
 

 

Technical University of Crete 

School of Electrical and Computer Engineering 

Digital Image and Signal Processing Laboratory 

Telecommunications Division 

 

 

 

Functional connectivity analysis of cerebellum’s network 

during resting-state using functional Magnetic Resonance 

Imaging (fMRI) data 

 

 

Master Thesis 

 

 

Vasileios C. Pezoulas 

 

 

 

Thesis committee: Professor Michael Zervakis (Supervisor) 
    Professor Costas Balas 
    Associate Professor Aikaterini Mania 
 

 

 

Chania, July 2017



 

2 
 

 

  



 

3 
 

Credits 

 

I would like to thank: 

 

First and foremost, my family for the valuable support they have provided me all these years 

not only as an undergraduate but also as a postgraduate student, despite all the difficulties 

and challenges of our era. 

 
From the bottom of my heart Professor Sifis Micheloyannis from the Medical School of 

University of Crete who recently passed away. It was an honor to work with this remarkable 

person and I will never forget his contribution not only to this thesis but also to my personal 

improvement as a young scientist and a human being. 

 
Professor Michalis Zervakis for the confidence he showed me through all these years, his 

decisive guidance as well as his valuable support for conducting this thesis and finally for 

giving me the opportunity to explore the field of neuroscience. 

 
Professor Costas Balas and Associate Professor Aikaterini Mania for accepting to evaluate 

the work presented in this thesis as members of my thesis committee. 

 
The Max Planck Society for the financial support of the publication that is described in the 

first part of this thesis and especially Dr. Manousos A. Klados as well as the Society of Applied 

Neuroscience for hosting the international biennial conference, under the Frontiers in Human 

Neuroscience journal, where the first part of this thesis was presented in Corfu, Greece, at 

October 2016. Dr. Manousos A. Klados was a member of the Max Planck Society that time 

and has been a great mentor of mine throughout this thesis. 

 
The Bodossaki Foundation for the 4-month scholarship I received during my 3rd semester as a 

master student. 

 
The Pancretan Endowment Fund for the scholarship of excellence I received during my 4th 

semester as a master student. The second part of this thesis focuses on the methodology and 

the outcomes of the related research work which has been prepared for submission in the IEEE 

journal of Biomedical Health and Informatics. 

 
Dr. Kostantinos Michalopoulos for his valuable contribution and guidance in the second part 

of this thesis. 

 



 

4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my mother Vasiliki, a living hero 

  



 

5 
 

Abstract 

  

During the last years, it has been established that the prefrontal and posterior parietal brain lobes, which 

are mostly related to intelligence, have many connections to cerebellum. However, there is a limited research 

exploring cerebellum's relationship with cognitive processes and gender as well. The current thesis consists of 

two fundamental parts. In the first part of this thesis, a lobular network analysis of cerebellum was conducted 

with the purpose of investigating its overall organization in individuals with low and high crystallized Intelligence 

Quotient (IQ). In order to do so, resting-state fMRI (rs-fMRI) data were collected from 136 healthy subjects from 

the well-known Human Connectome Project (HCP) database. Cerebellum was anatomically parcellated, in the 

Montreal Neurological Institute (MNI) coordinate space, into 28 lobules-Regions of Interest (ROIs) and thereafter 

correlation matrices were constructed by computing Pearson's correlation coefficients between the average 

BOLD timeseries for each pair of ROIs. Afterwards, Minimum Spanning Trees (MSTs) were constructed in order 

to retain only the strongest connections within each network. Subsequently, six global and three local metrics 

were calculated in order to retrieve features concerning the functional and structural characteristics of each 

MST. Moreover, a hub analysis was conducted in order to identify nodes with high importance. The computed 

set of metrics gave rise to extensive statistical analysis in order to examine differences between low and high-

IQ groups, as well as between all possible gender-based group combinations. Our results suggest that both male 

and female networks have small-world properties with significant differences only in females (especially in 

higher IQ females) indicative of higher neural efficiency in cerebellum. In addition, an increased effort dedicated 

by the low-IQ population is detected in three specific lobules. In the final part of this study, instead of performing 

a lobular analysis of cerebellum, a voxel-wise clustering analysis approach was adopted based on Spectral Graph 

Theory. The main goal of this venture is to define a larger number of functional cerebellar regions and thus 

provide a much more accurate and data-driven gender-based network analysis of cerebellum’s activity. The 

recruited clustering approach was based on a spatially constrained version of the conventional spectral 

clustering algorithm by combining the average correlation matrix across 100 subjects with an appropriately 

thresholded Euclidean distance matrix. The procedure was first tested on synthetic data prior to any application 

on the original data. In order to find the most stable threshold as well as the optimal number of clusters, a 

repeated cross-validation procedure was executed on randomly defined subsets of the original population by 

assessing two basic clustering evaluation indices. The estimated parameters were then used to apply the SCSC 

procedure on the original data and extract a resting-state network atlas which was combined with the 

anatomical one, to define a functional atlas of cerebellum with 46 ROIs. To our knowledge, this atlas is the first 

resting-state functional cerebellar atlas based on the HCP data. This atlas was finally used to perform a gender-

based network analysis of cerebellum, similar to the one described previously. Our results suggest the existence 

of significant differences in the optimal organization of the MSTs between the two genders. Finally, the dominant 

hub that was found in functional region 10 supports the dominance of the Left VI lobule in cerebellum’s 

functional connectivity as it was already reported in the first part of this study. 

 

Keywords: cerebellum; rs-fMRI; functional connectivity; crystallized IQ; gender; network analysis; minimum spanning trees; 

spectral graph theory 
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Περίληψη 

 

Τα τελευταία χρόνια, είναι πλέον γνωστό ότι οι προ-μετωπιαίοι και οπίσθιοι βρεγματικοί λοβοί του 

ανθρώπινου εγκεφάλου, που σχετίζονται κατά κόρον με την νοημοσύνη, έχουν πολλαπλές συνδέσεις με την 

παρεγκεφαλίδα. Ωστόσο, η σχετική βιβλιογραφία γύρω από την μελέτη της σχέσης της παρεγκεφαλίδας με τις 

γνωστικές διεργασίες αλλά και με το φύλο είναι αρκετά περιορισμένη. Η τρέχουσα διατριβή αποτελείται από 

δύο βασικούς πυλώνες. Στο πρώτο μέρος της διατριβής, διεξάγεται μια ανατομική ανάλυση του δικτύου της 

παρεγκεφαλίδας, σε επίπεδο λοβίων, με αμφότερο σκοπό την διερεύνηση της συνολικής δραστηριότητας της 

παρεγκεφαλίδας σε άτομα με χαμηλό και υψηλό (κρυσταλλικό) δείκτη νοημοσύνης (IQ). Για τον σκοπό αυτό 

συγκεντρώθηκαν δεδομένα fMRI, σε κατάσταση ηρεμίας, από 136 υγιή υποκείμενα, μέσω της ευρέως γνωστής 

βάσης δεδομένων του Human Connectome Project (HCP). Η παρεγκεφαλίδα απομονώθηκε ανατομικά από τον 

υπόλοιπο εγκέφαλο, στον MNI (Montreal Neurological Institute) χώρο συντεταγμένων, σε συνολικά 28 λοβία-

περιοχές ενδιαφέροντος (ROIs) και εν συνεχεία κατασκευάστηκαν πίνακες συσχέτισης υπολογίζοντας τον 

συντελεστή συσχέτισης για κάθε πιθανό ζεύγος μέσων BOLD (Blood Oxygen Level Dependent) χρονοσειρών, 

ανά περιοχή ενδιαφέροντος. Κατόπιν, δομήθηκαν ελάχιστα συνδετικά δέντρα (MSTs) με αμφότερο σκοπό την 

διατήρηση των ισχυρότερων συνδέσεων ανά δίκτυο. Εν συνεχεία, υπολογίστηκαν έξι καθολικές και τρεις 

τοπικές μετρικές δικτύων με στόχο την εξαγωγή χρήσιμων τοπολογικών και λειτουργικών χαρακτηριστικών των 

MSTs. Επιπλέον, διεξήχθη μια πλήρης hub ανάλυση προκειμένου να εντοπιστούν οι σημαντικότεροι κόμβοι 

(hubs). Το σύνολο των εξαγόμενων μετρικών πυροδότησε την δυνατότητα εκτεταμένης στατιστικής ανάλυσης 

προκειμένου να εξεταστούν διαφορές μεταξύ των ομάδων χαμηλής και υψηλής νοημοσύνης καθώς και μεταξύ 

όλων των πιθανών συνδυασμών ομάδων βάσει του φύλου. Τα αποτελέσματά μας προτείνουν ότι τόσο τα 

δίκτυα των ανδρών όσο και των γυναικών εκδηλώνουν την χαρακτηριστική small-worldness ιδιότητα με 

σημαντικές διαφορές μόνο στις γυναίκες (ειδικά στις γυναίκες με υψηλό IQ), γεγονός που υποδεικνύει μια 

υψηλότερη νευρονική απόδοση στην παρεγκεφαλίδα. Επίσης, εντοπίζεται μια αυξημένη προσπάθεια που 

αφιερώνεται από τα άτομα με χαμηλή νοημοσύνη, σε τρεις συγκεκριμένους λοβούς της παρεγκεφαλίδας. Στο 

δεύτερο και τελευταίο μέρος της διατριβής, πραγματοποιείται μια πλήρης ανάλυση των voxels της 

παρεγκεφαλίδας, έναντι της κλασσικής ανατομικής ανάλυσης σε λοβία, βασισμένη σε πτυχές της φασματικής 

θεωρίας γράφων. Ο στόχος αυτού του εγχειρήματος είναι να οριστούν περισσότερες λειτουργικές περιοχές της 

παρεγκεφαλίδας και συνεπώς να διεξαχθεί μια πιο ακριβής και στοχευμένη ανάλυση του δικτύου της 

παρεγκεφαλίδας σε άντρες και γυναίκες. Η μέθοδος ομαδοποίησης βασίστηκε σε μια χωρικά περιορισμένη 

εκδοχή του κλασσικού spectral clustering αλγορίθμου (SCSC) συνδυάζοντας την μέση μήτρα συντελεστών 

συσχέτισης από 100 υποκείμενα με μια κατάλληλα κατωφλιωμένη μήτρα Ευκλείδειων αποστάσεων. Η 

διαδικασία εφαρμόστηκε πρώτα σε συνθετικά δεδομένα πριν την τελική εφαρμογή του στα αρχικά δεδομένα. 

Εν συνεχεία, διεξήχθη μια επαναλαμβανόμενη διαδικασία διασταυρούμενης επικύρωσης, πάνω σε τυχαία 

επιλεγμένα σετ υποκειμένων, με σκοπό την εύρεση του πιο σταθερού κατωφλίου καθώς και του βέλτιστου 

πλήθους των clusters, αξιολογώντας δύο βασικούς δείκτες ομαδοποίησης. Έπειτα, οι εκτιμημένες παράμετροι 

χρησιμοποιήθηκαν για την εφαρμογή του προτεινόμενου αλγόριθμου στα αρχικά δεδομένα με στόχο την 

εξαγωγή ενός χάρτη της παρεγκεφαλίδας, σε κατάσταση ηρεμίας, ο οποίος συνδυάστηκε με τον ανατομικό 

χάρτη ώστε να οριστεί ένας λειτουργικός χάρτης της παρεγκεφαλίδας με 46 περιοχές ενδιαφέροντος. Απ’ όσο 

γνωρίζουμε, ο χάρτης αυτός είναι ο πρώτος λειτουργικός χάρτης της παρεγκεφαλίδας, σε κατάσταση ηρεμίας, 

βασισμένος στα δεδομένα της βάσης του HCP. Βάσει αυτού, πραγματοποιήθηκε μια παρόμοια ανάλυσης του 

δικτύου της παρεγκεφαλίδας, όπως προηγουμένως, βάσει του φύλου. Τα αποτελέσματά μας υποδηλώνουν 

σημαντικές διαφορές στη βέλτιστη οργάνωση των MSTs μεταξύ των δύο φύλων. Τέλος, ο κυρίαρχος κόμβος 

που εντοπίστηκε στην λειτουργική περιοχή 10, υποστηρίζει την κυριαρχία του αριστερού λοβίου VI της 

παρεγκεφαλίδας στην λειτουργική συνδεσιμότητα αυτής, όπως αναφέρθηκε ήδη στο πρώτο μέρος της μελέτης. 

 

Λέξεις-κλειδιά: παρεγκεφαλίδα, fMRI σε κατάσταση ηρεμίας, λειτουργική συνδεσιμότητα, κρυσταλλικός δείκτης 

νοημοσύνης, φύλο, ανάλυση δικτύου με ελάχιστα συνδετικά δέντρα, φασματική θεωρία γράφων 
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1. Introduction 

 

 

  

 

 

1.1. The human cerebellum 

The human cerebellum, also known as “little brain”, constitutes about 10% of the total 

brain weight but contains more neurons than all of the rest of the brain due to the small 

granule cells of the cerebral cortex which are densely distributed (Glickstein, 2007). It is 

composed of neuronal units which share a common cerebellar microcircuitry (Roostaei et al., 

2014). Cerebellum has been always recognized as a distinct subdivision of the human brain 

with the majority of cerebellum’s network being involved in a wide range of tasks such as 

cognition, motor function and learning, language, reflex adaptation, spatial and executive 

functions (Glickstein, 2007; Stoodley and Schmahmann, 2009; Stoodley et al., 2012; Koziol et 

al., 2014; Styliadis et al., 2015; Van Overwalle and Mariën, 2016). Several deficits resulting 

from cerebellar lesions include motor dysmetria, ataxia, the cerebellar cognitive affective 

syndrome (CCAS), also known as the Schmahmann’s syndrome, which includes visual-spatial, 

emotional and linguistic deficits (Schmahmann and Sherman, 1998; Schmahmann 2004) and 

psychosis (Stoodley and Schmahmann, 2009). The cerebellum forms closed-loop circuits with 

the majority of the cerebral cortex, with the cerebellar hemispheres projecting to the 

contralateral cerebral cortex (Schmahmann, 1991). This closed-loop circuitry, suggests that 

the cerebellum contains repeating modules, such that the function of a given region of the 

cerebellum depends on its inputs and outputs (Stoodley, 2014). Nowadays, it has been 

established that the links between the cerebrum and cerebellum show a topographical 

organization (Stoodley and Schmahmann, 2009; Buckner et al., 2011). Many fMRI studies 

attempt to tie the cerebellum with various human tasks but the local cerebellar activations, 

without the combination of the cerebral hemispheres, have not been extensively studied 

(Voogd, 2003; Bernard et al., 2012). 

 

1.1.1. Neuronal structure and action potentials 

Prior to the examination of cerebellum’s anatomy it is important to comprehend the 

structural and functional characteristics of the cells that constitute the nervous system as well 

as the signals that travel through them and carry the processing information. These cells are 

called neurons and are mostly located on the neocortex, the part of the brain that is involved 

in cognition and thinking. There are approximately 20 billion neurons in the neocortex each 
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of which is interconnected with 10000 other neurons, so the number of neuronal connections 

is vast (O’Reily et al., 2012). Neurons are mainly arranged in the form of networks providing 

information and feedback to each other through information processing (Sternberg and 

Sternberg, 2012). A typical neuron consists of four basic parts; soma (cell body), dendrites, 

axon and axon terminals (also referred to as terminal buttons). The following description of 

the neuronal structure is based on the author’s undergraduate diploma thesis. 

 

 

Figure 1.1. The structure of a typical neuron. (Adapted from wikipedia.org). 

 
The soma (or cell body) of a neuron contains the nucleus of the cell and connects the 

dendrites to the axon (O’Reily et al., 2012; Sternberg and Sternberg, 2012; Barnes, 2013). 

Soma is responsible for the life of a cell. Moreover, the integration of information takes places 

in the soma which is able to activate multiple dendrites but never more than one axon. 

The axon (Feldman, 2011; Sternberg and Sternberg, 2012; Barnes, 2013) is a long, thick 

tube that extends from the soma and is able to respond to the information by transmitting an 

electrochemical signal which travels to the axon terminal from where the signal is able to 

travel to other neurons. The axon begins from the axon hillock and is able to connect with 

other neuronal cells of different types of cells like the muscle. Its length can be equal to one 

meter or even more.   

The dendrites (Feldman, 2011; O’Reily et al., 2012; Sternberg and Sternberg, 2012) are 

branch-like structures that receive information from other neurons and transfer them to the 

soma where the integration of information takes place. Usually there are many dendrites per 

cell, each one with many branches. The length of a dendrite is small than that of an axon. The 

ability of learning is strongly related with the formation of new neuronal connections. These 

connections occur in combination with the increased number of dendrites in the human brain. 

Myelin (Sternberg and Sternberg, 2012; Barnes, 2013) is a white fatty substance that 

surrounds some of the axons. The whiteness of the myelin is related with white matter. The 

myelin sheath insulates and protects longer axons from electrical interference by other 

neighboring neurons. It also accelerates information transfer. Myelin is not continuously 

distributed along the axon but distributed in segments which are broken up by the Nodes of 

http://dias.library.tuc.gr/view/39411
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Ranvier (Sternberg and Sternberg, 2012; Barnes, 2013). These nodes are small gaps in the 

myelin sheath which are able to increase the information transferring even more by creating 

electrical signals known as action potentials which travel down the axon. Deficits in myelin 

sheaths is associated with multiple sclerosis. It is important to note that unmyelinated axons 

are shorter than the myelinated ones since the latter usually correspond to longer axons. The 

Schwann cells (Barnes, 2013) are special types of neuroglial cells that provide insulation to 

one discrete axon. These cells provide the myelin insulation to the axons of the peripheral 

nervous system (PNS). The unmyelinated Schwann cells play an important role in the 

maintenance of the axons and their contribution is crucial for the neurons life. 

The axon terminals (also known as terminal buttons) are small knobs which are found at 

the ends of the branches of an axon and do not directly connect with other dendrites of other 

neurons (Sternberg and Sternberg, 2012). More precisely, there is a small gap which serves 

as a juncture between the axon terminals of one or more neurons and the dendrites of one 

or more neurons. This juncture is known as synapse (Sternberg and Sternberg, 2012; Barnes, 

2013). Synapses are related with cognition. Decreased cognitive function is associated with 

reduced efficiency of synaptic transmission (Sternberg and Sternberg, 2012). Synapses are 

able to establish interconnected neuronal networks from the neural cells of the nervous 

system (O’Reilly et al., 2012). 

Signal transmission between neurons occurs when the axon terminals release one or 

more neurotransmitters (Feldman, 2011; Sternberg and Sternberg, 2012; Barnes, 2013) at the 

synapse (Fig. 1.2). These neurotransmitters are chemical compounds used for transmission 

of information across the synaptic gap to the receiving dendrites of the next neuron, etc. The 

presynaptic ending or synaptic terminal contains cellular organs like the neurotransmitters. 

When a neuron fires, a pulse is sent which releases the synaptic vesicles that contain the 

neurotransmitters, through the synaptic cleft (gap), to the receptors, which stimulate or 

inhibit electrical stimuli. The synaptic area where neurotransmitters are released, is called the 

active zone (Barnes, 2013). 

 

Figure 1.2. A schematic representation which describes the way that information travels to 

the dendrites-receptors of a neighboring neuron, through the synaptic gap. (Adapted from 

wikipedia.org). 
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During resting-state, a typical neuron exhibits a resting-state potential with a membrane 

magnitude being approximately equal to -70 mV (Fig. 1.3) (Feldman, 2011; Guyton and Hall, 

2012; Barnes, 2013). At this state, a neuron contains K- ions (Caldwell, 2009; Barnes, 2013). 

When a neuron fires (receives a signal/stimulus), its synaptic membrane opens thus activating 

the Na+ channels. Due to the fact that the Na+ ions are more outside the neuron than inside 

(mostly K- ions), this allows the Na+ ions to pass through the neuron with rates of 100 million 

ions per second (Caldwell, 2009; Feldman, 2011; Barnes, 2013). The sudden arrival of Na+ ions 

alters the charge of the nearby parts of the cell from negative to positive and therefore the 

number of K- ions is greatly reduced. This phenomenon is known as depolarization (da Silva, 

2010; Guyton and Hall, 2012; Barnes, 2013). When the positive charge exceeds a certain 

threshold (typically at -55 mV), an electrical pulse known as action potential, travels along the 

axon. The action potential is a short-term event which increases fast and then returns back 

its original (resting) state (negative membrane potential) in approximately 1-2 msec (da Silva, 

2010; Feldman, 2011) (Fig. 1.3). Afterwards, the Na+ ions disperse within the neuron and the 

K- ions flow outside the neuron, which causes the membrane potential to return back to -70 

mV and repolarization occurs (Guyton and Hall, 2012; Barnes, 2013) (Fig. 1.3). In fact, the 

membrane potential reduces from -70 mV to -80 mV before reaching rest-state because the 

K- ion gates (or channels) remain open a bit more before they permanently close and 

hyperpolarization occurs (Feldman, 2011; Barnes, 2013). During this period, the neuron is not 

able to trigger a new action potential and it is known as the refraction period (Barnes, 2013). 

The action potential is the signal that travels through the brain’s neuronal networks. 

 

Figure 1.3. The action potential of a typical neuron. (Adapted from wikipedia.org). 

 

1.1.2. The cerebellar cortex 

Cerebellum lies inside the cerebellar cortex, an outer layer of highly convoluted gray 

matter surrounding the deep nuclei of cerebellum which consists of white matter known as 

arbor vitae (Roostaei, 2014). The cerebellar cortex is composed of three fundamental layers; 

the molecular layer, the ganglionic or Purkinje layer and the granular layer (Fig. 1.4). 

The molecular layer is the most superficial layer and consists of flattened dendritic trees 

of Purkinje cells (Roostaei, 2014; Fletcher, 2016). The molecular layer also contains stellate 
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cells and basket cells ˙ the two main types of interneurons that are scattered along dendritic 

ramifications (Fig. 1.4). The basket cells are named after the basket that their axon forms on 

the input of a Purkinje cell (Fletcher, 2016). Stellate and basket cells form inhibitory synapses 

onto Purkinje cell dendrites and cell bodies, respectively. 

The ganglionic or Purkinje layer (Voogd, 2003; Roostaei, 2014; Fletcher, 2016) lies in the 

middle and serves as the output layer of the cerebellar cortex (Fig. 1.4). It is mainly composed 

of Purkinje cells which are stacked on the Purkinje layer. The axons of the Purkinje cells 

provide the only efferent pathway to the deep cerebellar nuclei, and thus Purkinje cells 

constitute the sole output of all motor coordination in the cerebellar cortex (Roostaei, 2014; 

Fletcher, 2016). Purkinje cells are one of the largest cells in the human brain and belong to 

the GABAergic (gamma-Aminobutyric acid) type of neurons. Both basket and stellate cells 

provide inhibitory (GABAergic) input to the Purkinje cell, with basket cells synapsing on the 

Purkinje cell axon initial segment and stellate cells onto the dendrites (Roostaei, 2014). In 

addition, another type of cells known as Lugaro cells, lie just beneath the Purkinje layer and 

contain long horizontal dendrites that can contact up to 10-15 Purkinje cells, hypothesized to 

monitor the environment around these cells (Hampson and Blatt, 2015). 

The granular layer (Roostaei, 2014; Fletcher 2016) is the deepest layer and is densely 

packed with a large number of granule cells, mainly Golgi cells, next to white matter (Fig. 1.4). 

These cells synapse onto the dendrite of granule cells. They receive excitatory input from 

mossy fibers, also synapsing on granule cells, and parallel fibers, which are long granule cell 

axons. Golgi cells also synapse on excitatory local circuit neurons, known as the unipolar brush 

cells which have a round nucleus and a short tuft of dendrioles with large synaptic junctions 

and are thought to be involved in cell signaling (Hamspon and Blatt, 2015). These cells are 

mostly found in the vestibulocerebellum (Section 1.1.3). The granular layer is thick and serves 

as the input layer for the cerebellar cortex. In addition, the axons of the granule cells ascend 

to the molecular layer, where they split into two parallel fibers which form synaptic contacts 

with the dendritic tress of the Purkinje cells as they move horizontally in the molecular layer 

(Roostaei, 2014). Granule cells target Golgi cells and the stellate cells as well as basket cells. 

Cerebellum receives its main excitatory inputs through two fundamental pathways; the 

climbing fibers and the mossy fibers (Fig. 1.4). The climbing fibers arise mainly from the olivary 

nucleus of the caudal medulla and excite the Purkinje cells as well as other cerebellar nuclei 

neurons using chemical compounds such as aspartate and glutamate (Fletcher, 2016). The 

climbing fibers are named like this because they “climb” the dendritic tree of the Purkinje 

cells in the Purkinje cell layer, creating hundreds of synaptic connections where each climbing 

fiber innervates up to approximately 10 Purkinje cells (Roostaei, 2014). The climbing fibers 

input is delivered directly to the Purkinje cells and it is so strong that a single climbing fiber’s 

action potential can generate a depolarization waveform in the Purkinje cell (Roostaei, 2014). 

The mossy fibers form another major cerebellar input. These fibers arise mainly from (i) 

the pontine nuclei through the cerebropontocerebellar fibers which are involved in altering 
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cerebellum for anticipated movements, (ii) the spinal cord through the spinocerebellar fibers 

which are involved in ongoing movements, (iii) the vestibular nuclei (and vestibular nerve) 

through the vestibulocerebellar fibers which are mainly involved in head coordination and 

eye movement and (iv) other similar cerebellar structures mainly through the inferior and 

middle cerebellar peduncles (Voogd, 2003; Roostaei, 2014; Fletcher, 2016). The mossy fibers 

deliver the input indirectly to the granule cells which are located on the granular cell layer. 

Golgi cells send inhibitory input to the mossy fiber glomeruli and have dendrites extending 

into the lower molecular layer where it contacts parallel fibers. 

 

 

Figure 1.4. Detailed organization of the cerebellar cortex in sagittal plane along with the 

cerebellar circuitry. Abbreviations: GL (granular layer), PCL (Purkinje cell layer), ML (molecular 

layer), PF (parallel fibers), PC (Purkinje cells), Gr (Granule cells), MF (mossy fibers), DCN (deep 

cerebellar nuclei), CF (climbing fibers), Go (Golgi cells), UB (unipolar brush cells), Lg (Lugaro 

cells). (Adapted from Hampson and Blatt, 2015). 

 

1.1.3. Cerebellum’s anatomy and its relationship with the cerebrum 

The cerebellum is located in the posterior fossa (posterior to the brainstem and the 

fourth ventricle) under the occipital cortex of the human cerebrum (Fig. 1.5(A)). It is 

estimated to contain 101 billion neurons whereas the cerebral cortex is estimated to contain 

http://journal.frontiersin.org/article/10.3389/fnins.2015.00420/full
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21-26 billion neurons (Andersen et al., 1992; Pelvig et al., 2008) with the total number of 

neurons in the human brain going far beyond 120 billion. Cerebellum is connected with the 

pons which is a fundamental part of the brainstem and consists of neural (fiber) tracts through 

which the neuronal signals travel from the brain to cerebellum as well as into the thalamus. 

Cerebellum is connected to the brainstem via 3 pairs of cerebellar peduncles (Fig. 1.5(B)) 

which are known as the superior, middle and inferior peduncles (Schmahmann, 1991; 

Fletcher, 2016; Stoodley and Limperopoulos, 2016). These peduncles are named after their 

position in cerebellum. All of these peduncles emerge from the cerebellar nuclei and connect 

the cerebellum to the brainstem through the pons. In fact, there are six cerebellar peduncles, 

three on each side of cerebellum. The superior (or caudal) cerebellar peduncle contains 

efferent and afferent axons which carry information from the cerebellum to the cerebral 

cortex via the thalamus (Fletcher, 2016; Stoodley and Limperopoulos, 2016). The middle 

cerebellar peduncle contains only afferent axons that travel from the cerebral cortex to the 

cerebellum via the pontine nuclei which lies inside the pons (Fletcher, 2016; Stoodley and 

Limperopoulos, 2016). Finally, the inferior (or rostral) cerebellar peduncle carries incoming 

and outgoing axons that connect the cerebellum with the vestibular system and spinal cord 

or the midbrain (Fletcher, 2016; Stoodley and Limperopoulos, 2016). 

 

 

Figure 1.5. (A) A sagittal view of cerebellum’s location along with its connections to the 

brainstem. (B) The three fundamental cerebellar peduncles. (Adapted from wikipedia.org). 

 
The superior peduncle is connected to the cerebral cortex through the cerebral peduncle 

where the midbrain is located. The pons, medulla oblongata (also known as medulla) and 

midbrain (or mesencephalon) form the three major parts of the brainstem. Pons carries the 

sensory signals up into the thalamus which lies on the diencephalon of the brain and relays 

the sensor and motor signals to the rest of the cerebrum. The midbrain is an important part 

of the central nervous system which associated with vision, arousal and motor control. Finally, 

the medulla oblongata is responsible for fundamental human autonomic functions like 

breathing, heart rate and blood pressure regulation. 
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Cerebellum lies within the cerebellar cortex which is divided into 10 transverse lobules 

marked by Roman numerals (i.e., lobules I-X) (Fig. 1.6). Each lobule maintains a central portion 

in the vermis along with two adjacent lateral segments in the hemispheres (Fig. 1.6). Lobules 

I-V define the anterior lobe, lobules VI-IX the posterior lobe and lobule X the flocculonodular 

lobe of cerebellum. The latter lobe is known as the vestibulocerebellum (or archicerebellum) 

because it is associated with the vestibular system (i.e., eye movement, image stabilization 

on the retina, head and eye tracking; vestibule-ocular reflex) (Roostaei, 2014; Fletcher, 2016; 

Stoodley and Limperopoulos, 2016). It receives inputs from the vestibular nuclei as well as 

visual inputs from the midbrain and sends outputs directly to the vestibular nuclei.  

The vermis as well as the intermediate parts of the cerebellar hemispheres form the 

spinocerebellum, which is also known as paleocerebellum or rostral lobe, and is involved in 

motor movement, adjustment and coordination (Roostaei, 2014; Fletcher, 2016; Stoodley 

and Limperopoulos, 2016). Finally, the lateral parts of the hemispheres form the largest part 

of cerebellum, the neocerebellum, which is also known as cerebrocerebellum or caudal lobe, 

and is mainly involved in sensorymotor tasks and recently in various cognitive functions 

(Roostaei, 2014; Fletcher, 2016; Stoodley and Limperopoulos, 2016). It receives input from 

the parietal lobe through the pontine nuclei, forming pathways that terminate in areas of the 

premotor cortex and primary motor areas of the frontal lobe (Roostaei, 2014). 

Cerebellum is anatomically divided into the 3 major lobes (i.e., anterior, posterior and 

flocculonodular) by 2 major transverse fissures, known as the primary and the horizontal or 

posterolateral fissures (Stoodley and Limperopoulos, 2016). The primary fissure separates the 

anterior from the posterior lobe, the horizontal fissure lies between the posterior and the 

flocculonodular lobe and the posterolateral fissure separates the flocculonodular lobe from 

the rest of the cerebellum (Fig. 1.6). In addition, there are several secondary fissures; the 

precentral fissure which is located between lobules I and II, the preculminate fissure which is 

located between lobules III and IV, the intraculminate fissure which is found between lobules 

IV and V, the ansoparamedian fissure which separates lobules VIIa and Crus II from lobule 

VIIb, the prepyramidal fissure which separates lobules VIIb and VIIIa and the intrapyramidal 

(or intrabiventer) which is located between the folium (refers to one of two subdivisions of 

lobule VII of the cerebellar vermis) and lobule VIIIb. 

Cerebellum’s structure has been compartmentalized using anatomic, molecular, and 

physiologic approaches to longitudinal zones (vertical incisions) (Apps and Hawks, 2009). A 

longitudinal zone is a narrow, rostrocaudally extended sagittal region of the cerebellar cortex 

in which Purkinje cells receive climbing fiber inputs from specific subregions of inferior olive 

and project to specific cell groups of the deep cerebellar nuclei (Roostaei, 2014). For example, 

imagine that the vermis and cerebellar hemispheres on Fig. 1.6 can each be divided into 3 to 

5 longitudinal zones from midline to lateral. In fact, each longitudinal zone can be further 

subdivided to even narrower compartments which are known in the literature as microzones 

(Roostaei, 2014). The microzones within the inferior olivary and deep cerebellar nuclei could 

be regarded as the functional units (or modules) of the human cerebellum. This longitudinal 
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organization of cerebellum kindly supports the fact that the cerebellar hemispheres project 

onto the contralateral cerebral cortex (Stoodley, 2014). As a matter of fact, cerebellum forms 

closed-loop circuits with the majority of the cerebral cortex which suggests that cerebellum 

contains repeating modules (Schmahmann, 1991; Stoodley, 2014) such that the function of a 

given region of the cerebellum depends on its inputs and outputs. This is exactly what 

connects cerebellum with fundamental tasks like motor movement, cognition, etc. 

 

Figure 1.6. A flattened version of cerebellum’s anatomy showing the main fissures, lobes and 

lobules with labelling and appropriate color coding. (Adapted from D’Mello and Stoodley, 

2015). 

 
The major tasks to which cerebellum is related to, are related with the lobules of Fig.1.6. 

More specifically, the anterior lobe and lobule VIII are active during motor performance and 

exhibit resting-state functional connectivity with the sensorymotor cortex, i.e., the frontal 

cortex (Stoodley and Limperopoulos, 2016). Vermis is the most medal portion of cerebellum 

and is involved in muscle tone regulation for posture and locomotion (Fletcher, 2016). The 

portions which are lateral to vermis are often mentioned in the literature as paravermis and 

are mainly involved in the control of an anticipated movement (Fletcher, 2016). The 

hemispheres are the largest parts of cerebellum which are associated with the motor cortex 

and thus involved in movement and adjustments in muscle tone (Fletcher, 2016). Lobules VI 

and VII form circuits with frontal and parietal association cortices. Lobule IX may participate 

in multiple cortical networks, including the default mode network (DMN) ˙ the DMN is 

comprised by areas of the brain which are highly correlated with each other when the brain 

is at rest during day-dreaming and thinking. Lobule X comprises the vestibulocerebellum 

(Stoodley and Schmahmann, 2010) which is related with the sensory system and is involved 

in coordinating movement with balance. This functional topography of the human cerebellum 

is based on its anatomical connections with the cerebral cortex and spinal cord. 

http://journal.frontiersin.org/article/10.3389/fnins.2015.00408/full
http://journal.frontiersin.org/article/10.3389/fnins.2015.00408/full
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1.1.4. Cerebellum and intelligence 

The organized network activity at rest could be viewed as the idle state of the brain 

functions engaged during different tasks in cognition, also influenced by personalized 

characteristics as lifestyle, demographics and psychometric measures including intelligence 

(Smith et al., 2015). The human intelligence, which is a general cognitive mental ability, 

depends on structural and functional properties of the brain, as well as on the interaction 

among different brain regions (Jung et al., 1999; Duncan et al., 2000; Shaw et al., 2006). 

Findings support the importance of prefrontal cortex and regions of parietal lobes for 

intelligence (Duncan, 1995; Jung and Haier, 2007; Song et al., 2008; Deary et al., 2010; Ryman 

et al., 2016). Prefrontal and posterior parietal brain lobes, which are mostly related to 

intelligence (Basten et al., 2015; Ryman et al., 2016), have many connections to cerebellum 

(Koziol et al., 2014; Styliadis et al., 2015). Gray and white-matter characteristics have been 

used to study the correlation between structural findings and intellectual abilities (Mechelli 

et al., 2005; Hulshoff Pol et al., 2006; Choi et al., 2008; Malpas et al., 2016), while studies 

associating anatomical and functional connectivity with intelligence have been also reported 

(Haier et al., 2005; Song et al., 2008; Chiang et al., 2009; Ryman et al., 2016; Tsvetanov et al., 

2016), with indicative biomarkers involving the total brain volume and the concentration of 

the N-acetyl aspartate (McDaniel, 2005; Paul et al., 2016). Furthermore, there are many 

factors involved in cognitive processes justifying the examination of various brain areas in 

relation to IQ aspects, like the basal ganglia implicated in cognitive task processing.  

It is worth mentioning that the human cerebellum receives multiple inputs from contra- 

and ipsilateral hemispheres (Suzuki et al., 2012; Sokolov et al., 2014). There is evident 

functional connectivity among mentalizing areas of the cerebrum (mainly medial prefrontal 

cortex, medial parietal cortex, and bilateral temporo-parietal region) and mentalizing areas 

of the cerebellum (mainly the posterior lateral cerebellar lobules) (Van Overwalle et al., 2015; 

Van Overwalle and Mariën, 2016). Recently, functional and structural networks have been 

extensively used to study the correlation between brain organization and intelligence. These 

studies revealed important correlations of local and widespread brain properties related to 

the cognitive functions and intelligence (Li et al., 2009; Douw et al., 2011). Global efficiency 

of functional brain networks and rich club organization appear to be important factors in 

intelligence (Van den Heuvel et al., 2009; Kim et al., 2016; Yeo et al., 2016). Even though it is 

known that the cerebellum is actively involved in cognitive processes (Koziol et al., 2014; 

Styliadis et al., 2015), there is a limited research investigating its relationship with IQ. The 

relationship between cerebellum and intelligence constitutes the first of the two fundamental 

tasks of this thesis. 

 

1.1.5. Clinical abnormalities 

Deficits resulting from cerebellar lesions include motor dysmetria, ataxia, and intention 

tremor, but also the cerebellar cognitive affective syndrome (Schmahmann and Sherman, 
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1998) including executive, visual–spatial, linguistic and emotional deficits, and even mutism 

and psychosis (Stoodley and Schmahmann, 2009). Damage in the superior peduncle results in 

hypotonia, hypermetria and intention tremor (Fletcher, 2016). Lesions in the cerebellar 

hemispheres could lead to deficits in motor planning, delays in the onset of movements, loss 

of muscular coordination and irregularities in timings of movement components (Roostaei, 

2014; Fletcher, 2016). Lesions on the vermis lobules result in truncal tremor and gait ataxia 

(Fletcher, 2016). Lesions on spinocerebellum could lead to saccadic dysmetria and/or 

vergence abnormalities (Roostaei, 2014). These disorders in cerebellum usually result from 

tumors, genetic disorders and heavy metal poisoning (Fletcher, 2016). Furthermore, 

structural abnormalities in cerebellum have been linked with Attention Deficit Hyperactivity 

Disorder (ADHD), Autism Spectrum Disorder (ASD) and developmental dyslexia. Reports from 

ASD studies reveal reduced gray matter concentration in lobule IX, left lobule VIIIB, and Right 

Crus I (Stoodley, 2014). In ADHD, significantly decreased gray matter has been discovered 

bilaterally in lobule IX, whereas subjects with developmental dyslexia exhibit decreased gray 

matter concentration in left lobule VI (Stoodley, 2014). 

 

1.1.6. The anatomical atlas used in this thesis 

The probabilistic anatomical atlas used in this study (Fig. 1.7(A)) was obtained from the 

spatially unbiased infratentorial template (SUIT) toolbox (Diedrichsen et al., 2009; 

Diedrichsen et al., 2011; Diedrichsen and Zotow, 2015), which is already normalized with the 

fast nonlinear image registration (FNIRT) normalization method in the Montreal Neurological 

Institute (MNI152) template. SUIT’s probabilistic atlas of cerebellar anatomy (Diedrichsen et 

al., 2009) was based on the hand segmentation of the cerebellar lobules in 20 healthy 

participants (10 males, 10 females; average age 23.7 years). These anatomical data were used 

to create an atlas template of the human cerebellum. Lobules I-IV, V, VI, VIIa (Crus I and Crus 

II), VIIb, VIIIa, VIIIb, IX and X were separated on T1-weighted MRI scans, where lobules I-IV 

were added on the same mask and the rest on separate masks using FSL view (Diedrichsen et 

al., 2009). More specifically, SUIT’s cerebellum parcellation procedure was based on 

Schmahmann’s proposal (Schmahmann et al., 1999), with the left and right hemispheres 

being labeled as separate compartments for all cerebellum lobules (the term lobule is used 

to denote both hemispheric and vermal compartments). However, the vermal compartments 

(Vermis VI-X) were defined separately only for the posterior cerebellum (lobules VI-X), due to 

the clear anatomical boundary between vermis and hemisphere (Schmahmann et al., 1999). 

In total, 28 regions of interest (ROIs) were defined (see Diedrichsen, 2006; Diedrichsen et al., 

2009; Diedrichsen and Zotow, 2015, for further info). A straightforward approach often 

employed for effective visualization of the cerebellar anatomical areas, as well as their inner 

compartments, is to construct a flat-surface representation by means of a 2D projection 

(Diedrichsen and Zotow, 2015) (Fig. 1.7(B)). 

The aforementioned anatomical atlas is used in order to extract the cerebellar voxels 

from the fMRI scans (a procedure known as parcellation) prior to the network analysis and 

http://www.diedrichsenlab.org/imaging/suit.htm
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voxel-wise clustering procedures that are described later on, in Chapters 3 and 4 respectively. 

It is important to note that both the atlas and the fMRI data are registered on the same 

coordinate space, i.e., the MNI space, and therefore the parcellation procedure is valid. 

 

 

Figure 1.7. The anatomical atlas of cerebellum used in this study. (A) A complete 3D view of 

the regions of interest, using BrainNet Viewer (Xia et al., 2013). (B) The corresponding flatmap 

(unfolded) representation of the same atlas based on SUIT’s toolbox. 

 

1.2. The fMRI dataset 

The dataset used in this thesis was collected from the Human Connectome Project (HCP) 

database, an open-source database aiming to provide deep examination of the human brain 

connectome (Van Essen et al., 2013). 

1.2.1. The Human Connectome Project 

The Human Connectome Project (HCP) is the result of efforts of co-investigators from the 

University of California, Los Angeles, Martinos Center for Biomedical Imaging at 

Massachusetts General Hospital (MGH), Washington University, and the University of 

Minnesota. The major goal of the HCP is to acquire and share data concerning the structural 

and functional connectivity of the human brain. More specifically, the project aims to collect 

resting-state and task fMRI data from hundreds of subjects including twin pairs, develop 

straightforward tools for providing a detailed mapping of the human connectome as well as 

a robust and web-based infrastructure for data access and analysis pipelines. HCP is a five-

year project sponsored by sixteen components of the National Institutes of Health (NIH), split 

between two consortia of research institutions. Funding for the Harvard/MGH-USC 

consortium is provided through the grant award U01-MH93765.  

The present study analyzes resting-state fMRI (rs-fMRI) data that were collected from the 

HCP database after the HCP S500 + MEG2 data release, between the first six quarterly releases 

(Q1–Q6), with few cases also collected in Q7 and later. Functional magnetic resonance 

imaging (fMRI) data was initially acquired from 492 healthy subjects at rest with eyes open 

https://www.neuroscienceblueprint.nih.gov/connectome/
https://www.neuroscienceblueprint.nih.gov/connectome/
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with relaxed fixation on a projected bright cross-hair on a dark background (and presented in 

a darkened room) (Van Essen et al., 2013). The pre-processed (cleaned) volumetric signals 

corresponding to the BOLD fMRI time-series were collected from all 492 subjects and were 

prepared for further analysis using Matlab (The Mathworks Inc., version R2014). Subsets of 

this huge dataset have been used in Chapters 3 and 4. At this point, it is worth mentioning 

that the latest HCP dataset release includes data from 1100 young healthy adults.  

 

1.2.2. HCP scanning parameters and pre-processing pipelines 

The resting-state BOLD signals were obtained through a gradient-echo, EPI sequence 

using a specifically customized 3T scanner (Van Essen et al., 2012, 2013). In total, 91 volumes 

were collected with the following parameters: TR = 720 ms, TE = 33.1 ms, FA = 52 , FOV = 

208x180 mm, matrix size of 104x90, slice thickness = 2.0 mm; 72 slices; 2.0 mm isotropic 

voxels, multiband factor = 8, echo spacing = 0.58 ms, bandwith = 2290 Hz/Px. Descriptions of 

these scanning parameters are provided in Chapter 2. Denoised BOLD time-series consisting 

of 1200 frames with approximately 15 min duration were extracted from the first resting state 

session (REST1) of the HCP data management platform, i.e., connectomeDB, where the 

oblique axial acquisitions alternated between phase encoding in a left-to-right (LR) direction. 

HCP investigators have already performed two basic preprocessing pipelines (Glasser et 

al., 2013; Van Essen et al., 2013). The first volume-based pipeline removes spatial distortions, 

realigns volumes using FSL's FLIRT-based motion correction, normalizes the intensity of 4D 

images to a global mean, registers data into MNI space and finally masks the data with the 

final brain mask derived from FreeSurfer segmentation. The second surface-based pipeline 

aims at transforming the time series from volume space to CIFTI gray-ordinates standard 

space with 2 mm average surface vertex and subcortical volume spacing. Surface data was 

smoothed using a 2 mm FWHM (Full Width at Half Maximum) kernel and ICA (Independent 

Component Analysis) was used to isolate independent components from the data based on 

FSL’s MELODIC tool developed by Beckmann and Smith (Beckmann and Smith, 2004), with 

automatic dimensionality reduction to a maximum of 250 independent components, typically 

preserving 230 components (Van Essen et al., 2013). The resulting artifactual components 

were classified into two groups using the FIX algorithm (i.e., FMRIB’s ICA-based X-noisefier) 

developed by Salimi-Khorshidi and colleagues (Salimi-Khorshidi et al., 2014) and finally were 

removed from the data. Further details on the aforementioned preprocessing pipelines are 

provided in (Glasser et al., 2013; Van Essen et al., 2013) and some of them are described in 

Chapter 2, Section 2.6. 

 

1.2.3. Additional information related to subjects history 

We further requested and received access to sensitive data by signing all necessary 

consent forms. Subjects with psychiatric history, extensive substance use and hard alcohol 

history have been completely removed since the cerebellum is heavily impacted by alcohol 

https://db.humanconnectome.org/app/template/Login.vm;jsessionid=3CA11266639754EF2D0F9EC6718A418B
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abuse/dependence (Sullivan et al., 2010) and there is also evidence to suggest that the 

cerebellum is impacted by marijuana as well (Block et al., 2000; Lopez-Larson et al., 2011; 

Solowij et al., 2011).  Additional information related to siblings and twins have been obtained. 

The population has been restricted to only one member of a sibling/twin pair so as to 

overcome shared variance issues. In addition, crystallized IQ scores were obtained per subject 

prior to scanning procedure for the needs of Chapter 3. Gender information and age intervals 

per subject are publicly available and did not require any further access to sensitive data.  

 

1.3. Modern network analysis and Spectral Graph Theory in neuroscience 

Graph models have been used to represent activity interaction networks, which are often 

characterized as regular, random, or small-world networks (Boccaletti et al., 2006). The latter 

class combines high clustering (like regular networks) with short path lengths (like random 

networks) (Watts and Strogatz, 1998; van den Heuvel et al., 2008a; Messé et al., 2012; Stam 

and van Straaten, 2012; Stam et al., 2016; Miraglia et al., 2016). Thus, small-world networks 

are characterized by optimum local segregation and global integration (Stam et al., 2014a; 

Tewarie et al., 2015b) and form appropriate models for the neural systems including the brain 

(Watts and Strogatz, 1998; Stam and van Straaten, 2012; Stoodley et al., 2012; Muller et al., 

2014). Modern network analysis using graph theoretical tools has become essential in 

studying the topology of the brain networks. Examples of such studies explore aspects of 

small-world networks, scale free networks, their hubs and modularity in functional brain 

networks. Their different parameters are extracted after the construction of a binary (a 

connection either exists or does not exist) or weighted graph (the connections have strengths) 

depicting the strength of synchronization and other measures of connectivity among all pairs 

of the nodes (Stam and van Straaten, 2012; Stam, 2014b). During the last years, the concept 

of the minimum spanning tree (MST) has been used as an unbiased method for brain 

networks. MST representations allow comparisons of graphs in different situations or 

between different individuals avoiding methodological biases. Additionally, the MST is a 

subnetwork providing similar information with the conventional graph parameters about 

network topology (Tewarie et al., 2015b). The MST parameters give information related to 

node characteristics and the diffuse organization (Stam, 2014b; Tewarie et al., 2015b). These 

parameters are used for hub analysis in order to determine the nodes with high importance 

during information transfer. Furthermore, they can be used for statistical analysis application 

with the purpose of discovering significant differences among populations of interest. 

Spectral graph theory is based on the eigenvalues and eigenvectors of the Laplacian of a 

graph in order to solve complex graph partitioning problems based on common linear algebra 

aspects. The Laplacian of a graph works like the differential operator and therefore provides 

information about the density of each node within a network. Such a representation 

combined with the eigenvectors provides a mapping of the original graph onto the eigen-

space, where clustering is much easier to be dealt with using a simple 𝑘-means procedure. 
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The Normalized-cut and spectral clustering algorithms are the two major algorithms of the 

spectral graph theory (Shi and Malik, 2000). Of course, these algorithms are non-supervised 

and therefore repeated cross-validation procedures are necessary in order to determine the 

correct number of clusters prior to the final application on the data. Spectral graph theory 

has been employed as an accurate clustering method in a variety of resting-state functional 

connectivity studies of the human brain (van den Heuvel et al., 2009; Craddock et al., 2012; 

Sato et al., 2013). More specifically, in the study of van den Heuvel et al., 2008b, the 

Normalized-cut algorithm was applied so as to identify the whole brain’s resting-state 

networks on individual and group levels as well, with an optimal group clustering fit. In the 

work of Craddock et al., 2012, a spatially constrained version of the Normalized cut (N-cut) 

algorithm was used in order to generate a whole brain fMRI atlas. In addition, the silhouette 

width was used as a functional homogeneity quantifier of the ROIs and the dice index was 

used to measure the similarity between group and individual level clustering. Finally, in the 

work of Sato et al., 2013, the spectral clustering concept was applied in order to investigate 

the topological organization of brain’s subnetworks modules in ADHD subjects combined with 

the network’s entropy, where the silhouette method was used for determining the correct 

number of clusters. In the second part of this thesis (Chapter 4), Spectral Graph Theory was 

employed to construct a resting-state functional network atlas of the human cerebellum. 

 

1.4. Related studies in cerebellar and cerebral hemispheres 

Studies on cerebral hemispheres using MRI revealed several differences between men 

and women, using for instance correlation analysis of MRI data of the cerebral hemispheres 

(Biswal et al., 2010). In another study, functional connectivity differences between men and 

women were detected for local and widespread connections, with women showing higher 

local connectivity density (Tomasi and Volkow, 2012). Studies using fMRI have been 

performed during several motor or cognitive activations, where the involved regions in the 

cerebrum and cerebellum become visible. Prefrontal and posterior parietal brain lobes, which 

are mostly related to intelligence (Basten et al., 2015; Ryman et al., 2016), have many 

connections to cerebellum (Koziol et al., 2014; Styliadis et al., 2015). Furthermore, there are 

many factors involved in cognitive processes justifying the examination of various brain areas 

in relation to IQ aspects, like the basal ganglia implicated in cognitive task processing. Even 

though it is known that the cerebellum is actively involved in cognitive processes (Koziol et 

al., 2014; Styliadis et al., 2015), there is a limited research investigating its relationship with 

IQ. Overall, several tasks such as motor, language, emotional tasks, working memory, music 

and timing tasks have been also used. The links between cerebrum and cerebellum show a 

topographical organization (Stoodley and Schmahmann, 2009; Buckner et al., 2011). 

Functional connectivity studies in brain hemispheres have shown sex differences most 

commonly reported for the Default Mode Network (DMN), where females show greater 

connectivity (Allen et al., 2011; Tomasi and Volkow, 2012). Szalkai and colleagues (Szalkai et 
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al., 2015) using material from the HCP discovered that the average female connectome has 

more edges and forms a better expander graph, with minimal bisection width as well as more 

spanning trees than the average male connectome. 

Concerning the cerebellum, its lobules are co-activated mainly with regions of the 

opposite cerebral hemisphere (Apps and Hawkes, 2009; O’Reilly et al., 2010). Additionally, co-

activations occur in several cerebellar lobules as well as the lobules of vermis (Bernard et al., 

2012; Stoodley et al., 2012). In a recent study (Apps and Hawkes, 2009), the authors explored 

interactions within the cerebellum and with other cortical and subcortical structures of the 

brain. They used resting-state functional connectivity in MRI and the cerebellar anatomy 

(lobules) to estimate co-activations. They found that functional organization of the human 

cerebellum does not map onto lobular anatomy, a fact that had been noticed before. To 

extract more detailed information related to the synchrony in the cerebellum and the 

hemispheres, they used a self-organizing map approach to parcellate the cerebellum. This 

helped identifying networks with functional similarities independent of the anatomically 

identified cerebellar networks (Bernard et al., 2012). The organization of cerebellum lobules 

forms an exploratory issue of the first part of this thesis. Intrinsic connections in cerebellum 

can give information related to lobules activations or network organization at rest and/or 

several activations. The local cerebellar activations without the combination to the cerebral 

hemispheres have not been extensively studied in the literature (Bernard et al., 2012) and 

this constitutes a fundamental motivation of the current thesis. 

 

1.5. Scope and contribution to the existing literature 

The main goal of this thesis is to investigate the functional connectivity of the cerebellar 

network and its organization during rest, based on fundamental concepts of graph theory for 

brain network analysis. Concepts like the spectral clustering scheme, which is based on graph 

partitioning in order to cluster the voxels with similar activation patterns as well as the 

Minimum Spanning Trees (MSTs) concept, which facilitates consistent and quantitative graph 

comparisons that are able to overcome methodological biases in graph comparisons as well 

as disconnected syndromes. Through the computation of various MST metrics, reliable 

estimations are extracted concerning the local and widespread characteristics of cerebellum’s 

connectivity. In addition, hubs that signify regions with the highest activity across the network 

can be also detected. Statistical analysis on the extracted measures is able to reveal potential 

significant differences between low and high-IQ groups as well between males and females. 

The author strongly believes that the current results can enhance relevant knowledge to 

the existing literature and provide good impact in the neuroscientific community. The first 

part of this thesis aims to investigate the relationship between cerebellum and intelligence 

using resting-state fMRI data. A classic lobular anatomical analysis of cerebellum on low and 

high-IQ groups is able to model the functional connectivity networks. The corresponding 
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MSTs are able to reveal the backbone of these networks along with the extracted features 

which can be used to describe the functional and structural characteristics of the trees as well 

as identify the critical nodes within the original networks. More importantly, they can be used 

for statistical analysis among these two populations by taking into consideration the gender 

factor. As far as the second part of this thesis is concerned, an attempt to provide a deeper 

investigation of the cerebellar network is performed by considering each voxel as a single unit 

or node, thus ignoring lobules. The goal of this procedure is to extract a resting-state network 

atlas of cerebellum where each region will contain voxels with similar activations. This atlas 

can be combined with the anatomical atlas in order to form a much more detailed atlas, called 

functional atlas. The functional atlas can used for repeating the network analysis procedure 

described previously, focusing on the gender factor only. The results of this part are data-

driven and therefore more accurate. Finally, the extracted atlases will be freely available for 

reinforcing the neuroscientific community as well as to encourage future cerebellar studies. 

The author is proud to mention that the results of the first part of this thesis have been 

published under the frontiers in Human Neuroscience journal (Pezoulas et al., 2017) as part 

of the research topic Applied neuroscience: Methodology, Modeling, Theory, Applications 

and Reviews. The frontiers in Human Neuroscience is the #1 most cited journal in psychology 

and the #1 largest open-access publisher in the category of neuroscience (IF: 3.209, 2017). 

The same work has been also presented in the form of a conference abstract at the Society 

of Applied Neuroscience (SAN) biennial meeting (organized by the same journal) in Corfu, 

2016. The results of the second and largest part of this thesis are being prepared for 

submission in the IEEE Journal of Biomedical and Health Informatics journal (IF: 3.451, 2017). 

 

1.6. Thesis outline 

In this study, the cerebellar network was explored by executing a lobular and a voxel-

wise analysis approach, based on tools from modern graph theory. 

In Chapter 2 – Functional Magnetic Resonance Imaging (fMRI), the historical background 

and the basic functionality of fMRI is described. Prior to the description of fMRI’s mechanism, 

fundamental information about the basic concepts of Magnetic Resonance Imaging (MRI) are 

provided in Section 2.2 (i.e., the Larmor frequency, resonance, repetition and relaxation 

times, basic MRI pulse sequences and image reconstruction). The BOLD contrast mechanism 

is described in Section 2.3 along with the leap from MRI to fMRI (Section 2.4). The 

spatiotemporal resolution of fMRI is discussed in Section 2.5 which constitutes a fundamental 

advantage of fMRI over conventional non-invasive approaches. Basic fMRI pre-processing 

techniques, including those mentioned in Section 1.2.2, are further described in Section 2.6. 

Clinical applications of fMRI including a wide range of pathologies are described in Section 

2.7, with an overall assessment of fMRI being depicted at Section 2.8. 
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Chapter 3 – Lobular analysis of cerebellum’s network with respect to IQ and gender, 

constitutes the first part of cerebellum’s network analysis. The fundamental hypothesis of the 

first part of this study is that the local and global characteristics of the cerebellar network 

exhibit significant differences which are related to gender and IQ. The driving question of the 

first part of this thesis concerns the extent to which the cerebellum is related to intelligence, 

in men and women, beyond the cognitive processes (Section 3.1). The network organization 

in individual groups of different gender and IQ levels is examined. The population of interest 

consists of 69 low-IQ (25/44; males/females) and 67 high-IQ (29/38; males/females) subjects 

(Section 3.2). Cerebellum’s anatomical parcellation procedure is described in Section 3.3 and 

the network construction in Section 3.4 along with the small-worldness property evaluation 

process. Then, the corresponding Minimum Spanning Trees (MSTs) were computed in order 

to extract valuable local (degree, betweenness centrality and eccentricity) and global 

(diameter, radius, leaf fraction, tree-hierarchy, kappa or degree divergence) MST measures 

(Section 3.5). Additional local (i.e., clustering coefficient, characteristic path length or lambda, 

small-worldness) and global (a proposed connectivity measure) features were extracted from 

the original networks. The local MST measures of degree and betweenness centrality were 

then used in order to identify the nodes with the highest importance in the networks of low 

and high-IQ groups, i.e., hubs (Section 3.6). In addition, correlations between the hub metrics 

and the Median Response Times (MRTs) were computed for each IQ group and for both 

genders (Section 3.7). The computed set of metrics gave rise to extensive statistical analysis 

in order to examine differences between low and high-IQ groups, as well as between all 

possible gender-based group combinations (Section 3.8). Finally, the acknowledgements in 

Section 3.9 state the HCP’s policy and the authors related publications. 

Chapter 4 – Voxel-wise analysis of cerebellum, constitutes that second and final part of 

cerebellum’s network analysis. The goal of this chapter is to extract a data-driven resting-

state network (RSN) atlas of cerebellum which will be combined with the anatomical atlas in 

order to construct a detailed functional atlas that will be used for gender-based functional 

connectivity analysis (Section 4.1). The population of interest has been restricted to equally 

numbered males and females (50/50; males/females) this time (Section 4.2). The anatomical 

parcellation procedure overcomes the lobular boundaries of cerebellum and considers each 

voxel as a single unit (or node) thus increasing the memory requirements (Section 4.3). An 

extra filtering is applied in the BOLD time-series of each voxel, per subject, in order to 

eliminate low-frequency noise (e.g., respiratory noise) since averaging is not an option in this 

part of the analysis (Section 4.4). Then, voxel-wise graphs are constructed per subject using 

correlation coefficient as a functional connectivity measure (Section 4.5). Section 4.6 

describes the theoretical basis of spectral graph theory, mainly focusing on the Laplacian of a 

graph and the spectral clustering and Normalized-cut algorithms for providing solutions to 

the graph partitioning problem along with a spatially constrained version of the spectral 

clustering approach, similar with the one described in Craddock et al., 2012 and requires an 

extra computation of a voxel-wise distance matrix which is multiwise multiplied with the 

similarity matrix. In fact, a spatially constrained version of the original spectral clustering 
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algorithm (SCSC) along with a complete cross-validation procedure is proposed and applied 

on the HCP data. The clustering evaluation (i.e., the average silhouette and Davies-Bouldin 

indices) along with the clustering homogeneity (i.e., Shannon’s entropy) measures are 

described in Sections 4.7 and 4.8, respectively. The spectral clustering and Ncut approaches 

are first applied on synthetic data (Section 4.9) in order to reveal their (crucial) weakness to 

background noise and how the SCSC procedure is able to overcome this issue. Afterwards, 

the aforementioned clustering methods are applied on the average correlation matrix across 

all subjects where the SCSC approach is tested for various thresholds on the distance matrix 

and then the clustering evaluation measures are computed (Section 4.10). A repeated cross-

validation (i.e., 10 times) is applied to seek for the threshold (on the distance matrix) that 

exhibits the most stable performance, i.e., the optimal number of clusters across all runs of 

the validation procedure (Section 4.11). In addition, that threshold must be able to provide 

maps with highly consistent clusters across all runs ˙ a fact that is evaluated using the Dice 

similarity coefficient measure. The SCSC algorithm is then applied on the original data using 

the estimated parameters from Section 4.11, leading to the resting-state network (RSN) atlas 

of cerebellum (Section 4.12). This atlas is combined with the anatomical atlas of cerebellum 

to construct a (detailed) functional atlas with more regions (Section 4.13). The latter atlas is 

used for executing a gender-based functional connectivity analysis of cerebellum similar to 

the procedure described in Chapter 3 along with the hub(s) and statistical analysis (Section 

4.14). Finally, the acknowledgements in Section 4.15 state the HCP’s policy and the authors 

related publication under preparation. 

In Chapter 5 – Discussion and future work, an overall discussion and assessment of the 

results from Chapters 3 and 4 is provided. Future studies are necessary in order to further 

address these results in cerebellar-cerebral studies. Finally, the atlases computed in Chapter 

4 will be made publicly available by the author for encouraging future cerebellar studies. 
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2. Functional magnetic resonance imaging 

 

 

 

 

 

2.1. History 

In the field of neuroscience and specifically in brain functional connectivity analysis, there 

are two fundamental non-invasive methods that have been developed over the past years 

which aim to map brain's functional connectivity: (a) those that are able to localize the 

underlying neural electromagnetic activity of the brain and (b) those that reflect the local 

neuronal signaling by mapping the local physiological or metabolic consequences of the 

altered brain electrical activity (Mathews and Jezzard, 2017). Electroencephalogaphy (EEG) 

and magnetoencephalography (MEG) are the most common techniques that belong to the 

first category which examine the electrical and magnetic activity of the brain providing high 

temporal but poor spatial resolution. The second category evolves modern in-vivo imaging 

techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET), 

functional magnetic resonance imaging (fMRI), etc. In this work, emphasis will be placed on 

fMRI, a non-invasive straightforward approach which is based on the increase in blood flow 

(or blood oxygenation) to the local vasculature that accompanies neural activity in the brain 

and provides excellent spatial resolution with an uncertain temporal resolution (Chen and Li, 

2011; Glover, 2011; Matthews and Jezzard, 2017). 

Over a few decades ago, it has been known that changes in blood flow and blood 

oxygenation are closely linked to neural activities in the brain. According to the study of 

Ogawa in 1990 (Ogawa et al., 1990; Ogawa and Lee, 1990), a relationship between de-

oxygenated blood flow and distortions on magnetic resonance images was noticed during 

brain studies on rats using strong magnetic fields (7 and 8.4 Tesla1). Ogawa’s fundamental 

observation was that the blood oxygenation level was able to control these distortions, a fact 

that later lead to the development of the well-known Blood Oxygen Level Dependent (BOLD) 

contrast mechanism. In addition, the first successful fMRI study was conducted at the MGH-

NMR (Massachusetts General Hospital - Nuclear Magnetic Resonance) Center under the 

research leadership of Dr. John Belliveau (Belliveau et al., 1991). Belliveau proposed a 

breakthrough magnetic resonance technique for quantitative imaging of cerebral 

hemodynamics, allowing for measurement of regional cerebral blood volume during resting 

and activated cognitive states (Belliveau et al., 1991). The aforementioned brain imaging 

                                                      
11 Tesla = 10.000 Gauss, Earth’s magnetic field = 0.5 Gauss. 
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mechanism was based on the well-known dynamic susceptibility contrast (DSC) using injected 

Gd-DTPA (gadolinium-diethylenetriamine pentaacetic acid) as an MRI contrast agent (Carr et 

al., 1984; Belliveau et al. in 1991). This technique was used to generate the first ever 

functional magnetic resonance maps of human task activation, by using a visual stimulus 

paradigm (Belliveau et al. in 1991; Kwong et al., 2012). That experiment was the first to 

explore the power of the intrinsic blood contrast. 

One of the most challenging processes in the field of neuroscience is to comprehend the 

relationship between the BOLD signal and the neural activation. What the BOLD fMRI 

mechanism does it to detect the local increases in relative blood oxygenation that are most 

probably a direct consequence of neurotransmitter action and thus reflect local neuronal 

signaling (Matthews and Jezzard, 2017). As a matter of fact, this method allows localization 

to volumes of the order of a few to several cubic millimeters (𝑚𝑚3) and can be used in serial 

studies of individual subjects. It is now known that the BOLD signal does not correlate 

perfectly with neuronal action potentials but measures a mix of continuous membrane 

potentials and action potentials (Logothetis and Wandell, 2004). This fact might well 

complicate the interpretation of the neural activity within a small unit but on the other hand 

makes us wonder whether the neural information processing might extend beyond action 

potentials or not (Logothetis and Wandell, 2004). 

Nowadays, fMRI dominates in the human brain mapping field due to its relatively low 

invasiveness, absence of radiation exposure, and relatively wide availability (Chen and Li, 

2012). It has been established that fMRI has been used in an large number of studies like in 

cognitive and affective neuroscience, clinical psychiatry/psychology as well as pre-surgical 

planning (it has been estimated that where exist between 100.000 and 250.000 entries in 

PubMed, depending on keywords, according to the paper of Glover, 2011). Functional 

magnetic resonance imaging has provided researchers with unprecedented access to the 

brain in action and, in the past decade, has provided countless new insights into the inner 

workings of the human brain (Lindquist, 2008). 

 

Figure 2.1. The fMRI Connectome scanner which is located at the Athinoula A. Martinos 

Center for Biomedical Imaging, Massachusetts General Hospital (MGH). (Adapted from 

http://www.humanconnectomeproject.org/about/scanner/). 

http://www.humanconnectomeproject.org/about/scanner/
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2.2. Magnetic Resonance Imaging 

In order to comprehend the complex nature of fMRI data and how these images are used 

to investigate the neuronal activity, it is crucial to understand some basic MRI principles. 

 

2.2.1. Physiological basis 

Magnetic resonance imaging (MRI) is a modern imaging technique which uses the body's 

natural magnetic properties to produce detailed images from any part of the body. MRI uses 

the magnetic characteristics inherent to the protons of hydrogen nuclei in the tissue, mostly 

in the form of water but to a significant extent in fat as well. The protons spin about their own 

axes, which creates a magnetic dipole moment for each proton (Fig. 2.2). In the absence of 

an external magnetic field, the axes of these dipoles are arranged randomly, and therefore, 

the vectors depicting the dipole moments cancel each other out, resulting in a zero net 

magnetization vector (NMV) and a zero net magnetic field (NMF) for the tissue. 

In clinical practice, the hydrogen nucleus (a single proton) is used due to its abundance 

in water and fat. When the human body is placed in a strong magnetic field generated by a 

primary superconducting magnet, the protons' axes behave like magnetic dipoles and are all 

aligned upwards. In fact, some protons will point in the direction of the external field (i.e., 

north), some will point in the opposite direction (i.e., south), but the net magnetization vector 

of the dipoles (the sum of individual spins) will point in the direction of the external field. This 

uniform alignment creates a magnetic vector which is oriented along the axis of the MRI 

scanner's applied magnetic field. A small proportion of the protons (and therefore the NMV 

of the tissue) is aligned along the external field (longitudinal magnetization), and the protons 

precess with a certain frequency (Fig. 2.2). The term precession means that a proton spinning 

about its own axis is simultaneously wobbling about the axis of the external field. 

 

Figure 2.2. In an external magnetic field, protons spin around their own axis and wooble about 

the axis of the magnetic field (precession). Usually the 𝑧 direction is up, i.e., the direction of 

external magnetic field is in the head-foot direction in the scanner. 



 

39 
 

With the purpose of acquiring an MR image, a radio-frequency (RF) pulse is generated by 

a secondary magnetic field and applied to the part of the body being scanned. When the 

frequency of this RF pulse matches the Larmor or precession frequency of the protons, the 

latter receive energy and resonance occurs. The protons flip and the NMV of the tissue ceases 

transiently to be aligned with that of the external field but flips into another plane, thereby 

transverse magnetization is produced. When the RF pulse is switched off, the magnetic vector 

returns to its initial (or resting) state and this causes a radio wave to be emitted. This emitted 

signal, which is the result of the transverse magnetization, is used to construct the magnetic 

resonance images and is detected using receiver coils placed around the body part under 

examination. Varying the magnetic field gradient along the 𝑥 (𝑴𝒙) and 𝑦 (𝑴𝒚) axes, known as 

phase and frequency encoding, is able to provide sufficient information to decode the spatial 

coordinates of the signal emitted by each tissue voxel (volumetric pixel in 3D space). This is 

accomplished using Fourier transform. The final image is produced by applying a gray scale to 

the intensity values calculated by the Fourier transform for each voxel within the imaging 

plane, corresponding to the signal intensity of individual tissue elements. 

 

Figure 2.3. When a 90o RF pulse is applied, the NMV of the protons (𝑀𝑜) is flipped from the 

vertical (𝑧) plane to the horizontal (𝑥𝑦) plane (green dashed arc). 

MRI scanners come in different field strengths, usually between 1.5 and 3 Tesla. The 

strength of the magnetic field can be altered electronically using a series of gradient electric 

coils and by altering the local magnetic field by these small increments, different slices of the 

body will resonate as different frequencies are applied. The electrical coils are usually held in 

zero temperature (using liquid nitrogen or helium), minimizing their resistance and allowing 

for the strong currents needed to generate the magnetic field. 

 

2.2.2. Resonance and Larmor (or precessional) frequency 

To determine the spin of a nucleus, one can use the following rules (Zhang et al., 2009): 

1. If the number of neutrons and protons are both even, the nucleus has no spin. 
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2. If the number of neutrons plus the number of protons is odd, then the nucleus has a half-

integer spin (i.e., 1/2, 3/2, 5/2). 

3. If the number of neutrons and the number of protons are both odd, then the nucleus has 

an integer spin (i.e., 1, 2, 3). 

The nuclear magnetic moment (𝑚 or 𝜇) of a nucleus can align with an externally applied 

magnetic field of strength 𝛣𝜊 in only (2𝐼 + 1) ways, either with or against the applied field 

𝛣𝜊, where 𝐼 is the nuclear spin given by (1), (2) and (3) above. For example, for a single nucleus 

with 𝐼 = 1/2, only one transition is possible between the two energy levels. According to Fig. 

2.2., the energetically preferred orientation has the magnetic moment aligned parallel with 

the applied field (spin 𝑚 = +1/2), whereas the higher energy anti-parallel orientation (spin 𝑚 

= -1/2). The rotational axis of the spinning nucleus cannot be orientated exactly parallel (or 

anti-parallel) with the direction of the applied field 𝛣𝜊 (aligned along the 𝑧 axis) but must 

precess (motion similar to a gyroscope) about this field at an angle, with an angular velocity, 

𝜔𝐿, given by (2.1). If we irradiate the sample with radio waves (MHz), then the proton can 

absorb the energy and be promoted to the higher energy state (Fig. 2.5). This absorption is 

known as resonance because the frequencies of the applied radiation and the precession 

coincide at that frequency (Zhang et al., 2009). 

 

Figure 2.4. Splitting of energy levels of a nucleus with spin 𝑚 = ½, into two states (E2; spin 

down and E1; spin up). 

 
As it was mentioned in Section 2.2.1, in order to construct an MRI image the subject is 

placed into a strong electromagnetic field (i.e., 1.5-3 Tesla) that is generated by a primary 

magnet which aligns the magnetization of hydrogen (1H) atoms within the brain. Then a 

radiofrequency (RF) pulse with a pre-specified frequency, known as the Larmor frequency or 

precessional frequency, 𝜔𝐿, is generated by a secondary magnet in order to tip over the 

aligned hydrogen nuclei. The precessional path around the magnetic field is circular like a 

spinning top (Fig. 2.4). In fact, the Larmor frequency in MRI refers to the rate of precession of 

the magnetic moment of the proton around the external magnetic field where the frequency 

of precession is related to the strength of the magnetic field, 𝐵𝑜, through the following 

fundamental equation: 
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𝜔𝐿 = 𝛾 ∙ 𝛣𝜊 (𝟐. 𝟏) 

 
where 𝜔𝐿 is the Larmor frequency measured in MHz, 𝛾 is the gyromagnetic ratio (MHz/Tesla) 

a parameter that determines how fast the hydrogen will spin around the axis of the magnetic 

field and 𝛣𝜊 is the strength of the static magnetic field (Tesla). Note that the precession 

frequency of a hydrogen proton is directly proportional to the strength of the applied 

magnetic field. The gyromagnetic ratio of the hydrogen isotope is equal to 42.58 MHz/Tesla. 

Thus the precessional frequency of an 1.5 Τesla MRI scanner should be equal to 63.87MHz. 

 

Figure 2.5. A magnetic field (𝛣𝜊) is applied along the 𝑧-axis, causing the spinning nucleus to 

precess around the applied magnetic field. 

 
 

2.2.3. Basic MRI pulse sequences and parameters 

The repetition time (TR) and echo time (TE) constitute the two fundamental MRI pulse 

sequence parameters and are typically measured in milliseconds (ms). The echo time (TE) 

represents the time from the center of the RF-pulse to the center of the echo whereas the 

repetition time (TR) is the length of time between corresponding consecutive points on a 

repeating series of pulses and echoes. These times are being presented in the time diagram 

of a spin echo sequence (Fig. 2.6). The parameters 𝐺𝑋 , 𝐺𝑌,𝐺𝑍 are the gradients of the applied 

magnetic field which correspond to patient’s left-to-right, front-to-back and head-to-toe 

directions, respectively. The first part of the sequence achieves slice selection (SS) through a 

90o RF pulse (typically a ‘sinc’ pulse) thus creating transverse magnetization. The second part 

of the sequence achieves phase encoding by phase shifting the magnetization in the 𝑦 

direction and finally the third part consists of another pulse which rotates the transverse 

nuclear magnetization by 180o within the slice. The transverse magnetization refocuses at 

time TE and forms the spin echo. During that time frequency encoding (FE) takes place. 
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The spin-echo (SE) pulse sequence is one of the most widely used MRI pulse sequences 

(Fig. 2.6). The SE pulse sequence timing can be adjusted to give T1-weighted, FLAIR and T2-

weighted images (these are described later on Section 2.2.4). The spin echo sequence consists 

of three fundamental phases (Fig. 2.6): 

 
 a 90o RF pulse followed by phase encoding, 

 a 180o RF pulse followed by re-phasing, 

 the echo that occurs at TE where frequency encoding takes place. 

The SE sequence needs to be repeated many times in order to acquire the entire image. 

The time between each repetition of the sequence is the TR and is equal to the time that is 

necessary to allow the longitudinal magnetization to recover in order to generate a transverse 

magnetization in the next repetition. After the TE ends, the protons will continue to de-phase 

and the echo vanishes. However, during that time another 180o RF pulse can be sent in order 

to re-phase the protons again. This 180o RF pulse can be repeated as many times as necessary, 

each time generating an echo. This method is referred in the literature as Fast Spin Echo (FSE). 

At this point, it is important to note that at some point the echo will be so weak that it will 

not be clearly distinguished from the background noise. 

 
 

Figure 2.6. The timing diagram of a spin-echo pulse sequence. Abbreviations; 𝑛𝑃𝐸  is equal to 

the number of times the whole sequence is repeated, 𝑛𝐹𝐸  is the number of samples taken 

during FE. (Adapted from wikipedia.org). 
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Gradient (refocused) echo (GRE) sequences are an alternative technique to spin echo 

sequences. A GRE sequence does not use an 180o RF pulse but it is based on the precession 

of the proton (see Sections 2.2.1 and 2.2.2 for a quick revision) through a process that is often 

referred to as free induction decay (FID). Most GRE sequences use an initial excitation RF 

pulse of less than 90o. The flip angle of the proton is what affects the amount of longitudinal 

magnetization that is rotated into the 𝑥𝑦-plane. A small flip angle usually leads to a large 

amount of longitudinal magnetization which makes it available for another repetition. This is 

important in GRE sequences which are typically used with very short TRs for rapid repetition 

instead of long TRs which would result to a sequence with very poor signal-to-noise ratio 

(SNR). However, the main disadvantage of small flip angles is that they decrease the T1 

contrast of the sequence. Larger flip angles give more T1 weighting to the image and the 

smaller flip angle gives more T2 or T2* weighting. 

At this point, it is interesting to note that instead of using repeated 180o RF pulses after 

90o/180o RF pulses, like in a SE sequence, a pulse sequence with multiple echoes acquired 

from different phase steps using re-phasing gradients can be generated. This pulse sequence 

is known as Echo Planar Imaging (EPI). The EPI sequence can be generated by rapidly reversing 

(alternating) the FE gradient and this alternation is exactly what creates the gradient echoes. 

In fact, it utilizes rapidly switching gradients to acquire the entirety of 𝑘-space within one spin 

echo (the 𝑘-space is used for MR image reconstruction and is described in Section 2.2.5). The 

major advantage of the EPI sequence is that it can generate multiple gradient echoes within 

a single spin echo and can be performed based on GRE sequences. The EPI sequence is also 

used in diffusion weighed imaging (DWI). 

 

2.2.4. Relaxation times and tissue contrast 

The T1 relaxation time (also known as longitudinal or "spin-lattice" relaxation time) 

reflects the length of time it takes for the re-growth of the 𝑀𝑍 component back towards its 

initial maximum value (𝑀𝑜), i.e., for the 𝑀𝑧 component to recover as shown in Fig. 2.7(A). 

Alternatively, the T1 relaxation time refers to the time required by protons, within a given 

tissue, to recover at 63% of their original net magnetization vector along the vertical or 

longitudinal plane immediately after the completion of the 90o RF pulse. Tissues with short 

T1 times recover more quickly than those with longer T1 times since their 𝑀𝑧 values are larger 

and therefore produce a stronger signal which exhibits a brighter spot on the MR image. For 

example, fat quickly realigns its longitudinal magnetization, and therefore appears brighter 

than water which has much slower longitudinal magnetization realignment and therefore 

exhibits less transverse magnetization.  

On the other hand, the T2 relaxation time (also known as transverse or "spin-spin" 

relaxation time) reflects the length of time it takes for the MR signal to decay in the transverse 

plane, i.e., for the 𝑀𝑥𝑦 component to decay, as shown in Fig. 2.7(B). Small T2 constant results 

to a rapid signal decay and therefore tissues with short T2 times appear darker than those 
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with longer T2 values. More specifically, the T2 relaxation time is the time it takes for the 

tissue to lose 63% of its original transverse or horizontal magnetization. The decay of the NMV 

in the horizontal plane is due to dephasing of the individual proton spins as they precess at 

slightly different rates due to the local inhomogeneities of the magnetic field (including those 

that are caused by the tissue itself) leading to a more rapid transverse relaxation time 

(Logothetis and Wandell, 2004). 

 

 

Figure 2.7. (A) T1 and (B) T2 relaxation times. 

 
When inhomogeneities are present in a physiological tissue, the decay constant is usually 

referred to as T2*. In fact, T2* can be considered as an "effective" T2. Note that T2*is always 

less than or equal to T2 and can sometimes be defined as 1/T2* = 1/T2 + 1/T2i, where 1/T2i = 

γ∙ΔBi and ΔΒi represents the local field inhomogeneities across a voxel (Elster, 2017).  

According to the literature, the most common MRI scans are referred to as T1-weighted 

(T1-W) and T2-weighted (T2-W) images. A T1-weighted image relies upon the longitudinal 

relaxation of a tissue's NMV and is produced by using short TE (i.e., 14 ms) and TR (i.e., 500 

ms) constants. Conversely, a T2-weighted image relies upon the transverse relaxation of the 

net magnetization vector and is produced by using longer TE (i.e., 90 ms) and TR (i.e., 4000 

ms) times. Tissues with high water content (like fat, fatty bone marrow, edemas) will appear 

brighter (signal intensity) in a T1-WI than in a T2-WI. On the other hand, tissues with lower 

water content (like bones, CSF, blood products) will appear brighter in a T2-WI than in a T1-

WI. Grey matter areas appear with intermediate brightness in both T1 and T2 weighted 

images whereas white matter appears hyperintense (white-ish) compared to gray matter in 

T1-WI and hypointense (dark-ish) compared to gray matter in T2-WI. In general, the contrast 

and brightness of the T1-WI and T2-WI are determined by the T1 and T2 properties of the 

tissue of interest (see Table 2.1). 

Certain MR sequences using relatively long TE values are called T2*-weighted and are 

used to accentuate local magnetic homogeneity effects for the detection of hemorrhage or 

calcifications (Elster, 2017). T2*-sensitive sequences also form the basis for functional MRI 

using the BOLD contrast mechanism (see Section 2.3). 
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Table 2.1. Typical T1 and T2 values for various tissues under a 1.5 Tesla MRI scanner. 

 

Tissue T1 (ms) T2 (ms) 

Water/CSF 4000 2000 

White matter 790 92 

Gray matter 900 90 

Muscle 900 50 

Lung 830 80 

Liver 500 40 

Fat 250 70 

Tendon 400 5 

Proteins 250 0.1-1.0 

 

Another widely-used MRI sequence is the Fluid Attenuated Inversion Recovery (FLAIR). 

This sequence is similar to a T2-weighted image except that the TE and TR times are very long 

(i.e., TE = 114 ms, TR = 9000 ms). As a matter of fact, abnormalities remain bright but normal 

CSF is attenuated and made dark. FLAIR is very sensitive to pathology and makes the 

differentiation between CSF and an abnormality much easier. Another MRI sequence that has 

been largely replaced by FLAIR, is the Proton Density (PD) weighted imaging which produces 

contrast by minimizing the impact of T1 and T2 differences with long TR (2000-5000 ms) and 

short TE (10-20 ms). In PD weighted images, the fluids normally appear as grayish white, 

almost with similar appearance as the fat in the body. Dual echo and multi-echo sequences 

can be used to obtain both proton density and T2-weighted images simultaneously. 

 

 
 

Figure 2.8. Contrast differences between T2-W, T1-W and FLAIR imaging sequences from a 

patient with Pick’s disease ˙ a neurogenerative disease. (Adapted from wikipedia.org). 

 

2.2.5. Image reconstruction 

When the RF pulse is removed, the excited nuclei returns back to its original aligned 

position (precession) which causes the inductance of a current in the receiver coil. This 

current is used to generate the MR signal which is expressed as the Fourier transform of the 
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spin density at a single point in the frequency space or 𝑘-space. The measurement of the MR 

signal at the 𝑗-th time-point, 𝑆(𝑡𝑗), in a readout period, is defined as (Lindquist, 2008): 

 

 

𝑆(𝑡𝑗) = ∫ ∫ 𝑀(𝑥, 𝑦) ∙ 𝑒(−2𝜋𝑖(𝑘𝑥(𝑡𝑗)𝑥+𝑘𝑦(𝑡𝑗)𝑦))

𝑦

𝑑𝑥𝑑𝑦

𝑥

 (𝟐. 𝟐) 

 
where 𝑀(𝑥, 𝑦) is the spin density at point (𝑥, 𝑦) on a Cartesian grid,  𝑡𝑗 is the time at which a 

data sample and is defined as 𝑡𝑗 = 𝑗𝛥𝑡, where 𝛥𝑡 depends on the sampling bandwidth of the 

scanner, with typical values ranging from 250 to 1000 μsec (Lindquist, 2008). Finally, (𝑘𝑥(𝑡𝑗),

𝑘𝑦(𝑡𝑗)) is the point in the 𝑘-space (frequency domain) at which Fourier transform is measured 

at time 𝑡𝑗 (Paschal and Morris, 2004): 

 

 

𝑘𝑥(𝑡𝑗) = ∫ 𝛾𝐺𝑥(𝑡)𝑑𝑡

𝑡𝑗

0

      𝑎𝑛𝑑      𝑘𝑦(𝑡𝑗) = ∫ 𝛾𝐺𝑦(𝑡)𝑑𝑡

𝑡𝑗

0

 (𝟐. 𝟑) 

 

where 𝛾 is the gyromagnetic ratio (see Section 2.2.2 for further information), 𝐺𝑥(𝑡) and 𝐺𝑦(𝑡) 

is the strength of the gradient along axes 𝑥 (frequency encoding) and 𝑦 (phase encoding) 

respectively, at time 𝑡. 

The raw data are typically interpolated onto a Cartesian grid in the frequency domain or 

𝑘-space (Fig. 2.9(A)) and then IFFT is applied to reconstruct the original image (Fig. 2.9(B)). 

Designing new 𝑘-space sampling trajectories instead of the Cartesian standard grid is of great 

interest. At this point, it is important to note that the individual points (𝑘𝑥, 𝑘𝑦) in 𝑘-space do 

not correspond one-to-one with individual pixels (𝑥, 𝑦) in the image space. Each 𝑘-space 

point contains spatial frequency and phase information about every pixel in the final image. 

However, each pixel in the image space maps to every point in the 𝑘-space and that's exactly 

the importance of the 𝑘-space in image reconstruction. 

 
Figure 2.9. Visual representation of the mapping procedure from (A) 𝑘-space to (B) image 

space and backwards using IFT and FT, respectively. (The MRI axial slice in (B) was adapted 

and adjusted from wikipedia.org). 
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2.3. The BOLD contrast mechanism 

Functional magnetic resonance imaging is most commonly performed using the blood 

oxygenation level dependent (BOLD) contrast mechanism. The BOLD contrast mechanism was 

first mentioned in the work of Ogawa and colleagues (Ogawa et al., 1990) using strong 

magnetic fields in rat brain studies through gradient echo pulse sequences. What Ogawa 

discovered was the existence of a contrast mechanism that could be able to reflect the blood 

oxygen level on the gradient-echo images by accentuating the susceptibility effects of the 

deoxygenated hemoglobin in the blood vessels (Ogawa et al., 1990; Logothetis, 2002). More 

specifically, Ogawa noticed that these effects created local distortions (alterations) on the 

magnetic field that could be projected on magnetic resonance images with the aims of 

providing accurate measurements related to neural activity. This combination is now known 

as functional magnetic resonance imaging (fMRI). 

The BOLD contrast mechanism results from the change in magnetic field surrounding the 

red blood cells depending on the oxygen state of the hemoglobin (HbO2). It was already 

known before even the development of the MRI, that fully oxygenated HbO2 is diamagnetic 

whereas fully deoxygenated Hb (dHb) is highly paramagnetic (hemoglobin properties; Brooks, 

1937). Hemoglobin (or haemoglobin) consists of two pairs of polypeptide chains (globin), each 

of which is attached to a complex of protoporphyrin and iron (heme group) (Logothethis, 

2002). In dHb the iron (Fe2+) is in a paramagnetic high-spin state, as four of its six outer 

electrons are unpaired. When oxygenated, the heme iron changes to a low-spin state by 

receiving the oxygen’s electrons. BOLD imaging is based on the aforementioned magnetic 

differences between the oxygenated and deoxygenated hemoglobin which result to the 

generation of local gradients in the magnetic field whose strength depends on the HbO2 

concentration. These gradients alter the intra- and extra-vascular blood’s T2 and T2* 

relaxation times by generating tiny magnetic field inhomogeneities that are associated with 

the presence of dHb, which in turn lead to destructive interference from signal within the 

tissue voxel that shortens the T2* relaxation time (Glover, 2011). The cerebral blood flow 

(CBF) refreshes with oxygenated blood areas of the brain that are activated during resting-

state or during a task performance (Lindquist, 2008). This modulates the susceptibility of the 

HbO2 that flows within the involved areas, thus changing the measured MR signal in these 

areas. As oxygen extraction falls with enhanced local blood flow in a region of greater 

neuronal activity, the T2* relaxation time becomes longer and the MR signal intensity 

increases relative to the baseline state (Mathhews and Jezzard, 2017). 

When a neuron fires, it draws oxygen from the blood stream leading to an increase in the 

concentration of dHb in the blood (Fig 2.10). Right after the neuronal firing, the active neurons 

consume the oxygen available in the local blood stream and thus the relative level of dHb 

increases more which leads to an initial decrease in the BOLD signal. After the increase in the 

dHb concentration, the blood flow increases locally in response to the neuronal activity by 

providing a large amount of oxygenated blood so as to preserve the oxygen consumption. 
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This in turn results in a local decrease of the dHb consumption. By taking into consideration 

the fact that dHb is paramagnetic, a reduction in its concentration results in an increase in the 

homogeneity of the static magnetic field which in turn yields an increase in the BOLD signal. 

Finally, the concentration of dHb slowly returns to its normal level and the BOLD signal decays 

till reaching its original baseline level. 

 

 

Figure 2.10. (A) Oxygenated and deoxygenated consumption before/after neuronal 

activation. (B) The relative concentration distribution of the oxygenated and deoxygenated 

hemoglobin before and after neuronal firing. (Adapted and adjusted from Saka et al., 2010). 

 
The underlying evoked hemodynamic response to a neural event is known as the 

hemodynamic response function (HRF) (Logothetis, 2004; Lindquist, 2008; Chen and Li, 2012). 

The hemodynamic response rises to a peak over 4-8 seconds, before falling back to its 

baseline (Figs 2.10-2.11). This leads to changes in local cerebral blood volume and local 

changes in the concentration of oxygenated hemoglobin, which are detectable through the 

paramagnetic effects (Chen and Li, 2012). The standard shape used to model the HRF is 

sometimes called the canonical HRF (Fig. 2.11). The increased metabolic demands due to 

neuronal activity lead to an increase in the inflow of oxygenated blood to active regions of 

the brain. Since more oxygen is supplied than actually consumed, this leads to a decrease in 

the concentration of deoxygenated hemoglobin which, in turn, leads to an increase in signal. 

This positive rise has an onset approximately 2 seconds after the onset of neural activity and 

peaks 5-8 seconds after that neural activity has peaked (Aquirre et al., 1998). Several studies 

have shown evidence of a decrease in oxygenation levels in the time immediately following 

neural activity, giving rise to a decrease in the BOLD signal in the first 1-2 seconds following 

activation. This decrease is called the initial negative BOLD response or the negative dip 

(Menon et al., 1995; Malonek and Grinvald, 1996). All the aforementioned aspects are 

described in the following figure. 

http://journal.frontiersin.org/article/10.3389/fnene.2010.00023/full
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Figure 2.11. The standard canonical HRF model used in various task fMRI studies. (Adapted 

and adjusted from wikipedia.org). 

 
The BOLD contrast mechanism appears best using a gradient echo (GE) pulse sequence 

where the acquisition is made sensitive to T2* and T2 relaxation times. The T2* contrast is 

predominant and is largest in venules at magnetic fields of 1.5T and 3T where most fMRI 

scanners operate (Glover, 2011). At higher field strengths, the diffusion-weighted contrast of 

T2 relaxation time dominates and provides greater spatial specificity (Glover, 2011). In task-

fMRI studies the HRF model is used for statistical modeling. In fact, the BOLD signal can be 

modelled as the convolution of a stimulus function (a series of event spikes) and the HRF. In 

this work however, resting-state fMRI data are employed for analysis. For further information 

about task fMRI activity prediction models, see the study of Perrachione and Ghosh, 2013. 

 

2.4. From MRI to fMRI activation maps 

A typical MRI study consists of a series of 2D brain volumes (slices) collected within a 

quick succession, leading to a 3D dataset. A pixel in 3D space is referred to as volumetric pixel 

or voxel for short. During fMRI, an extra (4th) dimension is recorded for each voxel, which 

corresponds to the time space (Fig. 2.12). Therefore, the fMRI dataset is a 4D dataset. The 

temporal resolution of the acquired dataset depends on the time between acquisitions of 

each individual volume. Once the 𝑘-space has been sampled, the procedure is repeated and 

a new volume can be acquired alongside with an extra voxel-wise BOLD signal. Therefore, the 

efficiency of the 𝑘-space sampling is of great importance. In the current thesis, the (resting-

state) fMRI data were acquired from the Human Connectome Project (HCP) as it was already 

mentioned in Chapter 1. The HCP database consists of brain volumes of dimensions 91 × 109 

× 91 (i.e., 902629 voxels) where the BOLD signals are collected at 𝑇 separate time points 

throughout the recording time. In resting-state HCP fMRI BOLD data, the number of samples 
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was equal to 1200 across each run (approximately 15 minutes of resting-state recording). 

Hence, the resulting data consists of roughly 902629 time series of length 𝑇. Since the 

recording was repeated for 𝑀 subjects, where 𝑀 was equal to 500, or even 1100 as in the 

latest HCP release, it is obvious that the fMRI analysis is in fact a time series analysis problem 

of massive proportions (Lindquist, 2008). 

 

Figure 2.12. (A) Example of an fMRI 4D dataset where an extra BOLD signal is recorded for 

each voxel (here one is shown for simplicity). (B) An fMRI scan (on sagittal and axial slices) 

showing activations on regions that belong to the well-known Default Mode Network (DMN) 

which is usually activated during resting-state. (Adapted and adjusted from wikipedia.org). 

 

2.5. Spatial and temporal resolution 

BOLD fMRI provides detailed anatomical images of the gray and white matter with a 

spatial resolution well below 1 𝑚𝑚3 but with a temporal resolution of a few seconds which 

is limited by the hemodynamic response itself (Lindquist, 2008; Matthews and Jezzard, 2017). 

The spatial specificity increases with increasing magnetic field and, for a given magnetic field, 

can be limited by the signal-to-noise ratio (SNR) and well optimized by using pulse sequences 

that are less sensitive to signals from within and around large vessels. In general, for MRI, the 

SNR can be approximately defined as: 

 

 
𝑆𝑁𝑅 ≈ 𝑝2𝑤√𝑇𝑁 (𝟐. 𝟒) 

 

where 𝑝 is the pixel size, 𝑤 is the slice thickness, 𝑇 is the acquisition time, i.e., the 𝑘-space 

readout time and 𝑁 is the number of frames. It is obvious that as 𝑇 reduces the pixel size (𝑝) 

must be increased in order to retain an acceptable SNR. A typical fMRI pixel size is 3-4 mm 

and can reach 500 μm, or even less, under a strong 7T magnetic field. fMRI’s spatiotemporal 

resolution can be mainly enhanced by (i) optimizing the MRI pulse sequences, (ii) using higher 

magnetic fields, (iii) employing intelligent strategies for parallel imaging (Logothetis, 2008). 

The following table summarizes the spatiotemporal resolution of fundamental non-invasive 

methods for mapping brain’s functional connectivity. 
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Table 2.2. Spatiotemporal resolution and physiological basis of fundamental non-invasive 

brain mapping methods (Johnsrude and Hauk, 2005; Nicolas-Alonso and Gomez-Gil, 2013). 

 

Method 
Activity 

measured 

Spatial 

resolution 

Temporal 

resolution 
Physiological basis 

EEG 
Electrical 

~ 10 mm ~ 0.05 sec electrical activity across a large 

number of  neurons 

MEG Magnetic ~5 mm ~ 0.05 sec magnetic fields produced from 

the electrical activity across 

neurons 

PET 

Metabolic 

5 - 20 mm 10 sec - mins radioactive decay resulted from 

the accumulation of a compound 

fMRI ~ 1 mm ~ 1 sec local magnetic field fluctuations 

produced by the alteration of 

HbO2 magnetic properties 

NIRS ~ 5mm ~ 1 sec focal magnetic field produced by 

transiently disrupted activity over 

a large number of neurons 

 

The spatial resolution of EEG/MEG is limited to 5-10 mm due to the fact that the inverse 

problem (i.e., the ill-posed source localization problem) does not have a unique solution, i.e., 

the dipole reconstruction is not unique. The EEG appears with a smaller spatial resolution 

than MEG due to the fact that EEG might be spatially distorted by electrical conduction 

(Glover, 2011). On the other hand, EEG/MEG can easily capture the dynamics of brain activity 

and thus offer excellent temporal resolution, i.e., close to 0.05 sec. BOLD fMRI provides 

excellent spatial resolution but small temporal resolution which is mainly related to the 

hemodynamic activity. Near Infrared Spectroscopy (NIRS) offers a similar to EEG spatial 

resolution (close to 5 mm) and is limited by the problem of reconstructing HbO2 3D maps from 

scalp recordings as well as the scattering and attenuation of the infrared photons which limits 

deeper brain penetration. NIRS’s temporal resolution is similar to fMRI’s due to blood 

oxygenation temporal limitations. As far as Positron Emission Tomography (PET) is concerned, 

its’ spatial resolution varies between 5 and 20 mm because it is limited by the size of gamma 

ray detectors as well as the positron-electron annihilation range (Glover, 2011). PET has the 

largest temporal resolution than all the aforementioned methods due to the low count rates 

of the injected nuclide (Glover, 2011), thus requiring further scans. 

In the near future, fMRI can provide us with routine-based images of a fraction of a 

millimeter, e.g., 300 × 300 μm2, with approximately 2 or 3 orders of magnitude smaller voxel 

volumes than those currently used in human brain imaging (Logothetis, 2008). This enhanced 

resolution combined with a large number of acquisition channels, can provide scans with 

excellent spatial detail and with a normal temporal resolution of almost a second or two. 
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2.6. Basic pre-processing techniques 

Pre-processing is mandatory prior to any resting-state or task analysis involving fMRI data 

in order for example to attenuate physiological artifacts such as those originated from head 

motion or data acquisition artifacts like magnetic field deformations. The major steps involved 

in fMRI pre-processing are realignment (short-duration motion correction), co-registration of 

functional images, slice timing correction, normalization, smoothing and separation of spatial 

or temporal independent components of brain activity. These fundamental steps are briefly 

described in the sequel. 

During the scanning procedure, subject’s movement often leads to signal contamination, 

i.e., the signal from a voxel of interest is mixed with its neighboring voxels signals and thus 

the recorded data represent false brain activation. This type of artifact is crucial and an 

incorrect treatment leads to useless studies. A widely used motion correction approach is 

known as rigid body transformation and is composed by two steps. In the first step, each 

obtained slice is compared with a target slice which is usually the average slice (or the first 

slice) and then the image is (translated) shifted across all dimensions and rotated in order to 

match the target. The matching process is performed by minimizing a cost function, usually 

the sums of squared differences between the pixels of the input and target images. The image 

is finally resampled based on the estimated translation and rotation parameters using 

interpolation, resulting to new motion-free voxel coordinates.  

A fundamental hypothesis in fMRI processing is that the voxels within the whole brain 

are measured simultaneously. Of course this is not true since the 3D fMRI data consist of a 

large number of slices sampled in a sequential manner. As a matter of fact, at different time-

points, similar BOLD signals will be temporally shifted relative to each other. Slice timing 

correction shifts each voxel’s BOLD signal appropriately either by using interpolation in time-

space or the Fourier shift transform theorem in spectrum in order to treat these acquisition 

differences (Lindquist, 2008). 

Smoothing is performed in order to solve the blurring of anatomical differences between 

different brain regions which constitutes a main spatial normalization limitation. Moreover, 

smoothing may suppress random noise and increase the signal-to-noise ration within a region 

only if that the spatial extent of that region is larger than the spatial resolution (Lindquist, 

2008). Smoothing is usually applied using the full width at half maximum (FWHM) kernel with 

widths typically being 3 times the voxel size. Spatial smoothing is equivalent to applying a low-

pass filter on the sampled 𝑘-space data. 

Co-registration is the process of aligning functional images in order to improve the spatial 

resolution of the fMRI by mapping the acquired data to an image with high spatial anatomical 

detail. This process is applied through typical rigid body or affine transformations (Lindquist, 

2008). Normalization is another crucial pre-processing technique that aims to register each 

subject’s voxel coordinates into a common brain template that lies within the well-known 
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Montreal Neurological Institute (MNI) or the Talairach coordinate space (for comparing the 

disparity between these two spaces, see Laird et al., 2010). This step is highly important in 

studies where statistical comparisons between populations (i.e., normal subjects and subjects 

with a specific pathology) are performed. Comparing subjects whose voxels are registered in 

different coordinate spaces results to inaccurate and false results. Normalization is commonly 

performed using non-linear transformations in order to wrap the input image (i.e., a slice) 

onto the target/template image using smoothing (Lindquist, 2008). 

Generative models like Independent Component Analysis (which is a special case of the 

Blind Source Separation problem), are mostly used for extracting the components of brain 

(and non-brain) activity by separating a multivariate signal into independent components 

through the maximization of the mutual dependence of the source signals, assuming that 

none or only one of them is Gaussian and the rest are non-Gaussian (Chen and Li, 2012). ICA 

has been extensively applied on EEG/MEG studies for separating temporally independent 

components. Nowadays, it has been also extended to fMRI in the form of spatial ICA with the 

purpose of separating spatiotemporally independent components for revealing the distinct 

co-activation patterns during resting-state which represent spatially coherent fluctuations of 

the BOLD signal (Chen and Li, 2012). At this point, it is important to note that a special form 

of the ICA, known as the ICA-FIX ("FMRIB's ICA-based X-noiseifier") algorithm (Salimi-Khorsidi 

et al., 2014), has been recently proposed based on multi-level classifiers for subtracting the 

noisy components of brain activity with a 99% accuracy on the HCP data. For this reason, the 

ICA-FIX algorithm is the default rs-fMRI denoising method in the HCP pre-processing pipelines. 

 

2.7. Clinical applications 

Functional magnetic resonance imaging is a straightforward and non-invasive method for 

mapping human brain activity based on the local hemodynamic fluctuations that appear as a 

result of the neuronal activation within a region. fMRI is a widely used approach since it is 

non-invasive and records the metabolic activity of the brain without the use of exogenous 

contrast agents as in MRI or nuclides as in PET. Over the last decade, fMRI has been 

extensively used to map brain activity in subjects during resting-state or during a cognitive, 

emotional or sensory-motor task. Nowadays, fMRI has been employed as a valuable tool in 

comprehending various pathological disorders such as brain tumors, epilepsy, Alzheimer's 

disease, multiple sclerosis, etc. Moreover, fMRI can be combined with diffusion tensor 

imaging (DTI) to provide accurate white and gray matter probabilistic tractography maps 

(Glover, 2011; Mathhews and Jezzard, 2017).  

The role of fMRI in brain tumor surgery is valuable since it can be used as a pre-surgical 

tool for investigating the relationship between the tumor and different brain areas involved 

in cognition, motor, speech, language, etc. A large number of studies examine whether fMRI 

can accurately estimate the location of cortical areas involved in speech, cognition and 
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language in relationship to brain tumors (Signorelli et al., 2001, 2003). Understanding the 

relationship between a lesion and an eloquent region can determine whether a resection is 

safe or not (Orringer et al., 2012). An alternative is the electrocorticogram (ECoG) which is an 

invasive method and is not able to provide 3D activation maps. In addition, fMRI can be also 

combined with direct cortical stimulation for accurately mapping the relationship of a lesion 

with the identified somatonsensory, motor, and language regions of the human brain 

(Logothetis, 2002; Orrigner et al., 2012).  

fMRI's contribution to epilepsy treatment is also of great importance. It can be combined 

with the WADA test (i.e., an international test that establishes cerebral language and memory 

representation of each hemisphere) for successfully planning and executing an epilepsy 

surgery (Orringer et al., 2012; Matthews and Jezzard, 2017). For example, in the study of 

Sabsevitz et al., 2003, fMRI was found to predict positive significant language outcomes (i.e., 

naming decline) with an accuracy of 81% across 24 patients that underwent left anterior 

temporal lobectomy (ATL). As a result, fMRI can be used to predict the risk for language 

function decline and memory deficits following ATL (Orringer et al., 2012). That is exactly the 

role of an efficient biomarker.  

Another application focuses in the diagnosis and management of Alzheimer's disease 

(AD). Studies suggest that it is possible to demonstrate impairments in hippocampus and 

parahippocampal gyrus during memory encoding tasks in patients with Alzheimer's disease, 

using fMRI (Sperling et al., 2003; Golby et al., 2005). This means that fMRI can be used as a 

biomarker for predicting the decline in cognitive functions, understand the basis of memory 

loss in patients with AD and evaluate pharmacological treatments by examining the 

alterations in brain's physiology (Orringer et al., 2012). 

 

2.8. Conclusions and future challenges 

The main advantage of fMRI lies on its excellent spatial resolution which provides high 

resolution anatomical scans combined with a slightly good temporal information obtained 

from the hemodynamic activity following neural activation. In addition, the fact that it is a 

non-invasive method which is able to provide highly detailed and accurate 3D maps of brain 

activity distribution (e.g., human connectomes) during resting-state or task studies (i.e., 

motor task), place fMRI on the top of non-invasive brain mapping methods. Since the BOLD 

response is affected by various factors like age, attention, brain pathology, substance use, 

etc., fMRI can be used as a reliable and effective biomarker for pathological diseases and pre-

surgical planning. Of course, many difficulties still exist and need to be further addressed. The 

images produced must be interpreted carefully, since correlation does not imply causality and 

brain processes are complex and often non-localized (Chen and Li, 2012). Important tradeoffs 

between acquisition speed, resolution and SNR should be taken into consideration for 

providing high quality images with an acceptable temporal resolution. BOLD contrast is an 

indirect measure of neural activation and the weakness of the neural signal often results to 
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noise. In addition, the BOLD signal is also influenced by non-neural changes in the body and 

it is possible to extract a BOLD signal from a non-activated area (Chen and Li, 2012). However, 

strong magnetic fields (i.e., 7 Tesla) are able to overcome these issues but on the other hand 

dramatically increase the cost of an fMRI scanner.  

Statistical methods must be carefully evaluated since they can easily produce false 

positives and misinterpretations of brain activation in different areas of the brain during 

resting-state or under various task experiments (i.e., sensorymotor, cognition). The recent 

advances in clinical fMRI healthcare are able to provide reliable, non-invasive functional 

images that can be easily interpreted by physicists and are often employed for pre-surgical 

planning as well as extracting biomarkers for pathological diseases, more recently for 

Alzheimer's disease. fMRI remains at the top of neuroimaging methods with an exponential 

growth in neuroscientific publications since its inception in 90's. 
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3. Lobular analysis of cerebellum's network with 

respect to IQ and gender 

 

 

 

 

 

3.1. Overview 

This chapter comprises a first attempt to the analysis of cerebellum's anatomical network 

(i.e., lobular analysis) by taking into consideration the effects of the following two factors on 

cerebellum's functional connectivity: (a) crystallized Intelligence Quotient and (b) gender. In 

order to do so, we collect rs-fMRI data for 492 subjects from the HCP database. Prior to the 

data analysis procedure, we first discard all subjects with hard substance use/alcoholism, 

psychiatric history and afterwards separate them into two main categories based on their IQ 

level (low/high-IQ). Thereafter, graphs are constructed per subject by computing Pearson's 

correlation coefficients between the average BOLD time-series for each pair of ROIs (i.e., 

lobules), inside the cerebellum. Through the computation of conventional graph metrics, 

small-world network properties were investigated using the weighted clustering coefficient 

and the characteristic path length for estimating the trade-off between segregation and 

integration. The Minimum Spanning Tree (MST) concept was implemented in order to 

preserve only the strongest connections per network (i.e., extract its backbone structure) as 

well as avoid any methodological biases in graph comparisons. An additional individual 

correlation analysis was conducted in order to examine the relationship between the hub 

indicators (i.e., local MST measures) and the Median Response Time (MRT), per subject. The 

computed set of local and global graph/MST parameters gave rise to extensive statistical 

analysis in order to test for differences between low and high-IQ males/females. 

The lobular analysis process is presented in Fig. 3.1. Cerebellum’s anatomical parcellation 

procedure was executed using a probabilistic cerebellum atlas registered on the MNI space, 

where the 27 cerebellar ROIs are displayed on the surface using color coding (A). Pearson's 

correlation coefficient was employed as a functional connectivity metric for each pair of ROIs 

leading to a 27x27 weighted and undirected graph (B). A weighted graph is a dense graph as 

it can be visualized through its projection on cerebellum's surface by treating ROIs as nodes 

(C). In order to preserve only the strongest connections within the network the concept of 

the Minimum Spanning Tree was applied using Kruskal's algorithm (D). The MST is a loopless 

subgraph of the original weighted graph and is projected on cerebellum's surface where each 

node’s size linearly depends on its betweenness centrality (BC) value (E). 
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Figure 3.1. Schematic representation of the basic methodology for executing the lobular 

analysis of cerebellum. 

 

3.2. IQ groups formation 

Crystallized IQ is a measure that involves both educational experience and executive 

functioning, giving more emphasis to knowledge (Barch et al., 2013; Schipolowski et al., 2014). 

The HCP database provides crystallized IQ measures obtained using a Form-A of an 

abbreviated version of the Raven's patterns, developed by Gur and colleagues (Bilker et al., 

2012; Barch et al., 2013). More specifically, participants were presented with patterns made 

up of 2 × 2, 3 × 3, or 5 × 5 arrangements of squares, with one of the squares missing. Each 

participant must pick one of five response choices that best fits the missing square on the 

pattern. The task has 24 items and 3 bonus items, arranged in order of increasing difficulty. 

However, the task discontinues if the participant makes 5 incorrect responses in a row. 

Median response times (MRTs) were also collected per subject in order to study associations 

with brain measures. 

In this study, the IQ score is defined as the number of correct responses per subject. The 

score distribution was found to be left-skewed (skewness = −0.49), implying that most of the 

subjects tend to answer correctly most of the items (Fig. 3.2). In order to define the low and 

high-IQ groups, we first find the median of the IQ score distribution from all 492 subjects 
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(approximately 16), as well as the lower quartile (approximately 6). The minimum score is 3 

and the maximum score is 24. An IQ score of 3 is considered very low in practice and since 

only two subjects responded in this range, they were removed from further analysis without 

affecting the overall IQ distribution. We define the low-IQ score within the interval from 4 to 

10 (median minus one quartile), whereas the upper IQ interval defines scores from 22 

(median plus one quartile) to the maximum score of 24. As a result, the low-IQ group includes 

69 subjects, whereas the high-IQ group is composed of 67 subjects in total. 

 

Figure 3.2. IQ scores distribution where the black dashed line represents the median and the 

red lines correspond to the upper (median plus one quartile) and lower (median minus one 

quartile) IQ boundaries. 

 The mid-IQ subjects are discarded, so that our population of interest consists of 136 well-

separated subjects (69/67; low/high-IQ). More specifically, there are 25 males and 44 females 

in the low-IQ group, while 29 males and 38 females are involved in the high-IQ group. As far 

as the educational experience is concerned, both the low-IQ and the high-IQ subjects had an 

average of approximately 10 years of educational experience although 12 low-IQ subjects and 

8 high-IQ subjects were still respondent in school for degree courses. Ages are provided by 

the HCP database in 4 and 5-year intervals. Only 1 subject was older than 36 years (in high-IQ 

group), 26 subjects were between 22 and 25 years old (low/high-IQ; 17/9), 56 subjects were 

between 26 and 30 years old (low/high-IQ; 24/32) and finally 53 subjects were in the age 

range between 31 and 35 years (low/high-IQ; 28/25). Notice that these age intervals are not 

wide enough to support the consideration of age influences to intelligence (Li et al., 2004). It 

is worth mentioning that our population of interest consists of young and healthy adults that 

underwent several clinical examinations and the large number of estimated network 

parameters are satisfactory for subsequent statistical analyses. 

Table 3.1. Demographic information (part 1). 

 

Group Scores Males Females Total 

Low-IQ 4-10 25 44 69 

High-IQ 22-24 29 38 67 



 

59 
 

3.3. BOLD time-series extraction per anatomical lobule 

Based on SUIT’s anatomical atlas of cerebellum (Section 1.1.6), the latter was initially 

parcellated into 28 lobules or regions of interest (ROIs), which are classified as motor related 

(I–IV, V, VI), cognitive and emotional related (Crus I, Crus II, VIIb, VIIIa, VIIIb, IX, X) according 

to Stoodley and Schmahmann, 2009; Stoodley et al., 2012; E et al., 2014; Koziol et al., 2014, 

as shown in Fig. 3.2. In order to avoid influences of intracranial volume differences among 

gender and IQ groups, all MRI structures were matched to the same model through the 

aforementioned parcellation procedure which was based on the standard (normalized) SUIT 

anatomical cerebellum atlas. The volume of each ROI was defined as the number of its voxels 

and was calculated from the standard SUIT cerebellum atlas (Diedrichsen et al., 2009; 

Diedrichsen and Zotow, 2015). In addition, a straightforward approach often employed for 

visualization of the cerebellar anatomical areas, as well as their inner compartments, is to 

construct a flat-surface representation by means of a 2D projection (Diedrichsen and Zotow, 

2015). The flatmap display of the human cerebellum (Fig. 3.3) was obtained using the original 

SUIT’s probabilistic lobular atlas (Diedrichsen and Zotow, 2015) (in GIFTI format), where 

borders between lobules were retained and labels were assigned for every lobule based on 

the symbol coding of Diedrichsen and Zotow, 2015; except for the “H” symbol, which is 

ignored for simplification. 

 

 

Figure 3.3. Cerebellum parcellation procedure (coronal view, A: front, B: back) followed by its 

flat surface representation in (C). Color coding is based on each lobule's volumetric size. 

Presentations (A) and (B) were created using BrainNet Viewer (Xia et al., 2013) and the 

flatmap presentation in (C) was based on the work of Diedrichsen and Zotow, 2015. 
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According to Fig.3.3 and Table 3.2, Lobule Crus I was found to be the largest one, 

occupying approximately 23% of the total cerebellar voxels, comprising almost half of the 

estimated gray matter volume of the human cerebellum (Diedrichsen et al., 2009). In 

contrast, one specific region (Vermis Crus I) was found to occupy less than 0.005% of the total 

volume space and was excluded from subsequent analysis as in previous studies (Riedel et al., 

2015). This region is probably the result of a misclassification during the probabilistic atlas 

formation by Diedrichsen and colleagues. Overall, 27 ROIs were recruited for further analysis, 

with the number of voxels per ROI and their total contribution to cerebellum’s area being 

presented in Table 3.2. The anatomical parcellation of cerebellum was performed for all 136 

subjects separately, in order to extract the average BOLD signals from the remaining 27 ROIs, 

based on SUIT's standard cerebellum atlas. 

 

Table 3.2. Cerebellum's anatomical ROIs information. 
 
 
 
ROI 

 
 
Location (Name) 

 
MNI space coordinates 

 

 
 
Number of voxels 

 
 

% of total 

X Y Z 

1 Left I-IV -6 -46 -18 622 2.8901 

2 Left V -16 -48 -20 724 3.3640 

3 Left VI -14 -68 -22 1582 7.3506 

4 Left Crus I -38 -72 -32 2392 11.1142 

5 Left Crus II -12 -82 -40 1866 8.6702 

6 Left VIIb -38 -58 -54 848 3.9402 

7 Left VIIIa -28 -54 -54 812 3.7729 

8 Left VIIIb -18 -52 -56 657 3.0527 

9 Left IX -6 -56 -52 555 2.5788 

10 Left X -20 -36 -46 133 0.6180 

11 Vermis VI 0 -74 -22 380 1.7656 

12 Vermis Crus II 2 -74 -32 81 0.3764 

13 Vermis VIIb 2 -70 -32 27 0.1255 

14 Vermis VIIIa 2 -70 -42 221 1.0269 

15 Vermis VIIIb 0 -66 -46 110 0.5111 

16 Vermis IX 0 -56 -36 130 0.6040 

17 Vermis X 0 -48 -36 47 0.2184 

18 Right I-IV 6 -46 -16 652 3.0295 

19 Right V 18 -50 -20 676 3.1410 

20 Right VI 22 -66 -24 1498 6.9603 

21 Right Crus I 42 -72 -32 2501 11.6207 

22 Right Crus II 20 -80 -22 1765 8.2009 

23 Right VIIb 30 -70 -54 878 4.0795 

24 Right VIIIa 26 -62 -56 853 3.9634 

25 Right VIIIb 20 -54 -56 719 3.3408 

26 Right IX 6 -56 -52 652 3.0295 

27 Right X 24 -36 -46 140 0.6505 
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3.4. Network construction 

3.4.1. Graph modeling 

Graph theory forms a graphical approach for the mathematical modeling of complex 

networks. A graph 𝑮 can be defined as a pair (𝑽, 𝑬) where 𝑽 is a set of vertices and 𝑬 is a set 

of edges. Graphs can be categorized according to the edge’s direction as directed or 

undirected, and according to edge’s weight as weighted or unweighted (binary). In this study, 

we work with undirected and weighted graphs, where the nodes are placed in the center of 

the mass of each ROI and the weight connecting two nodes is defined by the correlation of 

the average BOLD signals of the specified ROIs. Weighted graphs have been characterized as 

more accurate models of real networks (Reijneveld et al., 2007) with a fixed number of edges 

(Stam et al., 2014a), unlike unweighted graphs where much of the information is lost due to 

arbitrary thresholding (van Diessen et al., 2014; Stam et al., 2016) and the introduction of 

biases (Fornito et al., 2013). Moreover, the lack of connections in unweighted graphs often 

leads to the well-known disconnection syndrome (Stam and van Straaten, 2012) with negative 

implications on the computation of useful graph-theory metrics (Reijneveld et al., 2007) and 

the overall cohesion of the network (Goulas et al., 2015). 

The acquired denoised BOLD time-series from 136 subjects in resting-state, were 

parcellated into 27 regions using the reference atlas that was described in Section 3.3. After 

the extraction of the BOLD time-series from cerebellum's parcellation procedure, the average 

BOLD time-series were computed per ROI and for every subject separately. Cerebellum's 

functional connectivity was then assessed by computing Pearson's correlation coefficients 

between each pair of the 27 ROIs inside the cerebellum, leading to a 27 × 27 correlation 

(adjacency) matrix per subject in both IQ groups. Negative correlations have been excluded 

from further analysis (Bohr et al., 2013), with the elimination of the corresponding edge. 

Pearson's correlation coefficient has been used widely as a connectivity measure among 

different brain regions in fMRI studies (Smith et al., 2011; Messé et al., 2012; Bohr et al., 2013; 

Hosseini and Kesler, 2013; Vuksanović and Hövel, 2015; Ye et al., 2015; Yi et al., 2015; Yu et 

al., 2015; Stam et al., 2016). 

Finally, we recruit a proposed global metric so as to describe the effective connectivity of 

every weighted and undirected graph by means of the average cost in the network. More 

specifically, connectivity is defined as the sum of the edge weights over the maximum number 

of edges in (average number of edges), as a special form of the definition in (Klados et al., 

2016): 

 
𝑐𝑜𝑛𝑛 =

1

𝑛 − 1
∙ ∑ 𝑤𝑖𝑗 

𝑤𝑖𝑗∈𝐺,𝑖≠𝑗 

 (𝟑. 𝟏) 

 
where 𝑤𝑖𝑗 is the weight of the path (edge) that connects nodes 𝑖 and 𝑗. This global measure 

has been computed for each individual’s weighted and undirected graph. 
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3.4.2. Common network models 

The first Graph Theory applications concerned the study of small and deterministic 

networks (Stam et al., 2014). However, there are three types of networks that are of great 

interest nowadays; random, regular and small-world networks (Fig. 3.4). 

The mathematical properties of random graphs were first developed by Erdos and Renyi 

in 1960 who successfully revealed the emergence of certain structural properties of them 

(Erdos and Renyi, 1960). Random networks are non-realistic networks and often used as null 

models for benchmarking real networks (Stam and van Straaten, 2012). Moreover, random 

graphs are characterized by low clustering coefficient (local connectedness) and short 

characteristic path length (average path length) (Stam and van Straaten, 2012; Stam et al., 

2014; Miraglia et al., 2016). Random graphs are homogeneous networks (like regular or lattice 

networks) cause they are formed by topologically equivalent nodes having a Poisson degree 

distribution (Boccaletti et al., 2006). However, most of the real networks tend to follow a 

degree distribution that is well localized around an average value (Boccaletti et al., 2006; Stam 

et al., 2014) such as a power law shaped degree distribution 𝑃(𝑘)~𝐴𝑘−𝛾, where 𝐴 is a 

normalization constant and the exponents vary in the range 2 < 𝛾 < 3 (Boccaletti et al., 

2006; van den Heuvel et al., 2008a; Stam and van Straaten, 2012). These type of networks are 

known as scale-free networks and were firstly introduced by Barabasi and Albert (Barabasi 

and Albert, 1999). Scale-free networks are mainly characterized by the existence of a few 

nodes with high degree (hubs) thus preserving the high global connectivity (Barabasi and 

Albert, 1999; van den Heuvel et al., 2008a; Stam et al., 2012; Stam and van Straaten, 2012). 

 

 

Figure 3.4. The three common brain network architectures (Watts and Strogatz, 1998). 

 
The last and most dominant aspect of network science was the small-world model 

introduced by Watts and Strogatz (Watts and Strogatz, 1998). According to their proposed 

model (Watts and Strogatz, 1998), vertices are firstly circularly placed on a ring pattern, where 

each vertex is connected to its neighbors. Then, a random edge was chosen with a rewiring 

probability 𝑝 and afterwards rewired to another random vertex. By testing different values 

for 𝑝 it came out that for 𝑝 = 0 (no edge rewiring) the resulting model was a lattice (or regular 



 

63 
 

graph). On the other hand, if every edge was rewired (𝑝 = 1) the resulting graph was a 

random one (i.e., ER graph). More importantly, it should be noted that for small 𝑝 (i.e., 0.05), 

the resulting graph combined high clustering (like regular networks) with short path lengths 

(like random networks) (C.J. Stam, E.C.W. van Straaten, 2012; Watts and Strogatz, 1998; M.P. 

van den Heuvel et al., 2008; Stam et al., 2015; F. Miraglia et al., 2015; A. Messe et al., 2012). 

These intermediate networks are called small-world networks and are characterized by both 

local segregation and global integration (Stam et al., 2014; Tewarie et al., 2015a). 

 

3.4.3. Small-worldness property evaluation 

A small-world network (Watts and Strogatz, 1998) can be described by high local 

clustering, characterized by a high clustering coefficient, 𝐶𝑝, and low minimum path length 

between any pair of nodes, expressed by a low characteristic path length, 𝐿𝑝 (Watts and 

Strogatz, 1998). The clustering coefficient quantifies the extent of local cliquishness of a 

network, or the likelihood that neighbors of a vertex will still be connected (Reijneveld et al., 

2007; Stam et. al, 2009), whereas the characteristic path length reflects the mean distance or 

routing efficiency between any given pair of nodes (Yi et al., 2015). 

The weighted clustering coefficient of a node 𝑖 can be expressed as the average intensity 

of triangles around that node (Onnela et al., 2005; Rubinov and Sporns, 2010): 

 
𝐶𝑤𝑖 =∑

2𝑡𝑤𝑖
𝑘𝑖(𝑘𝑖 − 1)

𝑖∈𝐺

 (𝟑. 𝟐) 

 
where 𝑘𝑖  is the degree of node 𝑖 and 𝑡𝑤𝑖 is the weighted geometric mean of the triangles 

around that node: 

 
𝑡𝑤𝑖 =

1

2
∙ ∑ (𝑤𝑖𝑗𝑤𝑗𝑘𝑤𝑘𝑙)

1/3

𝑗,𝑘∈𝑉

 
(𝟑. 𝟑) 

where 𝑤𝑖𝑗, 𝑤𝑗𝑘 , 𝑤𝑘𝑙 are the weights between node pairs (𝑖, 𝑗) , (𝑗, 𝑘) and (𝑘, 𝑙), respectively. 

The average weighted clustering coefficient can then be expressed as the global metric 

computing the average nodal clustering coefficient (Watts and Strogatz, 1998; Rubinov and 

Sporns, 2010): 

 
𝐶𝑤 =

1

𝑛
∙∑𝐶𝑤𝑖
𝑖∈𝐺

 
(𝟑. 𝟒) 

with 𝑛 denoting the total number of nodes. 

The weighted characteristic path length is given by: 

 
𝐿𝑤 =

1

𝑛
∙∑

𝑑𝑤𝑖𝑗

(𝑛 − 1)
𝑖∈𝐺

 (𝟑. 𝟓) 
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with 𝑑𝑤𝑖𝑗 denoting the shortest weighted path between nodes and (Rubinov and Sporns, 

2010). Notice that the shortest path length is a basis for measuring integration while the 

number of triangles is for measuring segregation (Rubinov and Sporns, 2010). 

Based on the notions of weighted clustering coefficient and characteristic path length, 

the small-worldness property has been examined by means of the metric defined as (Rubinov 

and Sporns, 2010): 

 
𝜎𝑤 =

𝛾𝑤

𝜆𝑤
=
𝐶𝑤 𝐶𝑤𝑟𝑎𝑛𝑑⁄

𝐿𝑤 𝐿𝑤𝑟𝑎𝑛𝑑⁄
 (𝟑. 𝟔) 

 
where 𝐶𝑤𝑟𝑎𝑛𝑑, 𝐿𝑤𝑟𝑎𝑛𝑑 refer to randomly generated networks. 

With the aim of investigating the small-worldness property of cerebellum's network 

associated with the IQ groups, we should compare them to a null model. In order to do so, a 

total number of 100 random (edge and weight preserving) weighted and undirected graphs 

(Hosseini and Kesler, 2013) were constructed for computing 𝐶𝑤𝑟𝑎𝑛𝑑 and 𝐿𝑤𝑟𝑎𝑛𝑑, using the 

Brain Connectivity Toolbox (Rubinov and Sporns, 2010). In a small-world network, 𝐶𝑤 is 

significantly larger than 𝐶𝑤𝑟𝑎𝑛𝑑 (𝛾𝑤 > 1) whereas 𝐿𝑤 is comparable to 𝐿𝑤𝑟𝑎𝑛𝑑 (𝜆𝑤 > 1) and, 

therefore, 𝜎𝑤 > 1 (Sporns, 2006; Rubinov and Sporns, 2010). As a result, a small-world 

network can successfully describe complex brain networks by combining high levels of local 

clustering among nodes and short paths that are globally linking all nodes of the network, 

therefore maximizing the efficiency of information transfer at low wiring cost (Bullmore and 

Sporns, 2009; Wang et. al, 2010). 

Cerebellum manifests a small-world network structure in both low and high-IQ 

populations (low-IQ: 1.2644 ± 0.1765; high-IQ: 1.2126 ± 0.1010), implying that cerebellum 

network works efficiently at low wiring cost for both IQ groups. The same evidence stands for 

males/females comparisons (low-IQ males: 1.2334 ± 0.1243; high-IQ males: 1.2287 ± 0.1243; 

low-IQ females: 1.2821 ± 0.1994; high-IQ females: 1.2002 ± 0.0783). Low-IQ subjects tend to 

have higher average clustering coefficient (1.1939 ± 0.0857) but smaller characteristic path 

length (0.9548 ± 0.0917) than their high-IQ peers (avg. clustering coefficient: 1.1634 ± 0.0564; 

characteristic path length: 0.9640 ± 0.0689). Moreover, low-IQ males and females have 

similar characteristic path lengths (low-IQ males: 0.9523 ± 0.0774; low-IQ females: 0.9562 ± 

0.0997) but females have higher average clustering coefficient (low-IQ males: 1.1671 ± 

0.0661; low-IQ females: 1.2092 ± 0.0923). In addition, high-IQ females have higher average 

clustering coefficient than high-IQ males (high-IQ males: 1.1520 ± 0.0396; high-IQ females: 

1.1720 ± 0.0657), as well as characteristic path-length (high-IQ males: 0.9454 ± 0.0878; high-

IQ females: 0.9781 ± 0.0466). The above results are summarized on Table 3.3. Statistical 

analysis results on these measures as well as on the rest MST measures are presented later 

on, in Section 3.8. 

 

https://sites.google.com/site/bctnet/
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Table 3.3. Small-world properties information. 
 
 
Groups 

Avg. clustering 
coefficient 

Mean±SD 

Characteristic path 
length 

Mean±SD 

Small-worldness 
 

Mean±SD 

Low-IQ 1.1939±0.0857 0.9548±0.0917 1.2644±0.1765 

High-IQ 1.1634±0.0564 0.9640±0.0689 1.2126±0.1010 

Males, low-IQ 1.1671±0.0661 0.9523±0.0774 1.2334±0.1243 

Males, high-IQ 1.1520±0.0396 0.9454±0.0878 1.2287±0.1243 

Females, low-IQ 1.2092±0.0923 0.9562±0.0997 1.2821±0.1994 

Females, high-IQ 1.1720±0.0657 0.9781±0.0466 1.2002±0.0783 

 

 

3.5. Minimum Spanning Trees 

3.5.1. Basic concept 

An alternative way of modeling a weighted graph 𝑮 is based on the notion of the 

Minimum Spanning Tree (MST), which is an acyclic (loopless) subgraph connecting all nodes 

of 𝐺 (Laskaris and Ioannides, 2001). A spanning tree is a connected subgraph of the original 

graph with 𝑛-nodes and exactly 𝑛 − 1 edges (Stam et al., 2014; Tewarie et al., 2015b). A MST 

is a spanning tree that manages to preserve only the edges that minimize the total cost 

defined as the sum of the weights of the edges. The minimum spanning tree of a graph is 

unique if and only if the weights in 𝑮 are also unique (Stam et al., 2014a). The MST is a 

straightforward method that overcomes biases introduced by comparing networks with 

different number of edges and eliminates any disconnected syndromes within the network 

(Stam and van Straaten, 2012; van Diessen et al., 2015). This property renders MST a reliable 

method for the effective interpretation of functional effects and functional connectivity 

analysis of complex networks in EEG (Boersma et al., 2013; van Diessen et al., 2014; Vourkas 

et al., 2014; Engels et al., 2015; van Dellen et al., 2015) and MEG (Olde Dubbelink et al., 2014; 

Tewarie et al., 2014; Tewarie et al., 2015a), as well as in fMRI studies (Lin et al., 2014; Song et 

al., 2015; Tewarie et al., 2015a). The MST provides a graph representation that absorbs 

population characteristics into a compact form and facilitates the distinction of different 

populations through the computation of various metrics or descriptors. 

 

3.5.2. MST formation 

In our study, MSTs were constructed using Kruskal’s scheme (Kruskal, 1956), which first 

orders the weights of all edges in ascending order and constructs the MST by sequentially 

adding the edge with the smallest weight until all nodes are connected in an acyclic subgraph. 

Nevertheless, since we are only interested in evaluating the strongest connections, e.g., the 

edges with the largest weights (Boersma et al., 2013; Engels et al., 2015; Tewarie et al., 

2015b), the edge weights were defined as the inverse of functional connectivity estimates, 
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e.g., 1/correlation coefficient. The outcome forms an acyclic subgraph that maximizes the 

total weight and thus includes the strongest connections with the edges of MST having a value 

of one. In total, 136 MSTs were computed with 27 nodes and 26 edges each, based on the 

above procedure. In order to model and assess the functionality of each MST, three nodal and 

six global metrics were recruited, as described in the sequel. The MSTs were finally 

categorized into two groups based on the IQ level (69/67; low/high-IQ) with the purpose of 

detecting and characterizing hubs within all 27 ROIs as well as testing for IQ and gender 

differences. Recall that such MST comparisons assess the effects of only the strongest 

connections within the original network topology and therefore the MST can be suitably used 

to examine the IQ's (and gender’s) effect in cerebellum. 

The average weighted and undirected graphs and the resulting MSTs are presented in 

Fig. 3.5 for illustration purposes only, using BrainNet viewer (Xia et al., 2013). Although the 

networks in low and high-IQ populations seem similar, their differences are revealed by the 

corresponding features that quantify the network's topological structure. 

 

Figure 3.5. Average weighted and undirected graphs per IQ group (left panel, A: low-IQ and 

B: high-IQ) and their corresponding MSTs (right panel, C: low-IQ and D: high-IQ). On the latter 

representation, each node's size depends linearly on its average BC value. 

 

3.5.3. Local MST features 

For a given node 𝑖 ∈ 𝑉, where 𝑉 is the set of nodes and 𝑛 is the number of nodes, the 

ensuing local MST metrics are estimated as features of hubs (Stam et al., 2014a). 

https://www.nitrc.org/projects/bnv
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 Degree, 𝑘𝑖, is the number of neighbors connected to 𝑖: 

 𝑘𝑖 =∑𝑎𝑖𝑗
𝑗∈𝑉

 (𝟑. 𝟕) 

 

where 𝑎𝑖𝑗 is one if there exists a link between nodes 𝑖 and 𝑗 and zero otherwise. Nodes 

with high degree can be considered as hubs. Degree quantifies the significance of a region 

and is normalized with the corresponding 𝐷𝐸𝐺𝑚𝑎𝑥  in order to be comparable with other 

local metrics. 

 

 Betweenness centrality, 𝐵𝐶𝑖, defines the number of shortest paths between any two 

nodes 𝑘 and 𝑙 in the network passing through 𝑖, divided by the total number of shortest 

paths between these two nodes (Olaf and Sporns, 2010). More specifically: 

 
𝐵𝐶𝑖 = ∑

𝑝𝑖
𝑘𝑙

𝑝𝑘𝑙𝑘,𝑙 ∈𝑉
𝑘≠𝑙,𝑘≠𝑖,𝑙≠𝑖

 (𝟑. 𝟖) 

 

where 𝑝𝑘𝑙 is the number of shortest paths between 𝑘 and 𝑙 and 𝑝𝑖
𝑘𝑙

 is the number of 

shortest paths between 𝑘 and 𝑙 but passing through 𝑖. A BC value of zero indicates a leaf 

node whereas a BC value of one indicates a central node in a star-like topology. The node 

with the highest BC plays an important role in the overall network’s communication (van 

Dellen et al., 2015), since it has the highest load and reflects the highest number of 

shortest paths between any two nodes that run through this node (Boersma et al., 2013; 

Tewarie et al., 2014). We further normalize BC with the corresponding 𝐵𝐶𝑚𝑎𝑥 in order to 

maintain a specific normalization pattern with the other local metrics. 

 

 Eccentricity of node 𝑖, is the longest shortest path from node 𝑖 to any other node in the 

MST. A node with low eccentricity is more central in a tree and therefore eccentricity acts 

as a measure of the central topological organization of a network (Otte et al., 2015; van 

Dellen et al., 2015). For consistency, ECC has been normalized by the corresponding 

𝐸𝐶𝐶𝑚𝑎𝑥, which reflects the graph diameter. 

 
The average DEG, BC, ECC values for low and high-IQ groups are displayed in Fig. 3.6 and 

analyzed in more detail in the Appendix (Tables A1-A4), alongside with the average MST local 

metrics for low/high-IQ males and females. According to Fig. 3.6, the DEG and BC metrics tend 

to have similar distributions since the number of connections that pass through a specific 

node is related with the overload-ness within the network and vice versa. The number of 

nodes with the highest BC and DEG values (hubs) is small. On the other hand, ECC values 

exhibit a much more homogeneous diffuse. Nodes with small eccentricity values are much 

closer to the center of the network and are characterized by higher BC and DEG values. 
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Figure 3.6. Average DEG, BC, ECC values per ROI for both IQ groups on the left panel and the 

corresponding distributions on the right panel. 

 

3.5.4. Global MST features 

For a given MST with 𝑛 − nodes and 𝑛 − 1 edges, we the following MST global metrics 

are defined.  

 Leaf number, 𝑁𝑙𝑒𝑎𝑓, is the number of nodes with degree equal to one. It has a lower bound 

of 2 and an upper bound of 𝑛 − 1. However, it’s often useful to compute the fraction of 

leaf nodes, 𝐿𝑓 = 𝑁𝑙𝑒𝑎𝑓 𝑛 − 1⁄ , in the MST (Tewarie et al., 2014; Tewarie et al., 2015a, b). 

 

 Degree correlation, 𝑟𝑑𝑒𝑔, is an index of whether the degree of a node is influenced by the 

degree of its neighboring connected vertices (Boersma et al., 2013) and is equal to the 

Pearson correlation coefficient of the MST’s degree sequence (known as Pearson degree 

correlation). Most biological networks tend to be disassortative with negative degree 

correlation (Boersma et al., 2013). 
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 Diameter, 𝑑, is the maximum eccentricity (longest shortest path) of the nodes and has an 

upper bound of 𝑛 − 𝑁𝑙𝑒𝑎𝑓 + 1. A small diameter leads to better global communication 

between remote nodes (van Dellen et al., 2015). 

 

 Radius, 𝑟, is defined as the node with the smallest eccentricity in the tree, with small 

radius reflecting more central topology. 

 

 Kappa or degree divergence, 𝜅, is a measure of the broadness of the degree distribution 

(Stam et al., 2014a; Tewarie et al., 2014): 

 
𝜅 =

〈𝑘2〉

〈𝑘〉
 (𝟑. 𝟗) 

 

where 𝑘 is the degree sequence and 〈 〉 denotes the average operator. Degree 

divergence is related to resilience against attacks, epidemic spreading and the 

synchronizability (i.e., information flow) of tree nodes (Otte et al., 2015; Tewarie et al., 

2015b). High 𝜅 values suggest the existence of high degree nodes in the tree, mostly 

related to scale-free networks (Otte et al., 2015). 

 

 Tree hierarchy, 𝑇ℎ, is an hierarchical metric that quantifies the balance between diameter 

reduction and overload prevention (Boersma et al., 2013). It is defined as: 

 

 
𝑇ℎ =

𝑁𝑙𝑒𝑎𝑓

2(𝑛 − 1)𝐵𝐶𝑚𝑎𝑥
 (𝟑. 𝟏𝟎) 

 

where the denominator is multiplied by 2 to assure that 𝑇ℎ varies in the interval [0,1]. 𝑇ℎ 

is equal to 2/(𝑛 − 1) for a line-like topology and for a star-like topology 𝑇ℎ approaches 

0.5 whereas for intermediate network topologies 𝑇ℎ can vary between 2/(𝑛 − 1) and 1 

(Stam et al., 2014a). An optimal tree configuration is characterized by a combination of 

small diameter (i.e., short distances as in a star-like topology) and prevention of the 

overload of the central tree nodes (hubs). The latter corresponds to 𝑇ℎ values around 0.5. 

 

3.6. Hub(s) detection 

Nodes with high BC and DEG values are characterized as critical nodes (hubs) and are 

used to determine the information flow within the network. In order to detect the most 

important nodes (hubs), we computed the total number of low/high-IQ males and females 

exhibiting the maximum DEG, BC values, divided by the total number of subjects per IQ and 

gender combination, respectively. The cerebellum’s surface template was common in all 

figures for visualization purposes. The size of each node depends linearly on the percentage 

of the corresponding population with the highest BC or DEG value, according to the case 
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under examination. With the term “highest BC or DEG value” we refer to nodes that exhibited 

normalized BC or DEG values close to (or equal to) one. 

Hub analysis reveals that lobule Left VI is a critical node having the highest BC value in 

almost 36% of the low-IQ population and 49% of the high-IQ population, as well as the highest 

DEG value in 41% of the low-IQ population and 52% of the high-IQ population (Fig. 3.7). Thus, 

lobule Left VI is responsible for “traffic” monitoring in the cerebellum network for both IQ 

groups. This Left VI's significance in information transfer is of the same importance for low 

and high-IQ subjects, but with a higher manifestation in the high-IQ population. Moreover, 

lobules Left Crus I and Right VI can also be characterized as hubs, but with a smaller 

dominance than Left VI. The Left Crus I lobule activates more in the low-IQ population, as 

indicated by DEG and almost equally activated for both groups as indicated by BC. 

Alternatively, the Right VI lobule is more active in the high-IQ population, even though to a 

smaller extent than other lobules. 

 

 

Figure 3.7. Hub locations on cerebellum for low (green) and high (yellow) IQ groups based on 

BC (A) and DEG (B). The size of each node depends on the percentage of low/high-IQ subjects 

with the highest BC (C) and DEG (D) values. 
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These hub indications have also been validated for the low and high-IQ male/female 

populations. Region Left VI is indeed a critical node for all groups, having the highest BC value 

in 40% of low-IQ males and 34% of low-IQ females, as well as the highest DEG value in 48% of 

low-IQ males and 36% of low-IQ females (Fig. 3.8). 

 

 

Figure 3.8. Hub locations on cerebellum for low-IQ males (light blue) and females (orange) IQ 

groups based on BC (A) and DEG (B). The size of each node depends on the percentage of low-

IQ males/females with the highest BC (C) and DEG (D) values. 

 
In the high-IQ population, Left VI demonstrates the highest BC value in 48% of high-IQ 

males and 50% of high-IQ females, as well as the highest DEG value in 52% of high-IQ males 

and 53% of high-IQ females (Fig. 3.9). In addition, the Left VI hub appears stronger in high-IQ 

females than high-IQ males. Left Crus I is more activated in low/high-IQ males as indicated by 

both BC and DEG measures whereas the opposite stands for Right VI which appears to be 

more activated in low/high-IQ females. In each individual figure we can compare the size and 

the number of nodes that participate in hub analysis. The bar plots (on the lower panel) and 

the cerebellar anatomical plots (on the upper panel) encode the same information but offer 

additional visual interpretation on the cerebellar surface, thus providing the anatomical 

location for each hub. These figures offer a clear representation concerning the hub locations 

for the different populations of interest. 
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Figure 3.9. Hub locations on cerebellum for high-IQ males (navy blue) and females (red) IQ 

groups based on BC (A) and DEG (B). The size of each node depends on the percentage of 

high-IQ males/females with the highest BC (C) and DEG (D) values. 

 

3.7. Correlation between hub metrics and Median Response Times 

Another goal of this study is to seek for the region of cerebellum that is mostly related 

with the Median Response Times (MRTs) across all individuals. In order to do so, we computed 

Pearson's correlation coefficients between each ROI's hub indicators (DEG, BC values) and 

subjects’ MRT values, by taking into consideration the IQ factor, respectively. As a final step, 

the region with the highest (significant or non-significant) correlation value was selected. 

Alongside with the correlation value, a p-value is also returned which indicates whether there 

is a significant relationship between the values under examination (i.e., <0.05) or a non-

significant one (i.e., >0.05), using lower and upper bounds for a 95% confidence interval for 

each coefficient. The statistical test uses a standard Student’s t distribution for transforming 

the correlation value. The MRT values were obtained per individual through our Level 1 - HCP 

access (non-sensitive information). Please note that the MRT values are expressed in seconds 

(sec). Figures 3.10 – 3.12 were produced using Python’s Seaborn statistical data visualization 

library. The precision of the r and p-values has been reduced to only two digits after the 

decimal point, only in the figures, for visualization purposes. 

https://seaborn.pydata.org/
https://seaborn.pydata.org/
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Region Left X exhibited the highest positive significant correlation between DEG and MRT 

for the low-IQ group (r = 0.42, p = 0.0004) as well as between BC and MRT (r = 0.43, p = 

0.0003). On the other hand, region Vermis VIIIb indicated the highest positive correlation 

between DEG and MRT for the high-IQ group (r = 0.14, p = 0.27) as well as between BC and 

MRT (r = 0.19, p = 0.14), without however any statistical significance at all (Fig. 3.10, Table 

3.4). The distributions of the metrics under examination are displayed on the upper and left 

panels of each individual subplot opposite to the corresponding label. 

 

 

Figure 3.10. Regions with the maximum correlation between average DEG or BC measure and 

median response times (MRTs) for low and high-IQ groups. 

 
The exact same procedure was repeated for males and females in both IQ groups. In the 

male population, region Left Crus II exhibited the highest positive significant correlation 

between DEG and MRT for the low-IQ group (r = 0.57, p = 0.0034), whereas region Left VI was 

the one for the high-IQ group (r = 0.21, p = 0.29) but without any significance. Alternatively, 

the lobule with the highest positive significant correlation between BC and MRT was Vermis 

VIIIb (r = 0.54, p = 0.006) for the low-IQ group while Right X was selected for the high-IQ group 

(r = 0.25, p = 0.2) without again any significance (Fig. 3.11, Table 3.4). 
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Table 3.4. ROI(s) with the maximum correlation coefficient between MRT and DEG or BC 
measure for both IQ groups and gender. 
 

 
 

Group 

DEG BC 

maximum 
corrcoef 

 

 
p 

 
ROI 

maximum 
corrcoef 

 
p 

 
ROI 

Lo
w

 
IQ

 Total 0.42 0.0004 Left X 0.43 0.0003 Left X 

Males 0.57 0.0034 Left Crus II 0.54 0.006 Vermis VIIIb 

Females 0.47 0.0014 Left X 0.46 0.002 Left X 

H
ig

h
 

IQ
 Total 0.14 0.27 Vermis VIIIb 0.19 0.14 Vermis VIIIb 

Males 0.21 0.29 Left VI 0.25 0.2 Right X 

Females 0.23 0.18 Vermis VIIIb 0.2 0.24 Vermis VIIIb 

 
with bold highlight: statistical significant results (𝒑 < 𝟎. 𝟎𝟓). 

 

 

 

Figure 3.11. Regions with the maximum correlation between average DEG or BC measure and 

median response times (MRTs) for low and high-IQ males. 
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Focusing now on females, region Left X exhibited the highest positive significant 

correlation between DEG and MRT for the low-IQ group (r = 0.47, p = 0.0014). On the other 

hand, region Vermis VIIIb was the one with the highest positive (non-significant) correlation 

for the high-IQ group (r = 0.23, p = 0.18). Finally, the region with the highest correlation 

between BC and MRT was again Left X (r = 0.46, p = 0.002) for the low-IQ group and Vermis 

VIIIb for the high-IQ group (r = 0.2, p = 0.24) but without any significance (Fig. 3.12, Table 3.4). 

In general, all regions that exhibited the highest correlations between DEG/BC and MRT, in 

the high-IQ group, were non-significant. 

 

 

Figure 3.12. Regions with the maximum correlation between average DEG or BC measure and 

median response times (MRTs) for low and high-IQ females. 

 

3.8. Statistical analysis per group combination 

3.8.1. One-way ANOVA 

The purpose of one-way ANOVA is to determine whether data from several groups 

(levels) of a factor have a common mean. Therefore, one-way ANOVA manages to find out 

whether different groups of an independent variable have different effects on the response 

variable, assume 𝒚. One-way ANOVA is a simple special case of the linear regression model.  



 

76 
 

The one-way ANOVA form of the model is: 

 𝑦𝑖𝑗 = 𝑎𝑗 + 𝜀𝑖𝑗 (𝟑. 𝟏𝟏) 

 
with the following assumptions: 

 𝑦𝑖𝑗 is an observation, in which 𝑖 represents the observation number, and 𝑗 represents a 

different group (level) of the predictor variable 𝑦. All 𝑦𝑖𝑗 are independent. 
 

 𝛼𝑗 represents the population mean for the 𝑗-th group. 
 

 𝜀𝑖𝑗 is the random error, independent and normally distributed, with zero mean and 

constant variance, i.e., 𝜀𝑖𝑗𝜖𝑁(0, 𝜎
2). 

This model is also called the “means model”. The model assumes that the columns of 𝒚 

are the constant 𝛼𝑗 plus the error component 𝜀𝑖𝑗. ANOVA helps determine if the constants 

are all the same. ANOVA tests the hypothesis that all group means are equal (known ad null 

hypothesis) versus the alternative hypothesis that at least one group is different from the 

others, that is: 

 𝐻𝑜 = 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑘 (null hypothesis). 
 

 𝐻1: not all group means are equal (alternative hypothesis). 

In this work, we used MATLAB’s anova1(y, group) command where 𝒚 is an individual 

feature vector containing a local/global MST metric every time (the dimension of vector 𝒚 is 

equal to 3672𝑥1 if we examine a local feature or 136𝑥1 if we examine a global one). Each 

value in 𝒚 belongs to one of the five different group combinations (i.e., low/high-IQ, low/high-

IQ males, low/high-IQ females, low-IQ males/females, high-IQ males/females) and has a non-

equal number of observations (i.e., an un-balanced design). The input group is a string vector 

with the same dimension as 𝒚, containing the appropriate group label for each element in 𝒚. 

As a matter of fact, through this command we can test the equality of group means, specified 

in group, for the data in vector 𝒚. 

 

3.8.2. Statistical analysis application procedure 

Small-world properties were investigated for all weighted and undirected graphs and, 

afterwards, the corresponding MSTs were constructed. Subsequently, three local (BC, ECC, 

DEG) and six global (diameter, degree correlation, radius, kappa, leaf fraction, tree hierarchy) 

metrics were computed in order to examine the topological and functional characteristics of 

every MST. Moreover, several global weighted graph metrics, including average weighted 

clustering coefficient, characteristic path length, small-worldness and connectivity, were also 

examined in our procedure. The feature datasets are non-normally distributed, in general, so 

that natural log-transformation was applied in order to approximate normal distribution 

properties, with the addition of a very small constant (1 · e−24) for avoiding zero-value 
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transforms. Statistical analysis was performed using 1-way unbalanced ANOVA. In total, five 

cases were investigated in order to test for differences between: 

 low and high-IQ groups (low/high-IQ; 69/67), 

 males in low and high-IQ groups (low/high-IQ; 25/29), 

 females in low and high-IQ groups (low/high-IQ; 44/38), 

 males and females in low-IQ group (males/females; 25/44), 

 males and females in high-IQ group (males/females; 29/38). 

All p-values were corrected based on False Discovery Rate (FDR) using the Benjamini-

Hochberg procedure (Benjamini and Hochberg, 1995) with the significance level set to 0.05.  

 

3.8.3. Results for each group combination 

Below are presented the statistical analysis results for all five group combinations which 

were stated in the previous section. It is important to note that all three local MST metrics 

(i.e., DEG, BC and ECC) did not exhibit any significant differences among low/high-IQ groups 

as well as between the four possible gender-based group combinations (low/high-IQ males, 

low/high-IQ females, low-IQ males/females, high-IQ males/females). As a matter of fact, the 

statistical analysis results will be presented only for the global metrics per group combination. 

 Results for Low/High-IQ population 

Between the low/high-IQ groups, significant differences were found only in four global 

metrics (Table 3.5). In particular, these differences are reflected for the metrics of average 

clustering coefficient (low-IQ: 1.1939 ± 0.0857; high-IQ: 1.1634 ± 0.0564) (F = 5.8769, p = 

0.0167), connectivity (low-IQ: 0.1784 ± 0.0763; high-IQ: 0.2073 ± 0.0878) (F = 5.1324, p = 

0.0251), diameter (low-IQ: 0.4002 ± 0.1632; high-IQ: 0.3376 ± 0.1215) (F = 5.2927, p = 0.0230) 

and radius (low-IQ: 0.4101 ± 0.1641; high-IQ: 0.3540 ± 0.1400) (F = 4.3788, p = 0.0383). 

 

Table 3.5. Statistical analysis results based on IQ for the main network metrics. 
 

Metric 
Low-IQ 

Mean±SD 

High-IQ 

Mean±SD 

 
𝑭 

 
p-values 

avg. clustering coefficient 1.1939±0.0857 1.1634±0.0564 5.8769 0.0167 

characteristic path length 0.9548±0.0917 0.9640±0.0689 0.6234 0.4312 

small-worldness 1.2644±0.1765 1.2126±0.1010 3.6449 0.0584 

connectivity 0.1784±0.0763 0.2073±0.0878 5.1324 0.0251 

diameter 0.4002±0.1632 0.3376±0.1215 5.2927 0.0230 

radius 0.4101±0.1641 0.3540±0.1400 4.3788 0.0383 

leaf fraction 0.5920±0.0943 0.6171±0.0872 2.7130 0.1019 

tree-hierarchy 0.2960±0.0471 0.3086±0.0436 2.7130 0.1019 

kappa 2.2800±0.3344 2.3192±0.2833 0.7636 0.3838 

degree correlation -0.3438±0.1262 -0.3742±0.1233 2.5276 0.1142 

with bold highlight: statistical significant results (𝒑 < 𝟎. 𝟎𝟓). 
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 Results for Low/High-IQ males 

As far as the low/high-IQ males are concerned, no significant differences were found on 

any global metrics at all (Table 3.6). 

Table 3.6. Statistical analysis results based on males IQ for the main network metrics. 
 

Metric 

Low-IQ 
Males 

Mean±SD 

High-IQ 
Males 

Mean±SD 

 
𝑭 

 
p-values 

avg. clustering coefficient 1.1671±0.0661 1.1520±0.0396 0.9639 0.3308 

characteristic path length 0.9523±0.0774 0.9454±0.0878 0.1237 0.7265 

small-worldness 1.2334±0.1243 1.2287±0.1243 0.0191 0.8907 

connectivity 0.2058±0.0822 0.2151±0.0916 0.2060 0.6518 

diameter 0.5227±0.2231 0.4906±0.1740 0.0973 0.7563 

radius 0.5403±0.2298 0.5161±0.1895 0.0452 0.8325 

leaf fraction 0.5892±0.0775 0.6313±0.0766 4.0361 0.0515 

tree-hierarchy 0.2946±0.0387 0.3156±0.0383 4.0361 0.0515 

kappa 2.3391±0.4098 2.3229±0.3085 0.0001 0.9912 

degree correlation -0.3374±0.1138 -0.3709±0.1213 0.8741 0.3541 

 
 Results for Low/High-IQ females 

On the other hand, significant differences were identified between low and high-IQ 

females by five global metrics (Table 3.7), specifically for average clustering coefficient (low-

IQ females: 1.2092 ± 0.0923; high-IQ females: 1.1720 ± 0.0657) (F = 4.2866, p = 0.0416), small-

worldness (low-IQ females: 1.2821 ± 0.1994; high-IQ females: 1.2002 ± 0.0783) (F = 4.8060, p 

= 0.0313), connectivity (low-IQ females: 0.1629 ± 0.0689; high-IQ females: 0.2014 ± 0.0856) 

(F = 5.8085, p = 0.0182), diameter (low-IQ females: 0.4291 ± 0.1654; high-IQ: 0.3450 ± 0.1263) 

(F = 6.8101, p = 0.0108) and radius (low-IQ females: 0.4394 ± 0.1648; high-IQ females: 0.3629 

± 0.1510) (F = 5.8233, p = 0.0181). 

Table 3.7. Statistical analysis results per female IQ group for the main network metrics. 
 

Metric 

Low-IQ 
Females 

Mean±SD 

High-IQ 
Females 

Mean±SD 

 
𝑭 

 
p-values 

avg. clustering coefficient 1.2092±0.0923 1.1720±0.0657 4.2866 0.0416 

characteristic pathlength 0.9562±0.0997 0.9781±0.0466 2.1312 0.1482 

small-worldness 1.2821±0.1994 1.2002±0.0783 4.8060 0.0313 

connectivity 0.1629±0.0689 0.2014±0.0856 5.8085 0.0182 

diameter 0.4291±0.1654 0.3450±0.1263 6.8101 0.0108 

radius 0.4394±0.1648 0.3629±0.1510 5.8233 0.0181 

leaf fraction 0.5935±0.1034 0.6063±0.0940 0.4147 0.5214 

tree-hierarchy 0.2968±0.0517 0.3031±0.0470 0.4147 0.5214 

kappa 2.2465±0.2827 2.3164±0.2666 1.4271 0.2358 

degree correlation -0.3474±0.1338 -0.3766±0.1264 1.6282 0.2056 
 

with bold highlight: statistical significant results (𝒑 < 𝟎. 𝟎𝟓). 
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 Results for Low-IQ males/females 

Four global metrics indicated significant differences between males and females in the 

low-IQ group (Table 3.8), specifically for average clustering coefficient (low-IQ males: 1.1671 

± 0.0661; low-IQ females: 1.2092 ± 0.0923) (F = 4.1227, p = 0.0463), connectivity (low-IQ 

males: 0.2058 ± 0.0822; low-IQ females: 0.1629 ± 0.0689) (F = 4.7494, p = 0.0328), diameter 

(low-IQ males: 0.3493 ± 0.1491; low-IQ females: 0.4291 ± 0.1654) (F = 5.1985, p = 0.0258) and 

radius (low-IQ males: 0.3584 ± 0.1524; low-IQ females: 0.4394 ± 0.1648) (F = 5.3445, p = 

0.0239). 

Table 3.8. Statistical analysis results per low-IQ males and females for the main network 
metrics. 
 

 
Metric 

Low-IQ 
Males 

Mean±SD 

Low-IQ 
Females 

Mean±SD 

 
𝑭 

 
p-values 

avg. clustering coefficient 1.1671±0.0661 1.2092±0.0923 4.1227 0.0463 

characteristic path length 0.9523±0.0774 0.9562±0.0997 0.0055 0.9412 

small-worldness 1.2334±0.1243 1.2821±0.1994 0.9492 0.3334 

connectivity 0.2058±0.0822 0.1629±0.0689 4.7494 0.0328 

diameter 0.3493±0.1491 0.4291±0.1654 5.1985 0.0258 

radius 0.3584±0.1524 0.4394±0.1648 5.3445 0.0239 

leaf fraction 0.5892±0.0775 0.5935±0.1034 0.0001 0.9907 

tree-hierarchy 0.2946±0.0387 0.2968±0.0517 0.0001 0.9907 

kappa 2.3391±0.4098 2.2465±0.2827 0.7141 0.4011 

degree correlation -0.3374±0.1138 -0.3474±0.1338 0.0033 0.9544 

 
with bold highlight: statistical significant results (𝒑 < 𝟎. 𝟎𝟓). 

 

 Results for High-IQ males/females 

One significant difference was found between high-IQ males and females (Table 3.9) in 

characteristic path length (high-IQ males: 0.9454 ± 0.0878; high-IQ females: 0.9781 ± 0.046) 

(F = 4.5376, p = 0.0369). 

Table 3.9. Statistical analysis results between high-IQ males and females for the main 

network metrics. 

 

 
Metric 

High-IQ 
Males 

Mean±SD 

High-IQ 
Females 

Mean±SD 

 
𝑭 

 
p-values 

avg. clustering coefficient 1.1520±0.0396 1.1720±0.0657 1.9689 0.1653 

characteristic path length 0.9454±0.0878 0.9781±0.0466 4.5376 0.0369 

small-worldness 1.2287±0.1243 1.2002±0.0783 1.0741 0.3039 

connectivity 0.2151±0.0916 0.2014±0.0856 0.4643 0.4980 

diameter 0.5494±0.1948 0.5781±0.2116 0.2142 0.6450 

radius 0.3937±0.1446 0.4174±0.1736 0.2158 0.6438 
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leaf fraction 0.6313±0.0766 0.6063±0.0940 1.6029 0.2100 

tree-hierarchy 0.3156±0.0383 0.3031±0.0470 1.6029 0.2100 

kappa 2.3229±0.3085 2.3164±0.2666 0.0002 0.9877 

degree correlation -0.3709±0.1213 -0.3766±0.1264 0.0516 0.8210 

 
with bold highlight: statistical significant results (𝒑 < 𝟎. 𝟎𝟓). 

 

In summary, all three local MST metrics (DEG, BC, ECC) did not exhibit any significant 

differences among low/high-IQ groups as well as between the four possible gender-based 

group combinations (low/high-IQ males, low/high-IQ females, low-IQ males/females, high-IQ 

males/females). On the other hand, four global metrics (average clustering coefficient, 

connectivity, diameter and radius) revealed significant differences between low and high-IQ 

groups as well as between low-IQ male and female populations. The same conclusion stands 

for low/high-IQ females, with the addition of the small-world metric as well. Characteristic 

path length was the only metric that exhibited significant difference between high-IQ males 

and females. As far as the low/high-IQ males are concerned, no significant differences were 

identified. Our findings in men are in a similar direction with respect to the IQ level, but 

appear not significant. Both sexes have the characteristics of small-world networks with 

differences in females indicative of higher cerebellar neural efficiency, especially in higher-IQ 

females. In relation to the activities of the lobules, the metrics of DEG, BC, and ECC showed 

no differences between low and high-IQ individuals, or between men and women. The ECC 

values showed a relative homogeneous diffuse distribution, indicative of a rather compact 

organization of the activity of the cerebellar lobules. 
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4. Voxel-wise analysis of cerebellum 

 

 

 

 

 

4.1. Overview 

In this chapter, we examine the whole cerebellum in a vowel-wise manner instead of 

diving it into anatomical lobules as in the previous chapter. Although this initiative may result 

to a much more computationally complex problem, we expect that the innovation it offers is 

crucial for providing a straightforward and accurate interpretation of cerebellum’s interaction 

networks. The main goal of this procedure is to cluster the cerebellar voxels that tend to 

exhibit similar correlation (functional activation) patterns into the same group. A modern 

clustering approach that overcomes the aforementioned computational burdens, through its 

ability to work directly on graphs, is based on Spectral Graph Theory concepts. In the current 

work, a spatially constrained algorithm based on the spectral clustering scheme is proposed 

and compared with the standard spectral clustering algorithms of the existing literature, first 

on simulated data and finally on cerebellum’s voxel-wise BOLD time-series. Cross-validation 

is a necessary step in order to evaluate the coherence of the optimal number of clusters 

among the examined population. Several clustering evaluation measures such as the average 

silhouette and Davies-Bouldin indices have been also computed for this purpose. The result 

of the clustering procedure is a resting-state network atlas of cerebellum which is further 

combined with the corresponding anatomical atlas to provide a final functional atlas of 

cerebellum’s activation distribution. An important issue that needs to be addressed after the 

clustering application, is to quantify the regional homogeneity of each derived atlas. This can 

be accomplished using a simple proposed measure based on the voxel-wise computation of 

Shannon’s entropy through a pre-specified window. Another method often employed in 

several fMRI studies that is able to provide an accurate regional homogeneity evaluation is 

based on Kendall’s coefficient of concordance. Using this concept, a final clustering method 

is also proposed based on the average Kendall map across all subjects. Finally, a gender-based 

functional connectivity analysis of cerebellum’s network is performed on the basis of Chapter 

3, using the functional atlas instead of the anatomical one. 

The work presented in this chapter is an extended part of the research proposal entitled 

“Cerebellum voxel-wise clustering and gender-based functional connectivity analysis: a 

resting-state fMRI study” which was funded by the Pancretan Endowment Fund in the form 

of a scholarship of excellence given to the author (see here for further information). 
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4.2. Population of interest 

Resting-state fMRI data were obtained once more from the HCP database (see Section 

1.2 for information about the HCP consortium, its pioneers as well as the fundamental HCP 

pre-processing pipelines). We select 50 males and 50 females (Table 4.1) in order to form an 

equally numbered population of interest. Recall from Section 1.2.3 that all subjects with 

psychiatric history, extensive substance use and hard alcohol history have been removed 

since the cerebellum is heavily impacted by alcohol abuse/dependence (Sullivan et al., 2010) 

and there is also evidence to suggest that the cerebellum is impacted by marijuana as well 

(Block et al., 2000; Lopez-Larson et al., 2011; Solowij et al., 2011). Furthermore, the existing 

population has been already restricted to only one member of a sibling/twin pair in order to 

overcome shared variance issues. 

 

Table 4.1. Demographic information (part 2). 

 

Age interval Males Females Total 

22-25 10 9 19 

26-30 19 23 41 

31-35 21 18 39 

Total 50 50 - 

 

4.3. BOLD time-series extraction from the cerebellar voxels 

We recruit the cerebellum anatomical atlas (Diedrichsen et al., 2009; Diedrichsen et al., 

2011; Diedrichsen and Zotow, 2015) that was already presented in Section 3.3 and apply the 

parcellation procedure in a partially similar way with the one described in the same section, 

without however taking into consideration the anatomical regional boundaries in order to 

define each single voxel as a region of interest (or unit). The total number of cerebellum voxels 

is equal to 21522 and the number of samples is 1200 per voxel. As a matter of fact, a 

21522x1200 matrix if formed where the BOLD signal of the 𝑖-th voxel is placed in the 𝑖-th row 

for each individual. 

 

4.4. Further pre-processing 

Each voxel's time-course was further bandpass filtered using a higher order finite impulse 

response (FIR) bandpass filter applied in zero phase mode (bandwidth 0.01-0.1 Hz) in order 

to eliminate low frequency noise not implicated in resting state functional connectivity (i.e., 

slow scanner drifts and influences of higher frequencies reflecting possible cardiac or 

respiratory oscillations) (van den Heuvel et al., 2008b; Craddock et al., 2012). The filter was 

constructed based on the constrained least squares method with the following specifications: 
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cut-off frequency #1 = 0.01 Hz; cut-off frequency #2 = 0.1 Hz; stopband attenuation #1 & #2 

= 60 dB; passband ripple = 1 dB; sample rate = 1/fs, where fs is the sampling frequency of the 

fMRI scanner and is equal to 1/TR, where TR is the scanner’s repetition time parameter and 

is equal to 720 ms. As a result, fs ≈ 1.38 Hz. In general, the sampling frequency of an fMRI 

scanner is very small due to the latency that is introduced between the neural firing and the 

blood oxygenation increase in that area. An indicative example of the filtering outcome is 

presented in Fig 4.1, for the time-course of a random voxel selected from a random subject.  

 

Figure 4.1. Application of a 50th order FIR filter on the BOLD signal of voxel #19658 of subject 

64 in both time (upper panel) and frequency (lower panel) domains. 

 

4.5. Voxel-wise functional graphs construction 

Pearson’s product moment temporal correlation coefficient is once more employed as a 

functional connectivity quantifier and is computed between each possible pair of voxel’s time-

series. The result of this procedure is a 21522x21522 adjacency (correlation) matrix where 

21522 is the number of nodes (each voxel is considered as a node/region of interest since it 

is a voxel-wise analysis) and the element (𝑖, 𝑗) represents the correlation between the BOLD 

time-series of voxels 𝑖 and 𝑗. In fact, each correlation matrix is modelled as a weighted and 

undirected graph 𝑮 = (𝑽,𝑬) where 𝑽 is the set of 21522 nodes and 𝑬 is the set of edges, with 

a maximum number of approximately 232 million edges, where the negative correlations (i.e., 

weights) are usually discarded. The computational complexity of such a graph as well as the 

required memory space is large. In order to overcome these issues, we gained access to a 

remote Linux server provided by the computer room at the Technical University of Crete. With 

the following specifications: 16 GB free memory space with the ability to increase to 32 GB; 8 
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processing cores @ 2.1 GHz; 350 GB of free disk space; Linux OS; Linux distributor: Ubuntu 

14.04.3 LTS. The whole analysis procedure was executed on that server. Please note that the 

voxel-wise functional graphs construction was executed individually per subject. Finally, the 

average correlation matrix across all 100 subjects was computed for further analysis. 

 

4.6. Spectral graph theory concepts for clustering 

4.6.1. Fundamental basis 

Our main goal is to seek for ways to identify the cerebellar resting-state networks (RSNs) 

for extracting the Regions of Interest later on. Towards this direction, all cerebellar voxels 

need to be assigned in clusters based on the similarity of their correlation patters. In addition, 

the core of the clustering idea is to employ a method that will work directly on the correlation 

graphs computed in previous section, using linear algebra and matrix theory concepts. A 

modern method that combines both of these factors is given by spectral graph theory, which 

is based on the eigenvectors of the Laplacian representation of a matrix, say 𝑿, for finding 

partitions of that matrix (Shi and Malik, 2000). In fact, it is mathematically proven that the 

optimal partitioning of 𝑿 can be found by solving the generalized eigen-problem of its 

Laplacian matrix, assume 𝑳, using linear algebra. 

 

4.6.2. Eigenvalue decomposition (EVD) 

An eigenvalue and an eigenvector of a square matrix, assume 𝑻, is a scalar 𝜆 and a non-

zero vector 𝒗, respectively, so that the following equation is fulfilled: 

 𝑻𝒗 = 𝜆𝒗 (𝟒. 𝟏) 

 
and can be also written as, 

 (𝑻 − 𝜆𝑰) ∙ 𝒗 = 0 ,      𝒗 ≠ 𝟎 (𝟒. 𝟐) 

 
which in turn implies that the matrix (𝑻 − 𝜆𝑰) is singular and therefore: 

 det(𝑻 − 𝜆𝑰) = 0 (𝟒. 𝟑) 

 
The definition of an eigenvalue is connected with the characteristic equation (also known as 

characteristic polynomial) of matrix 𝑻. The degree of the polynomial is the rank of 𝑻. This 

denotes that an 𝑛𝑥𝑛 matrix has 𝑛-eigenvalues (including repeated eigenvalues). Assume that 

𝜆1, 𝜆2, … , 𝜆𝑛 and 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏 are the corresponding eigenvalues and eigenvectors of 𝑻. 

Then, the following stands: 

 𝑻𝑬 = 𝑫𝑬 (𝟒. 𝟒) 
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where 𝑫 is an 𝑛𝑥𝑛 diagonal matrix, with the eigenvalues 𝜆𝑗 on the diagonal and 𝑬 is an 𝑛𝑥𝑛 

orthogonal matrix, the 𝑗-th column of which is 𝒗𝒋. Assuming that the eigenvectors are linearly 

independent, then matrix 𝑬 is non-singular and as a result its inverse, 𝑬−𝟏, can be defined. 

Therefore, (4.4) can be re-written as follows: 

 𝑻 = 𝑬𝑫𝑬−𝟏 (𝟒. 𝟓) 

  
and by taking into consideration the fact that 𝑬 is orthogonal: 

 𝑬𝑻𝑬 = 𝑬𝑬𝑻 = 𝑰 (𝟒. 𝟔) 

 
then, 

 𝑬𝑻 = 𝑬−𝟏 (𝟒. 𝟕) 

 
and finally, the EVD of 𝑻 is given by: 

 𝑻 = 𝑬𝑫𝑬𝑻 (𝟒. 𝟖) 

 

4.6.3. The Laplacian of a graph 

Assume a weighted and undirected graph 𝑮 = (𝑽, 𝑬) where 𝑽 is a set of 𝑛-nodes and 𝑬 

is a set of edges. For a vector 𝒇 ∈ 𝑹𝑽 the Laplacian quadratic form of 𝑮 is defined as (Luxburg, 

2007; Spielman, 2012): 

 
𝒇𝑻𝑳𝒇 = ∑ 𝑤𝑖,𝑗

𝑛

𝑖,𝑗=1

∙ |(𝒇(𝑖) − 𝒇(𝑗))|
2
 (𝟒. 𝟗) 

 
where 𝑤𝑖,𝑗 is the weight of the edge (𝑖, 𝑗) ∈ 𝑬 that connects nodes 𝑖 and 𝑗. In fact (4.9) 

denotes that the Laplacian provides a measure of the smoothness of 𝒇 over the edges in 𝑮. 

This means that the Laplacian form of a graph defines a discrete operator that measures the 

smoothness of any function 𝒇 over a graph node 𝑢 ∈ 𝑽, 𝒇(𝑢). The function 𝒇 can be any 

function that assigns a value to 𝑢. 

In order to define a matrix representation of the Laplacian matrix, it is first important to 

define the adjacency matrix 𝑿 ∈ 𝑹𝒏𝒙𝒏 of the graph 𝑮 as follows: 

 
𝑿 = (𝑋𝑖𝑗) = {

𝑤𝑖𝑗, (𝑖, 𝑗) ∈ 𝐸

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (𝟒. 𝟏𝟎) 

 
Then, the matrix form of the (un-normalized) Laplacian of a graph 𝑮, assume 𝑳, is defined as: 

 𝑳 = 𝑫 − 𝑿 (𝟒. 𝟏𝟏) 

 
where 𝑫 is an 𝑛𝑥𝑛 diagonal matrix whose diagonal contains the weighted degrees of each 

node (vertex) 𝑢 ∈ 𝑽 (i.e., the number of outgoing edges from a node): 
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𝑑(𝑢𝑖) = 𝑑𝑖 =∑𝑤𝑖𝑗

𝑛

𝑗=1

 (𝟒. 𝟏𝟐) 

 
Therefore, an alternative and more complete form of (4.11) is the following: 

 
𝑳 = (𝐿𝑖𝑗) = {

𝑑𝑖  ,           𝑖 = 𝑗
−1, 𝑖 ≠ 𝑗
0,           𝑜/𝑤

 (𝟒. 𝟏𝟑) 

 
The Laplacian matrix, 𝑳, satisfies the following properties: 

 𝑳 is symmetric and positive semi-definite. 

 The smallest eigenvalue of 𝑳 is 0 and the corresponding eigenvector is the constant 

one vector, 𝟏. 

 𝑳 has non-negative, real-valued eigenvalues, 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛. 

The Laplacian of the graph gives us the proper quadratic form that can help us solve the 

spectral clustering problem. The eigenvectors of the Laplacian solve the clustering problem 

by being smooth in the nodes that define the corresponding cluster and presenting large 

fluctuations in the rest of the nodes. What the Laplacian does is that it evaluates the 

difference of the function 𝒇 on node 𝒊 over its’ neighbors. Then the smoothness of the 

function can be evaluated by the quadratic form of 𝒇𝑻𝑳𝒇. A function 𝒇 which has a low value 

of 𝒇𝑻𝑳𝒇 has the property that it varies only “a little bit” in regions where the data points lie 

dense (i.e., the graph is tightly connected), whereas it is allowed to vary more (e.g., to change 

the sign) in regions of low data density (Luxburg, 2007). In this sense, a small value of 𝒇𝑻𝑳𝒇 

encodes the so called “cluster assumption” in semi-supervised learning, which requests that 

the decision boundary of a classifier should lie in a region of low density (Luxburg, 2007). 

Below follows an example of how the Laplacian of a graph is computed based on (4.11). 

 

Figure 4.2. Example of a simple weighted and undirected graph with normalized weights. 

The Laplacian of the graph in Fig. 4.2 is equal to: 

𝑳 = 𝑫− 𝑿 = [

3 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2

] − [

0 0.5 0.2 0.4
0.5 0 0.35 0.4
0.2 0.35 0 0.7
0.4 0.4 0.7 0

] = [

3 −0.5 −0.2 −0.4
−0.5 2 −0.35 −0.4
−0.2 −0.35 3 −0.7
−0.4 −0.4 −0.7 2

] 
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It is often convenient to use the (symmetric) normalized Laplacian of a graph, 𝑳𝒔𝒚𝒎, instead 

of the un-normalized Laplacian: 

 𝑳𝒔𝒚𝒎 = 𝑫−𝟏/𝟐𝑳𝑫−𝟏/𝟐 = 𝑰 − 𝑫−𝟏/𝟐𝑿𝑫−𝟏/𝟐 (𝟒. 𝟏𝟒) 

 
where 𝑰 is an 𝑚𝑥𝑚 identity matrix and 

 
𝑫−𝟏/𝟐 = (𝐷−1/2𝑖,𝑗) = {

1 √𝑑𝑖       , 𝑖 = 𝑗⁄

0                , 𝑜/𝑤
        . (𝟒. 𝟏𝟓) 

 
An alternative and complete form of (4.14) is the following: 

 

𝑳𝒔𝒚𝒎 = (𝐿𝑠𝑦𝑚𝑖𝑗) =

{
 

 
1 ,           𝑖 = 𝑗 𝑎𝑛𝑑 𝑑𝑖 ≠ 𝑑𝑗

−1 √𝑑𝑖 ∙ 𝑑𝑗⁄ , 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑣𝑖  𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑗

0,                                    𝑜/𝑤

 (𝟒. 𝟏𝟔) 

 
The symmetric Laplacian matrix, 𝑳𝒔𝒚𝒎, satisfies the following properties: 

 The smallest eigenvalue of 𝑳𝒔𝒚𝒎 is 0 and the corresponding eigenvector is the constant 

one vector, 𝑫𝟏/𝟐𝟏. 

 

 𝑳𝒔𝒚𝒎 is positive semi-definite with 𝑛- non-negative and real-valued eigenvalues, 0 =

𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛. 

The usefulness of the Laplacian of a graph will be made clearer on Sections 4.6.4 and 4.6.5. 

 

4.6.4. Spectral clustering 

Given an 𝑚𝑥𝑚 similarity matrix 𝑿, the goal is to partition 𝑿 into 𝑘-subsets. First, its 

Laplacian matrix is defined according to Section 4.6.3. In fact, it is mathematically proven that 

the optimal partitioning of 𝑿 can be found by solving the generalized eigen-problem of its 

Laplacian matrix: 

 
 𝑼𝑳 = 𝑨𝑳 (𝟒. 𝟏𝟕) 

 

where 𝑨 is an 𝑘𝑥𝑘 diagonal matrix with the eigenvalues on the main diagonal (sorted in 

descending order) and 𝑼 is an 𝑚𝑥𝑘 square matrix with the largest 𝑘-eigenvectors stacked in 

columns. After the computation of the eigenvectors matrix 𝑼, a 𝑘-means approach is applied 

in order to cluster the first (largest) 𝑘-eigenvectors 𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌 of 𝑼 into clusters 

𝑪𝟏, 𝑪𝟐, … , 𝑪𝒌. Then, each voxel (i.e., point in 3D space), assume 𝑥𝑖, 𝑖 =  1, 2, … ,𝑚, is assigned 

to cluster 𝒀𝒋 if the corresponding row of 𝑼, assume 𝒚𝒊, belongs to cluster 𝑪𝒋 : 

 
 𝒀𝒋 = {𝑥𝑖  | 𝒚𝒊 ∈ 𝑪𝒋}   ,   𝑖 = 1,2, … ,𝑚  𝑎𝑛𝑑  𝑗 = 1,2, … , 𝑘 (𝟒. 𝟏𝟖) 
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The goal of the spectral clustering (SC) procedure is to solve an optimization problem 

which aims to separate the input data points into a pre-specified number of subsets (clusters) 

that are correctly separated by minimizing the similarity between the subsets and maximize 

the similarity within the clusters. In order to do so, spectral clustering uses the eigenvectors 

of the Laplacian matrix in order to project the original data onto a low dimensional space 

where data separation is easier for 𝑘-means to succeed (Fig. 4.3). A directly applied 𝑘-means 

on the original input space is not able to identify the concentric pattern shown in Fig. 4.4 since 

the Euclidean distance space cannot be easily re-arranged so as to provide a concrete solution 

to the optimization problem. 

 

Figure 4.3. A simple visual representation of the spectral clustering steps. (A) A concentric 

distribution of data points on the input space where the data points with the same color have 

higher similarity (i.e., data points are separated into 3 groups/clusters). (B) The Laplacian 

matrix of the adjacency matrix that corresponds to (A). (C) The first (largest) 3 eigenvectors 

of the Laplacian matrix. (D) The first 3 eigenvectors are used to project the original data points 

onto the eigen-space, where the data separation is much easier for 𝑘-means. 

 

 

Figure 4.4. A simple demonstration of the superiority of spectral clustering. (A) The original 

pattern. (B) Spectral clustering successfully separates the data points based on the concentric 

formation. (B) The direct application of the 𝑘-means procedure on the input space is not able 

to distinguish the pattern. (Adapted and adjusted from rpubs.com/sandipan/199446). 

https://rpubs.com/sandipan/199446
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4.6.5. The Normalized cut (N-cut) algorithm 

A similar approach, which is also based on spectral graph theory, is the Normalized cut 

(N-cut) algorithm which was originally introduced by Shi and Malik (Shi and Malik, 2000). The 

goal of the N-cut algorithm is to partition a graph 𝑮 into a pre-specified number of N-subsets 

(clusters) by cutting the edges that connect these subsets so that the similarity between the 

voxels of each cluster is smaller than the similarity within the voxels of different subsets. 

Assume that we want to partition 𝑮 into two disjoint sets 𝑨 and 𝑩, where 𝑨 ∪ 𝑩 = 𝑽. In order 

to do so, the algorithm aims to minimize the following cut cost function: 

 

 𝑐𝑢𝑡(𝑨, 𝑩) = ∑ 𝑤𝑖𝑗
𝑥𝑖∈𝑨,𝑥𝑗∈𝑩

 (𝟒. 𝟏𝟗) 

 
where 𝑥𝑖 , 𝑥𝑗 are voxels in clusters 𝑨, 𝑩, respectively and 𝑤𝑖𝑗 is the similarity between voxels 

with indices 𝑖 and 𝑗 (i.e., correlation coefficient). 

 

Figure 4.5. A simple undirected graph which can be partitioned into two disjoint subsets A 

and B by minimizing the cut cost (removing edges with red color). 

 
A common problem related with the cost function in (4.19) however is that it may result to 

single voxel clusters (Fig. 4.6) and therefore the Normalized cut (Ncut) cost is defined: 

 
𝑁𝑐𝑢𝑡(𝑨,𝑩) =

𝑐𝑢𝑡(𝑨,𝑩)

∑ 𝑤𝑖𝑘𝑥𝑖∈𝑨,𝑥𝑘∈𝑽
+

𝑐𝑢𝑡(𝑨,𝑩)

∑ 𝑤𝑗𝑘𝑥𝑗∈𝑩,𝑥𝑘∈𝑽
 

 

                =
𝑐𝑢𝑡(𝑨,𝑩)

𝑎𝑠𝑠𝑜𝑐(𝑨, 𝑽)
+

𝑐𝑢𝑡(𝑨,𝑩)

𝑎𝑠𝑠𝑜𝑐(𝑩, 𝑽)
 

 

 

 

(𝟒. 𝟐𝟎) 

   

The normalization factor that the N-cut algorithm introduces is able to minimize the similarity 

between clusters and at the same time maximize the similarity within the clusters. In fact, the 

optimal partitioning of 𝑿 can be found by solving the generalized eigen-problem of its 

Laplacian matrix, 𝑳. It is proven that the minimization of (4.20) is equivalent to the Rayleigh 

quotient (Shi and Malik, 2000): 

 
 

𝑚𝑖𝑛𝒙𝑁𝑐𝑢𝑡(𝒙) = 𝑚𝑖𝑛𝒚
𝒚𝑻(𝑫 − 𝑿)𝒚

𝒚𝑻𝑫𝒚
 (𝟒. 𝟐𝟏) 
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where 𝒙 is a |𝑽|-dimensional indicator vector (𝑥𝑖 = 1 if node 𝑖 belongs to 𝑨 and −1 

otherwise), 𝒚 = (1 + 𝒙) − 𝑏(1 − 𝒙) where 𝑏 = 𝑘 (1 − 𝑘)⁄  and 𝑘 is the total normalized 

degree of all nodes in 𝑨 (i.e., sum of each node’s degree in 𝑨 with the rest of the nodes in 𝑨 

divided by the sum of each node’s degree in 𝑽). It is obvious that the minimization of (4.21) 

can be accomplished by setting: 

 
 (𝑫 − 𝑿)𝒚 = 𝜆𝑫𝒚 <=> 𝑳𝒚 = 𝜆𝑫𝒚 (𝟒. 𝟐𝟐) 

 

which is the solution to the general eigen-problem of 𝑳. As a matter of fact, the N-cut and 

spectral clustering procedures are both eigenvector-based algorithms which are strongly 

related with each other since they solve the same eigen-problem (Shi and Malik, 2000). 

 

 
 
Figure 4.6. An example which demonstrates that minimizing a simple cut cost function is not 

able to provide an ideal segmentation and apparently results to single-voxel clusters. On the 

other hand, minimizing the Ncut cost can provide an ideal cut by making sure to provide a 

“balanced” number of data points per segment. 

 

4.6.6. Spatially constrained spectral clustering 

A common problem with the spectral clustering methods though is the fact that they may 

create non-contiguous clusters, i.e., clusters with its voxels being spatially distributed. A 

solution to this problem can be offered by introducing a spatial constraint in the algorithmic 

procedure. More specifically, instead of applying the spectral clustering procedure on the 

original correlation matrix, the idea is to multiply it with a distance matrix, assume 𝑺 =

(𝑠𝑖𝑗)𝑖,𝑗=1,2,…,𝑚, that can be computed using a distance function (i.e., the Euclidean distance). 

For two voxels lying in the 3-D space with coordinates 𝒙, 𝒚 ∈ 𝑹𝟑, the Euclidean distance is 

defined as follows: 

 
 𝑺(𝒙, 𝒚) = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + (𝑥3 − 𝑦3)2 (𝟒. 𝟐𝟑) 
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In order to examine the effect of the spatial constraint in the clustering procedure, different 

thresholds can be applied on 𝑺: 

 
𝑺 = {

1, 𝑠𝑖𝑗 ≤ 𝑟𝑐

 0,         𝑠𝑖𝑗 > 𝑟𝑐
 (𝟒. 𝟐𝟒) 

 

where rc is the threshold parameter (value). This step results to a binary version of the original 

distance matrix. Finally, we define: 

 
 𝑾 = 𝑺 ∘ 𝑿 (𝟒. 𝟐𝟓) 

 
where ∘ denotes element-wise multiplication and 𝑿 is a non-negative similarity matrix (i.e., 

𝑥𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 = 1,2, … ,𝑚). By applying the spectral clustering concept on 𝑾 instead of 𝑿, and 

testing for various thresholds on 𝑺 under a complete cross-validation procedure (proposed 

algorithm) we can constrain the number of neighboring voxels per cluster and thus perform 

a spatially constrained version of the original spectral clustering algorithm. 

 

4.7. Clustering evaluation 

In this study, the average silhouette and Davies-Bouldin indices are recruited as clustering 

evaluation measures. 

4.7.1. Silhouette index 

The silhouette index (width) of the 𝑖-th voxel, 𝑆𝐼(𝑖), is a measure that quantifies the 

similarity of that voxel with the other voxels in its own cluster, assume 𝐴, when compared to 

the voxels in all the other clusters, assume 𝐶 ≠ 𝐴 (Rousseeuw et al., 1987), and is defined as: 
 

 
𝑆𝐼(𝑖) =

𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑖)}
=
[min{𝑑(𝑖, 𝐶)}] − 𝑎(𝑖)

max (𝑎(𝑖), 𝑏(𝑖))
 (𝟒. 𝟐𝟔) 

 
where 𝑎(𝑖) is the average Euclidean distance (dissimilarity) from the 𝑖-th voxel to all the other 

voxels in 𝐴 and 𝑏(𝑖) is the minimum average Euclidean distance (dissimilarity) from the 𝑖-th 

voxel to all the other voxels in 𝐶, denoted as 𝑑(𝑖, 𝐶), minimized over clusters. An alternative 

definition is the following: 
 

 

𝑆𝐼(𝑖) = {

1 − 𝑎(𝑖)/𝑏(𝑖),         𝑎(𝑖) < 𝑏(𝑖)

0,                                 𝑎(𝑖) = 𝑏(𝑖)

𝑏(𝑖)/𝑎(𝑖) − 1,          𝑎(𝑖) > 𝑏(𝑖)

 (𝟒. 𝟐𝟕) 

 
From (4.27) it is obvious that 𝑆𝐼(𝑖) ranges between -1 and 1 with high silhouette values 

denoting that the 𝑖-th voxel is well matched to the voxels in 𝐴 and poorly matched to the 

voxels in the rest of the clusters. Finally, the average silhouette index is computed across the 

voxels of a cluster under evaluation and employed as a clustering evaluation metric. 
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4.7.2. Davies-Bouldin index 

The Davies-Bouldin index (Davies and Bouldin, 1979) is another well-known clustering 

evaluation metric which is based on the evaluation of the appropriateness of various divisions 

or partitions of the data by using features inherent to the data and is defined as: 

 
 

𝐷𝐵 =
1

𝐾
∙∑𝐷𝐵(𝑘)

𝐾

𝑘=1

=
1

𝐾
∙∑𝑚𝑎𝑥𝑗≠𝑘

𝐾

𝑘=1

 𝑅𝑗,𝑘  =
1

𝐾
∙∑𝑚𝑎𝑥𝑗≠𝑘 (

𝑆𝑗 + 𝑆𝑘

𝑀𝑗,𝑘
)

𝐾

𝑘=1

 (𝟒. 𝟐𝟖) 

where: 

 𝐾 is the total number of clusters under evaluation 
 

 𝐷𝐵(𝑘) is an intermediate Davies-Bouldin index for the 𝑘-th cluster 
  

 𝑅𝑗,𝑘 measures how good the clustering scheme is 

 𝑆𝑘 measures the scatter within the cluster 𝐶𝑘 and is defined as follows: 
 
 

𝑆𝑘 = (
1

𝑇𝑘
∙∑|𝑋𝑗 − 𝐴𝑘|

𝑝

𝑇𝑘

𝑗=1

)

1/𝑝

 (𝟒. 𝟐𝟗) 

 
where 𝑋𝑗 is an 𝑛-dimensional feature vector assigned to cluster 𝐶𝑘, 𝑛 is the number of voxels 

in cluster 𝐶𝑘, 𝐴𝑘 is the centroid of cluster 𝐶𝑘, 𝑇𝑘 is the size of cluster 𝐶𝑘 and 𝑝 is a distance 

function parameter which is usually set to 2 (i.e., the Euclidean distance). 

 𝑆𝑗 measures the scatter within the cluster 𝐶𝑗 

 𝑀𝑗,𝑘 measures the separation between clusters 𝐶𝑗  and 𝐶𝑘 and is defined as follows: 

 
 

𝑀𝑗,𝑘 = ‖𝐴𝑗 − 𝐴𝑘‖𝑝 = (∑|𝑎𝑖,𝑘 − 𝑎𝑗,𝑘|
𝑝

𝑛

𝑖=1

)

1/𝑝

 (𝟒. 𝟑𝟎) 

 
where 𝑎𝑖,𝑘 and 𝑎𝑗,𝑘 are elements of 𝐴𝑘. Finally, the following properties are being conserved: 

  𝑅𝑗,𝑘 ≥ 0 

  𝑅𝑗,𝑘 = 𝑅𝑘,𝑗 

  𝑅𝑘,𝑗 > 𝑅𝑘,𝑖 when 𝑆𝑗 ≥ 𝑆𝑖 and 𝑀𝑘,𝑗 = 𝑀𝑘,𝑖 

  𝑅𝑘,𝑗 > 𝑅𝑘,𝑖 when 𝑆𝑗 = 𝑆𝑖 and 𝑀𝑘,𝑗 ≤ 𝑀𝑘,𝑖 

A good clustering scheme is characterized by a large separation between clusters 𝐶𝑗 and 

𝐶𝑘,  𝑀𝑗,𝑘 and a small within-cluster scatter, 𝑆𝑘. Therefore, the optimal number of clusters is 

the one that achieves the smallest Davies-Bouldin index. 
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4.8. Clustering homogeneity evaluation 

After the construction of a clustermap (or atlas) it is important to seek for a way to 

evaluate each cluster’s (or region’s) coherence in terms of homogeneity. A proposed measure 

that is able to quantify the regional homogeneity of a clustermap is by computing the 

Shannon Entropy of a voxel with its neighbors that lie within a sphere with specific radius. For 

a given clustermap, we first select for each voxel its neighboring voxels’ clustering indices that 

lie within a pre-specified sphere and afterwards store them in a vector, assume 𝒚. Then, we 

estimate the probability distribution of 𝒚, 𝒑𝒚, and compute Shannon’s entropy as follows: 

 
 

𝑬(𝒑𝒚) = −∑𝑝𝑦(𝑗) ∙ log (𝑝𝑦(𝑗))

𝑛

𝑗=1

 (𝟒. 𝟑𝟏) 

 
where 𝑛 is the number of different clustering indices in 𝒚. Voxels with small entropy values 

indicate better cohesion of the region they belong to. Here, we plot the entropy distributions 

across all voxels in order to examine the clustering homogeneity per clustering approach. 

 

4.9. Application on synthetic time-series 

The main purpose of this simulation is to present the main weakness that the standard 

spectral clustering algorithms exhibit under realistic noisy environments and at the same time 

highlight the superiority of the spatially constrained version under the same circumstances. 

In order to do so, synthetic BOLD time-series (signals) with random superimposed noise were 

generated to investigate the accuracy of each clustering procedure. A compact 128x128 block 

containing 𝑘-randomly distributed patterns was generated. Each pattern has a representative 

or seed signal which is a sinus wave with random superimposed noise and a unique random 

frequency varying on the interval (0, 𝑓𝑁), where 𝑓𝑁 is the Nyquist frequency and is equal to 

𝑓𝑠/2. The rest of the signals in a pattern have the same frequency as the pattern’s (noisy) seed 

signal with random superimposed noise. For realistic purposes, 𝑓𝑠 was set to 1.388 Hz which 

is equal to the fMRI scanner’s ratio 1/TR (i.e., 1/0.72). The number of square blocks was set 

to 𝑘 = 4, 6 and 8 and the number of samples was set to 100 per time-course. In each case, 

after generating the synthetic BOLD time-series, Pearson’s correlation coefficient was 

computed between each pair of synthetic time-series, leading to a 16384x16384 adjacency 

matrix, where the where the element (𝑖, 𝑗) is the correlation between the time-series of 

points 𝑖 and 𝑗 in the 128x128 block. Then, the SC, N-cut and SCSC clustering approaches were 

applied on the corresponding correlation matrices. An extra distance matrix is necessary for 

the application of the SCSC with 𝑟𝑐 = 2 (covering 12 points), where the element (𝑖, 𝑗) is the 

Euclidean distance between points 𝑖 and 𝑗. Finally, Shannon’s entropy was computed on each 

clustermap using various sphere’s radius values, i.e., 𝑟 = 2 (12 points); 𝑟 = 3 (28 points); 𝑟 = 4 

(48 points); 𝑟 = 5 (80 points); 𝑟 = 6 (112 points), to evaluate each clustermap’s homogeneity. 
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Figure 4.7. The 1st run of the simulation experiment using 𝑘 = 4 patterns. (A) The generated 

seed signals for each pattern. (B) The 4 randomly placed patterns on a 128x128 noisy block. 

Recall that each point in (B) is a synthetic time-course. (C) The 16534x16534 non-negative 

correlation matrix with a 200x200 block for zooming purposes. (D) The 16534x16534 distance 

matrix using 𝑟𝑐 = 2, with a 200x200 block for zooming purposes. 

 

 

Figure 4.8. Simulation results for the 1st run after the application of the (A) Spectral, (B) N-cut 

and (C) Spatially Constrained Spectral clustering procedures, respectively, alongside with the 

corresponding clustermap’s entropy distributions (D), (E), (F), using various radius values. 
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- Moving on to the 2nd run of the simulation, using six randomly distributed patterns. 

 

 

Figure 4.9. The 2nd run of the simulation experiment using 𝑘 = 6 patterns. (A) The generated 

seed signals for each pattern. (B) The 6 randomly placed patterns on a 128x128 noisy block. 

Recall that each point in (B) is a synthetic time-course. (C) The 16534x16534 non-negative 

correlation matrix with a 200x200 block for zooming purposes. (D) The 16534x16534 distance 

matrix using 𝑟𝑐 = 2, with a 200x200 block for zooming purposes. 

 

 

 

Figure 4.10. Simulation results for the 2nd run after the application of the (A) Spectral, (B) N-

cut and (C) Spatially Constrained Spectral clustering procedures, respectively, alongside with 

the corresponding clustermap’s entropy distributions (D), (E), (F), using various radius values. 
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-And finally to the 3rd run, using eight randomly distributed patterns. 

 

 

Figure 4.11. The 3rd run of the simulation experiment using 𝑘 = 8 patterns. (A) The generated 

seed signals for each pattern. (B) The 8 randomly placed patterns on a 128x128 noisy block. 

Recall that each point in (B) is a synthetic time-course. (C) The 16534x16534 non-negative 

correlation matrix with a 200x200 block for zooming purposes. (D) The 16534x16534 distance 

matrix using 𝑟𝑐 = 2, with a 200x200 block for zooming purposes. 

 

 

 
Figure 4.12. Simulation results for the 3rd run after the application of the (A) Spectral, (B) N-

cut and (C) Spatially Constrained Spectral clustering procedures, respectively, alongside with 

the corresponding clustermap’s entropy distributions (D), (E), (F), using various radius values. 
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According to Figs 4.8, 4.10 and 4.12 it is obvious that the SC and N-cut algorithms are not 

able to distinguish the patterns from the noisy background across all three runs, a fact that is 

also validated from their corresponding entropy distributions which tend to exhibit very high 

entropy values (i.e., large uncertainty with non-uniform distributions) and as a result the 

homogeneity of the resulted clustermaps is too small. On the other hand, the SCSC algorithm 

correctly discriminates the patterns from the background noise due to the spatial constraint 

that introduces in order to restrict the number of neighbors and reduce the noise levels to a 

large extent. As a matter of fact, the resulted clusters are non-spatially distributed (i.e., 

contiguous). This outcome can be also verified from the related entropy distributions which 

tend to be smooth and uniform, with the entropy values approximating zero (very small 

uncertainty) which results to a much better and desirable clustermap homogeneity. Note that 

in all cases, the estimated probability density of the entropy values is small which is normal 

because entropy is a continuous variable and the probability of an entropy value being equal 

to X+ε is small, where X is a continuous random variable and ε is a small interval. 

 

4.10. Application on cerebellum’s data 

Each subject’s correlation coefficient (adjacency) matrix is computed according to the 

procedure described in Section 4.5, without discarding the negative correlations for avoiding 

biases introduced during the averaging procedure. The average correlation matrix across 100 

subjects is finally computed and on the latter the negative correlations are discarded. This 

matrix is a 21522x21522 double matrix. The memory of the Linux-based remote server was 

able to successfully handle this process and thus no sparse matrix approaches were needed 

for better data handling. Afterwards, the spatial (Euclidean) distance matrix 𝑺 was computed 

only once since it is common for all subjects because it is exclusively based on the voxels 

coordinates. This matrix is a 21522x21522 matrix, where the element (𝑖, 𝑗) represents the 

Euclidean distance between voxels 𝑖 and 𝑗. Different thresholds (𝑟𝑐 values) are then applied 

on 𝑺 in order to examine the effect of the distance on the SCSC procedure and how this affects 

the optimal number of clusters. These thresholds correspond to a sphere’s radius since the 

voxels lie on the 3D space. For example, a sphere with 𝑟𝑐 (radius) value of 2 covers 33 voxels; 

𝑟𝑐 = 3 (123 voxels), 𝑟𝑐 = 5 (515 voxels), 𝑟𝑐 = 8 (1947 voxels), 𝑟𝑐 = 10 (3589 voxels), 𝑟𝑐 = 12 

(5763 voxels). For each threshold under evaluation, the resulting binary version of the 

distance matrix 𝑺 is (elementwise) multiplied with the average correlation matrix in order to 

define the 21522x21522 spatially constrained correlation matrix 𝑾 (Fig. 4.13). 

This matrix is given as input into the SC procedure and the clustering evaluation measures 

described in Section 4.7 were computed for 30 clusters under evaluation (Fig. 4.14). A number 

of 30 clusters under evaluation is more than enough since after the 30th eigenvalue the 

magnitude becomes too low or remains stable, based on the corresponding 𝑟𝑐 value (Fig. 

4.14(A)). This denotes that the eigenvalue plots are highly affected by the 𝑟𝑐 values. In order 

to determine the appropriate number of clusters, we seek for the largest gap between two 
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consecutive clustering indices on the average silhouette plots. This indicates a breakdown of 

a cluster, as presented in the work of Sato et al., 2013, which suggests that when the largest 

gap in an average silhouette plot is located between the 𝑘th and the (𝑘+1)th cluster, the 

optimal number of clusters should be set to 𝑘. The largest gap after the 𝑘th cluster denotes 

an immediate clustering breakdown and thus the proposed number of clusters is 𝑘. The same 

thing is expected to stand for the Davies-Bouldin index. According to Fig. 4.14, the distribution 

of the evaluation measures (Fig. 4.14(B), (C)) is similar, with the optimal number of cluster 

however being different, according to the largest gap criterion. Therefore, a cross-validation 

procedure is necessary to seek for the 𝑟𝑐 value that exhibits the most stable performance. 

 
 

 

Figure 4.13. The formation of the spatially constrained correlation matrix. (A) The average 

21522x21522 non-negative correlation (adjacency) matrix with an additional 200x200 block 

for zooming purposes. (B) The average 21522x21522 Euclidean distance matrix with an 

additional 200x200 block for zooming purposes. (C) The spatially constrained correlation 

matrix which is the result of the element-wise multiplication between matrices in (A) and (B). 

 

 

Figure 4.14. Clustering evaluation results for 30 clusters under examination, on the average 

correlation matrix. (A) The first 30 eigenvalues. (B) The average silhouette and (C) Davies-

Bouldin values computed across 30 clusters for various thresholds (i.e., 𝑟𝑐 = 2, 3, 5, 8, 10, and 

12) on the distance matrix 𝑺. 
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4.11. Cross-validation for performance evaluation 

In order to validate the consistency of the number of clusters across the total population, 

a repeated cross-validation procedure is executed by first computing the average correlation 

matrices across 10 randomly selected subjects for 10 times (runs) in total, i.e., 10 average 

correlation matrices across 10 random subjects per run and finally by re-applying the 

proposed clustering procedure on each individual run. The goal of this step is to search for 

the 𝑟𝑐 value that exhibits the most stable performance (same 𝑘 across each run). 

 

Figure 4.15. The optimal number of clusters across each 𝑟𝑐 value for all validation runs, as 

indicated by the largest gap on each run’s average silhouette plot across 30 clusters. 

 

 

Figure 4.16. The optimal number of clusters across each 𝑟𝑐 value for all validation runs, as 

indicated by the largest gap on each run’s Davies-Bouldin plot across 30 clusters. 
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According to Figs 4.15 and 4.16, the SCSC procedure for 𝑟𝑐 = 8 on 𝑺 was stable at 𝑘 = 4 

clusters across all runs. The same stands for 𝑟𝑐 = 12 but at 𝑘 = 3 clusters. In addition, the case 

for 𝑟𝑐 = 5 is interesting since it is stable at 𝑘 = 4 clusters across 9 out of 10 runs. The rest of 

the thresholding values do not exhibit any consistency at all. An 𝑟𝑐 value of 8 covers 1947 

voxels instead of 𝑟𝑐 = 12 which is a threshold that covers an area of 5763 voxels and thus is 

too large. The fact that 𝑟𝑐 = 5 has the second best performance at 𝑘 = 4 reassures that fact 

that the number of clusters should be set to 4. The evidence so far suggest that the threshold 

𝑟𝑐 = 8 on 𝑺 with a pre-defined number of 𝑘 = 4 clusters is dominant, however it is important 

to evaluate the consistency of the resulting clustermaps for us to reach to a final decision. 

With the purpose of quantifying the consistency between each pair of clustermaps (i.e., 

3D matrices with clustering labels or atlases) among all runs, the Dice similarity coefficient 

was computed in order to measure the similarity between a pair of clustermaps (Craddock et 

al., 2012). For two clustermaps, assume 𝐴 and 𝐵, the Dice similarity coefficient is defined as 

the ratio of twice the number of voxels common to both clustermaps divided by the total 

number of voxels in both clustermaps (Dice, 1945): 

 
 

𝐷𝑖𝑐𝑒 =
2 ∙ |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 (𝟒. 𝟑𝟐) 

 
which results to numbers between 0 and 1, where the latter value corresponds to a perfect 

correspondence between two clustermaps. In this work, the Dice similarity coefficient was 

evaluated individually for each pair of 10 clustermaps (recall that there are 21522 voxels per 

clustermap) which were obtained through the SCSC procedure using 𝑘 = 4 with an 𝑟𝑐 on 𝑆 

equal to 8. A common problem though with the computation of (4.32) lies in the fact that 

each voxel’s clustering label, within each clustermap, is randomly assigned to a label after the 

application of the SCSC algorithm and therefore the clusters should be correctly matched 

prior to the computation of (4.32). This problem is known in the literature as the assignment 

(or matching) problem and one widely used solution to this problem is given by the Hungarian 

algorithm (also known as Kuhn-Munkres algorithm or Munkres assignment algorithm).  

Since the problem in our case is less complex due to the small number of clusters (i.e., 4), 

a simpler solution was developed. More specifically, for a pair of clustermaps, assume 𝐴 and 

𝐵, four assignments are performed for each cluster in 𝐵, using clustermap 𝐴 as the reference 

clustermap. For example, for a cluster on 𝐴, say 𝑥, four clustermaps are created, i.e., 𝐵1, 𝐵2, 

𝐵3 and 𝐵4 one for each possible assignment. Then the clustermap that owns the cluster, say 

𝑦, which achieves the maximum Dice coefficient value with 𝑥, is chosen as its similar one. Of 

course 𝑥 might be already assigned to 𝑦 and thus the number of assignments should be four 

per cluster (16 assignments for each clustermap in total). Moreover, if there are more than 

one candidate clusters with the maximum Dice value, the next one is chosen. Finally, for each 

pair of correctly matched clustermaps, four Dice values are returned (where each Dice value 

is in fact the maximum across all possible assignments; one Dice value per cluster) and the 
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average Dice similarity coefficient is then employed as a clustering consistency quantifier. The 

consistency evaluation results are presented, for each cluster individually, on the sequel. 

 
- Consistency evaluation for cluster 1 

 

Figure 4.17. Consistency evaluation results for each 𝑟𝑐 value across all runs for cluster 1. The 

black dashed line indicates a clustering consistency of 0.9 (90%). 

 

- Consistency evaluation for cluster 2 

 

Figure 4.18. Consistency evaluation results for each 𝑟𝑐 value across all runs for cluster 2. The 

black dashed line indicates a clustering consistency of 0.9 (90%). 
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- Consistency evaluation for cluster 3 

 

Figure 4.19. Consistency evaluation results for each 𝑟𝑐 value across all runs for cluster 3. The 

black dashed line indicates a clustering consistency of 0.9 (90%). 

 

- Consistency evaluation for cluster 4 

 

Figure 4.20. Consistency evaluation results for each 𝑟𝑐 value across all runs for cluster 4. The 

black dashed line indicates a clustering consistency of 0.9 (90%). 

 
In general, the average Dice coefficient values were very high for all 𝑟𝑐 values across all 

runs and for all four clusters under evaluation except from the case for 𝑟𝑐 = 12 which produces 

the least consistent clustermaps than all the other cases. The case for 𝑟𝑐 = 2 appears with less 
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than 90% consistency (but not less than 85%), specifically for clusters 1 (3/10 runs), 2 (2/10 

runs), 3 (3/10 runs), 4 (4/10 runs). A similar behavior stands for 𝑟𝑐 = 10 but to a smaller extent 

since it appears with not less than 85% consistency for clusters 1 (1/10 runs), 2 (1/10 runs) 

and 4 (2/10 runs). The remaining 𝑟𝑐 values, i.e, 3, 5, 8, are the “elite” values since they achieve 

more than 90% consistency across all runs, for all four clusters, which sometimes exceeds 95% 

specifically for the cases of 𝑟𝑐 = 5 and 8. 

By taking into consideration the fact that 𝑟𝑐 = 8 (with 𝑘 = 4 clusters) was the most stable 

threshold across all 10 runs of the proposed cross-validation procedure (Figs 4.15-4.16) and 

that it is able to produce clustermaps with each cluster having at least 95% consistency across 

10 runs (Figs 4.17-4.20), it is chosen as the default parameter of the SCSC procedure. From 

now on, the SCSC will be applied on the original data using 𝑟𝑐 = 8 on 𝑺 (𝑘 = 4 clusters). At this 

point it is important to note that the cross-validation procedure was the most time consuming 

process due to the repeated clustering evaluation procedures. 

 

4.12. Resting-state network atlas 

In order to create a resting-state network (RSN) atlas, the SCSC algorithm was applied on 

the average correlation matrix computed across all 100 subjects, with the number of clusters 

being set to 𝑘 = 4 with an 𝑟𝑐 = 8 on 𝑺. The result is a clustermap or atlas (a 3D matrix with 

clustering labels assigned per voxel) which has been already registered in the MNI coordinate 

space (template) and represents the four identified cerebellar resting-state networks (Fig. 

4.19). These four clusters are well-separated and consistent. For the sake of completeness, 

and for comparison purposes only, the SC and Ncut algorithms have been also applied on the 

same matrix for 𝑘 = 4 (Figs 4.20-4.21, respectively), along with complete 3D versions of the 

clustermaps and the corresponding Shannon’s entropy distributions, across all voxels, for 

various sphere’s radius values (i.e., 𝑟 = 2 (33 voxels); 𝑟 = 3 (123 voxels); 𝑟 = 4 (257 voxels); 𝑟 = 

5 (515 voxels); 𝑟 = 6 (924 voxels)) in order to compare the clustering homogeneity of the 

resulting clustermaps with the one obtained from the SCSC procedure (Fig. 4.21). 

 

Figure 4.21. The resulting clustermap after the application of the SCSC approach for 𝑘 = 4, in 

2D form with slice indices P = 46, C = 31, A = 15. 
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Figure 4.22. The resulting clustermap after the application of the SC approach for 𝑘 = 4, in 2D 

form with slice indices P = 46, C = 31, A = 15. 

 

 

Figure 4.23. The resulting clustermap after the application of the Ncut approach for 𝑘 = 4, in 

2D form with slice indices P = 46, C = 31, A = 15. 

 

 

Figure 4.24. The resulting clustermaps along with the corresponding voxel-wise entropy 

distributions for each clustering approach. 
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Notice that the clusters derived from the SCSC algorithm are spatially contiguous and 

homogeneous whereas the clusters obtained from the SC algorithm are spatially distributed. 

In addition, the entropy distributions for each atlas are also presented on Fig. 4.22, for 

different sphere’s radius values. It is now obvious that the SCSC algorithm appears to achieve 

small entropy values and thus consistent ROIs with better cohesion. At this point, it is 

important to note that the color of the clusters in each atlas should not be used for comparing 

the clustermaps. Each clustermap is the result of a different clustering procedure that yields 

different clustering label assignments per voxel. 

 

4.13. Final cerebellar atlas 

In order to extract a much more detailed atlas, the RSN atlas obtained from the SCSC 

approach is combined with the anatomical atlas of cerebellum which was already obtained 

from the SUIT toolbox (Diedrichsen et al., 2009; Diedrichsen et al., 2011; Diedrichsen and 

Zotow, 2015) which is presented in Fig. 4.25(A) using BrainNet Viewer (Xia et al., 2013). After 

projecting the RSN atlas (Fig. 4.25(B)) onto the anatomical atlas, the resulting overlayed 

regions can be treated as functional ROIs. Regions that contain less than 10 voxels are ignored 

from further analysis. As a result, the final number of extracted ROIs is equal to 46 (Fig. 4.25 

(C)). In fact, this procedure aims to extract a large number of functional ROIs in order to 

provide a much more detailed and data-driven (accurate) network analysis of cerebellum. The 

projection is valid since the voxel coordinates of the anatomical atlas lie on the same space 

(i.e., MNI space) with the coordinates of the RSN atlas.  

 

 

Figure 4.25.  The construction steps of cerebellum’s functional atlas. (A) The anatomical atlas 

is projected on (B) the RSN atlas leading to a new (C) functional atlas with 46 functional ROIs. 
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Table 4.2. Number of anatomically overlayed voxels for each functional ROI. 
 

Anatomical ROIs 
# of voxels covered per cluster for each anatomical ROI 

C1 (light green) C2  (green) C3  (blue) C4 (purple) 

Left I-IV 601 0 21 0 

Right I-IV 604 6 0 42 

Left V 585 0 139 0 

Right V 580 2 0 94 

Left VI 533 0 1049 0 

Vermis VI 380 0 0 0 

Right VI 517 5 0 976 

Left Crus I 32 0 2360 0 

Vermis Crus I 1 0 0 0 

Right Crus I 23 0 0 2478 

Left Crus II 105 0 1761 0 

Vermis Crus II 81 0 0 0 

Right Crus II 107 0 0 1658 

Left VIIb 31 23 794 0 

Vermis VIIb 27 0 0 0 

Right VIIb 31 65 0 782 

Left VIIIa 2 228 582 0 

Vermis VIIIa 117 104 0 0 

Right VIIIa 4 598 0 251 

Left VIIIb 0 656 1 0 

Vermis VIIIb 1 109 0 0 

Right VIIIb 0 719 0 0 

Left IX 1 554 0 0 

Vermis IX 17 113 0 0 

Right IX 2 650 0 0 

Left X 0 107 26 0 

Vermis X 2 45 0 0 

Right X 0 140 0 0 

 
* regions filled with grey color are ignored due to the small number of assigned voxels (<10). 
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Table 4.3. Percentage of anatomically overlayed voxels for each functional ROI. 
 

Anatomical ROIs 
% of voxels  covered per cluster for each anatomical ROI 

C1 (light green) C2  (green) C3  (blue) C4 (purple) 

Left I-IV 96.62 0.00 3.38 0.00 

Right I-IV 92.64 0.92 0.00 6.44 

Left V 80.80 0.00 19.20 0.00 

Right V 85.80 0.30 0.00 13.91 

Left VI 33.69 0.00 66.31 0.00 

Vermis VI 100.00 0.00 0.00 0.00 

Right VI 34.51 0.33 0.00 65.15 

Left Crus I 1.34 0.00 98.66 0.00 

Vermis Crus I 100.00 0.00 0.00 0.00 

Right Crus I 0.92 0.00 0.00 99.08 

Left Crus II 5.63 0.00 94.37 0.00 

Vermis Crus II 100.00 0.00 0.00 0.00 

Right Crus II 6.06 0.00 0.00 93.94 

Left VIIb 3.66 2.71 93.63 0.00 

Vermis VIIb 100.00 0.00 0.00 0.00 

Right VIIb 3.53 7.40 0.00 89.07 

Left VIIIa 0.25 28.08 71.67 0.00 

Vermis VIIIa 52.94 47.06 0.00 0.00 

Right VIIIa 0.47 70.11 0.00 29.43 

Left VIIIb 0.00 99.85 0.15 0.00 

Vermis VIIIb 0.91 99.09 0.00 0.00 

Right VIIIb 0.00 100.00 0.00 0.00 

Left IX 0.18 99.82 0.00 0.00 

Vermis IX 13.08 86.92 0.00 0.00 

Right IX 0.31 99.69 0.00 0.00 

Left X 0.00 80.45 19.55 0.00 

Vermis X 4.26 95.74 0.00 0.00 

Right X 0.00 100.00 0.00 0.00 
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Table 4.4. The anatomical locations of the identified functional regions. 
 

Anatomical ROIs Functional region number (number of voxels) 

Left I-IV 8 (21) 30 (601)  
Right I-IV 1 (42) 31 (604)  

Left V 9 (139) 32 (585)  
Right V 2 (94) 33 (380)  
Left VI 10 (1049) 34 (533)  

Vermis VI 35 (380)   
Right VI 3 (976) 36 (517)  

Left Crus I 11 (2360) 37 (32)  
Vermis Crus I    
Right Crus I 4 (2478) 38 (23)  
Left Crus II 12 (1761) 39 (105)  

Vermis Crus II 40 (81)   
Right Crus II 5 (1658) 41 (107)  

Left VIIb 13 (794) 16 (23) 42 (31) 

Vermis VIIb 43 (27)   
Right VIIb 6 (782) 17 (65) 44 (31) 

Left VIIIa 14 (582) 18 (228)  
Vermis VIIIa 19 (104) 45 (117)  
Right VIIIa 7 (251) 20 (598)  
Left VIIIb 21 (656)   

Vermis VIIIb 22 (109)   
Right VIIIb 23 (719)   

Left IX 24 (554)   
Vermis IX 25 (113) 46 (17)  
Right IX 26 (650)   
Left X 15 (26) 27 (107)  

Vermis X 28 (45)   
Right X 29 (140)   

 
It is worth mentioning that large anatomical lobules of cerebellum such as Left/Right VI, 

Left/Right Crus I & II, Left/Right VIIb (Tables 4.3-4.4) have been “divided” into more than one 

functional regions (nodes), a fact that can lead to a deeper investigation of each anatomical 

lobule’s implication in cerebellum’s inner functional connectivity. Notice that no functional 

regions have been formed for lobule Vermis Crus I since it contains only one voxel. 

According to the literature, the node of a ROI is defined as the center of mass of that ROI. 

This is used only for network visualization purposes. In order to do so, the node of each ROI 

is placed on its most centered voxel coordinates (in the MNI space). Here, the centered voxel 

of a region is defined as the one with the smallest total distance from any other voxel within 

that region (see Table 4.5). This procedure is repeated for all 46 functional regions with the 

final locations of the nodes being presented later on Figs 4.26-4.27. 
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Table 4.5. MNI coordinates of each functional region’s node. 
 

Functional region 
MNI coordinates 

X Y Z 

1 24 -32 -32 

2 28 -36 -30 

3 30 -54 -28 

4 38 -68 -32 

5 26 -78 -42 

6 32 -66 -52 

7 32 -58 -54 

8 -20 -32 -30 

9 -26 -36 -30 

10 -28 -56 -26 

11 -38 -68 -32 

12 -26 -76 -42 

13 -28 -66 -52 

14 -28 -56 -54 

15 -26 -36 -42 

16 -6 -72 -46 

17 10 -72 -48 

18 -16 -64 -52 

19 0 -68 -42 

20 24 -58 -54 

21 -18 -50 -54 

22 0 -64 -42 

23 18 -50 -54 

24 -6 -54 -48 

25 0 -56 -38 

26 6 -54 -48 

27 -20 -36 -46 

28 0 -48 -36 

29 22 -36 -46 

30 -6 -46 -16 

31 8 -44 -18 

32 -10 -54 -16 

33 12 -54 -16 

34 -12 -66 -20 

35 0 -70 -20 

36 14 -66 -20 

37 -8 -78 -26 

38 8 -76 -26 

39 -4 -80 -34 

40 0 -74 -32 

41 6 -80 -34 

42 -6 -72 -38 

43 0 -68 -32 

44 8 -70 -36 

45 0 -66 -34 

46 0 -54 -30 
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Figure 4.26. The location of the 46 functional nodes in 3D coronal view using BrainNet Viewer 

(Xia et al., 2013). 

 

 

Figure 4.27. The location of the 46 functional nodes in 3D complete view (without labels for 

better visualization) using BrainNet Viewer (Xia et al., 2013). 

 

4.14. Gender-based functional connectivity analysis 

In this final section, a gender-based functional connectivity and network analysis of 

cerebellum is executed based on the functional atlas that was constructed in Section 4.13. 

The goal of this scheme is (a) to test for significant differences between male and female 

functional cerebellar networks and (b) identify the functional regions that achieve the highest 

average degree and/or betweenness centrality among each population ˙ known as hubs. This 

procedure is similar to the one described in Chapter 3 but with the difference that this time 

the functional cerebellar atlas is used for a gender-based network analysis only. 
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4.14.1. Functional parcellation of cerebellum 

A functional parcellation of cerebellum is performed for each subject separately using 

the final functional atlas of cerebellum (Section 4.13) which was constructed through the 

combination of Diedrichsen’s anatomical atlas (Diedrichsen et al., 2009; Diedrichsen et al., 

2011; Diedrichsen and Zotow, 2015) with the RSN atlas that was obtained from the SCSC 

procedure using 𝑟𝑐 = 8 (𝑘 = 4 clusters) on the distance matrix 𝑺. The result of the parcellation 

procedure is a 46x1200 BOLD signals matrix, where the 𝑖-th row represents the average (pre-

processed) BOLD signal across the voxels of the 𝑖-th functional ROI. 

 

Figure 4.28. Network analysis strategy using the functional atlas of cerebellum. The 46x46 

correlation matrixes are first constructed after parcellating the functional atlas individually 

for both genders and then the corresponding Minimum Spanning Trees (MSTs) are formed. 

On the latter, various local and global metrics are extracted for statistical and hub analysis. 

 

4.14.2. Network construction and Minimum Spanning Trees formation 

Cerebellum's functional connectivity was assessed by computing Pearson's correlation 

coefficients between each pair of the 46 ROIs inside the cerebellum, leading to a 46 × 46 

correlation (adjacency) matrix per subject in both IQ groups. Negative correlations have been 

excluded from further analysis (Bohr et al., 2013), with the elimination of the corresponding 

edge. The average correlation networks across males and females are presented on Fig 4.29. 

Afterwards, the corresponding MSTs were computed for each population based on Kruskal’s 

algorithmic scheme and various local and global metrics were computed for each MST. The 

average MSTs for both males and females are presented on Fig. 4.30. For detailed information 

about the MSTs construction method as well as the computed set of local and global network 

metrics, see Section 3.5. 
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Figure 4.29. The average correlation networks of both males and females projected on 

cerebellum’s surface using BrainNet Viewer (Xia et al., 2013). 

 

 

Figure 4.30. The MSTs of the corresponding average correlation networks for both males and 

females projected on cerebellum’s surface using BrainNet Viewer (Xia et al., 2013). Each 

node’s size linearly depends on its corresponding average BC value across each population. 

 

4.14.3. Statistical analysis and hubs 

Three local (BC, ECC, DEG) and six global (diameter, degree correlation, radius, kappa, 

leaf fraction, tree hierarchy) metrics were computed in order to examine the topological and 

functional characteristics of every MST. Several global weighted graph metrics, including 

average weighted clustering coefficient, characteristic path length, and connectivity, were 

also examined in our procedure. The feature datasets are, in general, non-normal so that 

natural log-transformation was applied in order to approximate normal distribution 

properties, with the addition of a very small constant (1 · e−24) for avoiding zero-value 

transforms. Statistical analysis was performed using 1-way balanced ANOVA in order to test 

for differences males and females (males/females; 50/50). All p-values were corrected based 

on False Discovery Rate (FDR) using the Benjamini-Hochberg procedure (Benjamini and 

Hochberg, 1995) with the significance level set to 0.05. 
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As far as the local MST measures are concerned, no significant differences were found 

between males and females (see Appendix; Tables A4, A5 and A6). At this point, it is worth 

mentioning that the significant difference that was found (only) in functional region 10, by 

the metric of eccentricity (Table A6), is not considered accurate but rather an FDR correction 

overfit. On the other hand, it is interesting the fact that tree-hierarchy was the only global 

measure that exhibited a statistical significant difference among males and females (males: 

0.3807 ± 0.0463; females: 0.3999 ± 0.0466) (F = 4.3938, p = 0.0386) with values close to 0.4 

for both populations (Table 4.6), which indicates that the tree topologies of both males and 

females are close to the optimal tree configuration (i.e., values around 0.5), with significant 

differences between these (close-to-optimal) tree configurations. 

 
Table 4.6. Statistical analysis results based on gender for the main network metrics. 
 

Metric 
Males 

Mean±SD 

Females 

Mean±SD 

 
𝑭 

 
p-values 

avg. clustering coefficient 0.2641±0.1168 0.2559±0.0874 0.0000 0.9999 
characteristic path length 4.8376±0.4128 4.6283±1.1273 0.1972 0.6580 
connectivity 0.2543±0.1189 0.2499±0.0887 0.0650 0.7992 
diameter 0.3298±0.1323 0.3096±0.0782 0.2803 0.5977 
radius 0.2042±0.1269 0.1834±0.0471 0.5030 0.4799 
leaf fraction 0.5298±0.0572 0.5333±0.0500 0.1592 0.6908 
tree-hierarchy 0.3807±0.0463 0.3999±0.0466 4.3938 0.0386 
kappa 15.3239±1.8603 15.5915±1.0772 1.1942 0.2772 
degree correlation -0.2163±0.1045 -0.2472±0.1008 2.5079 0.1165 
 
with bold highlight: statistical significant results (𝒑 < 𝟎. 𝟎𝟓). 

 
 

In addition, a hub analysis was conducted by computing the regions with the highest DEG, 

BC values (hubs) across both males and females, respectively. 

 

 

Figure 4.31. Nodes with the highest DEG across males and females. 
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Figure 4.32. Nodes with the highest BC across males and females. 

 
According to Figs 4.31-4.32, functional node 10, which is located in lobule Left VI, is a 

critical node for both genders with an observed male dominance since it exhibits the highest 

DEG in 32% of males and 22% of females as well as the highest BC in 32% of males and 20% 

of females. This is concordance with the left cerebellar hemispheric dominance as well as with 

Left VI’s importance during information transfer within cerebellum’s network (Pezoulas et al., 

2017). Moreover, there are additional nodes that can be characterized as hubs but to a lower 

extent, such as functional node 3 which is located in lobule Right VI and is mostly a hub for 

the female population due to the fact that it exhibits the highest DEG in 8% of males and 12% 

of females and the highest BC in 4% of males and 14% of females. The same thing stands for 

functional node 13 (located in lobule Left VIIb) which appears to have the highest DEG in 10% 

of females and the highest BC in 12% of females. Finally, functional node 11 (located in lobule 

Left Crus I) exhibits the highest DEG in 14% of males and 12% of females without however 

any worth mentioned hub percentages for the BC metric. 
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5. Discussion and future work 

 

 

 

 

 

5.1. Discussion 

In the first part of this thesis, a lobular functional connectivity and network analysis of 

cerebellum was performed using Graph Theory aspects on resting-state fMRI data, by taking 

into consideration the factors of crystallized IQ and gender (Pezoulas et al., 2017). The small-

world network structure, characterized by high global and local efficiency, is a property of 

anatomical and functional brain networks. This configuration maximizes the efficiency and 

minimizes the costs of information processing. It implies high clustering of nodes (compatible 

with segregated or modular processing) and short path length (compatible with distributed 

or integrated processing) (Watts and Strogatz, 1998; Bassett and Bullmore, 2006) and has 

been extensively reported in EEG, MEG, Tractography and fMRI studies (Stam, 2004; Tewarie 

et al., 2014; Stam et al., 2016). Focusing on cerebellum, the examination of low and high-IQ 

individuals suggest that both sexes have the characteristics of small-world networks with 

differences in females indicative of higher neural efficiency of the cerebellum, especially in 

higher-IQ females. The more efficient network organization in women reflects the different 

hemispheric organization between genders. The considerations of three global metrics in 

women support this conclusion. Our findings in men are in a similar direction with respect to 

the IQ level, but appear not significant. The lower small-worldness in high-IQ females, 

compared to low-IQ females and to men counterparts, forms an interesting finding of our 

study. The higher small-world organization, with higher clustering coefficient and lower path 

length in low-IQ females, is indicative of a more optimum functionally organized segregation 

and integration. In contrast, in high IQ females, the segregation and integration of the 

functional networks at rest can be explained as the idle state of more efficient reactivity in 

cognitive tasks, in accordance to the neural efficiency hypothesis. The same stands for the 

male population but without any significance. It is known that the neural efficiency hypothesis 

becomes relevant during brain activations, where more efficient individuals show lower 

(weak) brain activation as they functionally react easier. In agreement to these results, an 

earlier study which was conducted by Dr. Sifis Micheloyannis revealed that highly educated 

individuals showed less prominent small-world structure than their less educated and lower 

IQ counterparts (Micheloyannis et al., 2006). 
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Five global network metrics (i.e., average clustering coefficient, small-worldness, 

connectivity, diameter, radius) revealed statistically significant differences between low and 

high-IQ individuals (Table 3.5 for low/high-IQ population, Table 3.7 for low/high-IQ females), 

as well as within males and females for both low and high-IQ groups (Table 3.8 for low-IQ 

males/females, Table 3.9 for high-IQ males/females). Three cerebellar lobules (i.e., Left Crus 

II, Left X, and Vermis VIII) in low-IQ individuals (in both genders) showed maximum correlation 

with the median response time, implying increased effort dedicated locally by this population 

in cognitive tasks. Since the intrinsic organization of cerebellar functions at rest follows the 

functional organization of the cerebrum, a similar co-activation with the brain structures is 

expected (Liao et al., 2010; Kelly et al., 2012). Thus, differences between men and women, as 

well as between low and high-IQ individuals, which appear intrinsically in the cerebellar 

network organization at rest, are expected to reflect differences in cognitive functions in 

association with intelligence. It is interesting that our study supports these assumptions at a 

statistically significant level only in women. There is a trend toward the same direction in men, 

but without significant differences between low and high-IQ individuals. This differentiation 

between men and women is indicative of gender differences in cognitive functions which are 

associated with intelligence. The network connectivity was higher in high-IQ women than low-

IQ women, with smaller diameter and radius values (Table 3.7). These findings show that the 

network organization in women with high-IQ at rest is more efficient. In combination with the 

findings of small-world organization, it may also signify the expression of neuronal-network 

efficiency in this sub-population. Male groups exhibit similar trends, but without any 

significance. The increased readiness and efficiency of network organization, as well as the 

lower small-worldness in high-IQ females, compared to low-IQ females and to men 

counterparts, forms an interesting finding of our study. According to the intrinsic cerebellar 

connections, these findings could be related to the fact that the cerebellar-cerebral 

coordination differs among individuals, with known language dominance in women, which is 

more effective in highly intelligent individuals. 

In addition, the lobules with the highest DEG, BC values can be related mainly with 

cognitive functions, where a left cerebellar dominance is observed. It is further known that 

these lobules are related to motor and cognitive functions (Koziol et al., 2014). In terms of 

DEG and BC metrics, many lobules exhibited higher values on the left side whereas some 

other lobules express right activation related to motor and cognitive functions but to a smaller 

extent; i.e., IV, V, VI and parts of HVIIb and HVIII related to motor function (Stoodley et al., 

2012), while Crus I, Crus II, lobule VI, VIIa and VIIb related to cognitive function (Bernard et 

al., 2012). The dominance of DEG and BC on left lobules was exhibited in both sexes, but the 

stronger Left VI hub indication in high-IQ women is a novel finding and goes in parallel with 

other higher-level organizations in this group. The aforementioned hubs are related to 

frontal, pre-frontal, temporal, parietal lobes (lobule VI), frontal gyrus, precuneus, angular 

gyrus, interior parietal lobe (Crus I) (Bernard et al., 2012; Koziol et al., 2014). An additional 

finding related to nodes of the cerebellum is that regions Left Crus II, Left X, and Vermis VIII 

in low-IQ individuals (both men and women) showed maximum correlation with the median 
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response time, implying that these lobules become more important only in low-IQ individuals 

(Table 3.4). 

In the second part of this thesis, a voxel-wise clustering approach was developed in order 

to perform a more detailed, accurate and data-driven analysis of cerebellum’s functional 

connectivity network so as to reveal the undergoing resting-state and functional cerebellar 

activity as well as execute a gender-based network analysis. For this purpose, spectral graph 

theory concepts were applied in order to cluster the voxels that exhibit similar correlation 

patterns by partitioning the average correlation matrix across the population of interest. The 

main problem with these clustering approaches though is that they do not provide spatially 

contiguous clusters but spatially distributed clusters, a fact that is connected with background 

noise. In cerebellum for example, this noise may be interpreted by voxels which might not be 

activated and are usually located in the white matter of the cerebellum’s deep nuclei. In order 

to overcome this issue, a spatially constrained version of the original spectral clustering 

approach (i.e., Spatially Constrained Spectral Clustering - SCSC) along with various thresholds 

on the distance matrix and a repeated cross-validation was proposed and tested on synthetic 

BOLD time-series prior to any application on the original data. All the three versions of the 

simulation (Figs 4.7-4.12) were able to highlight the weakness of the conventional spectral 

clustering approach in providing spatially contiguous clusters under noisy environments. The 

corresponding entropy densities confirm this weakness with high concentration around 1 

(complete uncertainty). On the other hand, the SCSC approach tends to be much smoother, 

with high entropy concentration around 0 (which implies no uncertainty at all). 

The SCSC algorithm was then applied on the original data across 30 clusters under 

evaluation by testing the effects of various thresholds (𝑟𝑐 values) on the distance matrix (i.e., 

3, 5, 8, 10, and 12). According to the average silhouette and Davies-Bouldin plots, all 

thresholds tend to have a similar behavior (Fig. 4.14). However, according to the largest gap 

criterion, the appropriate number of clusters is slightly different across the thresholds (usually 

4 or 5). In addition, the eigenvalue plots are highly affected by the threshold values due to 

the spatial constraint they introduce. The repeated cross-validation procedure was able to 

provide a clearer view. In fact, it revealed that the most stable threshold on the distance 

matrix, across all runs, was 8 with the appropriate number of clusters being 𝑘 = 4 across 100% 

of the runs (Figs 4.15-4.16). Moreover, these parameters were able to generate clustermaps 

(atlases) with more than 90% consistency per cluster which confirms this selection (Figs 4.17-

4.20). As a result, the SCSC procedure was applied on the original data using 𝑟𝑐 = 8 on the 

distance matrix and 𝑘 = 4 clusters. The result is a resting-state network (RSN) atlas of 

cerebellum with 4 identified spatially-contiguous clusters (Fig. 4.21). This atlas was compared 

with those of the conventional spectral clustering and N-cut procedures, highlighting once 

more the problem of the spatially distributed clusters (Fig. 4.24). This fact is also confirmed 

by the corresponding entropy distributions which are similar as in the simulation case. 

The RSN atlas was finally combined with the anatomical atlas, in the same coordinate 

space, in order to create a functional atlas with more regions for executing a more accurate 
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gender-based network analysis. This functional atlas of cerebellum contains 46 spatially 

contiguous regions (Figs 4.26-4.27) and is used to parcellate the cerebellum in a similar way 

like the one described in Chapter 3, for constructing functional connectivity networks and 

MSTs for both males and females (Fig. 4.28). The statistical analysis procedure on the 

extracted local and global network/MST descriptors indicated only one statistical significant 

difference and specifically for the tree-hierarchy measure. This difference is important since 

it denotes that there is an alteration in the optimal tree configuration of the cerebellar 

network of males and females. Moreover, the tree-hierarchy values are close to 0.5 which 

corresponds to an optimal tree organization. Therefore, both males and females have a close 

to optimal cerebellar network organization with significant differences among them. Hub 

analysis revealed another important outcome of the network analysis. More specifically, a left 

cerebellar dominance is observed in both males and females which is in concordance with the 

results presented in Chapter 3. Functional node 10 is a dominant hub (Figs 4.31-4.32) and 

belongs to the Left VI lobule of cerebellum which was identified as a dominant hub in the 

lobular analysis of Chapter 3. This outcome enhances Left VI’s dominance in cerebellum’s 

functional connectivity and highlights the importance of further studies that will focus on the 

association of this cerebellar region with cerebrum. Additional hub nodes are functional 

nodes 3 (located in lobule Right VI) mostly for the female population, 13 (located in lobule 

Left VIIb) which appears with higher hub indications again in females and 11 (located in lobule 

Left Crus I) mostly in males. From existing studies (Stoodley and Schmahmann, 2009; Bernard 

et al., 2012; Stoodley et al., 2012), these hubs have the following main connections to cerebral 

hemispheres: lobule VI has functional connectivity to frontal, pre-frontal, temporal, parietal 

lobes, while Crus I to frontal gyrus, precuneus, angular gyrus, inferior parietal lobule. These 

highly active lobules have certain functional implications and this is in concordance with the 

left dominance in functions related to cognition and working memory (Fabbro, 2000; Manto 

et al., 2012; Stoodley et al., 2012). The rest of the hub nodes located in the right part of the 

cerebellar hemisphere are mainly related with motor functions and in part with emotion. 

One reported difference between men and women is related to the dominance of the 

women hemispheres in language (van Dun et al., 2016). Additional anatomical differences 

between men and women have been demonstrated in several studies. In particular, although 

there is no difference in intelligence ability, the neural substrates of general intelligence are 

different between the sexes (Stam, 2004; Malpas et al., 2016). Moreover, the cerebellar 

functional connections depend on the IQ level, which is in accordance to the neural efficiency 

hypothesis. The global network organization of the cerebellum, in coordination with cortical 

regions, is known from numerous studies and various analytic methods (Buckner et al., 2011; 

Manto et al., 2012; Koziol et al., 2014; Ramnani, 2014). Our findings support and enhance 

such information related to the importance of the cerebellar lobules at rest, as well as their 

inter-connectivity. As known, regions that are co-activated during a function tend to show co-

activation at rest, as well. The lobules reflecting high betweenness centrality and degree at 

rest are indicative of more information load at rest. Furthermore, it is expected that they 
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attain increased activation during function, in coordination with the co-activated regions of 

the cerebrum hemispheres and with other regions of the cerebellum.  

All in all, our results from the first part of this study suggest that both sexes have the 

characteristics of small-world networks with differences in females indicative of higher neural 

efficiency of the cerebellum, especially in higher-IQ females. The more efficient network 

organization in women reflects the different hemispheric organization between genders. The 

considerations of three global metrics in women support this conclusion. Our findings in men 

are in a similar direction with respect to the IQ level, but appear not significant. The lower 

small-worldness in high-IQ females, compared to low-IQ females and to men counterparts, 

forms an interesting finding of our study. In addition, five global metrics (i.e., average 

clustering coefficient, small-worldness, connectivity, diameter and radius) revealed 

significant differences between low and high-IQ individuals, as well as within females in low 

and high-IQ groups. The dominance of DEG and BC on left lobules was exhibited in both sexes, 

but the stronger Left VI hub indication in high-IQ women is a novel finding and goes in parallel 

with other higher-level organizations in this group. Three cerebellar lobules (i.e., Left Crus II, 

Left X, and Vermis VIIIb) in low-IQ individuals (both genders) showed maximum correlation 

with the median response time, implying increased effort dedicated locally by this population 

in cognitive tasks. The second part of this thesis provides a functional atlas of the human 

cerebellum based on a voxel-wise spatially constrained spectral clustering approach. The 

extracted atlas provides the first complete functional atlas of cerebellum’s network at rest, 

based on rs-fMRI data obtained from the Human Connectome Project. A gender-based 

cerebellar network analysis based on this atlas reveals significant differences in the optimal 

tree configurations of males and females. Our hub analysis findings support the left 

hemispheric dominance in cerebellum’s functional connectivity, highlighting the importance 

of lobule Left VI during information transfer. 

 

5.2. Future work 

Brain network analysis using Graph Theory aspects is a straightforward approach for 

modeling brain’s functional connectivity in the form of a graph (i.e., a network) where the 

regions of interest (ROIs) or channels (in the case of EEG/MEG studies) represent the nodes 

and the similarities between each possible pair of channels or regions represent the edges. 

Moreover, the application of spectral graph clustering approaches based on voxel-wise 

connectivity networks is a modern network analysis approach since it not only combines 

direct application on the graph but also results to a lesser computational complexity through 

the combination of matrix theory and linear algebra concepts. 

The aforementioned approaches can be also applied on a variety of EEG or MEG data 

obtained from healthy or impaired subjects. The application of MSTs can provide information 

about the backbone of the original brain network and therefore reveal useful structural and 



 

120 
 

functional properties of the network. The concept of spectral clustering can be able to identify 

the underlying sub-networks of brain’s functional connectivity and therefore be combined 

with statistical analysis in order to signify differences in the functional activation patterns of 

brain among healthy and pathological groups. It is also crucial to combine the present findings 

with future studies in order to shed light into the disturbances of cerebellar-cerebrum 

connections with respect to intelligence in both sexes. It is well-known that the prefrontal and 

posterior parietal lobes, which are mostly related to intelligence, have many connections to 

cerebellum. Therefore, a cerebellar-cerebrum connectivity study could reveal common cortex 

patterns of brain activations related to intelligence and gender. Finally, it would be interesting 

to examine the relation of cerebellum with other demographic factors such as lifespan 

development. 

The Affinity propagation clustering (APC) procedure (Frey and Dueck, 2007) is another 

completely data-driven clustering approach which initially considers all data points as possible 

exemplars (i.e., members of the input set that are representative of clusters) and through the 

minimization of an energy function and message-passing architecture, obtains the optimal 

set of exemplars and their corresponding clusters. APC has been used lately in fMRI data 

analysis (Zhang et al., 2011) for detecting brain’s functional activations. An interesting future 

work would be to apply the APC method in cerebellum and compare the clustering 

performance of the APC and SCSC algorithms. A similar work has not yet been reported in the 

current literature and would be a straightforward one. Affinity propagation has been recently 

combined with the Adaptive Sparse Representation (ASR) method (Wang et al., 2014), an 

alternative approach of Pearson’s pairwise correlation that takes into consideration the linear 

relationship of one node with every other node within the network (Li and Wang, 2015). This 

can provide more accurate information about brain activation patterns. 

Cerebellum’s regional homogeneity (ReHo) can be assessed using Kendall’s coefficient of 

concordance (KCC), a measure that quantifies the similarity of a voxel’s time-series by taking 

into consideration its neighboring voxels time-series that lie within a sphere of pre-specified 

radius. KCC has been used in several fMRI studies (Baumgartner, 1999; Zang et al., 2004) to 

reveal the complexity of the human brain. KCC can be also used as a dimensionality reduction 

approach, by preserving only the voxels with high KCC values (i.e., > 0.8). In contrast, voxels 

with very small KCC values correspond to regions with small homogeneity, usually in areas 

with high white matter concentration ˙ note that gray matter usually contains the neurons 

used for information processing and it is mostly located on the surface (e.g., in the cerebellar 

cortex). The remaining voxels can then be clustered using the SCSC approach in order to 

obtain a gray matter atlas of cerebellum. 

Future studies need to be addressed in order to clarify the outcomes of this thesis in 

cerebellum-cerebral connections. The present findings combined with future studies could 

practically contribute to the examination of disturbances in cerebellum and/or cerebellar-

cerebrum connections with respect to intelligence in both sexes. Moreover, the atlases that 

were constructed in this thesis can be used for the investigation of significant differences in 
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the cerebellum’s functional connectivity between normal subjects and subjects with various 

pathologies (i.e., Alzheimer’s disease, ADHD, ASD, etc.). 

 

5.3. Cerebellum’s atlases availability 

The resting-state and functional cerebellar atlases which were created in Chapter 4 will 

be uploaded on the following github repository (github.com/vpz4/Functional-connectivity-

analysis-of-cerebellum) as soon as the second part of this thesis will be accepted publication. 

This will be done so as to promote neuroscientific exploratory studies based on cerebellum’s 

network in order to shed light into the relation of cerebellum’s functional connectivity with 

the rest of the brain’s activation patterns in healthy as well as pathological populations. 

 

  

https://github.com/vpz4/Functional-connectivity-analysis-of-cerebellum
https://github.com/vpz4/Functional-connectivity-analysis-of-cerebellum
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Appendix 

 

 

 

 

 

Table A1. Mean±SD values based on IQ, for the normalized degree. 
 

 
ROI 

 
Location 
(Name) 
 

 
Low-IQ 

 

Mean±SD 

 
High-IQ 

 

Mean±SD 

 
Low-IQ 
Males 

Mean±SD 

 
High-IQ 
Males 

Mean±SD 

 
Low-IQ 

Females 

Mean±SD 

 
High-IQ 
Females 

Mean±SD 

1 Left I-IV 0.1837±0.1029 0.1813±0.0967 0.1851±0.1005 0.1663±0.0774 0.1829±0.1054 0.1927±0.1088 

2 Left V 0.1951±0.1002 0.1704±0.1256 0.2147±0.1274 0.1505±0.0556 0.1839±0.0805 0.1856±0.1589 

3 Left VI 0.6859±0.3066 0.7566±0.3007 0.6738±0.3511 0.7733±0.2837 0.6928±0.2823 0.7439±0.3162 

4 Left Crus I 0.5616±0.2928 0.5477±0.2716 0.5497±0.3324 0.5838±0.2948 0.5683±0.2715 0.5202±0.2530 

5 Left Crus II 0.3543±0.2488 0.3487±0.2391 0.3580±0.2425 0.3219±0.2225 0.3522±0.2550 0.3691±0.2520 

6 Left VIIb 0.3652±0.2874 0.3183±0.2355 0.2835±0.2250 0.3188±0.2417 0.4116±0.3103 0.3179±0.2338 

7 Left VIIIa 0.3176±0.2200 0.2837±0.1853 0.3228±0.2420 0.2320±0.1253 0.3147±0.2094 0.3232±0.2138 

8 Left VIIIb 0.1718±0.0895 0.1472±0.0762 0.1552±0.0637 0.1353±0.0452 0.1813±0.1007 0.1562±0.0929 

9 Left IX 0.1791±0.1043 0.1897±0.1291 0.1930±0.1373 0.1898±0.1248 0.1712±0.0808 0.1896±0.1340 

10 Left X 0.1579±0.0715 0.1456±0.0590 0.1427±0.0544 0.1528±0.0635 0.1665±0.0789 0.1402±0.0555 

11 Vermis VI 0.2037±0.1334 0.1763±0.1427 0.1819±0.1376 0.1976±0.1936 0.2161±0.1309 0.1601±0.0858 

12 Vermis Crus II 0.2056±0.1251 0.1832±0.0958 0.1827±0.0876 0.1896±0.0965 0.2186±0.1414 0.1784±0.0963 

13 Vermis VIIb 0.1481±0.0639 0.1378±0.0496 0.1539±0.0911 0.1373±0.0599 0.1447±0.0424 0.1382±0.0408 

14 Vermis VIIIa 0.2550±0.2053 0.1972±0.1200 0.2493±0.2217 0.1923±0.1267 0.2582±0.1979 0.2009±0.1163 

15 Vermis VIIIb 0.2215±0.1864 0.1730±0.1019 0.2117±0.1948 0.1642±0.0808 0.2271±0.1835 0.1797±0.1161 

16 Vermis IX 0.2406±0.1565 0.2188±0.1484 0.2208±0.1516 0.2172±0.1661 0.2519±0.1598 0.2201±0.1357 

17 Vermis X 0.1551±0.0755 0.1367±0.0407 0.1522±0.0869 0.1347±0.0412 0.1567±0.0692 0.1382±0.0408 

18 Right I-IV 0.2176±0.1693 0.1731±0.0767 0.2467±0.2286 0.1761±0.0780 0.2011±0.1240 0.1708±0.0767 

19 Right V 0.2046±0.1500 0.1664±0.0941 0.1987±0.1869 0.1520±0.0628 0.2079±0.1267 0.1774±0.1119 

20 Right VI 0.4341±0.3026 0.4681±0.2960 0.3848±0.3069 0.4095±0.2826 0.4621±0.3001 0.5128±0.3018 

21 Right Crus I 0.4310±0.2554 0.3970±0.2338 0.3644±0.2501 0.4780±0.2655 0.4688±0.2534 0.3352±0.1875 

22 Right Crus II 0.3338±0.2621 0.3227±0.2529 0.2929±0.2571 0.3371±0.2813 0.3570±0.2650 0.3116±0.2322 

23 Right VIIb 0.2567±0.1945 0.2269±0.1729 0.2572±0.2067 0.2384±0.2195 0.2565±0.1897 0.2180±0.1292 

24 Right VIIIa 0.2775±0.2046 0.2833±0.2037 0.3061±0.2083 0.2250±0.1420 0.2612±0.2031 0.3278±0.2325 

25 Right VIIIb 0.1921±0.1728 0.2109±0.2203 0.2538±0.2621 0.1727±0.1679 0.1570±0.0734 0.2400±0.2514 

26 Right IX 0.3009±0.2348 0.2095±0.1398 0.3147±0.2445 0.1995±0.1515 0.2931±0.2316 0.2170±0.1317 

27 Right X 0.1532±0.0727 0.1436±0.0479 0.1382±0.0522 0.1342±0.0385 0.1618±0.0814 0.1507±0.0534 

 

  



 

139 
 

Table A2. Mean±SD values based on IQ, for the normalized betweenness centrality. 
 

 
ROI 

 
Location 
(Name) 
 

 
Low-IQ 

 

Mean±SD 

 
High-IQ 

 

Mean±SD 

 
Low-IQ 
Males 

Mean±SD 

 
High-IQ 
Males 

Mean±SD 

 
Low-IQ 

Females 

Mean±SD 

 
High-IQ 
Females 

Mean±SD 

1 Left I-IV 0.0354±0.0758 0.0391±0.0640 0.0382±0.0610 0.0322±0.0554 0.0338±0.0837 0.0444±0.0702 

2 Left V 0.0523±0.0823 0.0401±0.1071 0.0736±0.0910 0.0230±0.0593 0.0402±0.0753 0.0530±0.1320 

3 Left VI 0.6693±0.3542 0.7198±0.3628 0.6835±0.3673 0.7387±0.3587 0.6613±0.3506 0.7054±0.3700 

4 Left Crus I 0.6002±0.3346 0.5808±0.3230 0.5613±0.3855 0.6504±0.3275 0.6223±0.3045 0.5278±0.3135 

5 Left Crus II 0.3147±0.3198 0.3242±0.3063 0.3045±0.3013 0.3081±0.3276 0.3205±0.3331 0.3364±0.2928 

6 Left VIIb 0.2989±0.3353 0.2775±0.3358 0.2105±0.2753 0.2482±0.3078 0.3492±0.3582 0.3000±0.3582 

7 Left VIIIa 0.2084±0.2553 0.1722±0.2192 0.2226±0.2594 0.1060±0.1527 0.2003±0.2556 0.2228±0.2490 

8 Left VIIIb 0.0403±0.1259 0.0143±0.0714 0.0214±0.0714 0.0039±0.0208 0.0511±0.1480 0.0223±0.0928 

9 Left IX 0.0413±0.0893 0.0647±0.1459 0.0695±0.1228 0.0619±0.1528 0.0253±0.0589 0.0669±0.1425 

10 Left X 0.0184±0.0594 0.0180±0.0712 0.0044±0.0218 0.0375±0.1038 0.0263±0.0717 0.0031±0.0189 

11 Vermis VI 0.0784±0.1598 0.0529±0.1699 0.0727±0.1858 0.0774±0.2120 0.0816±0.1453 0.0342±0.1290 

12 Vermis Crus II 0.0569±0.1318 0.0383±0.0571 0.0358±0.0557 0.0462±0.0609 0.0689±0.1592 0.0322±0.0541 

13 Vermis VIIb 0.0033±0.0191 0.0031±0.0176 0.0090±0.0313 0.0036±0.0193 0±0 0.0027±0.0164 

14 Vermis VIIIa 0.1016±0.1695 0.0620±0.1033 0.0974±0.1742 0.0731±0.1238 0.1039±0.1687 0.0535±0.0852 

15 Vermis VIIIb 0.0744±0.1537 0.0412±0.0851 0.0716±0.1604 0.0339±0.0638 0.0759±0.1516 0.0467±0.0988 

16 Vermis IX 0.0891±0.1293 0.0723±0.1088 0.0919±0.1616 0.0689±0.1118 0.0875±0.1088 0.0748±0.1079 

17 Vermis X 0.0167±0.0750 0.0032±0.0185 0.0251±0.1065 0.0040±0.0213 0.0119±0.0500 0.0027±0.0164 

18 Right I-IV 0.0626±0.1178 0.0404±0.0747 0.0883±0.1634 0.0381±0.0612 0.0479±0.0801 0.0421±0.0844 

19 Right V 0.0652±0.1619 0.0355±0.0877 0.0637±0.1718 0.0199±0.0460 0.0661±0.1580 0.0475±0.1086 

20 Right VI 0.3834±0.3767 0.3863±0.3631 0.3321±0.3785 0.3111±0.3262 0.4126±0.3768 0.4437±0.3832 

21 Right Crus I 0.3979±0.3166 0.3820±0.2797 0.3026±0.2970 0.4589±0.2971 0.4521±0.3178 0.3234±0.2542 

22 Right Crus II 0.2789±0.3339 0.2405±0.2795 0.1991±0.2776 0.2228±0.2722 0.3242±0.3571 0.2540±0.2878 

23 Right VIIb 0.1880±0.2807 0.1696±0.2706 0.1811±0.2332 0.1492±0.2568 0.1920±0.3069 0.1851±0.2831 

24 Right VIIIa 0.1618±0.2700 0.1920±0.2653 0.2106±0.2965 0.0952±0.1775 0.1340±0.2530 0.2658±0.2980 

25 Right VIIIb 0.0509±0.1721 0.0725±0.2041 0.1211±0.2647 0.0306±0.1091 0.0110±0.0569 0.1044±0.2507 

26 Right IX 0.1540±0.2148 0.0726±0.1333 0.1984±0.2233 0.0707±0.1525 0.1288±0.2082 0.0741±0.1187 

27 Right X 0.0071±0.0287 0.0128±0.0447 0±0 0.0032±0.0175 0.0111±0.0355 0.0200±0.0567 
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Table A3. Mean±SD values based on IQ, for the normalized eccentricity. 
 

 
ROI 

 
Location 
(Name) 
 

 
Low-IQ 

 

Mean±SD 

 
High-IQ 

 

Mean±SD 

 
Low-IQ 
Males 

Mean±SD 

 
High-IQ 
Males 

Mean±SD 

 
Low-IQ 

Females 

Mean±SD 

 
High-IQ 
Females 

Mean±SD 

1 Left I-IV 0.8062±0.1066 0.7970±0.0971 0.8062±0.1066 0.7970±0.0971 0.8128±0.1090 0.7889±0.0928 

2 Left V 0.7509±0.1173 0.7650±0.1225 0.7509±0.1173 0.7650±0.1225 0.7545±0.1164 0.7493±0.1204 

3 Left VI 0.6315±0.1008 0.6349±0.1039 0.6315±0.1008 0.6349±0.1039 0.6312±0.0996 0.6340±0.1162 

4 Left Crus I 0.6444±0.1191 0.6586±0.1023 0.6444±0.1191 0.6586±0.1023 0.6324±0.1129 0.6802±0.1108 

5 Left Crus II 0.6668±0.1134 0.6777±0.0984 0.6668±0.1134 0.6777±0.0984 0.6516±0.1020 0.6912±0.1079 

6 Left VIIb 0.6873±0.0893 0.6860±0.0999 0.6873±0.0893 0.6860±0.0999 0.6714±0.0948 0.6765±0.1091 

7 Left VIIIa 0.7198±0.0967 0.7135±0.0967 0.7198±0.0967 0.7135±0.0967 0.7158±0.0977 0.6885±0.0992 

8 Left VIIIb 0.7863±0.1085 0.7872±0.1185 0.7863±0.1085 0.7872±0.1185 0.7906±0.1093 0.7620±0.1183 

9 Left IX 0.7657±0.1169 0.7721±0.1259 0.7657±0.1169 0.7721±0.1259 0.7619±0.1126 0.7981±0.1340 

10 Left X 0.7958±0.1280 0.7869±0.1225 0.7958±0.1280 0.7869±0.1225 0.7875±0.1340 0.7926±0.1083 

11 Vermis VI 0.7245±0.1106 0.7577±0.1146 0.7245±0.1106 0.7577±0.1146 0.7192±0.1092 0.7592±0.1171 

12 Vermis Crus II 0.7952±0.1220 0.7844±0.1117 0.7952±0.1220 0.7844±0.1117 0.7967±0.1126 0.7773±0.1199 

13 Vermis VIIb 0.9276±0.0881 0.9327±0.0841 0.9276±0.0881 0.9327±0.0841 0.9294±0.0970 0.9188±0.0946 

14 Vermis VIIIa 0.7640±0.1184 0.7847±0.1217 0.7640±0.1184 0.7847±0.1217 0.7716±0.1258 0.7873±0.1088 

15 Vermis VIIIb 0.8405±0.1239 0.8392±0.1157 0.8405±0.1239 0.8392±0.1157 0.8414±0.1233 0.8384±0.1255 

16 Vermis IX 0.8039±0.1264 0.8116±0.1156 0.8039±0.1264 0.8116±0.1156 0.8036±0.1214 0.8031±0.1182 

17 Vermis X 0.8956±0.1198 0.9371±0.0843 0.8956±0.1198 0.9371±0.0843 0.9064±0.1096 0.9356±0.0816 

18 Right I-IV 0.8099±0.1129 0.8003±0.1182 0.8099±0.1129 0.8003±0.1182 0.8114±0.1050 0.8078±0.1300 

19 Right V 0.7646±0.1153 0.7665±0.1174 0.7646±0.1153 0.7665±0.1174 0.7645±0.1140 0.7555±0.1241 

20 Right VI 0.6665±0.1017 0.6677±0.1006 0.6665±0.1017 0.6677±0.1006 0.6690±0.1019 0.6674±0.1109 

21 Right Crus I 0.6663±0.1005 0.6803±0.1029 0.6663±0.1005 0.6803±0.1029 0.6593±0.1054 0.7071±0.1028 

22 Right Crus II 0.6818±0.1049 0.7081±0.0980 0.6818±0.1049 0.7081±0.0980 0.6782±0.1104 0.7292±0.0988 

23 Right VIIb 0.7056±0.0951 0.7112±0.1105 0.7056±0.0951 0.7112±0.1105 0.7043±0.0991 0.7051±0.1136 

24 Right VIIIa 0.7266±0.1035 0.7140±0.1019 0.7266±0.1035 0.7140±0.1019 0.7189±0.0769 0.6947±0.1105 

25 Right VIIIb 0.7770±0.1202 0.7763±0.0987 0.7770±0.1202 0.7763±0.0987 0.7642±0.1097 0.7839±0.1076 

26 Right IX 0.7378±0.1057 0.7739±0.1030 0.7378±0.1057 0.7739±0.1030 0.7487±0.1121 0.7880±0.0936 

27 Right X 0.8061±0.1106 0.7831±0.0996 0.8061±0.1106 0.7831±0.0996 0.7945±0.1081 0.7713±0.1066 
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Table A4. Statistical analysis results based on gender, for degree. 
 

Functional region 
Males 

Mean±SD 

Females 

Mean±SD 

 
𝑭 

 
p-values 

1 0.0253±0.0078 0.0284±0.0110 2.5233 0.5842 

2 0.0253±0.0090 0.0267±0.0110 0.4096 0.8306 

3 0.0756±0.0477 0.0742±0.0408 0.0310 0.9648 

4 0.0653±0.0316 0.0684±0.0276 0.8756 0.7024 

5 0.0578±0.0330 0.0467±0.0234 2.8407 0.5842 

6 0.0564±0.0351 0.0551±0.0274 0.0001 1.0000 

7 0.0284±0.0127 0.0338±0.0192 2.2027 0.5842 

8 0.0236±0.0053 0.0240±0.0061 0.1508 0.8846 

9 0.0271±0.0103 0.0284±0.0127 0.2736 0.8393 

10 0.1156±0.0670 0.0880±0.0451 5.4527 0.4963 

11 0.0827±0.0404 0.0831±0.0378 0.0407 0.9648 

12 0.0529±0.0257 0.0609±0.0232 3.6808 0.5842 

13 0.0640±0.0323 0.0707±0.0446 0.1376 0.8846 

14 0.0538±0.0266 0.0644±0.0328 2.7156 0.5842 

15 0.0280±0.0108 0.0258±0.0082 1.2073 0.7024 

16 0.0276±0.0115 0.0284±0.0156 0.0226 0.9648 

17 0.0302±0.0125 0.0271±0.0113 2.0803 0.5842 

18 0.0458±0.0282 0.0458±0.0267 0.0050 1.0000 

19 0.0373±0.0226 0.0338±0.0192 0.9630 0.7024 

20 0.0636±0.0404 0.0582±0.0347 0.2098 0.8516 

21 0.0382±0.0220 0.0360±0.0210 0.2823 0.8393 

22 0.0347±0.0186 0.0333±0.0169 0.0979 0.9140 

23 0.0538±0.0359 0.0604±0.0407 0.8876 0.7024 

24 0.0467±0.0340 0.0404±0.0228 0.8232 0.7024 

25 0.0427±0.0233 0.0484±0.0316 0.4316 0.8306 

26 0.0542±0.0333 0.0489±0.0229 0.3092 0.8393 

27 0.0333±0.0186 0.0369±0.0218 0.5909 0.7824 

28 0.0289±0.0103 0.0253±0.0078 3.7966 0.5842 

29 0.0329±0.0207 0.0382±0.0229 2.2213 0.5842 

30 0.0400±0.0215 0.0360±0.0219 1.5007 0.6425 

31 0.0440±0.0271 0.0360±0.0179 1.6821 0.6166 

32 0.0378±0.0202 0.0409±0.0203 0.9454 0.7024 

33 0.0436±0.0233 0.0369±0.0183 2.3325 0.5842 

34 0.0556±0.0274 0.0702±0.0431 1.7988 0.6166 

35 0.0533±0.0348 0.0591±0.0369 0.9369 0.7024 

36 0.0533±0.0301 0.0582±0.0375 0.3008 0.8393 

37 0.0329±0.0163 0.0342±0.0169 0.2163 0.8516 

38 0.0249±0.0073 0.0276±0.0115 1.6569 0.6166 

39 0.0369±0.0199 0.0378±0.0234 0.0007 1.0000 

40 0.0400±0.0224 0.0458±0.0303 0.6664 0.7660 

41 0.0387±0.0210 0.0391±0.0260 0.0607 0.9505 

42 0.0258±0.0094 0.0258±0.0094 0 1.0000 

43 0.0307±0.0173 0.0244±0.0067 5.6562 0.4963 

44 0.0258±0.0094 0.0244±0.0067 0.5521 0.7824 

45 0.0409±0.0271 0.0364±0.0245 0.9242 0.7024 

46 0.0244±0.0067 0.0271±0.0103 2.2197 0.5842 
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Table A5. Statistical analysis results based on gender, for betweenness centrality. 
 

Functional region 
Males 

Mean±SD 

Females 

Mean±SD 

 
𝑭 

 
p-values 

1 0.0071±0.0186 0.0165±0.0333 2.2772 0.6545 

2 0.0062±0.0179 0.0138±0.0362 0.3447 0.9141 

3 0.2730±0.2304 0.3074±0.2446 1.1454 0.6952 

4 0.2317±0.2029 0.2543±0.1798 2.2151 0.6545 

5 0.1611±0.1830 0.1354±0.1670 1.1730 0.6952 

6 0.1696±0.2187 0.2034±0.2230 0.1631 0.9141 

7 0.0320±0.0884 0.0533±0.1193 1.2758 0.6952 

8 0.0027±0.0107 0.0044±0.0160 0.1541 0.9141 

9 0.0157±0.0510 0.0181±0.0412 0.2332 0.9141 

10 0.4548±0.2483 0.3930±0.2471 1.4608 0.6952 

11 0.3026±0.2124 0.3404±0.1768 0.0097 0.9994 

12 0.1446±0.1355 0.1912±0.1603 2.0404 0.6545 

13 0.2123±0.2007 0.2975±0.2600 0.0330 0.9606 

14 0.1858±0.2156 0.2543±0.2171 1.5255 0.6952 

15 0.0124±0.0236 0.0104±0.0291 0.9774 0.7481 

16 0.0240±0.0777 0.0156±0.0383 0.0001 0.9994 

17 0.0318±0.0598 0.0207±0.0753 2.6410 0.6545 

18 0.1037±0.1710 0.1207±0.1898 0.0425 0.9606 

19 0.0633±0.1326 0.0645±0.1427 1.9735 0.6545 

20 0.2110±0.2281 0.1817±0.2037 0.0390 0.9606 

21 0.0871±0.1786 0.0524±0.1068 0.1772 0.9141 

22 0.0631±0.1299 0.0410±0.0971 0.0520 0.9606 

23 0.1464±0.1861 0.1600±0.1817 0.7637 0.8418 

24 0.0935±0.1420 0.0731±0.1033 0.6296 0.8588 

25 0.0674±0.1001 0.0966±0.1563 0.0005 0.9994 

26 0.1240±0.1604 0.1073±0.1250 0.0000 0.9994 

27 0.0268±0.0515 0.0437±0.0881 0.1884 0.9141 

28 0.0297±0.0693 0.0062±0.0156 3.8854 0.6545 

29 0.0431±0.1155 0.0505±0.0872 3.5571 0.6545 

30 0.0807±0.1374 0.0407±0.0849 2.6490 0.6545 

31 0.0718±0.1064 0.0315±0.0428 0.2022 0.9141 

32 0.0607±0.1042 0.0594±0.0740 1.9043 0.6545 

33 0.0779±0.1147 0.0435±0.0601 2.0050 0.6545 

34 0.1852±0.1937 0.2137±0.2130 0.0409 0.9606 

35 0.1526±0.2134 0.1521±0.1962 1.6006 0.6952 

36 0.1298±0.1491 0.1889±0.2064 0.2258 0.9141 

37 0.0376±0.0787 0.0452±0.0985 0.3669 0.9141 

38 0.0095±0.0291 0.0253±0.0797 1.1937 0.6952 

39 0.0462±0.0828 0.0895±0.1617 0.1229 0.9285 

40 0.0648±0.1120 0.0882±0.1388 0.1739 0.9141 

41 0.0825±0.1417 0.0972±0.1815 0.3391 0.9141 

42 0.0096±0.0266 0.0088±0.0249 0.0000 0.9994 

43 0.0217±0.0451 0.0044±0.0135 4.5188 0.6545 

44 0.0142±0.0458 0.0069±0.0236 0.3833 0.9141 

45 0.0627±0.1226 0.0394±0.0802 0.6853 0.8568 

46 0.0076±0.0306 0.0146±0.0369 1.9627 0.6545 
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Table A6. Statistical analysis results based on gender, for eccentricity. 
 

Functional region 
Males 

Mean±SD 

Females 

Mean±SD 

 
𝑭 

 
p-values 

1 0.8399±0.1221 0.8133±0.1173 1.1702 0.9525 

2 0.8046±0.1297 0.8233±0.1130 0.7500 0.9525 

3 0.6639±0.1008 0.6420±0.1085 1.3582 0.9525 

4 0.6910±0.1098 0.6977±0.1088 0.1093 0.9525 

5 0.7085±0.1095 0.7215±0.0993 0.4924 0.9525 

6 0.7090±0.1040 0.6834±0.1267 1.6624 0.9525 

7 0.7586±0.1164 0.7269±0.1305 1.9638 0.9525 

8 0.8520±0.1079 0.8521±0.1011 0.0015 0.9895 

9 0.7902±0.1154 0.7923±0.1093 0.0189 0.9844 

10 0.6357±0.0838 0.6269±0.0903 0.3525 0.9525 

11 0.6810±0.1083 0.6710±0.1013 0.1836 0.9525 

12 0.6997±0.1080 0.6927±0.1002 0.0833 0.9525 

13 0.6921±0.0999 0.6613±0.1143 2.5408 0.9525 

14 0.6978±0.1136 0.6866±0.1074 0.2390 0.9525 

15 0.8193±0.1012 0.8126±0.1197 0.1702 0.9525 

16 0.7743±0.1282 0.7893±0.1246 0.3798 0.9525 

17 0.7607±0.1047 0.7551±0.1047 0.0801 0.9525 

18 0.7163±0.1143 0.7276±0.1181 0.2261 0.9525 

19 0.7752±0.1296 0.7808±0.1255 0.0616 0.9525 

20 0.6997±0.1059 0.6936±0.0988 0.0596 0.9525 

21 0.7136±0.1026 0.7397±0.1059 1.5577 0.9525 

22 0.7803±0.1256 0.7785±0.1183 0.0002 0.9895 

23 0.7043±0.0986 0.7112±0.0950 0.1502 0.9525 

24 0.7405±0.1212 0.7579±0.1001 0.8511 0.9525 

25 0.7747±0.1259 0.7765±0.1247 0.0054 0.9844 

26 0.7280±0.1093 0.7358±0.1035 0.1545 0.9525 

27 0.7785±0.1137 0.7624±0.0940 0.4415 0.9525 

28 0.7835±0.1263 0.8268±0.1246 3.0531 0.9525 

29 0.7557±0.1215 0.7638±0.1239 0.0997 0.9525 

30 0.7204±0.1134 0.8234±0.1114 21.0082 0.0006 

31 0.7572±0.1102 0.7909±0.1093 2.3463 0.9525 

32 0.7371±0.1019 0.7417±0.1019 0.0427 0.9623 

33 0.7363±0.1052 0.7567±0.1044 0.9440 0.9525 

34 0.6658±0.1048 0.6698±0.0867 0.1037 0.9525 

35 0.7171±0.1142 0.6822±0.0799 2.4159 0.9525 

36 0.7006±0.1131 0.6927±0.0924 0.0678 0.9525 

37 0.7632±0.1164 0.7462±0.0936 0.4464 0.9525 

38 0.8027±0.1158 0.7972±0.1241 0.0786 0.9525 

39 0.7425±0.1304 0.7360±0.0976 0.0061 0.9844 

40 0.7638±0.1255 0.7484±0.1186 0.3437 0.9525 

41 0.7462±0.1121 0.7268±0.1174 0.7848 0.9525 

42 0.8233±0.1189 0.8062±0.1185 0.5242 0.9525 

43 0.8168±0.1189 0.8345±0.1147 0.6098 0.9525 

44 0.8522±0.1076 0.8269±0.1159 1.3860 0.9525 

45 0.7767±0.1147 0.7777±0.1003 0.0146 0.9844 

46 0.8744±0.1102 0.8345±0.1041 3.2345 0.9525 
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