tactic

is presented in the Table 99 below,

Table 99 - Level Stage OMP 1
st

 Tactic Execution Time (%)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 90.2 76.0 71.2 68.2 68.0 x1.4

3 75.1 59.2 56.9 53.1 51.6 x1.7

4 76.5 54.0 49.1 46.6 43.6 x1.9

5 78.0 50.7 45.7 42.1 39.1 x2.1

6 78.3 49.9 45.9 40.7 36.6 x2.1

7 87.7 50.5 45.7 40.5 34.6 x2.1

8 96.7 51.9 46.0 37.4 37.1 x2.1

Diagram 71 - Level Stage OMP Execution Time

(1
st

 Tactic)

Diagram 72 - Level Stage OMP Execution Time

Efficiency (1
st

 Tactic)

As seen in the Table 99 and Diagram 71 the Levels stage reaction to this tactic is not linear. The

levels stage is speeding up at the usage of the first CPU cores but at the end it seems to lose its

acceleration. This is sensible as it follows the attitude of the DT stage (Chapter 8.6) which is the

main stage contained by the levels stage. This attitude reacts negatively to this parallelization

tactic efficiency as shown in the Diagram 72 aďoǀe. As it is ǀisiďle this taĐtiĐ’s effiĐieŶĐǇ is
reducing continuously as the number of CPU cores is increased.

0

20

40

60

80

100

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

Another characteristic of the first parallelization tactic is that it is not so image size independent.

As seen in the graphs the smaller the size of the image is the less efficient is this tactic. This is

very obvious with the smallest tested image of 320x240 pixels where the speedup is gained is

very low and it tends to become lower as the CPU cores are increasing.

As far as the memory consumption of this tactic is not actually affected as the DT and Find

procedure parallelization does not consumes any significant amount of memory.

8.8.2. 2
nd

 Tactic

As done in the Feature Pyramid stage where a loop procedure exists, the second parallelization

tactic is a tactic that separates the loop in different CPU cores (Figure 55). In practice every CPU

cores undertakes a component stage execution of the level. The number of components is

enough (13) to bind all available cores. The negative affect of this tactic is that it consumes much

more memory than the single core one. The increase of the memory consumption of this stage

when using this tactic is shown in the Table 100 below.

In the second parallelization tactic a new execution flow diagram is applied as shown in the

Figure 55 below where the multiple threads of the CPU are distributed to every component

stage procedure. This way multiple components detection procedure can run in parallel.

Figure 55 - Level Stage OMP 2
nd

 Tactic Diagram

In the Table 100 below the effect of the 2
nd

 parallelization tactic is shown as far as the time

consumption of the Level stage. As seen in this table the Level stage gains as great speedup, up

to five times, when used with more than five CPU cores. It is also visible that the Level stage is

gaining a very efficient speedup even from the usage of the first extra CPU core in contrast to

the 1
st

 tactic.

Table 100 - Level Stage OMP 2
nd

 Tactic Execution Time (%)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 53.4 52.1 51.7 53.7 51.5 x1.9

3 38.7 37.1 36.5 36.9 36.5 x2.7

4 28.9 28.2 27.9 28.1 28.0 x3.5

5 28.0 27.8 27.8 28.1 27.3 x3.6

6 19.4 19.3 18.4 19.4 18.7 x5.3

7 20.5 19.7 19.0 19.5 19.0 x5.1

8 20.4 19.4 18.9 19.4 19.1 x5.1

Diagram 73 - Level Stage OMP Execution Time

(2
nd

 Tactic)

Diagram 74 - Level Stage OMP Execution Time

Efficiency (2
nd

 Tactic)

The results of this tactic as shown in the Table 100 and Diagram 73 is that the execution time of

the level stage is reducing rapidly until the fourth CPU core. By the fifth core and the usage of

the second CPU of the testing hardware the stages execution time stops reducing significantly.

What is extremely positive is that the usage of extra CPU cores in this tactic produces a very

good efficiency that always stays over 60%.

Except of the time effect, the 2
nd

 parallelization tactic increases also the memory consumption.

As referred in chapter 6.20 the maximum memory consumption of the TSM algorithm is reached

at the Level stage when applied in the top image pyramid level. The maximum memory

consumption at this point can be predicted using the function (15). In this function the

algoƌithŵ’s ŵaǆiŵuŵ ŵeŵoƌǇ is the suŵ of the Filteƌs RespoŶses, plus the DT “Đoƌes pƌoduĐed

0

20

40

60

80

100

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

in the DT stage (the same for every component), plus the Backtrack stage temporary memory,

all during the execution of the Level stage for the features pyramid top level. At last the memory

consumed by the Model and other data, that is a stable size, is added.

When more CPU cores are used what is parallelized is actually the Component stage. The Filters

Responses are the same for all threads. What is private is the DT and Backtrack stages that are

executed multiple times in the different CPU cores. This means that the maximum memory

consumption can be predicted using the expression of function (16).

max
.Responses[0] DT.Scores[0] Backtrack[0] Others   FD F (15)

 max
.Responses[0] Others DT.Scores[0] Backtrack[0]    FD F Cores (16)

Using the function (16) the memory consumption of this stage is multiplied by the number of

cores used as presented in Table 101 below.

Table 101 - TSM v3.2.2 Level Stage OMP 2
nd

 Tactic Max Memory (Mbytes)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Average

1 core 5.47 20.1 31.0 50.2 78.0

2 cores 8.27 31.0 47.9 77.9 121 +54%

3 cores 11.1 41.9 64.9 106 164 +108%

4 cores 13.9 52.8 81.8 133 207 +162%

5 cores 16.6 63.7 98.8 161 250 +216%

6 cores 19.4 74.6 116 188 293 +270%

7 cores 22.2 85.6 133 216 336 +324%

8 cores 25.0 96.5 150 244 379 +378%

As seen in the Table 101 the usage of a full eight CPU cores parallelization can cause up to 380%

memory consumption incremental. It is obvious by the data of the Table 101 that this

parallelization technique has a heavy memory consumption cost. On the other hand,

considering the relationship between CPU cores and RAM memory that is usually offered in the

hardware market, this increment in the maximum memory consumption is not prohibitive. It

would be unusual an eight cores CPU hardware with less than one Gigabyte of RAM memory!

At this point is very important to refer to the Find v2.0 patch described in chapter 7.2. At this

chapter the memory reduction that was gained using this patch was appose. This reduction is

proved very significant on this 2
nd

 parallelization tactic as it keeps low the memory consumption

incremental. In the Table 102 below the maximum memory consumption of this tactic without

using the Find v2.0 patch is presented in order to be understandable the benefits this patch

offered.

Table 102 - TSM v3.2.2 Level Stage OMP 2
nd

 Tactic Max Memory (Mbytes)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Average

1 core 13.8 52.5 81.3 132 206

2 cores 25.0 95.8 149 242 377 +82.4%

3 cores 36.1 139 216 352 547 +165%

4 cores 47.3 182 283 461 718 +247%

5 cores 58.4 226 351 571 889 +329%

6 cores 69.5 269 418 681 1,060 +412%

7 cores 80.7 312 485 791 1,231 +494%

8 cores 91.8 356 552 900 1,401 +577%

As seen in the Table 102 above, the maximum memory consumption of the algorithm when

using the 2
nd

 parallelization tactic would be much larger creating questions about the ability of

using it at any hardware. As seen in the 8 cores line the maximum memory consumption

reaches even more than one gigabyte of memory.

8.8.3. 3
rd

 Tactic

At last, a combination of these two tactics is tested. This 3
rd

 tactic used the parallelized version

of the DT and Find procedure and on the same time shares component detection on several CPU

cores. On the Table 103 the results of this tactic when used until two CPU cores for the 2nd

tactic while the rest cores are shared to the 1st tactic. In the next table, Table 104, the same

result when the 2nd tactic uses until four CPU cores.

Table 103 - Level Stage OMP 3
rd

 Tactic Execution Time (%)

(Tactic 2 = 2 cores)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 54.9 52.3 52.1 52.5 52.5 x1.9

3 58.6 51.4 47.9 45.9 44.5 x2.0

4 53.0 50.0 46.6 41.8 40.6 x2.2

5 58.8 45.9 42.0 36.5 34.0 x2.4

6 59.6 49.1 43.9 40.6 36.5 x2.2

7 67.4 52.2 45.1 38.5 33.4 x2.2

8 81.6 61.5 52.8 44.7 37.7 x1.9

Table 104 - Level Stage OMP 3
rd

 Tactic Execution Time (%)

(Tactic 2 = 4 cores)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 54.5 52.4 52.4 52.9 52.1 x1.9

3 37.7 36.1 36.5 37.1 35.9 x2.7

4 28.8 27.7 27.3 27.1 26.7 x3.6

5 28.7 28.7 27.8 27.9 27.9 x3.5

6 31.8 29.5 28.3 29.3 28.0 x3.4

7 49.0 40.8 35.0 31.6 28.4 x2.8

8 28.8 25.5 23.8 23.1 22.2 x4.1

Diagram 75 - Level Stage OMP Execution Time

(All Tactics)

Diagram 76 - Level Stage OMP Execution Time

Efficiency (All Tactic)

As seen in these two graphs, according to the Table 99, Table 100, Table 103 and Table 104, the

3
rd

 parallelization tactic is not gaining any special speedup by the time parallelization is applied

in the DT and Find stage. When it is using only two CPU cores for the component stage

parallelization it seems that there is no worth using it, as until the 3
rd

 CPU core, it is having the

same result as using the 2
nd

 tactic on its own. When using 4 cores for the component stage

parallelization the results also does not seems to be better than using the 2
nd

 parallelization

tactic on its own with maximum of four CPU cores.

The 3
rd

 parallelization tactic does not seems at all to produce any beneficial result as shown in

Diagram 75 above. As shown in the Diagram 76, the 2
nd

 tactic seems to be more efficient than

the others, consuming memory that does not seems to produce memory issues. Even if the Find

v2.0 patch is not in use the 2
nd

 parallelization tactic would also be preferable as even when used

with only 2 or three CPU cores succeeds better results in contrast to the 1
st

 tactic even when the

last one uses all the eight CPU cores.

8.9. TSM Algorithm

After examining the effect of parallelism in most of the stages and procedures of the algorithm,

in this chapter a comparison of every stage and procedure according to its efficiency is appose.

In the Table 105 below the efficiency of every stage of the algorithm that is referred in previous

chapters.

0

20

40

60

80

100

1 2 3 4 5 6 7 8

CPU Cores

1st 2nd 3rd - 2 3rd - 4

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

1st 2nd 3rd - 2 3rd - 4

Table 105 - TSM Procedures & Stage OMP Efficiency

Stage
Memory

Charge

CPU Cores

2 3 4 5 6 7 8

Resize No 0.62 0.49 0.42 0.35 0.29 0.25 0.22

Reduce No 0.75 0.90 0.68 0.54 0.45 0.38 0.34

HOG No 0.93 0.91 0.87 0.83 0.78 0.78 0.77

FP Stage
Yes 0.66 0.60 0.45 0.64 0.53 0.46 0.40

No 0.83 0.75 0.66 0.58 0.48 0.41 0.37

Convolution No 0.99 1.00 0.99 0.99 0.97 0.94 0.95

DT No 0.73 0.66 0.56 0.50 0.43 0.37 0.32

Find No 0.83 0.61 0.40 0.32 0.26 0.22 0.19

Level Stage
Yes 0.95 0.90 0.89 0.72 0.88 0.73 0.64

No 0.68 0.57 0.48 0.41 0.35 0.31 0.26

The Table 105 is a parallelization map giving useful information of how the parallelization affects

the algorithms parts and proposing the parts that the CPU cores have to be focused. It is also

shows when the parallelization affects the memory consumption of the TSM algorithm warning

for memory issues. Using this table, two parallelization tactics are presented for the whole

algorithm. The 1
st

 tactic is using the most time efficient tactics of the algorithŵs’ paƌts ǁhile the
2

nd
 one is using the most memory consumption efficient tactics of the DT and Features Pyramid

stages. In the next subchapters the impact of those two tactics over the two latest versions of

the algorithm is appose.

8.9.1. TSM Algorithm v2.2

In the Table 105 (Chapter 8.9) the green bolded lines show the parallelized procedure with the

higher efficiency that can be used in order to achieve the highest speedup. By using the most

efficient tactics of the algorithms in version 2.2.2 the results are as shown in the Table 106

below.

Table 106 - TSM v2.2.2 OMP Execution Time (Time Efficient Version) (%)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 51.5 51.2 50.9 51.5 51.5 x1.9

3 35.6 34.9 34.8 34.8 34.4 x2.9

4 27.2 26.7 26.5 26.6 26.3 x3.8

5 23.6 23.1 22.9 23.0 22.9 x4.3

6 18.9 18.4 18.3 18.3 18.0 x5.4

7 17.2 17.1 16.9 17.0 16.8 x5.9

8 15.7 15.8 15.5 15.7 15.6 x6.4

Diagram 77 - TSM v2.2.2 OMP Execution Time

(Time Efficient)

Diagram 78 - TSM v2.2.2 OMP Execution Time

Efficiency (Time Efficient)

In the Diagram 77 the Table 106 data are figured. As seen in the graph the 1
st
 parallelization

tactic of the 2.2.2 version of the TSM algorithm is image size independent. It is very pleasant

that using eight CPU cores produce a speedup of 6.4 times faster. As shown in the Diagram 78

the algorithms parallelization efficiency is always higher than 80% and more than 95% for the

first four cores used. This is a very positive result!

As far as the memory consumption of the algorithm when using this tactic the maximum

memory consumption of the algorithms is presented in the Table 107 below.

Table 107 - TSM v2.2.2 OMP Max Memory Consumption (Mbytes)

CPUs 320x240 640x480 800x600 1024x768 1280x960

1 5,3 19 30 48 74

2 8,1 30 46 76 117

3 11 41 63 103 160

4 14 52 80 131 203

5 16 63 97 158 246

6 19 74 114 186 289

7 22 85 131 214 332

8 25 96 148 241 375

As seen in the Table 107 above the maximum memory consumption needed for the algorithm,

even when eight CPU cores are used, seems not to be prohibited according to the usual

hardware designs in the market. It is almost unusual to have a hardware with more than 4 CPU

cores and less than 2 gigabytes of memory. In addition it is also unusual to have an 8 cores CPU

0

20

40

60

80

100

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

(2 CPUs) with less than 4 gigabyte memory. Even the embedded systems are usually designed

with 0.5 or 1 gigabytes of memory and 2 or 4 cores CPU.

On the other hand the image processing algorithms usually use small sized images at the size of

640x480 (0.3 megapixels). As seen in the Table 107 the algorithm consumes less than 100

megabytes of memory for images of this size. This observations show that this tactic can be used

for any hardware design.

Nevertheless the fact that the 1
st

 tactic hardware requirements is suitable for the majority of the

embedded systems in the market a second parallelization tactic is appose as a CPU cores

independent version. This tactic uses the parallelized versions on every procedure that keeps

the maximum memory consumption stable. This tactic time results are shown in the Table 108

below.

Table 108 - TSM v2.2.2 OMP Execution Time (Memory Efficient Version) (%)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 62.1 57.4 56.3 56.6 52.5 x1.8

3 46.2 40.9 39.8 39.8 38.4 x2.4

4 40.8 32.9 31.8 31.5 32.5 x3.0

5 37.5 28.4 28.6 27.2 26.0 x3.4

6 36.9 25.5 24.9 24.3 25.0 x3.8

7 35.0 23.6 22.9 21.8 21.2 x4.2

8 34.7 23.2 21.9 20.4 19.5 x4.4

Diagram 79 - TSM v2.2.2 OMP Execution Time

(Memory Efficient)

Diagram 80 - TSM v2.2.2 OMP Execution Time

Efficiency (Memory Efficient)

0

20

40

60

80

100

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

As seen in the Table 108 the algorithms speedup is increasing a bit as the image size is greater.

On the Diagram 80 is also visible a fall of the algorithms efficiency as the image size is getting

smaller. These tables show that the 2
nd

 parallelization tactic can be efficiently used for large

sized images as this tactic holds the maximum memory consumption low and also its execution

time is approaching the execution time of the 1
st

 tactic as the image size is getting larger.

The 2
nd

 tactic maximum memory consumption is the same with the single core algorithms

implementation shown in the Table 107 above corresponding line.

8.9.2. TSM Algorithm v3.2

Applying the 1
st

 parallelization tactic in the version 3.2 of the algorithm (Chapter 6.20), the

execution time impact is as shown in the Table 109 below. As seen in this table the 3.2 version

of the algorithm succeeds up to 6.4 times. It is very positive that even from the usage of a

second CPU core the execution time is decreased to its half.

Table 109 - TSM v3.2.2 OMP Execution Time (Time Efficient Version) (%)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 51.6 51.3 51.2 51.9 51.1 x1.9

3 35.3 34.9 34.7 34.8 34.7 x2.9

4 26.7 26.6 26.5 26.5 26.6 x3.8

5 22.8 23.1 23.1 23.1 23.0 x4.3

6 18.4 18.5 18.2 18.3 18.2 x5.5

7 17.3 17.2 17.0 17.0 17.0 x5.8

8 16.3 15.8 15.6 15.7 15.7 x6.3

Diagram 81 - TSM v3.2.2 OMP Execution Time

(Time Efficient)

Diagram 82 - TSM v3.2.2 OMP Execution Time

Efficiency (Time Efficient)

0

20

40

60

80

100

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

In the Diagram 81 and Diagram 82, it is extremely obvious that the 1
st

 parallelization tactic is

totally image size independent. This is also visible by the data of the Table 109. The algorithm is

speeding up during all the extra CPU cores used and its efficiency is always very high over the

80% holding it over the 95% for the four primal cores (1 CPU). The impact of this tactic is very

positive.

In the Table 110, the impact of the 1
st

 parallelization tactic is shown. As seen in this table even

ǁheŶ usiŶg ŵoƌe thaŶ oŶe CPU aŶd laƌge sized iŵages the algoƌithŵ’s ŵaǆiŵuŵ ŵeŵoƌǇ does
not exceed the 400 megabytes. Although, as referred in previous chapters, the combination of

CPU cores and RAM memory appears in the hardware market does not make the usage of this

version of the algorithm prohibited.

Table 110 - TSM v3.2.2 OMP Max Memory Consumption (Mbytes)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Average

1 5,5 20 31 50 78

2 8,3 31 48 78 121 +54.0 %

3 11 42 65 106 164 +108 %

4 14 53 82 133 207 +162 %

5 17 64 99 161 250 +216 %

6 19 75 116 188 293 +270 %

7 22 86 133 216 336 +324 %

8 25 96 150 244 379 +378 %

The 1
st

 parallelization tactics is the fastest one using a sensible amount of memory available at

the majority of the hardware designs in the market. Although it is important to present the

impact of the 2
nd

 parallelization tactic on this version of the algorithm. This impact in the

algoƌithŵ’s eǆeĐutioŶ tiŵe is shoǁŶ iŶ the Table 111.

Table 111 - TSM v3.2.2 OMP Execution Time (Memory Efficient Version) (%)

CPUs 320x240 640x480 800x600 1024x768 1280x960 Speedup

2 62.9 58.9 57.5 56.8 56.6 x1.7

3 46.6 42.0 41.3 40.3 39.6 x2.4

4 41.4 34.8 33.3 32.7 31.5 x2.9

5 38.3 30.3 28.8 27.9 26.8 x3.3

6 36.3 28.1 26.9 25.5 23.9 x3.6

7 38.0 26.8 25.4 24.0 21.9 x3.8

8 39.4 26.1 24.1 21.6 21.5 x4.0

TSM v3.2.2 OMP Execution Time (Memory Efficient)
TSM v3.2.2 OMP Execution Time Efficiency (Memory

Efficient)

In contrast to the 1st parallelization tactic, the 2nd one of the 3.2.2 version of the algorithm

does not react the same way to all image sizes. As seen this tactic is more efficient to the larger

images. As seen in the Diagram 82 the algorithms efficiency is decreasing linearly as the number

of CPU cores is increasing falling under the 60% at the last 2 cores. This is the main difference

between this and the 1st tactic which keeps its efficiency high for all usable CPU cores.

The 2nd tactic maximum memory consumption is the same with the single core algorithms

implementation shown in the Table 110 above corresponding line.

8.9.3. TSM Algorithm v4.1

On this chapter a last version of the algorithm is presented, designed for multi CPU systems

using more than 1 CPUs. As presented in chapter 8.9, many of the algorithms stages and

procedures shows reduction of their parallelization efficiency while the CPU cores used are

increasing. In this version the maximum efficiency of all procedures is tried to be succeeded. In

the Diagram 83 below the efficiency of all procedures is presented according to the CPU cores

used. As seen in this graph, in the most procedures the maximum efficiency is when using less

cores and only the HOG and the Convolution procedures keep their efficiency high despite the

usage of multiple CPU cores.

0

20

40

60

80

100

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

320x240 640x480 800x600

1024x768 1280x960 AVG

Diagram 83 - TSM OMP Procedures Efficiency per CPU Core

According to the Diagram 83 above, the HOG and the Convolution procedures are the most

efficient and the most stable, all the rest are either inefficient or unstable. This version of the

TSM algorithm (v4.1) is based on focusing on these two procedures offering the majority of the

hardware resources to them. The idea of this last version is based on splitting the algorithm is

two sections trying to get the maximum efficiency of each of them. As seen in the Figure 56

below the first section is an extension of the Features Pyramid stage containing the HOG and

the Convolution procedures that are the most efficient ones and the second one the Level stage

that is less efficient and its maximum efficiency is reached when using low number of cores.

These two section have to share the hardware resources (CPU cores) in a way that would offer

the maximum efficiency to the algorithm.

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

CPU Cores

FP Stage Resize Reduce
HOG DT Convolution
Find Level

Figure 56 - TSM Algorithm v4.1 Execution Flow Diagram

In the Figure 56 above a complicated execution flow graph is presented. At the beginning, the

algorithm uses all the available CPU cores in order to calculate the HOG descriptors and the

Filter Responses of the first level of the Image Pyramid. No resize procedure is needed for the

top level of the Features pyramid as it uses the image on its original size. This level is also the

one with the greatest size image so the most time consuming level. The HOG and the

Convolution procedures on the other hand are the most efficient ones worth to the usage of the

full CPU resources. After the first level Filters Responses are calculated the algorithm separates

the available CPU cores in the two sections. The first section is calculating the features images

and the Filters Responses of every level while and the second one executes the level stage

looking for detections. The Level stage section needs the Filters Responses data structure as

input and this is the reason why the algorithm calculates the first level Filters Responses outside

the sections section. If the algorithm do that inside the first section the second would be idle,

waiting the first one to finish the first level calculations in order to use it. In this design the

second stage starts immediately its execution as its input data are already calculated while the

first seĐtioŶ ĐalĐulates the Ŷeǆt leǀel’s Filteƌs RespoŶses.

The idea behind this execution design is the usage of as many as it can CPU cores to the most

efficient and also most time consuming procedure. This procedure is the Convolution one. The

HOG procedure is added to the same section cause of its sequential relationship with the

Convolution one and mainly because of its very high efficiency in parallelism. On the other hand,

while most of the CPU cores are allocated to the section one, less cores are busy to the section

two where other procedures are executing that need less execution time and are less efficient.

This technique is hiding in a way the time consumption of the procedures executed in the

section two behind the consumption time of the section one.

Another though that motivated this version is to limit the number of CPU cores used in the Level

stage parallelization in order to reduce the maximum memory consumption it consumes. Using

the CPU cores at the Convolution procedure that creates zero temporary memory the algorithm

can succeed high execution time efficiency with less memory consumption. At the same time

the time the algorithm can execute the Section two without the need of allocating the great

amount of memory that the each Component stage needs.

Between those two sections there is unfortunately a dependency. This dependency is that the

output data of the section one (Filters Responses) are the input of the section two (Level Stage).

It is obvious that the section two has to wait for a while the section one to finish some of its

calculations. The ideal usage of this version would be a balanced share of the CPU cores

between those two sections so that when the first section finishes the calculations of a levels

Filters Responses, the second section would start the components detection on the same level.

There are two moments where the section two waits the section one. The first time is when the

section two waits the section one to calculate the first level Filters Responses. The second

moment is when the first section finishes its procedure and the whole algorithm has to wait the

section two to finish. As referred above the section two cannot finish before the section one as

it uses its outputs as an input. This means that the section one will always finish a levels

component detection time earlier than the section two. As far as this type of «waiting», the

solution is to start the detection from the top to the bottom of the Image Pyramid so that the

last components detection of section two would use the smallest image Filters Responses which

is the less time consuming level. This solution transfer the «waiting» problem to beginning

where the section two has to wait for the first calculated Filters Responses. The solution to this

problem is as designed in this version and figured in Figure 56, where the algorithm uses all its

aǀailaďle CPU Đoƌes iŶ oƌdeƌ to ĐalĐulate the fiƌst leǀel’s Filteƌs RespoŶses. This ǁay the first

levels HOG and Convolution procedure occurs outside the sections section and no cores have to

set idle.

Using the data of the efficiency and execution time tables, a performance function was created

for the algorithm version 3.1 in order to predict the algorithm performance according to the

CPU cores used in each section. This function is depending on two more function as shown

below.

2 1x x x  (17)

. .*Ft x t ef xF F

(18)

    . .x . . 1 .x1 . 1 . 20.25 0.75 ,t x t t x t x t t x t xFD HOG Conv MAX HOG Conv IPstage Comp      

(19)

In function (17), the x2 is the number of cores used in section 2 and x1 are the cores used in the

section 1. X is the number of CPU cores available by the hardware.

In function (18), Ft.x is the execution time percentage needed by the procedure F during the

algorithms execution, when Ft is the execution time percentage needed by the procedure

when no parallelism techniques are used and Fef.x the efficiency of the procedure F when

parallelism techniques are used with x number of CPU cores.

At last the function (19) is the algorithms version 3.2 performance function according to the CPU

cores used in each section. As seen in the first part of the function the performance of the HOG

and Convolution procedures when executed for the first level of the Image Pyramid are

multiplied by the number of 0.25. This is because the first level of the Image Pyramid holds the

25% of the whole Image Pyramid data as explained in chapter 6.10. At the second part of the

function (19) the execution time of each section is calculated and the greater is kept. What is

not calculated, because it is very hard to be predicted in contrast to its significance, is the delay

that the section 1 can cause to section 2. This delay is insignificant as it affects the function

result only when both sections needs almost the same time and also because it has a very small

value as it concerns the last level of the Image pyramid that is the smallest one and the

detection procedure is extremely fast.

Using function (19) with the data of the execution time and efficiency tables (the average

efficiency as far as the image size) the results come of are shown in Table 112 below,

Table 112 - TSM v4.1.2 Execution Time Simulation

Available

Cores

Section 2 cores v3.2

Sim

v3.2

Real 1 2 3 4 5 6 7

8 33.4 18.6 13.8 15.7 19.9 28.8 54.1 15.6 15.8

7 33.7 19.0 16.0 20.2 29.1 54.4 17.0 17.1

6 34.1 19.3 20.6 29.4 54.8 18.2 18.3

5 34.6 21.1 29.9 55.3 23.0 23.0

4 35.5 30.8 56.1 26.5 26.6

3 36.8 57.5 34.9 34.9

2 60.4 51.5 51.4

As shown in the Table 112 above the simulated results show that this version (4.1.2) is going to

be faster than the version 3.2.2 when using more than one CPU hardware resources but slower

for single CPU hardware. The simulated results also shows that this design of the algorithm

works better when 2 or 3 CPU cores are offered to the Section 2. Using this data, the version

4.1.2 was tested in real world and its results are shown in the following tables.

Table 113 - TSM v4.1.2 Execution Time

Cores
Section 2 cores 320x240 v3.2

Section 2 cores 640x320 v3.2

1 2 3 4 Time Mem 1 2 3 4 Time Mem

8 23.9 19.8 18.3 21.6 16.0 39.4 20.6 16.5 14.4 17.4 15.6 26.1

7 23.1 19.5 21.6 24.5 17.1 38.0 20.5 16.7 17.2 21.3 17.0 26.8

6 26.0 20.5 26.0 32.5 18.1 36.3 20.8 18.1 21.3 29.2 18.2 28.1

5 24.9 23.7 32.6 59.3 22.4 38.3 22.1 21.2 29.6 54.5 22.8 30.3

4 28.0 34.0 60.6 26.3 41.4 26.1 30.6 55.4 26.3 34.8

3 35.7 62.5 34.7 46.6 33.2 56.9 34.5 42.0

2 66.7 50.7 62.9 60.2 50.7 58.9

Cores
Section 2 cores 800x600 v3.2

Section 2 cores 1024x768 v3.2

1 2 3 4 Time Mem 1 2 3 4 Time Mem

8 20.6 15.9 14.3 16.6 15.5 24.1 20.1 16.3 13.8 16.6 15.5 21.6

7 21.0 16.5 16.8 21.0 16.9 25.4 20.2 16.2 16.7 20.6 16.8 24.0

6 21.2 17.9 21.1 29.4 18.1 26.9 20.4 17.7 20.8 29.2 18.1 25.5

5 22.6 21.1 29.5 54.7 22.9 28.8 22.1 20.9 29.4 54.7 22.8 27.9

4 26.4 30.5 55.6 26.3 33.3 25.7 30.4 55.4 26.1 32.7

3 33.8 57.0 34.5 41.3 33.7 56.8 34.3 40.3

2 60.2 50.9 57.5 59.8 51.2 56.8

Cores
Section 2 cores 1280x960 v3.2 Section 2 cores 1600x1200 v3.2

1 2 3 1 Time Mem 1 2 3 1 Time Mem

8 20.4 15.6 14.3 16.6 15.8 21.5 20.2 15.3 14.4 16.6 15.6 19.5

7 20.4 16.4 16.8 20.8 17.0 21.9 20.3 16.9 16.7 20.6 16.9 20.9

6 20.2 18.3 20.9 29.5 18.2 23.9 20.5 18.6 20.9 29.6 18.2 23.2

5 22.4 21.1 29.9 55.4 23.1 26.8 22.8 21.2 29.9 55.6 22.9 26.1

4 26.5 30.6 56.2 26.7 31.5 27.0 30.7 56.4 26.2 31.2

3 34.5 57.5 34.9 39.6 34.7 57.7 34.5 38.7

2 60.4 51.3 56.6 60.6 51.2 52.3

As seen in the Table 113 the version 4.1.2 of the TSM algorithm is faster than any other version

especially when used with 2 CPUs. The speedup of the 4.1.2 version is not so significant but

combined with the maximum memory advantages it offers it could replace the version 3.2.2. As

seen in these tables the version 4.1.2 it is much faster than the memory efficient edition

(«Mem» column) of the 3.2.2 version. This means that this version is ideal when used with

multi-CPUs hardware and large images.

In version 4.1 the TSM algorithm is split in two parallel section where each of them has its own

memory consumption. The section 1 is creating Features images and the Filters Responses. The

Features images data are locally created and released just after the calculation of corresponding

Filter Responses but the Filter Responses are released by the section 2 after the level detection

is completed. The section 2 uses the Filter Responses created in section 1 while the rest data it

uses are locally created and released. The detection results are created inside the section 2 but

they are calculated as global memory consumption because their size is dependent by the size

of the Results Cache data structure. They also have a very small size after the Find v2.0 patch

(Chapter 7.2).

Figure 57 - TSM v4.1 Maximum Memory Sections Diagram

As shown in Figure 57 above the maximum memory consumption is actually formed by the level

every section is and the distance between the two sections level. As greater this distance is so

larger is the memory consumption. It is obvious that maximum memory consumption of both

sections is reached when they execute its procedures at the top level of image pyramid, actually

at their first run. On the other hand the Filter Responses of each level is always greater than the

HOG image of the same level. This means that the Filters Responses that are created by the

seĐtioŶ ϭ aƌe oǀeƌlappiŶg the seĐtioŶ’s ŵeŵoƌǇ. WheŶ the seĐtioŶ Ϯ fiŶishes its pƌoĐessiŶg oŶ a

level then the Filters Responses of this level is released. So as it is sensible the maximum

memory consumption of the algorithms is reached when the section 2 is on the first level and

the section 1 on the last one. This way the all levels Filter Responses are hold in the memory

increasing the algorithms maximum memory consumption like in the Figure 58.

Figure 58 - TSM v4.1 Filters Responses Section Usage Diagram

To reduce the maximum memory consumption of this version the distance between the

execution levels of every section has to be limited to the minimum. This can be achieved by

obligating the section 1 to wait for the section 2 on a specific maximum distance. If the section 2

is faster or equal to the section 1 this problem does not appears. On the other hand if the

section 1 is faster, then this problem is getting larger. This means that the best distance limit

that would not affect the algorithm execution time is 1 meaning that when section 2 is

processing the level N the section is processing the level N+1. This way the maximum memory

consumption is equal to the following function result,

max Scection2[1] Filter_Responses[1 2] Features_Image[2]M MM M    (20)

max Scection2[1] Filter_Responses[1 3] Features_Image[3]M MM M    (21)

On the other hand in the real world execution of the TSM algorithm such an ideal

synchronization between these two sections cannot be achieved. This means that the Filters

Responses of N+1 Level must be already calculated when the Section 2 finishes the processing of

the level N. This means that when the Section 2 is finishing the level N processing the Section 1

has to start processing the level N+2 in order to avoid at any chance that there is no possibility

of Section 2 to wait for Section 1. The conclusion is that the distance limit that should be set in

order to avoid section waiting and at the same time minimum maximum memory consumption

is 2. The results using this options are as shown in Table 114 below,

Table 114 - TSM v4.1 Maximum Memory Consumption Comparison

Version Cores 320x240 640x480 800x600 1024x768 1280x960 Average

v3.2.2
1 5.60 Mb 20.3 Mb 31.2 Mb 50.5 Mb 78.2 Mb

8 +347% +375% +379% +383% +385% +374%

V2.2.2 8 +345% +370% +375% +378% +380% +370%

V4.1.2 8
+151% +162% +163% +165% +165% +161%

14.0 Mb 53.2 Mb 82.2 Mb 134 Mb 208 Mb

As seen in the Table 114 above, the version 4.1.2 of the algorithm is using almost the half

memory of the rest parallelized versions and less than three times the memory a single core

version uses.

To summarize, the version 4.1.2 of the algorithm is

succeeding execution times similar to the rest parallelized

version with a tiny, insignificant speedup. On the other

hand the memory consumption of this version is about the

half of the rest parallelized version. As seen in the Table

115, the TSM algorithm consumption is not large according

to the available memory a multi-core hardware design

usually dispose. The conclusion is that this version could probably be very useful when used for

large size images where the memory consumption and the execution time are really high and

small percentage differences can be noticeable sizes in real world. For example in a 3200x2400

pixels image the version 4.1.2 is 10.2% faster than the version 3.2.2.

8.9.4. TSM Algorithm Versions Comparison

After presenting the three version (v2.2.2, v3.2.2, v4.1.2) of the TSM algorithm using OMP

parallelization technology a last survey has to be done. From these three version the most

efficient is the 3.2.2 version.

Table 116 - TSM OMP Versions Execution Time Comparison (%)

Version 1 2 3 4 5 6 7 8

V3.2.2 (Mem) 51.0 34.6 26.3 22.8 18.1 16.9 15.7 51.0

V3.2.2 (Time) 58.5 41.9 34.7 30.4 28.1 27.2 26.6 58.5

V4.1.2 61.5 34.2 26.6 21.6 18.5 17.1 15.0 61.5

The version 4.1.2 is a special version that has to be customized carefully according to the

hardware resources offered in order to warranty its performance. As referred in chapter 8.9.3,

this version is suitable for multiprocessors systems processing large size images, either wise the

Table 115 – TSM v4.1.2 vs v3.2.2

Image 3200x2400

Time 89.8%

Memory 30.8%

Memory v3.2 2,427 Mb

Memory v4.1 749 Mb

profit it can offer is few in contrast to its instability of performance if it is not correctly

customized.

Table 117 - TSM OMP Versions Max Memory Comparison (%)

Version 1 2 3 4 5 6 7 8

V3.2.2 (Mem) 0 0 0 0 0 0 0 0

V3.2.2 (Time) 0 +54 +108 +162 +216 +270 +324 +378

V4.1.2 +118 +54 +54 +54 +108 +108 +108 +161

On the other hand the version 3.2.2 is stably faster than the version 2.2.2 and its memory

consumption is insignificantly higher. It offer good performance without any further

customization at any kind of hardware resource. Both these version can be used with the

memory efficient editions described in chapters 8.9.1 and 8.9.2, but in our opinion there is no

reason for doing that as the time efficient editions consume affordable memory related to the

modern embedded systems capabilities. The usage of the Find v2.0 patch has a major role on

that.

As every procedure of the TSM algorithm has a different parallelization efficiency the execution

time distribution is different according to the CPU cores used at the parallelized versions. The

execution time distribution of the version 3.2.2 of the TSM algorithm is shown in the Table 118

below.

Table 118 - TSM v3.2.2 Execution Time Distribution (%)

CPU Cores 1 2 3 4 5 6 7 8

Resize
0.95 1.43 1.63 1.96 2.28 2.86 3.13 3.52

+0 +0.49 +0.69 +1.01 +1.33 +1.92 +2.19 +2.57

HOG
1.72 1.72 1.74 1.80 1.75 2.30 2.27 2.44

+0 +0 +0.02 +0.08 +0.03 +0.58 +0.55 +0.72

Convolution
66.1 65.0 63.3 63.0 58.2 62.2 58.7 55.4

+0 -1.16 -2.82 -3.17 -7.96 -3.92 -7.39 -10.7

Level Stage
31.2 31.8 33.2 33.1 37.6 32.4 35.6 38.2

+0 +0.64 +2.01 +1.94 +6.43 +1.22 +4.40 +7.10

As seen in this table the Convolution procedure tends to participate less as the CPU cores

number increases. This is very sensible as this procedure has very high efficiency at the

parallelization technology and its execution time tends to reduce more than the rest

procedures. That is why the other procedures tend to increase its participation. As seen in the

same table the Resize (and Reduce) procedure and the Level stage participation in the algorithm

execution time increased much more as these two participants efficiency is not as high as the

two others when used too many CPU cores.

Diagram 84 - TSM Algorithm v3.2.2 OMP Execution Time Distribution Impact

1 2 3 4 5 6 7 8
CPU Cores

Convolution Level Stage HOG Resize

9. TSM System Alternative Patches

In this chapter some patches over the TSM algorithm design are presented. These patches aim

to improve the algorithm memory consumption or speed up the detection procedure or both.

All of these improvements affect the algorithm detection performance making the algorithm

less reliable or detection efficient but much faster. The goal is the ratio of speedup to the

detection performance fall to be the greatest it can be achieved.

By studying the relations between the procedures execution time and the data structures (Filter

Responses, Features Images, etc) of different levels of Features Pyramids, a stable ratio between

them is discovered strictly connected with the image size. Using 5 as the value of the Interval

paƌaŵeteƌ ;default aŶd pƌoposed ďǇ the ĐƌeatoƌsͿ the eǆeĐutioŶ tiŵe Ŷeeded foƌ a leǀels’ filteƌs
responses, for example, to be calculated is given by the function (22) . The same ratio occurs

also when refer to memory consumption on the Filters Responses data structure, as shows the

function (23).

Another ratio between the Features Pyramid levels is the ratio between a level and its following.

Function (24) and (25) shows the relation between a level and the rest pyramid including it. The

Functions (26) and (27) express the relation between a level and the following ones.

  0.75 (1)Time level Time level   (22)

  0.75 (1)Mem level Mem level   (23)

() 0.25 ()
l level

l last

Time level Time l




   (24)

Mem() 0.25 Mem()
l level

l last

level l




   (25)

1

() 0.33 ()
l level

l last

Time level Time l
 



   (26)

1

Mem() 0.33 Mem()
l level

l last

level l
 



   (27)

Using the functions (22) to (27) it is easy to predict the memory and execution time speedup can

be achieved when the MinLevel parameter value changes. If for example the first level of the

Features Pyramid is skipped the benefit that would be gained is a speedup of 25% at the

Convolution stage. A 25% speedup would also cause the same speedup at the execution time of

the whole algorithm as skipping a level in the Feature Pyramid, means also skipping a level in the

Convolution and the detection procedures.

This conclusion is the basic idea behind most of the next alternative patches (Chapter 9.3 to 9.8)

that try to speed up the algorithm by skipping the execution of some of the most time

consuming procedures (Convolution, DT Stage). Skipping the convolution procedure in some

levels of the features pyramid would cause a significant execution time saving, especially if these

levels are from the top ones. The same applies to the Level stage execution where the detection

procedures is applied.

9.1. NMS Limit

The NMS procedure is the one that selects the best detection results within a multiple set of

values appear in the area of a detected human face, as described in chapter 5.10. In the owners

implementation the NMS procedure sorts the detected results ascending and starting from the

highest results checks the rest ones for overlaps, rejecting the overlapping ones. One detail in

this implementation is that the NMS procedure after sorting the detections results it

automatically rejects the lowest values without processing. The number of the detections

results that are rejected is defiŶed ďǇ the ͞NM“ liŵit͟ paƌaŵeteƌ ǁhiĐh default ǀalue is the ϳϬ%
of the default Results Cache size. By examining the algorithms results setting this parameter

value to zero, the algorithm accuracy change. The effect of this technique is double. Firstly, the

majority of the detections in that area of lowest 70% are usually faulty detection, so this

rejection protects the algorithm results from fake detection that decrease its reliability. On the

other hand within this area sometimes correct detections exist, that unfortunately are rejected,

decreasing the algorithm detection efficiency (Diagram 85). This sacrifice of correct detection

against the fake ones is probably decided cause of the greater ratio of faulty against correct

results in this area.

Diagram 85 - Results Cache NMS Limit Parameter Example

In the Table 119 below the results of testing the algorithm using a set of 205 images used by the

creators of the algorithm also for testing, are shown. At this table, the detections of the

algorithm according to the threshold variable value is presented when using the 99 filters

model.

 Table 119 - NMS Limit Results using 99 Filters Model

Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35

NMS Limit 70%

Detected 89.1 87.8 86.1 82.9 82.5 82.1 80.8 -

Sorted Results

Faulty Face #1 Face #2 Face #3 Face #4 Face #5 Highest 30% Lowest 70%

Missed 10.9 12.2 13.9 17.1 17.5 17.9 19.2 -

Fake 21.8 15.3 10.6 8.27 4.93 3.27 1.82 -

Reliability 71.4 75.8 78.1 77.1 79.1 79.8 79.6 -

Fake/Real 15.0 10.9 4.25 1.84 1.57 1.08 0.82 -

NMS Limit 0%

Detected 93.2 91.2 90.4 88.2 85.5 84.8 83.1 80.3

Missed 6.84 8.76 9.62 11.8 14.5 15.2 16.9 19.7

Fake 47.9 36.7 23.9 16.4 9.50 6.37 3.95 2.59

Reliability 50.2 59.6 70.4 75.2 78.4 80.2 80.4 78.7

As seen in the Table 119, the default threshold variable value produce totally different results on

the algoƌithŵ ǁheŶ the ͞NM“ Liŵit͟ paƌaŵeteƌ is set to ϳϬ%. As seen, the number of face

detections is slightly increased when on the other hand the number of fake detections is

increased by more than two tiŵes. The ƌatio ďetǁeeŶ the fake aŶd the ƌeal faĐes that the ͞NM“
Liŵit͟ paƌaŵeteƌ ƌejeĐts, ĐhaŶges aĐĐoƌdiŶg to the ͞Thƌeshold͟ paƌaŵeteƌ ǀalue. The loǁeƌ this
parameteƌ is the laƌgeƌ is this ƌatio. As seeŶ iŶ this taďle ͞Fake/Real͟ liŶe, the ƌatio ďetǁeeŶ fake
and real faces rejected starts from 15 ǁheŶ the ͞Thƌeshold͟ paƌaŵeteƌ ǀalue is -0.70 while it is

less thaŶ oŶe foƌ ͞Thƌeshold͟ paƌaŵeteƌ ǀalues gƌeateƌ thaŶ -0.45. As seen in this table the

ƌeliaďilitǇ of the algoƌithŵ ǁith the ͞NM“ Liŵit͟ paƌaŵeteƌ disaďled is ďetteƌ as loŶg as the
͞Fake/Real͟ faĐe ƌatio is gƌeateƌ thaŶ ϭ.ϱ. WheŶ the ͞Thƌeshold͟ paƌaŵeteƌ ǀalue is gƌeateƌ
than -0.50 the version of the algorithm ǁithout the use of the ͞NM“ Liŵit͟ paƌaŵeteƌs suĐĐeeds
better reliability.

Diagram 86 - TSM Algorithm Performance with NMS Limit Disabled (99 Filters Model)

In the Diagram 86 above as is visible the Threshold parameter value is inversely analogous to the

number of face detections. As it is increasing, the number of face detections (real or faulty) is

decreasing. On the other hand as the Threshold variable is increasing the number of missed

deteĐtioŶs is iŶĐƌeasiŶg. The ͞ReliaďilitǇ͟ iŶdiĐatoƌ is the oŶe that ƌeǀeals the ďest ƌatio ďetǁeeŶ
successful detections, missed detections and fake ones. The function that gives this indicator is

the (28) below

0

20

40

60

80

100

-0,7 -0,65 -0,6 -0,55 -0,5 -0,45 -0,4 -0,35

Threshold

Detected Missed

Fake Reliability

0.7

0.8

0.9

1.0

0.7 0.8 0.9 1.0

P
re

ci
si

o
n

Recall

0%

70%

Re correct

missed fake correct

D
liability

D D D


 
 (28)

Pr correct

fake correct

D
ecision

D D



 (29)

Recall correct

missed correct

D

D D



 (30)

As far as the 146 filters Model the results of the same testing procedure are shown in the Table

120 below.

 Table 120 - NMS Limit Results using 146 Filters Model

Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40

NMS Limit 70%

Detected 88.5 86.3 84.2 82.5 78.8 77.4 -

Missed 11.5 13.7 15.8 17.5 21.2 22.6 -

Fake 10.8 7.13 5.06 3.26 2.12 1.36 -

Reliability 79.9 81.0 80.6 80.2 77.5 76.5 -

Fake/Real 2.48 1.45 0.79 0.62 0.33 0.33 -

NMS Limit 0%

Detected 93.4 90.6 88.2 85.3 81.4 79.3 76.5

Missed 6.62 9.40 11.8 14.7 18.6 20.7 23.5

Fake 19.7 12.4 8.02 5.00 3.05 2.11 1.65

Reliability 76.0 80.3 81.9 81.6 79.4 77.9 75.5

In the Table 120 aďoǀe the iŵpaĐt of disaďliŶg the ͞NM“ Liŵit͟ paƌaŵeteƌ iŶ the NM“
procedure is much lower than in the 99 filters model. This is because the 146 filters model is

more accurate as it uses more and better trained filters for the landmark detection. This is also

depicted in the relation between the fake and the real face detections inside the 70% of results

ƌejeĐted ďǇ the ͞NM“ Liŵit͟ parameter. This relation is 2.5 fake detections for every correct one

when in the 99 filters model this relation is 15 ǁheŶ the ͞Thƌeshold͟ paƌaŵeteƌ ǀalue is -0.70.

What is iŶteƌestiŶg is that the ͞NM“ Liŵit͟ paƌaŵeteƌ has Ŷegatiǀe iŵpaĐt oŶ the algoƌithŵ
results when values lower than -Ϭ.ϲϱ oŶ the ͞Thƌeshold͟ paƌaŵeteƌ aƌe used.

Diagram 87 - TSM Algorithm Performance with NMS Limit Disabled (Both Models)

At the Diagram 87 above the effect of different values of the Threshold parameter is shown for

both models. This effect is the same as described in the corresponding paragraph for the 99

filters Model. It is sensible that when the Threshold parameter is reducing the number of real

and also fake face detection to increase and the opposite when increasing. The only difference is

that the 146 filters model is more accurate creating much less fake detections. On the other

hand the detection efficiency is better for the 99 filters model as it is more abstract. The

iŶteƌestiŶg poiŶt of those tǁo ŵodels is that as the ͞Thƌeshold͟ paƌaŵeteƌ ǀalue is iŶĐƌeasiŶg
their reliability is converging. This is very encouraging as the 99 filters model is much faster than

the 146 filters one and it can succeed pretty good reliability and detection efficiency than can

make it more preferable.

As ƌefeƌƌed iŶ this Đhapteƌ’s paƌagƌaphs, the ͞NM“ Liŵit͟ paƌaŵeteƌ has a positiǀe iŵpaĐt iŶ the

algoƌithŵ’s ƌesults ǁheŶ the ͞Thƌeshold͟ paƌaŵeteƌ ǀalue is loǁ at ďoth Models. The disaďliŶg
of the ͞NM“ Liŵit͟ paƌaŵeteƌ is Ŷot a ǁise deĐisioŶ if it is Ŷot ƌeplaĐed ďǇ aŶotheƌ ŵethod that
would be able to increase the algorithms reliability by rejecting the fake faces. This method is

appose in the next chapter, chapter 9.2.

9.2. Dynamic Threshold

A static value on the Threshold parameter might not be always efficient. Sometimes in a sharp

image the faces within it can produce many high-score values much higher than the Threshold

parameter value. In addition fake faces may be detected with high-score values much lower

than the real faces ones but still over the Threshold parameter limit. In our implementation a

new proposal to this problem is presented using a dynamic Threshold value. By examining the

fake results values a ratio between the correct detection and the fake one was discovered.

Usually the better the sharpness of an image is the easier for an image processing algorithm to

have accurate results. A common technique for making an image processing algorithm more

independent of this parameter is the normalization method. A similar technique is the one we

0

20

40

60

80

100

-0,7 -0,65 -0,6 -0,55 -0,5 -0,45 -0,4

Threshold

Detected Missed

Fake Reliability

0.7

0.8

0.9

1.0

0.7 0.8 0.9 1.0

P
re

ci
si

o
n

Recall

99 Model - 0%

99 Model - 70%

146 Model - 0%

146 Model - 70%

create for that purpose. First of all, the NMS procedure does not reject the lowest detection

ƌesults usiŶg the ͞NM“ Liŵit͟ paƌaŵeteƌ ďut iŶ additioŶ the ƌesults aƌe Đoŵpaƌed aŵoŶg
themselves. The results that their values are less than the Ratio parameter value of the highest

one are rejected.

Figure 59 - Dynamic Threshold Patch Execution Flow Diagram

On the Table 121 below the results of the Face Detection TSM algorithm using different values

of the Ratio and Threshold parameters for the 99 filters Model is shown. As seen in the table the

most critical parameter is the reliability of the algorithm. As greater it is the more reliable the

algorithm is. A second important parameter is the number of detected faces as the more face

detection the algorithm achieves the more efficient it is. The desirable result is the algorithm to

detect as more faces it can with the maximum percentage of reliability.

Table 121 - Dynamic Threshold Patch Results with 99 Filters Model

Threshold Ratio Detected Missed Fake Reliability Precision Recall

-0.70

Original 89.1 10.9 21.8 71.4 0.78 0.89

0% 93.2 6.84 47.9 50.2 0.52 0.93

5% 91.2 8.76 33.7 62.3 0.66 0.91

10% 90.6 9.40 20.5 73.5 0.80 0.91

15% 87.8 12.2 13.7 77.1 0.86 0.88

20% 86.1 13.9 7.99 80.1 0.92 0.86

25% 83.8 16.2 4.39 80.7 0.96 0.84

30% 81.4 18.6 1.55 80.4 0.98 0.81

35% 79.3 20.7 1.07 78.6 0.99 0.79

-0.65

Original 87.8 12.2 15.3 75.8 0.85 0.88

0% 91.2 8.76 36.7 59.6 0.63 0.91

5% 90.8 9.19 22.4 71.9 0.78 0.91

10% 88.2 11.8 14.7 76.6 0.85 0.88

15% 86.3 13.7 8.18 80.2 0.92 0.86

20% 84.2 15.8 5.29 80.4 0.95 0.84

25% 81.8 18.2 1.54 80.8 0.98 0.82

30% 79.5 20.5 1.06 78.8 0.99 0.79

Detection Results
Normilize Results to
be greater than zero

Normilize Results to
the maximum one

Reject Results lower
than Ratio variable

-0.60

Original 86.1 13.9 10.6 78.1 0.89 0.86

0% 90.4 9.62 23.9 70.4 0.76 0.90

5% 88.0 12.0 14.3 76.7 0.86 0.88

10% 85.7 14.3 8.86 79.1 0.91 0.86

15% 84.8 15.2 5.48 80.9 0.95 0.85

20% 82.5 17.5 1.78 81.3 0.98 0.82

25% 79.9 20.1 1.06 79.2 0.99 0.80

-0.55

Original 82.9 17.1 8.27 77.1 0.92 0.83

0% 88.2 11.8 16.4 75.2 0.84 0.88

5% 85.9 14.1 9.26 79.0 0.91 0.86

10% 85.3 14.7 6.12 80.8 0.94 0.85

15% 82.9 17.1 2.51 81.2 0.97 0.83

20% 80.6 19.4 1.05 79.9 0.99 0.81

-0.50

Original 82.5 17.5 4.93 79.1 0.95 0.82

0% 85.5 14.5 9.50 78.4 0.90 0.85

5% 84.8 15.2 6.59 80.0 0.93 0.85

10% 82.9 17.1 3.48 80.5 0.97 0.83

15% 80.3 19.7 1.05 79.7 0.99 0.80

-0.45

Original 82.1 17.9 3.27 79.8 0.97 0.82

0% 84.8 15.2 6.37 80.2 0.94 0.85

5% 82.9 17.1 3.96 80.2 0.96 0.83

10% 81.2 18.8 1.55 80.2 0.98 0.81

15% 78.8 21.2 0.81 78.3 0.99 0.79

-0.40

Original 80.8 19.2 1.82 79.6 0.98 0.81

0% 83.1 16.9 3.95 80.4 0.96 0.83

5% 81.4 18.6 2.06 80.0 0.98 0.81

10% 78.8 21.2 0.81 78.3 0.99 0.79

15% 77.1 22.9 0.82 76.6 0.99 0.77

As seen in the Table 121 the Ratio ǀaƌiaďle iŵpƌoǀes the algoƌithŵ’s peƌfoƌŵaŶĐe at aďout ϭ.ϱ%
as far as its Maximum Reliability and 4.1% its maximum successful detections. At every value of

the Threshold parameter the Dynamic Threshold patch increases the reliability and efficiency

indexes about 1-2%. These increments on the TSM algorithm performance indexes is not very

significant as the numbers reveal but they show that the Dynamic Threshold patch is an

successful suďstitute of the ͞NM“ Liŵit͟ paƌaŵeteƌ.

As the Threshold parameter value is increasing the Ratio techniques does not seems to offer any

positive results, but on the other hand when low values are set to Threshold parameter, a small

value of the Ratio one offers a much better performance to the algorithm results. The

conclusion is that a Ratio of 0.05 to 0.15 can be usefully used when low Threshold parameter

value is used aiming on high face detections rates, as shown in Diagram 88. As seen in the

Diagram 88, the results of the algorithm when the Ratio parameter is used is better in all

indexes. In the Diagram 88 the impact of the Ratio technique in the results when used with -0.65

(continuous) and -0.60 (dashed) Threshold variable values is shown.

Diagram 88 - Dynamic Threshold Patch Impact on

Threshold Low Values (99 Filters Model)

Diagram 89 - Dynamic Threshold Patch Performance

Impact (99 Filters Models)

As seen in Diagram 88, the results reliability is stƌoŶglǇ iŶĐƌeased ǁheŶ the ͞Ratio͟ paƌaŵeteƌ is
set to 5% while the face detection rate is not actually reduced. As described above this

phenomenon is smaller when used with -0.60 Threshold parameter value than with -0.65.

0% 5% 10% 15% 20%Ratio

Detected Missed

Fake Reliability

0.7

0.8

0.9

1

0.7 0.8 0.9 1
P

re
ci

si
o

n

Recall

Ratio 15% Ratio 10%

Ratio 5% Ratio 0%

Original

Threshold = -0.65 Threshold = -0.65, Ratio = 0.15

Figure 60 - Dynamic Threshold Patch Performance Examples

As described above the usage of the Ratio parameter is a useful technique giving the algorithm a

portion of stability as it rejects the fake face detection even when the Threshold parameter

value is lower than it should. As seen in the Table 121 a Ratio value of 5-15% gives always a

satisfactory result.

As far as the 146 filters Model the results applying the Ratio parameter is shown in the Table

122 below.

Table 122 - Dynamic Threshold Patch Results with 146 Filters Model

Threshold Ratio Detected Missed Fake Reliability Precision Recall

-0.70

Original 88.5 11.5 10.8 79.9 0.89 0.88

0% 93.4 6.62 19.7 76.0 0.80 0.93

5% 92.3 7.69 12.0 82.0 0.88 0.92

10% 89.5 10.5 8.11 83.0 0.92 0.90

15% 87.6 12.4 5.96 83.0 0.94 0.88

20% 85.7 14.3 4.75 82.2 0.95 0.86

25% 82.1 17.9 3.52 79.7 0.96 0.82

-0.65

Original 86.3 13.7 7.13 81.0 0.93 0.86

0% 90.6 9.40 12.4 80.3 0.88 0.91

5% 89.1 10.9 7.95 82.7 0.92 0.89

10% 87.4 12.6 5.76 83.0 0.94 0.87

15% 85.3 14.7 4.77 81.8 0.95 0.85

-0.60

Original 84.2 15.8 5.06 80.6 0.95 0.84

0% 88.2 11.8 8.02 81.9 0.92 0.88

5% 86.3 13.7 5.16 82.4 0.95 0.86

10% 84.6 15.4 4.35 81.5 0.96 0.85

15% 81.6 18.4 3.05 79.6 0.97 0.82

-0.55 Original 82.5 17.5 3.26 80.2 0.97 0.82

0% 85.3 14.7 5.00 81.6 0.95 0.85

5% 83.1 16.9 3.47 80.7 0.97 0.83

10% 81.2 18.8 2.31 79.7 0.98 0.81

-0.50

Original 78.8 21.2 2.12 77.5 0.98 0.79

0% 81.4 18.6 3.05 79.4 0.97 0.81

5% 80.8 19.2 2.33 79.2 0.98 0.81

10% 78.8 21.2 1.60 77.8 0.98 0.79

By the application of the Ratio parameter, the detection efficiency and the reliability of the

algorithm is increased as seen in the Table 122 overcoming the results of the original version.

This is very important as by reducing the Threshold parameter value to the -0.70 the algorithm

face detection efficiency is increasing and by using the Ration parameter value to a 10

percentage the algorithm results are better in all indexes. The same thing is observed when the

threshold variable is set to -0.65 and the ratio one to 10%.

Diagram 90 - Dynamic Threshold Patch Performance Impact (146 Filters Model)

As a ĐoŶĐlusioŶ the disaďliŶg of the ͞NM“ Liŵit͟ paƌaŵeteƌ of NM“ pƌoĐeduƌe ƌeǀealed a
number of valid face detections but also a larger number of invalid ones. The number of fake

face detections can ďe ƌeduĐed ďǇ iŶĐƌeasiŶg the ǀalue of the ͞Thƌeshold͟ ǀaƌiaďle ďut this
change cause also a small decrement of the algorithms detection efficiency. At last the Dynamic

Thƌeshold patĐh usiŶg the Ratio paƌaŵeteƌ is the oŶe that ĐaŶ ƌeplaĐe the ͞NM“ Liŵit͟ oŶe in

the NMS procedure. The Ratio parameter is more efficient and also fairer as it is not dependent

by the number of detections but by the detected faces sharpness. The results tables are the

proof.

0.75

0.80

0.85

0.90

0.95

1.00

0.75 0.80 0.85 0.90 0.95 1.00

P
re

ci
si

o
n

Recall

Ratio 15%

Ratio 10%

Ratio 5%

Ratio 0%

Original

9.3. Interval

The greatest consumer of execution time of the algorithm is the Convolution stage (Diagram 30,

Chapter 6.20) where the Filter Responses are produced. The Convolution stage duration is

depended on two parameters. The first parameter is the number of filters used by the model

parts and the second one is the number of levels the features pyramid has. The larger the

feature pyramid is the more time is needed for the convolution procedure. The length of the

features pyramid is also affecting the number of the Level stage calls that uses the Distance

Transformation stage which is the second greatest time consumer (Diagram 30, Chapter 6.20).

The Convolution and the DT stage consumes about the 96% of the whole algorithm execution.

In chapter 7, the Short Pyramid patch reduced the number of levels in an important amount, as

explained. Although the number of levels reduced is closely to its half, the levels of the features

pyramid that was removed was the latest. The latest levels of the feature pyramid have actually

the smallest sizes and that was the reason that even if the length of the features pyramid was

reduced about to its half, the reduction of the execution time of the algorithm was reduced for

only about 4%. It would be a very pleasant if there was a way of reducing the number of levels

of the features pyramid removing levels from the top.

Removing levels from the top of the Feature pyramid would remove the ability from the

algorithm of detecting small faces within the images. If for example the first level of the feature

pyramid is removed then the ability of the algorithm to detect faces in the size of 100 pixels high

within the image would be greatly reduced. If the algorithm is used for an application than does

not tries to detect very small face within large images then it would not be a problem but this is

the subject of chapter 9.4.

In this chapter, a method of reducing the number of the top levels of the features pyramid of

the algorithm aiming on reducing its execution time is appose. In the chapter 5.5 the ͞IŶteƌǀal͟
parameter was introduced. This parameter determines the number of scaled images, inside the

features pyramid, between two images with scale ratio of two. In this chapter the impact of the

reduction of this parameter value is going to be examined.

The T“M algoƌithŵ Đƌeatoƌs set the ͞IŶteƌǀal͟ paƌaŵeteƌ
value to five as the default value. Changing this parameter

value to four would change the whole features pyramid

images scale and this is why the impact of this change

cannot be calculated using the execution time of the

algoƌithŵ ǁheŶ used ǁith otheƌ ͞IŶteƌǀal͟ paƌaŵeteƌ
values. In the Table 123 the number of the levels of the

features pyramid according to the Interval parameter is

Table 123 - FP Levels per Interval

Image Size
Interval

5 4 3

320x240 7 6 4

640x480 12 10 7

800x600 13 11 8

1024x768 15 12 9

1280x960 17 14 10

presented. What is very important on this change is not only the execution time gain but its

impact on the algorithms detection efficiency and its reliability.

The algoƌithŵs eǆeĐutioŶ tiŵe ǁheŶ the ͞iŶteƌǀal͟ paƌaŵeteƌ is ƌeduĐed to four is shown in the

Table 124 when this change is applied to the version 3.2.2. As seen in this table, the execution

time gained is noticeable, about 20%. If the Interval parameter is further reduced to three the

execution time is almost twice reduced to 37.8%. These reductions is very positive but they have

aŶ iŵpaĐt oŶ the algoƌithŵ’s peƌfoƌŵaŶĐe as shoǁŶ iŶ the Ŷeǆt taďle ;Table 125).

Table 124 - TSM v3.2.2 Interval Patch Execution Time (%)

Interval 320x240 640x480 800x600 1024x768 1280x960 Average

4 -28.3 -19.8 -18.5 -18.7 -17.7 -20.6

3 -45.4 -37.0 -35.9 -35.7 -35.2 -37.8

Table 125 - TSM Algorithm Interval Patch Performance (%)

Threshold -0.65 -0.60 -0.55 -0.50 -0.45 -0.40

Interval 5

Detected 91.2 90.4 88.2 85.5 84.8 83.1

Missed 8.76 9.62 11.8 14.5 15.2 16.9

Fake 36.7 23.9 16.4 9.50 6.37 3.95

Reliability 59.6 70.4 75.2 78.4 80.2 80.4

Interval 4

Detected 86.3 84.0 82.3 80.1 77.4 75.0

Missed 13.7 16.0 17.7 19.9 22.6 25.0

Fake 27.9 17.3 11.5 7.18 3.21 1.13

Reliability 64.7 71.5 74.3 75.5 75.4 74.4

Interval 3

Detected 72.0 69.9 66.9 65.4 62.8 61.1

Missed 28.0 30.1 33.1 34.6 37.2 38.9

Fake 19.0 10.7 5.44 3.16 1.01 0.35

Reliability 61.6 64.5 64.4 64.0 62.4 61.0

In the Table 125 above the detection efficiency and the reliability results are not as positive as

the execution time gain. As seen the reduction of the Interval parameter to four causes 5 to 10

percent reduction of the algorithms detection efficiency while its reliability is also low. The

results are even worst when the interval variable is set to three where the algorithms detection

efficiency and reliability is getting lower than 70%.

The detection efficiency and the reliability of the algorithms seems to reduce a lot when the

interval parameter value is change and is reducing. On the other hand the execution time

speedup gained is significant reaching the 20%. Reducing the Interval parameter value seems to

be a risk as it makes the algorithm less reliable and efficient and it does not seems to worth it.

This technique reduces the algorithm efficiency so much that it would not be advisable to be

used in combined to other patches presented in this thesis. On the other hand, other patches

that do not affect significantly the algorithms efficiency can be combined offering similar

execution time speedup without making the algorithm unreliable.

9.4. Canvas

As referred in the previous chapters, the features pyramid levels consumes time according to

theiƌ iŵage size. UsiŶg the ͞IŶteƌǀal͟ paƌaŵeteƌ set to fiǀe, the tiŵe Ŷeeded foƌ the fiƌst leǀel of
the features pyramid is about the 25% of the time needed for all the features pyramid levels.

The time needed for the next level is about 19% etc. To sum up, the first interval set of levels (1

to interval) needs about the 75% of the whole features pyramid levels. All these leads to the

conclusion that if the algorithm skipped even one level from the top of the features pyramid this

ǁould sigŶifiĐaŶtlǇ ƌeduĐe the algoƌithŵ’s eǆeĐutioŶ tiŵe.

In this chapter one method for speeding up the algorithm is presented sacrificing a part of its

reliability and detection efficiency, but controllable. In this method two new parameters are

imported in the algorithm implementation that gives the opportunity of sacrificing the ability of

the algorithm to detect very small or very large faces within the image but gaining time

consumption.

These tǁo paƌaŵeteƌs aƌe the ͞MiŶ FaĐe͟ aŶd the ͞Maǆ FaĐe͟ defiŶiŶg the ŵiŶiŵuŵ aŶd the
ŵaǆiŵuŵ faĐe size aĐĐoƌdiŶg to the iŵage’s size that the algoƌithŵ ǁould tƌǇ to deteĐt. This
way the levels used for detecting faces larger or smaller than this percentages would be skipped

by the algorithm.

The algorithm detects large faces in the latest levels of the image pyramid. This means that

ǁheŶ the ͞Maǆ FaĐe͟ paƌaŵeteƌ is ƌeduĐiŶg the algoƌithŵ skips leǀels asĐeŶdiŶg staƌtiŶg fƌoŵ
the last level. As far as the time consumption profit of this change will not be great as the latest

a leǀel is iŶ the featuƌes pǇƌaŵid, the less eǆeĐutioŶ tiŵe Ŷeeds. This ǁaǇ ǁheŶ the ͞Maǆ FaĐe͟
parameter is reduced the execution time saved would be too few in contrast to the reliability

that it ŵaǇ lose. Foƌ that ƌeasoŶ the ͞Maǆ FaĐe͟ parameter should be reduced only if the

algorithm is used in applications that do not try to detect faces conceiving large part of the

image.

Figure 61 - Faces Size Within the Image Examples

As far as the small faces, these are detected in the top levels of the features pyramid so in the

laƌgest featuƌes iŵages. IŶ ĐoŶtƌast to the ͞Maǆ FaĐe͟ paƌaŵeteƌ, the ͞MiŶ FaĐe͟ oŶe is ŵuĐh
more significant as far as the saving of execution time. Even if the algorithm skips one level from

the top, its execution time is reduced by 25%. This is a very important reduction. So, if the

algorithm is used for detecting large faces within images, then it would be very helpful if the

͞MiŶ faĐe͟ paƌaŵeteƌ ǁould ďe iŶĐƌeased iŶ oƌdeƌ soŵe of the top levels of the features

pyramid would be skipped and the algorithm could gain a significant speed up.

In previous chapters has been referred that

the algorithm can detect faces with the

minimum size of 100 pixels. This makes it

oďǀious that the ͞MiŶ FaĐe͟ paƌaŵeteƌ does
not always has a real effect to the algorithm.

As the Table 126 shows the minimum face

size that the algorithm can detect in specific

image sizes is larger as the image size is

Table 126 - TSM Minimum Detectable Face (%)

Image Size 99 Model 146 Model

320x240 41.7 20.8

640x480 20.8 10.4

800x600 16.7 8.33

1024x768 13.0 6.51

1280x960 10.4 5.21

smaller. As seen in this table when the image height is 240 pixels the algorithm can detect faces

laƌgeƌ thaŶ the ϰϭ.ϳ% of the iŵage height. This ĐoŶĐludes that if the ͞MiŶ FaĐe͟ paƌaŵeteƌ is set
to 25% it would have no impact to the algorithms execution. In the Table 126 below the faces

size that ĐaŶ ďe deteĐted ďǇ the featuƌes pǇƌaŵid’s leǀels aƌe shoǁŶ.

The execution time saving for every level of the pyramid skipped using these parameters are

shown in the Table 127 ďeloǁ. As seeŶ iŶ this taďle, settiŶg the ͞MiŶ FaĐe͟ paƌaŵeteƌ ǀalue to
30% can gain a speedup up to 68.4% for a very large image (1028x960) and at least 25% for a

small one (640x480). This is a very important speedup that can be easily used when the image

classification is known. If for example the algorithm is used for images with a close capture of

faces then the top levels of the features pyramid are useless, while if the face capture is from

large distance, then the bottom levels are the ones that are useless.

Table 127 - Max/MinFace Parameters Execution Time Profit (%)

 Detectable Face Size per Level (%) Profit Approach

Level 320x240 640x480 800x600 1024x768 1280x960 Level
MaxFace

;Bot→TopͿ
MinFace

;Top→BotͿ

1 45.8 24.1 19.9 15.9 13.1 25.0 74.4 -0%

2 54.2 30.7 26.3 21.7 18.3 18.8 55.7 -25.0

3 62.5 37.3 32.7 27.5 23.6 14.1 41.6 -43.8

4 70.8 43.9 39.1 33.3 28.9 10.5 31.1 -57.8

5 79.2 50.5 45.5 39.1 34.1 7.91 23.2 -68.4

6 87.5 57.1 51.9 44.9 39.4 5.93 17.2 -76.3

7 95.8 63.7 58.3 50.7 44.7 4.45 12.8 -82.2

8 70.3 64.7 56.5 49.9 3.34 9.45 -86.7

9 76.9 71.2 62.3 55.2 2.50 6.94 -90.0

10 83.5 77.6 68.1 60.5 1.88 5.07 -92.5

11 90.1 84.0 73.9 65.7 1.41 3.66 -94.4

12 96.7 90.4 79.7 71.0 1.06 2.60 -95.8

13 96.8 85.5 76.3 0.79 1.81 -96.8

14 91.3 81.6 0.59 1.22 -97.6

15 97.1 86.8 0.45 0.77 -98.2

16 92.1 0.33 0.44 -98.7

17 97.4 0.25 -0% -99.0

Range ±4.2 ±3.3 ±3.2 ±2.9 ±2.6

In the Figure 61 the size of multiple faces according to the image size are shown. As seen in

these images a face must be too zoomed in to the camera to take place in a large part within the

images as happens in the bottom left image in Figure 61. The most common distance can make

a face holding the 10% to 50% of the image height and that makes it difficult to ƌaise the ͞MiŶ

Leǀel͟ paƌaŵeteƌ ǀalue ďeĐause it ƌaises the possiďilitǇ of affeĐtiŶg the algoƌithŵs deteĐtioŶ
effiĐieŶĐǇ. What ŵight ǁoƌth a tƌǇ is to iŶĐƌease the ǀalue of the ͞MiŶ Leǀel͟ paƌaŵeteƌ at suĐh
a small quantity that the algorithm could at least skip the top level of the features pyramid and

gain a 25% time speedup.

OŶ the otheƌ haŶd the ͞Maǆ FaĐe͟ paƌaŵeteƌs as seeŶ iŶ these iŵages ĐaŶ easilǇ ďe ƌeduĐed foƌ
a significant amount as it is very unusual for a face to be captured at such a close zoom that it

can conceive larger than 70% or at most 80%. The bad news is that the levels of the features

pyramid that could be skipped by this parameter are the smallest ones and the speedup the

algorithm can gain very insignificant. Although, it seems that a ͞Maǆ FaĐe͟ paƌaŵeteƌ ǀalue
eƋual to ϴϬ% is ǀeƌǇ possiďle to haǀe a tiŶǇ, iŶsigŶifiĐaŶt iŵpaĐt to the algoƌithŵ’s deteĐtioŶ
efficiency.

The heartening fact is that as the pyramid size is decreasing, all the levels of the pyramid

execution time participation is increasing. As seen in the Table 128 below the last level of the

pyramid is using the 5.78% of the whole pyramid detection time on a 7 levels while in a 17 levels

pyramid only 0.33%. This means that a MaxFace Parameter value set to 80% can offer about

13% reduction on the execution time of a 320x240 image and about 5% on a 640x480 image

when the corresponding reduction is less than 2% on a 1280x960 image. On the other hand the

top levels participation is always very significant and skipping them can be proved very useful in

large size images as mentioned before.

Table 128 - Max/MinFace Execution Time Profit per Image Size

 320x240 640x480 800x600 1024x768 1280x960

Level Face Profit Face Profit Face Profit Face Profit Face Profit

1 45.8 27.4 24.1 24.5 19.9 24.4 15.9 24.2 13.1 24.1

2 54.2 21.3 30.7 18.9 26.3 18.6 21.7 18.5 18.3 18.3

3 62.5 16.3 37.3 14.3 32.7 14.2 27.5 14.0 23.6 13.9

4 70.8 12.4 43.9 11.0 39.1 10.8 33.3 10.7 28.9 10.6

5 79.2 9.56 50.5 8.28 45.5 8.29 39.1 8.14 34.1 8.06

6 87.5 7.24 57.1 6.31 51.9 6.25 44.9 6.16 39.4 6.11

7 95.8 5.78 63.7 4.91 58.3 4.82 50.7 4.74 44.7 4.70

8 70.3 3.75 64.7 3.66 56.5 3.59 49.9 3.57

9 76.9 2.87 71.2 2.81 62.3 2.78 55.2 2.74

10 83.5 2.20 77.6 2.20 68.1 2.13 60.5 2.06

11 90.1 1.67 84.0 1.66 73.9 1.60 65.7 1.57

12 96.7 1.33 90.4 1.28 79.7 1.23 71.0 1.23

13 96.8 0.99 85.5 0.96 76.3 0.94

14 91.3 0.74 81.6 0.71

15 97.1 0.57 86.8 0.55

16 92.1 0.42

17 97.4 0.33

Range ±4.2 ±3.3 ±3.2 ±2.9 ±2.6

9.5. 68 Filters Model

One of the major advantages of this TSM algorithm as referred in the Related Work chapter

(Chapter 3) is its ability to detect faces until the viewing angle of ±90 degrees. Many related

algorithms used for face detection are trained to detect centered faces. As described in chapter

4, the algorithm is using parts based mixtures of trees to detect faces and estimate their pose.

For the detection and pose estimation of faces in the area of ±60 to ±90 degrees viewing angle

the algorithm is using six pose trees which use 78 filters (146 filters model). These 78 filters are

compressed to 39 ones on the 99 filters model. The existence of these extra pose trees and

filters cost to the TSM algorithm extra time and memory consumption as they extend the

execution time of the Convolution and Level stage and also enlarge the Filters Responses arrays

list which is one of the main participants on the maximum memory consumption formation.

As far as the memory consumption of the TSM algorithm, the impact of removing the edge pose

trees is as shown in Table 129 below. The Filters Responses data memory is reduced to its 68/99

as it is sensible. The impact of this reduction ends to a reduction of about 12% to the total

maximum memory consumption.

As far as the execution time consumption, the impact of the 68 filters model to the TSM

algorithm is reaching the -31% as the Table 129 shows. This is a significant reduction as the

algorithm needs the two thirds of the time needed in the 99 filters model when the 68 one is

used.

Table 129 - TSM v3.2.2 68 Filters Model Performance (Compared to 99 Model)

 320x240 640x480 800x600 1024x768 1280x960 Average

Memory
4.84 Mb 17.6 Mb 27.2 Mb 44.0 Mb 68.3 Mb

-11.5% -12.2% -12.3% -12.4% -12.4% -12.2%

Time -31.2% -31.3% -31.1% -31.2% -30.9% -31.1%

The disadvantage if using the 68 filters model is the fact that the algorithm is now able to detect

faces of ±45o viewing angle. The performance of the algorithm is not actually change as far as

the 68 filters poses. Any difference in the reliability and detection efficiency is shown in the

Table 130 below is caused by the removal of the 39 filters poses from the aggregation of the

testing results. As seen in the results table below the algorithm results in faces of ±45o viewing

angle are even better than the 99 filters model. Its performance fall starts when it is asked to

detect faces in greater viewing angles where the detection efficiency is reducing, luring its

reliability as the fake detection results are stable.

Table 130 - TSM 68 Filters Model Results

Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35

 -45
o
 to +45

o

Detected 98.2 94.6 90.4 88.3 85.8 82.6 79.5 76.9

Missed 1.81 5.44 9.59 11.7 14.2 17.4 20.5 23.1

Fake 29.8 22.0 15.1 9.31 4.89 3.04 1.29 0.00

Reliability 69.3 74.6 77.9 81.0 82.1 80.6 78.7 76.9

 -60
o
 to +60

o

Detected 91.1 87.7 83.9 82.0 79.6 76.7 73.8 71.4

Missed 8.89 12.3 16.1 18.0 20.4 23.3 26.2 28.6

Fake 29.8 22.0 15.1 9.31 4.89 3.04 1.29 0.00

Reliability 65.7 70.3 73.0 75.6 76.4 74.9 73.1 71.4

 -75
o
 to +75

o

Detected 86.5 83.3 79.7 77.9 75.6 72.8 70.1 67.8

Missed 13.5 16.7 20.3 22.1 24.4 27.2 29.9 32.2

Fake 29.8 22.0 15.1 9.31 4.89 3.04 1.29 0.00

Reliability 63.3 67.5 69.8 72.1 72.7 71.2 69.5 67.8

 -90
o
 to +90

o

Detected 81.0 78.0 74.6 72.9 70.7 68.2 65.6 63.5

Missed 19.0 22.0 25.4 27.1 29.3 31.8 34.4 36.5

Fake 29.8 22.0 15.1 9.31 4.89 3.04 1.29 0.00

Reliability 60.3 63.9 65.8 67.8 68.2 66.7 65.0 63.5

9.6. Detection Components

As realized already by the algorithm characteristics, the main execution time consumers are the

Convolution and the Component detection processing. In this chapter a technique that can

reduce the time consumption of the Component stage.

During the component detection procedure the nearby components produce similar high-score

values as referred in 5.1. This means that if the component 7 (0
o
 viewing angle) is removed by

the model a corresponding face can continue be detected by the components next to it (6 and 8,

±15
o
). As the components diverge from the same component the detection results are reducing

as shown in the Diagram 91 below.

Diagram 91 - Components High-Score Results Example

In the 99 filters model the seven components in the middle refers to the face poses from -45 to

45 degrees and they all use the same filters. The distance between the landmarks is the criteria

for the pose estimation. On the other hand the six components at the edges, refer to the -90 to -

60 and 60 to 90 degrees are using a complex of filters, half of which are also used in the middle

components. This is why in Diagram 91 above the face detection of a face on 0 degrees creates

such lower scores on the edge components while in the middle ones the scores are close. In the

Diagram 91 the detection scores of a face in the angle of 75 degrees is presented. Only the

components close to the left edge components of the middle components succeed a detection

but even though their scores are much lower than the ones of the right edge components. This

is caused due to the common filters used by both 68 and 39 parts components.

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

H
ig

h
-S

co
re

 V
a

lu
e

Viewing Angle

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

H
ig

h
-S

co
re

 V
a

lu
e

Viewing Angle

Diagram 92 - Components High-Score Results per Viewing Angle Example

In the Diagram 92 above some examples of components scores in various angles faces are

shown.

The existence of 13 components increases the efficiency of the face detection algorithm but it

actually aims on the pose estimation and not to a general face detection. All those properties of

the algorithm gives the idea of splitting the algorithm in two similar but with different scope

sections. The first section aims on the face detection and the second one on the pose

estimation. If the first section detects a face within the image of a pyramid level then the second

section is executed on the same image. It works as the Backtrack stage where the Backtrack

procedure applies only when high-score values are detected by the find procedure.

The Face Detection section is using for the detection procedure one or a few more components

instead of using all of them. These called the detection components. The Threshold parameter

value on this section is a little lower in order to be more efficient in the face detection

procedure and the detection components can detect faces belonging to other viewing angles far

away from them. If in this procedure no faces are detected then the Pose Estimation section is

not executed. On the other hand when a face is detected the rest components are used on the

Pose Estimation section which is executed in order to achieve an accurate detection with pose

estimation. The Threshold parameter value on the Pose Estimation section is as usual. The

benefit of this patch is that it reduced the times the component stage execution is executed as it

overtakes empty images faster than the original version.

-90-60-30 0 30 60 90 -90-60-30 0 30 60 90 -90-60-30 0 30 60 90 -90 -60 -30 0 30 60 90

Figure 62 - Detection Components Patch Execution Flow Diagram

The ideal component for the face detection section seems to be the component 7 that

ƌepƌeseŶts the zeƌo degƌee aŶgle of a huŵaŶ faĐe. It’s the ideal as it ĐaŶ Đƌeate high-score

values in the detection procedure for both sides of the human face as it is symmetric. As the aim

of the face detection procedure is the detection of faces in all thirteen poses, the threshold

parameter value of this section must be lower than in the pose estimation one. As shown in the

Diagram 91 and Diagram 92 the seventh component creates low scores on the faces belong to

the edge components and this is a very important reason to reduce the threshold as this angles

faces will not be detectable. On the other hand when low threshold is used on the face

detection section, the more fake faces will be detected activating the pose estimation one. This

would not create faulty detections as the pose estimation section uses the most efficient

threshold value (Chapter 9.2) but it would cancel the advantage of the patch as it would treat to

empty face levels as they contain faces.

Table 131 - DC Patch Face Detection Section Results (DC Set 7) (%)

Threshold -0.75 -0.70 -0.65 -0.60 -0.55 -0.50

Detected 86.5 84.2 80.6 78.2 75.0 72.2

Missed 13.5 15.8 19.4 21.8 25.0 27.8

Fake 35.0 25.2 17.5 10.1 6.90 3.98

Reliability 59.0 65.6 68.8 71.9 71.1 70.1

As seen in the Table 131 above, the parameter Threshold value of -0.60 is the most reliable. On

the other hand its detection rating is not as high as in the lower values. At this point the

reliability is not as significant as the pose estimation section would reject the fake faces from the

results. The only way that this patch can affect the algorithms results is if faces are missed. Even

if more fake faces are detected at the face detection section, they will be skipped during the

pose estimation one where the usual Threshold parameter value will be used. So at this point of

the face detection section what is significant is faces not to be missed. If fake faces are detected

the punishment would be useless calls of the pose estimation section than would cost execution

time. So the -0.75 to -0.60 might be the most efficient Threshold parameter value for the face

detection section. In the Table 132 below, the results using different values of this variable are

shown.

Table 132 - DC Patch Results (DC Set 7) (%)

DC Threshold -0.75 -0.70 -0.65

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 -0.50 -0.45 -0.40

Detected 84.6 84.0 82.1 84.6 84.0 81.6 83.3 82.7 80.8

Missed 15.4 16.0 17.9 15.4 16.0 18.4 16.7 17.3 19.2

Fake 9.59 6.43 4.00 9.59 6.43 4.02 9.09 6.30 4.06

Reliability 77.6 79.4 79.3 77.6 79.4 78.9 76.9 78.3 78.1

FD Threshold -0.60 -0.55 -0.50

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 -0.50 -0.45 -0.40

Detected 83.1 82.5 80.6 82.3 81.6 79.5 81.6 81.0 78.8

Missed 16.9 17.5 19.4 17.7 18.4 20.5 18.4 19.0 21.2

Fake 9.11 6.08 4.07 8.98 6.14 4.12 9.05 6.19 4.16

Reliability 76.7 78.3 77.9 76.1 77.5 76.9 75.5 76.9 76.2

As presented in the Table 132 above the patch results are very close to the ones without it

(Chapter 9.2). All the indexes values have change at least. What is not shown in this table is

what kind of faces have been missed. In the Table 138 the detection analysis of all components

is shown, revealing that the missed face detections are coming from the edge components. As

seen the -90 and 90 degrees face detections were decreased about 20% while the middle

components seems not to be affected.

The patĐh’s effiĐieŶĐǇ ĐaŶ ďe iŵpƌoǀed if more components are used as detection components

in the face detection section. The ideal components would be some of the edge components as

they create high scores in the face angles where the component seven does not. This is because

they use some different filters. By testing the patch using the components seven, three and

eleven (-60
 o

, 0
 o

, 60
o
) the following results come of, as shown in Table 133.

Table 133 - DC Patch Face Detection Section Results (DC Set 7-3-11) (%)

Threshold -0.65 -0.60 -0.55 -0.50 -0.45 -0.40

Detected 89.1 87.8 85.0 83.1 82.9 81.0

Missed 10.9 12.2 15.0 16.9 17.1 19.0

Fake 21.5 12.2 7.87 4.89 3.24 1.81

Reliability 71.6 78.3 79.3 79.7 80.7 79.8

In the Table 133 the threshold used for testing is greater than when the patch used only the

component seven. This is because the components three and eleven are used for the detection

of faces in the angles of 60 to 90 (and -60 to -90) degrees instead of the component seven which

is used for the detection of the rest centered viewing angles. As seen in the table the usage of a

threshold of -0.45 is actually the most efficient, the same as the whole algorithms without it. At

the usage of the same Detection threshold parameter value as seen in both Table 132 and Table

133, the Detection section has much better reliability when using three components instead of

only one. The full algorithms detection results using these three components as detection ones

are shown in the Table 134 below.

Table 134 - DC Patch Results (DC Set 7-3-11) (%)

DC Threshold -0.60 -0.55

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40

Detected 85.5 84.8 82.9 85.5 84.8 82.7

Missed 14.5 15.2 17.1 14.5 15.2 17.3

Fake 9.30 6.15 3.96 9.50 6.15 3.97

Reliability 78.6 80.4 80.2 78.4 80.4 80.0

FD Threshold -0.50 -0.45

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40

Detected 85.5 84.8 82.3 84.2 84.2 81.8

Missed 14.5 15.2 17.7 15.8 15.8 18.2

Fake 9.30 6.15 3.99 6.19 6.19 4.01

Reliability 78.6 80.4 79.5 79.8 79.8 79.1

Looking at the results on the algorithms testing using this patch with those three components, it

is visible that the algorithms reliability is not reduced at all. At the reliability line it appears that

when the algorithm is used with this patch and detection threshold value larger than -0.50, the

algorithm detection efficiency is not affeĐted. What is aĐtuallǇ iŵpoƌtaŶt is that the algoƌithŵ’s
performance is not affected negatively and in contrast to the one component usage it is still

effective in angles close to 90 degrees.

At last, one more benefit of this patch is that the algorithm can avoid the calculation of some of

the Filter Responses that are not used in the face detection procedure. The algorithm can

calculate only the Filter Responses used by the detection components. If the face detection

section makes a detection, then the rest Filters Responses have to be calculated for use in the

pose estimation section. If no detections occur, the algorithm can skip these Filters Responses

calculations. This is very important as the Filters Responses calculations are the main time

consumer of the algorithm.

When using the 99 filters model the usage of the components seven, three and eleven as

detection ones on the patch is enough to fill all the Filters Responses tables. This is a

considerable reason of using only one detection component. This would not reduce the

algorithm efficiency if the algorithm is used for applications interested in faces with not great

viewing angles. In applications like these this patch can be combined with the 68 filters model

(Chapter 9.5).

Another idea is to replace the components three and eleven with the four and ten ones. This

means that the patch would use the same 68 filters for all the three detection components

when used on the 99 filters model. Testing this version of the DC patch gets the following results

of the Table 135 below.

Table 135 - DC Patch Face Detection Section Results (DC Set 7-4-10) (%)

Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45

Detected 92.5 90.8 89.7 87.6 85.0 84.4

Missed 7.48 9.19 10.3 12.4 15.0 15.6

Fake 48.2 36.7 23.8 16.5 9.55 6.40

Reliability 49.7 59.5 70.1 74.7 78.0 79.8

As did with the other two cases the algorithm was tested in different combinations between the

Face Detection section and Pose estimation one threshold. The results are shown in the Table

136 below.

Table 136 - DC Patch Results (DC Set 7-4-10) (%)

DC Threshold -0.75 -0.70 -0.65

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 -0.50 -0.45 -0.40

Detected 85.0 84.4 82.5 85.0 84.4 82.5 85.0 84.4 82.5

Missed 15.0 15.6 17.5 15.0 15.6 17.5 15.0 15.6 17.5

Fake 9.55 6.40 3.98 9.55 6.40 3.98 9.55 6.40 3.98

Reliability 78.0 79.8 79.8 78.0 79.8 79.8 78.0 79.8 79.8

FD Threshold -0.60 -0.55 -0.50

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40 -0.50 -0.45 -0.40

Detected 84.6 84.0 82.1 83.8 82.9 81.2 83.8 82.9 81.0

Missed 15.4 16.0 17.9 16.2 17.1 18.8 16.2 17.1 19.0

Fake 9.38 6.21 4.00 9.26 6.28 4.04 9.26 6.28 4.05

Reliability 77.8 79.6 79.3 77.2 78.5 78.5 77.2 78.5 78.3

Finally a comparison table (Table 137) is used in order to see and compare the differences of

using one and three detection components and which of them. As seen in this table the usage of

the three 68 filters detection components (7, 4, 10) does not provide any crucial benefit in

contrast of using only one. It only offers a small increment in the detection efficiency and the

reliability but they can be matched if a lower FD Threshold parameter value is used to the one

detection component method. Actually when using about -0.10 lower FD Threshold parameter

value the one component detection method succeeds almost the same results with the 3

components one (7, 4, 10). The 99 filters detection components (7, 3, 11) usage on the other

hand offers much better result, close to the ones the algorithm succeeds without the patch.

Table 137 - DC Patch Results Comparison (Threshold = -0.45) (%)

D. Components C-7 ALL

FD Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.50 -0.45 -0.40

Detected 84.0 82.7 82.5 81.6 81.0 79.5 85.5 84.8 83.1

Missed 16.0 17.3 17.5 18.4 19.0 20.5 14.5 15.2 16.9

Fake 6.43 6.30 6.08 6.14 6.19 6.06 9.50 6.37 3.95

Reliability 79.4 78.3 78.3 77.5 76.9 75.6 78.4 80.2 80.4

D. Components C-7-4-10 ALL

FD Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.50 -0.45 -0.40

Detected 84.4 84.4 84.0 82.9 82.9 82.1 85.5 84.8 83.1

Missed 15.6 15.6 16.0 17.1 17.1 17.9 14.5 15.2 16.9

Fake 6.40 6.40 6.21 6.28 6.28 6.11 9.50 6.37 3.95

Reliability 79.8 79.8 79.6 78.5 78.5 77.9 78.4 80.2 80.4

D. Components C-7-3-11 ALL

FD Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.50 -0.45 -0.40

Detected 84.8 84.8 84.8 84.8 84.8 84.2 85.5 84.8 83.1

Missed 15.2 15.2 15.2 15.2 15.2 15.8 14.5 15.2 16.9

Fake 6.37 6.37 6.15 6.15 6.15 6.19 9.50 6.37 3.95

Reliability 80.2 80.2 80.4 80.4 80.4 79.8 78.4 80.2 80.4

One important difference between the 68 filters detection components (7, 7-4-10) and the 99

oŶe is that the fiƌst’s ƌeliaďilitǇ is liŶeaƌ. The ϲϴ filteƌs ĐoŵpoŶeŶts ƌeliaďilitǇ is iŶĐƌeasiŶg as the
face detection section threshold parameter value is decreasing. This is sensible as this way the

face detection section makes more detections and calling for the final detection the pose

estimation section. This creates better results but destroys the reason of using the detection

section. If the detection section detects faces every time it is executed, then there is no

execution time profit as the pose estimation section is also always executed. On the other hand

the 99 filters detection components reliability is not linear making the detection section more

efficient. As seen in the Table 137 data these detection components combination has its best

reliability at the detection section threshold parameter value at -0.50 succeeding reliability

better than the algorithm without this patch. This is a very important fact as these detection

components can make the detection section very profitable, skipping the pose estimation one

many times as explained before.

One important comparison is between the two different sets of detection components that use

the 68 filters. When using only the component seven the algorithms reliability is decreased

about 1%, a difference that can be omitted if the Threshold parameter value is decreased as

referred in the previous paragraph. The main difference between these two detection

components sets is that when one detection component is used the algorithm is less efficient on

great viewing angles as shown in the Table 138 below. As seen in this table when one detection

component is used the algorithm is having great loss in the pose angles less than -60
O
 and more

than 60
O
, almost the twice more than the three detection components set. Again the reduction

of the FD Threshold parameter value can fix this problem. As far as the pose estimation, the

algorithm accuracy is affected less than 1% on the 68 filters detection components models and

almost 0% to the 99 one.

Table 138 - DC Patch Missed Detections Viewing Angle Classification (%)

D. Components C-7-3-11 C-7-4-10 C-7

FD Threshold -60< -60<&<60 <60 -60< -60<&<60 <60 -60< -60<&<60 <60

-0.70 0 0 0 -5.26 0.32 0 -10.5 0.95 -4.17

-0.65 0 0 0 -5.26 0.32 0 -17.5 0.32 -4.17

-0.60 -1.75 0.32 0 -8.77 0.63 -4.17 -17.5 0.32 -8.33

-0.55 -1.75 0.32 0 -14.0 0.95 -16.7 -19.3 0.32 -20.8

-0.50 -1.75 0.32 0 -14.0 0.95 -16.7 -22.8 0.32 -25.0

Comparing the DC patch results with the ones that the algorithm succeeds without it, it is visible

and at the same time sensible that the face detections efficiency is decreased a bit but in a very

tiny amount. Using this patch, the algorithm can sacrifice a very small amount of its face

detection efficiency and maybe a little bit of its reliability gaining execution time. Especially

when the 68 filters detection components are used the algorithm except of skipping the

components stage of many model components it can also skip the calculation of 31 filters

responses saving a lot of execution time.

The amount of execution time that the algorithm can save using these detection component is

not able to be defined as it is detections dependent. The only thing can be done is to predict it

using some of the algorithms characteristics according to previous tests mad

In chapter 6.2, a profiling of the Find procedure was appose using the default threshold variable

value of -0.65. After the NMS procedure changes (Chapter 9.1) application on the algorithm, the

most suitable threshold variable value is set to -0.45. When using the 99 filters detection

components the most efficient value of the detection threshold parameter is the -0.50 while for

the 68 filters ones the minimum is the best. For that reason a profiling for multiple different

values of the Threshold variable was done. By this testing, the data we need is the number of

levels with high-score values a face produce to its corresponding component. This is a different

pointer relatedly to the Levels with high-score values used in chapter 7. In this patch the

maximum number of levels with high-score values that a face produce at every component is

needed. This component is probably the one that will be detected as the correct pose of it. This

way, according to the threshold parameter value, the number of levels in which the patch will

execute the pose estimation section can be estimated. The profiling results are shown in Table

139 below.

Table 139 - DC Patch Max(LevelsHigh-Scores[Component]) %

Threshold Max Average Min

-0.75 92.3 44.1 11.8

-0.70 92.3 42.6 11.8

-0.65 84.6 39.9 6.25

-0.60 71.4 37.1 6.25

-0.55 69.2 36.1 6.25

-0.50 69.2 34.1 6.25

-0.45 61.5 32.7 6.25

Another parameter for predicting the execution time profit of this patch is the time needed for

the Component and Convolution stages. As referred in chapter 8.5 the relation between two

sequential levels execution time is given by the function (31) below. As referred in the previous

paragraph, the number of levels with high-score values produced by a detection is equal to the

expression (32) where the  max LHS
AVG Threshold is the average column of Table 140. In the

function (32) the rounding is down in order to get safer results.

  0.25 0.76 ()  LTime L Time All (31)

    (.)High Scores Max LHSMaxL Threshold AVG Threshold length F Pyramid   (32)

Using the function (31) above the execution time graph of every level execution time is as

shown in Diagram 93. In the Table 140 also is shown the value of  High ScoresMaxL Threshold

on different image sizes and different Threshold parameter values.

Table 140 - DC Patch MaxLHigh-Scores(Threshold)

Threshold -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45

320x240 3 3 3 3 3 2 2

640x480 5 5 5 4 4 4 4

800x600 6 6 5 5 5 4 4

1024x768 7 6 6 6 5 5 5

1280x960 7 7 7 6 6 6 6

Diagram 93 - Function (31)

Diagram

Combining the function (31) and (32) a prediction functions that tries to calculate the execution

time saved in different situations is created, the function (33) below, that calculates the

execution time of the detect stage when using this patch.

 ' det
Level Level

[no_face]

13

13 


   ect

Level

x L

C
T T T x (33)

 '

[no_face]

31

99
Conv Conv Conv

x L

T T T x


    (34)

Another advantage of this patch appears when using the 68 filters detection components on the

detection section. If only these filters are used then there is no reason for the Convolution stage

to calculate the rest filters responses (31 filters). If a detection is discovered then it will be

executed again to complete the calculations of the rest 31 filters responses. This gives an extra

saving of execution time that might worth the usage of 68 filters detection components. For this

case the function predicting the execution time needed for the Convolutions stage is the

function (34).

It is very complicate to make predictions of any case scenario of detections. It is obvious that

when an image is full of faces with different scales then detections would occur through the

whole features pyramid levels. On the other hand even if more than one faces exist within the

image but these faces are the same scale (for example, a family photo) then all the detections

would probably appear in the same levels of the features pyramid like only one existing. In order

to present the advantages of this patch, this scenario is going to be used as it is a possible to real

life images.

1 3 5 7 9 11 13 15

T
(x

)

Levels

Figure 63 - Multiple Faces, Same Scale Image Example
Figure 64 - Multiple Faces, Multiple Scales Image

Example

In the Table 141 below the execution time profit of no detections in the detection procedure

according to the features pyramid level is shown at the last line. By this table, adding the profits,

it is easy to predict some way what would final profit be for different detections scenarios. In

our main scenario, described in the next paragraph, the total profit would be equal to the sum

of the levels with no detections. As is visible in the last line the 68 filters components detection

ŵodel ĐaŶ ƌeduĐe the algoƌithŵ’s eǆeĐutioŶ tiŵe to its half ǁheŶ Ŷo deteĐtioŶ oĐĐuƌ ǁhile the
99 filters one only for a quarter.

Table 141 - DC Patch Execution Time Profit per Level (%)

Levels
Level Stage + Convolution Stage

C-7-3-11 C-7-4-10 C-7 C-7-4-10 C-7

1 -5.96 -5.35 -6.79 -10.6 -12.1

2 -4.53 -4.07 -5.16 -8.07 -9.17

3 -3.44 -3.09 -3.92 -6.14 -6.97

4 -2.62 -2.35 -2.98 -4.66 -5.29

5 -1.99 -1.79 -2.26 -3.54 -4.02

6 -1.51 -1.36 -1.72 -2.69 -3.06

7 -1.15 -1.03 -1.31 -2.05 -2.32

8 -0.87 -0.78 -0.99 -1.56 -1.77

9 -0.66 -0.60 -0.76 -1.18 -1.34

10 -0.50 -0.45 -0.57 -0.90 -1.02

11 -0.38 -0.34 -0.44 -0.68 -0.78

12 -0.29 -0.26 -0.33 -0.52 -0.59

13 -0.22 -0.20 -0.25 -0.39 -0.45

14 -0.17 -0.15 -0.19 -0.30 -0.34

15 -0.13 -0.11 -0.15 -0.23 -0.26

16 -0.10 -0.09 -0.11 -0.17 -0.20

17 -0.07 -0.07 -0.08 -0.13 -0.15

All -24.6 -22.1 -28.0 -43.8 -49.8

The Table 141 above presents the execution time profit when no detection occur within an

image. This is very important if the TSM algorithm is used in video application where the empty

frames detection procedure can be completed much faster.

On the other hand, in real life applications it is more probable one or more detections, real or

fake, to appear in the detection procedure. In the next tables the profiling of the DC patch is

presented according to the profiling scenario where it is supposed that one or more, same scale,

faces are detected, including a number of fake faces (Detection Noise).

Table 142 - DC Patch Execution Time Reduction per Face Size (DC Set 7) (%)

Faces

Size
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

50%

-0.70 -21.2 -30.6 -33.5 -34.8 -35.3 -31.1

-0.65 -22.7 -33.1 -36.0 -37.4 -38.1 -33.4

-0.60 -24.5 -35.7 -38.5 -40.0 -40.9 -35.9

-0.55 -25.6 -36.8 -39.5 -41.1 -42.1 -37.0

40%

-0.70 - -24.0 -28.9 -31.4 -32.8 -29.3

-0.65 - -27.0 -31.7 -34.3 -35.7 -32.2

-0.60 - -30.1 -34.6 -37.2 -38.8 -35.2

-0.55 - -31.3 -35.7 -38.4 -40.0 -36.4

30%

-0.70 - -9.93 -19.0 -24.2 -27.3 -20.1

-0.65 - -13.9 -22.5 -27.6 -30.7 -23.7

-0.60 - -18.1 -26.1 -31.0 -34.2 -27.4

-0.55 - -19.6 -27.5 -32.4 -35.6 -28.8

20%

-0.70 - - -12.3 -4.77 -11.8 -9.60

-0.65 - - -14.8 -8.55 -16.4 -13.2

-0.60 - - -17.5 -13.6 -21.2 -17.4

-0.55 - - -18.5 -15.5 -23.0 -19.0

Table 143 - DC Patch Execution Time Reduction per Face Size (DC Set 7-4-10) (%)

Faces

Size
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

50%

-0.65 -18.7 -26.9 -29.2 -30.1 -30.3 -27.0

-0.60 -20.4 -29.3 -31.6 -32.6 -33.0 -29.3

-0.55 -21.5 -30.7 -33.0 -34.1 -34.7 -30.8

-0.50 -23.4 -32.5 -34.8 -36.0 -36.8 -32.7

40%

-0.65 - -21.5 -25.4 -27.3 -28.2 -25.6

-0.60 - -24.4 -28.1 -30.0 -31.1 -28.4

-0.55 - -25.9 -29.6 -31.7 -32.8 -30.0

-0.50 - -28.0 -31.6 -33.7 -35.1 -32.1

30%

-0.65 - -10.0 -17.3 -21.4 -23.8 -18.1

-0.60 - -13.8 -20.6 -24.6 -27.0 -21.5

-0.55 - -15.6 -22.3 -26.4 -28.9 -23.3

-0.50 - -18.4 -24.8 -28.8 -31.4 -25.9

20%

-0.65 - - -10.6 -4.69 -11.2 -8.82

-0.60 - - -13.0 -9.31 -15.6 -12.6

-0.55 - - -14.5 -11.5 -17.8 -14.6

-0.50 - - -16.4 -15.0 -21.0 -17.5

Table 144 - DC Patch Execution Time Reduction per Face Size (DC Set 7-3-11) (%)

Faces

Size
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

50%
-0.50 -13.4 -18.7 -20.0 -20.8 -21.3 -18.9

-0.45 -14.0 -19.2 -20.4 -21.2 -21.7 -19.3

40%
-0.50 - -16.2 -18.3 -19.6 -20.4 -18.6

-0.45 - -16.7 -18.7 -20.0 -20.8 -19.1

30%
-0.50 - -10.8 -14.5 -16.8 -18.3 -15.1

-0.45 - -11.6 -15.1 -17.4 -18.8 -15.7

20%
-0.50 - - -9.75 -9.01 -12.5 -10.4

-0.45 - - -10.2 -9.93 -13.3 -11.1

As is visible in the Table 142, Table 143 and Table 144, the execution time profit of this patch is

larger as the faces size is increasing. This is sensible because as the larger a detected face is the

larger (to the bottom) the level detected is. Then the levels of the pyramid with detections are

the smallest one and the largest are empty making the DC patch much more useful. The same

phenomenon applies to the image size. The larger an image is the more profitable the DC patch

is. This is because the larger an image is the larger is the pyramid created, making the

corresponding to the face scale levels to move toward to the bottom ones. As small irregularity

on this is cause on very small face size where the upper part of the detection range to the levels

of the pyramid is expanding beyond the pyramid as explained in chapter 6.2. In some images

very small faces cannot also be detected as described in chapter 9.4.

Diagram 94 - Detection Components Sets Execution Time Profit per Face Size

To summarize, a 10% to 30% of execution time can be saved when using the DC patch according

to the detection component set is used. This means that this patch can be a bit profitable to the

TSM algorithm execution time. This patch is a root patch for the next patches that are presented

in the next chapters and give the algorithm the ability of extra time saving.

9.7. Fast Pose Estimation

In this chapter a new approach on the execution flow of the pose estimation section of the DC

patch is presented. This approach aims on the same accuracy with less execution time needed.

The pose estimation section consists by the component stage where the DT and Backtrack ones

are contained. Inside this stage the algorithm applies the detection procedure for every pose

tree in order to decide which one is the correct. The highest score is the parameter that defines

the correctness. This patch is actually the next step of DC one and it can be considered as its

extension or a later version.

31.1
29.3

20.1

9.6

27.0
25.6

18.1

8.8

18.9 18.6

15.1

10.4

0

10

20

30

40

0.2 0.3 0.4 0.5

E
xe

cu
ti

o
n

 T
im

e
 P

ro
fi

t
(%

)

Faces Size

c-7

c-7-4-10

c-7-3-11

In this patch a new way of estimating the right pose is

introduced. The algorithm does not apply the detection

procedure to all pose trees but makes decisions about

the pose trees to be used in the component stage using

information from the already used pose trees results. In

the Figure 65 on the right, the execution flow of this

patch is shown. At the beginning of every Level stage

the algorithm executes the Component stage for the

detection components used by the DC patch. This patch

adds a Ŷeǁ data stƌuĐtuƌe, the ͞FaĐes͟. This data
structure holds information about every face detected

in the component stage. This data structure is explained

in chapter 9.7.1.

After the detection components has completed the face

detection sectioŶ, the ͞Pose Peak DeteĐtioŶ͟ patĐh use
the iŶfoƌŵatioŶ stoƌed iŶ the ͞FaĐes͟ data stƌuĐtuƌe list
to decide which pose tree the pose estimation section

should execute. Decisions are made after every

component stage execution as the Faces data structures

information are updated. The way this patch makes

decisions is explained in chapter 9.7.2.

When the Level stage is completed, then the algorithms uses again the information of the Faces

data stƌuĐtuƌes thƌough the ͞FaĐe Peak DeteĐtioŶ͟ patĐh to deĐide ǁhiĐh faĐes haǀe Đoŵpleted
their pose estimation procedure. The FPD patch uses the detection results from multiple levels

in order to take these decisions as is described in chapter 9.7.2.

The basic idea behind the FPE Patch is the application of the PPD one. The FPD patch is not

mandatory but as it is explained in the chapter 9.7.3 is does not affect at all the algorithms

detection performance and for this it is greatly recommended. The execution time profit these

patched offer is presented in the corresponding chapters.

9.7.1. Face Data Structure

The Face structure (Table 145) is a data structure that can easily replace the Results Cache one.

When a component stage is completed every high-score value of the DT score results is consider

a detected face. Using the Find v2.0 procedure these results end to less than two high-score

values per face detection. The algorithm then adds a Face data structure in the Faces array

storing the high-score value of this detection. If this high-score value is the highest this Face has

succeeded then it stores its detection result to the box variable. Every time a high-score value is

Figure 65 - Fast Pose Estimation Patch

Execution Flow Diagram

discovered, the algorithm check if it overlaps an already added Face as exactly the NMS

procedure does. If an overlap occurs then the high-score value is rejected. Even if it is rejected,

the algorithm keeps the highest high-score values of every component at every level to the

Scores array of this Face like keeping a high-score values log file. These information are used by

the FPD (Chapter 9.7.2) and LPD (Chapter 9.7.3) patches. This processing may delay a little bit

the component stage to be completed but it rejects the need of the NMS procedure at the end

of the detection stage. It is like the NMS procedure to be applied for every new detection.

Table 145 - Face Data Structure

Box Detection results. The Backtrack stage output.

Scores[13,

length(FP)]

Array holding the highest high-score value for every component stage

executed.

Completed Flag used when the detection procedure of this face is completed

The Face data structure array can replace the Results Cache data structure as it contains the

significant information the last one holds. The Results Cache according to the algorithm profiling

presented in chapter 6.14, contains the amount of data as shown in the Table 146 below for a

detection. The Scores array size is smaller than the Result data structure when the pyramid

length is less than 21 levels. It is almost impossible to exceed twice the size of the Result data

structure. As is visible in this table the Results Cache structure holds much more data per

detection than the Face one that makes the last one more efficient.

Table 146 - Face vs Results Cache Data Structures Size per Detection

Data Structure Size

Face    Re . 2 Result lenght Components length F P sult   

Results Cache
      

 
Re .

3.4 . Re

High Scores High Scores
sult length Components length F P Levels AVG Pixels

length F P sult

    

  

As far as the time consumption needed for the Face data structure to check for overlaps, it is

totally insignificant compared to the whole algorithm execution time and it replaces the time

needed for the NMS procedure that is not needed any more. After the Find procedure 2.0

version the execution time and the memory needed for the NMS procedure and the detections

results were reduced so much that any further reduction seems totally insignificant compared to

the whole algorithm consumptions.

9.7.2. Pose Peak Detection

The Pose Peak Detection patch is the one that compares a Face highest-score values across the

component stages executed and decides if its pose estimation procedure is completed for the

corresponding level or which pose tree should be used for the next component stage needed. As

shown in graphs X in chapter X, at the DC patch, the highest-score value of every pose tree

create the highest-scores curve for every face as the ones shown in the Diagram 95 below.

Diagram 95 - Level Highest-Scores Curves Peaks Example

Every curve draws a peak at the position of a pose tree which is consider to be the correct pose

estimation of the detection. This peak is the one that the PPD patch is trying to detect. Using the

maximum high-score (highest-score) of the pose trees components stage results the PPD patch

searches the gradient that leads to that peak. The execution flow this patch follows is as the

Figure 66 shows.

90 75 60 45 30 15 0 -15 -30 -45 -60 -75 -90

H
ig

h
e

st
-S

co
re

s

Pose Trees

0o Face

30o Face

60o Face

90o Face

Figure 66 - Pose Peak Detection Patch Execution Flow Diagram

The route that the PPD patch will follow until it discovers the pose peak is defined by the

detection components (DC) used in the face detection section of the DC patch. If the 99 filters

DC are used then the poses trees tree that is going to be followed is as shown in Figure 67.

Otherwise for the 68 filters DC sets the poses trees tree is the ones on the Figure 68 and Figure

69. When more than two faces are detected within the image the second one uses components

stage results of the pose trees executed for the first one and if it is not enough, it can continue

from the closest node to the leaf it belongs.

Figure 67 - Detection Components PPD Tree for 99 Filters

3 DC

Figure 68 - Detection Components PPD Tree for 68 Filters

3 DC

Figure 69 - Detection Components PPD Tree for

68 Filters 1 DC

According to these three trees the Table 147 below shows the number of pose trees that have

to be used in the component stage in order the patch can estimate a face pose correctly. As is

ǀisiďle iŶ the ͞AVG͟ ĐoluŵŶ theƌe is Ŷo sigŶifiĐaŶt diffeƌeŶĐe ďetǁeeŶ these thƌee DC sets of the
face detection section as far as the average components need to be executed until the patch

makes a decision. The main difference between these three sets is their variance. As seen the

three DC set variance is less than 1, meaning that the number of executions of the component

stage will be always close their average value. As seen in the Table 147, the minimum number of

the component stage executions is 4 while the maximum is 7 for the 99 filters DC set. On the

other hand the 68 filters one DC set succeeds a minimum number of component stage

executions to 3 while the maximum is 8. That is why its variance is about 3.

Table 147 - PPD Patch Components Stage Execution Times per Pose

Poses -90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

DC-7 7 7 6 5 4 3 3 4 5 6 7 8 8

DC-7-4-10 6 6 5 5 5 5 5 6 5 5 5 6 6

DC-7-3-11 5 5 4 6 6 5 5 6 7 7 4 5 5

 VAR(All) AVG(All) AVG(-45
oч & ч+ϰϱo

) AVG(-60
oш & ш+ϲ0o

)

DC-7 2.85 5.62 4.29 7.17

DC-7-4-10 0.24 5.38 5.14 5.67

DC-7-3-11 0.85 5.38 6.00 4.67

As seen in the Table 147 above, the 99 filters DC set is faster when the detected faces belongs to

the 39 filters components (±(60
O
-90

O
)) while the 68 filters ones are faster on the 68 filters

components. What is also important for choosing one of these sets is their efficiency at face

detection section and their time consumption profit as referred in the DC patch (chapter 9.6).

Probably this would be the main criteria for using each one.

Diagram 96 - Face Pose Peak Patch Example

In the Diagram 96 above the Component stage executions are shown for the image to its left

using the 68 filters one DC set at the face detection section of DC patch. As is visible the

algorithm executed the component stage only for the pose models 4 to 9 (-45
O
 to 30

O
). At the

top levels of the features pyramid, where the face is not clear yet, the results of the detection

procedure lead to the -15
O
 pose tree, but as the feature pyramid level is reaching the

appropriate scale the pose estimation approaches the correct pose tree (pose 0
o
). As seen, the

number of pose trees used at every level is maximum at four.

By testing the PPD patch the following results came from (Table 148). As far as the 99 filters DC

set, the results are very positive as the algorithms performance seems not to have been affected

at all compared to the results of the Table 134 (Chapter 9.6) and are almost similar to the results

1 2 3 4 5 6 7 8 9 10 11 12 13

H
ig

h
e

st
-S

co
re

s

Levels

30 15 0 -15 -30 -45

of the algorithm without using any patch. Looking at the results when the 68 filters three DC

sets what is observed is a small drop of the algorithm performance, about 1-2% on its reliability

and detection efficiency indexes compared to the algorithm version without any patch and

about 1% compared to the DC patch. On the other hand, the 68 filters one DC set performance

is ŵuĐh loǁeƌ thaŶ the otheƌ tǁo sets. It is oďǀious that this set’s loǁ deteĐtioŶ effiĐieŶĐǇ iŶ the
great viewing angles drops its total performance, although it can be useful for centered faces

detection applications.

Table 148 - PPD Patch Results Comparison (Threshold = -0.45) (%)

DC Set DC-7 ALL

FD Threshold -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.50 -0.45 -0.40

Detected 78.8 77.8 76.9 75.6 75.0 73.3 85.5 84.8 83.1

Missed 21.2 22.2 23.1 24.4 25.0 26.7 14.5 15.2 16.9

Fake 5.38 5.70 5.26 5.09 5.39 4.72 9.50 6.37 3.95

Reliability 75.5 74.3 73.8 72.7 71.9 70.7 78.4 80.2 80.4

DC Set DC-7-4-10 ALL

FD Threshold -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.50 -0.45 -0.40

Detected 82.9 82.7 81.8 81.6 80.6 79.7 85.5 84.8 83.1

Missed 17.1 17.3 18.2 18.4 19.4 20.3 14.5 15.2 16.9

Fake 6.05 6.07 6.36 5.68 5.99 6.05 9.50 6.37 3.95

Reliability 78.7 78.5 77.5 77.8 76.6 75.8 78.4 80.2 80.4

DC Set DC-7-3-11 ALL

FD Threshold -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.50 -0.45 -0.40

Detected - 84.6 84.6 84.2 84.0 81.6 85.5 84.8 83.1

Missed - 15.4 15.4 15.8 16.0 18.4 14.5 15.2 16.9

Fake - 5.71 5.71 5.74 5.30 2.30 9.50 6.37 3.95

Reliability - 80.5 80.5 80.1 80.2 80.1 78.4 80.2 80.4

What is significant is the fact that the 68 filters one DC set needs a very low face detection

threshold parameter value to succeed functional performance in contrast to the DC patch. This

is because in the DC patch a detection of one face was enough to activate all components to be

used in the pose estimation section. On the PPD patch this is not happening. On this patch only

the components needed for the pose estimation of this detected face are used. This reveals the

weakness of the 68 filters one DC set to respond to the detection efficiency the TSM algorithm

has to offer. The 68 filters one DC would probably be useful if used with the 68 filters Model

presented in chapter 9.5.

At last, compared to the Table 134 (Chapter 9.6) is

deduced that the effect of PPE patch is tiny to the

algorithm detection efficiency and reliability as far

as the face detection procedure. In addition

comparing the pose estimation results of the

algorithm with and without this patch the

difference is about 1% as presented in Table 149.

These results makes it obvious that this patch is

safe enough to be used with the TSM algorithm as

it can offer a reduction on its execution time without sacrificing any significant amount of its

performance.

As far as the execution time consumption profit using this patch, it is fully detection dependent.

There is a huge variety of occasions that may occur so only the basic scenarios introduced in

chapter 9.6 are going to be presented. In this patch another parameter affecting its

performance is the viewing angle of the detected faces. If there are faces looking to all

directions within the image, then it will be no execution time profit as all the pose trees will be

necessary for the right pose estimations. If there is one face only within a level image or multiple

looking at similar direction, then this patch will be proved useful. All these scenarios are

presented in the Table 150 below. What is interesting in this patch is the fact that it also affects

the fake detections detection procedure the same way it affects the real ones. This means that

the execution time saving does not totally comes from the real faces detection procedure but

also by the fake ones.

Table 150 - PPD Patch Execution Time Reduction per DC Set (1 Face Scenario) (%)

Faces

Size
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

 C-7-4-10

50%
-0.70 -33.9 -36.5 -37.4 -37.7 -37.7 -36.7

-0.60 -34.8 -37.9 -38.7 -39.1 -39.2 -38.0

40%
-0.70 - -34.5 -36.0 -36.6 -37.0 -36.0

-0.60 - -36.2 -37.5 -38.2 -38.6 -37.6

30%
-0.70 - -30.3 -33.0 -34.4 -35.3 -33.2

-0.60 - -32.6 -34.9 -36.3 -37.2 -35.3

20%
-0.70 - - -30.9 -28.5 -30.6 -30.0

-0.60 - - -32.3 -31.0 -33.2 -32.2

 C-7-3-11

50%
-0.60 -20.6 -22.1 -22.5 -22.7 -22.8 -22.1

-0.50 -21.0 -22.4 -22.8 -23.0 -23.2 -22.5

40% -0.60 - -21.3 -21.9 -22.3 -22.5 -22.0

Table 149 - FPE Patch Pose Estimation (%)

Threshold FPE Patch No Patch

-0.65 81.4 82.3

-0.60 81.7 82.6

-0.55 82.0 83.4

-0.50 82.9 83.9

-0.45 83.1 84.0

-0.40 83.2 84.2

-0.50 - -21.7 -22.3 -22.7 -22.9 -22.4

30%
-0.60 - -19.7 -20.8 -21.4 -21.9 -20.9

-0.50 - -20.3 -21.3 -21.9 -22.3 -21.4

20%
-0.60 - - -19.6 -19.1 -20.1 -19.6

-0.50 - - 20.0 -19.8 -20.7 -20.2

At this scenario (Table 150), the algorithm, when using the 68 filters DC set (DC-7-4-10), does

not calculate all of the edge 39 pose trees Filters Responses but just the half of them (19 or 20)

according to the face direction. This gives an extra execution time saving. The same thing also

applies on the next table (Table 151) where the execution time profit when multiple faces exist

within an image having the same scale and looking at the same direction covering the viewing

angle of 0 to +90 or 0 to -90 degrees. Of course, the 10% to 15% of the 68 filters DC set is not a

product of these Filters Responses skipped but also the 31 Filters Responses skipped on the

detection empty levels.

Table 151 - PPD Patch Execution Time Reduction per DC Set (0
o→±90o

 Scenario) (%)

Faces

Size
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

 DC-7-4-10

50%
-0.70 -30.6 -34.7 -36.0 -36.6 -36.8 -34.9

-0.60 -32.1 -37.0 -38.2 -38.9 -39.3 -37.1

40%
-0.70 - -31.8 -34.0 -35.1 -35.7 -34.1

-0.60 - -34.5 -36.5 -37.6 -38.3 -36.7

30%
-0.70 - -25.6 -29.6 -31.9 -33.3 -30.1

-0.60 - -29.2 -32.7 -34.9 -36.3 -33.3

20%
-0.70 - - -26.6 -23.3 -26.4 -25.5

-0.60 - - -28.9 -27.3 -30.6 -28.9

 DC-7-3-11

50%
-0.60 -18.0 -20.8 -21.4 -21.8 -22.0 -20.8

-0.50 -18.7 -21.3 -22.0 -22.4 -22.7 -21.4

40%
-0.60 - -19.4 -20.5 -21.1 -21.5 -20.6

-0.50 - -20.1 -21.1 -21.8 -22.2 -21.3

30%
-0.60 - -16.4 -18.4 -19.6 -20.4 -18.7

-0.50 - -17.4 -19.2 -20.4 -21.2 -19.5

20%
-0.60 - - -16.2 -15.3 -17.2 -16.2

-0.50 - - -16.9 -16.5 -18.3 -17.2

At the next last table (Table 152) the results of the 68 filters one DC set are also presented. This

is because this table scenario produces the same results with the 68 filters Model when the 68

filters DC sets (C-7, C-7-4-10) are used. This way a comparison between these two sets can be

done.

Table 152 - PPD Patch Execution Time Reduction per DC Set (-45
o→+ϰϱo

 Scenario) (%)

Faces

Size
Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

 DC-7

50%
-0.70 -38.6 -41.9 -43.0 -43.4 -43.6 -42.1

-0.60 -39.8 -43.8 -44.8 -45.3 -45.6 -43.8

40%
-0.70 - -39.6 -41.3 -42.2 -42.7 -41.5

-0.60 - -41.8 -43.3 -44.3 -44.9 -43.6

30%
-0.70 - -34.5 -37.8 -39.6 -40.8 -38.2

-0.60 - -37.5 -40.3 -42.1 -43.2 -40.8

20%
-0.70 - - -35.4 -32.7 -35.2 -34.4

-0.60 - - -37.2 -35.9 -38.6 -37.2

 DC-7-4-10

50%
-0.70 -36.0 -38.3 -39.0 -39.3 -39.4 -38.4

-0.60 -36.8 -39.5 -40.2 -40.5 -40.7 -39.6

40%
-0.70 - -36.7 -37.9 -38.5 -38.8 -38.0

-0.60 - -38.2 -39.2 -39.9 -40.2 -39.4

30%
-0.70 - -33.4 -35.5 -36.8 -37.5 -35.8

-0.60 - -35.3 -37.2 -38.4 -39.1 -37.5

20%
-0.70 - - -33.9 -32.1 -33.8 -33.3

-0.60 - - -35.1 -34.2 -36.0 -35.1

 DC-7-3-11

50%
-0.60 -15.4 -19.4 -20.4 -20.9 -21.2 -19.5

-0.50 -16.4 -20.2 -21.2 -21.8 -22.1 -20.3

40%
-0.60 - -17.4 -19.0 -19.9 -20.5 -19.2

-0.50 - -18.4 -19.9 -20.8 -21.4 -20.1

30%
-0.60 - -13.1 -15.9 -17.7 -18.8 -16.4

-0.50 - -14.5 -17.1 -18.8 -20.0 -17.6

20%
-0.60 - - -12.8 -11.5 -14.2 -12.8

-0.50 - - -13.7 -13.2 -15.8 -14.2

As seen in the Table 152 above, when centered faces exist within an image the 99 filters DC set

appears very lower execution time profit as, except of calculating the 31 Filters Responses of the

edge pose trees, it also uses two 39 parts pose trees on the face detection section of the DC

patch that is useless.

It is also significant to be referred that the execution time profit difference between the two 68

filters DC sets is actually insignificant. The usage of one DC instead of three does not actually

offers any noticeable execution time saving and probably does not worth the usage in contrast

to the performance impact it has.

Diagram 97 - Pose Peak Detection Patch DC Sets Execution Time Profit

As seen in the Diagram 97 above the 68 filters DC Set is always faster than the 99 filters one.

That’s ďeĐause of the Filteƌs RespoŶses that aƌe Ŷot ĐalĐulated iŶ the deteĐtioŶ eŵptǇ leǀels.
The fake detections useless processing does not seems to be able to reduce this performance.

As far as the 68 filters DC set, it is obvious that it performs better on centered faces while the 99

one prefers the more devious ones. Although for both DC sets the faces size makes the

differences more intensive as it is getting smaller, leading its detections to the top levels of the

pyramid.

9.7.3. Level Peak Detection

IŶ this Đhapteƌ the ͞Leǀels Peak DeteĐtioŶ͟ PatĐh is desĐƌiďed. As ƌefeƌƌed iŶ chapter 6.2, every

face within an image produces a large number of high-score values both on nearby components

and levels. This means that when a face detection is located in a level, then the same face would

be detected also in previous and next levels. The LPD patch tries to discover this depictions and

terminate the pose estimation procedure for this face.

As happens with the neighbor components (PPD Patch, Chapter 9.7.2), the same happens with

the high-score values of the neighbor levels. In the Diagram 98 (left) below the high-score values

of components 5 to 9 across the features pyramid levels of the Diagram 96 (Chapter 9.7.2), are

shown. As seen in this graph all the components highest-score curves across the levels are

0

10

20

30

40

50

0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
xe

cu
ti

o
n

 T
im

e
 P

ro
fi

t
(%

)

Faces Size

DC-7-4-10 DC-7-3-11 1 Face

Ϭ→±90 -ϰϱ→+ϰϱ

creating a peak highlighted with red color in the same graph. The LPD patch is trying to locate

this peak and terminate the pose estimation search for this face. After applying the LPD patch,

the same image produces the Diagram 98 (Right). As seen in this graph, as soon as the highest

peak aĐƌoss the ĐoŵpoŶeŶts aŶd leǀels is disĐoǀeƌed the algoƌithŵ stops seaƌĐhiŶg foƌ the faĐe’s
pose estimation as it considers this procedure completed.

 Diagram 98 - Level Peak Detection Patch Example

The combination of the PPD and the LPD patches gives the completed Fast Pose Estimation

Patch. In the Diagram 99 below the final highest-score results of the Diagram 96 (Chapter 9.7.2)

when the FPE patch is completely used is shown. What is gained is not only the less pose trees

component stage executions but also less component stage executions per pose model.

Diagram 99 - Fast Pose Estimation Patch Example

for TSM v3.2.2

Diagram 100 - Fast Pose Estimation Patch Example

for TSM v2.2.2

As seen in the Diagram 99, the algorithm skips the execution of the component stage for the -

15
O
 and 15

O
 pose trees for two levels. These two levels are the ones with the smallest features

images so the execution time saved is the least. In Chapter 6.18, the version 2.2.x of the

algorithm was presented. In this version the algorithm executes the Level stage descending,

starting from the bottom level. The Diagram 99 at this version would look like more with the

1 2 3 4 5 6 7 8 9 10 11 12 13

H
ig

h
e

st
-S

co
re

s

Levels
1 2 3 4 5 6 7 8 9 10 11 12 13

H
ig

h
e

st
-S

co
re

s

Levels

30

15

0

-15

-30

1 2 3 4 5 6 7 8 9 10 11 12 13

H
ig

h
e

st
-S

co
re

s

Levels
1 2 3 4 5 6 7 8 9 10 11 12 13

H
ig

h
e

st
-S

co
re

s

Levels

30

15

0

-15

-30

-45

Diagram 100 at its right. At this version the execution time saving would be much larger than the

3.2.x versions as the skipped levels would correspond to the largest features images.

The LPD patch combined with the PPD one make up the Fast Pose Estimation patch. After

testing these two patches together the results of the algorithm are as follow in the Table 153

below. As seen, the algorithm performance results did not changed at all by the application of

the LPD patch. The same applies for all the rest face detection threshold parameter values. This

patch as expected does not affect at all the algorithm efficiency and reliability and this is very

pleasant.

Table 153 - Pose & Level Peak Detection Patches Results (FD Threshold = -0.65) (%)

DT Set DC-7-3-11

Threshold -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35

Detected 89.5 88.7 86.8 84.8 84.6 82.7 80.1

Missed 10.5 11.3 13.2 15.2 15.4 17.3 19.9

Fake 28.4 17.7 12.5 7.89 5.71 3.49 2.60

Reliability 66.1 74.5 77.2 79.1 80.5 80.3 78.5

 Without LPD Patch (only the PPD)

Detected 89.5 88.7 86.8 84.8 84.6 82.7 80.1

Missed 10.5 11.3 13.2 15.2 15.4 17.3 19.9

Fake 28.4 17.7 12.5 7.89 5.71 3.49 2.60

Reliability 66.1 74.5 77.2 79.1 80.5 80.3 78.5

As far as the execution time reduction this patch can succeed is detection dependent as the PPD

one. In some scenarios this profit is not significant as it is too small but although it is important

to be presented as these results are the final results of the Fast Pose Estimation Patch. At the

following results the assumption that the level highest-scores curves are symmetric or with a

small slope to the bottom levels (negative round) in order not overestimated results to be

presented. The maximum Levelswith-high-score values that are produced by a detection are shown in

the Table 140 (Chapter 9.6). The detection procedure is applied to all of them without the LPD

patch. The LPD patch configures the amount of levels that the detection procedure is applied as

shown in the Table 154 below. The new maximum Levelswith-high-score values are shown in the

Table 155. As seen in this table, the LPD patch affects mainly the larger images as these images

are the ones with larger Levelswith-high-score. A peak needs at least 3 levels to be created and four to

start offering a profit so as it is sensible this patches efficiency is increasing as the image size

also does.

Table 154 - LPD Patch Detection Procedure Levels

Threshold -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45

320x240 3 3 3 3 3 3 3

640x480 4 4 4 4 4 4 4

800x600 5 5 4 4 4 4 4

1024x768 5 5 5 5 4 4 4

1280x960 5 5 5 5 5 5 5

Table 155 - LPD

Patch MaxLHigh-Scores

No Patch
LPD

Patch

3 3

4 4

5 4

6 5

7 5

8 6

9 6

10 7

1
1

2

 
  
 

High-Scores

High-Scores

MaxL
LPD - MaxL (35)

The function (35) above is the one that calculates the Levelswith-high-score of a detection when the

LPD patch is used in the algorithm.

In the Table 156 below the execution time profit of the FPE algorithm is presented as it is

conformed after the usage of both PPD and LPD patches for the same scenarios as in chapter

9.6. As happens to the PPD patch, the same way the LPD one is affecting the fake detections.

The fake detections have the same characteristics with the real ones so LPD patch reduces the

detection procedure of the fake faces also.

Table 156 - LPD Patch Execution Time Reduction per DC Set (1 Face Scenario) (%)

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

 DC-7-4-10

50%
-0.70 -34.3 -37.7 -38.6 -38.9 -39.1 -37.7

-0.60 -35.1 -38.7 -39.5 -39.9 -40.1 -38.7

40%
-0.70 - -35.9 -37.3 -38.0 -38.4 -37.4

-0.60 - -37.2 -38.4 -39.2 -39.6 -38.6

30%
-0.70 - -32.1 -34.6 -36.1 -37.0 -35.0

-0.60 - -33.9 -36.1 -37.5 -38.3 -36.5

20%
-0.70 - - -33.6 -31.0 -32.8 -32.5

-0.60 - - -34.3 -32.8 -34.9 -34.0

 DC-7-3-11

50%
-0.60 -20.7 -22.4 -22.7 -22.9 -23.1 -22.3

-0.50 -21.0 -22.6 -22.9 -23.2 -23.3 -22.6

40%
-0.60 - -21.7 -22.2 -22.6 -22.8 -22.3

-0.50 - -22.0 -22.5 -22.9 -23.1 -22.6

30% -0.60 - -20.2 -21.2 -21.8 -22.3 -21.4

-0.50 - -20.6 -21.6 -22.2 -22.6 -21.7

20%
-0.60 - - -20.4 -19.8 -20.7 -20.3

-0.50 - - -20.5 -20.3 -21.2 -20.7

The results of the LPD patch in the result Table 156, Table 157 and Table 158 shows that this

patch has greater impact on the large images than in the small ones. This is sensible as large

image detections create large detection range over the levels giving the LPD patch the space to

operate. Low Threshold parameter values also enables the LPD patch as this parameter affects

the detection range either when it is for real detections or when it is for the fake ones that are

increasing. The impact of this patch is increasing as the detected faces size is reducing because

the faces detection level is getting closer to the top one where the impact of skipping even one

level is getting greater.

Table 157 - LPD Patch Execution Time Reduction per DC Set (0
o→±90o

 Scenario) (%)

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

 DC-7-4-10

50%
-0.70 -31.0 -36.2 -37.4 -38.1 -38.4 -36.2

-0.60 -32.2 -37.8 -39.0 -39.7 -40.1 -37.7

40%
-0.70 - -33.6 -35.6 -36.8 -37.4 -35.9

-0.60 - -35.5 -37.4 -38.6 -39.3 -37.7

30%
-0.70 - -28.1 -31.8 -34.0 -35.3 -32.3

-0.60 - -30.7 -34.1 -36.2 -37.5 -34.6

20%
-0.70 - - -30.3 -26.6 -29.3 -28.7

-0.60 - - -31.3 -29.4 -32.5 -31.1

 DC-7-3-11

50%
-0.60 -18.1 -21.2 -21.9 -22.3 -22.5 -21.2

-0.50 -18.7 -21.6 -22.2 -22.7 -22.9 -21.6

40%
-0.60 - -19.9 -21.0 -21.6 -22.0 -21.2

-0.50 - -20.5 -21.4 -22.1 -22.5 -21.6

30%
-0.60 - -17.2 -19.1 -20.3 -21.0 -19.4

-0.50 - -18.0 -19.7 -20.9 -21.6 -20.0

20%
-0.60 - - -17.6 -16.5 -18.2 -17.4

-0.50 - - -17.8 -17.4 -19.0 -18.1

Table 158 - LPD Patch Execution Time Reduction per DC Set (-45
o→+ϰϱo

 Scenario) (%)

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

 DC-7-4-10

50%
-0.70 -36.3 -39.1 -39.8 -40.1 -40.3 -39.1

-0.60 -36.9 -39.9 -40.6 -41.0 -41.2 -39.9

40%
-0.70 - -37.7 -38.8 -39.4 -39.7 -38.9

-0.60 - -38.7 -39.7 -40.4 -40.7 -39.9

30%
-0.70 - -34.7 -36.7 -37.9 -38.6 -37.0

-0.60 - -36.1 -37.9 -39.1 -39.8 -38.2

20%
-0.70 - - -35.9 -33.9 -35.4 -35.0

-0.60 - - -36.5 -35.4 -37.1 -36.3

 DC-7-3-11

50%
-0.60 -15.5 -20.0 -21.0 -21.6 -21.9 -20.0

-0.50 -16.4 -20.6 -21.5 -22.1 -22.5 -20.6

40%
-0.60 - -18.2 -19.7 -20.7 -21.2 -19.9

-0.50 - -18.9 -20.4 -21.3 -21.9 -20.6

30%
-0.60 - -14.3 -17.0 -18.7 -19.8 -17.4

-0.50 - -15.3 -17.9 -19.5 -20.6 -18.3

20%
-0.60 - - -14.8 -13.2 -15.7 -14.6

-0.50 - - -15.2 -14.5 -16.9 -15.5

Diagram 101 - Level Peak Detection Patch DC Sets Execution Time Profit

Looking at the Diagram 101 above, what is obvious is that the LPD patch is just saving only a

small amount of execution time. This amount is not over 3% and it could be considered

insignificant for using this patch in the TSM algorithm. A reason for this small execution time

profit is the fact that the levels skipped by the LPD patch is the smallest ones in the detection

range of a detection (real or fake). In chapter X the version 2.2.2 is presented. In this version the

algorithm forwards the pyramid levels to the detection procedure starting from the bottom to

the top, exactly the opposite way the version 3.2.2 does (the main version). In the v2.2.2 of the

algorithm the LPD patch would skip the largest levels of the detection range instead of the small

0

10

20

30

40

50

0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
xe

cu
ti

o
n

 T
im

e
 P

ro
fi

t
(%

)

Faces Size

DC-7-4-10 DC-7-4-10 LPD DC-7-3-11

DC-7-3-11 LPD 1 Face Ϭ→±90

-ϰϱ→+ϰϱ

ones. This means that in this version the impact of the LPD patch would be greater than the

v3.2.2. In the following tables the results of the LPD patch using the version 2.2.2 of the

algorithm are presented.

Table 159 - LPD Patch Execution Time Reduction per DC Set (1 Face Scenario) (v2.2.2) (%)

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

 DC-7-4-10

50%
-0.70 -34.4 -38.7 -39.4 -39.9 -40.0 -38.5

-0.60 -35.1 -39.3 -40.0 -40.5 -40.7 -39.1

40%
-0.70 - -37.4 -38.6 -39.3 -39.7 -38.7

-0.60 - -38.0 -39.2 -39.9 -40.3 -39.4

30%
-0.70 - -34.5 -36.7 -38.1 -38.8 -37.0

-0.60 - -35.3 -37.4 -38.8 -39.5 -37.8

20%
-0.70 - - -32.0 -34.6 -36.5 -34.4

-0.60 - - -33.0 -35.5 -37.3 -35.3

 DC-7-3-11

50%
-0.60 -20.7 -22.6 -22.9 -23.1 -23.2 -22.5

-0.50 -21.0 -22.8 -23.1 -23.3 -23.4 -22.7

40%
-0.60 - -22.0 -22.5 -22.9 -23.1 -22.6

-0.50 - -22.2 -22.7 -23.1 -23.3 -22.8

30%
-0.60 - -20.8 -21.7 -22.4 -22.7 -21.9

-0.50 - -21.0 -21.9 -22.6 -22.9 -22.1

20%
-0.60 - - -19.8 -20.9 -21.7 -20.8

-0.50 - - -20.0 -21.1 -22.0 -21.1

Table 160 - LPD Patch Execution Time Reduction per DC Set (0
o→±90o

 Scenario) (v2.2.2) (%)

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

 DC-7-4-10

50%
-0.70 -31.0 -37.5 -38.6 -39.2 -39.5 -37.2

-0.60 -32.2 -38.5 -39.6 -40.3 -40.7 -38.3

40%
-0.70 - -35.6 -37.3 -38.4 -39.0 -37.6

-0.60 - -36.7 -38.4 -39.5 -40.2 -38.7

30%
-0.70 - -31.4 -34.6 -36.6 -37.8 -35.1

-0.60 - -32.7 -35.8 -37.8 -39.0 -36.3

20%
-0.70 - - -27.8 -31.6 -34.4 -31.3

-0.60 - - -29.4 -33.1 -35.8 -32.8

 DC-7-3-11

50%
-0.60 -18.1 -21.6 -22.2 -22.6 -22.8 -21.5

-0.50 -18.7 -21.9 -22.5 -22.9 -23.1 -21.8

40%
-0.60 - -20.6 -21.6 -22.2 -22.5 -21.7

-0.50 - -20.9 -21.8 -22.5 -22.9 -22.0

30%
-0.60 - -18.4 -20.1 -21.2 -21.9 -20.4

-0.50 - -18.8 -20.4 -21.6 -22.2 -20.7

20%
-0.60 - - -16.5 -18.6 -20.1 -18.4

-0.50 - - -17.0 -19.0 -20.5 -18.8

Table 161 - LPD Patch Execution Time Reduction per DC Set (-45
o→45

o
 Scenario) (v2.2.2) (%)

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

 DC-7-4-10

50%
-0.70 -36.3 -39.8 -40.4 -40.7 -40.9 -39.6

-0.60 -36.9 -40.3 -40.9 -41.3 -41.5 -40.2

40%
-0.70 - -38.7 -39.7 -40.3 -40.6 -39.8

-0.60 - -39.4 -40.3 -40.9 -41.2 -40.4

30%
-0.70 - -36.5 -38.2 -39.3 -39.9 -38.5

-0.60 - -37.2 -38.9 -40.0 40.6 -39.2

20%
-0.70 - - -34.5 -36.6 -38.1 -36.4

-0.60 - - -35.4 -37.4 -38.9 -37.2

 DC-7-3-11

50%
-0.60 -15.5 -20.6 -21.5 -22.1 -22.4 -20.4

-0.50 -16.4 -21.0 -21.9 -22.5 -22.8 -20.9

40%
-0.60 - -19.1 -20.5 -21.4 -22.0 -20.8

-0.50 - -19.6 -20.9 -21.9 -22.4 -21.2

30%
-0.60 - -15.9 -18.4 -20.1 -21.0 -18.9

-0.50 - -16.5 -18.9 -20.6 -21.5 -19.4

20%
-0.60 - - -13.2 -16.2 -18.4 -16.0

-0.50 - - -13.9 -16.8 -19.0 -16.6

Diagram 102 - Level Peak Detection Patch DC Sets Execution Time Profit (TSM v2.2.2)

The Diagram 102 shows the results of the results tables above. As is seen in this graph the extra

execution time saving came from the usage of the version 2.2.2 of the TSM algorithm is tiny in

order this version to be considered for replacing the 3.2.2 one as the main version of the

algorithm.

The conclusion for this patch is that it offers an insignificant execution time profit to the TSM

algorithm but it also does not cost anything in its detection performance. So, it is subjective if it

is worth to use or not. Either ways it does not cost anything to the detection performance and

there is no crucial reason for not using it. Many small execution time savings can produce a

larger one like the Short Pyramid patch (Chapter 7).

9.8. Pyramid Fast Pass

In this chapter an extra patch for gaining execution time on the TSM algorithm is appose. This

patch was inspired by the DC patch and the reduction of the interval parameter value. As

introduced in the chapter 9.3 the reduction of the Interval parameter causes significant

reduction of the algorithms detection performance. On this chapter a new technique is

introduced that succeeds an important speedup without a significant reducing the algorithm

detection performance.

The ͞PǇƌaŵid Fast Pass͟ patĐh is usiŶg the DC patch with an extended procedure. In the PFP

patch if the algorithm detects a face within the image in the face detection section then it

forwards the specific level to the pose estimation section. On this patch the algorithm does not

pass to the face detection section all the levels sequential but with a step of two levels. Starting

0

10

20

30

40

50

0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
xe

cu
ti

o
n

 T
im

e
 P

ro
fi

t
(%

)

Faces Size

DC-7-4-10 v2 DC-7-4-10 v3 DC-7-3-11 v2

DC-7-3-11 v3 1 Face Ϭ→±90

-ϰϱ→+ϰϱ

from the second level of the pyramid if the face detection section does not make any detection

the next level passed will be the after the next level. On the other hand if the face detection

section makes a detection then the next one will be passed to the same section as shown in the

Figure 70 below.

Figure 70 - Pyramid Fast Pass Patch Execution Flow Diagram

The idea behind this patch is that if a face exists within the image then it will produce high-score

values in more than one levels. If the algorithm checks for detections within the levels with a

step of two then it will detect this face. After it detects it then it will check the levels near it for a

more accurate detection. This can lead to the detection of more faces if they are in the same

scale or close it. By starting from the second level of the pyramid, the algorithm has the chance

to skip the greatest image size level meaning a reduction of the execution time by about 25%.

This is e very good deal.

At this point the usage of the Level Peak Detection patch would be very useful. According to the

previous paragraph the algorithm has to check for detections all the levels where the detection

range spreads plus two extra levels where the algorithm will not find anything and it will enable

the double stepping again. This can be avoided if the LPD patch is used because as the algorithm

makes a detection it can continue passing the next levels with a step of one until it detects the

detection level peak curve. Looking at the level curve, the LPD patch can decide if the algorithm

will have to continue passing the next levels or it will have to go back and apply the detection

section to the last skipped level. The LPD patch would also decide when it is the time to increase

the level step back to two as shown in Figure 71.

Figure 71 - Pyramid Fast Pass & LPD Patch Execution Flow Diagram

In the Table 85 in chapter 7.2, the average number of levels with high-scores appear in the

features pyramid when a face exists within the image is shown. As seen in this table it is very

important the face detection section threshold parameter value to create high-score values to

more than one level on average so that this patch will not bypass detections. As seen in the

values of Table 162 not all image sizes are able to create high-score values in enough levels

when a face exists within them, making this patch able to be applied without causing serious

detection skips. As is visible the small size image of 320x240 is just on the limit so the image size

should be considerable for the usage of this patch.

Table 162 - PFP Patch |LevelsHigh-Scores|Results per Threshold

Threshold -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45

320X240 3 2 2 2 2 2 2

640x480 5 5 4 4 4 4 3

800x600 5 5 5 4 4 4 4

1024x768 6 6 5 5 5 5 4

1280x960 7 7 6 6 6 5 5

By testing the face detection section using the Half Pyramid patch the following results come of,

as shown in Table 163 below.

Table 163 - Pyramid Fast Pass Patch Face Detection Section Results (%)

Threshold -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45

DC Set DC-7-4-10

Detected 86.8 84.2 80.8 78.4 76.9 73.9 70.5

Missed 13.2 15.8 19.2 21.6 23.1 26.1 29.5

Fake 37.6 30.8 22.1 13.6 8.40 4.95 2.08

Reliability 56.9 61.3 65.7 69.8 71.9 71.2 69.5

DC Set DC-7-3-11

Detected - - 85.0 83.3 81.6 79.7 78.0

Missed - - 15.0 16.7 18.4 20.3 22.0

Fake - - 16.4 6.70 3.78 2.61 1.08

Reliability - - 72.9 78.6 79.1 78.0 77.3

As seen in the Table 163, the detection efficiency of the Detection section is reducing as the

Threshold parameter value is increasing. It is very obvious that the 99 filters DC set is much

more efficient than the 68 filters one. The 99 filters DC set reaches its maximum reliability

without losing an important part of its detection efficiency when the 68 filters DC set appears a

great loss. In the next tables (Table 164 and Table 165) the impact of all these results in the final

detection results of the algorithm are shown.

Table 164 - Pyramid Fast Pass & LPD Patch Results (DC Set 7-4-10) (%)

FD Threshold -0.70 -0.65

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40

Detected 84.6 84.2 82.3 84.2 83.8 82.1

Missed 15.4 15.8 17.7 15.8 16.2 17.9

Fake 7.91 5.74 3.51 7.51 5.31 3.27

Reliability 78.9 80.1 79.9 78.8 80.0 79.8

FD Threshold -0.60 -0.55

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40

Detected 82.3 81.8 80.3 79.9 79.3 78.2

Missed 17.7 18.2 19.7 20.1 20.7 21.8

Fake 5.41 3.77 2.59 5.32 3.64 2.66

Reliability 78.6 79.3 78.7 76.5 77.0 76.6

Table 165 - Pyramid Fast Pass & LPD Patch Results (DC Set 7-3-11) (%)

FD Threshold -0.70 -0.65

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40

Detected 85.5 84.8 83.1 85.0 84.4 82.7

Missed 14.5 15.2 16.9 15.0 15.6 17.3

Fake 9.50 6.37 3.95 9.34 6.40 3.97

Reliability 78.4 80.2 80.4 78.2 79.8 80.0

FD Threshold -0.60 -0.55

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40

Detected 83.1 82.7 81.4 81.6 81.0 79.5

Missed 16.9 17.3 18.6 18.4 19.0 20.5

Fake 5.58 3.73 2.56 5.45 3.32 2.36

Reliability 79.2 80.1 79.7 78.0 78.8 78.0

As is visible in the Table 165, as smaller is the Detection section threshold variable the better is

the detection results. As is sensible, decreasing the detection section threshold variable can

produce the same results as without using the PFP patch. If this reduction is applied the

speedup of the algorithm will be reduced. In the 99 filters DC set the results are much better

than those in the 68 filters one. This means that a greater detection threshold value can be

used. The choice of the DC set and the detection threshold parameter value is a difficult one as

every possible combination offer different pros and cons. It is a matter of the goals are set to

the algorithm. If the reliability is the greatest factor the algorithm set up would be different than

when the execution time is more important.

As far as the execution time that can be saved using the PFP patch the Table 166 below can

show the profit of every level skipped to the whole TSM algorithm execution time. As seen in

this table, with the bold text, the profit on the execution time is summed at the last line of the

table. When the detection section uses the 99 filters DC set that is more accurate, the algorithm

reduces its execution time by 69.4% on empty faces images. In the same case the algorithm

reduces its execution time by 77.6% for the 68 filters DC set.

Table 166 - Pyramid Fast Pass Patch Execution Time Profit (No Face) (%)

Levels Both
DC Set

C7-3-11 C7-4-10

1 -25.0 -5.96 -10.6

2 -19.0 -4.53 -8.07

3 -14.4 -3.44 -6.14

4 -11.0 -2.62 -4.66

5 -8.34 -1.99 -3.54

6 -6.34 -1.51 -2.69

7 -4.82 -1.15 -2.05

8 -3.66 -0.87 -1.56

9 -2.78 -0.66 -1.18

10 -2.11 -0.50 -0.90

11 -1.61 -0.38 -0.68

12 -1.22 -0.29 -0.52

13 -0.93 -0.22 -0.39

14 -0.71 -0.17 -0.30

15 -0.54 -0.13 -0.23

16 -0.41 -0.10 -0.17

17 -0.31 -0.07 -0.13

The advantage of this patch is extremely good as the algorithm finish the detection procedure

very quickly when the image does not contain any face. This would be very useful on video

applications where the useless frames would be skipped fast until a useful arrives. On the other

hand when there are faces within the image, this patch acts differently as it is detection

dependent. According to the number and the scale of the faces, the algorithm would react

differently. The worst case scenario is when an image contains many faces in many scales as it

would produce high-score values in all the levels of the features pyramid. A more common case

is an image to contain one or more faces in the same scale like portraits or team photos. This is

an average scenario where this patch can act in many ways as far as the time profit it succeeds.

As referred in the chapter 9.6, the same scenarios are used in this patch. The results on these

scenarios are shown in Table 167 below.

Table 167 - Pyramid Fast Pass & LPD Patch Execution Time Reduction per DC Set (%)

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

 DC-7-4-10

50%
-0.70 -32.9 -50.2 -54.8 -57.7 -59.6 -51.0

-0.60 -35.6 -54.1 -58.0 -60.5 -62.2 -54.1

40%
-0.70 - -41.7 -48.8 -53.4 -56.4 -50.1

-0.60 - -46.8 -52.8 -56.8 -59.5 -54.0

30%
-0.70 - -23.5 -36.1 -44.2 -49.4 -38.3

-0.60 - -30.9 -41.8 -49.0 -53.7 -43.8

20%
-0.70 - - -31.1 -19.8 -29.8 -26.9

-0.60 - - -32.9 -26.7 -37.1 -32.2

 DC-7-3-11

50%
-0.70 -31.0 -47.4 -51.4 -53.9 -55.6 -47.9

-0.60 -31.5 -47.8 -51.2 -53.5 -54.9 -47.8

40%
-0.70 - -40.1 -46.2 -50.2 -52.8 -47.3

-0.60 - -41.4 -46.8 -50.3 -52.6 -47.8

30%
-0.70 - -24.3 -35.2 -42.2 -46.8 -37.1

-0.60 - -27.7 -37.2 -43.5 -47.5 -39.0

20%
-0.70 - - -30.9 -21.0 -29.7 -27.2

-0.60 - - -29.5 -24.2 -33.2 -28.9

The results on the Table 167 above are very optimistic. As seen in this table the algorithm can

reduce its execution time about its half. These are very useful results. What is changed in this

patch is the speedup relation between the 99 and 68 filters DC sets. In contrast to the DC the

execution time profit differences are reduced as the number of levels where the filters

responses are calculated is also reduced. This means that if the 99 filters DC set is used the

execution time loss will not be much while the algorithms reliability and detection efficiency will

be also increased for a little.

Diagram 103 – PFP & LPD Patch DC Sets Execution Time Profit

Except of the LPD patch that does not affect the algorithm detection performance, the PFP

patch can also be combined with the PPD one. The PPD patch has its impact on the algorithm

detection performance and for that reason it is important to test these patch together in order

to known what this combination impact on the detection performance would be. By doing this

the results are as the Table 168 and Table 169 shows.

Table 168 - Pyramid Fast Pass & PPD Patch Results (DC Set 7-4-10) (%)

FD Threshold -0.75 -0.70

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40

Detected 83.1 82.5 81.0 82.5 82.3 80.6

Missed 16.9 17.5 19.0 17.5 17.7 19.4

Fake 9.53 6.08 3.81 9.39 5.87 3.83

Reliability 76.4 78.3 78.5 76.0 78.3 78.1

FD Threshold -0.65 -0.60

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40

Detected 73.9 73.1 71.2 73.9 72.9 70.9

Missed 26.1 26.9 28.8 26.1 27.1 29.1

Fake 5.21 2.84 1.77 4.95 2.85 1.78

Reliability 71.0 71.5 70.3 71.2 71.3 70.0

Table 169 - Pyramid Fast Pass & PPD Patch Results (DC Set 7-3-11) (%)

FD Threshold -0.70 -0.65

0

10

20

30

40

50

60

0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
xe

cu
ti

o
n

 T
im

e
 P

ro
fi

t
(%

)

Faces Size

DC-7-4-10

DC-7-3-11

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40

Detected 85.0 84.8 82.9 84.0 83.5 82.1

Missed 15.0 15.2 17.1 16.0 16.5 17.9

Fake 7.87 5.25 3.48 7.31 5.10 3.27

Reliability 79.3 81.0 80.5 78.8 80.0 79.8

FD Threshold -0.60 -0.55

Threshold -0.50 -0.45 -0.40 -0.50 -0.45 -0.40

Detected 82.9 82.5 81.2 82.5 82.5 81.0

Missed 17.1 17.5 18.8 17.5 17.5 19.0

Fake 6.73 4.93 3.06 6.54 4.93 2.32

Reliability 78.2 79.1 79.2 78.0 79.1 79.5

As is seen in these tables the 99 filters DC set keeps having good performance with only a small

reduction in its reliability which is a very good result. On the other hand when the PFP and PPD

patches are combined with the 68 filters DC the performance is greatly reduced if the FD

Threshold parameter value is low. These means that these two patches can be efficiently

combined giving time performance speedup with only a small reduction in the detection

performance.

As far as the execution time saving from the usage of the PPD patch in combination with the PFP

one the results are as shown in the Table 170, Table 171 and Table 172 below according to the

scenario described in chapter 9.6.

Table 170 - PFP & PPD Patch Execution Time Reduction per DC Set (1 Face) (%)

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

 DC-7-4-10

50%
-0.70 -47.6 -58.0 -60.8 -62.6 -63.7 -58.5

-0.60 -49.3 -60.4 -62.7 -64.3 -65.3 -60.4

40%
-0.70 - -53.0 -57.2 -60.0 -61.8 -58.0

-0.60 - -56.0 -59.6 -62.1 -63.6 -60.3

30%
-0.70 - -42.0 -49.6 -54.4 -57.6 -50.9

-0.60 - -46.4 -53.0 -57.3 -60.1 -54.2

20%
-0.70 - - -46.6 -39.7 -45.7 -44.0

-0.60 - - -47.6 -43.9 -50.2 -47.2

 DC-7-3-11

50%
-0.70 -39.4 -51.2 -54.0 -55.8 -57.0 -51.5

-0.60 -39.8 -51.5 -53.9 -55.5 -56.5 -51.4

40% -0.70 - -45.9 -50.3 -53.2 -55.0 -51.1

-0.60 - -46.9 -50.7 -53.2 -54.9 -51.4

30%
-0.70 - -34.7 -42.4 -47.5 -50.7 -43.8

-0.60 - -37.1 -43.9 -48.4 -51.2 -45.1

20%
-0.70 - - -39.4 -32.3 -38.5 -36.7

-0.60 - - -38.4 -34.6 -41.0 -38.0

Table 171 - PFP & PPD Patch Execution Time Reduction per DC Set (0
o→±90o

) (%)

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

 DC-7-4-10

50%
-0.70 -44.1 -56.2 -59.4 -61.4 -62.7 -56.8

-0.60 -46.0 -58.9 -61.6 -63.4 -64.5 -58.9

40%
-0.70 - -50.3 -55.2 -58.4 -60.5 -56.1

-0.60 - -53.8 -58.0 -60.8 -62.7 -58.8

30%
-0.70 - -37.6 -46.4 -52.0 -55.7 -47.9

-0.60 - -42.8 -50.4 -55.4 -58.6 -51.8

20%
-0.70 - - -42.9 -35.0 -42.0 -40.0

-0.60 - - -44.2 -39.8 -47.1 -43.7

 DC-7-3-11

50%
-0.70 -36.8 -50.0 -53.2 -55.2 -56.6 -50.4

-0.60 -37.2 -50.3 -53.1 -54.9 -56.0 -50.3

40%
-0.70 - -44.1 -49.1 -52.3 -54.3 -49.9

-0.60 - -45.2 -49.5 -52.3 -54.2 -50.3

30%
-0.70 - -31.5 -40.2 -45.8 -49.5 -41.7

-0.60 - -34.2 -41.8 -46.9 -50.1 -43.2

20%
-0.70 - - -36.7 -28.8 -35.8 -33.8

-0.60 - - -35.6 -31.3 -38.6 -35.2

Table 172 - PFP & PPD Patch Execution Time Reduction per DC Set (-45
o→+ϰϱo

) (%)

Faces Size Threshold 320x240 640x480 800x600 1024x768 1280x960 Average

 DC-7-4-10

50%
-0.70 -43.7 -56.0 -59.2 -61.3 -62.6 -56.5

-0.60 -45.6 -58.7 -61.5 -63.3 -64.5 -58.7

40%
-0.70 - -50.0 -55.0 -58.2 -60.3 -55.9

-0.60 - -53.5 -57.8 -60.7 -62.5 -58.6

30%
-0.70 - -37.1 -46.0 -51.7 -55.4 -47.6

-0.60 - -42.3 -50.0 -55.1 -58.4 -51.5

20%
-0.70 - - -42.5 -34.4 -41.5 -39.5

-0.60 - - -43.7 -39.3 -46.7 -43.3

 DC-7-3-11

50%
-0.70 -34.2 -48.9 -52.4 -54.7 -56.1 -49.2

-0.60 -34.6 -49.2 -52.2 -54.2 -55.5 -49.2

40%
-0.70 - -42.3 -47.8 -51.3 -53.6 -48.8

-0.60 - -43.5 -48.3 -51.4 -53.4 -49.2

30%
-0.70 - -28.3 -38.0 -44.2 -48.3 -39.7

-0.60 - -31.3 -39.8 -45.3 -48.9 -41.3

20%
-0.70 - - -34.1 -25.3 -33.1 -30.9

-0.60 - - -32.9 -28.1 -36.2 -32.4

As seen in the execution time saving tables above the usage of the PPD patch in combination to

the PFP one offer an execution time profit of about 5-10% which is more significant in small size

images and less in the larger ones. As it is sensible the most significant part of the algorithm is

the Convolution stage. Every time the filters responses calculation is skipped the execution time

benefits are increasing significantly.

Diagram 104 – PFP & PPD Patch DC Sets Execution Time Profit

0

10

20

30

40

50

60

70

0.2 0.3 0.4 0.5

E
xe

cu
ti

o
n

 T
im

e
 P

ro
fi

t
(%

)

Faces Size

DC-7-4-10 DC-7-3-11 1 Face Ϭ→±90

-ϰϱ→+ϰϱ No PPD (68) No PPD (99)

10. Related Comparison

In this chapter the comparison of this thesis implementation with the [25] one provided by the

creators of the TSM system is presented. There are also other related algorithms as referred in

chapter 3, but only a short description and tasks support comparison is appose in the next

subchapters as related and no similar systems cannot easily compared. There are also no

freeware implementation on C\C++ to many of the related systems as [3], [4], [6], [7], [8], [9]

and [10]. On the other hand there are some freeware systems free to use in the web but they do

not implement the same tasks in order to be compared as far as the time performance with this

thesis and [25] implementation.

Table 173 – Tests Hardware Specifications

 System 1 System 2 System 3

CPU Model
Intel Core i7-4600U

@2.70GHz

Intel Core 2 Duo

T8100 @2.10GHz

Dual Core ARM

Cortex-A9 @866MHz

CPU Cores 4 2 2

RAM Memory 8 GB 4 GB 512 MB

Operating System
VM Ubuntu 15.01 (no

GUI)
Ubuntu 14.04 (no GUI) Ubuntu 12.04 (no GUI)

v3.2.2/Creators[25] -56.3 % -57.2 % -63.4 %

As far as the [25] implementation of Hang Su, the open source code provided had to be

customized as it uses some extra methods for making the detection process faster like scaling

the input image to a small size one. This method makes the face detection process faster but it

avoids the detection of small faces as described in chapter 9.4. This thesis implementation does

not reduce the input image size and it was sensible that only same procedure systems can be

compared. Studding the Hand Su C\C++ code of his implementation what is noted is that it is

very similar to the TSM v1.2 described in chapter 6.5.

Testing these two implementation in the same hardware resources as the ones shown in Table

173 the following results came as the ones presented in Table 174.

Table 174 - TSM v3.2.2 vs Creators Execution Time (%)

System CPU Cores 320x240 640x480 800x600 1024x768 1280x960 Average

1

1 -50.9 -38.6 -32.5 -31.7 -29.4 -36.6

2 -61.6 -46.1 -42.1 -41.4 -39.6 -46.2

3 -61.6 -49.9 -50.4 -47.4 -47.6 -51.4

4 -65.2 -53.2 -55.5 -54.1 -53.4 -56.3

2 2 -76.5 -54.4 -52.7 -52.5 -49.6 -57.2

3 2 -76.6 -56.7 -56.9
Out of

memory

Out of

memory
-63.4

In Table 174 it is visible that the TSM v3.2.2 algorithm implementation is getting faster as the

number of CPU cores in the hardware is increasing. This is because the original version

implemented by Hang Su is using the multithreading technique only in the convolution

procedure and nowhere else. This makes us assume that the memory consumption of this

implementation is similar to the memory consumption of the versions 1.2 or 1.3. On the other

hand the absence of parallelization in the rest parts of the algorithm (ex. DT stage) makes it

getting slower as the parallelization resources increase compared to the version 3.2.2.

As referred in chapter 3 there are algorithms designed since the [1] published that some of

them claim to have better detection performance and others to be faster. There are also some

freeware libraries offering face detection implementing some of them. In the next subchapters

the differences between these systems and the [1] is appose.

10.1. Freeware Libraries

Some of the related systems to this thesis are offered freely in the web ready to be used by

anyone. The following subchapters present some of them and describe the differences between

these ones and the implementation of this thesis and [25] that are based on [1] face detection

method.

10.1.1. OpenCV

The OpenCV [27] library is the most famous and most used one. It uses the face detection

method proposed by Viola and Jones in 2001 [17] and it is the most famous face detection

algorithm. This algorithm is very fast but it only supports face detection without pose estimation

and landmark localization. It is also efficient in frontal face detection. Although it is very famous

it lacks on detection performance. Despite that it was the state-of-the-art algorithm of face

detection task for many years.

Figure 72 – OpenCV Face Detection Example

10.1.2. Dlib C++ Library

The Dlib [26] library is a C++ and Python library offering a variety of C++ libraries for multiple

purposes, one of them is the image processing and the face detection. The Dlib library offers

two different choices of face detection, the single face detection and the face detection with

landmark localization.

The single face detection system offer frontal face detection only (-45
o
 to +45

o
) using the object

detection method of [2]. It does not offer though pose estimation. The extra landmark

localization library is used after the face detection procedure using the data returned by the

face detection task and uses the [15] only in the area of the image where the face is detected.

This is a very good method for fast landmark localization. The difference with the [1] system is

that the last one offers pose estimation and face detection on a greater range of viewing angles

(-90
o
 to +90

o
).

 Figure 73 – Dlib Face Detection and Landmark Localization Example

10.1.3. Face SDK

The Face SDK [30] library is a library for face

detection, recognition and verification. This

library is not referred to any known face

detection algorithm and it only supports face

detection. It detects the eyes, nose and mouth

centers and by them it results to a face

detection. No pose estimation and landmark

localization is supported. The method used for

the face detection makes it obvious that

probable can support only frontal face

detection.

10.1.4. Flandmark

This Flandmark [31] library uses the OpenCV library for face detection and by the returned data

searches the area of the detected faces for seven critical landmarks. These landmarks are the

edges of the eyes, the tip of the nose and the edges of the mouth. No other landmark

localization is supported and also does not support pose estimation. The fact that the OpenCV

library is used for face detection concludes that only frontal face detection is supported.

Figure 75 – Flandmark Face Detection Example Figure 76 – Flandmark Landmarks

Localization

10.1.5. Semantic Vision Technologies

The Semantic Visions technologies [32] library is based on the [5]. This system is based on the

detection of 15 critical landmarks that result to a face detection. Although it provides face parts

localization like the eyes, the nose and the mouth, no more landmark localization is offered.

s

Figure 74 – Face SDK Face Detection Example

Besides it does not support pose estimation and the face detection is seems to be limited in

frontal faces only.

Figure 77 – Semantic Vision Technologies Face Detection and Landmark Localization Example

10.1.6. FDLib

The FDLib library [29] is based on the [16]

algorithm publication. This system supports the

face detection task without any of the pose

estimation and landmark localization ones. It

was published in 2005 and its one of the oldest

face detection algorithms using neural networks

for doing that. It is an old dated system and it

would be unfair to be compared with modern

systems.

10.2. Latest Systems

Except of the freeware libraries there are also other face detection systems as the ones referred

in chapter 3. These systems does not offer their implementation freely for usage. In this

subchapter a short reference on each one is made and their differences against the [1] are

appose.

10.2.1. Face Detection and Pose Estimation Based on Evaluating Facial Feature Selection

This system [3] offers a face detection method based on Haar-like features as exactly Viola and

Jones [17] algorithm does. What is different is that its features are more efficient. It firstly

detects the face parts (eyes, nose and mouth) and this concludes to the face detection. The

Figure 78 – FDLib Face Detection Example

authors claim that this algorithm performs better than the [1]. Despite that this systems does

not offer pose estimation and landmark localization and is also efficient only on frontal face

detection.

Figure 79 – Publication [3] Face Detection Example

10.2.2. Head Pose Estimation Based On Detecting Facial Features

This systems [4] is a sequel of [3]. It does not claim to succeed as good results as the [3] but it

also offers the task of pose estimation. It uses the same Haar-like features as the [3] and it

combines the face parts (eyes, nose and mouth) detected by the cascade windows in order to

estimate the pose of the face. What it does not support is the 68 face landmark localization and

also it is efficient in frontal face detection.

10.2.3. Discrete area filters in accurate detection of faces and facial features

This system [5] is offered as a freeware library to be used by anyone and it is described in

chapter 10.1.5.

10.2.4. Real-time High Performance Deformable Model for Face Detection in the Wild

The creators of this system [6] claim to have

design a much faster and efficient algorithm

compared to [1]. As far as the face detection

speed they claim to reach real-time

performance. The differences are the fact that

this systems does not localize all the 68

landmarks of the human face but only some of

them in order to complete the face detection

task. In addition it is only able to classify the

pose estimation in 9 classes of viewing angle

when [1] uses 13. Its main advantage is the

fact that it is very fast and efficient as the

authors claim but it still lacks on the pose estimation accuracy and the full 68 landmark

localization.

10.2.5. Multi-view Face Detection Using Deep Convolutional Neural Networks

This system [7] is one of the latest state-of-the-art ones using convolutional neural networks

that are considered to be the best method for face detection right now. This system succeeds

better detection performance compared to [1], detecting faces in the full viewing angle (-90
o
 to

+90
o
). What is missing from this system is the pose estimation and the landmark localization

that the [1] system supports.

Figure 81 – Publication [7] Face Detection Example

10.2.6. Face and Landmark Detection by Using Cascade of Classifiers

This systems [8] is using face parts detection (eyes and mouth) in order to result to a complete

face detection. The authors claim to succeed better results than the [1]. This systems though

Figure 80 – Publication [6] Face Detection Example

does not support pose estimation neither landmark localization. It only supports eyes and

mouth localization and it works better for frontal face detection.

Figure 82 – Publication [8] Face Detection Example

10.2.7. Extensive Facial Landmark Localization with Coarse-to-fine Convolutional

Network Cascade

This system [9] is the most related to the [1]. It is using the same method for face detection but

what is different is the fact that it splits the face detection task from the landmark localization

one. It firstly uses the jaws landmarks for face detection and then it localizes the rest landmarks

of the human face. This method provides it a better landmark localization than [1] and the

whole process is faster as the most landmarks detection is applied in the face detected area. On

the other hand this system only supports frontal face detection and does not supports pose

estimation. This last task could be easily implemented as long as the landmark localization task

exists.

 Figure 83 – Publication [9] Face Detection Example

10.2.8. Face detection by structural models

This system [10] is also very similar to [1]. It uses the method, locating landmarks for the face

detection process. In contrast to [1] it uses less landmarks than the global 68 human face ones

that means that the process should sensibly be faster. The authors claim to succeed better

detection performance than the [1] but their system does not support pose estimation. It is also

efficient only on frontal face detection.

 Figure 84 – Publication [10] Face Detection Example

11. Future Work

There are to areas where this thesis system can be extended in the future. The first area is the

one of face detection, pose estimation and landmark localization and the second one is the area

of object detection.

As far as the face detection procedure TSM system can be separated in two sections. The first

section could be the face detection one while the second the pose estimation and landmark

localization one. In the face detection section the usage of less landmarks can be applied as the

most systems ([5], [6], [7], [8] and [10]) after [1] do and as exactly the [9] does. This way the face

detection procedure would be a much faster procedure. By the time the face detection

procedure is completed then the pose estimation and landmark localization ones can be applied

in the detected face area within the image (like [9]). By doing so the size of data have to be

processed would be much less than in the whole image as the [1] does. At this section a

validation of the face detection result can also be applied increasing the algorithms reliability.

This execution flow would reduce in a large scale the execution time needed for the algorithm to

complete the whole procedure.

As far as the pose estimation task the system can be extended in a

way that not only the yaw angle to be estimated but also the roll

and the pitch angles. This task can be achieved not only by using

shape models but also with relative models between the main

critical face landmarks as [4] does.

As far as the object detection area, this system can be easily

transformed to an object detection system using tree structural

models. As this thesis system implements the [1] that is based on

the object detection system [2], this system can also be used as an

object detection one. The only changes have to be done is to change the way the TSM system

handles its memory consumption in order to hold the Filters Responses arrays when multi-scale

TSM is used.

There are also many other ways that can extend this TSM system that are left in the readers

creativity!

Figure 85 – Complete Pose

Estimation

12. Annex A – TSM Execution Times

In this chapter the exact execution time of the TSM v3.2.2 system in seconds is presented in

order the ability of using it in applications. As presented in Table 175 the TSM algorithm can

complete the detection procedure in less than one second in the majority of the non-embedded

systems for small sized images (320x240). For larger images the system need more than one

second of time.

Table 175 – TSM v3.2.2 Execution Time in Seconds

CPU Model
Intel Xeon E5430

@2.66GHz (x2)

Intel Core i7

4600U

@2.70GHz

Intel Core 2 Duo

T8100 @2.10GHz

Dual Core ARM

Cortex-A9

@866MHz

CPU Cores 8 4 2 2

RAM Memory 12 GB 8 GB 4 GB 512 MB

Operating

System

Ubuntu Server

(no GUI)

VM Ubuntu

15.01 (no GUI)

Ubuntu 14.04 (no

GUI)

Ubuntu 12.04 (no

GUI)

Image Size Execution Time (sec)

320x240 0.287 0.590 0.747 7.325

640x480 1.282 2.699 5.379 52.84

800x600 2.028 3.957 8.525 83.65

1024x768 3.421 6.528 14.25 143.0

1280x960 5.390 10.20 22.56 220.4

At the next table (Table 176) the exact execution time of the TSM algorithm in seconds is

presented using the hardware system of the 2
nd

 column of Table 175. This is a virtual machine so

that the number of CPU cores can be customized and the execution time needed for the

algorithm can be tested using different number of CPU cores every time. The data of Table 175

and Table 176 are the ones that create the statistical data of the Table 174.

 Table 176 - TSM v3.2.2 and Creators Execution Time (sec)

CPU Cores TSM 320x240 640x480 800x600 1024x768 1280x960

1
Original 2.20 7.96 12.0 19.9 29.7

v3.2.2 1.08 4.89 8.10 13.6 21.0

2
Original 1.85 6.06 8.93 14.7 21.9

v3.2.2 0.71 3.27 5.17 8.60 13.2

3
Original 1.72 5.88 8.96 14.2 21.8

v3.2.2 0.66 2.95 4.45 7.46 11.4

4
Original 1.70 5.76 8.89 14.2 21.9

v3.2.2 0.59 2.70 3.96 6.53 10.2

13. Bibliography

[1] X. Zhu, D. Ramanan. "Face detection, pose estimation and landmark localization in the wild"

Computer Vision and Pattern Recognition (CVPR) Providence, June 2012.

[2] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan, ͞Object

Detection with Discriminatively Trained Part Based Models͟, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 32, No. 9, Sep. 2010

[3] HiǇaŵ Hateŵ,)ou Beiji, Raed Majeed, Mohaŵŵed Lutf aŶd JuŵaŶa Waleed, ͞FaĐe
DeteĐtioŶ aŶd Pose EstiŵatioŶ Based oŶ EǀaluatiŶg FaĐial Featuƌe “eleĐtioŶ͟ IŶteƌŶatioŶal
Journal of Hybrid Information Technology, Vol. 8, No. 2, 2015

[4] HiǇaŵ Hateŵ,)ou Beiji, Raed Majeed, JuŵaŶa Waleed aŶd Mohaŵŵed Lutf ͞Head Pose
EstiŵatioŶ Based OŶ DeteĐtiŶg FaĐial Featuƌes͟ IŶteƌŶatioŶal JouƌŶal of Multiŵedia aŶd
Ubiquitous Engineering, Vol. 10, No. 3, 2015

[5] JaĐek NaƌuŶieĐ, ͞DisĐƌete aƌea filteƌs iŶ aĐĐuƌate deteĐtioŶ of faĐes aŶd faĐial featuƌes͟
Image and Vision Computing 32, 2014

[6] JuŶjie YaŶ, XuĐoŶg)haŶg,)heŶ Lei aŶd “taŶ). Li ͞Real-time High Performance Deformable

Model foƌ FaĐe DeteĐtioŶ iŶ the Wild͟ ChiŶese AĐadeŵǇ of “ĐieŶĐes

[7] Sachin Sudhakar Farfade, Mohammad Saberian and Li-Jia Li ͞Multi-view Face Detection Using

Deep CoŶǀolutioŶal Neuƌal Netǁoƌks͟, Yahoo ϮϬϭϱ

[8] HakaŶ Ceǀikalp, Bill Tƌiggs aŶd VojteĐh FƌaŶĐ ͞FaĐe aŶd LaŶdŵaƌk DeteĐtioŶ ďǇ UsiŶg
Cascade of Classifiers͟, Automatic Face and Gesture Recognition (FG), 2013

[9] EƌjiŶ)hou, HaoƋiaŶg FaŶ,)hiŵiŶ Cao, YuŶiŶg JiaŶg aŶd Qi YiŶ ͞EǆteŶsiǀe FaĐial LaŶdŵaƌk
Localization with Coarse-to-fiŶe CoŶǀolutioŶal Netǁoƌk CasĐade͟ IŶteƌŶatioŶal CoŶfeƌeŶĐe
of Computer Visio (ICCV), 2013

[10] Junjie Yan, Xuzong Zhang,)heŶ Lei aŶd “taŶ). Li ͞FaĐe deteĐtioŶ ďǇ stƌuĐtuƌal ŵodels͟,
Image and Vision Computing 32, 2014

[11] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt and J. M. Ogden, ͞Pyramid methods in

image processing͟, RCA EŶgiŶeeƌ, 1984

[12] Navneet Dalal and Bill Triggs, ͞Histograms of Oriented Gradients for Human Detection͟,
Computer Vision and Pattern Recognition, (CVPR) 2005

[13] P. FelzeŶszǁalď aŶd D. HutteŶloĐheƌ, ͞DistaŶĐe TƌaŶsfoƌŵs of “aŵpled FuŶĐtioŶs͟, TheoƌǇ
of Computing, Vol. 8, No. 19, September 2012

[14] Rasmus Rothe , Matthieu GuillauŵiŶ , aŶd LuĐ VaŶ Gool, ͞Non-Maximum Suppression for

Object Detection by Passing Messages between Windows͟, Pattern Recognition, (ICPR) 2006

[15] Vahid Kazemi and Josephine Sullivan, ͞One Millisecond Face Alignment with an Ensemble of

Regression Trees͟, ;CVPRͿ ϮϬϭϰ

[16] W KieŶzle, G BakIƌ, M FƌaŶz, aŶd B “Đhölkopf, ͞FaĐe DeteĐtioŶ: EffiĐieŶt aŶd RaŶk
DefiĐieŶt͟, JulǇ ϮϬϬϱ

[17] Paul Viola aŶd MiĐhael JoŶes, ͞Rapid OďjeĐt DeteĐtioŶ usiŶg a Boosted CasĐade of “iŵple
Featuƌes͟, ;CVPRͿ ϮϬϬϭ

14. Web Sources

[18] http://www.ece.tuc.gr/4516.html (Technical University of Crete, Electronics Laboratory)

[19] http://www.ece.tuc.gr/4515.html (Technical University of Crete, Electronic Circuits and

Renewable Energy Sources Laborartoty)

[20] http://www.ece.tuc.gr/4514.html (Technical University of Crete, Microprocessors and

Hardware Laboratory)

[21] http://www.ece.tuc.gr/4512.html (Technical University of Crete, Intelligence Systems

Laboratory)

[22] http://cordis.europa.eu/project/rcn/97141_en.html (SAFEMETAL)

[23] http://www.tsi.gr/?page_id=498&lang=en (EXEHON)

[24] http://luthuli.cs.uiuc.edu/~daf/book/book.html (Computer Vision: A Modern Approach)

[25] https://people.cs.umass.edu/~hsu/ (Hang Su TSM Algorithm Implementation)

[26] http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html (Dlib)

[27] http://opencv.org/ (OpenCV)

[28] http://chenlab.ece.cornell.edu/projects/FaceTracking/ (Advanced Multimedia Processing

Lab)

[29] http://people.kyb.tuebingen.mpg.de/kienzle/facedemo/facedemo.htm (fdlib)

[30] http://facesdk.eu/main_en (FaceSDK)

[31] http://cmp.felk.cvut.cz/~uricamic/flandmark/ (Flandmark)

[32] http://www.semanticvisiontech.com/ (Semantic Vision Technologies)

[33] http://rapidxml.sourceforge.net/ (RapidXML)

[34] http://openmp.org/ (OMP)

http://www.ece.tuc.gr/4516.html
http://www.ece.tuc.gr/4515.html
http://www.ece.tuc.gr/4514.html
http://www.ece.tuc.gr/4512.html
http://cordis.europa.eu/project/rcn/97141_en.html
http://www.tsi.gr/?page_id=498&lang=en
http://luthuli.cs.uiuc.edu/~daf/book/book.html
https://people.cs.umass.edu/~hsu/
http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html
http://opencv.org/
http://chenlab.ece.cornell.edu/projects/FaceTracking/
http://people.kyb.tuebingen.mpg.de/kienzle/facedemo/facedemo.htm
http://facesdk.eu/main_en
http://cmp.felk.cvut.cz/~uricamic/flandmark/
http://www.semanticvisiontech.com/
http://rapidxml.sourceforge.net/
http://openmp.org/

