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Words have a magical power. They can bring either the

greatest happiness or deepest despair;
they can transfer knowledge from teacher to student;

words enable the orator to sway his audience and dictate

its decisions.

Words are capable of arousing the strongest emotions

and prompting all men’s actions.

Sigmunt Freud



Abstract

Emotions are fundamental for human-human communication, impacting people’s per-
ception, communication and decision-making. These are expressed through speech,
facial expressions, gestures and other non-verbal cues. Speech is the main channel of
human communication, interpreting emotional and semantic cues. Affective computing
and specifically emotion recognition, is the process of decoding communication signals.
It aims to improve the human-computer interaction (HCI) in a cognitive level allowing
computers to adapt to the users needs. Hence, speech emotion recognition suggests
that vocal parameters reflect the affective state of a person. This assumption is sup-
ported by the fact that most affective states involve physiological reactions which in
turn modify the process by which voice is produced. There are a number of poten-
tial applications for speech emotion recognition, including anger detection for Spoken
Dialogue Systems (SDS) and emotional aids for people with autism.

Attention is a concept studied in cognitive psychology that refers to how a per-
son actively processes information. Salience is the level to which something in the
environment can catch and retain one’s attention. While research on affective speech
saliency is not extensive, salient information from audio and video has been investi-
gated. It is argued that modeling the affective variation of speech can be approached
by integrating acoustic parameters from various prosodic timescales, summarizing in-
formation from more localized (e.g. syllable-level) to more global prosodic phenomena
(e.g. utterance-level).

In this thesis, speech prosody and related acoustic features, e.g., spectral and voice
quality, are investigated for the task of emotion recognition. Features derived from the
Amplitude and Frequency Modulation (AM-FM) model are also examined. Moreover,
the contribution of different information levels is also addressed for the task of emotion
recognition. Additionally, we investigate the affective salient information over time on
spoken dialogue utterances using prosodic variations from different timescales of the
speech signal, by weighting speech segments. The proposed models are evaluated on
datasets of spontaneous speech.

For a human social and mental states are highly correlated. As a result affective
speech is introduced on several areas of the computational community. For instance,
people with Autism Spectrum Disorder (ASD) suffer from symptoms of anxiety and
depression that significantly compromise their quality of life. Additionally, language in
high-functioning autism is characterized by pragmatic and semantic deficits, and people
with autism have a reduced tendency to integrate information. Motivated by these
findings, we investigate the degree of engagament for children with ASD in interactions
with their parents.
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ITeptAndn

To cuvano¥iuato etvon Poaoixd yoEaxTNELOTIXA TNV emxovwVia PETHED avipdTey, enn-
eedlovtoag Ty avtiindn, v emxowovio xa Ty Adn anogdoewmy. ‘Olo tor Topamdve
expedlovTon PHECK NG OMAIOG, TWV EXPEACEWY TEOCKTOV, TWV YELPOVOULMY X GANWY
un hextxddyv evdellewv. H oplla elvoar to Baocixdtepo péow emxovmviog Yetoll Twv
avlp®OTOVY, EQUNVELOVTAS cUVALCUNUATIXES o YVwotaxég evdeilec. H unoloyiotind ava-
YVOELoT cuvoncYuatog elvon 1) BladLxacio e TNV omolol AmoXKOLXOTOL VTN TETOL CHUATA
emxowveviag. Yxondg elvan v Behtidoet Tny emixovevio HeTag) avipdnou xou UTOAOYLO TH
oe eninedo avtihndng, EMTEETOVTAC GTOV UTOAOYLOTEL VO TROGUPUOG TEL 0TI AVAYXES EVOS
xeNotn. €2¢ ex TOUTOU, 1) AVALYVWRELOT) CUVALCUNUATOC HECHL PWVTG UTOVETEL OTL PWVNTIXES
ToEAPETEOL XaTOTTEIoUY TNV GUVACUNUATIXY XATAo TaoT eVOC avipmrou. Auth 1 urdde-
o1 vrootnelleTon xou amd TO YEYOVOS OTL Ol CUVOLOUNUATIXES XUTAOTAOELS EUTAEXOUV
Puyoloynés avtdpdoels, oL onole Pe TN oelpd Toug ahhdlouv TN dladixacio TopoywYNS
e povic. Trdpyel éva Yeydho £0pOC EQUOUOYOV Yiol TNV AVAYVOPLOT CUVOLCUNUATOS
amd QwVY, ouunepthauBavovTog T avaryvopelon Yupol yia SLHAOYLXE CUC TAUATI XoL T1
ouvatoOnuatixs oo thetEn/BoRdeta Yo dtopa pe autioud.

H mpocoyy) elvon pior €vvolor mou yehetdton 6Tov xAdd0 TNe Yvwo g puyohoyiog
xoL avapEEETOL 6TO TS €vog avlpwrog evepyd encéepydleton tnv mAnpogopla. H on-
povTxoTnTa lvon To eninedo oto omolo xdti and To mepBdihov umopel var TeafBhEel xan
Vo SLUTNEHOEL TNV TRoCcoy N EVOg avipnmou. Eva epguvnuind 1 cuvoucUnuatixy onuoy-
wxotnTa Bdoet TS QVAC Bev elval EXTEVAC, 1) ONUAVTIXOTNATA BACEL NyouU xou ELXOVaC
éyel epeuvniel. Trnootneiletan oTL N povielonoinon tng cuvancUnuotixic UeTHBoANg amd
TN QWVN UTopEl Vo TpoceyYiel UEow TNG EVOWUATWONS 0XOUC TIXWY TUPUUETEWY amtd OL-
dpopa ypovixd mhalota Tne mpoowdiag, cuvodilovtag Ty TAnpogoplo and tomxd (m.y.,
oLAhaPEC) uéypt mo xadohxd pouvéueva (T.y. QpdoELS).

Ye authy TNV epyaoia, 1 TEocwdior Xl xou GANAL AXOVGTIXE YAPAXTNELC TIXA, OIS
YOEUXTNPLO TIXA TOU QACUATOC XL TNG TOLOTNTUC TNG POVAC, EEEUVOVTOL YL TNV OVO-
yvopelon cuvanodiuoatoc. Xopaxtnelo txd to onolo tpoépyovtal ané to Amplitude and
Frequency Modulation (AM-FM) uovtého eniong e€etdlovtar. Axdua, aneudiveton 6T
CUUUETOYY) BLOPORETIXWY EMTEDMY TANEOPORING YLoL TNV avaryvepelon cuvauoiuatos. E-
TUTAEOV, UEAETACHUE TN CUVALCUNUATIXT ONUAVTIXOTNTA TG TANEogoplac 0To Ypovo ot
OLIAOYIXEC PPACELS YPMOWOTOLOVTOS TEOCMWOLIXES UETUBOAES Ao BLUPORETIXA YEOVIXE
mhaiolo Tou ofuatog Ywvrg, Luyilovtag ta cuyxexpéva thalola. To mpotevoueva Yov-
éha €youv exTiundel oe cOVOA SedoPEVLV Pe aFoEUNTT OUALdL.

H xowwvie xou dloavontiny) xatdotoor evog avipdmou elvol GUECH GUVOEDEUEVAL.
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Xiv

Yav anotéhecpa 0 cuvouodnuatixds Aoyog €xel eloay el o TOAES TEpLOYEC TNG UTOAO-
yio g xowwtnTac. o mapdderyua, dvipwrol ye auTIoud LTOPEROUY UT6 CUUTTLUATA
Gyyoug xou xatddihne mou SlaxuVdveVoLY apEXeTd TNV xodnuepv Lwn Touc. Emniéov,
N YAwooo oe VPNAG eninedo auTiopol yopoxtneileton and TEUYUATIOTIXES XAl CNUACLO-
hOYWEC BLatapary€c Xat AvIpWTOoL UE AUTIOUS EYOUV UELWUEVT) IXOVOTNTA VO APOUOLCOVY
Thneogoplec. 'Eyovtag wg xivntpo Tar mopandve eupiuatd, EEELVACUUE TO ETUNEDO TNG
CUUUETOY NG TOUBLV UE AUTIOUO OE AAANAETIOPACELS UE TOUS YOVEIS TOUG.
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Chapter 1

Introduction

1.1 Affective Speech & Emotion Experience

Speech is one of the most natural communication forms between human beings, who also
express their social and mental state via written language. Emotional speech implies
that changes in the automatic nervous system indirectly alter speech. For instance,
anger influences the vocal folds vibrations and the vocal track’s shape. Subsequently,
affects the acoustic characteristics of speech.

In psychology and philosophy, emotion is a subjective, conscious experience char-
acterized primarily by psychophysiological expressions, biological reactions, and mental
states. Moreover, it can be differentiated from a number of similar constructs. Feelings
are subjective representations of emotions, private to the individual experiencing them.
Moods are affective states that last for much longer durations than emotions and are
usually less intense. Affect is a term used to describe the topics of emotion, feelings,
and moods together, even though it is commonly used interchangeably with emotion.

The experience of emotion is a neurobiological process that emerges by psycho-
logical events. Emotions are determined by one of the oldest parts of our brain, the
limbic system, including the amygdala, the hypothalamus, and the thalamus. Because
they are primarily defined, the basic emotions are experienced almost the same way
across cultures. It is argued that emotional stimulus produces changes in heart rate,
respiration or sweating [17], while several psychological models relate emotion with
behavior [61] and brain activity [18].

1.2 Affective Computing

Affective computing is the study of analyzing, recognizing and processing affective
states. It combines engineering and computer science with psychology, cognitive sci-
ence, neuroscience, ethics, and more. Affective systems use cues that humans use to
perceive emotions, i.e., speech, written language, facial expressions, body posture, and
gestures. Enabling systems to interpret speech for a more intuitive human machine

xXvi
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interaction suggests also understanding the transmitted affective and social aspects.
Research by psychologists and neuroscientists has shown that emotion is highly related
to decision-making. In Spoken Dialogue Systems (SDS) the analysis of speakers’ emo-
tion [20, 40, 56], age, gender [79] or personality [81] can significantly improve dialogue
management strategies and improve the user experience.

1.2.1 Speech Emotion Recognition

The goal of automatic emotion recognition from speech is to recognize the speaker’s
emotional state from his voice. In order to employ a robust emotion detector, fea-
tures from the speaker’s speech signal able of describing the emotional content but
independent of the speaker or the lexical content, have to be extracted. Research has
shown that emotional reactions are strongly related to the pitch and energy of the
speech. Speech produced in a state of fear, anger or joy becomes faster, louder, pre-
cisely expressed with a higher and wider pitch range. Other emotions such as tiredness,
boredom or sadness, lead to slower, lower-pitched speech. Emotions are classified either
on a discrete or a dimensional space. In the former approach, example emotions are
happiness, sadness, anger, happiness and fear, while on the latter, arousal, valene and
dominance dimensional spaces are the most significant. Specifically for spoken dialogue
system applications, where speech is natural, additional features have been introduced
describing speaker and dialogue characteristics, i.e., speaker gender, dialogue duration
and the existence of speech overlap [40, 63].

1.3 Contributions

This thesis is focused on the task of speech emotion recognition on spoken dialogue, i.e.,
the analysis and development of affective models using the speaker’s speech signal. We
aim to recognize emotional states by analyzing the emotional content of sub-utterances.
Hence, we weight the respective speech regions according to their emotional content and
fuse the information over time in order to extract an utterance-level emotion decision.

Specifically, in order to recognize the amount of emotional information of spoken
dialogue utterances, an affective salience model is proposed. It utilizes a regression
model that combines features extracted from the acoustic signal and the posteriors of a
segment-level classifier to obtain frame or segment-level ratings. The affective saliency
model is trained using a minimum classification error (MCE) criterion that learns the
weights by optimizing an objective loss function related to the classification error rate
of the emotion recognition system. An information fusion model is also proposed, using
the affective saliency scores to emphasize emotional segments over time. The fusion
is employed either to weight the contribution of frame-level posteriors (late fusion) or
features (early fusion) to the speech emotion classification decision. The models is
evaluated for the task of anger detection on four call-center datasets of two languages,
Greek and English.

Finally, a framework for engagement detection for typically developed (TD) and
with Autism Spectrum Disorder (ASD) children is presented. Children with Autism
Spectrum Disorder (ASD) face several difficulties in social communication. Hence,
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analyzing social interaction can provide insight on their social and cognitive skills. Mo-
tivated by the assumption that ones degree of engagement is influenced in interactions
with others, we used 66 videotaped sessions of children interacting with their parents
in Greek. Features derived from both participants including acoustic, linguistic and
dialogue act features are explored. The effect of visual cues is also investigated for
engagement detection.

1.3.1 Publications

e Arodami Chorianopoulou, Polychronis Koutsakis and Alexandros Potamianos,
“Emotion Recognition using Affective Saliency”, in INTERSPEECH, 2016.

e Arodami Chorianopoulou, Efthymios Tzinis, Elias Tosif, Asimenia Papoulidi, Christina
Papailiou and Alexandros Potamianos, “Engagement Detection on Children with
Autism Spectrum Disorder”, ICASSP, 2017.

o Jose Lopes, Arodami Chorianopoulou, Elisavet Palogiannidi, Helena Moniz, Al-
berto Abad, Katerina Louka, Elias losif and Alexandros Potamianos, “The Spe-
Dial Datasets: Datasets for Spoken Dialogue Systems Analytics”, 10th Interna-
tional Conference on Language Resources and Evaluation (LREC), 2016.

e Spiros Georgiladakis, Georgia Athanasopoulou, Raveesh Meena, Jose Lopes, Ar-
odami Chorianopoulou, Elisavet Palogiannidi, Elias Iosif, Gabriel Skantze and
Alexandros Potamianos, “Root-Cause Analysis of Miscommunication Hotspots
in Spoken Dialogue Systems”, in INTERSPEECH, 2016.

1.3.2 Thesis organization

This thesis is organized as follows: Chapter 2 presents the main ideas of speech pro-
duction and perception, while the main models of the emotion representation are also
introduced. In Chapter 3 the related research of the affective speech analysis is pre-
sented. Chapter 4 presents the affective salinecy model, while in Chapter 5 the fusion
scenarios are analysed. In Chapter 6 we propose a framework for engagement detection,
on children with autism while in Chapter 7 conclusions and future work are provided.



Chapter 2

Speech & Emotion Analysis

2.1 Introduction

This chapter introduces the main ideas of speech production and perception as speech
is the most significant form of communication between individuals. Hence, speech car-
ries information about the social and cognitive state of each speaker. Affective analysis
can provide us with information about the social and mental state of a person while
the relation of theoritical analysis with the computational community is also provided.
The problem of sentiment analysis is the definition and formulation of the perceived
emotions. However, the subjectivity of the perceived emotions are a significant issue
throughout the research community, either psychologically or computationally. Hence,
emotions are analyzed and investigated based on languages, speakers or even applica-
tions. Many theries of how emotions are perceived have been introduced over the years.
Well established theories suggest that emotions are either discrete or lie on dimensional
spaces. Both approaches are investigated using speech for social and mental evaluation
tasks.

2.2 Physics of sound

Sound is a mechanical wave that is an oscillation of pressure transmitted through some
medium (like air or water), composed of frequencies which are within the range of
hearing. Sound that is perceptible by humans has frequencies from about 20 Hz to
20.000 Hz, although these limits are not definite. The speed of sound depends on the
medium the waves pass through, and is a fundamental property of the material. In
general, the speed of sound is proportional to the square root of the ratio of the elastic
modulus (stiffness) of the medium to its density. Those physical properties and the
speed of sound change with ambient conditions.

2.3 Speech Perception & Production

Speech is the vocalized form of human communication. It is based upon the syntactic
combination of lexicals and names that are drawn from very large vocabularies. Each



spoken word is created out of the phonetic combination of a limited set of vowel and
consonant speech sound units.

Speech perception refers to the processes by which humans are able to interpret
and understand the sounds used in language [96]. Speakers show phonetic differences
while producing the very same utterance, which occur at various linguistic levels and
can be interpreted phonetically by several parameters such as voice quality, speech
rate, loudness, fundamental frequency, breathing, articulatory behavior, etc. At the
same time, listeners can vary in the way they exploit such cues for the purpose of
speech perception and understanding. Figure 2.1 shows a human brain and the regions
that are activated according to affective cues. Specifically, the amygdala are considered
part of the limbic system and perform a primary role in the process of decision-making,
and emotional reactions. When exreriencing fear, sensory stimuli reach the basolateral
complexes of the amygdala, where they form associations with memories of the stimuli.
There have been studies that show that damage to the amygdala can interfere with
memory that is strengthened by emotion.

Corpus callosum:
axon fibers connecting the
two cerebral hemispheres

Cerebral cortex:
ultimate control and
information-processing

Right hemisphere center

Thal
relays messages between
lower brain centers
and cerebral cortex

Left hemisphere

N

controls maintenance
functions such as eating;
helps govern endocrine
system; linked to emotion
and reward

Pituitary:
Amygdala: master endocrine gland
linked to N el - = e
emotion R = S - Reticular formation:

- helps contT///’
Medulla:
controls heartbeat and
Hippocampus: ' breathing
linked to i
memory

Spinal cord:
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Figure 2.1: Human brain.

Speech production is the process by which thoughts are translated into speech.
This process includes the selection of words, grammatical forms, and then the resulting
sounds produced using the vocal mechanism. Speech is created by pressure provided
by the lungs through the glottis in the larynx, which is then modified by the vocal tract
into different vowels and consonants. The manner of articulation is the configuration
and interaction of the articulators, i.e., speech organs such as the tongue, lips, and
palate as shown in Figure 2.2, when making a speech sound. The physical structure of
the articulators allows the production of many unique sounds, as sounds are produced
in different areas, and with different muscles and breathing techniques. Difficulties
in manner of articulation can contribute to speech difficulties and impediments. It is



suggested that infants are capable of making the entire spectrum of possible vowel and
consonant sounds.
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Figure 2.2: Human vocal tract.

2.4 Emotion Representation

The representations of emotions has mainly been researched from two viewpoints. The
first is that emotions are discrete and fundamentally different constructs while the
second asserts that emotions can be characterized on a dimensional basis in groupings.
According to Paul Ekman [32], emotions are discrete, measurable, and physiologically
distinct, while certain emotions appear to be universally recognized. His research
findings led him to classify six basic emotions, namely anger, disgust, fear, happiness,
sadness and surprise.

On the other hand, the multi dimensional analysis divides emotions into three
dimensions known as valence, i.e., how negative or positive the experience was, arousal
or activation, i.e., the extent of reaction to stimuli, and dominance, i.e., the disposition
of an individual to assert control. The first two dimensions, arousal and valence, can be
depicted on a 2D coordinate map. Robert Plutchik offers a three-dimensional model
that is a hybrid of both basic-complex categories and dimensional theories [91], as
shown in Figure 2.4. It arranges emotions in concentric circles where inner circles are
more basic and outer circles more complex. Notably, outer circles are also formed by
blending the inner circle emotions.

If discrete categorical labels are used, the emotional classs needs to be labeled. In
general, there is a tradeoff between inter-evaluator agreement and description accuracy.
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Figure 2.4: Plutchik’s model

If the number of emotion categories is too extensive, the agreement between evaluators
will be low. A simpler idea is to label the emotions as negative or non-negative. This
approach makes the problem more concrete and specific. Moreover, the binary problem
may refer to neutral and emotional classes. The underlying assumption is that expres-
sive speech will differ from neutral speech in the feature space. Figure 2.5 demonstrates
the activation-valence space and suggests that only emotion with high activation can
be discriminated from neutral speech using only the fundamental frequency. Figure 2.7
presents the three-dimenional space, i.e., activation-valence-dominance.
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Figure 2.6: Activation-valence-dominance

Figure 2.5: Activation-valence space. space.

Figure 2.7: Location of the emotional categories.

Another way is to determine the encoded emotion by the listener’s reaction or
answer. However, there is an explicit distinction between the encoding (speaker), the
transmission and the representation (listener) of the emotion. These three distinctions
in the models exist because expression and perception are two distinct and complex
problems. The intended emotion encoded by the speaker may not necessarily match
with the perceived emotion.



2.5 Affect & Engagement

Successful affective processing involves the determination of positive or negative valence
and activation and the generation of affective experience. These spontaneous processes
help guide behavior, especially in online interactions, such as social exchanges [16].
Additionally, the past years an interest in the role of emotions in academic settings
has been grown, especially regarding the students’ engagement and learning. In [70]
the valence and activation of students was correlatted to their social behavior and en-
gagement in group meetings and it was suggested that negative valence was highly
correlated with a more lazy mood. In [87] students were asked to fill a questionare
in order to analyze and evaluate their emotions. The Achievement Emotions Ques-
tionnaire (AEQ) contains several scales for representing a large number of emotions,
such as hope, relief, anger, and anxiety, for students while studying or taking exams.
The findings indicated that the analyzed emotions related to students’ learning and
performance.

2.5.1 Autism Spectrum Disorder (ASD)

Autism spectrum disorder (ASD) is a general term characterizing a group of complex
disorders of brain development. These disorders are expressed in varying degrees, such
as difficulties in social interaction, verbal and nonverbal communication and repetitive
behaviors. Autism could be counted a disorder of affective and social relations. One
theory proposes that the social and communication deficits in autism are primarily
affective [8]. More specifically, the affective theory states that in autism there is an
innate inability to emotionally interact with other people. This theory was originally
proposed by [54]. Figure 2.8 presents the position of the Affective Theory. However,
autism is not an emotional response to trauma [9].

Lack of innate ability to interact
emotionally with others

Failure to recognize other Impaired ability to abstract
people's mental state and symbolize
Y

Emotion recognition

deficits Pragmatic deficits Pretend play deficits

Figure 2.8: Position of Affective Theory in ASD.

Research reveals that ASD children have a mosaic of social and emotional skills



and show atypicalities in several areas of social life [113]. These atypicalities include
the responsiveness to social signals, processing of faces, and the generation of negative
emotional expressions [27]. However, individuals with ASD express and comprehend a
full range of emotions [16]. Additionally, some ASD deficits in affective processing may
be better attributed to cognitive or language factors [29].

Children with autism are continuously disadvantaged to access to the next stage
of social competence and independent functioning, while most aspects of life depend on
competence in interpersonal interaction [29]. As an unfortunate consequence of these
impairments, children with autism spectrum disorders often exhibit limited autonomy
and most remain reliant on caregivers as they enter adulthood.

2.6 Summary

In this chapter, we introduces the concepts of sound and speech production and their
relation to the affective states and emotions. Moreover, we introduced the different
senses of affect, i.e., moods and feelings, and the main models of describing emotions.
Finally, we presented how affect can be correlated with mental and social deficits, such
as Autism Spectrum Disorder.



Chapter 3

Affective Analysis

3.1 Introduction

Identifying speech features suitable to describe affective information is challenging.
The standard approach in emotion recognition systems is to extract prosodic features,
particularly pitch and energy [112, 62, 98]. In [69] Mel-Frequency Cepstral coefficients
(MFCCs) have been used for training acoustic and phonetic tokens. However, ran-
domly localized frequency perturbations have been found to influence spectral features.
Hence, the amplitude and frequency modulation model (AM-FM) has been introduced
in many tasks [3, 116], as it significantly affects speech recognition and perception.
Features based on either part of the modulation model (AM or FM) are capable of
providing acoustic information not captured by the linear-filter model. Compared to
the MFCCs, AM-FM features model the structure of speech better due to the signal’s
decomposition. In [71] contextual features were proposed for spoken dialogue systems,
including prosodic and discourse context.

Several machine learning techniques have been also explored for affective mod-
eling. Support Vector Machines (SVM) [65], Hidden Markov Models (HMMs) [83],
and Gaussian Mixture Models (GMMs) [21] are proposed for speech emotion recogni-
tion. In [59] the emotion recognition performance was compared using SVM, Linear
Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) classifiers,
while segment level approaches are also introduced to model the emotional aspects of
the speech signal in [99]. In other paralinguistic tasks, e.g., cognitive load estimation,
i-vectors have also been investigated [110].

In this Chapter we introduce the linear and non-linear models for speech produc-
tion. We analyze the assumptions supporting both models and present several affective
descriptors (see Section 3.3.1) based on both models.

3.2 Speech Production Models

3.2.1 Linear Model

According to the speech production theory, sound is the result of the air being push
from the lungs through the glottis into the vocal tract. The vocal tract can be viewed



as a model that includes vocal cavities, which produce an oscillatory response of its
characteristic frequency, resonance frequency. The tract amplifies the characteristic
frequencies of the vocal cavities, hence the Fourier transform of the source waveform
has dominant spectral peeks, formants, that correspond to the resonance frequencies
[92].

The linear model

To model speech production the non-linear equations of accoustics are simplified to a
one-dimensional linear form using the following assumptions [90, 93]:

e The air flow fills up the whole vocal tract uniformly.
e The air flow velocity is smaller than the sound velocity.

e The fluid cannot support shear stresses.

The linear-filter model assumes that the vocal tract consists of 4-5 cavities, each
one modeled as a second-order linear filter. The impulse response of the filter is

F
r(n) = Ao" cos(QTr(F)n +6),n>0 (3.2.1)
S
where F' and Fj is the resonance frequency of the cavity and the sampling frequency
respectively, and o € [0, 1] controls the energy dissipation rate.
According to the linear theory, the vocal tract can be thought of as a total of N
linear resonances/filters with impulse response w(n), given by:

w(n) =r1(n) xra(n)...ry(n) (3.2.2)

where NN is the number of speech formants. Additionally, the source-filter model
assumes that the glottis and the vocal tract are not coupled, thus the source speech

waveform is
s(n) = u(n) x w(n) (3.2.3)

Linear Prediction Analysis

Although speech is a non-stationary process, features such as pitch period vary slow
with time. Thus the parameter values of a linear model are assumed as constant values
over a short frame of time. A mathematical framework for speech analysis over short-
time windows is Linear Prediction. In linear prediction each sample is modeled as a
linear combination of the previous samples:

s(n) =ars(n—1)+ags(n —2) + ...+ aps(n — p) (3.2.4)

where a;,i = 1,2,...,p are the linear prediction coefficients (LPCs), which mini-
mize the error:

N p
E =) [s(n) =Y ais(n— 1) (3.2.5)
n=0 i=1

where M is the number of samples in the short-time frame and p is the order of
the linear predictor.



3.2.2 Non-linear Model

Strong evidence of a non-linear model are presented, in dissagreement with the linear
speech production [102, 103]. The main principles are:

1. the air flow velocity in the vocal tract is not uniform but rather unstable.

2. the vortices modulate the air flow, amplifying certain frequencies and attenuating
others [109].

3. the air flow is unstable during phonetic transitions, i.e. when the vocal tract’s
shape changes [107].

The interaction of the source with the vocal tract involves a frequency modulation
(FM) component, meaning that the formant frequency is different during the different
phases of the glottis. The FM is a result of the variations on the oscillation parame-
ter. Instantaneous changes on the oscillation parameter can cause changes in the rate
of decay of the amplitude envelope, amplitude modulation (AM). Additionally, this
interaction can effect the formant energy levels.

AM-FM Speech Modulation Model

The AM-FM speech modulation model presents each resonance signal as a combination
of amplitude and frequency modulation [75, 77].

r(t) = a(t) cos (2w (fet + fin /Ot q(2)dz) + ¢(0)) (3.2.6)

o(t)

where f. is the formant frequency, a(t) the time-varying amplitude signal, ¢(t) €
[—1,1] the frequency modulation signal, f(t) = 5=¢(t) = fe+ fmq(t) the instantaneous
frequency defined as the normalized derivative of the phase ¢(¢) and f,, the maximum
deviation of the instantaneous frequency from the formant frequency f., (0 < fin, < fe).

The speech signal can now be represented as the sum of N resonance signals.

N

s(t) = ri(t) (3.2.7)

k=1

where N is the number of formants. The AM-FM modulation model can describe
the non-linear phenomena by decomposing each formant into amplitude envelope and
instantaneous frequency signals.

Energy Separation Algorithm (ESA)

The Teager Energy Operator (TEO or ¥ operator) [51, 52] for a continuous time signal
is:
U [z(t)] = @(t)? — z(t)@(t) (3.2.8)

In discrete-time the energy operator is

Uylz(n)] = 2%(n) — z(n + Vz(n — 1) (3.2.9)
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which is derived form the continuous-time operator by approximating derivatives
with forward or backward operators.

The Energy Separation algorithm when applied to the AM-FM signal [76]

2(t) = a(t) cos (2(fut + fn /0 " (2)d2) + 6(0)) (3.2.10)

b(t)

can approximately estimate the squared product of amplitude |a(t)| and frequency f(t)
signals, i.e. W [z(t)] =~ [a(t)f(t)], where f(t) = d—f(t) = fe + fmq(t). The energy op-
erator tracts the energy (per unit mass) of a linear oscillator z(¢) = A cos(w.(t) + 0),
when applied to it: W .[A cos(w.(t) + )] = (Aw,)?.

The ESA algorithm estimates the instantaneous frequency and amplitude of an
AM-FM signal s(t) as:

ft)~ o Vs(0) (3.2.11)
o Ys(t)]
|a(t)| E0) (3.2.12)

Similar demodulation methods an be applied to discrete-time signals.

Multiband Demodulation Analysis (MDA)

Usually, the filters used in conjuction with TEO are Gabor filters. The impulse response
and frequency response of a Gabor filter are:

h(t) = ) cos(2mut) (3.2.13)
72 (f—v)2
H(f) = \2/56 = (3.2.14)

where v is the central frequency of the filter chosen equal to the formant frequency
and « is a bandwidth parameter. When the ¥ operator and the Gabor filtering are
combined we get:

dh(t) d?h(t)
dt dt?
This process, called “Gabor ESA” is faster than the simple ESA and provides

smoother instantaneous frequency times. An expression fot discrete-time signal would

be

Ulz(t) * h(t)] = [x(t) * ]2 —x(t) * h(t)[z(t) *

] (3.2.15)

.’E2 n)—rxn— xr\(n
Bla(n)] = S (T2 Da(n+1) (3.2.16)

where T is the sampling period of the signal z(n).
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3.3 Affective Descriptors

3.3.1 Speech Descriptors

Going over literature, a wide range of affective descriptors has been investigated. Table
3.1 summarizes the types and respective features.

Description Features
Prosodic Pitch, Energy, Duration, Zero crossing-rate
Short-term spectrum MFCC, Spectral bands, Formant
Voice quality Jitter, Shimmer, HNR, NHR

Table 3.1: List of affective descriptors.

The above list includes prosodic, spectral and voice quality features. Pitch is
the relative highness or lowness of a tone and depends on the number of vibrations
produced by the vocal cords. Algorithms for extracting the pitch frequency are mostly
the autocorrelation function and methods using the wavelet transform. Additionally,
speech energy can be exploited for emotion recognition because it is related to the
arousal level of emotions [4, 98].

Vocal tract features suggest that the shape of the vocal tract is modified by the
emotional state. Features that have been used to describe the shape of the vocal tract
include formants, and coefficients derived from frequency transformations. One method
to estimate the formants relies on the Linear Prediction Analysis which identifies the
formants using coefficients (LPCs). Another widely used feature, is the energy of certain
frequency bands. However, the Mel-frequency cepstral coefficients (MFCCs) provide
a better representation of the signal than the frequency bands since they exploit the
human auditory frequency response [112].

Voice quality features, such as jitter and shimmer measurement, depend on the
knowledge of the length of the cycles of the speech waveform. Jitter (absolute) is the
cycle-to-cycle variation of fundamental frequency, i.e. the average absolute difference
between consecutive periods, while Shimmer (dB) is expressed as the variability of the
peak-to-peak amplitude in decibels [38]. The contour of short-term acoustic features is
affected by emotion states of anger, disgust, fear, joy and sadness. It is also a valuable
feature for emotion recognition because they describe the temporal characteristics of
an emotion.

Many studies focuses on a set of the basic emotions, namely joy, anger, fear,
sadness, disgust and neutral. The behavior of five of the above emotional states is
outlined in Table 3.2. However, many distinctions occur depending on the speaker’s
gender. The two vocal properties, i.e., intensity and pitch, differ on women and men.
Pitch of a man’s voice fall under low frequency, in contrary with woman’s voice that has
high pitch. Comparing the intensities of male vs female voice, female’s voice has more
frequency components compared to men, while women speak at one octave higher, too.

Anger is the emotion of the highest energy and pitch level, while disgust is ex-
pressed with a low mean pitch level, a low intensity level and a slower pitch rate than
the neutral state does. Fear is correlated with high pitch level and raised intensity
level. When sadness is expressed low levels of intensity and pitch are observed, while
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Pitch Intensity Timing

Mean Range Mean Range Speech rate Duration
Anger >> > > > < <
Disgust < > < <<
Fear >> > > <
Joy > > > > <
Sadness < < < < > >

Table 3.2: Summary of the effects of several emotion states on selected acoustic features.
>: increases, <: decreases. Double symbols indicate a change of increased predicted
strength

the speech rate is generally slower than in neutral states. Joy shows similar outcomes
as fear, however they differ on the pitch contour [111].

The AM-FM model suggests that the formant frequencies are not constant during
a single pitch period, but they can vary around a center frequency. A wide range of
features based on the AM-FM model have been introduced by the research community.
In [30], the Instantaneous Frequency Mean (IF-mean), Mean Instantaneous Amplitude
(IA-mean) and Frequency Modulation Percentages (FMPs) are proposed. The short-
time weighted mean of the instantaneous frequency signal f;(t), i.e., the Instantaneous
Frequency Mean (IF-Mean), provides information about the speech formant structure
taking advantage of the time resolution of the ESA. Transitional phenomena and in-
stantaneous formant variations are mapped into those FM features. The Mean Instan-
taneous Amplitude (IA-Mean) features that are defined as the short-time mean of the
instantaneous amplitude signal |a;(t)| for each speech resonance i. The IA-Mean fea-
tures parametrize the resonance amplitudes and capture part of the nonlinear behavior
of speech, e.g., the modulation pulses appearing within a single pitch period.

Frequency Modulation Percentages (FMPs) can partially capture the fluctuation
of frequencies during a single pitch period and they are defined as:

B;
FMP;, = — 3.1
7 (331)
where - )
fi(t)az (t)dt
o as(t)dt
Tr.2 2
(¢ i(t) — F3)az (t)]dt
o aZ(t)dt
i = 1,...,n is the formant index and 7' is the time window length. F; and B;

are called weighted mean frequency value and mean bandwidth of the formant i. So,
before we can calculate the F'M P; for all ¢, we need to calculate the F; and B; for all
i. And to do so, we need a;(t) and f;(t) for all i.

In [116] the Variation of FM Component (TEO-FM-Var) is introduced. The mo-
tivation for the TEO-FM-Var feature is to capture stress dependent information that
may be present in changes within the FM component. Its processing is based on
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the entire band although the final FM variations are computed around the restricted
frequency band. The Amplitude modulation cepstral coefficients (AMCCs) [3] uses a
smoothed nonlinear energy operator (SNEO) for amplitude modulation cepstral coef-
ficients (AMCC) features. The advantage of NEO is that it uses only a few samples
of the input signal to estimate the energy required to generate an AM-FM signal and
separate it into amplitude and frequency components without imposing any station-
ary assumption as done by linear prediction or Fourier transform. In [108] Amplitude
modulation index (AMI) provides a statistical analysis of amplitude modulations on
bandpassed speech signals along the formant tracks. The AMI feature is computed for
each pitch period and statistics are computed.

In [117], an alternative method for the estimation of the center frequencies fc of
the Gabor filterbank, the iterative-ESA is proposed. This method implies the iterative
application of ESA to the Gabor filtered signal and thus adjusting the center frequency
of each filter after every iteration. The method is considered important since it re-
duces the importance of having good initial estimates of the center frequencies of the
filterbank. The procedure started using center frequencies dictated by the mel-scale,
updating each one of them after every iteration of the ESA, while keeping the band-
width fixed. The algorithm is assumed to have converged when the center frequency of
each filter does not change by more than 1% or reached a certain number of iterations.

3.3.2 Other Descriptors

Besides the speech affective process of the human brain, people tend to interpret sev-
eral signals for analyzing the real life emotional aspects. Such cues that effect one’s
emotional state can be either lexical, visual or dialogue-level, while interacting with a
group of people. In the first case scenario, where the affective information is expressed
using lexical cues, the text-based affective analysis is orchestrated using affective lexica
[26, 25]. Such lexica have been constructed for several languages and models using
word or phrase-level emotional ratings.

When analyzing group interactions, several turn-taking and dialogue features can
be employed. Interactions have been investigated for several tasks, including dialogue
acts [55], conflict escalation [57] and sentiment analysis [19]. In [41], several affective,
speech and text-based, lexical and semantic features are investigated for root-cause
analysis and miscommunication hot-spot detection. Speaker identity and meeting type
were investigated in [114] suggesting that both were highly correlated with one’s in-
volvement in interactions. In [37] two turn-level features, namely ASR confidence and
word error rate (WER), were examined. WER were found to be increased when shout-
ing was detected, while ASR confidence was decreasing in such conditions. Additionally,
dialogue-level features were investigated, namely the total dialogue length, the number
of turns and task success rate.

3.4 Affective Saliency

The saliency (or salience) is the relative state, widely used in the study of perception
and cognition, that refer to any aspect of a stimulus that stands out from the rest.
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Saliency detection is an attentional mechanism that uses learning in order to focus on
perceptual and cognitive resources. Saliency typically arises from contrasts between
items and their neighborhood and may be the result of emotional or cognitive factors.

In the domain of psychology, efforts have been made in modeling human attention.
More specifically, in the area of computer vision, efforts have been made in modeling
the bottom-up attentional mechanism [7]. One way is based on the spatial contrast
analysis. For instance, in [48] a center-surround model is employed to define saliency
across scales. Another way is based on the frequency domain, by using the amplitude
spectrum to assign saliency, and in was first proposed in [47]. The phase spectrum was
used instead in [44], while a system that uses both amplitude and phase information
was proposed in [68].

Based on visual perception, an affective saliency map model is proposed in [6]. It
considers psychological distance as well as the relative distribution of intensity, edge,
color, and orientation. In [11], they focused on how visual distractors influence selection
based on either the personal meaning (what a person knows about the distractor)
or personal affect (how a person feels about the distractor). Faces are one of the
most significant factors for effecting a person’s visual stimuli, as they express emotion,
intention and needs. Based on that assumption, the emotional facial expressions are
investigated in [22], in order to understand the salient properties which trigger shifts
of attention.

Several studies have also focused on the affecive properties of music covers. Philo-
sophical and musicological analysis was used to determine such properties in [58], while
perceptual analysis was investigated in [5]. Pitch and tonality [104], in addition to
rhythm [60] from music have been explored, while the relation of such qualities, i.e.,
affect and acoustical cues, in music are addressed in [67].

3.5 Information Fusion

A need of improvement on the classsification performance has successfully introduced
the concept of information fusion. Several alternative approaches have been proposed
over the years for different tasks, including emotion recognition. Techniques of infor-
mation fusion can be discriminated in three categories, connected to the classification
process [95]. The first stage of fusion is on the data level, the second on feature level
and the third on the decision level. The first two approaches are not extensively inves-
tigated. Mostly, heuristic methods have been used for feature-level fusion [10]. In [56]
speech features derived from different timescales of the speech signal are fused and asso-
ciated with different machine learning techniques. However, the proposed information
fusion is employed on the decision-level.

Fusion of different modalities has been also investigated, based on the assumtion
that a person’s the affective state can be transmitted from different channels. Speech,
text and visual information have been combined in [89] for sentiment analysis. In [115]
facial and vocal expressions are investigated for emotion recognition, analyzing salient
emotional features and cognitive models as well as multi-modal data fusion. A weight-
ing scenario for audio-visual speech recognition is proposed in [42] using optimized
weights to minimize the word error rate (WER). Acoustic and language information
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are fused in [64]. Salience keywords were identified based on the most frequent words
for a specific domain, while the different modalities were combined at the decision-level.

3.6 Summary

In this chapter we introduced the two models of speech production, namely the linear
and non-linear model, as well as features derived from both of them. We presented
affecive descriptors for speech emotion recognition mainly derived from the speech
signal. Linguistic and dialogue features are also proposed. Last, we briefly described the
concepts of affective saliency and information fusion that exploit the affective context
and knowledge of speech.



Chapter 4

Affective Saliency Model

4.1 Introduction

In the recent years several work has focused on audio, video and text saliency [35].
In [34], audio-visual saliency is investigated for movie summarization. Audio saliency
is assessed by quantifying multifrequency waveform modulations, while video saliency
is estimated by spatiotemporal attention model driven by intensity, color and motion.
In [53], audio saliency is applied on automatic acoustic scene classification of real life.
Motivated by the human auditory system and its attention model, salient events of an
audio clip are extracted in an unsupervised manner. A study of audio content analysis
is presented in [74], in which an audio stream is segmented according to audio type or
speaker identity. In [66], emotional vocal stimuli with varying degrees of acoustic cue
saliency was used to create graded levels of stimulus-driven prosodic ambiguity.

Applying a discriminative procedure as Minimum Classification Error (MCE)
training [50, 33] for information fusion over time has been investigated in the past
for several tasks including automatic speech recognition and speaker recognition [72].
In [31] spectral distance features combined with a frame-level misclassification error
have been investigated for information fusion over time using conditional random field
classifiers. Such techniques are shown to reduce the classification error rate significantly
and increase the discriminability among the different labels.

In this chapter we present an affective saliency model [24], that aggregates lower-
level information in order to estimate their contribution of the utterance-level emotional
perception. Affective saliency is estimated via a regression model that utilized features
extracted from different timescales of the acoustic signal (e.g., F0) and the frame-level
posterior probabilities. Thus, first a frame-level feature vector is constructed. It is
assumed that each frame contains an expression of the emotion of the utterance it be-
longs to, and therefore it is given that same label. The resulting feature vector with the
assumed frame-level labels is then given as input to train a frame-level classifier. The
frame-level decisions of a given utterance are further combined in a weighting scheme,
which emphasizes the most salient affective information over time. The regression pa-
rameters are trained iteratively by minimizing the classification error rate via Minimum
Classification Error (MCE) training/ Generalized Probabilistic Descent (GPD). In our
experiments, we used spoken dialogue call-center datasets and we focus on an anger

16
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detection task (negative vs non-negative valence detection).

4.2 Affective Saliency Model

Let X = {x1,...,2n} be a frame vector of an utterance 7', and C; discrete affective
labels, e.g. levels of anger vs. neutral, with ¢ = 1,..., M. The emotional content of an
utterance T is computed over time by its corresponding frames and weighted according
to the factor \; which indicates the affective saliency for frame j.

1 N
F(Ci|X) = log P(C|X) = 1= > Ajlog P(Cil;) (4.2.1)
j=1

where P(Cj|z;) are the frame-level posterior probabilities, while the weights \; are
estimated via Minimum Classification Error (MCE). More specifically, given that the
optimal weights are unknown, we train a regression model as:

K
A=Y agdy (4.2.2)
k=1

where a; with Zszl ar = 1 the trainable weights and dj the regression features, de-
scribed in Section 4.2.2. The next step is to define the misclassification measure E, as
shown below

E(X)=F(Cr|X) - F(C¢c|X) (4.2.3)

where Ct and C¢ correspond to the incorrect and correct emotional classes, respectively.
The loss function, which maps the misclassification error onto the interval [0, 1] is a
sigmoid function and it is defined as

1

W) = T e=mmy

v>1 (4.2.4)
with ~ representing the sigmoid scaling factor. The loss function approaches zero
when F(X) < 0 and close to one otherwise. So by minimizing the loss function, the
classification error is also minimized. The loss function [(X) can be differentiated and
optimized via an iterative gradient descent algorithm, by establishing the algorithmic
convergence property [49]. The update equation of a specific unknown parameter w is

w=w— eL oUX) (4.2.5)

where Np is the total number of utterances 7' in the dataset, € is a learning rate
parameter used during the iterative MCE training and % the partial derivative of
the loss function {(X)

AX)  OUX) OE(X) O

ow — OE(X) dN  Ow

(4.2.6)
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4.2.1 Affective Classification Model

For the affective classification defined in (4.2.1), we found that the trainable parameters
were more robust across datasets when computed on segment-level instead of frame-
level. Hence, features were grouped in sets of 20 frames and statistics were computed
over them. We use only 3 LLDs, namely energy, 1st Mel-Frequency Cepstral Coefficient
(MFCC) and raw fundamental frequency (F0) and applied the following statistics: max,
min, mean, median and standard deviation.

We selected only a set of those 3 LLDs after investigating the distribution of the
class posterior probabilities of the trained classifier. When increasing the number of
features of the affective classifier, the confidence for the segment-level decision was
increasing favoring the majority class.

4.2.2 Regression Model

In this section we present the parameter estimation model and the saliency features
di, as described in Eq. (4.2.2). Several features including features derived from the
posterior probabilities and the acoustic signal were also evaluated as candidates for es-
timating affective saliency. We found that spectral flux and F0 extracted from different
timescales of the speech signal, were robust across the different datasets. Specifically,
we extracted spectral flux and FO in a fixed window size of 200 ms and FO in 30 ms
with 10 ms update. Features extracted in 30 ms window size were further grouped in
order to create segments and statistics were applied, namely max, min, mean, median,
standard deviation. As an additional feature, we used the rate of unvoiced frames per
segment using the Voice Activity Detector presented in [101].

4.3 Spoken Dialogue Datasets

Speech services have been constantly advancing the recent years, due to the growing
need of telephone applications and industry. Despite recent progress in Spoken Dia-
logue System (SDS) technologies, there are a few spoken dialogue datasets containing
interactions with real-users. For our experiments we used four spoken dialogue datasets
from four call-centers in two languages. A brief description of the datasets is presented
in Table 4.1.

LEGO CC PB MT

#non-negative | 3309 1027 1095 1023
#negative 934 339 607 1106
#speakers 200 284 1 200
Language English | English | Greek | Greek

Table 4.1: Dataset description.

No information about the number of speakers was available for the phone banking dataset.
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Bus Information - LEGO dataset

The LEGO dataset (a subset of the Let’s Go dataset [97]) provides bus schedule infor-
mation for buses during off-peak hours. The dataset was annotated in terms of events
that could cause a hot-spot, while it was augmented with emotional labels, including
anger and satisfaction. The anger-related labels (hot-anger detection) followed a 5-level
scale: friendly, neutral, slightly angry, angry, very angry.

Incoming customer service calls (CC) dataset

The CC dataset of spontaneous speech was created by collecting user calls from a
call center. For each call a wave file is available along with respective transcriptions.
Each file (and the respective transcription) is annotated with one label: negative or
non-negative.

Phone banking dataset

The phone banking dataset [1] consists of 1702 user utterances and their respective
transcriptions (in Greek). The main functionality of this application was to provide
information regarding bank services. The user utterances were annotated with respect
to their emotional content (arousal/valence ratings and anger on a 5-scale scheme) and
two personality dimensions, namely neuroticism and extraversion.

Movie ticketing dataset

The main functionality of the movie ticketing service is the retrieval of information
about movies and showtimes followed by the booking of tickets. The dataset? [1, 73]
cover two data types: 1) audio files, and 2) the respective transcriptions. In addition,
each transcribed dialogue was annotated with respect to its emotional content. The
dataset’s annotations can be distinguished into two main categories: 1) annotations
on dialogue level, and 2) annotations on utterance level. Each annotation aims to
characterize either the emotional content, the personality of the caller, or dialogue
characteristics. The emotional content was annotated with respect to arousal, valence
and hot-anger. The labels used for anger annotation were discrete scores that lie in the
[l — 5] interval capturing very angry user utterances (1) to friendly utterances (5)

4.4 Experimental Procedure

We conducted two types of experiments across all datasets: matched (training and test-
ing on the same corpus) and cross-corpus. In the matched experiments, we divided each
dataset in equally sized training, development and test sets, while for the cross-corpus
experiments, we used (all the data of) three datasets for training and development
and tested on the fourth. The development set was used for learning and optimizing
the unknown parameters ap of Eq. (4.2.2). Results on the trainable parameters are
presented in Section 4.4.1.

2More information about how the dataset was created can be found at the Appendix B
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4.4.1 Parameter Optimization

In this section, we present the results if the affective saliency model, i.e., the trainable
parameters and the estimated salient weights. During MCE-training the aj, parameters
were iteratively updated. In each iteration the average loss value was shown to decrease
while the classification accuracy increased, as more misclassified utterances were cor-
rected. Figure 4.1 shows the classification accuracy and the loss function values for
four experimental datasets during training.
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Figure 4.1: Classification accuracy and loss function values during training.

The optimal parameters are the ones that minimized the average loss function.
The scaling factor v of Eq. (4.2.4) and learning factor € of Eq. (4.2.5) were set to v = 2
and € = 0.1. We observed that after 300 iteration the GPD algorithm converges for
the selected parameters v and e.

The parameters a; were initially trained independently on each dataset to inves-
tigate the robustness of the proposed method. Results were pretty consistent across
datasets. Finally we selected the median value across the datasets in order to construct
a universal saliency model. The resulting weights for the [0, 1] normalized features are
presented in Tables 4.2 and 4.3.

Comparing the results on Tables 4.2 and 4.3 we observe that the trainable param-
eters ay are more robust across datasets on the cross experiments than on the matched.
This is justified as on the cross experiments the a; are computed over three different
datasets, decreasing the effect of the individual dataset’s characteristics.

Figure 4.2 shows the speech signal and the frame-level pitch contour of the utter-
ance “No, can I talk to a person?” with the weights \; computed according to Eq.
(4.2.2). The weights are computed on segment-level and mapped to samples and/or
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FO (30ms) 200ms
max | min | median std mean | Spec. Flux | FO | Unv. Rate
CC 0.143 | 0.099 | 0.243 | -0.001 | 0.175 0.439 0.163 -0.264
LEGO | 0.197 | 0.098 | 0.160 | 0.031 | 0.156 0.225 0.032 0.100
PB 0.224 | 0.086 | 0.155 | 0.040 | 0.156 0.191 0.015 0.129
MT 0.450 | 0.490 | 0.258 | 0.067 | 0.316 -1.688 0.616 0.488

| median [ 0.211 [ 0.099 | 0.202 | 0.036 | 0.166 | 0.208 [0.098 | 0.114

Table 4.2: Estimated optimal parameters across all datasets for the matched experi-
ments.

FO (30ms) 200ms
max | min | median | std | mean | Spec. Flux | FO | Unv. Rate
CC 0.273 | 0.157 | 0.205 | 0.064 | 0.205 -0.196 0.075 0.075
LEGO | 0.218 | 0.116 | 0.173 | 0.027 | 0.170 0.114 0.029 0.148
PB 0.204 | 0.143 | 0.191 | 0.021 | 0.182 0.021 0.036 0.199
MT 0.220 | 0.130 | 0.182 | 0.037 | 0.180 0.081 0.018 0.148

| median [ 0.219 [ 0.137 [ 0.187 [0.032[0.181 | 0.051 [0.033 ] 0.174

Table 4.3: Estimated optimal parameters across all datasets for the cross experiments.

frames using linear interpolation. The weights’ values vary across time and peaks are
detected toward the end of the utterance where the word "person” is stressed (see also
FO contour). The saliency curve is very smooth since the saliency weights are computed
on segment-level.

4.5 Conclusions

We have proposed an algorithm that utilizes a Minimum Classification Error (MCE)
criterior in order to learn the most salient affective information over time. Hence,
sub-utterance features were explored and used for training a regression model. The
regression model uses features from different timescales and LLDs. Experiments on
four different datasets of two different languages showed that the model’s parameter
optimization was robust across all datasets regardless the language.
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Speech signal with the respective saliency weights
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Figure 4.2: Utterance of the CC dataset with transcription: “No, can I talk to a per-
son?”. Estimated affective saliency (top) and fundamental frequency contour (bottom)
is also shown.



Chapter 5

Fusion Over Time

5.1 Introduction

One of the main issues in affective classification is the level (phone, utterance) of in-
formation integration and decision fusion, as well as how information over different
time-scales is fused over time. The most popular information fusion method for affec-
tive computing is feature-level fusion, where statistics of frame-level features (low-level
descriptors) are estimated over a segment or for the whole utterance. In [95], a number
of fusion methods are presented, while in [80] decision fusion over different modalities
is presented.

Previous studies in this field have used thousands of paralinguistic features, mostly
classified in three categories, namely prosodic, short-term spectral and voice quality
[112]. As more studies are based on acted speech, where linguistic content and the
produced emotions are simulated and controlled, prosodic features are the most widely
used. Spectral features, especially MFCCs, were found to improve performance on
many speech processing tasks, including emotion recognition.

In this Chapter, we present a model for information fusion over time that weights
speech frames/segments based on their affective saliency. Figure 5.1 provides the sys-
tem’s description. The saliency weights are extracted by the affective saliency model
presented in Chapter 4. This fusion is implemented following either an early (feature-
level) or a late fusion scheme. We compare the early and late weighting scenarios with
a baseline model, which fuses information by applying statistics over the frame-level
features and achieve impoved performance.

5.2 Baseline Model

For our baseline model®, we implemented an utterance-level with no weighting fu-
sion scheme. More specifically, we computed statistics/functionals over an utterance’s
frames. Given a frame j,1 < j < N, with feature value f; the mean p and standard

!Further experiments using the baseline model, larger feature sets and more datasets are provided
in Appendix A.
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Figure 5.1: System architecture for the fusion scenarios using the affective saliency
model.
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The median value is estimated as the middle value of the sorted feature values f;.

5.3 Early Fusion Model

The saliency weights are used to compute weighted statistics over the frames of an
utterance, namely mean, standard deviation, max, min and median. Given a frame
J,1 < j < N, with feature value f; and weight \; the weighted mean f,, and standard
deviation oy, are:

Y RPN SN )
Z;V:]. )\] ’ E;V:]_ Aj

(5.3.1)

The weighted median is estimated as feature values f; that can appear multiple times,
according to their weights A;.

5.4 Late Fusion Model

First we investigate a late fusion scheme for the utterance-level emotion decision.
Specifically, we combine the computed weights A; as shown in Eq. (4.2.2) with the
frame-level posterior probabilities of our affective classifier P(Cj|x;), as presented in
Eq. (4.2.1). Then the utterance-level emotion decision is computed as:

C* = argmax F(C;|X) (5.4.1)

k3

where C;, with ¢ = 1,..., M the discrete affective labels.
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5.5 Experimental Procedure

5.5.1 Affective Feature Extraction

A set of 33 frame-level features (low-level descriptors) and their deltas were extracted in
a fixed window size of 30 ms with a 10 ms frame update, using the OpenSmile toolkit.
The list of spectral and prosodic features used is given in Table 5.1.

Energy-related LLDs | Energy, Zero-Crossing Rate

Spectral LLDs Energy 250-650Hz 1k-4kHz, Flux, Entropy,
Variance, Skewness, Kurtosis, Slope, Psychoa-
coustic Sharpness, Harmonicity, MFCC 1-14,
Roll Off Point 0.25, 0.50, 0.75, 0.90

Voicing realted LLDs | FO, Prob. of Voice, raw FO

Table 5.1: List of features

Regarding the baseline and early fusion scenarios the features in Table 5.1 were
used along with their deltas. Similar to the saliency model (described in Chapter 4),
features have been mapped into the [0,1] interval. In order to extract utterance-level
features, the following functionals were applied: mean, standard deviation, median,
max and min.

5.5.2 Experiments

For our experiments we used four spoken dialogue datasets from four call-centers in
two languages: (1) bus information (LEGO, a subset of the Let’sGo dataset [97]), (2)
US call center (CC) incoming customer service calls, (3) phone banking (PB) [1] and
(4) movie ticketing (MT) [1, 73], presented in detail in Section 4.3.

We conducted two types of experiments across all datasets: matched (training
and testing on the same corpus) and cross-corpus. In the matched experiments, we
divided each dataset in equally sized training, development and test sets, while for the
cross-corpus experiments, we used (all the data of) three datasets for training and de-
velopment and tested on the fourth. Table 5.2 presents the average utterance duration
per dataset, which as expected is an important factor for the model’s performance.

CC | LEGO | PB | MT
Average duration | 1.85 | 1.67 | 4.17 | 1.43

Table 5.2: Average utterance duration in seconds per dataset.

Regarding the experimental procedure, the chance classifier assigns each test sam-
ple to the majority class. For our baseline experiments as well as the feature-level fusion
an SVM classifier with polynomial kernel from the Weka toolkit is used [46]. We chose
an SVM classifier due to its better performance compared to other classifiers tested.
Additionally, a forward selection algorithm from the Weka toolkit was applied on the
baseline system and the selected features were adapted on the early fusion scenario
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as well. For the saliency model we chose a Naive Bayes classifier, in order to extract
the class-posterior probabilities, and we present results before (pre-MCE) and after
(post-MCE) MCE training.

5.5.3 Evaluation

Next, we present the unweighted average (UA ) classification accuracy across all datasets
and fusion scenarios for the matched and cross-corpus experiments.

| CC [LEGO | PB | MT | UA
Matched experiments
pre-MCE | 77.4 | 787 | 68.8 | 53.4 | 69.5
post-MCE | 80.5 | 79.6 | 68.1 | 52.7 || 70.2
Cross-corpus experiments
pre-MCE | 81.4 | 79.0 | 65.6 | 58.0 || 71.0
post-MCE | 81.6 | 79.5 | 66.0 | 58.2 || 71.4

Table 5.3: Late fusion: Classification accuracy (%) results for the matched and cross
experiments.

In Table 5.3 the results for the late fusion scenario are presented for both the
matched and cross experiments. The regression model (affective saliency weights) is
initially trained independently by minimizing the average loss function on each dataset
and further estimated across all datasets. Results are presented before (no weighting)
and after MCE training. As we can see the MCE approach has better performance than
the pre-MCE system when refering to the U A metric. When comparing each dataset’s
performance individually, for the cross-corpus post-MCE outperforms pre-MCE for all
experiments, although the improvement is small.

CC | LEGO | PB | MT || UA
Chance 73.4 | 794 |64.2]52.7 | 674
Baseline 79.2 | 79.8 |67.6 | 51.7 | 69.6

Early fusion | 80.0 | 80.3 | 68.2 | 51.7 || 70.1

Table 5.4: Early fusion: Classification accuracy (%) results for the matched experi-
ments.

CC | LEGO | PB | MT || UA
Chance 75.2 | 779 |64.3|51.9 || 67.3
Baseline 81.6 | 82.1 66.3 | 54.0 || 71.0

Early fusion | 80.8 | 82.5 | 66.7 | 57.8 || 72.0

Table 5.5: Early fusion: Classification accuracy (%) results for the cross-corpus exper-
iments.

In Table 5.4 the results of the early (feature-level) fusion are presented for the
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matched experiments. For both the baseline and the fusion system, statistics are ap-
plied to frame-level LLDs in order to extract utterance-level features. However, for the
feature-level fusion weighted statistics are used. The weights are computed according
to the saliency model and mapped to frame-level using linear interpolation. We observe
equal or better performance for each dataset individually, suggesting that the global
nature of the affective saliency system is robust across the different datasets.

Table 5.5 shows the classification accuracy results for the early fusion scenario on
the cross-corpus experiments. Here the affective model is computed on three datasets
and tested on a fourth. We observe similar behavior with the results presented in Table
5.4, which suggests robustness across the different datasets. This is impressive given
that our datasets are of different languages, sizes and SDS type.

Overall, we show improvement across all datasets using the affective saliency model
either with the early or the late fusion fusion scenarios, suggesting that frame-level deci-
sions can be fused more efficiently in order to characterize the utterance-level emotional
content.

5.6 Conclusions

We investigated the automatic recognition of emotions in speech using an affective
saliency model for fusing information over time. The proposed fusion algorithm exploits
an affective saliency regression model to either weight frame-level posterior classification
probabilities or frame-level features. We demonstrated that the proposed model can
achieve modest performance improvement over the baseline. Our results suggest that
MCE training increases the discriminability between emotional states, by enhancing
the speech frames that carry the most salient information.



Chapter 6

Engagement Detection for
Children with Autism Spectrum
Disorder

6.1 Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that disturbs the
ability for social engagement, i.e. the development of interpersonal sympathy and col-
laborative action [54, 39, 106]. Social engagement is based on motives for moving and
responding to the physical and social environment. Periods of development represent
the ability for more complex forms of social engagement which result from the com-
bination of the two fundamental motives. At birth infants express a simple interest
in others’ expressions, while by the age of two months become more sensitive to the
reciprocity of emotions and are able to recognize the others’ communicativeness and
its absence or appropriateness. During this period social engagement is characterized
as interpersonal, since it does not refer to a topic in the environment; rather, it regards
only emotions and intentions in the dyad. Around 3 months a typically developing
infant often shifts attention to an object. The partner who seeks communication with
the infant, may simultaneously look at the same object or follow the infant’s gaze. This
kind of communication may be characterized as converging interest, since the two part-
ners attend to the same object, but the infant does not simultaneously pay attention
to the other’s intentions and feelings regarding that object. At 9 months infants show
a more pronounced interest in exploring specific emotional reactions and relating them
to external targets, a recognition of commands and prohibitions at 9 months [94, 105].
At this age an infant exhibits a new readiness to tune in with the intentions and inter-
ests of a partner in joint exploration and use of objects. This ability forms the basis
for a creative imagination of roles, actions, and “tools” that are arbitrary or symbolic
[105]. Children with ASD demonstrate different degrees of deficits in these aspects of
social engagement. Thus, identifying impairments in the ability to respond to social
cues revealing different aspects of social engagement may allow for distinction of young
children with ASD from typically developing children and for early identification of this

28
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disorder [28, 82]. An audio feature that conveys intentions and emotions in communica-
tion is prosody and child’s response to this salient cue of communication may reveal her
level of social engagement. However, relevant studies demonstrate that individuals with
ASD do have more difficulty in perceiving at least some aspects of pragmatic/affective
prosody [12, 13, 86, 88]. Verbal Response Latency (VRL) is another indicator of autism
in children, and is defined as the time needed to respond during a conversation. VRLs
can provide useful information about ones mental state, while long VRLs might occur
when a complex conversation is performed [23]. ASD severity has been also analyzed
in relation to vocal arousal and emotion dynamics [78, 15]. In [45], the degree of en-
gagement on children with ASD was investigated using acoustic and duration features
showing that vocal cues are highly related to engagement. This work is based on the
assumption that vocal and language cues can model one’s degree of engagement [14].
Motivated by this hypothesis, we experimented on a database consisting of sessions of
typically developed (TD) and Autism Spectrum Disorder (ASD) children interacting
with their parents under the supervision of a psychologist. The task that the subjects
were asked to complete was for the parents to convince their child to play with a car,
while the psychologist observed and participated when needed. We explored the role of
acoustic-prosody, language and visual cues of both participants on assessing the child’s
engagement. Sentence complexity, i.e., the number of words per sentence and verbal
use, also differ between TD and ASD children. Hence, we investigated these language
cues for both participants as the partner/caregiver have an acting role on the sessions.
Finally we experimented with visual cues based on the interactional role of the task,
while we examined the effect of turn-taking cues, such as the parent’s speech duration
[43].

6.2 Experimental Dataset

6.2.1 Video Recordings

It was decided that a structured naturalistic procedure would be the most appropriate
method for video recordings [2]. Recordings take place in the child’s home and in
familiar situations of everyday life. The recordings are characterized as structured
because the introduction of certain situations by the psychologist did not leave the dyad
complete freedom in play activities. The structured naturalistic method also ensured
that all children would experience similar situations during the sampling period, thus,
favoring comparisons. The set of toys included two different sized dolls, doll furniture,
a tea set, a brush and a mirror, a school bus with little people in it, blocks, toy animals
and a book. Mothers were asked to play with their child as they would normally do,
introducing all the toys provided. Each session lasted approximately 45 minutes. A
high quality video camera was used by an experienced psychologist so as to obtain
high quality data for analysis. The structured naturalistic condition consists of the
following situations: (a) familiarization (3 minutes), (b) still face condition (2 minutes):
the mother and the child interact without toys for 30 seconds then the mother stays
unresponsive for 30 seconds and the sequence is repeated once more, (c) play with toys
provided by the psychologist (15 minutes), (d) mother pretends that she hurts herself
and cries (1 minute), (e) play with toys provided by the psychologist (5 minutes), (f)
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mother pretends that the doll is not eating (1 minute), and (g) play with toys provided
by the psychologist (8 minutes).

Definition of car episode: on all four video recordings of each child, researchers
located the points on the footage where the mother uttered the word car and defined
a framework around the mother’s utterance called episode. An episode begins when
either the mother or the child first look or act at the car and ends when both the mother
and the child shift their attention from the car. The mean duration of an episode was
4.86 minutes. The mean duration of each episode for the ASD group was 5.99 minutes
and for the TD group was 3.72 minutes. This difference was not statistically significant
(t =1.11, p = 0.283). Microanalysis within an episode consists in noting the onset and
offset of each manifested behavior from every category. This kind of analysis provides
information on the duration that mother’s and child’s attention converge on the car, the
initiator and the responder of the interaction as well as the type of ongoing interaction
(e.g. solitary play, converging interest or joint attention).

| | ASD | TD [| ALL |

#utterances | 966 | 645 || 1611
#£sessions 33 33 66
#children 9 8 17
#male 8 6 14
#female 1 2 3

Table 6.1: Dataset description.

Table 6.1 presents the dataset’s characteristics, namely, the number of utterances,
sessions and children.

6.2.2 Data Labeling

One expert annotator labeled the dataset using the ELAN software [100] and according
to the following categories: transcription, gaze, action on object, action on partner and
emotion. The partner in this case can be either the parent or the child. Interrater
reliability was assessed with videotaped data from a random selection of 10% of the
sessions. Cohen’s kappa was 0.75 on average.

Using the aforementioned annotations, psychologists identified patterns for de-
scribing high-level categories of intention for the speaker:

1. Solitary: behavior used to learn and explore the environment

2. Converging Interest: two people express interest at the same object but they do
not communicate between them about that

3. Regulatory: behavior used to influence the behavior of others
4. Interpersonal: joint attention revealing an interpersonal goal

5. Interactional: behavior used to develop social relationships and ease the process
of interaction
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Assuming that each of the above intention categories carries a variable degree of
engagement, the intention/engagement annotation labels are presented in Table 6.2.
Moreover, Table 6.2 shows which annotations are needed in order to identify the inten-
tion/engagement patterns for each class. The identification of the engagement patterns
was applied on a time window, starting at the beginning of the mother’s utterance un-
til N seconds from its end. The labeling process was top-down, i.e., starting from
the Interactional class to the Solitary. Ambiguity was observed for a small subset of
utterances, as approximately 40 utterances were classified to two classes.

’ Intent ‘ Engage ‘ Gaze ‘ Object ‘ Partner ‘ Emotion
Solitary 1 v v
Converging 2 v v
Regulatory 3 v v v
Interpersonal 4 v v v v
Interactional | 5,6,7,8 v v v

Table 6.2: Data annotations and intention/engagement labeling. Object: action on
object, Partner: action on partner

In Table 6.3 and Figure 6.1 examples of the detected engagement patterns are
presented. More specifically, in Table 6.3 two patterns are presented, along with the
engagement and intention labels. Focusing on the second example, the mother says
“The car, come.”. During that time, the child is holding/inspecting the specific object,
while in the following time frame the child looks at the mother and offers it to her.
In Figure 6.1, the session engagement labels are presented over time. The timeline
shows shifts on the child’s degree of engagement starting with Converging Interest
to Interpersonal and Interactional. By the time the highest degree of engagement is
achieved, both participants are playing with the car.

Transcription ‘ Gaze ‘ Object | Partner ‘ Intent ‘ Engage
Do you want the car? What | LO HI
do you want?
’ LO Ma | Comver g
LO rging
The car, come. HI Intera- 6
LPE OG ctional

Table 6.3: Intent and engagement annotation examples; LO: looking object, LPE:
looking partner’s eyes/face, HI: holding/inspecting object, OG: offering/giving, MA:
moving away.

Table 6.4 presents the number of utterances per intention class. No utterances are
classified to the Regulatory class, however it is mentioned for completeness purposes.
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Figure 6.1: Degree of engagement labels over time for a session and example video
frame for the highest engagement level.

6.3 Feature Extraction

In this section, we briefly describe various feature sets that are used for the automatic
detection of engagement. A synopsis of the features is presented in Table 6.5. Linguistic
features were extracted for both mother and child, while the rest feature sets, i.e., audio,
video and affective text, were applied only on the mother’s utterances.

6.3.1 Audio & duration features

In order to model the style and quality of speech a set of frame-level features (low-
level descriptors, LLDs) were extracted in a fixed window size of 30 ms with a 10 ms
frame update, using the OpenSmile toolkit [36]. The proposed feature set contains the
following LLDs: energy, pitch, probability of voicing, harmonics to noice ratio (HNR)
and the first ten LPC coefficients. In order to extract utterance-level features, the
following functionals were applied: extremes, moments and percentiles.

Children with ASD tend to respond after a longer period of time compared to
TD children. Hence, a voice activity detection (VAD) feature either for the child
(interpreted as response) or for the mother (repeating herself) is employed. In both
cases the feature is binary and activated only in the time window IV used for extracting
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’ Category \ Futterances
Solitary 167
Converging Interest 510
Regulatory 0
Interpersonal 82
Interactional 69
No-engagement 784

Table 6.4: Number of utterances per intention category.

Audio - Duration

Acoustic Energy, Pitch, Probability of Voice, HNR, LPCs
[1-10]

Duration Utterance duration, VAD

Text

Affective Arousal, Valence, Dominance

Linguistic #words, utterance repetition, #word repetition,
#oov

Video

Action-related ‘ Gaze, action on object/partner

Table 6.5: List of features.

the engagement labels. Moreover, the mother’s speech duration is used.

6.3.2 Text features
Linguistic

Based on the assumption that speech is altered when speaking to children with ASD,
we created a set of lexical features on the transcribed utterances. These features in-
clude the number of words per utterance, a binary feature taking value 1 when the
utterance is repeated and 0 otherwise, and the number of repeated words per utter-
ance. Additionally, we observed that parents tend to use baby-talk (motherese) speech
to describe sounds, for example the sound of a car. In order to recognize these words we
compared our lexicon, consisting of 1.200 words, with a Greek vocabulary of approxi-
mately 300.000 words. Words that were not found in the vocabulary were annotated
as out-of-vocabulary (OOV) and characterized as baby-speech.

Affective

The goal is to estimate the emotional content of the transcribed speaker utterances.
A word w can be characterized regarding its affective content in a continuous space
consisting of three dimensions, namely, valence, arousal, and dominance. In order to
extract utterance-level ratings, the mean value of the ratings of the constituent words
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is computed, using an affective lexicon. More details about the lexicon can be found
in [85].

6.3.3 Action-related video features

As action-related features, we refer to the annotations regarding gaze and actions on
objects/partner. Although these features were manually derived, they were included in
the experimental features in order to investigate their role in engagement prediction. A
detailed description of the annotations and their labels can be found in [2]. Information
such as movements away or towards a person/object, gaze direction and symbolic or
functional play are included.

6.4 Experimental Procedure

Our goal was to predict the child’s engagement as a reaction to the mother’s speech.
The problem was posed as binary, i.e., engagement vs. no-engagement. The engage-
ment classes were discriminated as follows: the degrees of engagement as presented
in Table 6.2, i.e., Solitary to Interactional, are mapped to the engagement class while
the utterances that did not match any of the engagement patterns are mapped to the
no-engagement class.

Regarding the labeling procedure, the time window N during the pattern identifi-
cation was a significant parameter. After preliminary experiments, we focused on time
window N = 1 second. Another important factor was the duration of the mother’s
speech, based on the idea that the child’s intention changes during that time.

For the experimental procedure, we adopted a leave-one-child-out scheme, i.e.,
testing on one child’s utterances while training with the utterances of the rest children.
The majority class classifier assigns each test sample to the majority class, while for
the experiments an SVM classifier with polynomial kernel from the Weka toolkit [46]
is used. We chose an SVM classifier due to its better performance compared to other
classifiers tested. The classifiers were trained using the list of features presented in
Table 6.5. Additionally, a forward selection algorithm was applied on the acoustic
feature set and the selected features were adapted on the fusion scenario as well. As
fusion we used the concatenation of the different features sets.

6.4.1 Evaluation

Next, we present the unweighted average classification accuracy (UA) and the un-
weighted average recall (UR) for all features sets as well as their fusion.

The results, as presented in Table 6.6, suggest that the action-related features
are more successful at predicting the child’s engagement outperforming the majority
baseline and achieving 0.62 and 0.59 UR for the TD and ASD children respectively.
The linguistic features, extracted from the mother’s transcription, also achieve good
performance for both TD and ASD children based on the unweighted recall metric
(0.55 and 0.51 respectively).

Overall, we observe that the performance for TD children is better than for ASD,
suggesting that the TD children behavior is easier to predict in these sessions.
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UA UR

TD | ASD | TD | ASD
Majority class baseline ‘ 56.7 \ 52.2 ‘ 0.50 \ 0.50 ‘
Parent’s features
Acoustic 47.6 | 47.1 | 0.46 | 0.50
Duration 56.6 | 46.8 | 0.44 | 0.47
Linguistic 56.9 | 50.7 | 0.55 | 0.51
Text Affective 50.4 | 46.3 | 0.49 | 0.50
Actions 61.4 | 53.0 | 0.62 | 0.59
Child’s features
Linguistic | 49.2 | 44.7 [ 0.52 ] 0.48
Fusion
All features | 63.3 | 53.9 | 0.64 | 0.57

Table 6.6: Classification accuracy (UA) and unweighted recall (UR) results for the
engagement vs. no-engagement task.

6.5 Discussion

In this section, we discuss the factors that seem to effect our system’s performance ac-
cording to the results presented in Table 6.6. Initially, in order to evaluate the human’s
perception of the child’s engagement instead of employing automatic models, a subset
of the dataset was annotated by two more annotators. The annotators’ tasks were to
predict whether the child is engaged or not by 1) only hearing the parent’s utterance,
and 2) only watching the parent’s movements. Regarding the prediction, two labels
were used: 1 when engagement was predicted and 0 otherwise. The inter annotator’s
agreement, according to the Cohen’s coefficient, was computed and is presented in
Table 6.7.

TD ASD

Modality Task Agree ‘ K Agree ‘ K
Audio | prediction | 0.42 |-0.24 | 0.51 | -0.02
Video prediction | 0.65 | 0.29 | 0.56 | 0.10

Table 6.7: Inter-annotator’s agreement wrt. engagement detection.

The k values, presented in Table 6.7, suggest that the audio predictions achieve
poor agreement, i.e., engagement prediction can not be estimated via audio only. How-
ever, the video prediction and assessment labeling can be interpreted as fair and mod-
erate agreement respectively.

Our initial assumption was that the mother’s prosody would be discriminative
between the engagement classes. However, mothers have been found to speak motherese
regardless of the child’s degree of engagement. The low performance of the acoustic
feature set can be also justified by the fact that the sessions are recorded between
children and their parents, instead of a psychologist. We believe that psychologists are



36

inclined to use more strategic and less affective speech compared to parents.

The most significant factor on our analysis was whether the child was TD or ASD.
As our results suggest, TD children are more responsive to the sessions than ASD
children. Table 6.8 presents the Pearson correlation between the engagement labels
and the VAD of child’s/mother’s speech and the repetition of the mother’s utterance.
The results suggest that the child’s speech is more correlated to the engagement labels,
although the children are from varying ages and the majority of them are non-verbal.
Moreover, mother’s speech in the time window N is not uncorrelated with the engage-
ment labels as demonstrated on Table 6.8.

’ ‘ Child VAD | Parent repetition | Parent VAD

TD 0.18 0.06 0.12
ASD 0.11 0.03 0.09

Table 6.8: Pearson correlation between engagement labels and features.

6.6 Conclusions

We investigated the engagement of TD and ASD children in sessions with their parents
and focused on the utterance-level engagement vs. no-engagement classification task.
We used feature sets from different modalities, namely audio, text and video, extracted
mostly from the mother’s utterances rather than the child’s. Our results suggest that
the child’s engagement can be predicted by analyzing the mother’s characteristics, but
not with good accuracy. Prediction accuracy was higher to TD rather than ASD chil-
dren. Although acoustic features were not expressive enough, movements/actions and
lexical features from the mother’s transcribed utterances were the most informative.
Child speech was expected to be more correlated to the child’s engagement level, how-
ever most of the children used non-verbal cues or reacted to the task’s needs with
movements and gazing rather than talking.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this chapter, we summarize the contributions of this thesis and we provide insights
for future work. Motivated by the assumption that emotional changes alter the speech
production process, we focused on the task of speech emotion recognition for spoken
dialogue applications. This thesis presented a model for speech emotion recognition
using affective saliency (see Chapter 4), while two fusion scenarios, early (feature-level)
and late, were proposed (see Chapter 5). Several speech descriptors were examined and
evaluated for the task, as well. Finally, we investigated the engagement for children
with Autism Spectrum Disorder on interactions with their parents (see Chapter 6).

In this work, we emphazised on the affective feature extraction by examining
several low-level descriptors (LLDs) for the task of speech emotion recognition. We
investigated the performance of acoustic, spectral and voice quality descriptors, while
we also examined features derived from the Amplitude and Frequency Modulation (AM-
FM) model. The performance of the affective descriptors was evaluated on datasets of
both acted and spontaneous speech. The concept of multilinguality was also explored
by applying our models to datasets of different languages, i.e., English, Greek and
German. The development of a Greek Spoken Dialogue dataset, namely the Movie
Ticketing dataset, is included to the research work of this thesis.

One of the core models proposed in this thesis, the affective saliency model, aggre-
gates lower-level information in order to estimate their contribution on the utterance-
level emotional perception. The affective saliency is estimated using a regression model
that utilizes several acoustic descriptors from different timescales combined with the
frame-level posterior probabilities of an affective classifier. The regression model is
trained using a Minimum Classification Error (MCE) criterior by optimizing an objec-
tive loss function. Trainable parameters were iteratively updated in order to minimize
the classification error by establishing the algorithmic convergence property of a Gen-
eralized Probabilistic Descent (GPD) algorithm. The model’s universality was also
investigating by computing the parameter values across all datasets. Experiments on
four different datasets of two different languages showed that the model’s parameter op-
timization was robust regardless the language. Cross-corpus experiments, i.e., testing
on one dataset and training with the rest three, demonstrated similar behavior.
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Two fusion scenarios were then proposed for aggregating the affective saliency
weigths to the utterance-level emotion decision. In the first scenario, an early fusion
scheme is employed, in which frame-level descriptors are weighted according to the
affective saliency. On the second scenario, a late fusion scheme is proposed. The
saliency weights are combined with the frame-level posterior probabilities of an affective
classifier. Both schemes are compared to baseline models, which decide the utterance-
level emotion label with no weighting performed. Our results, for either weighting
scheme, suggested that improvement can be achived compared to the baseline, while
the MCE training improved the discriminability between the classes.

Finally, we examined the relation of affect and engagement in typically developed
(TD) and with Autism Spectrum Disorder (ASD) children using sessions of interac-
tion with their parents. Motivated by the fact that ones degree of engagement can
be determined by all participants of an interaction, we examined both mother and
child characteristics for engagement detection. Features derived from three modalities,
namely speech, text and video are investigated and evaluated for the task. Prediction
accuracy was higher to TD rather than ASD children, while video-related and lexical
features from the mother’s transcribed utterances were the most informative.

7.2 Future Work

In future work, it would be interesting to further explore the affective descriptors of
the speech signal and investigate their contribution on the emotion decision. Regarding
the affective saliency model, features and techniques will be examined for computing
salient weights over time. Another interesting turn of the saliency model would be
to adapt the affective salient weights into models based on other modalities, such as
affective text analysis. A richer feature set, by applying a larger number of statistics
and LLDs, and alternative machine learning algorithms will be evaluated for affective
fusion. Further investigation and factor analysis concerning the improvement compared
to the baseline system will be performed.

Regarding the engagement detection model, more features will be investigated and
alternative machine learning algorithms will be evaluated. The contribution of each
feature and its relation with the engagement labeling will be examined. Moreover, the
factors concerning the participants of the study as well as the videotaped sessions need
to be addressed. The age and severity of the ASD children may effect their social and
mental deficits, subsequently effecting the system’s performance. Finally, the action-
related features as well as the transcribed utterances will be automatically extracted
using video and speech recognizers.
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Baseline Experiments

A.1 Introduction

In this Section, we present experiments using the baseline model and several low-level-
descriptors (LLDs). Specifically, we used a set of 132 LLDs extracted using the OpenS-
mile toolkit and a set of statistics/functionals applied over them. We compared their
performance with features derived from the AM-FM model and investigate their con-
tribution on the emotion recognition task. For our experiments we used four datasets
of three languages, English, German and French.

A.2 Feature Extraction

A.2.1 OpenSMILE feature set

Initially, we used the openSMILE toolkit on order to extract the 132 low-level descrip-
tors (LLDs) from the InterSpeech 2012 configuration file. Then a set of functionals,
including extrames, means, percentiles, peaks, and times were appleid over the frame-
level LLDs in order to extract utterance-level features. The resulted baseline feature
set (Bq) is comprised of 5757 features. The computed LLDs and the applied functionals
are presented in detail in [81]. We used a feature selection algorithm using the Weka
toolkit on the B; feature set, which resulted to the B3 feature set.

A.2.2 Frequency Modulation Percentages (FMPs)

For this feature set, we computed the Frequency Modulation Percentages (FMPs), as
presented in Section 3.3.1, which can partially capture the fluctuation of frequencies
during a single pitch period. Functionals, implemented in matlab were applied on
the LLDs, namely, average, maximum, minimum, median, standard deviation, mode,
variance.

A.2.3 Fusion scenarios

In our first feature-level fusion scenario (Frgarr)), we concatenated the B; feature
set with the FMPs, creating a set comprised of all the features (ALL). Then, a forward
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selection algorithm was applied for reducing the feature vector’s dimensions. Addi-
tionally, in a second feature fusion (Fpsipayps) we concatenated the Bs feature set,
i.e., forward selection on the OpenSmile feature set, with the statistics applied on the
FMPs.

A.3 Experimental Procedure

For training we adopted a leave-one-speaker-out scheme. The feature selection algo-
rithm is applied in each training iteration and the final feature set is constructed by
the intersection of the resulted feature sets. Regarding the classification algorithm, we
experimented on 3 different classifiers, namely Naive Bayes, Support Vector Machines
(SVM) and Random Forest. Finally, we evaluated our results with respect to weighted
precision (A.1).
Y Pri-ng tp
—_— T =

SiLin tp+ fp

where tp, fp, fn and tn denote true-positive, false-positive, false-negative and

true-negative samples for a class i. N is the number of categorical labels and n; the
true positive samples per class.

wPr =

(A1)

A.4 Experimental Datasets

For the evaluation task four databases were used, namely 1) Call Center (CC), 2) Berlin
Database [84], 3) the SSPNet Personality Corpus [81] and 4) the Let’s Go Data. The
CC and LEGO datasets were presented in detail in Section 4.3. The Berlin dataset
consists of 535 audio files containing 7 emotional labels by 10 speakers and 10 sentences.
The SSPNet Corpus includes 640 audio clips of 10 seconds including personality scores
assigned individually by 11 assessors. The scores are obtained from raw personality
questionnaires and correspond to the following traits: Extraversion, Agreeableness,
Conscientiousness, Neuroticism and Openness.

Dataset #Speakers #Utterances Language

Berlin 10 535 German
CallCenter 284 1366 English
Personality 332 640 French

LEGO 200 4243 English

Table A.1: Number of speakers per dataset.
Table A.1 presents the number of speakers and utterances and the language per

dataset, while Table A.2 shows the feature vector’s dimension for each feature set
presented in Section A.2.

A.5 Evaluation & Results
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Personality

Systems Berlin CallCenter Agree Consc Extra Neuro Open

OpenSMILE B; 5757 5757 5757  B7BT  BYST  BTHT  BTHT
OpenSMILE F.S. Bs 203 142 21 15 23 26 12
FMPs 42 42 42 42 42 42 42
Frsarrn) 203 142 22 17 23 25 12
Fpsiryps 245 184 63 57 65 68 54

Table A.2: Dimensions per dataset and feature set.

B Bs  FMPs  Frgarr) Festrups
Bayes 0.657 0.820 0.365 0.820 0.806
SVM 0.814 0.837 0.343 0.849 0.839
Random Forest 0.621  0.749  0.357 0.705 0.751

Table A.3: Weighted precision results for the Berlin Database.

By By  FMPs  Frgarn) Fes+rups
Bayes 0.828 0.861 0.778 0.856 0.862
SVM 0.839 0.846 0.655 0.855 0.858
Random Forest 0.791 0.823  0.707 0.826 0.811

Table A.4: Weighted precision results for the Call Center Data.

By B3  FMPs  Frsarr) Fpstrmps

Bayes 0.526  0.640 0.538 0.640 0.610
SVM 0.564 0.610 0.540 0.610 0.616
Random Forest 0.546 0.647 0.543 0.647 0.637

Table A.5: Weighted precision results for the Agreeableness dimension.

Bl Bg FMPs FFS(ALL) FBB+FMP5
Bayes 0.540 0.551 0.552 0.551 0.587
SVM 0.617 0.617 0.617 0.617 0.617
Random Forest 0.625 0.649 0.563 0.649 0.639

Table A.6: Weighted precision results for the Conscientiousness dimension.

By By FMPs  Fpgarn) FB3+rmps
Bayes 0.539 0.561 0.455 0.561 0.560
SVM 0.553 0.623 0.506 0.623 0.607
Random Forest 0.554 0.676 0.493 0.676 0.637

Table A.7: Weighted precision results for the Extraversion dimension.
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By By ¥FMPs  Fpgarr)  Fp3+rups
Bayes 0.548 0.618  0.499 0.618 0.618
SVM 0.507 0.648 0.529 0.648 0.619

Random Forest 0.549 0.635 0.546 0.635 0.615

Table A.8: Weighted precision results for the Neuroticism dimension.

By By FMPs  Fpgarn) FB3+rmps
Bayes 0.489 0.575 0.506 0.575 0.505
SVM 0.502 0.555 0.533 0.555 0.550

Random Forest 0.566 0.579 0.555 0.579 0.565

Table A.9: Weighted precision results for the Openness dimension.

By By  FMPs  Fpgarn)  Fps+rmps
Bayes 0.786 0.793 0.748 0.795 0.799

SVM 0.834 0.805 0.608 0.806 0.819
Random Forest 0.767 0.786  0.720 0.784 0.790

Table A.10: Weighted precision results for the Let’s Go Data.
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The Movie Ticketing Dataset

B.1 Introduction

The movie ticketing dataset [73] consists of 200 dialogues in Greek collected through
a call center service for retrieving information about movies/show times and booking
tickets. The dataset includes two data types for each dialogue: 1) audio recordings,
and 2) the respective transcriptions. The annotation of dialogues was performed by
an expert annotator, while the selected dialogues were balanced with respect to three
factors: (i) gender of caller, (ii) call success, (iii) emotional content. To verify the
quality of annotations, two additional annotators labeled a subset of the 60 dialogues
from the original dataset for anger. The agreement between annotators found was 58%
with 0.4 Kappa value - computed as the average pairwise agreement - according to the
Fleiss coefficient, which can be interpreted as a moderate agreement.

B.2 Annotation Scheme

The first step prior to annotate the data was to manually transcribe the user utterances.
The system prompts were also transcribed since no system logs were available, only
the audio files from user and system turns. To annotate miscommunication, anger and
satisfaction the speech transcription was presented to the annotator when performing
the task, while he had access to the audio from the utterances too.

In miscommunication annotation the task was to evaluate if the system turn was
problematic or not. Label 0 was used when system answer was not considered problem-
atic, 1 when the system answer was problematic and 2 when the annotator could not
decide from the context whether the system answer was problematic or not. During
the annotation the annotator could see the whole dialogue.

The presence of anger, the satisfaction and the presence of repeated content in
the utterances could be indicators that a miscommunication occurred. Along with the
miscommunication annotation, the annotator had to listen to the utterance audio file
and identify if anger was present, the degree of satisfaction of the user and if there is
content repeated between the current user turn and the previous turn. The labels used
for anger annotation were discrete scores that lie in the [1 — 5] interval capturing very
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angry user utterances (1) to friendly utterances (5). Satisfaction was annotated in a
five point scale from 1 very unsatisfied to 5 very satisfied.

Moreover, 1 was used for user utterances in which repetition was observed and 0
otherwise. While listening to the dialogue the annotators were asked to be aware of
gender. To annotate task success, the annotators should listen to the whole dialogue
and verify that if the intention of the user was correctly answered by the system. The
label 1 was used for successful dialogues and the 0 for unsuccessful dialogues.

B.3 Anger Detection on the MT dataset

The experimental results for the movie ticketing dataset are briefly presented.

B.3.1 Speech-based system

Here, the aim is to capture the speaker’s emotional state using exclusively the speaker’s
speech signal. Hence, we utilize a set of low-level descriptors (LLDs) able to describe
the emotional content. Such LLDs have been widely used and include prosody (pitch
and energy), short-term spectral (Mel Frequency Cepstral Coeficients, MFCCs) and
voice quality (Jitter) features. The LLDs were extracted in a fixed window size of 30
ms with a 10 ms frame update and were further exploited via the application of a set
of functions, in order to map the speech contours to feature vectors. The following
functions (statistics) computed at the utterance-level for each of the LLDs were used
for the speech analysis: percentiles, extremes, moments, peaks.

B.3.2 Fusion of speech and text analysis

The main idea for the fusion of the two systems is motivated by the hypothesis that
each system exhibits different types of errors. For example, cases of offensive language
may be missed by the speech system, while cases of anger are likely to be missed
by the text-based. In an attempt to improve the performance of the speech affective
system, we employed a late fusion scheme. Specifically, the mean of the classification
posterior probabilities of the two systems were used, while we classify to the class with
the maximum posterior probability score.

B.3.3 Experiments and evaluation results

The goal is the detection of “angry” vs. “not angry” (i.e., 2-class classification problem)
user utterances. For this purpose, the anger annotations were used. Specifically, the
friendly and neutral labels were mapped to the “not angry” class, while the slightly
angry, angry and very angry labels were mapped to the “angry” class. The evaluation
was performed on the utterance level adopting the leave-one-dialogue-out process. The
unweighted average recall (UAR) and the classification accuracy (CA) were used as
evaluation metrics. The used feature set consisted of statistics over the first ten Mel-
frequency cepstral coefficients (MFCCs) extracted via OpenSmile. In order to reduce
the feature vector’s dimensionality a forward selection algorithm was then applied using
the WEKA toolkit, while a JRip classifier was used.
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System UAR | CA (%)
Speech 0.67 67
Text 0.61 59
Fusion of speech and text

Mean of posterior probabilities ‘ 0.67 ‘ 68

Table B.1: Movie ticketing dataset: “angry” vs. “not angry” classification.

The results of the affective analysis on the MT dataset are presented in Table B.1.
Both systems exceed the performance of the majority-based classification regarded as
naive baseline (0.5 UAR for binary problems and 59% CA). The best performance,
with respect to CA, was obtained by the fusion of the speech- and text-based systems
suggesting that the performance of the speech-based system can be (slightly) benefited
by the incorporation of the text-based analysis.
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