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Abstract 

In recent years, there has been a strong consensus on the changes in climate caused by increased 

concentrations of anthropogenic greenhouse gas emissions. Global CO2 emission rates have been 

following high-end climate change pathways leading to a future global temperature that is likely to 

surpass the target limits of +1.5oC and +2oC, and reach levels of +4oC and higher at the end of the 

21st century. Freshwater availability under such conditions is a key issue of concern and thus, 

scientific research has focused on estimating the range of changes in the future climate and the 

effectiveness of different adaptation strategies. The main tool for the investigation of future climate 

is the utilization of global climate models (GCMs). GCMs are based on physical principles that 

describe the components of the climate system. The next step for hydrological impacts’ assessments 

is to force global hydrological models (GHMs) or land surface models (LSMs) with GCM outputs. 

Due to the systematic biases they feature, GCM outputs need some kind of bias correction prior to 

their application as forcing to impact models, especially for hydrological studies. Most bias 

correction techniques focus mainly on the variables of precipitation and temperature. However 

most state-of-art hydrological models require more forcing variables, additionally to precipitation 

and temperature, such as radiation, humidity, air pressure and wind speed. The biases in these 

additional variables can hinder hydrological simulations, but the effect of the bias of each variable 

is unexplored. 

In the present thesis, a methodological framework of a multi-faceted assessment of the effects of 

high-end climate change on the global hydrological regime is presented. The tool for the 

hydrological simulations in our study is the LSM JULES, a physically based model operating at 

the global scale. The first component of our methodological framework is the evaluation of the 

model for a historical period and the assessment of the model’s sensitivity to input forcing. A runoff 

routing algorithm is designed and implemented, to allow the comparison of the model output with 

discharge measurements. The second part of the methodological framework aims to assess the 

effect of the GCM biases on the performed runoff simulations, with the scope of deciding on the 

meteorological variables that should be included in bias correction. To this end, a methodology for 

the classification of the effect of biases in four effect categories (ECs), based on the magnitude and 

sensitivity of runoff changes, is developed and applied. The final part of the methodological 

framework of this thesis is the assessment of hydrological climate change impacts under high-end 
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warming scenarios. Assessment of impacts focuses on water availability and droughts at the global, 

European, regional and basin scale, employing a number of different and complementary methods. 

Climate change impacts are examined for different levels of warming (+1.5, +2 and +4oC) and the 

uncertainty in the projected changes is assessed throughout this analysis. 

The results of this study could assist scientists make informed decisions on variables and methods 

that should be considered in future climate change impacts’ studies, focusing on the uncertainty 

component of the impact analysis, by examining a wide range of “hydrologically opposing” future 

climates. The results of the present study could also be useful for policy makers, who need 

information relevant to this thesis, in order to decide on planning and legislations regarding climate 

change adaptation and mitigation.
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Περίληψη 

Τα τελευταία χρόνια έχει επιτευχθεί μια μεγάλη ομοφωνία της επιστημονικής κοινότητας ως προς 

τις αλλαγές του κλίματος που οφείλονται στην αυξημένη συγκέντρωση εκπομπών ανθρωπογενών 

αερίων του θερμοκηπίου. Οι εκπομπές του διοξειδίου του άνθρακα σε παγκόσμιο επίπεδο, 

ακολουθούν τα πιο ακραία σενάρια κλιματικής αλλαγής, οδηγώντας σε μελλοντικές παγκόσμιες 

θερμοκρασίες που πιθανώς να ξεπεράσουν τα όρια-στόχους των +1.5οC και +2οC, και να φτάσουν 

σε επίπεδα των +4οC ή και ακόμα μεγαλύτερης υπερθέρμανσης στα τέλη του 21ου αιώνα. Η 

διαθεσιμότητα υδατικών πόρων υπό αυτές τις συνθήκες, είναι ένα ζήτημα εξαιρετικής σημασίας, 

γεγονός που έχει στρέψει την επιστημονική έρευνα στην εκτίμηση του εύρους των αλλαγών υπό 

πιθανά μελλοντικά κλιματικά σενάρια και της αποτελεσματικότητας διαφόρων στρατηγικών 

προσαρμογής στην κλιματική αλλαγή. Το βασικό εργαλείο για την μελέτη του κλίματος είναι η 

χρήση των παγκόσμιων κλιματικών μοντέλων (GCMs). Τα GCMs βασίζονται σε φυσικούς νόμους 

που περιγράφουν τα συστατικά μέρη του κλιματικού συστήματος. Το επόμενο βήμα για την μελέτη 

επιπτώσεων στην υδρολογία είναι η εισαγωγή των δεδομένων από GCMs σε παγκόσμια 

υδρολογικά μοντέλα (GHMs) ή μοντέλα προσομοίωσης διεργασιών επιφανείας (LSMs). Εξαιτίας 

των μεροληπτικών σφαλμάτων που εμφανίζουν, τα δεδομένα των GCMs χρειάζονται κάποια 

είδους διόρθωση πριν χρησιμοποιηθούν ως δεδομένα εισόδου για τα μοντέλα εκτίμησης 

επιπτώσεων, ιδιαίτερα για μελέτες υδρολογικού χαρακτήρα. Οι περισσότερες τεχνικές διόρθωσης 

των μεροληπτικών αυτών σφαλμάτων, εστιάζουν στις παραμέτρους της βροχόπτωσης και της 

θερμοκρασίας. Τα περισσότερα όμως υδρολογικά μοντέλα προηγμένης τεχνολογίας, χρειάζονται 

πιο πολλές παραμέτρους εισόδου, επιπρόσθετα από την βροχόπτωση και την θερμοκρασία, όπως 

η ακτινοβολία, η υγρασία, η πίεση και η ταχύτητα του ανέμου. Αν και τα σφάλματα σε αυτές τις 

επιπρόσθετες παραμέτρους μπορεί να προκαλέσουν προβλήματα στις υδρολογικές προσομοιώσεις, 

τα χαρακτηριστικά της επίδρασης του μεροληπτικού σφάλματος κάθε παραμέτρου, μεμονωμένα, 

δεν έχουν μελετηθεί. 

Στην παρούσα εργασία, παρουσιάζεται ένα μεθοδολογικό πλαίσιο μια πολύπλευρης εκτίμησης των 

επιπτώσεων ακραίων σεναρίων κλιματικής αλλαγής στο παγκόσμιο υδρολογικό καθεστώς. Το 

εργαλείο που χρησιμοποιείται για τις υδρολογικές προσομοιώσεις είναι το μοντέλο επιφανειακών 

διεργασιών JULES, ένα μοντέλο βιοφυσικής βάσης που λειτουργεί σε παγκόσμια κλίμακα. Το 

πρώτο κομμάτι του μεθοδολογικού πλαισίου είναι η αξιολόγηση των αποτελεσμάτων του μοντέλου 
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για μια πρόσφατη ιστορική περίοδο και η εκτίμηση της ευαισθησίας του στις παραμέτρους 

εισόδου. Για τη σύγκριση των προσομοιώσεων με μετρήσεις παροχής, σχεδιάστηκε και 

εφαρμόστηκε ένας αλγόριθμος διόδευσης της απορροής. Το δεύτερο κομμάτι του μεθοδολογικού 

πλαισίου στοχεύει στην εκτίμηση της επίδρασης των μεροληπτικών σφαλμάτων των GCMs στις 

προσομοιώσεις της απορροής, ούτως ώστε να ποσοτικοποιηθεί η ευαισθησία και να επιλεχθούν οι 

μετεωρολογικές παράμετροι που θα πρέπει να ενταχθούν στη διαδικασία διόρθωσης μεροληπτικού 

σφάλματος. Μια μεθοδολογία για την κατηγοριοποίηση των επιδράσεων των σφάλματων σε 

τέσσερις κατηγορίες, με βάση το μέγεθος και την ευαισθησία των αλλαγών στην απορροή, 

αναπτύχθηκε και εφαρμόστηκε για τους παραπάνω σκοπούς. Το τελευταίο κομμάτι του 

μεθοδολογικού πλαισίου της παρούσας διατριβής είναι η εκτίμηση υδρολογικής φύσεως 

επιπτώσεων ακραίων σεναρίων κλιματικής αλλαγής. Η εκτίμηση των επιπτώσεων εστιάζει στην 

διαθεσιμότητα υδατικών πόρων και στις συνθήκες ξηρασίας, σε παγκόσμια, Ευρωπαϊκή και τοπική 

κλίμακα καθώς και σε επίπεδο λεκάνης απορροής, χρησιμοποιώντας πληθώρα διαφορετικών και 

συμπληρωματικών μεθόδων. Οι επιπτώσεις της κλιματικής αλλαγής εξετάζονται για διάφορα 

επίπεδα θέρμανσης (+1.5oC, +2oC και +4oC) ενώ παράλληλα γίνεται και εκτίμηση της 

αβεβαιότητας στις προβαλλόμενες αλλαγές. 

Τα αποτελέσματα της παρούσας εργασίας αποσκοπούν να βοηθήσουν την επιστημονική κοινότητα 

στην λήψη ενημερωμένων αποφάσεων σχετικά με παραμέτρους και μεθόδους που θα πρέπει να 

ληφθούν υπόψη σε μελλοντικές μελέτες επιπτώσεων της κλιματικής αλλαγής, εστιάζοντας στην 

αποφυγή της υπερβολικής βεβαιότητας εξετάζοντας μια πληθώρα «υδρολογικά αντιφατικών» 

κλιματικών προσομοιώσεων. Τα αποτελέσματα της παρούσας εργασίας είναι επίσης χρήσιμα 

στους φορείς χάραξης κεντρικής πολιτικής σε διακρατικό επίπεδο, καθώς οι τελευταίοι χρειάζονται 

σχετικές με την παρούσα εργασία πληροφορίες ώστε να αποφασίσουν σε σχέδια και νομοθεσίες 

σχετικά με την προσαρμογή και την μετρίαση της κλιματικής αλλαγής.
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Chapter 1. Introduction 

1.1. The climate and its basic mechanisms 

1.1.1. Climate definition and components 

Climate is generally defined as the description, in terms of the mean and variability, of relevant 

atmospheric variables such as temperature, precipitation and wind. Climate can thus be viewed as 

an aggregate of weather, or more precisely, as the probability distribution of possible weather states 

(Goose et al., 2010; Ridgwell and Valdes, 2009). Thus, the depiction of the climate of a specific 

region has to involve analysis of mean conditions, seasonality and of the probability of extremes 

(such as severe storms and heat waves). The World Meteorological Organisation (WMO), suggest 

a time period of thirty years for analysing climate statistics. 

The climate system is comprised of the following components (Goose et al., 2010):  

 The atmosphere: dry air is composed of nitrogen (~78 % v/v), oxygen (~21 % v/v) and 

other trace gases such as argon, carbon dioxide, neon, helium, methane, and krypton. Water 

vapour constitutes around 0.25 % of the mass of the atmosphere on average, but this fraction 

is highly variant, ranging from around 0 % in the coldest parts of the atmosphere to 5 % for 

areas of high temperature and humidity. 

 The ocean: covers about 71 % of the Earth’s surface and is composed of 96.5 % water, 3.5 

% dissolved salts, particles, gases, and organic matter. 

 The cryosphere: is the portion of the Earth’s surface where water is encountered in solid 

form. The cryosphere includes sea ice, lake ice, river ice, snow cover, glaciers, ice caps, ice 

sheets, and frozen ground. 

 The land surface and terrestrial biosphere: climate is influenced by the distribution and 

topography of the land surface and by the presence of terrestrial vegetation. 

1.1.2. Energy balance of the climate system and the greenhouse effect 

The climate system receives energy in the form of electromagnetic radiation by the Sun. In an 

equilibrium climate, the temperature of the system is constant, meaning that the input energy from 
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the Sun is balanced by an equivalent energy loss by the climate system. Outgoing energy is the 

radiation emitted by the Earth. The average temperature of the Earth is the result of the balance 

between the incoming solar energy absorbed by the Earth and the radiation emitted by the Earth 

into space. As radiations emitted by the Earth are of a longer wavelength compared to solar 

radiation, the term longwave radiation is used for Earth’s radiation and shortwave radiation 

describes input solar radiation (Goose et al., 2010). As shown in Figure 1, solar radiation can be 

reflected by clouds and aerosols or be absorbed in the atmosphere. Radiation that is transmitted 

through the atmosphere will be reflected or absorbed by the land surface and will contribute to 

sensible and latent heat fluxes. After the absorption of shortwave radiation, the land surface emits 

longwave radiation, a fraction of which escapes to space while another fraction is absorbed by the 

atmosphere and re-emitted back to the land surface. 

The latter mechanism is the basis of the “greenhouse effect”, a term used to describe the increase 

of the Earth’s temperature due to re-emission of longwave radiation by atmospheric aerosols and 

gases. Specific atmospheric gases (called greenhouse gases – GHGs) are nearly transparent to 

incoming shortwave radiation but almost opaque to outgoing longwave radiation. This way they 

prevent the longwave radiation from exiting the atmosphere, causing increased energy in the system 

and thus increased temperature (Bowman, 1990; Jain, 1993). Natural GHGs are water vapour and 

ozone (O3). Other GHGs whose concentrations have been increased due to anthropogenic activities 

are: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and chlorofluorocarbons (CFCs). 
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Figure 1. The Earths’s global annual mean energy budget (W/m2). The broad arrows indicate the schematic 

flow of energy in proportion to their importance (Trenberth et al., 2009). 

 

The energy balance at the land surface is described by equation (1): 

 (1 − 𝑎) ∙ 𝑆𝑤↓ +  𝐿𝑤↓ =  𝐿𝑤↑ + 𝐻𝑠 + 𝜆𝐸 + 𝐺 (1) 

Where 𝑎 [-] is the albedo of the surface, 𝑆𝑤↓[W/m2] is the downward shortwave radiation,  𝐿𝑤↓ 

[W/m2] is the downward longwave radiation,  𝐿𝑤↑ [W/m2] is the upward longwave radiation, 𝐻𝑠 

[W/m2] is sensible heat flux from the surface, 𝜆𝐸 [W/m2] is latent heat flux from the surface and 𝐺 

[W/m2] is heat conducted away from the surface. 

Net radiation is defined by equation (2): 

 𝑅𝑛 = (1 − 𝑎) ∙ 𝑆𝑤↓ + ( 𝐿𝑤↓ −  𝐿𝑤↑) (2) 
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Based on net radiation, the surface energy balance can be simplified to equation (3): 

 𝑅𝑛 = 𝐻𝑠 + 𝜆𝐸 + 𝐺 (3) 

This equation describes the balance of net radiation by sensible, latent and conduction heat fluxes. 

1.1.3. Hydrological cycle 

Water and energy cycles are tightly connected. Water vapour is the most important GHG and thus 

poses a significant effect on radiative balance. The hydrological cycle is driven by the incoming 

solar energy, which causes the vertical transfer of water from Earth to the atmosphere through the 

process of evapotranspiration (evaporation from surfaces and loss of water from plant leaves – 

transpiration). Moreover, water plays a dominant role in energy transfers between the land surface 

and the atmosphere. Latent heat is released during water vapour condensation and sensible heat is 

transferred along with water vapour in the atmosphere and water in the ocean. The largest water 

reservoirs are the oceans, followed by the cryosphere (Figure 2). A relatively small fraction of the 

global water budget corresponds to storage in the atmosphere. If the stored atmospheric water 

precipitated at once, the precipitation would correspond to only 2.5 % of global annual precipitation 

(Goose et al., 2010). Thus, the atmospheric water is quickly replaced through evaporation and 

transpiration. Most of the water evaporated from the ocean will precipitate back to the ocean (and 

respectively for the land surface). At the same time, around 35 % of total precipitation over land 

corresponds to water precipitated from the ocean. This ocean to land water transfer is balanced by 

the surface flow of water (mainly river flow) from the land back to the ocean. 
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Figure 2. The long-term mean global hydrological cycle. Estimates of the main water reservoirs in plain font 

(e.g. soil moisture) are given in 103
 km3

 and estimates of the flows between the reservoirs in italic (e.g. 

Surface flow) are given in 103
 km3/year. Figure from Trenberth et al., (2007) who provide information about 

the sources used to estimate the magnitude of the elements of the cycle and about the uncertainties of the 

various terms. 

 

At the hydrological basin scale, the hydrological budget describes the balance between hydrological 

inputs and outputs. For a specific basin, the water balance is described by equation (4): 

 𝛥𝑆 = 𝑃 − 𝐸𝑇 − 𝑄 + 𝐺𝑖𝑛 − 𝐺𝑜𝑢𝑡 (4) 

Where 𝛥𝑆 is the change in storage in the basin over some period of time, 𝑃 is precipitation, 𝐸𝑇 is 

evapotranspiration, 𝑄 is discharge, and 𝐺𝑖𝑛and 𝐺𝑜𝑢𝑡 are groundwater inflows and outflows from 

the basin. Storage and groundwater inflows and outflows can be considered as negligible, and the 

water balance equation is simplified to equation (5):  

 𝑃 = 𝐸𝑇 + 𝑄 (5) 
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Where precipitation expresses the water that enters the basin system and evapotranspiration and 

discharge the water leaving the basin. 

1.1.4. Carbon cycle 

The carbon cycle is important for the climate as it involves changes in the atmospheric 

concentration of two important GHGs: carbon dioxide and methane. Carbon in the Earth system is 

stored in the following main reservoirs: i) in the biosphere – as organic molecules in living and 

dead organisms, ii) in the atmosphere – as gas carbon dioxide, iii) in soils – as organic matter, iv) 

in the lithosphere – as fossil fuels and sedimentary rock deposits, v) in the oceans – as dissolved 

atmospheric carbon dioxide and as carbonate shells in marine organisms. Various processes govern 

the exchange of carbon between the active carbon pools. Such processes, for example, are 

photosynthesis and respiration for the land surface and the atmosphere, and dissolution and 

diffusion between the ocean and the atmosphere. 

At the pre-industrial period (before 1750), the exchanges of carbon between the different pools 

were close to equilibrium. In the last 150 years, anthropogenic activity related to fossil fuel 

combustion, deforestation and agricultural processes has resulted in a dramatic increase in the 

carbon flux into the atmosphere (Figure 3). Around 45 % of the anthropogenically released carbon 

dioxide remains in the atmosphere, while the remaining fraction has been absorbed by the ocean 

(~30 %) or the terrestrial biosphere (~25 %) (Goose et al., 2010). In the atmosphere, the 

concentration of carbon dioxide has increased from around 280 ppm in 1800, to 384 ppm in 2007, 

while it exceeded 400 pm during 2017 (Figure 4). 
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Figure 3. The global carbon cycle for the 1990s, showing the main annual fluxes in GtC yr-1: pre-industrial 

“natural” fluxes are shown in black and “anthropogenic” fluxes in red (Denman et al., 2007). 

 

Figure 4. Monthly mean atmospheric carbon dioxide at Mauna Loa Observatory, Hawaii (in ppm). The red 

curve is the monthly measurement of carbon dioxide on Mauna Loa, expressed as the mole fraction in dry 

air. The black curve represents the seasonally corrected data smoothed with a 6-month window. Source: 

NOAA/ESRL (https://www.esrl.noaa.gov/gmd/ccgg/trends/full.html). 
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1.1.5. Enhancement of the natural greenhouse effect 

The increased amounts of carbon dioxide and other GHGs that humans have released into the 

Earth’s atmosphere since the industrial revolution, have resulted in an enhancement of the natural 

greenhouse effect. With higher concentrations of GHGs, additional heat is retained in the climate 

system, causing an increase in global temperature. The enhanced greenhouse effect is also referred 

to as global warming or anthropogenic climate change. 

 

1.2. Studying climate and climate change 

1.2.1. Modelling the climate system 

Climate models 

Climate models are of the most essential tools for studying and understanding climate and climate 

change. Climate models are mathematical representations of the climate system, based on physical, 

biological and chemical principles that describe each component of the system and their complex 

interactions. The equations that describe the system are discretized in space and time, in order to 

be solved numerically. 

The main types of climate models, from lower to higher complexity are: energy balance models 

(EBMs), Earth system models of intermediate complexity (EMICs) and global climate models 

(GCMs). EBMs simulate the energy balance of the climate system as a whole, without accounting 

for the components of the system and the Earth’s geography. EMICs include a representation of the 

Earth’s geography, in a relatively coarse and simplified manner. GCMs are the most precise and 

complex tool for the simulation of the climate system. GCMs have higher resolution compared to 

the other climate model types and represent explicitly a wide range of atmospheric and oceanic 

processes. The typical spatial resolution of the GCMs is in the order of 100 to 300 km. Moreover, 

state-of-the-art GCMs include biogeochemical processes of the climate system (Earth system 

models – ESMs) (Katzav and Parker, 2015). 
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Regional Climate Models 

Complementary to GCMs, regional climate models (RCMs) have higher resolution and allow a 

more detailed representation of regional scale processes. However, RCM domain covers only a 

portion of the globe (at continent or sub-continent level). RCMs run over a specified region, using 

boundary conditions from GCMs. 

Parameterizations in GCMs 

Even for the highest resolution GCMs, there are still important processes of the climate system, 

such as cloud phenomena and ocean eddies, that are related to more detailed spatial scales. 

Moreover, some phenomena have not been understood in a degree that would allow their explicit 

representation in a model. Consequently, parameterizations of these physical processes are 

designed and implemented in the models in order to approximate certain phenomena. As there is 

not a definite way to be followed for the construction of parametrizations, the latter constitute a 

considerable source of uncertainty in GCMs. 

1.2.2. Climate change scenarios 

Changes in climate are largely related to changes in external forcing. IPCC has employed the 

concept of radiative forcing to quantify the effect posed on climate by changes in parameters that 

affect the equilibrium of the climate system (such as the concentration of GHGs in the atmosphere). 

According to the IPCC 5th Assessment Report: “ Radiative forcing is a measure of the net change 

in the energy balance of the Earth system in response to some external perturbation, with positive 

radiative forcing leading to a warming and negative radiative forcing to a cooling”. 

By inserting estimates of the changes in radiative forcing in climate models, “predictions” 

(scientifically termed as projections) of the future climate are produced. Changes in radiative 

forcing are described through different emission scenarios for GHGs, various pollutants, land use 

change, etc. The latest set of scenarios includes four representative concentration pathways (RCPs), 

which cover a wide range of future changes in radiative forcing (van Vuuren et al., 2011). The four 

RCPs, RCP2.6, RCP4.5, RCP6, and RCP8.5, are named after the value of radiative forcing in the 

year 2100 relative to pre-industrial values (+2.6, +4.5, +6.0, and +8.5 W/m2, respectively). The 
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trends in radiative forcing, carbon dioxide and methane for the different RCPs are shown in Figure 

5. 

 

Figure 5. Trends in radiative forcing (left), carbon dioxide (middle) and methane (right) (adapted from van 

Vuuren et al., 2011). 

 

1.2.3. Impact models 

In order to assess climate change impacts for different sectors, climate model outputs based on an 

emission scenario are used to force respective impact models, specifically designed to represent the 

examined sector (e.g. water, biophysical, energy, health). For hydrological purposes, the most 

important tools for examining the impacts of climate change at the global scale are two model 

categories: global hydrological models (GHMs) and land surface models (LSMs). 

GHMs describe the lateral transfer of water and are focused on water resources (Haddeland et al. 

2011) while LSMs focus on flux exchanges mainly at the vertical direction, simulating the energy, 

water and carbon exchanges between the land surface and the atmosphere (Zulkafli et al. 2013), as 

they were originally developed to provide the lower boundary for climate models. GHMs aim at 

analysing global water resources and operate at a daily or monthly time-step. The processes 

typically described within GHMs are: evaporation, soil moisture, river flow, irrigation demands, 

reservoir operation, and water extraction. On the other hand, LSMs usually employ an hourly time-
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step and represent the following processes: surface energy balance, photosynthesis and carbon 

fluxes, soil temperature and moisture, and river flow. 

It should be noted however that for some models, their classification in one of the two categories 

cannot be definitive, and they have been reported in the literature both as GHMs and as LSMs. 

According to the classification proposed by Haddeland et al. (2011), the models that solve the water 

balance are considered as GHMs and the models that solve both the water and energy balance are 

categorized as LSMs. 

1.2.4. Biases in climate modeling  

Apart from the spatial resolution issue discussed above, GCM uncertainty can stem from 

uncertainties regarding the boundary and initial model conditions (Bromwich et al., 2013), and 

from misrepresentations of physical atmospheric processes (Maraun, 2012). These uncertainties 

result in GCM biases that express as deviations of the modelled climate variables from respective 

historical observations. As a result, outcomes of hydrological climate change impact studies have 

been reported to become unrealistic without a prior adjustment of climate forcing biases (Ehret et 

al., 2012; Hansen et al., 2006; Harding et al., 2014; Sharma et al., 2007). To overcome this 

limitation, various bias correction techniques have been developed to post-process climate model 

data to statistically match observations. Bias correction methods are calibrated based on a historical 

time-period for which observations are available. The adjustment is then applied to both modelled 

historical period and to the period beyond the time-frame of the observations. 

Bias correction procedures have mainly focused on adjusting the biases of precipitation and/or 

temperature (Christensen et al., 2008; Li et al., 2010; Miao et al., 2016; Photiadou et al., 2016; Piani 

et al., 2010). These variables have traditionally been prioritized for bias correction as they are 

considered the most important driving variables of hydrological processes in modelling 

applications -even though from a physical perspective radiation is the driving force of the 

hydrological cycle. However, many state-of-the-art regional models, GHMs, and LSMs, require -

apart from precipitation and temperature- additional meteorological forcing, such as solar radiation, 

air humidity, surface air pressure and wind speed (a summary of the input variables needed by 

various hydrological models can be found in the Supplement of Hattermann et al. (2017). For this 

reason, biases in variables like radiation, humidity and wind speed can hinder the representation of 
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hydrological fluxes such as runoff, evapotranspiration (ET), snow accumulation and snowmelt by 

the impact models (Haddeland et al., 2012; Hagemann et al., 2011a), indicating that bias correction 

should be extended to include more input variables. 

Bias correction itself also has limitations, as it is a demanding process, both in terms of 

computational cost and of the involved methodological development. Moreover, the use of bias 

correction is challenged by conceptual pitfalls such as the disruption of the physical consistency of 

climate variables, the mass/energy balance and the omission of correction feedback mechanisms to 

other climate variables (Ehret et al., 2012). For these reasons, it is worth examining whether the 

effect of biases of input variables on hydrological outputs justifies the use of bias correction. Even 

though this information would be key for making informed decisions on the variables that should 

be bias corrected for a specific model application, few relevant studies can be found in literature. 

Some insight is given by Haddeland et al. (2012), who investigates the combined effect of bias 

correcting radiation, humidity and wind speed in addition to precipitation and temperature on 

hydrological simulations. However, the extent to which individual forcing variable biases affect 

hydrological simulations and the way that this effect varies spatially are important research 

questions that remain open. 

1.2.5. The modelling “chain” 

The tools and methods employed for climate and climate change impacts’ studies constitute a 

modelling “chain”, which is summarized in Figure 6. Scenarios of future GHG emissions are used 

to drive GCMs, which produce simulations of the future climate. GCM output can be used directly 

as forcing to impact models. Alternatively, the steps of downscaling with the used of RCMs and/or 

correction for systematic GCM biases with bias correction can intervene to improve the 

representation of observed climate by the GCMs. The impact model output is used to produce the 

final climate change impacts’ assessment for the examined sector (e.g. freshwater, agriculture, 

biomes, energy, health, etc.). 
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Figure 6. Climate change impacts’ assessment modelling chain. 

 

1.3. The need for climate change impact studies 

With the Paris Agreement in 2016, the United Nations Framework Convention on Climate Change, 

decided to pursue efforts to limit global warming to well below +2ºC. The increasing trajectory of 

GHG emissions up to present day however, constitute the accomplishment of the above target 

increasingly difficult. Global CO2 emission rates have been following high-end climate change 

pathways leading to a future global temperature that is likely to surpass the target limit of +2oC, 

and reach levels of +4oC and higher at the end of the 21st century. Currently, global mean 

temperature has increased by 0.85oC relative to pre-industrial and already 18 % of the moderate 

daily precipitation extremes is attributed to this warming. At +2oC, the fraction of the global 

warming driven precipitation extremes is projected to rise up to 40 % (Fischer and Knutti, 2015). 
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By the end of the 21st century, the seasonality of river discharge is expected to get more pronounced 

for one-third of the global land surface, which translates to increased high flows and decreased low 

flows (Van Vliet et al., 2013). By the mid-century, the hydrological regime is projected to change 

considerably for a significant part of the global land surface (Arnell and Gosling, 2013). 

In this context, information on future climate conditions is of paramount importance for policy 

makers at the national and international level, in order to plan actions and adaptation strategies to 

climate change under higher levels of warming. International climate policy often views climate 

change as levels of warming compared to pre-industrial conditions, and require information on the 

impacts of different levels of warming in order to decide on the target of warming that is set. 

 

1.4. Hydrological impacts under a changing climate 

Especially for water resources, the effect of global warming raises serious concerns on future water 

availability, especially under the pressure of the growing global population and the consequent 

increased food production needs. It is projected that the number of people coping with significantly 

reduced water availability will increase by 15 % globally due to climate change, while the 

percentage of the global population living under conditions of absolute water scarcity is also 

projected to increase (Schewe et al., 2014). 

Moreover, under global warming, hydrological extremes –such as droughts and floods- are 

expected to become more often and destructive. Drought events affect millions of people each year 

and constitute one of the most disruptive natural events for the environment, the society and even 

the economy (Carrão et al., 2016). Drought is an extreme hydrological event affecting land areas, 

characterized by periods of below normal precipitation over a period of months to years. Drought 

is defined as a dry period compared to normal conditions of a region, and in that sense is different 

from aridity which is a permanent condition that characterizes a region (Dai, 2011). Droughts can 

be classified into three categories (Dai, 2011; Mishra and Singh, 2011): i) Meteorological drought, 

which is period of months or years with below normal precipitation, triggered by anomalies in 

large-scale atmospheric circulation patterns, ii) Hydrological drought, which is related to river 

discharge and water storages (e.g. lakes and reservoirs) that have fallen below their long-term mean 
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level, and iii) Agricultural drought, which is a period of reduced soil moisture, caused by a 

sustained lack of precipitation and/or increased evapotranspiration. A meteorological drought can 

evolve into an agricultural or hydrological drought, but other factors (such as soil moisture stores, 

temperature, water management, soil erosion) can enhance or moderate the progression of 

meteorological drought into the other categories. 

The runoff production is the component of the hydrological cycle most representative to describe 

freshwater availability, as it expresses the amount of available water after the evapotranspiration 

and infiltration losses and before any stream formation process intervenes. Furthermore, ensembles 

of mean annual and seasonal runoff can provide information about the climate change impact on 

river flows (Döll and Schmied, 2012). Studies have shown that changes in runoff are not linearly 

correlated with changes in global mean temperature (Arnell and Gosling, 2013), neither are 

meteorological with hydrological droughts (van Huijgevoort et al., 2013), concluding that for 

climate change impact assessments it is fundamental to use an impact model to translate the 

precipitation derived signal into runoff. 

A substantial number of recent large-scale climate change impact studies examine the future 

hydrological state analysing projections of runoff or river flow. Fung et al. (2011) compared the 

projected future water availability under +2oC and +4oC of global warming, forcing the MacPDM 

GHM with twenty-two GCMs from the CMIP3 experiment. Arnell & Gosling (2013) performed a 

global assessment of the climate driven changes in runoff based hydrologic indicators in mid-21st 

century, using multiple scenarios derived from the CMIP3 experiment. Schneider et al. (2013) 

focused on the impacts of climate change for the European river flows, using data from three bias 

corrected GCM scenarios. Van Vliet et al. (2013) performed a global assessment of future river 

discharge and temperature under two climate change scenarios, forcing a GHM with an ensemble 

of bias corrected GCM output. They found that the combination of lower low flows with increased 

river water temperature can lead to water quality and ecosystem degradation in south-eastern 

United States, Europe, eastern China, southern Africa and southern Australia. An investigation of 

the future trends in flood risk at the global scale was performed by Dankers et al. (2014) and for 

the European region by Alfieri et al. (2015). Betts et al. (2015) performed a global assessment of 

the impact posed on river flows and terrestrial ecosystems by climate and land use changes 

described by four RCPs. Various multi-model hydrological simulations have been also performed, 
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in an attempt to quantify the climate change analysis’ uncertainty resulting from the impact model 

(Hagemann et al., 2013; van Huijgevoort et al., 2013; Dankers et al., 2014). 

Significant climate change induced alterations are projected for the flow regime in Europe, with 

the most pronounced changes in magnitude projected for the Mediterranean region and the northern 

part of the continent (Schneider et al., 2013). Moreover, considering that southern Europe is 

identified as a possible hotspot where the fraction of land under drought will increase substantially 

(Prudhomme et al., 2014), along with global temperature rise exceeding +2oC, concerns for future 

water availability in Europe are raising. Prolonged water deficits during long-term droughts surpass 

the resilience of the hydrological systems and are a significant threat to water resources security in 

Europe (Parry et al., 2012). In the Euro-Mediterranean regions the severity of droughts has 

increased during the past fifty years, as a consequence of greater atmospheric evaporative demand 

resulting from temperature rise (Vicente-Serrano et al., 2014). Besides southern European areas, 

north-western and central-eastern regions appear more drought prone than the rest of Europe 

(Bonaccorso et al., 2013). Streamflow projections indicate more severe and persistent droughts in 

many parts of Europe due to climate change, except for northern and north-eastern parts of the 

continent. The opposite is projected for the middle and northern parts with a highly significant 

signal of reduced droughts that may be reversed due to intensive water use (Forzieri et al., 2014). 

Consequently European cropland affected by droughts is projected to increase seven-fold (up to 

700,000 km2/year) at about +3oC of global warming (Ciscar et al., 2014) compared to the situation 

of the last decades. Similarly, under the same warming level, European population affected by 

droughts is expected to increase by a factor of seven, overcoming the 150 million/year. 

1.5. Scope of the present dissertation 

The present dissertation focuses on providing a detailed and multi-faceted assessment of the effects 

of high-end climate change on hydrological resources at the regional, continental and global scales 

based on a wide range of “hydrologically opposing” future climates. In pursuit of the above scope, 

the following objectives have been set: 

 Set up and validate a hydrological impact model, which serves as the tool for the performed hydrological 

climate change impact assessment. 

 Better understanding of historical hydrological regimes at the regional and global scale. 
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 Understand the extent and the effect of GCM biases on historical hydrological simulations. 

 Development of a methodology for the quantification of the effect of GCM biases on historical 

hydrological simulations. 

 Provide simulations of future water availability and droughts, using state-of-the-art climate model outputs, 

under scenarios of high-end climate change. 

 Combination of methods for the analysis of water availability and droughts at the regional, European and 

global scale. 

 

1.6. Points of innovation 

The innovative points of this thesis concern the sectors of basic science, applied science, and 

information technology development as follows: 

Basic science: 

 Coupling of a routing algorithm with the output of the hydrological model, to allow model validation. 

 Development of a new methodological framework for the categorization of the effects of GCM biases. 

 Combination of methods for the analysis of runoff regimes and drought events. 

Applied science: 

 Hydrological simulations at the global scale. 

 Evaluation of the hydrological model for a historical period. Assessment of the role of the forcing dataset. 

 Processing and analysis of state-of-the-art GCM outputs and hydrological outputs, extraction of climatic 

trends. 

 Drought analysis under different methods, for droughts of different types and durations. 

 Study of climate change impacts on mean and extreme hydrological regimes. 

Information technology development: 

 Development of a routing application in MATLAB. 

 Development of the application for the categorization of the effects of GCM biases in MATLAB. 
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 Development of applications for the analysis of NetCDF type GCM output data in MATLAB. 

 Development of applications for the analysis of NetCDF type hydrological model outputs in MATLAB. 

 

1.7. Outline 

Up to this point, the theoretical background on climate and its basic mechanisms and on the science 

of studying the climate and climate change have been presented. Moreover, the need for climate 

change impact studies -which is the rationale of the present thesis-, has been advocated and a 

literature review on hydrological climate change impacts has been presented. The points of 

innovation of the thesis are also included in this first Chapter. 

In the second Chapter, the various datasets used in the thesis are presented, starting from forcing 

datasets (observational and GCM outputs) and continuing with runoff and discharge data along 

with other datasets employed for the purposes of this thesis. 

Chapter 3 includes the description of the model JULES, which was used to perform the hydrological 

simulations analysed in the present thesis. Moreover, Chapter 3 includes descriptions of the 

developed methodologies of runoff routing and categorizing the bias correction effects. Finally, the 

methodologies employed for bias correction and for climate change impact assessment are also 

included in Chapter 3. 

In Chapter 4, the regions and hydrological basins selected for regional analysis are presented. 

Chapter 5 includes the results of this study. Firstly, the historical model evaluation results are 

presented, followed by an analysis of the effect of GCM biases on runoff at the global scale. 

Afterwards, the projections of hydrological impacts under high-end climate change for the 

European region and for the global scale are analysed and inter-compared. 

In the final Chapter 6, the findings of the thesis are summarized, conclusions are drawn and 

suggestions for future research are proposed. 
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Chapter 2. Datasets 

2.1. Observational forcing datasets 

State-of-the-art meteorological datasets based on observations have been developed by different 

institutes, in response to the needs of global impact modelling. They have been designed to provide 

input for land surface water and energy balance simulations. Typically, they are provided at the 

global scale, covering an extended historical period of at least thirty years and include near surface 

values for various meteorological variables commonly required by the impact models (e.g. 

precipitation, temperature, radiation, humidity, pressure, wind speed). Typical steps for the 

derivation of observational datasets is some kind of interpolation of station and/or satellite data, 

elevation adjustments of the variables and corrections of the extracted meteorological variables 

against observations. The datasets are all based on weather models but employ different analysis 

methodologies (e.g. for interpolation or bias correction) and observation data. 

WATCH Forcing Data Methodology Applied to ERA-Interim Reanalysis (WFDEI): The WFDEI 

dataset (Weedon et al., 2014) was developed within the Integrated Project Water and Global 

Change (WATCH). The WFDEI dataset is based on its predecessor WFD (WATCH Forcing Data; 

Weedon et al. 2010), which was derived from the ERA-40 reanalysis product (Uppala et al., 2005) 

based on gridded station observations of the Climate Research Unit (CRU) and the Global 

Precipitation Climatology Centre (GPCC). WFDEI data span from 1979 to 2012, with three-hourly 

and daily time-steps. For detailed information on the derivation of the WFDEI dataset the reader is 

referred to Weedon et al. (2014). 

Princeton Global Meteorological Forcing Dataset version 2 (PGFv2): PGFv2 is an updated 

version of the dataset developed by Sheffield et al. (2006), and spans from 1901 to 2012, with three-

hourly and daily time steps. PGFv2 combines global observation-based datasets from stations and 

satellites with the National Centers for Environmental Prediction-National Center for Atmospheric 

Research (NCEP-NCAR) reanalysis. 

Global Soil Wetness Project Phase 3 (GSWP3): GSWP3 (http://hydro.iis.u-tokyo.ac.jp/GSWP3/) 

is the latest version of the GSWP dataset (Dirmeyer, 2011; Dirmeyer et al., 2006). It covers the 

time-period from 1901 to 2010, with a daily time-step. GSWP3 is derived based on the 20th Century 

http://hydro.iis.u-tokyo.ac.jp/GSWP3/
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Reanalysis (20CR) using the NCEP atmosphere land model. The correction of the variables was 

based on observational data from GPCC and CRU. 

2.2. GCM datasets 

Climate data from multiple GCMs of the latest Climate Model Inter-comparison Project (CMIP5, 

Taylor et al., (2012)) were used in this study. CMIP5 constitutes the state-of-the-art experiment for 

the climate science at the global scale. In total, three different GCM ensembles were formed: one 

for the European domain and two for the global scale. For all the ensembles, the members were 

selected so as to cover a wide range of climate sensitivities and thus explore a wide range of model 

uncertainty.  

For the European domain, regionally downscaled CMIP5 climate data from the Coordinated 

Downscaling Experiment – European Domain (EURO-CORDEX, Jacob et al., (2014)) were used. 

The CORDEX experiments are coordinated by the World Climate Research Programme (WCRP) 

and aim at the production of downscaled climate simulations, mainly at the continent level. For the 

European domain, the EURO-CORDEX climate simulations are produced at the spatial resolution 

of 0.44o
 while for fewer models there are also simulations of higher resolution (0.11o, or ~12km). 

The time period covered by the EURO-CORDEX simulations extends from 1951 to 2100. For the 

purposes of this study, five EURO-CORDEX models run under the RCP8.5 emission scenario and 

with a spatial resolution of 0.44o were selected (Table 1). This set of GCMs is referred as EURO-

CORDEX ensemble throughout this study. 
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Table 1. List of EURO-CORDEX models used in this study and time-slices of SWL2 and SWL4 according 

to the RCP8.5 emission scenario. 

 RCM Driving GCM Time-slices (RCP8.5) 

   SWL2 SWL4 

1 SMHI-RCA4 GFDL-ESM2M 2040-2069 2071-2100 (+3.2 oC) 

2 SMHI-RCA4 NorESM1 2036-2065 2071-2100 (+3.75 oC) 

3 SMHI-RCA4 MIROC5 2037-2066 2071-2100 (+3.76 oC) 

4 SMHI-RCA4 IPSL-CM5A 2018-2047 2055-2084 

5 SMHI-RCA4 HadGEM2-ES 2024-2053 2060-2089 

 

The first model ensemble for the global scale is comprised of three CMIP5 GCMs, under RCP8.5 

(Table 2). The second global scale ensemble includes thirteen members (Table 3). Two high 

resolution GCMs (EC-EARTH and HadGEM) in Atmospheric General Circulation Model 

(AGCM) mode, are run using boundary conditions of sea surface temperature (SST) of multiple 

CMIP5 GCMs. The CMIP5 members used to provide SST forcing were selected as representative 

of a wide range of outcomes for future climate change, as they include models of both low and high 

sensitivity and with various global patterns of precipitation change. The produced high-resolution 

climate simulations span from 1971 to 2100 and beyond, have a spatial resolution of 0.5o and follow 

the RCP8.5 emission scenario. This latter sets of GCMs is referred as HELIX ensemble throughout 

this study. 

Table 2. List of non-downscaled CMIP5 models used in this study, and their original spatial resolution.  

No GCM oLon x oLat 

1 IPSL-CM5A-LR 3.75 x 1.88 

2 MIROC-ESM-CHEM 2.81 x 2.81 

3 GFDL-ESM2M 2.50 x 2.00 
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Table 3. List of high-resolution CMIP5 models used in this study and time-slices of SWL1.5, SWL2 and 

SWL4 according to the RCP8.5 emission scenario. The driving GCM provides boundary conditions to the 

high-resolution GCM. 

High-resolution 

GCM 

Driving GCM Time-slices (RCP8.5) 

SWL 1.5 SWL2 SWL4 

ECEARTH - R1  IPSL-CM5A-LR 2010-2039 2021-2050 2059-2088 

ECEARTH - R2  GFDL-ESM2M 2023-2052 2039-2068 
 

ECEARTH - R3  HadGEM2-ES 2006-2035 2020-2049 2060-2089 

ECEARTH - R4  EC-EARTH 2013-2042 2028-2057 2075-2104 

ECEARTH - R5  GISS-E2-H 2016-2045 2032-2061 
 

ECEARTH - R6  IPSL-CM5A-MR 2009-2038 2023-2052 2057-2086 

ECEARTH - R7 HadCM3LC 2011-2040 2025-2054 2073-2102 

HADGEM-R1 IPSL-CM5A-LR 2009-2038 2020-2049 2056-2085 

HADGEM-R2 GFDL-ESM2M 2021-2050 2036-2065 
 

HADGEM-R3 HadGEM2-ES 2004-2033 2018-2047 2056-2085 

HADGEM-R6 IPSL-CM5A-MR 2008-2037 2021-2050 2054-2083 

HADGEM-R8 MIROC-ESM-CHEM 2005-2034 2017-2046 2053-2082 

HADGEM-R9 ACCESS1-0 2011-2040 2025-2054 2066-2095 

 

2.3. Other datasets 

2.3.1. Global gridded runoff data 

The University of New Hampshire (UNH)/Global Runoff Data Centre (GRDC) composite runoff 

dataset (Fekete and Vorosmarty, 2011) includes gridded monthly runoff values spanning from 1986 

to 1995. This dataset is one of the products of the International Satellite Land-Surface Climatology 

Project, Initiative II (ISLSCP II) data collection. UNH/GRDC Composite Monthly Runoff is 

derived by combining water model runoff estimates with measured river discharge. It is described 

as a data assimilation application on water balance, which is done by preserving the spatial 

specificity of the water balance calculations while also constraining them by the more accurate 

discharge measurements. 

  



Datasets 

23 

 

2.3.2. Discharge measurements 

Discharge measurements from the GRDC database were used in this study. The GRDC database 

(http://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html) has collected data 

from thousands of stations worldwide. For this work, data for twenty-one stations were obtained, 

corresponding to the different study basins, listed in Table 4. Each station was selected based on 

two criteria: data availability and minimum distance from the actual basin outlet. Discharge data 

were obtained in daily and monthly time resolution, according to availability. 

Table 4. Numbers of the GRDC station numbers used in this study. 

Basins GRDC station number 

Amazon 3629001 

Congo 1147010 

Nile 1362100 

Mississippi 4127800 

Parana 3265601 

Lena 2903430 

Yangtze 2181900 

Niger 1734500 

Volga 6977100 

Murray 5404270 

Indus 2335950 

Ganges 2646200 

Orange 1159100 

Danube 6742900 

Huang He 2180800 

Saskatchewan 4213551 

Rhine 6335020 

Elbe 6340110 

Oder 6357010 

Guadiana 6116200 

Kemijoki 6854700 

 

http://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html
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2.3.3. E-OBS 

E-OBS is a gridded dataset of precipitation and temperature for the European land region (Haylock 

et al., 2008). E-OBS is derived from station observations in Europe, after interpolation procedures. 

It has a spatial resolution of 0.25o and covers the period from 1950 to 2006 with a daily time-step. 

2.3.4. Total Runoff Integrating Pathways (TRIP) 

TRIP (Oki and Sud, 1998) is a global gridded data set providing information on the lateral water 

movement over land, following the paths of river channels. The dataset was originally derived with 

a spatial resolution of 1o, but the latest version employed for this study provides information on the 

0.5o grid. The TRIP component used here is the flow direction, which is an ASCII file that provides 

for each grid-box a number that indicates the outflow direction from the grid-box. 

2.3.5. ISIMIP runoff simulations 

Runoff simulations produced by the JULES model are obtained from the server of the ISIMIP 

project (Inter-Sectoral Impact Model Intercomparison Project, https://www.isimip.org/). The 

simulations span from 1971 to 2099 and are forced by five GCMs, listed in Table 5. This set of 

simulations will be referred to as ISIMIP ensemble. 

Table 5. List of ISIMIP simulations used in this study and time-slices of SWL2 and SWL4 according to the 

RCP8.5 emission scenario. 

 
ISIMIP ensemble RCP8.5 

 
GCM SWL 1.5 SWL 2 SWL 4 

1 GFDL-ESM2M 2040 2055 [2113] 

2 NorESM1 2035 2052 - 

3 MIROC-ESM 2023 2035 2071 

4 IPSL-CM5A-LR 2015 2030 2068 

5 HadGEM2-ES 2027 2039 2074 

https://www.isimip.org/
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Chapter 3. Methods 

3.1. The JULES land surface model 

3.1.1. Overview 

JULES is a physically based, fully distributed land surface model established in 2006. It is 

comprised of two parts: the Met Office Surface Exchange Scheme (MOSES; Cox et al., 1998) and 

the Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID; Cox, 

2001) component. MOSES is an energy and water balance model which is JULES’ forerunner, and 

TRIFFID is a dynamic global vegetation model (Best et al., 2011; Clark et al., 2011; Cox, 2001). 

In our model application for this study, we do not examine vegetation dynamics and thus we are 

focusing on the MOSES component of JULES. 

The meteorological forcing data required for running JULES are: precipitation rate, air temperature, 

downward shortwave and downward longwave radiation, wind-speed, air pressure and specific 

humidity (Best et al., 2011). Other data required by the model are ancillary soil and land use data 

as well as information on the grid setup (land mask). 

JULES has a modular structure, which makes it a flexible modelling platform, as there is the 

potential of replacing modules or introducing new modules within the model. The physics modules 

that comprise JULES include the following themes: surface exchange of energy fluxes, snow cover, 

surface hydrology, soil moisture and temperature, plant physiology, soil carbon and dynamic 

vegetation (Best et al., 2011), with the latter being disabled for this application. 

The plant physiology component of JULES includes the plant response to atmospheric CO2. 

Elevated atmospheric CO2 causes the plant stomata to close, which generally means that the plant 

becomes more water efficient and evapotranspiration losses are reduced, leaving more water 

available as runoff. This feature is of particular importance for climate change impact studies and 

is usually omitted from the standard hydrological models. 
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In JULES, each grid-box is represented with a number of surface types, each one represented by a 

tile. JULES recognises nine surface types (Best et al., 2011), of which five are vegetation surface 

types (broadleaf trees, needleleaf trees, C3 (temperate) grasses, C4 (tropical) grasses and shrubs) 

and four are non-vegetated surface types (urban, inland water, bare soil and ice). A full energy 

balance equation including constituents of radiation, sensible heat, latent heat, canopy heat and 

ground surface heat fluxes is calculated separately for each tile and the average energy balance for 

the grid-box is found by weighting the values from each tile (Pryor et al., 2012). In JULES, the 

default soil configuration consists of four soil layers of thicknesses 0.1 m, 0.25 m, 0.65 m and 2.0 

m. This configuration however can be altered by the user. JULES simulates the energy, water and 

carbon fluxes at the vertical direction and does not account for possible exchanges and transfers 

between the different grid-boxes. 

The JULES science modules and their linkages, along with a typical JULES grid-box and soil layers 

are shown in Figure 7. In the following sections, the different science modules will be briefly 

described. The definitions for the symbols in the equations to follow are tabulated in Appendix A, 

for clarity and space-saving reasons. 
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Figure 7. (Left) Graphical description of the main processes and fluxes modelled by JULES (Best et al., 

2011, modified) and (Right) a typical JULES grid-box and underlying soil layers 

3.1.2. Surface exchanges 

The energy balance and the surface fluxes of heat and moisture are calculated in the surface 

exchange module of JULES. The surface related parameters (such as albedo), are treated differently 

for vegetated and non-vegetated surfaces. For non-vegetated surfaces these parameters are set by 

the user, while for vegetation surface types they are calculated in the model from the structure of 

the vegetation (e.g. based on leaf area index, canopy height, etc.). 

The typical energy balance equations for the land surface have been extended to include additional 

physical processes: thermal inertia -coupled to the underlying soil and coupling of vegetation to the 

soil through radiative fluxes and heat conduction. The extended surface energy balance in the model 

is described by equations (6-9): 

 𝐶𝑠  
𝛿𝑇∗
𝛿𝑇

= (1 − 𝑎) 𝑆𝑤↓ + 𝜖 𝐿𝑤↓ − 𝜎 𝜖 (𝑇∗)
4 − 𝐻𝑠 − 𝐿𝑐 𝐸 − 𝐺 (6) 
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Where: 

 𝐻𝑠 =
𝜌 𝑐𝑝

𝑟𝑎
(𝑇∗ − 𝑇𝐴) (7) 

 𝐸 =
𝜌

𝑟𝑎 + 𝑟𝑠
(𝐻𝑠𝑎𝑡(𝑇∗) − 𝐻1) (8) 

 𝐺 = 𝑣 [𝜎𝜖𝜖𝑠(𝑇∗)
4 − 𝜎𝜖𝜖𝑠(𝑇𝑠1)

4 +
𝜌𝑐𝑝

𝑟𝑎𝑐𝑎𝑛
(𝑇∗ − 𝑇𝑠1)] + (1 − 𝑣)𝜆𝑠𝑜𝑖𝑙(𝑇∗ − 𝑇𝑠1) (9) 

 

The surface heat capacity 𝐶𝑠 is prescribed for non-vegetation surfaces, but for vegetation types is 

calculated based on leaf and woody biomass, accordant to equation (10): 

 𝐶𝑠 = 𝐶𝐿 𝐵𝐿 + 𝐶𝑤 𝐵𝑤 (10) 

Larger heat capacity corresponds to larger thermal inertia of the surface. 

3.1.3. Evaporative fluxes 

Evaporation in JULES can stem from different sources, depending on the examined surface type. 

Firstly, possible sources of evaporation are evapotranspiration (water extraction from the soil 

through vegetation) and bare soil evaporation. Both fluxes depend on a surface resistance 

representing the restrictions in water availability. For bare soil, the surface conductance 𝑔𝑠𝑜𝑖𝑙, which 

is the inverse of resistance, is calculated based on the moisture content of the top soil layer, based 

on equation (11): 

 𝑔𝑠𝑜𝑖𝑙 =
1

100
(
𝜃1
𝜃𝑐
)
2

 (11) 

For vegetative surfaces, the resistance is determined using a photosynthesis model, which links the 

stomatal conductance 𝑔𝑠 to net photosynthetic uptake 𝐴 via the CO2 diffusion equation (12): 

 𝐴 = 𝑔𝑠 (𝐶𝑐 − 𝐶𝑖)/1.6 (12) 
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Other sources of evaporation are freely evaporating moisture stores, for which resistance is zero. 

These sources include evaporation from open water surfaces, evaporation from water held in 

vegetation canopy and snow sublimation. 

Water in the plant canopy is freely evaporated and can thus be depleted. In this case, possible 

additional evaporation will happen through the evapotranspiration mechanism, with an according 

stomatal or surface resistance. When snow is present on a surface type, it is treated as a moisture 

store with zero surface resistance. Snow sublimation from the surface snow store can deplete the 

snow mass, accordingly to canopy water. 

3.1.4. Snow 

In JULES, snow in a tile can be stored on the ground or be partitioned between snow intercepted 

in the plant canopy and snow on the ground. Surface resistance for sublimation is zero for snow on 

the ground but is determined according to equation (13) for snow on the canopy: 

 𝑟𝑠 =
𝜌𝑖 𝑟

2

0.03 𝐷𝑓(1.79 + 3 𝑊
1
2)
(
𝐼

𝐼𝑚𝑎𝑥
)
0.4

 (13) 

 Where: 

𝐼𝑚𝑎𝑥 = 4.4𝐿, is the snow interception capacity for a canopy with leaf area index 𝐿 

r=0.5 mm is a nominal grain radius for intercepted snow 

In the snow model, the thermal conductivity and density of snow are set by the user. Heat capacity 

of snow is considered negligible, but the bulk thermal conductivity of the surface changes due to 

the presence of snow. If the snow depth is less than half the surface soil layer thickness (𝛥𝑧1), the 

thermal conductivity used in the surface energy balance is modified to account for the effect of 

snow insulation according to equation (14): 

 𝜆 = 𝜆𝑠𝑜𝑖𝑙 [1 +
2 𝑑𝑠
𝛥𝑧1

(
𝜆𝑠𝑜𝑖𝑙
𝜆𝑠𝑛𝑜𝑤

− 1)]
−1

 (14) 

For deeper snow, the surface conductivity is set equal to snow conductivity. 
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In the presence of snow on the ground, the surface skin temperature cannot exceed 0oC. The heat 

flux used to melt the snow is accounted for in the surface energy balance as a residual. The snow 

water that melts leaves the snowpack, and is partitioned into soil infiltration and runoff. 

3.1.5. Surface hydrology 

Within the surface hydrology module, rainfall rate is assumed to fall on a fraction 𝜖𝑟 of the grid-

box (typically set to a value of 0.3), to account for the size of convective storms compared to grid 

size. From the precipitating water, the amount of water that reaches the soil surface depends on the 

surface type. For non-vegetated surfaces, all the precipitation water reaches the land surface. For 

non-vegetation surfaces, some water is intercepted in the plant canopy. The capacity of the canopy 

to hold intercepted water, 𝐶𝑚, is defined in equation (15): 

 𝐶𝑚 = 𝐴𝑚 + 𝐵𝑚 𝐿 (15) 

Throughfall is the water that reaches the soil surface in case of vegetated surfaces, and depends on 

canopy water holding capacity and precipitation rate, as show in equation (16): 

 𝑇𝐹 = 𝑃 (1 −
𝐶

𝐶𝑚
) 𝑒𝑥𝑝 (−

∈𝑟 𝐶𝑚
𝑃 𝛥𝑡

) + 𝑃 
𝐶

𝐶𝑚
 (16) 

Throughfall reduces the canopy water in the next computation time-step. Changes in canopy water 

can also result from dewfall (downward surface moisture fluxes), which increases canopy water 

and by evaporation, which decreases the water held in the canopy. With a similar mechanism, snow 

cover can be increased with frost deposition (modelled as dewfall at surface temperatures below 

freezing). 

The water that reaches the surface infiltrates the soil at a rate K, equal to the saturated soil 

conductivity modified due to the presence of vegetation. If the throughfall rate exceeds the 

infiltration rate there is surplus water on the surface and surface runoff is produced. Throughfall 

can be different for different surface types in a grid-box but infiltration is the same as there is not 

sub-grid-box heterogeneity for soil in JULES. Therefore, calculation of runoff at the grid-box 

requires the combination of the grid-box mean infiltration and the grid-box aggregate of infiltration. 

The runoff calculation equation is shown in equation (17): 
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 𝑅𝐹𝑠 =

{
 

 𝑃 
𝐶

𝐶𝑚
exp (−

∈𝑟 𝐾 𝐶𝑚
𝑃 𝐶

) + 𝑃 (1 −
𝐶

𝐶𝑚
) exp (−

∈𝑟 𝐶𝑚
𝑃 𝛥𝑡

)      𝐾 𝛥𝑡 ≤ 𝐶

𝑃𝑒𝑥𝑝 [−
𝐾 𝛥𝑡 + 𝐶𝑚 − 𝐶

𝑃 𝛥𝑡
]                                                          𝐾 𝛥𝑡 > 𝐶

 (17) 

Where: 

𝐾 = 𝛽𝑠 𝐾ℎ𝑠, where 𝛽𝑠 [-] is an enhancement factor and 𝐾ℎ𝑠 [m s-1] the saturated hydraulic 

conductivity 

The water balance for the land surface is described by equation (18): 

 𝑊0 =∑𝑣𝑗(𝑇𝐹𝑗 + 𝑆𝑚𝑗
− 𝑅𝐹𝑠𝑗)

𝑗

 (18) 

Where: 

𝑊0 is infiltration flux into the soil [kg m-2 s-1] 

3.1.6. Soil temperature 

The temperatures in the different soil layers are calculated using a finite difference form of the heat 

diffusion equation, accounting for the latent heat fluxes of solid-liquid phases of water. For the kth 

soil layer, equations (19-21) describe the soil temperature calculations: 

 𝐶𝑎 𝛥𝑧𝑘  
𝑑𝑇𝑠𝑘
𝑑𝑡

= 𝐺𝑘−1 − 𝐺𝑘 − 𝐽𝑘𝛥𝑧𝑘 (19) 

Where the fluxes are calculated as: 

 𝐺 = 𝜆𝑠𝑜𝑖𝑙
𝜕𝑇𝑠
𝜕𝑧

 (20) 

 𝐽 = 𝐶𝑤𝑎𝑡𝑒𝑟 𝑊
′
𝜕𝑇𝑠
𝜕𝑧

 (21) 

z is the vertical coordinate 

𝐶𝑎 is the volumetric heat capacity of the soil, including the effect of phase changes [J m-3 K-1] 
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The top boundary condition for equation (19) is the surface heat flux calculated by the surface 

exchange module and the lower boundary condition is a zero flux boundary. 

3.1.7. Soil water fluxes  

The amount of soil moisture accessible by vegetation for extraction depends on plant root density, 

which is modelled with the assumption of exponential distribution with depth. The fraction of roots 

in soil layer k extending from depth 𝑧𝑘−1 to 𝑧𝑘 is shown in equation (22): 

 𝑟𝑘 =
𝑒−2 𝑧𝑘−1/𝑑𝑟 − 𝑒−2 𝑧𝑘/𝑑𝑟

1 − 𝑒−2 𝑧𝑡/𝑑𝑟
 (22) 

Soil water contents are updated using a finite difference form of the Richards equation. The 

moisture content of each layer is updated as shown in equation (23): 

 
𝑑𝜃𝑘
𝑑𝑡

= 𝑊𝑘−1
′ −𝑊𝑘

′ − 𝐸𝑇𝑘 (23) 

Where 

𝑊𝑘−1
′  and 𝑊𝑘

′ are the vertical fluxes of soil water flowing in from the layer above and out to the 

layer below respectively [kg m-2 s-1] 

𝐸𝑇𝑘 is the evapotranspiration extracted by plant roots in the layer (and bare soil evaporation from 

the top soil layer) 

The vertical fluxes follow Darcy’s law in equation (24): 

 𝑊′ = 𝐾ℎ(
𝜕𝛹

𝜕𝑧
+ 1) (24) 

The top boundary condition for equation (23) is the infiltration of water at the soil surface and the 

lower boundary condition is drainage, which contributes to sub-surface runoff. Sub-surface runoff 

is assumed to depend only on the soil moisture content, in contrast to surface runoff, which depends 

on the canopy throughfall and snowmelt rate, and is a relatively slow process. The relationship 

between soil water content, suction and hydraulic conductivity can be described either by the 
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Brooks and Corey relationship (Brooks and Corey, 1964), or by the van Genuchten relationship 

(Van Genuchten, 1980). 

3.1.8. Carbon 

The surface fluxes of CO2 associated with photosynthesis and plant respiration are determined in 

the physiology component of JULES. The photosynthesis model is based on the biogeochemistry 

of plant photosynthesis at the leaf scale. These processes are then scaled up to the canopy scale 

through different methods (big leaf or multi-layer approach). Photosynthesis is calculated in terms 

of three potentially limiting factors: the Rubisco-limited rate, light-limited rate and rate of transport 

of photosynthetic products. 

3.1.9. Applications of the JULES model 

JULES has been used in many recent studies as a tool for evaluating the exchange of water, energy 

and carbon fluxes between the land surface and the atmosphere. Van den Hoof et al. (2013) assessed 

JULES’ performance in simulating evaporative flux (and its partitions) and carbon flux in 

temperate Europe. Marthews et al. (2012) implemented JULES in tropical forests of Andes-

Amazon to simulate all components of carbon balance and study possible flux variations between 

sites of different altitude. Zulkafli et al. (2013) implemented JULES in a humid tropical mountain 

basin of the Peruvian Andes-Amazon. MacKellar et al. (2013) evaluated JULES, implemented in a 

region of Southern Africa, concerning its ability to simulate the catchment streamflow. In the study 

of Bakopoulou et al. (2012), the sensitivity of the JULES outputs to the soil parameters of the model 

at a point scale was estimated. Dadson et al. (2010) sought to quantify the feedback between 

wetland inundation and heat and moisture fluxes in the Niger inland delta by adding an overbank 

flow parameterization into JULES. Burke et al. (2013) used JULES to simulate retrospectively the 

pan-arctic changes in permafrost and Dankers et al. (2011) assessed JULES’ performance in 

simulating the distribution of surface permafrost in large-scale catchments. In a study by Jiménez 

et al. (2013), soil moisture modelled with JULES is evaluated against satellite soil moisture 

observations. 

Other studies give insight into the hydrological performance of JULES specifically. Blyth et al. 

(2011) extensively evaluated the JULES model for its ability to capture observed fluxes of water 
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and carbon. Concerning discharge, their findings suggest that for the European region seasonality 

is captured well by the model. For temperate regions (like most of central Europe), the model 

exhibited a tendency towards underestimating river flows due to overestimation of 

evapotranspiration. Prudhomme et al. (2011) assessed JULES’ ability in simulating past 

hydrological events over Europe. In general, the model was found to capture the timing of major 

drought events and periods with no large-scale droughts present were also well reproduced. The 

model showed a positive drought duration bias, more profoundly present in northwest Spain and 

east Germany-Czech Republic. Prudhomme et al. (2011) argue that this feature is related to 

overestimation of evaporation by the model. For regions where droughts tend to last longer, JULES 

exhibited a better ability of reproducing the drought events’ characteristics. Gudmundsson et al. 

(2012) compared nine large-scale hydrological models, and their ensemble mean, based on their 

skill in simulating the inter-annual variability of observed runoff percentiles in Europe. According 

to the overall performance (accounting for all examined percentiles and evaluation metrics), JULES 

was ranked third best out of the ten models, after the multi-model ensemble mean and the GWAVA 

model. For low and moderately low flows, expressed as 5th and 25th percentile respectively, JULES 

is also in the top three models regarding the representation of inter-annual variability in runoff. In 

the study of Gudmundsson et al. (2012b), where an ensemble of hydrological models is evaluated 

for their ability to capture seasonal runoff climatology in three different hydro-climatic regime 

classes in Europe, JULES exhibits a good performance, comparable to that of the best performing 

multi-model ensemble mean. In other studies employing multi-model ensembles, focusing on the 

whole European region (Gudmundsson and Seneviratne, 2015) or a single basin in Europe (Harding 

et al., 2014; Weedon et al., 2015) JULES’ simulations also correspond with these of the other 

models. 

3.1.10. Technical information 

JULES operates on UNIX systems. The user interface of JULES consists of several files with the 

extension .nml containing Fortran namelists. The model parameters, switches of different science 

options, and specification of inputs and outputs are all included in the various namelists. JULES 

can be run for a number of grid-boxes from one upwards. JULES inputs and outputs are in NetCDF 

format files, which is also the file format used for meteorological gridded datasets (observational 

and GCM outputs). Meteorological input files have a 2D gridded structure (for the x and y 
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dimension). In terms of outputs, JULES supports both 2D and 1D outputs. The 1D output is a land-

points-only grid, supplied as a vector of land points. This option limits the size of the output file, 

as it does not store unnecessary information on sea points that are not being processed. For this 

reason, the 1D output option was used in this study. Due to this, a post-processing step was required 

in order to present outputs in a grid and thus look at the global scale patterns. Each grid-box of the 

1D output was placed on its respective position on the 2D grid, based on the latitude and longitude 

information of each grid-box, which is included in the model output. The post-processing step to 

re-grid the 1D JULES output was performed with a relative algorithm, developed and run with the 

MATLAB software. 

 

3.2. Development of a routing algorithm for historical model evaluation 

JULES simulates the energy, water and carbon fluxes at the vertical direction for each grid-box and 

does not account for possible transfers between the different grid-boxes. For hydrological 

applications, this means that the model calculates the runoff produced in each grid-box at each time 

step. In physical systems, the produced runoff moves and accumulates through the river network 

and is converted to river discharge. The lack of such a mechanism in the model does not limit its 

applicability for hydrological climate change impact studies, for which runoff production can serve 

as a good indicator of freshwater availability. However, it hinders the evaluation of the model, as 

the model output cannot be compared to measured discharge. The transformation of runoff 

production to discharge requires a river routing scheme. Until recently (February 2015) the standard 

version of the JULES model did not account for a routing mechanism. To overcome this model 

limitation, a routing algorithm was developed and applied to the model’s runoff output. 

3.2.1. The routing algorithm 

The developed routing algorithm is conceptual, based on the concept of time of concentration 

(TOC). It is a semi-distributed model, which routes the water with a source-to-sink approach. 

TOC is the time that runoff needs to travel from its origin grid-box (source) to the outlet of a basin. 

TOC is defined as in equation (25): 
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 𝑇𝑂𝐶 = 𝐿/𝑉 (25) 

Where L [m] is the flow length, and V [m/s] is the flow velocity. 

The concept of the routing algorithm is to find the time (day) that runoff from each grid-box of a 

basin contributes to discharge at the outlet. Then, discharge at the basin outlet can be calculated as 

the aggregation of runoff from the contributing grid-boxes, delayed by the adequate number of days 

depending on the TOC of each grid-box. As each grid-box has a different distance from the outlet, 

and thus a different flow length, the TOC is calculated for each contributing grid-box separately. 

Flow velocity V is treated as a calibration parameter of the model, which is the same for all the 

grid-boxes of a basin but different for each basin. 

The algorithm is described by equation (26): 

 𝑄𝑡 =∑𝑞𝑖
(𝑡−𝑇𝑂𝐶𝑖)

𝑛

𝑖=1

 (26) 

Where 𝑄𝑡 [m
3/s] is discharge at the basin outlet at time t, 𝑛 is the number of grid-boxes contributing 

to the specific basin, 𝑞𝑖 [m
3/s] is discharge contribution of grid-box i, produced at the time-step t-

TOCi . 𝑞𝑖 is calculated from the runoff output [kg m-2 s-1], by dividing with the density of water and 

multiplying with the grid-box area. 

As the output of the model has a daily time-step, the algorithm also operates daily, resulting in daily 

time series of discharge at the outlet of a study basin. 

In order to implement the algorithm we need to identify the grid-boxes that contribute to a specific 

basin, as well as their distance from the outlet (flow length). This is done with a GIS application 

and the TRIP river routing dataset. In ArcGIS, the Hydrology toolbox is used to set the location of 

the GRDC gauging station of a study basin as the basin pour point, define the basin contributing 

grid-boxes and calculate their flow length. 

The routing methodology is applied to historical runoff simulations for 16 basins, for which 

observations of daily discharge were available. The implementation of the developed routing 

algorithm allows the comparison of JULES simulated discharge with discharge measurements, 
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essentially providing a way to assess the model performance for a historical period at the basin 

scale. 

3.2.2. Evaluation metrics 

For the evaluation of JULES’ hydrological performance for the historical period, three widely used 

evaluation metrics were employed: Nash-Sutcliffe efficiency (NSE), Percent bias (PBIAS) and the 

coefficient of determination (R2). The formulas for the calculation of NSE and PBIAS are given in 

equations (27) and (28): 

 𝑁𝑆𝐸 = 1 − [
∑(𝑄𝑠𝑖𝑚 − 𝑄𝑜𝑏𝑠)

2

∑(𝑄𝑜𝑏𝑠 − 𝑄𝑚𝑒𝑎𝑛)2
] (27) 

 𝑃𝐵𝐼𝐴𝑆 = [
∑(𝑄𝑠𝑖𝑚 − 𝑄𝑜𝑏𝑠) ∗ 100

∑𝑄𝑜𝑏𝑠
]% (28) 

where 𝑄𝑠𝑖𝑚 is simulated discharge, 𝑄𝑜𝑏𝑠 is observed discharge and 𝑄𝑚𝑒𝑎𝑛 is the mean of observed 

discharge data. Discharge observations were obtained from the Global Runoff Data Centre (GRDC) 

database for 16 large-scale basins. 

Calibration of flow velocity, V, was done using the NSE index and daily data. For the historical 

model evaluation, the metrics are calculated based on monthly data, based on the period 1981 to 

2010. The time-periods missing from the observed discharge time-series were neglected from the 

calculation of the evaluation metrics. 

 

3.3. Bias correction methods 

3.3.1. Multi-segment Statistical Bias Correction (MSBC) 

The MSBC method (Grillakis et al., 2013) follows the principles of quantile mapping correction 

techniques and was originally designed and tested for GCM precipitation adjustment. According to 

the method, the Cumulative Distribution Function (CDF) space is split into discrete segments and 

then the individual quantile mapping correction is applied on each segment, achieving better fit of 

the parametric equations on the data and thus better correction, especially on the CDF edges. The 
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optimal number of segments is estimated by the Schwarz Bayesian information criterion to balance 

between complexity and performance. MSCB is used for precipitation correction while a 

modification of the methodology is used for bias adjustment of the rest of the meteorological 

variables required as input by JULES. For the other variables, the methodology is modified to use 

linear functions instead of the gamma that were used in the original methodology. This change 

allows for the facilitation of negative variable values that the gamma functions cannot simulate. 

Hence, the methodology becomes more universal and adequate to use in different variable types 

and distributions. An additional methodological change is performed to the edge segments 

correction, which are explicitly corrected using only the difference between the historical period 

model data and the observations. This provides rigidity to the correction, avoiding unrealistic 

temperature values at the edges of the corrected data CDF. This choice costs to the methodology 

the persistence of a small portion of the bias in the corrected data. 

The EURO-CORDEX data (Table 1) were corrected with the MSBC method against the WFDEI 

dataset. Additionally, they were corrected against the E-OBS dataset, in order to assess the effect 

that the use of different observational dataset during bias correction of GCM outputs can have for 

hydrological simulations. 

The three-member ensemble of CMIP5 models (Table 2) was corrected with the MSBC method 

against the WFDEI dataset. 

3.3.2. Trend preserving bias correction 

The trend preserving bias correction method (Hempel et al., 2013) is designed to preserve the 

absolute changes in monthly temperature, and relative changes in monthly values of precipitation. 

The methodology was applied for the correction of all the variables required as input by JULES. 

The high-resolution GCM data of the HELIX ensemble (Table 3) were corrected with the trend 

preserving method, against the PGFv2 dataset. 
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3.4. Assessment of the effect of GCM biases on runoff simulations 

3.4.1. Experiment description 

In order to examine the effect of each forcing variable’s bias on runoff we designed and 

implemented an experiment comprised of two parts (bias assessment and partial correction bias 

assessment) and nine sets of JULES’ runs in total. A graphical description of the performed 

experiment is shown in Figure 8. Climate data from three GCMs and the WFDEI dataset are used 

as JULES’ forcing. The sets of runs forced with GCM data, include three model runs –one per 

GCM. Then the analysis progresses using the ensemble mean. The time span of this analysis is the 

historical period 1981-2010. This is also the time span of the period used for bias correction of the 

GCM output. 
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Figure 8. Graphical description of the experiment performed for the assessment of the effect of GCM biases 

on runoff simulations. 

The first part of the experiment is the bias assessment. In this first part of the experiment, the aim 

is to assess initial and remaining biases in the forcing data and in simulated runoff. Initial bias refers 

to the difference between raw GCM variables and the respective WFDEI variables. Remaining bias 

is the bias in the forcing variables after the bias correction, i.e. the difference between bias corrected 

GCM variables and the respective WFDEI variables. Referring to runoff, “initial” and “remaining” 

biases are defined as the difference between runoff simulations forced with raw and bias corrected 

forcing respectively from simulations forced with the WFDEI dataset. This definition is employed 
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to shorten and simplify the expressions used in the text of this thesis (i.e. “initial bias in runoff” 

instead of “the difference between runoff forced with raw GCM data and WFDEI data”). In this 

part of the experiment, three sets of JULES’ runs were conducted: 

 forced with WFDEI (WFDEI); 

 forced with uncorrected climate data (raw); and 

 forced with bias corrected climate data (BC). 

The second part of the experiment is the partial correction bias assessment. For this, six more sets 

of JULES’ runs were performed. In each of these runs, one of the six forcing variables 

(precipitation, temperature, radiation, humidity, surface pressure and wind speed) is used in its raw 

form while the rest of the input forcing is bias corrected. The partial correction assessment runs are 

symbolized as NobcV (NOt Bias Corrected variable V), where V is one of the six forcing variables: 

precipitation (P), temperature (T), radiation (R), specific humidity (H), surface pressure (Ps) and 

wind (W). It has to be noted here that -longwave (Rl) and shortwave (Rs) were examined together, 

hence in respective NobcR run, both shortwave and longwave radiation were forced in uncorrected 

form. Partial correction assessment is composed as a tool to quantify the individual effect of each 

forcing variable on runoff but is not designed to suggest and assess run formats. 

The simulated runoff of each partially corrected input is compared to the respective simulation in 

which all input variables are bias corrected (denoted BC). This comparison allows us to assess the 

“loss” of the performance of simulations when a variable is neglected from the bias correction 

procedure. It must be noted however that the “loss of performance” concept bears the assumption 

that the BC simulation is closer to the WFDEI simulation comparing to a partially corrected set. 

3.4.2. A new framework for the categorization of the effect of GCM biases 

A new framework for the classification of the effects of forcing variables’ biases on modelled runoff 

is developed and implemented. The classification employs the comparison of the bias in each 

forcing variable (ΔV) and the corresponding relative effect in simulated runoff (ΔRF), discretizing 

four different categories (Figure 9). To facilitate the comparison among the different forcing 

variables, ΔV and ΔRF are expressed as percentages. More specifically, ΔV and ΔRF are defined 

as follows.  
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ΔV is the difference between the raw and the bias corrected variable value, divided by the bias 

corrected variable value. ΔV is estimated by equation (29). 

 ΔV=(Raw variable – BC variable)/(BC variable) ∗100%  (29) 

As an exception, for temperature ΔV refers to the absolute difference between raw and bias 

corrected temperature (in K).  

ΔRF expresses the effect of a variable’s bias on runoff and is calculated from the difference between 

runoff forced with all bias corrected variables except for the examined variable V (NobcV) and 

runoff forced with all bias corrected variables (BC), divided by the runoff of all bias corrected 

variables (BC). ΔRF is estimated by equation (30). 

 ΔRF=(RF from NobcV – RF from BC)/(RF from BC) ∗100% (30) 

Sensitivity of runoff to changes in forcing variables (S) is the fraction of runoff change over the 

forcing variable change and serves as a measure to assess the relative magnitude of ΔRF compared 

to ΔV. When ΔRF is sensitive to ΔV, relatively smaller changes in the variable should cause 

relatively larger changes in runoff and vice versa. Sensitivity is in general dimensionless, but for 

temperature has units of K-1. S is estimated by equation (31):  

 S=ΔRF/ΔV (31) 

In total, there are six sets of ΔVs and six sets of ΔRFs, one for each examined variable and 

experiment respectively, and six sets of sensitivities (S). The absolute values of ΔV, ΔRF and S 

denoted as |ΔV|, |ΔRF| and |S| are used to avoid dealing with the sign of the changes and rather 

focus on their magnitude. 

As shown in Figure 9, the effect of each variable’s bias (|ΔV|) on runoff (|ΔRF|) is separated into 

four different categories according to two rules. The first rule is the characterization of |ΔRF| among 

all the experiments (except ΔT) as “low” or “high” relatively to its median value, shaping the 

ordinate y=median(|ΔRF|). Median(|ΔRF|) is derived considering the |ΔRF| values of all land grid-

boxes and for all the experiments. The second rule is the characterization of sensitivity |S| as high 

or low relatively to its median value. The latter forms a bisectrix s=median(|S|). Median(|S|) is, 

accordingly to median(|ΔRF|), derived from the |S| values of all grid-boxes and for all the 
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experiments-apart from temperature. In the case of temperature, median (|S|) is explicitly 

recalculated from the values of all the land grid-boxes of this specific experiment. These two rules 

form the four categories of Figure 9. Combinations of the two rules result to four different effect 

categories (ECs) presented in decreasing order of the effect of a variable’s bias on runoff: 

 High change and high sensitivity (ECI); 

 High change and low sensitivity (ECII); 

 Low change and high sensitivity (ECIII); and 

 Low change and low sensitivity (ECIV). 

  



Chapter 3 

44 

 

 

Figure 9. Categorization of the effect of changes in forcing variables (V) on runoff (RF). The four areas 

correspond to four defined Effect Categories. The x axis corresponds to relative changes in forcing variables 

and the y axis to relative changes in runoff. For all changes, the absolute value is considered. 
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3.5. Climate change impact assessment 

3.5.1. Indicators of hydrological impact 

Water availability 

A number of hydrological indicators and drought indices are calculated, in order to perform a multi-

faceted analysis of climate change impacts on hydrological resources. Firstly, analysis of mean 

precipitation gives us a metric of the total hydrological input in the examined system. Precipitation 

is acquired from the input meteorological data. Secondly, freshwater availability is a metric of net 

water that remains in the system after evaporation and infiltration losses. Freshwater availability is 

modelled using the runoff output of JULES. Average runoff (RFmean) is a good and widely used 

indicator of the mean hydrological state of a region. 10th percentile runoff (RFlow) is considered as 

a representative indicator of the low flow regime (Prudhomme et al., 2011). Consistent low flows 

(relative to the mean state) are connected with the formation of hydrological drought conditions. 

Thus the assessment of the changes in low flows could reveal trends towards more intense or/and 

often extreme lows in the future hydrological cycle. 

Drought climatology 

A number of methods are employed for the study of droughts. The first method is used to examine 

changes in drought climatology and is based on the threshold level method. The threshold level 

method is a widely used tool for drought identification applications (Fleig et al., 2006; Vrochidou 

et al., 2013). According to this method, drought conditions are characterized as the periods during 

which discharge falls below a pre-defined threshold level. In our application, the threshold is 

varying daily and is established as in Prudhomme et al. (2011): for each Julian day k, the 10th 

percentile of a 31-day window discharge centering at day k is derived, from data of all the years of 

the baseline period. The daily modelled time-series for the whole period simulated (from the start 

of the baseline period to the end of the projected period) is compared to the daily varying drought 

limit, and the number of days that fall below the threshold is summed up on an annual basis. The 

drought threshold is derived from the flows of the baseline period and is applied to both historical 

and projected flows, in order to capture the climate change induced changes in drought climatology. 

This method will be referred to as DVTM (Daily Varying Threshold Method).  
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Short- and long-term droughts 

The standardized precipitation index (SPI, Mckee et al., 1993) is a widely used index for the 

identification of drought events’ onset, intensity and duration. The calculation of the SPI is based 

on time series of precipitation. First the time series are fitted to a gamma distribution and then the 

cumulative probability of precipitation values is estimated. Finally, the cumulative probability is 

transformed to a standard normal deviate with zero mean and unit standard deviation (Mckee et al., 

1993). Negative values of SPI indicate the existence of drought conditions. According to the SPI 

value, drought is grouped into one of four arbitrarily defined intensity tiers, ranging from “mild” to 

“extreme” (Mckee et al., 1993). This work was focused on intense drought conditions, thus only 

the “severe drought” (-2<SPI≤-1.5) and “extreme drought” (SPI≤-2) categories were considered. 

Following the SPI concept, Shukla & Wood (2008) developed the standardized runoff index, which 

characterizes droughts by assessing modelled runoff time series. SRI has the same intensity tiers as 

SPI. While SPI is an indicator of meteorological drought, SRI incorporates hydrologic processes 

that determine seasonal lags in the influence of climate on streamflow and can serve as an indicator 

of hydrological drought. 

For the assessment of climate change impact on droughts we used the relative versions of SPI and 

SRI (Dubrovsky et al., 2009). Relative indices use input data of two time periods. The first period 

serves as the reference period and is used for model calibration. The calibrated model is then applied 

to data of the second time period. This allows us to assess the drought conditions of the future 

compared to the benchmark drought conditions of the baseline period. The relative drought indices 

were calculated using two periods of temporal aggregation (6 and 48 months), in order to capture 

droughts of different duration. The 6-months temporal scale was selected for the examination of 

short-term meteorological drought associated to agricultural drought and changes to the seasonal 

variations. The 48-months temporal scale was employed for the description of long term droughts 

and effects on high capacity reservoirs related to drought indices at long time scales (Lorenzo-

Lacruz et al., 2010). 

3.5.2. Identifying changes in the hydrological regime 

In order to identify the changes posed on the hydrological regime by the changing climate, analysis 

of hydrologic indicators is performed based on time-slices and time-series. 
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Time-slices 

Climate change impacts are examined as differences between the temporal mean states of a future 

(projected) time-slice and the baseline period. The time-slices are comprised of thirty years. The 

baseline (or historical) period time-slice spans from 1976 to 2005 for the EURO-CORDEX analysis 

and from 1981 to 2010 for the high-resolution GCMs. The definition for determining the projected 

time-slices is to take a slice of thirty years, centered on the year where a Specific Warming Level 

(SWL) –for example 2oC- is exceeded. It is important to mention that the SWLs are defined with 

respect to the pre-industrial period while the baseline period corresponds to the recent past. 

Throughout this work, three different SWLs are considered: +1.5oC, +2oC and +4oC. The projected 

time-slices corresponding to the examined SWLs are given in Table 1 and Table 3 respectively for 

the EURO-CORDEX and the HELIX ensembles of GCM data. For some models, the +4 SWL is 

achieved outside the temporal extend of the GCM input. In these cases, the last thirty-year period 

available is considered instead (2071-2100). For reasons of consistency in terminology the time-

slice of all models describing the greater SWL achieved will be referred to as +4 SWL time-slice. 

For the assessment of the impact of +1.5, +2 or +4oC warming relative to pre-industrial, the 

projected time-slices are compared to the baseline period in terms of both absolute and percent 

change. This is done for each ensemble member individually in order to check the variability of the 

projected changes and also for the ensemble mean. 

The use of the SWL concept constitutes the results independent of the timing that the warming 

occurs. Although by definition of the SWL, the models reach the same level of warming in their 

time-slices, the different model sensitivity reflects on the evolution of temperature in the time-slice, 

as more sensitive models are expected to have higher rates of changes in the period before and after 

a specific SWL is achieved compared to the less sensitive models. 

Time-series 

For basin aggregates of hydrologic and drought indicators, the trend of the whole length of 

simulated time-series (e.g. 1981-2100) was studied. The trend of the time-series was investigated 

employing a linear regression analysis to estimate the sign and the average rate of the trend. The 

significance of the trend was tested at the 95 % confidence interval via a Student-t test. 
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3.6. Summary of methodological framework 

The methodological framework used in this study aims to provide a multi-faceted assessment of 

the effects of high-end climate change on the global hydrological regime. A graphical description 

of methodological framework of the present thesis can be found in Figure 10.  

The first part is the historical model evaluation, which is implemented by forcing JULES with 

different observational datasets. Afterwards, the hydrological output is compared to a historical 

runoff dataset (runoff evaluation) and discharge measurements (discharge evaluation), after the 

newly developed routing algorithm is applied to the runoff output of the model. 

The second part of the analysis is designed to assess the impact of GCM biases on hydrological 

simulations. To this end, JULES is forced with a combination of raw and bias corrected historical 

GCM data and with observational data that serve as a baseline simulation. Runoff output of the 

different runs participate in a newly developed methodological framework for the categorization of 

the effect of GCM biases. 

The final part of the methodology presented in this dissertation concerns the assessment of 

hydrological climate change impacts. JULES is forced with historical and projected GCM data, and 

the assessment of hydrological impacts of climate change is done by comparing the changes of the 

projected simulations compared to the respective historical component. Hydrological impacts are 

described as effects on water availability and drought conditions, and are assessed at both the 

European and global scales. 

Presentation of the results of this study follows the same structure as Figure 10. 
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Figure 10. Schematic summary of methodological framework. 
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Chapter 4. Study regions 

The results are firstly analysed at the whole spatial extend studied, which is the European region 

for the EURO-CORDEX experiments and the global scale for the rest of the runs. Focus on the 

European region is also given with the global high-resolution GCM data runs of the HELIX 

ensemble. At the global and continental scale, the spatial variation of the hydrologic indicators and 

their chaanges under climate change are examined, through presentation of gridded data. Moreover, 

spatial aggregations of hydrologic indicators are calculated and regional focus is given at 

hydrological basins and climatic regions around the globe. 

4.1. Hydrological basins 

The focus hydrological basins (shown in Figure 11), are large scale basins selected as representative 

of different hydro-climatic regimes, of different geographical regions and according to data 

availability. 
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Figure 11. The 21 hydrological study basins. The basins are numbered in descending order according to their size. 
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4.2. Global sub-regions 

Regional focus is also given at 24 regions of the globe. The examined regions were selected from 

the 26 regions presented in Giorgi and Bi (2005) (in our study Alaska and Greenland are excluded 

from the analysis), derived to express the climatic variation of the regions. The selected regions are 

shown in Figure 12. The abbreviations of the regions’ names can be found in Table 6. 

 

Figure 12. Outlines of study focus regions. With red colour are denoted the regions selected for more detailed 

analysis. 
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Table 6. 24 study focus regions, selected from Giorgi and Bi (2005). 

Region name Abbreviation 

North Europe NEU 

Mediterranean Basin MED 

Northeast Europe NEE 

North Asia NAS 

Central Asia CAS 

Tibet TIB 

Eastern Asia EAS 

Southeast Asia SEA 

Northern Australia NAU 

Southern Australia SAU 

Sahara SAH 

Western Africa WAF 

Eastern Africa EAF 

East Equatorial Africa EQF 

South Equatorial Africa SQF 

Southern Africa SAF 

Western North America WNA 

Central North America CNA 

Eastern North America ENA 

Central America CAM 

Amazon AMZ 

Central South America CSA 

Southern South America SSA 

South Asia SAS 
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4.3. European sub-regions 

For the European continent, focus is given at eight sub-regions, shown in Figure 13. 

 

Figure 13. Studied European sub-regions (Christensen and Christensen, 2007). 
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Chapter 5. Results 

5.1. Model evaluation for the historical period 

Model evaluation for the historical period allows the assessment of the performance of the model 

on the representation of mean, low and seasonal hydrological states. The first part of model 

evaluation is done by comparing the un-routed JULES runoff output with a Global Gridded Runoff 

Dataset (described in Section 2.3.1). This comparison is done both for gridded data at the global 

scale and for basin aggregates of the same data. The second part of model evaluation is done at the 

basin scale, by comparing GRDC measured discharge to the JULES simulated discharge, after the 

post-processing routing algorithm has been applied. In summary, the first part of model evaluation 

is based on runoff and aims at the evaluation of mean and low hydrological states while the second 

part is based on discharge, and aims at the evaluation of monthly and seasonal discharge profiles at 

the basin scale. 

In parallel with comparing the model to observations, the sensitivity of the model to the forcing 

dataset is assessed, as the model has been forced by three different observational datasets (WFDEI, 

PGFv2 and GSWP3). 

5.1.1. Runoff based evaluation 

Figure 14 shows the differences in mean monthly runoff production between the JULES 

simulations and the observed runoff dataset. The biggest differences appear in the west and central 

equatorial African region and in South America, around the Amazon. Concerning the rest of the 

land surface, runoff underestimations of up to 25 mm/month are found at the northern regions while 

overestimations of the same magnitude are found in regions of central North America, Europe, east 

Asia and Oceania. According to Figure 15, which illustrates the differences in the lower 10th 

percentile of runoff between simulations and observations, low runoff is underestimated by the 

model in west and south equatorial Africa, east South America and Indonesia. Regions of low 

runoff overestimation are northern Europe and west North America, together with west South 

America. 
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For a closer insight on the differences between the simulations and the observed runoff dataset as 

well as on the effect of the forcing dataset on the simulations, the gridded data were spatially 

aggregated and compared at the basin scale. The basin aggregated mean runoff values of 

simulations and observations are shown in Figure 16, along with a scatterplot of simulations versus 

observations. Table 7 contains information on the mean runoff value of the observed dataset and 

simulations aggregated at the basin scale and additionally includes the range of the simulations. 

Respective information for low runoff can be found in Table 9. Table 8 tabulates the absolute and 

relative difference between simulations and observations of mean runoff aggregated at the basin 

scale, and Table 10 provides the respective differences for low runoff. 

 In general terms the deviations between observations and simulations are small and their 

correlation is strong (R-squared is 0.91, 0.93 and 0.85 for the WFDEI, PGFv2 and GSWP3 datasets 

respectively). The larger runoff underestimation is reported for Congo and overestimation for 

Amazon and Volga. However, this concerns the absolute difference between observed and 

modelled values. Expressing these deviations as relative (percent) differences (see Table 8) it is 

found that Amazon is one of the basins with the smaller deviations from observed runoff (5.7 % to 

17.0 %). Other basins with small relative differences between simulations and observations are 

Mississippi, Danube and Rhine. The largest runoff underestimation in relative terms is found for 

Guadiana (-71.6 % to -80.2 %) followed by Niger and Congo. 

The forcing dataset used has a considerable impact on mean runoff simulations. The range of the 

three simulations expressed as percent of the average (see Table 7) varies between 10.1% (for 

Amazon) to 83.5% (for Kemijoki). For some basins with large range of simulations (Lena, Oder 

and Kemijoki) it is observed that a single forcing dataset leads to very small values of percent 

difference from runoff observations while the other datasets result in large deviations from the 

observed values (Table 8). 

The comparison and correlation between observed and simulated values of 10th percentile runoff 

are shown in Figure 17. Low runoff simulations are well correlated with observations, although 

their correlation is slightly weakened compared to the one documented for mean runoff (R-squared 

values are 0.86, 0.87 and 0.77 respectively for the WFDEI, PGFv2 and GSWP3 datasets). 

Concerning the differences of simulations from observations, they appear much smaller in absolute 
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terms but are significantly more pronounced in relative terms. The range of the simulations is also 

augmented for low runoff (21.9 % to 287.4 %). 
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Figure 14. Mean runoff [mm/month] of the period 1986-1995, a) Observed runoff and b)-d) Difference 

between JULES simulated runoff for three forcing datasets and observed runoff. 
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Figure 15. 10th percentile runoff [mm/month] of the period 1986-1995, a) Observed runoff and b)-d) 

Difference between JULES simulated runoff for three forcing datasets and observed runoff. 
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Figure 16. Basin aggregated mean runoff. Comparison between observed runoff and JULES simulated 

runoff for three forcing datasets. 

 

 

Figure 17. Basin aggregated 10th percentile runoff. Comparison between observed runoff and JULES 

simulated runoff for three forcing datasets. 
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Table 7. Basin aggregated values of mean runoff for observations and JULES simulations. The range of 

simulations (difference between higher and lower simulated value) and the range as percent of average value 

(range divided with the mean of the three simulations). 

Mean runoff [mm/month] 

Basin OBS WFDEI PGFv2 GSWP3 

Range of 

simulations 

Range of 

simulations as 

percent of 

average value 

AMAZON 77.73 82.15 88.28 90.96 8.81 10.11% 

CONGO 50.17 29.09 36.29 26.00 10.29 33.79% 

MISSISSIPPI 11.23 11.80 14.63 13.79 2.83 21.12% 

LENA 5.90 6.11 5.35 10.04 4.68 65.34% 

NIGER 7.73 3.13 4.18 3.91 1.05 28.06% 

VOLGA 6.56 9.50 14.44 18.10 8.59 61.33% 

MURRAY 2.02 1.27 1.42 0.82 0.61 52.06% 

GANGES 21.65 32.83 22.37 31.50 10.46 36.18% 

ORANGE 0.30 0.18 0.30 0.15 0.15 69.04% 

DANUBE 18.82 17.53 16.52 14.93 2.60 15.95% 

SASKATCHEWAN 3.33 1.93 3.14 2.10 1.21 50.50% 

RHINE 46.73 44.22 41.34 46.23 4.89 11.12% 

ELBE 7.28 11.41 10.50 14.93 4.43 36.06% 

ODER 3.29 3.43 5.18 5.70 2.27 47.58% 

GUADIANA 3.28 0.93 0.71 0.65 0.28 36.78% 

KEMIJOKI 21.66 21.26 14.25 33.44 19.19 83.50% 
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Table 8. Difference between basin aggregated mean runoff and observed mean runoff. The difference is 

expressed both as an absolute and as a relative difference. 

Mean Runoff 

Difference from observations 

[Simulation – Observation] 

[mm/month] 

Percent difference from 

observations 

Basin WFDEI PGFv2 GSWP3 WFDEI PGFv2 GSWP3 

AMAZON 4.42 10.55 13.23 5.69% 13.57% 17.02% 

CONGO -21.08 -13.88 -24.17 -42.02% -27.67% -48.18% 

MISSISSIPPI 0.56 3.40 2.56 5.02% 30.23% 22.79% 

LENA 0.21 -0.54 4.14 3.61% -9.20% 70.23% 

NIGER -4.60 -3.55 -3.83 -59.52% -45.96% -49.48% 

VOLGA 2.94 7.88 11.53 44.77% 119.99% 175.71% 

MURRAY -0.76 -0.60 -1.21 -37.40% -29.62% -59.69% 

GANGES 11.17 0.72 9.85 51.61% 3.32% 45.48% 

ORANGE -0.12 -0.01 -0.15 -39.27% -1.70% -49.84% 

DANUBE -1.29 -2.30 -3.89 -6.86% -12.24% -20.69% 

SASKATCHEWAN -1.40 -0.19 -1.22 -41.98% -5.70% -36.78% 

RHINE -2.50 -5.39 -0.50 -5.35% -11.53% -1.07% 

ELBE 4.13 3.22 7.65 56.76% 44.27% 105.11% 

ODER 0.14 1.89 2.40 4.14% 57.50% 73.09% 

GUADIANA -2.35 -2.57 -2.63 -71.61% -78.40% -80.17% 

KEMIJOKI -0.40 -7.41 11.79 -1.84% -34.20% 54.43% 
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Table 9. Basin aggregated values of 10th percentile runoff (low runoff) for observations and JULES 

simulations. The range of simulations (difference between higher and lower simulated value) and the range 

as percent of average value (range divided with the mean of the three simulations). 

Low runoff [mm/month] 

Basin OBS WFDEI PGFv2 GSWP3 

Range of 

simulations 

Range of 

simulations as 

percent of 

average value 

AMAZON 23.09 12.55 15.71 13.07 3.16 22.94% 

CONGO 7.82 2.27 3.18 0.81 2.37 113.72% 

MISSISSIPPI 0.68 0.69 1.25 1.10 0.56 55.32% 

LENA 0.14 0.00 0.00 0.01 0.01 287.41% 

NIGER 0.24 0.03 0.02 0.02 0.01 33.78% 

VOLGA 0.18 1.99 3.29 2.46 1.30 50.43% 

MURRAY 0.04 0.04 0.01 0.01 0.03 159.08% 

GANGES 0.60 0.64 0.23 0.52 0.41 89.58% 

ORANGE 0.01 0.01 0.00 0.00 0.00 171.11% 

DANUBE 2.69 3.98 3.72 3.12 0.87 24.07% 

SASKATCHEWAN 0.10 0.06 0.27 0.20 0.21 116.29% 

RHINE 7.50 7.56 9.47 9.22 1.91 21.86% 

ELBE 0.21 1.65 2.27 1.76 0.62 32.55% 

ODER 0.08 0.40 0.84 0.65 0.44 69.80% 

GUADIANA 0.00 0.00 0.00 0.00 0.00 53.07% 

KEMIJOKI 0.92 1.13 0.27 2.40 2.13 168.06% 
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Table 10. Difference between basin aggregated 10th percentile runoff (low runoff) and observed 10th 

percentile runoff. The difference is expressed both as an absolute and as a relative difference. 

Low Runoff Difference from observations 

[Simulation – Observation] 

[mm/month] 

Percent difference from observations 

Basin WFDEI PGFv2 GSWP3 WFDEI PGFv2 GSWP3 

AMAZON -10.54 -7.38 -10.02 -45.65% -31.97% -43.41% 

CONGO -5.55 -4.64 -7.01 -70.97% -59.38% -89.69% 

MISSISSIPPI 0.01 0.57 0.42 1.31% 83.88% 62.54% 

LENA -0.14 -0.14 -0.13 -99.77% -100.00% -94.80% 

NIGER -0.21 -0.22 -0.21 -88.89% -92.15% -90.00% 

VOLGA 1.81 3.11 2.28 1021.69% 1755.15% 1286.41% 

MURRAY 0.00 -0.03 -0.03 -8.35% -79.36% -78.37% 

GANGES 0.04 -0.38 -0.08 6.17% -62.44% -13.97% 

ORANGE 0.00 -0.01 0.00 -23.40% -91.85% -64.74% 

DANUBE 1.29 1.03 0.43 48.09% 38.21% 15.83% 

SASKATCHEWAN -0.04 0.17 0.10 -37.57% 164.43% 94.25% 

RHINE 0.06 1.97 1.72 0.83% 26.33% 22.87% 

ELBE 1.44 2.06 1.55 678.28% 968.73% 729.81% 

ODER 0.32 0.76 0.57 392.87% 933.54% 697.52% 

GUADIANA 0.00 0.00 0.00 -97.86% -96.48% -97.86% 

KEMIJOKI 0.20 -0.65 1.48 22.14% -70.59% 159.91% 

 

5.1.2. Discharge based evaluation 

Annual cycles of discharge, derived from the 1981-2010 period, for 16 examined basins are shown 

in Figure 18. The evaluation metrics calculated from monthly discharge are tabulated in Table 11 

and a visual comparison of the difference in the achieved evaluation metrics due to the dataset used 

to force the discharge simulation is presented in Figure 19. 

Regarding the model’s performance, there are significant variations between the studied basins. 

The hydrological regime is well captured (NSE>0.5) regardless the forcing dataset used for 

Amazon, Mississippi, Lena, Ganges and Danube. For other basins the model’s performance is 

highly dependent on the choice of the forcing dataset. For example, NSE for Kemijoki is 0.8 for 

the WFDEI forcing but negative for the other two datasets. Respectively, the PGFv2 dataset results 

in an NSE value of 0.4 for the Orange river basin while the other two forcing datasets give negative 
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NSE values. PBIAS values indicate that discharge is underestimated by the model for most basins, 

a behavior that has been identified in many LSMs and GHMs (Gudmundsson et al., 2012). However 

for few basins (Niger and Murray) discharge is highly overestimated (PBIAS>100 %). 

Considerable variations in PBIAS are documented for the different forcing datasets. The PBIAS 

range spans from around 10 % to 110 %, with a mean value of 40 %. Regarding the R2 metric, good 

correlations (R2>0.5) are found for most basins. The value of R2 for some basins is highly affected 

by the choice of the forcing dataset. An example is Rhine, for which GSWP3 gives very good 

correlation (R2 = 0.9) in contrast to PGFv2 which results in a poor correlation (R2 < 0.1). 

Comparison of model performance with previous studies 

The seasonality cycles derived in the present study resemble those found by Blyth et al. (2011), 

while evaluating JULES’ runoff for seven large scale basins, characteristics of different hydro-

climatic regimes. The R2 values for mean and low runoff, agree with the values calculated by 

Gudmundsson et al. (2012) on an evaluation of JULES (together with other models) over Europe. 

Moreover, our results compare well with the results presented in a multi-model evaluation project 

performed by Hattermann et al. (2016) for a number of basins worldwide, in the context of the 

Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). Finally, in terms of evaluation 

metrics, our results indicate a better model performance compared to other published studies that 

evaluate the hydrological performance of JULES (MacKellar et al., 2013; Zulkafli et al., 2013). 

It should be noted however that it is unrealistic for a global LSM to achieve top performance around 

the world (Hattermann et al., 2017), as, due to its global nature, some fixes in some regions could 

result in deteriorations in performance in other parts of the land surface. 

Τhe shown persistent departure from the mean climatology of discharge could include three types 

of errors. The first is the error stemming from the insufficient description of the runoff processes 

by the land surface model and from the routing algorithm (Blyth et al., 2011b). The second type of 

error is a result of errors in the forcing datasets (either observational or GCM output) with regards 

to depicting the real climatic drivers (Elsner et al., 2014; Mizukami et al., 2014). A third possible 

error comes from the comparison of naturalized discharge of the simulations with measured 

discharge due to influences like abstractions and dams regulating the natural river flow (Müller 
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Schmied et al., 2014). An extra error component, which is not considered here, could result from 

the uncertainty in discharge measurements (Coxon et al., 2015). 

Discussion of limitations of the modelling approach 

Here we discuss the limitations of the modelling approach employed in this study. The spatial 

resolution used for the model runs follows the resolution of the observational datasets used as input 

in the model. However, a resolution of 0.5o is quite coarse to capture some of the hydrological 

processes that occur at the basin level. This especially applies to basins with highly variable 

elevation and basins of mountainous regions. Moreover, some natural processes with great 

significance for the hydrological regime of specific mountainous basins, like the glacier melting 

contribution to runoff in the case of the Indus river basin, cannot be described by JULES. 
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.  

Figure 18. Observed (GRDC) and simulated discharge seasonality for 16 major hydrological study basins. 
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Figure 18 (continued).
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Table 11. Evaluation metrics for monthly discharge, for 16 major hydrological study basins. 
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Figure 19. Comparison of monthly derived evaluation indices between discharge simulation forced with three different observational datasets, for 16 major 

hydrological study basins. 
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5.2. The effect of GCM biases on runoff 

Here we investigate the effect of the biases in GCM climate variables on the historical runoff output 

of the large scale LSM JULES. To this end, we firstly quantify the improvements in the 

representation of historical modelled runoff when bias corrected variables are used as forcing. 

Secondly, we examine the individual effect that the bias of each climate variable can have on runoff 

simulations. This way we can provide an assessment of the variables beyond precipitation and 

temperature that may be considered as “priority” variables for bias correction, due to their possible 

pronounced effect on hydrological simulations. 

5.2.1. Long-term annual biases in forcing variables at the global scale 

Global maps of the initial and remaining biases of the forcing variables are shown in Figure 20. 

Respective information on the seasonal biases is presented in Figure B 1 and Figure B 2 of 

Appendix B. In general terms the remaining annual biases are smaller than the initial ones by one 

to two orders of magnitude. For precipitation (Figure 20a), the largest initial wet biases are observed 

for regions with high mountain ranges (the Andes in South America, the Alaska Range and the 

Rocky Mountains in North America and the Himalayas in Asia) and for the tropical African and 

Indonesian regions. Only a very small percentage (0.75%) of the land surface has small biases (-

0.01 to 0.01 mm/day) while the largest biases (>5 mm/day or <-5 mm/day) occupy 31.18 % of the 

land surface. The remaining biases in precipitation are small (up to 0.01 mm/day in absolute terms, 

for 80.32 % of the land surface) and located in the tropics. The initial biases in temperature are cold 

biases for 57.82 % of the land surface while warm biases (mainly found in the Alaskan, Greenland, 

north and central Asia regions as well as in the Mediterranean and the Andes) occupy 42.12 % of 

the land surface (Figure 20b). Initial biases greater than 2 K in absolute terms cover approximately 

one third of the land surface (34.74 %). After bias adjustment, the remaining temperature bias is 

less than 0.1 K for the vast majority of the land surface (97.27 %). 

The initial biases of longwave and shortwave radiation (Figure 20c and Figure 20d respectively) 

exhibit similar spatial variations but have different signs. Shortwave radiation shows a greater 

extent of large biases (>50 W/m2 in absolute terms) compared to longwave radiation (8.16% as 

opposed to 2.95% of the land surface). Initial biases in specific humidity are greater than 10-3 kg/kg 

(1g/kg), in absolute terms, for one quarter of the land surface (23.65%) (Figure 20e). The largest 
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biases in surface pressure (>50 or <-50 HPa) occupy 10.01% of the land surface and are found in 

the areas where high mountain ranges are located (Rocky Mountains, Andes, Himalayas) (Figure 

20f). The remaining bias in surface pressure is less than 0.1 HPa (in absolute terms) for most of the 

land surface (96.50 %). For more than half of the land surface (55.79 %) wind’s initial biases are 

larger than 0.5 m/s or smaller than -0.5 m/s (Figure 20g). The remaining biases of the wind variable 

range between -0.01 and 0.01 m/s for the majority of the land surface (87.71 %). 

Generally, the initial GCM biases in precipitation and temperature are more pronounced over high 

mountainous regions and the tropics. Recent studies argue towards a dependency between biases 

and altitude. According to the study of Haslinger et al. (2013), both temperature and precipitation 

biases of a GCM tested over the Alpine Region, show increasing trends with height. Regarding the 

tropics, various studies show increased GCM biases in these regions compared to model 

performance in other climate zones (Koutroulis et al., 2016; Randall et al., 2007; Solman et al., 

2013). The initial surface pressure biases are also linked to altitude, as surface pressure heavily 

depends on elevation. Initial biases in surface pressure have an elevation-similar pattern and could 

be a result of the different spatial resolution of the elevation model in the GCMs and WFDEI. The 

WFDEI dataset resolution is 0.5 degrees while the original GCM spatial resolution is considerably 

lower (around 2.5 degrees). GCM surface pressure is simulated taking into account a relatively low 

resolution elevation model. Although GCM surface pressure is interpolated to the WFDEI 

resolution, this does not correct the elevation induced error in the GCM simulations. 

The remaining biases in precipitation at the tropical regions were also identified and discussed 

extensively by Grillakis et al. (2013) and are related to the error in the CDF approximation during 

bias correction. For the rest of the variables, the remaining bias although not actually zero is very 

close to zero (well below the smallest positive and above the smallest negative rank in the legend, 

e.g. below -0.1 K and below 0.1 K for temperature). The color scale in Figure 20 was selected with 

the intention of showing the remaining biases, but this does not mean that their values are 

accountable. They are rather trace errors occurring due to truncation numerical errors during the 

bias correction process. Hence the remaining biases (except for precipitation) could not be 

attributed to a specific mechanism. 
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Figure 20. Difference maps, showing initial (Raw-WFDEI) and remaining (BC-WFDEI) biases of the GCM ensemble forcing variables: a. Precipitation, b. 

Temperature, c. Longwave downward radiation, d. Shortwave downward radiation, e. Specific humidity, h. Surface pressure, g. Wind. Differences are 

calculated between the long-term annual averages (ANN) of the 1981-2010 period. 
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5.2.2. Regional and seasonal biases in forcing variables 

Figure 21 illustrates the initial biases of the GCM ensemble, spatially aggregated over 24 regions 

of the globe. To account for possible seasonality variations, the biases are calculated for the annual 

mean (ANN) and for the December-January-February (DJF) and June-July-August (JJA) means. 

The remaining biases are not shown because their regionally aggregated values are negligible and 

would be indistinguishable on the Figure. Additionally, an insight on the behavior of each ensemble 

member, in comparison to the ensemble mean and WFDEI is given by Table B 1 of Appendix B. 

Table B 1 provides the values of raw input variables for each ensemble member, the ensemble mean 

value and the respective WFDEI value, averaged for the 24 study regions. 

Precipitation biases are less pronounced in Europe (NEU, MED, NEE) and in central and north 

Asian regions (CAS, NAS). The wettest precipitation biases are encountered in the equatorial and 

Southern Africa (EQF, SQF and SAF) and concern DJF precipitation (Figure 21). The driest biases 

are found for the CAM, AMZ and SAS regions, for JJA precipitation. Temperature displays cold 

biases in most regions. A notable exception is the warm bias in DJF temperature in the NAS region, 

which is the most pronounced temperature bias found. Generally the DJF temperature biases are 

the largest, followed by ANN, while the JJA season has the smallest temperature biases. 

The two radiation components, long-wave (Rl) and short-wave (Rs) radiation, show an inverse 

behavior in their biases (Figure 21). That is to say, in regions where Rl has negative biases Rs 

exhibits positive biases and vice versa. According to Demory et al. (2014), overestimation of 

shortwave radiation is a common issue amongst the GCMs. Negative biases are dominant for Rl in 

contrast to the Rs variable, which mostly shows positive biases. Specific humidity has negative 

biases over the north part of the African continent (SAH, WAF, EAF, EQF), central and south 

America (CAM, AMZ, CSA) and south Asia (SAS). Positive humidity biases are identified in the 

south part of Africa (SQF and SAF) and north America (WNA, CNA and ENA). 

Surface pressure shows almost exclusively positive biases (Figure 21). The regions that distinguish 

for the largest biases are MED, SEA, SAH, SAF, CAM, CSA and SSA. The most dominant 

negative wind speed bias is found in NAU. Most of the African continent (SAH, WAF, EAF, EQF, 

SQF) and of South America (AMZ, CSA) also have negative biases in wind. The largest positive 
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biases are encountered in the southern part of South America (SSA) for the JJA season and for the 

DJF season in regions of North America (WNA, CAM), Europe (MED) and Asia (CAS, TIB, SEA). 

 

Figure 21. Initial biases (Raw-WFDEI) of the GCM ensemble forcing variables, spatially averaged for 24 

Giorgi regions. Biases are calculated between long-term annual averages (ANN), December-January-

February (DJF) and June-July-August (JJA) averages of the period 1981-2010. 
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5.2.3. Long-term biases in runoff at the global scale 

Figure 22 shows the initial and remaining biases in runoff, derived from ANN, DJF and JJA long 

term means. As with the biases in the input forcing variables, the remaining bias in runoff is one to 

two orders of magnitude smaller than the initial bias. Hence, the use of bias corrected data led to 

an improved representation of runoff by the model, compared to the baseline of the WFDEI run. 

Accordingly, the studies of Teutschbein & Seibert (2012) and Rojas et al. (2011) found that 

hydrological simulations are substantially improved with the use of bias corrected forcing. 

Regarding the raw GCM run, the largest runoff underestimation biases (<-5 mm/day) are 

encountered in central-north America, the central-east part of South America and East Asia. The 

most pronounced runoff overestimation biases are found in the west part of North and South 

America, in equatorial, south Africa, northern Europe, the Tibetan region and Indonesia. Initial 

runoff biases are larger than 1 mm/day in absolute terms for 16.26 %, 14.85 % and 20.18 % of the 

land surface respectively for ANN, DJF and JJA. The differences between the seasonal means (DJF, 

JJA) and the annual mean (ANN) are in general subtle. Yet, the increases in runoff overestimation 

biases in DJF in south equatorial Africa and in JJA in the Tibetan plateau are worth noting. Large 

initial biases (>5 mm/day in absolute terms) in seasonal means occupy a greater percentage of the 

land surface compared to annual mean (0.70 % for ANN, compared to 1.25 % and 1.97 % for DJF 

and JJA respectively). 

The remaining biases in runoff range from -0.1 to 0.1 mm/day for the majority of the land surface 

(95.19 %, 87.40 % and 80.30 % for ANN, DJF and JJA respectively). Negligible biases (smaller 

than 0.01 mm/day in absolute terms) are found for more than one third of the land surface 

(specifically for 38.06 % of the land area for ANN, 37.60 % for DJF and 34.42% for JJA). The 

(negative) remaining bias in ANN runoff is more pronounced in the west Amazonian region. This 

probably corresponds to the remaining bias in precipitation identified for the Amazon region 

(Figure 20). In addition to the significant reduction of the biases in runoff forced with bias corrected 

data, it can be observed that the remaining biases have switched signs compared to the initial biases. 

This means that in regions where the initial bias in runoff is positive (negative), thus the raw GCM 

forced runoff is larger (smaller) than runoff forced with WFDEI, the use of bias corrected forcing 

results in runoff slightly lower (higher) than WFDEI runoff. A respective behavior was not 
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observed in the initial and remaining biases of the most impacting forcing variables (P and T) but 

it was, to an extent, present for other variables (Rl, Rs and H). Thus, the “overcorrection” 

manifested for bias corrected runoff compared to WFDEI runoff cannot be attributed to remaining 

biases in precipitation and temperature. Instead, it could plausibly be associated with the compound 

effect of the remaining biases in part of (or in all other) forcing variables. 

 

Figure 22. Runoff [mm/day], from WFDEI data (left column). Initial (Raw-WFDEI) and remaining (BC-

WFDEI) biases in runoff are shown in middle and right columns respectively. Results are shown for long-

term annual averages (ANN), December-January-February (DJF) and June-July-August (JJA) averages of 

the 1981-2010 period. 
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5.2.4. Effect of each forcing variable’s bias on runoff  

The effect that the bias of each forcing variable can have on runoff is investigated here, by 

comparing runoff from the bias corrected run to the partial correction assessment runs. The results 

are shown in Figure 23, for ANN, DJF and JJA averages. 

First, we discuss the runoff differences calculated from the ANN period. Precipitation and 

temperature are the only two variables that cause runoff differences larger than 5 mm/day (in 

absolute terms) when neglected from bias correction. However, these differences regard a very 

small percentage of the land surface: 0.61 % for precipitation and only 0.02 % for temperature. 

Moreover, precipitation bias causes changes in runoff greater than 1 mm/day (in absolute terms) 

for 14.28 % of the land area. Such changes for the other variables occupy a significantly smaller 

fraction of the land area (ranging from 1.21 % for temperature to 0.05 % for wind). Based on the 

above it can be stated that precipitation is the variable that mostly affects runoff response. 

Precipitation bias causes both wet and dry biases in different regions of the land surface, with a 

pattern that closely resembles the effect of the initial GCMs’ biases on runoff (Figure 22). A similar 

pattern between precipitation and runoff biases was also observed by Teng et al. (2015), who noted 

that precipitation errors are magnified in modelled runoff. Temperature biases result in runoff 

overestimation for around 60 % of the land surface (e.g. over west- and east-North America, the 

Amazon region, equatorial Africa, northern Europe and parts of Asia) and runoff underestimation 

for around 40 % (example regions: parts of central-south America and of central Asia). Temperature 

biases correspond with small changes in runoff (up to 0.01 mm/day in absolute terms) over about 

one third of the land area. Excepting the radiation components from the bias correction procedure 

produces negative runoff changes for the majority of the land surface (67.60 %), while for around 

80 % of the land surface the differences in runoff range between -0.1 and 0.1 mm/day. The bias in 

the specific humidity variable corresponds to runoff overestimations for 64 % of the land area. The 

areas of runoff overestimation are mainly located at the higher latitudes (northern part of north 

America, Europe, north Asia). For 36.43 % of the land surface, changes in runoff due to specific 

humidity biases span between 0.1 and 0.5 in absolute terms. Surface pressure and wind are the 

variables that show the smaller effect on the hydrological output, as their exclusion from bias 

correction corresponds to small changes in runoff (less than 0.1 mm/day in absolute terms) for the 

vast majority of the land surface (around 94 % and 92 % of the land surface respectively for surface 
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pressure and wind speed). The most pronounced differences in runoff due to surface pressure biases 

are negative and are encountered over the high mountain ranges’ regions of South America and 

Asia (Andes and Himalayas respectively). 

The patterns of runoff changes due to the biases of the forcing variables derived from annual (ANN) 

and seasonal (DJF, JJA) averages show only subtle variations. In general the above analysis on the 

ANN runoff differences applies also to the seasonal values, with small variations on the land 

fractions that show a specific response to forcing biases. 

From this analysis it can be deduced that apart from the main hydrological cycle drivers 

(precipitation and temperature), radiation and specific humidity can also pose a substantial effect 

on runoff, especially for specific regions. These findings will be further investigated and discussed 

in the following sections. Other studies also advocate towards the considerable effect that biases in 

radiation (Mizukami et al., 2014) and humidity (Masaki et al., 2015) can have on hydrological 

fluxes. 



Chapter 5 

82 

 

 

Figure 23. (top row) Runoff [mm/day], from bias corrected GCM ensemble forcing (BC), and (second to 

last row) runoff differences between the bias corrected run (BC) and the partially corrected runs (NobcV, 

where V is one of the forcing variables P, T, R, H, Ps, W). Results are shown for long-term annual averages 

(ANN), December-January-February (DJF) and June-July-August (JJA) averages of the 1981-2010 period. 
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5.2.5. Runoff sensitivities to forcing variables 

Sensitivity of runoff changes to the biases of the forcing variables is examined by exploring the 

relationship between the input forcing biases (ΔV) and the corresponding changes in runoff (ΔRF). 

The regional variation of this relationship is also investigated. Figure 24 shows scatterplots of ΔRF 

versus ΔV for each examined variable, for 10 selected regions. The dots in each scatterplot 

correspond to the land grid-boxes of each region. The presented regions are selected as 

representative of different parts of the land surface, as the number of the regions shown in the main 

text had to be reduced for clarity of the results. Scatterplots of the 24 examined regions can be 

found in Appendix B (Figure B 3). The median values of ΔV, ΔRF and S of the land grid-boxes of 

each region, for the 24 examined regions, are shown in Table 12. 

 

Figure 24. Scatterplots of relative changes in forcing variable (ΔV, x axis) and corresponding relative 

changes in runoff (ΔRF, y axis), for all the forcing variables and for selected regions. In each panel, each 

dot represents the ΔRF/ ΔV relationship of each land grid-box in the examined region. 
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Table 12. Relative change (%) in forcing variable (ΔV), corresponding relative change (%) in runoff (ΔRF) 

and sensitivities (S= ΔRF/ ΔV) per region, for each variable. For each region, the median of the ΔV, ΔRF 

and S values of all land grid -boxes is shown. 

 
Variables P T* R H Ps W 

GLOBAL ΔV  14.46 -0.57 1.73 0.91 -0.02 -5.86 

  ΔRF 2.49 3.38 -3.71 2.04 -0.04 0.21 

  S 1.76 -0.05 -2.12 0.81 1.18 -0.06 

NEU ΔV  14.6 -0.46 1.86 4.1 -0.05 -9.79 

  ΔRF 27.97 22.68 -5.25 25.49 -0.02 3.62 

  S 2.10 -0.31 -3.31 5.24 2.90 -0.36 

MED ΔV  -14.39 -0.15 0.55 -1.34 0.41 14.94 

  ΔRF -58.56 1.55 -1.51 4.07 0.44 -0.47 

  S 2.02 -0.04 -2.52 0.77 1.08 -0.08 

NEE ΔV  4.89 -1.44 2.44 3.32 0.1 -11.77 

  ΔRF 5.75 47.11 -5.39 32.73 0.26 5.98 

  S 2.28 -0.32 -2.64 9.58 3.31 -0.50 

NAS ΔV  26.05 0.67 3.53 8.05 -0.06 -1.08 

  ΔRF 59.36 11.8 -10.08 63.98 0.02 4.06 

  S 2.35 -0.07 -2.95 7.58 2.43 -0.29 

CAS ΔV  6.44 -0.03 1.37 -13.00 -0.41 8.09 

  ΔRF -9.94 1.31 -0.44 -0.19 -0.36 -1.29 

  S 2.49 -0.05 -3.50 0.31 0.88 -0.09 

TIB ΔV  128.47 -2.94 -1.14 7.69 -0.12 12.59 

  ΔRF 1017.17 5.38 0.97 0.81 0.02 0.06 

  S 7.27 -0.02 -2.07 0.18 0.40 0.00 

EAS ΔV  19.25 -0.94 2.51 2.92 -0.2 -3.55 

  ΔRF 4.36 5.54 -2.96 3.66 -0.05 0.76 

  S 1.70 -0.06 -1.53 0.82 1.07 -0.09 

SEA ΔV  19.76 -0.87 1.11 0.89 0.23 34.57 

  ΔRF 43.92 5.97 -3.2 1.66 0.32 -1.04 

  S 2.07 -0.08 -2.68 1.16 1.54 -0.05 

NAU ΔV  41.15 -0.04 1.43 7.71 0.1 -28.46 

  ΔRF -5.13 1.02 -1.16 1.38 0.09 -0.44 

  S 0.37 -0.03 -0.75 0.31 0.56 0.00 

SAU ΔV  18.92 -0.28 0.85 2 -0.13 -11.2 

  ΔRF -9.29 1.07 -0.11 1.4 0.06 -0.49 

  S 0.82 -0.05 -0.88 0.67 1.00 -0.03 

SAH ΔV  54.11 -2.73 -0.47 -8.96 0.22 -13.59 

  ΔRF -2.59 -0.68 0.64 -0.32 0 0.08 

  S 0.94 0.00 -0.25 0.04 0.04 -0.01 

WAF ΔV  26.74 -1.51 -0.88 -5.79 -0.1 -15.13 
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 ΔRF 58.24 5.61 -1.57 -0.71 -0.13 0.09 

 S 2.78 -0.04 -2.61 0.22 1.28 -0.04 

EAF ΔV  23.22 -1.68 -0.06 -5.76 -0.25 -12.11 

  ΔRF 42.13 7.24 -1.51 -3.74 -0.28 0.09 

  S 2.12 -0.05 -1.95 0.48 0.95 0.00 

EQF ΔV  5.64 -1.55 -0.25 -2.15 -0.2 -10.09 

  ΔRF -0.14 6.21 0.92 -1.29 0 0.07 

  S 2.26 -0.05 -1.73 0.49 0.92 -0.01 

SQF ΔV  36.45 -0.9 0.9 0.89 -0.03 -15.6 

  ΔRF -73.18 -82.26 -85.07 -84.68 -84.2 -84.18 

  S 2.94 -0.07 -1.91 0.59 1.10 -0.04 

SAF ΔV  89.8 -1.41 -0.38 14.28 0.68 -4.74 

  ΔRF 85.47 5.5 0.54 5.33 0.42 -0.02 

  S 1.35 -0.04 -1.66 0.45 0.72 -0.05 

WNA ΔV  65.92 -1.75 -1.23 13.55 0.14 10.23 

  ΔRF 112.66 17.94 -0.48 9.85 0.16 -2.5 

  S 2.12 -0.13 -2.01 0.77 0.98 -0.17 

CNA ΔV  -12.84 0.11 1.68 2.29 -0.08 -14.79 

  ΔRF -50.86 1.53 -2.06 6.57 -0.05 1.96 

  S 2.54 -0.07 -1.47 1.08 1.09 -0.13 

ENA ΔV  4.08 0.49 2.71 13.4 0.1 5.47 

  ΔRF -0.38 -0.38 -5.18 39.72 0.13 0.86 

  S 1.69 -0.07 -1.92 3.17 1.54 -0.11 

CAM ΔV  11.43 -0.98 -0.4 -6.16 0.15 25.27 

  ΔRF -7.73 3.65 -0.1 -2.55 0.14 -0.52 

  S 1.32 -0.04 -1.58 0.49 0.77 -0.02 

AMZ ΔV  -26.58 -0.35 4.06 -13.19 -0.19 -4 

  ΔRF -40.52 4.88 -9.34 -6.01 -0.23 0.03 

  S 1.42 -0.05 -2.37 0.53 1.44 -0.04 

CSA ΔV  -32.8 0.7 3.05 -11.53 -0.23 -7.5 

  ΔRF -63.21 -1.49 -3.22 -5.75 -0.13 0.38 

  S 1.59 -0.04 -1.16 0.53 0.83 -0.04 

SSA ΔV  72.07 -1.22 -1.77 5.07 0.08 9.91 

  ΔRF 84.32 10.06 -0.47 12.05 0.34 -2.44 

  S 1.53 -0.09 -0.50 1.48 1.29 -0.04 

SAS ΔV  -9.19 -1.08 1.39 -13.11 -0.05 -6.81 

  ΔRF -26.35 5.2 -4.07 -2.53 -0.09 0.51 

  S 1.62 -0.05 -2.46 0.29 0.90 -0.05 

*ΔV for temperature is the absolute change in temperature. 
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The correlation between the six ΔVs and respective ΔRFs differs substantially between the 

examined regions. Generally, the correlations show a non-uniform behavior, identified by the 

highly scattered data clouds. This implies a high spatial variability of runoff sensitivity to the 

examined variables. 

For precipitation, the ΔRF over ΔP relationship exhibits a nonlinear behavior, indicating that the 

relative change is runoff is not proportional to precipitation bias, but also depends on the magnitude 

of precipitation bias. Renner et al. (2012) also identified nonlinearities in the relationship between 

relative changes in streamflow and changes in precipitation and argued that nonlinear behavior is a 

result of the combined effects of water and energy balances. Temperature biases have an inversely 

proportional and highly nonlinear relationship with changes in runoff. The ΔRF over ΔT 

relationship is also variant for different regions. For example, the scatterplots for NEU and WNA 

indicate that small temperature biases may correspond with large changes in runoff. In contrast, the 

scatterplot for CAM indicates that larger temperature biases correspond with smaller changes in 

runoff compared to the other regions. Radiation biases are small but can correspond with high 

changes in runoff for some regions (WNA, SAS, WAF, AMZ). For specific humidity it can be 

observed that small positive biases correspond to high changes in runoff for some region (NEU, 

MED, WNA and ENA). A different behavior is observed for CAM, SAS, AMZ and CSA where 

the data cloud is more scattered on the x axis (meaning larger biases in specific humidity) and less 

scattered on the y axis (i.e. changes in runoff are smaller). Surface pressure has smaller biases 

compared to the other forcing variables and its effect on runoff also appears reduced. Wind has a 

wide range of both positive and negative biases which, however, do not seem to affect runoff 

accordingly. 

The variation of the ΔRF over ΔV relationships across the different regions can be attributed to a 

number of factors. First, it depends on the magnitude and signal of the biases in the forcing 

variables. As previously shown, these can have significant spatial variations (Figure 20). For 

example, according to the median values of relative changes in Table 12, some regions are 

dominated by negative precipitation biases (MED, SAS, AMZ, CSA) and others by positive biases 

(NEU, WNA, ENA, CAM, WAF, SAU). Second, it reflects the climatology of each region. The 

same biases would affect differently regions with different runoff (and evapotranspiration) fractions 

of each region. The precipitation partitioning to runoff and evapotranspiration is a climate 
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characteristic and is controlled by either water or energy limitations depending on the region. 

Additionally, we should consider that although we assess the effect of long-term annual biases on 

long-term annual runoff, the results are still depended on the seasonal cycles of the variables and/or 

runoff, especially if the seasonality of precipitation in the region is strong. For example, the same 

annual bias in temperature would translate differently to runoff changes in a region with 

precipitation evenly dispersed throughout the year and in another region where most of annual 

precipitation happens during the summer months. Finally, as this is a model-based experiment, we 

should consider whether high sensitivities of some variables for specific regions are a result of over-

sensitivity of the model. Vano et al. (2012) documented considerable differences in the spatial 

distribution of sensitivities to precipitation modelled by five LSMs. 

5.2.6. Spatial distribution of bias effect categories 

Figure 25 shows global maps of bias effect categories (ECs) for each forcing variable, derived 

according to the methodology described in Section 3.4.2. The land area fraction corresponding to 

each EC is tabulated in Table 13. 

Precipitation is the variable whose biases have the largest effect on runoff, with the vast majority 

of the land surface (92 %) corresponding to the high change categories ECI (67.80 %) and ECII 

(24.20 %). Radiation has the second largest land fraction in ECI but temperature has the second 

largest land fraction in the high change categories (ECI and ECII). Radiation also has the largest 

land fraction in the high sensitivity categories (ECI and ECIII). This is possibly a result of 

combining shortwave and longwave radiation for the calculation of the radiation biases. For specific 

humidity, the most affected areas (ECI) show a significant spatial coherence and are clustered in 

the higher latitudes of the globe. Surface pressure biases belong to ECI for around one tenth of the 

land surface. The highly affected areas mainly correspond to regions with high mountain ranges. 

For wind, the majority of the land surface corresponds to ECIV. Still, around one quarter of the 

land surface belongs to the high change categories (ECI and ECII).  
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Figure 25. Global maps of bias Effect Categories (ECs) for each forcing variable. 
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Table 13. Percent of land area (%) under each of the four Effect Categories (ECs).  

Variables 

              

                        ECs 

I II III IV 

P 67.80 24.20 1.82 6.18 

T 45.15 22.03 2.46 30.35 

R 48.74 1.30 26.16 23.80 

H 40.80 13.76 5.58 39.86 

Ps 12.17 1.83 38.48 47.52 

W 6.09 19.19 2.35 72.37 

 

5.2.7. Discussion of runoff sensitivities 

Here we compare our findings to the respective literature to assess the realism of JULES’ 

sensitivity. We use the median sensitivity value of the grid-boxes of each region (Table 12) as the 

representative sensitivity S for each region. Moreover, we discuss issues of possible model over-

sensitivity in particular regions and the caveats of this study. 

Sensitivity of runoff to precipitation 

Most studies have examined the sensitivity (also reported as elasticity) of runoff (or discharge) to 

precipitation. A number of studies have examined sensitivity to precipitation for regions or basins 

in the United States. Values of runoff sensitivity (S) to precipitation between 1.5 and 2.5 were 

reported by Sankarasubramanian and Vogel (2003) for the US (WNA, CNA and ENA). Fu et al. 

(2007) reported values of 1.5 to 1.67 for the Spokane River basin (located in WNA). Vano et al. 

(2012) found that S to precipitation ranged from 2.2 to 3.3 for different LSMs for the Colorado 

River basin (also located in WNA). For the Mississippi River basin (mainly located in CNA), 

Renner et al. (2012) found that S of streamflow to precipitation is 2.38 and 2.55 using two different 

methods for sensitivity estimation. For another basin located in CNA, Brikowski (2015) reported 

runoff S to precipitation to be 2.64. For the US region, the S values found in this study compare 

very well with the literature values. Runoff S to precipitation is 2.12 for WNA, 2.54 for CNA and 

1.69 for ENA. Many studies report S to precipitation for regions or basins of China. Reported values 

of runoff S to precipitation in the Yellow River basin (located in EAS) are 1.4 to 1.69 (Fu et al., 
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2007), 1.6 to 3.9 for 89 catchments of the EAS region (Yang and Yang, 2011), 1.71 and 1.74 

(estimates of two different methods) for the headwaters of the Yellow River (Renner et al., 2012). 

Again, the value found in our study is in good agreement with the literature (S to precipitation for 

EAS is 1.70). 

Sensitivity of runoff to temperature and other variables 

A number of studies have examined runoff sensitivity to temperature changes. Vano et al. (2012) 

reported S to temperature values ranging from -2 to -9 C-1 between 5 LSMs for the Colorado River 

basin (WNA) and Brikowski (2015) reported a value of -0.41 C-1 for S to temperature in a basin in 

CNA. Our values for these regions are substantially lower (-0.13 K-1 for WNA and -0.07 K-1 for 

CNA). This divergence could be attributed to two factors. First, to an extent it could be connected 

to possible non-sensitivities of our model to temperature changes for these regions. Second, the 

differences could arise from the inclusion (or not) of the physical link between temperature and 

other variables in the analysis. Vano et al. (2012) use different LSMs to calculate sensitivities by 

perturbing daily temperature maxima and minima. These changes also affect the downward 

longwave radiation and humidity, which are then used by the evapotranspiration routines of the 

LSMs. In our case, the change in temperature does not interact with radiation and humidity, as those 

are read as input variables by the model. When temperature is allowed to interact with humidity, 

increased temperature will increase the water vapour capacity of the air, and more water will be 

evaporated. The lack of this physical link in our simulations could, to an extent, explain the 

decreased sensitivity of runoff to temperature changes compared to Vano et al. (2012). In the 

analysis of Brikowski (2015), sensitivities of runoff to precipitation and temperature are derived 

from respective historical data. Thus, sensitivity to temperature will also include the changes caused 

by the interaction of temperature with other meteorological variables. In a study with a different 

approach, Yang and Yang (2011) separated the effect of precipitation, temperature, net radiation, 

relative humidity and wind speed on runoff and calculated sensitivities for each variable. They 

reported values of S to temperature ranging from -0.11 to -0.02 C-1
 between 89 catchments of the 

EAS region. For the same region, we have computed S to temperature as -0.06 K-1, which is 

included into the literature stated range. Moreover, our S values for radiation, humidity and wind 

speed are also in good agreement with Yang and Yang (2011). According to Yang and Yang (2011), 

S to radiation ranges from -1.9 to -0.3, S to humidity from 0.2 to 1.9 and S to wind speed from -0.8 
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to -0.1. The range refers to values computed for 89 catchments in the EAS region. Our respective 

values for this region are -1.53 for radiation, 0.82 for humidity and -0.09 for wind speed. This 

supports the argument that the large deviations of the sensitivity to temperature between our study 

and the studies of Vano et al. (2012) and Brikowski (2015), result from interactions in the forcing 

variables included in the referenced studies. 

Sensitivity of runoff to radiation 

The reported S to radiation values are higher in absolute terms than S to precipitation values for 

many of the examined regions and also globally (Table 12). However, according to the findings 

presented in section 5.2.4, precipitation and temperature correspond to higher changes in runoff 

compared to radiation. That is because high S to radiation results from relatively low ΔV values, 

rather than from relatively high ΔRF values (compared e.g. to precipitation). Small ΔV for radiation 

is possibly the consequence of combining shortwave and longwave radiation to calculate the total 

bias in radiation, as the two radiation components have inverse signs for most regions (Figure 21).  

Sensitivity of runoff to specific humidity at high-latitude regions 

Although S to humidity for EAS compares well with literature, unexpectedly high values of S to 

humidity are found for other regions (5.24 for NEU, 9.58 for NEE, 7.58 for NAS). We performed 

an extra analysis to investigate this issue and the basic findings are included in Figure 26 and 

Appendix B. Figure 26 examines the differences between latitudinal mean of raw and bias corrected 

specific humidity and the resulting runoff. Very high sensitivity of runoff to H is observed for a 

specific area, the zone between 70 N and 40 N latitudes. In that zone, a difference of about 10 % in 

H corresponds to an increase of 40 % to 60 % in runoff. Investigation of the different fluxes related 

to runoff production in the model revealed two mechanisms that explain this behavior. First, due to 

higher humidity, the water vapour deficit of the air is reduced and evapotranspiration is decreased, 

thus allowing more of the precipitated water available as runoff. This mechanism explains around 

one third of the magnitude of reported changes in runoff (Figure B 4 of Appendix B). The second 

mechanism happens due to super-saturation of the air, especially during the colder months of the 

year when the dew point is lower, and includes the condensation and deposition of water vapour 

(direct transition from vapour to ice). Depositioned water accumulates as snowmass. Snowmass is 
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higher for the raw H run (H has positive biases), which results in increased snowmelt and thus 

increased runoff (Figure B 5 of Appendix B). 

A comparison of super-saturated air conditions for the different sets of data (WFDEI, Raw, BC and 

NobcH) can help us identify the origin of the aforementioned behavior. From the input specific 

humidity H, we estimated the respective relative humidity (this transformation also requires 

temperature T and surface pressure Ps as input to the Clausius-Clapeyron equation). Then we 

calculated the fraction of time (based on a daily timestep) that super-saturated conditions occur, for 

the historical period 1981-2010. The estimation was performed for a) the WFDEI H, T, Ps, b) the 

raw H, T, Ps, c) the bias corrected H, T, Ps and d) for a combination of data corresponding to the 

NobcH run (raw H combined with bias corrected T and Ps). The results are presented in Figure B 

6 of Appendix B. The analysis reveals that the higher latitude regions -that display high sensitivity 

of runoff to H-, are under super-saturated conditions for more than 10% of the time (Figure B 6). 

The length of supersaturated conditions estimated for the WFDEI, Raw or BC data do not exhibit 

a respective spatial pattern, although super-saturation is found in all three datasets (Figure B 6). 

Thus, the high runoff sensitivity over the high latitude regions is not a result of supersaturated 

conditions in the raw GCM H and it rather stems from: 1) raw GCM H being higher than BC H and 

2) the calculation of relative humidity within JULES, done by combining raw GCM H with bias 

corrected T and Ps. This inconsistency strengthens the argument for the need of bias correction of 

more forcing variables -in addition to P and T. Specific humidity is a variable that is often left 

uncorrected, a practice that could possibly result to runoff overestimations in the northern latitudes 

based on our findings, in cases that hydrological models which account for deposition and 

condensation are used. 

Since this experiment was performed with a single LSM, it cannot be concluded whether this 

behavior is common between the LSMs or is an over-sensitivity of the JULES model. However, it 

highlights the importance of bias correction for specific humidity for specific regions, where runoff 

would have been highly overestimated using raw specific humidity as forcing. 
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Figure 26. a. Latitudinal means of raw and bias corrected specific humidity [g/kg], b. Latitudinal means of 

JULES’ runoff forced with raw and bias corrected specific humidity [mm/day], c. Percent differences of the 

latitudinal means in a (H) and b (RF). The latitudinal means are calculated from the 1981-2010 period.
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Caveats 

An issue that must be considered for the interpretation of the results of this study is that they have 

been based on a single impact model. As the uncertainty stemming from the selection of the impact 

model is large (Gudmundsson et al. 2012; Hagemann et al. 2013), it is preferable to use multiple 

models in order to capture a wide range of possible results. The effect of the meteorological forcing 

on a hydrological output is heavily model dependent, as different models employ different concepts 

and/or equations for the representation of key hydrological processes. This concern has been also 

discussed by other single model studies on meteorological variables’ effects on hydrological 

outputs (Mizukami et al. 2014; Masaki et al. 2015). Nonetheless, the results of single model studies 

are useful in giving indicative answers on the issues they examine and set a basis for the 

methodology needed for respective multi-model applications. 

 

5.3. Projections of hydrological impacts under high-end climate change – 

European scale 

Here, transient hydrological simulations for the period 1971 to 2100 performed by forcing the 

JULES model with five Euro-CORDEX (Coordinated Downscaling Experiment over Europe) 

climate projections are analyzed. The scope of this part of the results is to assess future water 

availability and identify drought conditions in the European region under high-end scenarios of 

climate change. To this end, the following points are studied. Firstly, changes posed on the 

hydrological cycle (mean state and lower extremes) at +4 oC global warming compared to a baseline 

situation, and relative to the target of 2 ºC warming are identified. Secondly, the effect of bias 

correction on projected hydrological simulations is analyzed. To achieve this, both raw and bias 

corrected Euro-CORDEX data were used as input forcing in the impact model. Thirdly, climate 

change induced changes in drought climatology at the basin scale are examined and finally, the 

effect of the observational dataset used for bias correction on the projection is assessed. 
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5.3.1. Hydrological simulation at Pan-European scale with raw Euro-CORDEX forcing data 

Figure 27 shows the average runoff production estimated by JULES forced with the five 

participating EURO-CORDEX dynamically downscaled GCMs, for each model separately and for 

the ensemble mean. Measures of model agreement (coefficient of variation between the ensemble 

members and model agreement on a wetter change in the projected time-slice) are also shown in 

Figure 27. The change in runoff in the +4 SWL projected time-slice with respect to the baseline 

period is expressed as both absolute and percent relative difference. It is interesting to observe the 

variations between the models for the historical time-slice, with the low climate sensitivity GFDL 

and NorESM1 exhibiting generally wetter patterns for northern Europe and Scandinavian 

Peninsula, and with IPSL describing drier patterns, especially for southern Europe. Concerning the 

overall agreement of the ensemble members in the baseline period the coefficient of variation is 

below 0.5 for most of the European region (Figure 27, bottom), indicating a good agreement of the 

models. In more detail, the coefficient of variation is lower for the Scandinavian region and is 

reduced towards the lower latitudes. 

For the projected time-slice, all models agree in a general pattern of increased runoff production in 

northern Europe and a small part in central Europe and decreased runoff production in Spain, 

Greece and parts of Italy. Especially for the negative trends shown in southern Europe it is 

important that though small in absolute terms they increase in magnitude when expressed as a 

percentage, meaning that small negative changes can pose severe stress in regions where water 

availability is already an issue. 

Concerning the ensemble mean, smoothing of the projected changes due to averaging has revealed 

clear patterns of change, which however have to be interpreted considering the full spread of the 

GCM-forced outcomes and the agreement between them in order to avoid misguided conclusions. 

Less extreme values are encountered in the ensemble mean of projected changes in runoff, 

compared to the change projected by each ensemble member individually (Figure 27). Especially 

for percent change a clear trend of runoff increase is revealed in northern Europe and decrease in 

southern Europe, with a mixed pattern for central Europe. Four or five out of the five ensemble 

members agree on the wetter response in the northern regions and the drier response in the southern 

part of Europe. The smaller cv value (cv<0.1) for the southern regions indicates that the models 
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agree more on the value of the change compared to the changes in the Scandinavian region 

(0.11<cv<0.75). For central Europe there are areas of reduced agreement, with two models showing 

a change different in sign than the other three of the ensemble. For the same areas cv has values 

greater than 1, marking a large spread between the values of the five ensemble members. 

Figure 28 has the same features as Figure 27 but concerns the 10th percentile runoff production 

instead of the average. The 10th percentile limit is used to describe low flows that are related to the 

creation of hydrological drought conditions. For 10th percentile runoff, model agreement in the 

baseline period is notably reduced compared to agreement for average runoff, with the coefficient 

of variation for most regions exceeding 0.5 while it exceeds the unity for a large part of Europe. 

For the +4 SWL projected time-slice, according to Figure 28, all models agree in relative decreases 

in runoff production in western and southern Europe which are specifically pronounced in the 

western Iberian and Balkan Peninsulas. Another common trend between the models is the 

significant increase in runoff production in the Scandinavian Peninsula, with MIROC5 and 

HadGEM2 being the two ensemble member that expand this wetter climate down to central Europe. 

Regarding the ensemble mean changes, percent change in 10th percentile runoff (Figure 28) shows 

more significant reductions (up to 100 %) compared to average runoff (for which changes range 

between -50 % and 50 %). It is thus deduced that the changes in low flows are more pronounced 

than the changes in the mean, a conclusion that points towards the overall intensification of the 

water cycle. The decreasing trend in 10th percentile runoff covers most of the west and south 

European area (with 80 % to 100 % agreement on the sign of the change) while all models agree in 

an increase in 10th percentile runoff in the Scandinavian region. 
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Figure 27. Average runoff production from raw Euro-CORDEX data for all dynamical downscaled GCMs 

and their ensemble mean. Runoff production averaged over the baseline period (1976-2005) (left column), 

absolute change in runoff in the +4 SWL projected time-slice (middle column) and percent change in the +4 

SWL projected time-slice (right column). Bottom row: coefficient of variation of the ensemble members for 

the baseline period (left column), coefficient of variation of the projected absolute changes in the +4SWL 

projected time-slice (middle column) and model agreement towards a wetter change in the +4 SWL projected 

time-slice. 
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Figure 28. 10th percentile of runoff production from raw Euro-CORDEX data for all dynamical downscaled 

GCMs and their ensemble mean. 10th percentile runoff production derived on an annual basis and averaged 

over the baseline period (1976–2005), absolute change in 10th percentile runoff in the +4 SWL projected 

time-slice (middle column) and percent change in the +4 SWL projected time-slice (right column). Bottom 

row: coefficient of variation of the ensemble members for the baseline period (left column), coefficient of 

variation of the projected absolute changes in the +4SWL projected time-slice (middle column) and model 

agreement towards a wetter change in the +4 SWL projected time-slice. 
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5.3.2. Hydrological simulation at Pan-European scale with bias adjusted Euro-CORDEX 

forcing data 

The ensemble mean of average runoff derived from the five participating EURO-CORDEX 

downscaled GCMs, whose temperature and precipitation were bias adjusted according to the 

WFDEI dataset is presented in Figure 29. Bias adjustment of the forcing data resulted in a drier 

ensemble mean runoff for the baseline period for 70.40 % of the pan-European land surface, in 

comparison to 26.01 % of the land area that had a wetter response after bias adjustment. The 

remaining 3.59 % of the European area had changes that were classified as insignificant (see Figure 

B 7 of Appendix B for details). Projected changes from bias adjusted data exhibit very similar 

patterns and magnitudes with the raw data derived changes. For some regions in central Europe, 

where a small negative change is reported by the raw data run, a sign change of the projected 

difference is documented after bias correction. Lastly, bias correction has a strong positive effect 

on model agreement as it can be documented from the low values of the coefficient of determination 

all over Europe, with the exception of the Scandinavian Peninsula where model disagreement 

appears increased after bias correction. 

In Figure 30, the effect of bias correction on the representation of the 10th percentile runoff is shown. 

Some hotspots of pronounced negative changes in western Europe have been eliminated and 

replaced with milder projected absolute changes. There are areas where sign change is observed 

(central and central-west Europe) however it is difficult to interpret this result and correlate it with 

bias correction as these are also the areas where models show the lowest agreement (coefficient of 

variation exceeding one and agreement towards wetter change 40 %-60 %). Although the 

coefficient of variation for the baseline period is considerably reduced compared to the raw data 

runs, there are still areas of high model uncertainty in the representation of lower flows. 

 



Chapter 5 

100 

 

 

Figure 29. Ensemble mean of average runoff production from Euro-CORDEX data bias adjusted against the 

WFDEI dataset. Top row: Runoff production averaged over the baseline period (1976-2005) (top row), 

absolute (middle row) and percent change (bottom row) in ensemble mean runoff in the +4 SWL projected 

time-slice. Bottom row: coefficient of variation of the ensemble members for the baseline period (left 

column), coefficient of variation of the projected absolute changes in the +4 SWL projected time-slice 

(middle column) and model agreement towards a wetter change in the +4 SWL projected time-slice. 
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Figure 30. Ensemble mean of 10th percentile runoff production from Euro-CORDEX data bias adjusted 

against the WFDEI dataset. Top row: 10th percentile runoff production derived on an annual basis averaged 

over the baseline period (1976-2005) (top row), absolute (middle row) and percent change (bottom row) in 

ensemble mean runoff in the +4 SWL projected time-slice. Bottom row: coefficient of variation of the 

ensemble members for the baseline period (left column), coefficient of variation of the projected absolute 

changes in the +4 SWL projected time-slice (middle column) and model agreement towards a wetter change 

in the +4 SWL projected time-slice. 
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5.3.3. Basin averaged runoff regime 

In Figure 31, annual time-series of basin averaged runoff production (average and 10th percentile) 

for five European basins are shown. These cover the whole length of historical and projected years 

simulated (1971-2100) in an attempt to identify general trends in average and low runoff, 

calculating 10-year moving averages from the ensemble mean. Results in Figure 31include both 

raw and bias adjusted output, thus an assessment of the effect of the bias correction on the basin 

scale hydrology can be made. A common observation for all the basins is that runoff decreases 

considerably for bias adjusted input forcing.  

For Danube and Guadiana, significantly important negative trends are identified for average runoff 

(-0.24 mm/year and -0.35 mm/year respectively for raw output, -0.11 mm/year and -0.31 mm/year 

respectively for bias adjusted output) which are more pronounced for the 10th percentile runoff. For 

Rhine, the identified trends in average runoff production of both raw and bias corrected forcing are 

not statistically significant. In contrast, the 10th percentile runoff production in Rhine exhibits 

statistically significant decreasing trends, for both raw (-0.74 mm/year) and bias corrected (-0.50 

mm/year) outputs. For Elbe, raw output gives an insignificant trend in average runoff and a slight 

decreasing trend for 10th percentile runoff. Bias corrected data result in a small but statistically 

significant increasing trend (0.18 mm/year) in annual average runoff while for 10th percentile runoff 

the trend is decreasing (-0.06 mm/year, statistically significant). For Kemijoki average and low 

flows, of raw and bias adjusted forcing, are all exhibiting statistically significant increasing trends.  

Basin scale average annual runoff production for raw and bias adjusted Euro-CORDEX data as 

well as the +4oC absolute and percent change for each ensemble member and ensemble mean is 

included in Table 14. Similar information but for low flows (10th percentile) are presented in Table 

15. In Table B 2 and Table B 3 of Appendix B, the results of the linear regression applied to the 

average and 10th percentile runoff time-series for the estimation of the trend and its significance 

can be found.  
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Figure 31. Annual time-series of basin averaged runoff production (average and 10th percentile of annual 

runoff) for raw and bias adjusted Euro-CORDEX data. For both average and 10th percentile time-series, the 

ensemble range, mean and 10-year moving average is shown. 
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Figure 31 (continued). 
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Figure 31 (continued).
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Table 14. Basin’s annual average runoff production for raw and bias adjusted Euro-CORDEX data. 

Basin's Annual Average Runoff Production [mm/year] 

Raw Bias Corrected 

Historical average 1976-2005 Historical average 1976-2005 

Danube 462.05 362.35 383.78 304.02 266.21 355.68 219.37 249.80 201.95 226.70 229.00 225.36 

Rhine 794.21 845.83 616.94 710.16 495.99 692.63 426.67 503.68 415.00 439.11 470.29 450.95 

Elbe 371.88 356.72 219.68 337.42 174.41 292.02 148.70 203.39 135.98 174.79 202.12 173.00 

Guadiana 166.13 71.44 116.14 46.60 81.51 96.36 93.14 96.42 90.06 79.22 89.82 89.73 

Kemijoki 428.17 482.28 427.95 418.03 507.48 452.78 174.68 327.78 197.30 238.28 450.70 277.75 
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RCA4-

IPSL-

CM5A 
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(2055-

2084) 

RCA4-

HadGEM2

-ES +4 

(2060-

2089) 

MEAN 

  

Absolute change from baseline in the projected time-slice Absolute change from baseline in the projected time-slice 

Danube -54.57 3.36 -13.20 -42.04 -14.96 -24.28 -11.83 -1.38 3.61 -30.04 -11.48 -10.22 

Rhine 59.95 -19.81 -13.23 -39.31 -20.14 -6.51 53.83 -5.91 6.09 -44.17 -21.73 -2.37 

Elbe 2.05 33.91 30.00 -28.39 19.05 11.32 22.81 33.28 31.55 -5.57 25.71 21.55 

Guadiana -55.70 -37.02 -17.16 -14.09 -46.16 -34.03 -26.23 -48.81 -10.37 -28.52 -45.23 -31.83 

Kemijoki 146.86 67.46 67.48 174.94 108.26 113.00 149.69 97.38 89.71 179.15 119.97 127.18 

  

Percent change from baseline in the projected time-slice Percent change from baseline in the projected time-slice 

Danube -11.81 0.93 -3.44 -13.83 -5.62 -6.83 -5.39 -0.55 1.79 -13.25 -5.01 -4.54 

Rhine 7.55 -2.34 -2.14 -5.54 -4.06 -0.94 12.62 -1.17 1.47 -10.06 -4.62 -0.53 

Elbe 0.55 9.51 13.66 -8.42 10.92 3.88 15.34 16.36 23.20 -3.19 12.72 12.46 

Guadiana -33.53 -51.82 -14.78 -30.24 -56.63 -35.31 -28.16 -50.63 -11.51 -36.00 -50.35 -35.47 

Kemijoki 34.30 13.99 15.77 41.85 21.33 24.96 85.69 29.71 45.47 75.19 26.62 45.79 
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Table 15. Basin’s 10th percentile of runoff production, derived on an annual basis, for raw and bias adjusted Euro-CORDEX data. 

Basin's 10th percentile on annual basis [mm/year] 

Raw Bias Corrected 

Historical average 1976-2005 Historical average 1976-2005 

Danube 146.63 96.81 80.55 79.71 58.69 92.48 31.49 41.73 28.54 30.32 37.94 34.00 

Rhine 250.22 258.37 162.58 200.59 109.23 196.20 98.23 120.41 93.24 101.58 107.68 104.23 

Elbe 118.79 99.15 29.98 98.30 28.95 75.04 10.22 20.08 11.23 16.75 22.14 16.08 

Guadiana 0.74 0.00 0.12 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 

Kemijoki 0.80 4.50 1.10 1.47 10.79 3.73 0.25 5.91 0.53 1.00 11.60 3.86 

             

C
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+3.2 
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CM5A 

+4 
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2084) 

RCA4-

HadGEM2-

ES +4 

(2060-

2089) 

MEAN 

 

Absolute change from baseline in the projected time-slice Absolute change from baseline in the projected time-slice 

Danube -53.89 -23.89 -18.83 -38.22 -27.41 -32.45 -18.03 -15.89 -9.68 -22.28 -24.37 -18.05 

Rhine -89.38 -87.03 -20.39 -103.94 -43.25 -68.80 -31.43 -49.93 -19.49 -69.92 -52.57 -44.67 

Elbe -29.14 -21.01 1.21 -44.80 -9.96 -20.74 -2.03 -2.73 -0.91 -8.90 -8.52 -4.62 

Guadiana -0.73 0.00 -0.11 0.00 0.00 -0.17 0.00 0.00 0.00 0.00 0.00 0.00 

Kemijoki 16.77 53.16 36.71 56.80 72.44 47.18 3.24 3.12 5.05 22.55 16.79 10.15 

  

Percent change from baseline in the projected time-slice Percent change from baseline in the projected time-slice 

Danube -36.75 -24.68 -23.38 -47.95 -46.71 -35.09 -57.26 -38.07 -33.90 -73.50 -64.22 -53.08 

Rhine -35.72 -33.68 -12.54 -51.82 -39.59 -35.07 -32.00 -41.46 -20.91 -68.83 -48.82 -42.86 

Elbe -24.53 -21.19 4.04 -45.57 -34.41 -27.64 -19.86 -13.58 -8.11 -53.15 -38.47 -28.71 

Guadiana -98.67 -73.37 -96.24 -26.22 -76.38 -98.01 -48.53 -50.67 -65.42 -32.31 -56.63 -53.36 

Kemijoki 2088.40 1181.25 3328.72 3877.01 671.51 1264.16 1283.66 52.88 946.08 2265.11 144.71 263.09 
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5.3.4. Drought climatology at basin scale 

Figure 32 shows the results of the drought threshold level method analysis for the five study basins, 

for raw and bias corrected output. For each year, the number of days under the historical drought 

threshold has been counted. This allows a comparison of the tendency towards the formation of 

drought conditions between the historical period and the projected period. As this is a statistically 

oriented interpretation of our data, we can see that the differences between raw and bias corrected 

time-series are very small, especially compared to the difference in the magnitude of their absolute 

values. For Danube, Rhine and Guadiana strong rising trends (all statistically significant) were 

identified in the time-series of ensemble mean of days under threshold per year. Before bias 

correction these were 0.43, 0.37 and 0.52 days/year for the three basins respectively and changed 

to 0.39, 0.39 and 0.38 days/year respectively after bias correction. For Elbe, non-bias corrected data 

give a slight but statistically significant increasing trend (0.14 days/year) in contrast to bias 

corrected output that shows a statistically insignificant trend. For Kemijoki strong decreasing 

(statistically significant) trends are found for both for raw (-0.20 days/year) and bias corrected (-

0.18 days/year) data. 
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Figure 32. Number of days under drought threshold per year for raw and bias adjusted Euro-CORDEX data. 

Ensemble mean and 10-year moving average of the ensemble mean (top), ensemble range (bottom). 
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Figure 32 (continued). 

  



Results 

111 

 

 

Figure 32 (continued). 

 

5.3.5. Impacts of +4ºC warming relative to +2ºC warming 

Figure 33 shows the basin average runoff production for raw and bias corrected Euro-CORDEX 

data with respect to the corresponding SWL in degrees Celsius. This analysis considers the runoff 

values corresponding to the +2oC and +4oC SWLs, the latter ranging from 3.2 to 4 between the 

GCMs, and also the SWL achieved by each participating GCM in the baseline period (0.3 - 0.5oC). 

It is thus allowing us to examine the changes in basin runoff as temperature increases and to 

compare the effect of different SWLs. 

Comparing the annual average runoff production for raw and bias corrected input forcing it is clear 

that bias corrected output exhibits a considerably reduced range, which translates in increased 

model agreement for the basins of Danube, Rhine, Elbe and Guadiana. In Kemijoki basin the bias 

adjusted output has a greater range than the raw output. Concerning the range of the low flows, an 

increase in model agreement for the bias corrected forcing is observed for all basins.  



Chapter 5 

112 

 

Examining the changes in annual average runoff, a slight decreasing trend can be identified for 

Danube and a slight increasing trend for Elbe while for Rhine there is not a clear trend present. In 

contrast, Guadiana and Kemijoki exhibit strong decreasing and increasing trends respectively. The 

falling trend in Guadiana is marginally intensified between +2 and +4 SWL compared to 0 to +2 

SWL. The rising trend in Kemijoki does not have evident differences between +2oC and +4oC. 

According to the results in Figure 33, the 10th percentile runoff in Danube and Rhine decreases as 

SWLs increase while the opposite trend is observed for the low flows in Kemijoki. For Elbe the 

raw results show an intense decreasing trend up to +2 SWL which continues more moderately until 

+4 SWL, in contrast with the bias corrected output that shows milder changes with temperature 

increase . For Guadiana it is difficult to observe a trend in the bias corrected low percentile runoff 

as the values are already very low. For the raw output however there is an abrupt decrease from 0 

to +2oC which continues with a milder trend up to +4oC. 

Figure 34 illustrates the correlation between the percent projected change in annual average and 

10th percentile runoff production from bias corrected and raw forcing, for the +2 and +4 SWLs. 

Concerning the effect of bias adjustment it can be observed that regardless the significant 

differences in magnitude between runoff from raw and bias corrected data discussed before, the 

projected change in average flow by the two forcings almost coincide for the +2 SWL. For the +4 

SWL the GCM range has increased for Kemijoki after bias adjustment while for the rest of the 

basins raw and bias corrected data result in very similar levels of same percent change. For the 

projected change in 10th percentile runoff, the larger spreading of the values in Figure 34 (right 

column) shows that the GCM uncertainty on this field is higher. Guadiana is the only basin where 

bias corrected data result in an improvement in GCM agreement, probably due to its very low values 

of 10th percentile runoff. Kemijoki is not included in the 10th percentile scatterplots as its projected 

increase far exceeds the 100 % limit selected. For the rest of the basins, the effect of the bias 

correction on the change of the 10th percentile runoff is not constant. For Guadiana and Elbe bias 

adjustment mostly increases percent change while for Rhine and Danube percent change is in 

general terms decreased after bias correction. 

Comparing the difference on percent projected change in average annual runoff from +2 to +4 SWL 

it can be observed that temperature increase results in a slight decline in percent change for basins 
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with small absolute values of change, causing sign changes for Danube and Rhine, and it intensifies 

the negative and positive changes of Guadiana and Kemijoki respectively. For the 10th percentile 

runoff there is a similar response to temperature increase. For Elbe there is positive percent change 

at +2 SWL which falls below zero at +4 SWL while for Danube, Rhine and Guadiana the already 

declining projected changes present are further intensified. 
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Figure 33. Variation of runoff production with respect to temperature change (+2 and +4 SWLs) for raw 

(light blue) and bias adjusted (light red) Euro-CORDEX data, for both annual average (left column) and 10th 

percentile (right column) runoff production. Small markers represent the value of each individual model and 

bigger markers correspond to ensemble mean value.  
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Figure 34. Correlation between projected change in basin averaged runoff production derived from WFDEI-

bias adjusted and raw Euro-CORDEX data, for both annual average (left) and 10th percentile (right) runoff 

production. Correlation is examined at +2oC SWL (top) and at +4oC SWL (bottom). Small markers represent 

the value of each individual model and bigger markers correspond to ensemble mean value. 
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5.3.6. Effect of observational datasets for bias correction on the output of the hydrological 

model 

The aspect of the impact posed by the observational dataset used for bias correction to the results 

of the hydrological simulations is introduced in this part of our analysis. Additional model runs 

performed with bias adjusted Euro-CORDEX precipitation and temperature, corrected against the 

E-OBS (instead of the WFDEI) dataset participate in a comprehensive comparison between all the 

outputs used in this study. The results are illustrated in Figure 35. Three different sets of outputs 

are compared: one driven by raw downscaled and two driven by Euro-CORDEX data bias corrected 

against two different datasets. The comparison considers both the mean and range of the ensembles 

and results are presented as basin aggregates. The first part of the comparison concerns the long-

term annual average for the period 1976 to 2005 (Figure 35, top row) and apart from the model 

results includes values corresponding to observations, derived from GRDC discharge 

measurements. Observations can serve as a baseline for this comparison, allowing us to evaluate 

which configuration can better simulate “true” water budget numbers and the effect of bias 

correction with respect to this baseline. 

For all basins the raw data result in overestimates of runoff production which is though significantly 

reduced after bias correction. E-OBS corrected data however produce values lower than the 

observations (with the exception of Guadiana) while the WFDEI-corrected data produce the best 

simulation in terms of approximating the observed values. From Figure B 8 and Figure B 9 of 

Appendix B (showing the effect of bias correction on the forcing variables of precipitation and 

temperature) it can be deduced that that E-OBS corrected precipitation has lower values than 

precipitation adjusted against the WFDEI dataset. This explains the lower runoff produced by the 

E-OBS bias adjusted dataset, as it is reasonable for the differences in precipitation to reflect on the 

output of the hydrological model. As already has been revealed in previous stages of this analysis, 

it is again clear the positive impact that bias adjustment has on the increase of model agreement. 

The only exception is Kemijoki basin due to its high latitude position (coefficient of variation was 

increased after bias correction for the high latitude areas). 

Changes in annual average runoff production at the +4 SWL appear to be more intensified 

compared to the +2 SWL (Figure 35, middle and bottom). Although for percent change the 
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differences of the distinctive configurations are less pronounced, variations can be observed 

between the two bias corrected data driven simulations. It is also interesting that the effect of bias 

correction on reducing the uncertainty is not that strong when looking the results from the more 

statistical perspective of percent projected change. The improvements in model agreement after 

bias adjustment however are still pronounced for all basins except for Rhine. 

From the application of the same analysis on 10th percentile runoff production (Figure B 10 of 

Appendix B), it is deduced that for the low flows the E-OBS corrected data again produce lower 

values of runoff compared to WFDEI. In this case, however, even the raw forced output (which is 

wetter than the bias corrected) underestimates the observed 10th percentile runoff values. Regarding 

the percent projected changes, results from bias corrected data produce smaller values compared to 

the raw data while E-OBS adjusted data result in decreased changes compared to output from 

WFDEI adjusted forcing. 
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Figure 35. Comparison between the simulations of raw Euro-CORDEX data and bias adjusted against two 

different datasets (WFDEI and E-OBS) for five study basins. Bars show the ensemble means and error bars 

the minimum and maximum ensemble member values. (Top row) Annual average runoff production for the 

period 1976 to 2005.OBS values are derived from GRDC discharge measurements converted to basin 

averages at the annual time-scale. (Middle row) Percent change in annual average runoff production at the 

+2 SWL and (bottom row) at the +4 SWL. 
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5.3.7. Hydrological response to +4oC global warming 

In our analysis we investigated the effects of climate change on the European hydrological 

resources, extracting time periods that correspond to an increase of 4oC of the global temperature, 

rather than using pre-defined time-slices. The same approach was followed by Vautard et al. (2013), 

stating that reduced GCM induced uncertainty is achieved with this method and thus the regional 

patterns of change in the variables of study are strengthened. 

In our study only one impact model (JULES) was used. Hagemann et al. (2013) argue that impact 

model induced uncertainty in future hydrological simulations is larger than that of the GCMS for 

some regions of the land surface and suggest using multi-impact model ensembles to deal with this 

issue. However useful conclusions can be drawn also from studies employing a single GHM/LSM. 

Examples of such single model climate change impact assessments performed recently are the 

studies of  Schneider et al. (2013) and Laizé et al. (2013) with the WaterGAP GHM, the studies of 

Arnell and Gosling (2013), Gosling and Arnell (2013) and Arnell et al. (2013) with the GHM 

MacPDM and of Hanasaki et al. (2010) using the H08 LSM. 

The findings of the study regarding the climate changed induced alterations of the mean 

hydrological state in Europe show decreasing trends for southern Europe, including the 

Mediterranean region, and strong increasing trends for northern and north-eastern Europe. These 

follow the same patterns as identified by previous studies. Schneider et al. (2013) found that the 

most pronounced changes in the magnitude of European river flows are projected for the 

Mediterranean region and the northern part of the continent. Hagemann et al. (2013) reported 

positive changes in projected runoff for the high latitudes and negative changes for southern 

Europe. For central Europe the projected changes are smaller (mostly in the range of -25 % to 25 

%) and thus more easily obscured by GCM and bias correction uncertainty. Arnell & Lloyd-Hughes 

(2014) report that the main source of uncertainty in the projected climate impact stems from the 

GCMs, with a range of uncertainty for the CMIP5 ensemble that is similar to that of older climate 

model experiments. 

The projected relative changes found for 10th percentile runoff are far more pronounced than the 

changes in average, even for the regions where changes in average-state annual runoff were 

negligible. This finding implies that seasonality in runoff is likely to intensify under climate change 
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and is in accordance with the results of Fung et al. (2011) and Van Vliet et al. (2013) who also 

reported pronounced seasonality in their projected simulations. This may translate to increased dry 

spells and thus elevated drought risks in the future. Under the light of these findings (mean-state 

runoff changing slightly and low-state changing significantly), more extreme hydrological droughts 

are expected in the future. It should be noted however that projections of low flow bear higher 

uncertainty compared to average-state, as indicated by the higher values of the coefficient of 

variation. Similar results of increased model spread expressed as cv for low flows compared to 

average state flows were found by Koirala et al., (2014). 

Specifically for the Guadiana River, the close to zero values of 10th percentile runoff encountered 

even in the historical period indicate that the river exhibits intermittent flow regime. This is relevant 

for this particular river, as it is located in a semi-arid region and intermittent flows typically 

characterize its hydrological regime (Collares-Pereira et al., 2000; Filipe et al., 2002; Pires et al., 

1999). Given the changes that are projected for the Iberian Peninsula at +4 SWL, it is expected that 

the intermittent flow regime in Guadiana might intensify. 

Concerning the effects of a +4oC temperature increase on the European hydrological regime 

compared to a +2 oC increase, significant alterations posed by the +2 degrees of global warming 

are identified for south Europe and northern and north-eastern Europe, where the respective 

decreasing and rising trends are intensified. Fung et al. (2011) also found that changes in mean 

annual runoff identified at +2 are intensified at +4. More specifically, their study reports that regions 

where decreasing runoff trends have been found become even drier and, in contrast, areas where 

runoff is projected to increase are getting wetter. For most of the river basins examined by Fung et 

al. (2011), water stress is increased at +4 compared to +2, with the exception of a few basins where 

an increase in rainfall is projected thus decreasing water stress. In our study, the basins located at 

central Europe (Danube, Rhine and Elbe) do not exhibit significant changes in their annual average 

runoff values due to temperature increase from +2 to +4. For 10th percentile runoff, however, a 

temperature increase of +4oC from the pre-industrial baseline results in an aggravation of the 

lowering trends that are already significantly affecting the low runoff regime at +2oC. 

Our analysis of drought climatology at the basin scale was based on the total number of days under 

a predefined daily varying drought threshold. We did not employ any buffering criterion for the 
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days under threshold to be accounted for in the total sum (as discussed for example by Sung and 

Chung (2014) and Tallaksen et al. (1997)). The use of such a criterion would have decreased the 

calculated dry days. However, as the interpretation of the results of this study is mostly oriented in 

identifying trends of change rather than absolute numbers describing the future regime, the lack of 

a buffering criterion is not supposed to notably affect the extracted conclusions. Wanders et al. 

(2015) employed a transient variable threshold for the assessment of the drought conditions under 

climate change, considering a gradual adaptation of the ecosystem on the altered hydrological 

regime. This is an interesting alternative, especially for climate change mitigation and adaptation 

studies. In our study we aimed to identify global warming induced changes in the future 

hydrological state without considering adaptation, thus the same historically derived threshold was 

applied to the whole length of the simulated runoff time-series. 

From the analysis performed on drought climatology, increased number of days per year under the 

historically defined drought threshold are found for the basins of Danube, Rhine and Guadiana. Our 

results correspond with the findings of previous studies about drought regime under climate change. 

Giuntoli et al. (2015), investigating future high and low flow regimes at the global scale, using 

multiple impact models and climate scenarios, found increased number of low flow days in 

Southern Europe. In the study of Wanders & Van Lanen (2015) the impact of climate change on 

the hydrological drought regime of different climate regions was assessed, using a conceptual 

hydrological model forced with 3 GCMs. The study findings describe a decrease in the frequency 

of drought events in the future, which however does not point towards drought alleviation. In 

contrast, it relates to increased drought event duration and deficit volume. These effects are more 

pronounced for the arid climates that already face problems of water availability. 

5.3.8. The effect of bias correction 

As proposed by Ehret et al. (2012), both raw and bias corrected data driven simulations are 

presented in our study, in order to comprehensively assess the effect of bias correction on our 

results. In four of the five study basins, raw data driven simulated runoff overestimates the 

corresponding observed values. After bias correction, the modelled results represent more 

accurately the past hydrological regime. Similar improvements in the bias corrected output have 

been reported by Hagemann et al. (2011), Muerth et al. (2013) and Harding et al. (2014). 
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For some regions, the sign of the projected change in runoff shifted after bias correction. This 

finding was also encountered in the study of Hagemann et al. (2011). Hagemann et al. (2011) 

underline that these changes in the climate signal reveal another uncertainty aspect of the GCM to 

GHM modelling procedure, that is inherent to the GCM but becomes apparent after the bias 

adjustment of the climate model output. Teng et al. (2015) argue that signal changes are produced 

by bias correction errors in higher percentiles’ precipitation, thus adding another factor to the 

uncertainty of the runoff projections. 

Although the absolute values of raw and bias corrected simulations differ significantly, this does 

not apply to the projected relative changes. Liu et al. (2014) also found that raw and bias corrected 

data resulted in similar estimations of relative changes for a series a variables, including ET and 

runoff. The study of Muerth et al. (2013) investigates the effect of bias adjustment on hydrological 

simulations and their climate change induced alterations. Concerning the relative changes between 

baseline and future time-slices, it is reported that bias correction does not influence notably the 

hydrologic indicators, apart from the one describing flow seasonality. 

Chen et al. (2011) identify three uncertainty components in bias correction applications: the 

uncertainty of: the different GCM, the variable emission scenarios and that of the decade used for 

bias adjustment. From a comparison of the latter uncertainty source with the two former, concluded 

that the choice of correction decade has the smallest contribution to total uncertainty. In the present 

study we address another uncertainty source; that of the dataset used for correction. It was found 

that the WFDEI-bias corrected simulation captured better the past hydrological regime compared 

to the E-OBS-bias corrected configuration. The differences between the two simulations abate 

when results are expressed as percent change but still their variation are of the same magnitude as 

that between raw and bias corrected data. This implies that the selection of the observational dataset 

used for bias correction is not a trivial step of the modelling procedure and it should be treated as 

an extra factor that causes the uncertainty window of the projected hydrologic conditions to further 

open. 
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5.4. Projections of hydrological impacts under high-end climate change – 

Global scale 

This section presents hydrological projections forced with the 13 models of the HELIX ensemble 

and run by the JULES model. The analysis is based on transient hydrological simulations for the 

period 1971 to 2100. In this part, water availability and droughts are studied at the global scale, 

under high-end scenarios of climate change. A first aim is to assess the changes on mean and low 

runoff and droughts of different types and durations, due to high-end climate. Secondly, the 

progression of the changes as the level of warming increases is assessed. Thirdly, the uncertainty 

in the projections is estimated by considering the agreement of the ensemble members and the 

values of each individual member. Climate change induced changes in mean and low runoff and 

drought climatology are also assessed at the basin scale level. 

5.4.1. Hydrological projections at the global scale 

Figure 36 shows the ensemble mean of percent changes in mean runoff per SWL and the associated 

model agreement, based on JULES’ runoff simulations forced by the HELIX ensemble. Mean 

runoff is projected to increase for the majority of the land surface, with the increase intensifying 

for higher SWLs. Regions with decreased projected mean runoff, especially at SWL4, are the 

Mediterranean, north Africa and parts of central and south America. Model agreement is high (80 

to 100 %) for the regions with large changes in mean runoff, especially at SWL4. Respective 

projected changes for low runoff are shown in Figure 37. The areas where low runoff of the baseline 

period is zero have been masked out from the relative changes’ panel (shown with black colour). 

Large increases in low runoff are projected for the majority of the land surface with high model 

agreement. However, low agreement of the ensemble members is observed for the projected 

changes over Europe, which means that the ensemble mean climate change signal for this region 

should be interpreted with particular caution. 

Figure B 11 of Appendix B shows the relative changes in mean annual precipitation per SWL. 

Mean annual precipitation is projected to increase for a largest part of the land surface. Thus the 

positive signal in runoff projections stems, to a degree, from the increased precipitation but it could 

also be attributed, to the stomatal closure due to increased CO2 in the atmosphere – a plant 
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mechanism that reduces evapotranspiration losses and consequently leaves more of the precipitated 

water available as runoff. 
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Figure 36. (top) Percent change in mean annual runoff (RFmean) per SWL compared to the baseline period, derived from the HELIX ensemble and (bottom) 

the respective agreement of the ensemble members on the sign of the change.  
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Figure 37. (top) Percent change in 10th percentile runoff (RFlow) per SWL compared to the baseline period, derived from the HELIX ensemble and (bottom) 

the respective agreement of the ensemble members on the sign of the change. The black areas in the relative change panels correspond to regions of zero 

historical low runoff values. 
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5.4.2. Projections of extreme drought duration at the global scale 

Figure 38 and Figure 39 present the projected changes in drought duration and the respective model 

agreement derived based on 6- and 48-month SPI and SRI indices. For short-term extreme droughts, 

modelled with SPI6 and SRI6 (shown in Figure 38 and Figure 39 respectively), increased drought 

duration by 10-25 % is found for regions of Europe (west Europe and the Mediterranean) at +4oC of 

warming and less intense increases (5 to 10%) are found for small areas over north and south America 

and Australia. For long-term extreme droughts, modelled with SPI48 and SRI48 (Figure 38 and Figure 

39respectively) increases in drought duration are more pronounced and apparent even from +1.5oC of 

warming. Under the highest examined level of warming (+4oC), the areas with the largest increases 

in drought duration are the Mediterranean, the north part of South America and south Africa. Increased 

drought duration is also projected for regions extended over central North America, north Africa, the 

middle East and Australia. Both short- and long-term SRI drought calculations show increases of 

more than 50% in drought duration for the Sahara region. However, this does not mean that the Sahara 

region should be regarded as the most affected area, as the large computed increase in drought duration 

is probably virtual due to the arid climate of this region and the percent calculation of changes in 

drought duration. 
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Figure 38. Ensemble mean change in time under extreme drought duration [%] based on SPI6 and SPI48, 

derived from the HELIX ensemble, and respective model agreement of the ensemble members on the sign of 

change per SWL. 
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Figure 39. Ensemble mean change in time under extreme drought duration [%] based on SRI6 and SRI48, 

derived from the HELIX ensemble, and respective model agreement of the ensemble members on the sign of 

change per SWL. 
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5.4.3. Basin averaged runoff regime 

Changes in basin aggregated mean and low runoff per SWL for the basins of study are shown in 

Figure 40 and Figure 41 respectively. Increases in mean runoff are projected for 19 out of the 21 

basins. The two basins with projected decreases in mean runoff are both located in Europe (Danube 

and Guadiana). For most of the basins, the range of the ensemble members increases at SWL4 

compared to the lower levels of warming. Another important observation is that the range of projected 

changes between the ensemble members is large and for some basins it spans through negative and 

positive values. 

Low runoff is also projected to increase for the majority of the examined basins and especially for 

those located in the northern latitudes. Projected decreases in low runoff are found for 6 basins. The 

largest decreases concern the Guadiana basin, located in the Mediterranean region that has been 

identified as a hotspot for increased extreme drought duration from the global maps in Figure 38 and 

Figure 39. The range of the ensemble members at SWL4 is remarkably reduced, highlighting the 

agreement of the models towards low runoff decrease in this basin. A decreasing signal in low runoff 

is found for Amazon, which intensifies at higher warming levels. Negative signals for low runoff are 

also encountered in the Orange, Murray, Danube and Rhine basins. For some basins, particularly the 

largest ones, the projected changes are small because there are regions of both positive and negative 

signals in the domain of the basin. 
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Figure 40. Changes in basin aggregated mean runoff per SWL compared to the baseline period, derived from the HELIX ensemble. Column bars show the 

ensemble median changes and the error bars the range of the ensemble members. The number in brackets [] corresponds to the basin aggregated mean runoff 

of the baseline period in mm/year. Changes are shown as percentages [%]. For the basins that changes exceed 200% the absolute differences (in mm/year) 

are shown instead. 
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Figure 41. Changes in basin aggregated low runoff per SWL compared to the baseline period, derived from the HELIX ensemble. Column bars show the 

ensemble median changes and the error bars the range of the ensemble members. The number in brackets [] corresponds to the basin aggregated mean runoff 

of the baseline period in mm/year. Changes are shown as percentages [%]. For the basins that changes exceed 200% the absolute differences (in mm/year) 

are shown instead. 
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5.4.4. Drought climatology at the basin scale 

DVTM is implemented to the ensemble mean daily runoff of the HELIX ensemble and a linear 

regression is then employed to examine the trend of the annual time series of drought days per years 

and its statistical significance. The regression results for the 21 examined basins are presented in 

Table 16. Increased drought days per year are found for eight basins, with the largest positive 

statistical significant trends reported for Rhine and Danube (0.80 and 0.60 days/year respectively). 

A decrease in drought days is found for 10 basins, with the largest negative statistically significant 

trend found for Congo (-0.33 days/year) and the smallest for Volga (-0.12 days/year). For three 

remaining basins (Lena, Elbe and Oder), the calculated trends were evaluated as statistically 

insignificant.
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Table 16. Linear regression analysis’ results for drought days per years, according to the daily varying 

threshold level method, per basin. Results are derived from the mean of the HELIX ensemble. Statistical 

significance is tested at the 95% confidence interval. 

Basin beta (trend) 

(days/year) 

p Statistical 

significance 

of the trend 

Amazon 0.46 9.25E-14 YES 

Congo -0.33 5.57E-15 YES 

Nile -0.27 1.77E-20 YES 

Mississippi 0.06 0.048827 YES 

Parana -0.31 5.62E-24 YES 

Lena -0.05 0.075708 NO 

Yangtze -0.30 2.31E-18 YES 

Niger -0.13 5.92E-11 YES 

Volga -0.12 0.001648 YES 

Murray 0.24 2.19E-11 YES 

Indus -0.28 1.59E-26 YES 

Ganges -0.25 2.97E-20 YES 

Orange 0.31 3.67E-24 YES 

Danube 0.60 9.14E-24 YES 

Huang He -0.27 6.20E-17 YES 

Saskatchewan 0.12 1.35E-07 YES 

Rhine 0.80 3.02E-27 YES 

Elbe -0.05 0.098452 NO 

Oder -0.01 0.668181 NO 

Guadiana 0.35 2.68E-18 YES 

Kemijoki -0.18 1.55E-07 YES 

 

5.5. Comparison of hydrological projections from different forcing data 

Here we compare the hydrological projections derived from the HELIX ensemble to EURO-

CORDEX projections and simulations of the ISIMIP ensemble. The HELIX and EURO-CORDEX 

are of higher spatial resolution compared to ISIMIP. The aim posed in this section is to explore the 

differences and similarities between the projections of the three ensembles and assess possible 

added value provided by the higher resolution simulations. This analysis focuses on the European 
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region, as it the common domain of all the three ensembles (HELIX and ISIMIP cover the global 

domain but EURO-CORDEX only the European area). 

5.5.1. General comparison between three ensembles 

Figure 42 to Figure 49 provide a comparison between the projected changes in hydrologic 

indicators and drought indices derived from the three examined ensembles (ISIMIP, EURO-

CORDEX and HELIX). Figure 42 and Figure 44 show the projected changes per SWL in mean and 

low runoff respectively and Figure 43 and Figure 45 show the model agreement on the sign of 

change of mean and low runoff respectively. Moreover, spatially aggregated relative projected 

changes in the two runoff indicators for each single ensemble member, for eight European sub-

regions can be found in Appendix B (Table B 4, Table B 5 and Table B 6). 

The projections of the eight ensembles exhibit a considerably different behavior. The ISIMIP 

projections are far less detailed than the other two, due to the lower resolution of the ISIMIP 

ensemble. In contrast, EURO-CORDEX projections show more variant spatial patterns than the 

HELIX ensemble, although the two ensembles have a similar resolution. A common pattern on the 

projected changes in mean runoff between the three ensembles (Figure 42) is the increasing signal 

in north and north-eastern Europe and the decreasing signal in the south part of the continent. 

Northern and southern Europe are regions with higher agreement on the sign of mean annual runoff 

change, while agreement is lower for central Europe (Figure 43). 

Projected changes in low runoff by the ISIMIP and EURO-CORDEX ensembles show similar 

patterns of increased low runoff in the north-east and decreased low runoff in the south-west, 

although the latter ensemble projects greater changes (Figure 44). The HELIX ensemble has quite 

a distinguished behavior of projected increases in low runoff over the majority of the continent. 

Concerning model agreement on the signal of low runoff projections (Figure 45), the HELIX 

ensemble has the lower extent of high model agreement (80-100%), mainly at the Scandinavian 

Peninsula. The ISIMIP ensemble has higher agreement for the increasing changes in Scandinavian 

countries and the decreasing signal in the Mediterranean while EURO-CORDEX projections highly 

agree (80-100% of the models) on the sign of changes in low runoff over the majority of the 

continent. 
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The comparison of the projected changes in hydrologic indicators of the three examined ensembles 

reveals remarkably diverse patterns between the ensembles. A greater similarity can be observed 

between the spatial patterns of projected changes in extreme drought duration of the three 

ensembles. For short-term droughts (modelled with SPI6), all the ensembles project increases in 

drought duration in the Mediterranean region at SWL4, while only ISIMIP shows spatially coherent 

regions of increased drought duration at lower levels of warming (SWL1.5 and 2) (Figure 46). 

Especially at SWL4, the regions of increased drought duration are also regions with high model 

agreement on the sign of the change of short term drought duration (Figure 47). The projected 

changes in time under long term extreme drought conditions (modelled with SPI48) are more 

intense and spatially extended compared to short term droughts (Figure 48). Again, similar patterns 

can be found between the three ensembles. Under +4 oC of warming, increased drought duration is 

projected for south Europe by all the ensembles. The agreement of the models is less uniform 

between the three ensembles (Figure 49). At SWL4, the ISIMIP ensemble exhibits high agreement 

over the whole south-European region, EURO-CORDEX shows patches of high agreement all over 

south Europe while the HELIX ensemble shows high agreement on increased drought duration only 

for the south Iberian Peninsula, Sardinia and south Italy. 
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Figure 42. Relative change in mean annual runoff (RFmean) per SWL, simulated by the three different 

ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom). 
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Figure 43. Model agreement on the sign of change in mean annual runoff (RFmean) per SWL, simulated by 

the three different ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom). 

 



Results 

139 

 

 

Figure 44. Relative change in 10th percentile runoff (RFlow) per SWL, simulated by the three different 

ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom). 
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Figure 45. Model agreement on the sign of change in 10th percentile runoff (RFlow) per SWL, simulated by 

the three different ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom). 
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5.5.2. Evaluation of a combined ensemble 

So far we have examined differences in the projected changes in runoff indicators and duration of 

drought conditions derived by three different ensembles. Here we combine the three ensembles 

(ISIMIP, EURO-CORDEX and HELIX) into one, and examine the projected changes in short and 

long term drought conditions (Figure 50 and Figure 51 respectively) along with the model 

agreement of the extended ensemble on the sign of change of drought duration. 

The combined ensemble shows virtually no change in short term drought duration at SWL1.5, small 

increases in short term drought duration over regions of the Iberia Peninsula at SWL2 and increases 

ranging from 5 to 25 % for the Mediterranean region at SWL4 (Figure 50). It is important to note 

that the aforementioned regions of drought duration increases in the Mediterranean, also show a 

high level of model agreement. 

Regarding long term droughts (Figure 51), the combined ensemble shows increases of 5 to 25 % in 

duration over the Iberian Peninsula, west France, Italy and Greece at SWLs 1.5 and 2. However the 

confidence on these changes is debatable, as only 60-80 % of the combined ensemble members 

agree on the sign of the changes. At SWL4, the combined ensemble shows increases in long term 

drought conditions up to 50 %, affecting all the south part of Europe and even regions of central 

Europe. Nonetheless, regions of high agreement (80-100 %) on these changes, are only the 

Mediterranean regions. 

5.5.3. Ensemble differences and attributions 

The comparison of the different model ensembles revealed large differences in the projected 

hydrological impacts, with conflicting signs of change for some runoff metrics. In summary, the 

highest level of consensus between the ensembles was observed for changes in mean runoff. The 

climate change signal for mean runoff regards increases in the north of Europe, decreases in the 

south and only small changes with lower model agreement for central Europe. For low runoff, the 

HELIX ensemble shows increased response over most of Europe, but also exhibits low model 

agreement on the sign of change for most of the European area. The other two ensembles show a 

different response of low runoff to climate change, as both consent on increased low runoff in the 

north-eastern part of Europe and decreased low runoff over the south-western part of the continent. 
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The three examined ensembles show a markedly more similar response regarding the drought 

duration projections. For short-term droughts, all the ensembles show increased drought duration 

over the Mediterranean while for long-term droughts the region of increased drought duration 

extents to the whole of southern Europe. Moreover, the projected increase in drought duration is 

larger for long-term compared to short-term droughts. 

In a set of figures provided in Appendix B (Figure B 12 to Figure B 15), an examination of the 

differences in the projected changes caused by the selection of the HELIX model (EC-EARTH of 

HadGEM) is attempted. Only the ensemble members forced with common driving models 

participate in this comparison. Examination of the role of the HELIX model for the hydrological 

simulations reveals that the two HELIX models project very different futures of conflicting climate 

change signals. Specifically, HadGEM projects a dramatically drier future while EC-EARTH 

projects a wetter future in terms of runoff production metrics. Regarding the drought analysis, 

HadGEM shows increased drought duration for a considerably larger part of Europe compared to 

EC-EARTH. The projected climate change signal is determined by the HELIX model rather than 

by the SST driving model. 

The combined ensemble shows that spatially coherent regions of increased drought duration and 

high model agreement appear under +4oC of warming over the Mediterranean region. 
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Figure 46. Relative change in extreme short term drought (SRI<=-1.5) duration per SWL, simulated by the 

three different ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom). 
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Figure 47. Model agreement on the sign of change in extreme short term drought duration per SWL, 

simulated by the three different ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom). 
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Figure 48. Relative change in extreme long term drought (SRI<=-1.5) duration per SWL, simulated by the 

three different ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom). 
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Figure 49. Model agreement on the sign of change in extreme long term drought duration per SWL, 

simulated by the three different ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom). 
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Figure 50. Relative change in extreme short term drought (SRI<=-1.5) duration per SWL, simulated by the 

three the combined ensemble (top), and model agreement on the sign of change (bottom). 
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Figure 51. Relative change in extreme long term drought (SRI<=-1.5) duration per SWL, simulated by the 

three the combined ensemble (top), and model agreement on the sign of change (bottom). 
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Chapter 6. Conclusions 

6.1. Summary and concluding remarks 

In this section, a summary of the thesis is presented, the main findings are highlighted and 

conclusions are drawn. The present thesis provides a complete methodological framework for a 

detailed assessment of the effects of high-end climate change on hydrological resources at the 

regional, European and global scale. Hydrological simulations are performed with the large scale 

LSM JULES. JULES, as a physically based model, provides an advantage to our impact assessment 

compared to assessments established on pure hydrological models, as it can account for the effects 

of rising atmospheric CO2 on plant physiology. 

Model evaluation for the historical period 

The first step in our methodological framework is the evaluation of the JULES model for the 

historical period and the assessment of the model’s sensitivity to the observational dataset used as 

forcing. The evaluation of the hydrological performance of the JULES model is done in two stages. 

The first part of model evaluation is based on runoff and aims at the evaluation of mean and low 

hydrological states while the second part is based on discharge, and aims at the evaluation of 

monthly and seasonal discharge profiles at the basin scale. To implement the second stage of model 

evaluation, a routing algorithm was developed and applied to the model output, to convert the 

vertical runoff production flux to discharge at the basin outlet. The algorithm uses a conceptual 

semi-distributed model based on time of concentration, following a source-to-sink routing 

approach. Meanwhile, the sensitivity of the model to the forcing dataset is assessed by comparing 

model runs of the same model configuration forced by three different observational datasets 

(WFDEI, PGFv2 and GSWP3). 

From the analysis described above it can be concluded that JULES can capture well the shape of the 

annual discharge cycle for most of the examined basins, although a tendency towards discharge 

underestimation by the model was identified. The use of different forcing datasets produces 

considerable changes in the results for some regions (especially in the African continent). For the 

studied basins the different forcing results in at least 10 % difference in the magnitude of simulated 
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discharge, while the median range of PBIAS is 30 % and the average range 40 %. It can thus be stated 

that JULES exhibits high sensitivity to the climate drivers. 

The effect of GCM biases on runoff 

The second step of the methodological framework presented in this thesis concerns the examination 

of GCM biases and their effect on hydrological simulations. More specifically, the present study 

examined the effect of the biases in GCM output variables on historical runoff simulations, using 

the JULES LSM. The effects of biases were studied for each forcing variable separately, for six 

meteorological variables (precipitation, temperature, radiation, specific humidity, surface pressure 

and wind speed) in total. Biases of each variable and the respective effect of runoff were quantified 

at the global and regional scale. A framework for the categorization of the effects of biases of the 

different variables was developed and implemented, leading to global maps of bias ECs. 

According to the findings of this study, bias correction of GCM outputs results to substantially 

improved representation of historical runoff. For this reason, the present study adds to the numerous 

studies that advocate on the use of some kind of bias correction of GCM data prior to their use as 

impact model forcing. Precipitation and temperature biases were identified to cause the largest 

changes in runoff. Radiation and specific humidity can also pose a substantial effect on runoff, 

especially for specific regions. The sensitivity of runoff to the different forcing variables exhibits a 

high spatial variability. Depending on the region, runoff can be more sensitive to radiation or 

humidity compared to precipitation or temperature. The produced EC maps show that all variables 

can potentially affect runoff to a high extent depending on the region. The fraction of the land 

surface occupied by the high effect category ECI (high changes in runoff and high sensitivity of 

runoff to the variable’s changes) ranges between the variables from 67.80 % for precipitation to 

6.09 % for wind. 

The produced maps of ECs aid the identification of the regions mostly affected by the bias of each 

variable. Thus, they could serve as a decision tool in cases when an informed decision needs to be 

made on the variables that would need to be bias corrected or could be neglected from bias 

correction, according the planned model application. Moreover, when raw forcing is used in model 

applications, EC maps could provide a guidance towards the areas where the results would need a 

more careful interpretation. 
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Based on the findings of this study it is suggested that the widely used concept of bias correcting 

precipitation and temperature should be extended to include more input variables. Radiation and 

specific humidity should be added to the priority variables for bias correction in hydrological 

applications, along with precipitation and temperature. 

Due to the heavily model dependent nature of runoff sensitivity to forcing variables, generalized 

conclusions for the behavior of other impact models to GCM biases cannot be drawn from the 

present single model assessment. Nevertheless, this study aims to initiate a discussion on the effect 

of GCM biases on hydrological output, as the consideration of these sensitivities is crucial to 

understand the uncertainty spectrum of hydrologically relevant climate change assessments. 

Projections of hydrological impacts under high-end climate change – European scale 

The next step of our methodological framework includes the projections of hydrological impacts 

of high-end climate change. The first set of hydrological projections concerns the European region 

and is forced by the novel dataset of the Euro-CORDEX climate projections. The spatial patterns 

of changes in future mean- and low- hydrological states under +4oC of global warming are assessed 

and an analysis of the changes in future drought climatology is performed for five major European 

basins. Moreover, the impact of +2oC versus +4oC global warming is estimated. Concurrently, the 

effect of bias correction of the climate model outputs on the projected climate and the role of the 

observational dataset used for bias correction are also evaluated. 

Projections show an intensification of the water cycle at +4 SWL, as even for areas where the 

average state is not considerably affected, there are remarkable projected decreases of low flows. 

With the exception of the Scandinavian Peninsula and some small areas in central Europe, 10th 

percentile runoff production is projected to reduce all over Europe. This favours the formation of 

extreme hydrological events, thus more droughts compared to the current state could be expected 

in the future due to the warming climate. 

Drought climatology is projected to change to more dry days per year for the Danube, Rhine and 

Guadiana basins. Thus these areas are projected to experience more usual and more intense drought 

events in the future. 
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For the areas where clear decreasing or increasing runoff trends are projected, the changes are 

considerably intensified when moving from the +2 SWL to the +4 SWL. Decreasing trends apply 

to southern Europe, including the Mediterranean region, while strong increasing trends are 

projected for northern and north-eastern Europe. For the rest of the European region where trends 

are not clear or ensemble members do not agree towards the change, the effect of the further 

warming from +2 SWL to +4 SWL, does not seem to severely affect the hydrological state, which 

is however already significantly altered at +2 SWL compared to pre-industrial. 

Bias correction results in an improved representation of the historical hydrological conditions. 

However, raw and bias corrected simulations exhibit minor variations for results of statistical 

interpretation (in our study: percent change, number of days under drought threshold).  

The dataset used for bias correction can affect the quality of the projections in absolute terms to a 

great extent. The comparison performed here showed that the WFDEI-corrected dataset produces 

simulations that capture better the past observed hydrologic state compared to the E-OBS-corrected 

dataset and should thus be preferred for bias correction applications over Europe. The selection of 

the “correct” dataset is an added uncertainty to the climate impact modelling chain, with magnitude 

similar to that of the bias correction procedure itself. 

Projections of hydrological impacts under high-end climate change – Global scale 

The second set of hydrological projections regards the global scale. The global hydrological 

projections are forced with the thirteen models of the HELIX ensemble and run by the JULES 

model. Here only bias corrected data of the HELIX GCM ensemble are included in the analysis. In 

this part, the water availability and drought duration analysis under high-end scenarios of climate 

change of the previous section is extended to the global scale. In addition, the study of droughts is 

approached with different methods (SPI and SRI) and different types of drought (short- and long-

term) are examined. While our first aim is to assess the changes on mean and low runoff and 

droughts of different types and durations due to high-end climate, concurrently, the progression of 

the changes as the level of warming increases is assessed (from +1.5, to +2, to +4oC). Climate 

change induced changes in mean and low runoff and drought climatology are also assessed at the 

basin scale level. Finally, estimation of the uncertainty in the projected impacts is also integrated 

in this part of the study. 
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The global scale analysis provides information on the regions of the globe that are projected to have 

increased or decreased mean and low runoff in a future under high-end climate change. Runoff 

indicators (mean and low runoff) are projected to increase for the majority of the land surface. 

However, there are areas (the European region included in these) that model agreement on the sign 

of change is low and thus we cannot be definitive on the impacts projected for these regions. The 

global scale drought analysis revealed regions with projected increases in extreme drought duration. 

Increased short-term extreme drought duration is mainly projected for the Mediterranean region 

while for long-term extreme droughts, the regions that are expected to experience increases in the 

events’ duration are located in the Mediterranean, central North America, north Africa, the middle 

East and Australia. 

The basin scale drought analysis concluded in eight basins that are expected to experience increased 

days per year under drought conditions in the future. The mean and low runoff regime analysis at 

the basin scale showed that the impacts are exacerbated as the level of warming increases for most 

basins. An important finding is that the range of the projections is very large and for many basins 

spans through both negative and positive changes. In these cases, the use of the ensemble mean 

may not be a particularly useful indicator of the projected changes. Moreover, since there is not a 

way to favour or reject a projected response, policy makers and adaptation strategies should account 

and prepare for both possible outcomes. 

Comparison of hydrological projections from different forcing data 

In this final section, the EURO-CORDEX- and HELIX- driven hydrological projection are inter-

compared and also examined in contrast to respective simulations of the former GCM ensemble 

generation (denoted ISIMIP) which has a lower spatial resolution. This analysis is limited to 

European region, as the common domain of all the three ensembles. Generally there are large 

differences between the projected impacts for mean and low runoff, and a greater consensus on the 

projected changes in drought duration. For the HELIX ensemble specifically, it has been revealed 

that the projected climate change signal is determined by the HELIX model rather than by the SST 

driving model. Finally, combination of three ensembles into one highlights the Mediterranean 

region as a hotspot of increased drought duration. 
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6.2. Innovation and contribution 

The present thesis contributes to the basic science with two newly developed methodologies. The 

first contribution is the development of a routing algorithm, which allows the comparison of the 

gridded JULES output to observed discharge, thus allowing the evaluation of the model against 

actual discharge measurements. The second contribution is the new methodology for the 

categorization of the effects of GCM biases. 

Regarding applied science, the present thesis contributes providing maps of effect categories of 

GCM biases, which can be a very useful tool for scientists planning climate change impacts’ 

studies. Moreover, the contribution to applied research lies in the use of state-of-the art GCM data 

of the highest available spatial resolution to produce a detailed and multi-faceted assessment of the 

effects of high-end climate change on hydrological regime. Many different methodologies were 

combined to provide the assessment of impacts for mean and low state hydrological states and 

drought conditions. The output of the climate change impacts’ study is important to policy makers 

at the inter-governmental level in order to plan relevant legislations and adaptation practices. 

For the implementation of the routing algorithm, the methodologies described in this thesis and the 

processing of GCM data and JULES’ outputs, an extensive number of coding scripts were produced 

in the MATLAB programming language. The total volume of data processed for the purposes of 

this thesis is close to nine T (a detailed description of the size of inputs and outputs of the JULES 

model is presented in Table 17). The JULES’ simulations performed in the context of the present 

thesis correspond to around 6730 years in total, and were produced in a computational time of 

around 350 days. 

Table 17. Size of input and output JULES’ data used in the present thesis. 

 
Input Output 

Historical 1 T 128 GB 

Europe Ensemble 32 GB 200 GB 

Global Ensemble 1 908 GB 2.28 T 

Global Ensemble 2 2.9 T 1.45 T 

Total ~5 T ~4 T 
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6.3. Recommendations for future research 

Future development of the JULES model, and of other similar models, should focus on the depiction 

of hydrological processes of the basin level. Firstly, parameterizations of regional scale processes 

(such as contributions from glaciers for mountainous basins) should be added in the models. 

Secondly, in order for the models to give simulations of higher spatial resolution, forcing data of 

respective higher resolution are also required.  

Regarding the evaluation of the model, the development of a more complicated routing scheme and 

the integration of human impacts (such as dams and abstractions) in the JULES model are proposed 

as future research steps. The need for inclusion of more processes in the models highlights the 

scientific community’s request for more data to be used for model evaluation and development, 

such as information on dams and abstractions, water management, agricultural and irrigated areas, 

etc. 

The present study could be complemented by using more than one hydrological impact models for 

the assessment of both the effects of GCM biases and the effects of climate change on the 

hydrological regime. Multi-impact model assessments provide the opportunity to assess the 

uncertainty of the impact model component of the modelling chain. 

Although a considerable number of GCMs was used in the present thesis, an extension of the used 

GCMs should be a goal for future assessments, as the uncertainty component due to the GCM 

choice is an important factor that defines the assessed climate change signal. 

In future research, the assessment of climate change impacts should be accompanied by scenarios 

of changes in land use and agricultural practices. Finally, the next proposed research step after 

climate change impacts’ studies is to study the effects of climate change adaptation and mitigation 

practices. Such studies are of particular importance for policy makers who need to assess the level 

of action needed to avoid adverse effects of climate change, and the possible synergies and trade-

offs between adaptation and mitigation actions. 
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Appendix A  

Definition of symbols 

Symbol Units Definition 

𝑨 mol CO2 m−2 s−1 Net photosynthesis uptake 

𝑨𝒎 kg m−2 Puddling of water on soil surface and interception by 

leafless vegetation 

 𝑩𝑳 kg C m−2 Leaf biomass 

𝑩𝒎 kg C m−2 Rate of change of water holding capacity with leaf area 

index 

 𝑩𝒘 kg C m−2 Woody biomass 

𝑪 kg m−2 Canopy water 

𝑪𝒄 Pa Leaf surface carbon dioxide concentration 

𝑪𝒊 Pa Internal leaf carbon dioxide concentration 

𝑪𝑳 J kg−1 K−1 Specific heat capacity of leaves 

𝑪𝒎 kg m−2 Vegetation canopy water holding capacity 

𝑪𝒔 J m−2 K−1 Areal heat capacity associated with the surface 

material 

 𝒄𝒑 J kg−1 K−1 Specific heat capacity of air 

𝑪𝒘 J kg−1 K−1 Specific heat capacity of wood 

𝑪𝒘𝒂𝒕𝒆𝒓 J kg−1 K−1 Specific heat capacity of water 

𝑪𝒂 J m−3 K−1 Volumetric heat capacity of the soil 

𝒅𝒓 m Root depth 

𝒅𝒔 m Snow depth 

𝑫𝒇 m2 s−1 Diffusivity of water vapour in air 

𝑬 Kg m−2 s−1 Turbulent moisture flux 

𝑬𝑻 kg m-2 s-1 Evapotranspiration rate 

𝑮 W m-2 Surface/Soil heat flux 

𝑮𝒊𝒏 kg m-2 s-1 Groundwater inflow 

𝑮𝒐𝒖𝒕 kg m-2 s-1 Groundwater outflow 

𝒈𝒔 m s−1 Leaf level stomatal conductance 

𝒈𝒔𝒐𝒊𝒍 m s−1 Bare soil surface conductance 

𝑯𝒔 W m-2 Sensible heat flux 

𝑯𝒔𝒂𝒕(𝑻) kg kg−1 Saturated specific humidity at the temperature T 

𝑯𝟏 kg kg−1 Specific humidity at the reference atmospheric level 

𝑰 kg m−2 Intercepted snow load 

𝑰𝒎𝒂𝒙 m−2 Snow interception canopy capacity 

𝑱 W m−3 Vertical advective flux for soil moisture 

𝑲 kg m−2 s−1 Surface infiltration rate 

𝑲𝒉 m s−1 Hydraulic conductivity 

𝑲𝒉𝒔 m s−1 Hydraulic conductivity for saturated soil 

𝑳 m2 m−2 Leaf area index 

𝑳𝒄 J kg−1 Latent heat of condensation of water at 0 oC 

 𝑳𝒘↓ W m-2 Downward longwave radiation 

 𝑳𝒘↑ W m-2 Upward longwave radiation 

𝑷 kg m-2 s-1 Precipitation  rate 
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𝑷𝒔 Pa Surface air pressure 

𝑸 kg m-2 s-1 Discharge rate 

𝒓 μm Snow grain size 

𝒓𝒂 s m−1 Aerodynamic resistance 

𝒓𝒂𝒄𝒂𝒏 s m−1 Aerodynamic resistance between the surface canopy of 

vegetation and the underlying soil 

𝒓𝒌 - Fraction of roots in the k-th soil layer 

𝒓𝒔 s m−1 Stomatal or surface moisture resistance 

𝑹𝒏 W m-2 Net radiation 

𝑹𝑭 kg m−2 s−1 Total runoff 

𝑹𝑭𝒔 kg m−2 s−1 Surface runoff 

𝑺𝒎 kg m−2 s−2 Snowmelt 

𝑺𝒘↓ W m-2 Downward shortwave radiation 

𝑻𝑨 K Reference level atmospheric temperature 

𝑻𝑭 kg m−2 s−1 Throughfall rate 

𝑻𝒔 K Soil temperature 

𝑻𝒔𝟏 K Temperature of the first soil level 

𝑻𝒔𝒌 K Temperature of the k-th soil level 

𝑻∗ K Surface temperature 

𝑾 m s−1 Atmospheric wind speed 

𝑾𝟎 kg m−2 s−1 Infiltration rate into the soil 

𝑾′ kg m−2 s−1 Vertical flux of soil water 

𝒂 - Surface albedo 

𝜷 - Soil moisture factor 

𝜟𝑺 kg m-2 s-1 Change in storage in a basin 

𝜟𝒛𝒊 m Thickness of the i-th soil layer 

𝝐 - Surface emissivity 

∈𝒓 - Fraction of gridcell occupied by convective 

precipitation 

𝝐𝒔 - Emissivity of the underlying soil surface 

𝜽 m3 m−3 Soil moisture concentration 

𝜽𝟏 m3 m−3 Soil moisture concentration in the top soil layer 

𝜽𝒄 m3 m−3 Soil moisture concentration at critical point 

𝝀 W m−1 K−1 Thermal conductivity 

𝝀𝑬 W m-2 Latent heat flux 

𝝀𝒔𝒏𝒐𝒘 W m−1 K−1 Thermal conductivity of the snow 

𝝀𝒔𝒐𝒊𝒍 W m−1 K−1 Thermal conductivity of the soil 

𝒗𝒋 - Fraction of gridbox covered by surface type j 

𝝆 Kg m−3 Density of air 

𝝆𝒊 kg m−3 Density of ice 

𝝈 W m−2 K−4 Stefan Boltzmann constant 

𝜳 m Soil water suction 
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Appendix B 

Supplementary information and results 

 

Figure B 1. Difference maps, showing initial (Raw-WFDEI) and remaining (BC-WFDEI) biases of the GCM 

ensemble forcing variables: a.Precipitation, b.Temperature, c.Longwave downward radiation, d.Shortwave 

downward radiation, e.Specific humidity, h.Surface pressure, g.Wind. Differences are calculated between 

the December-January-February averages (DJF) of the 1981-2010 period. 



 

176 

 

 

Figure B 2. Difference maps, showing initial (Raw-WFDEI) and remaining (BC-WFDEI) biases of the GCM 

ensemble forcing variables: a.Precipitation, b.Temperature, c.Longwave downward radiation, d.Shortwave 

downward radiation, e.Specific humidity, h.Surface pressure, g.Wind. Differences are calculated between 

the June-July-August averages (JJA) of the 1981-2010 period. 
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Table B 1. Values of input variables, for each GCM (GFDL, IPSL and MIROC), the ensemble mean 

(Ens.Mean) and WFDEI data, spatially averaged for 24 Giorgi regions. 

 
P [mm/day] T [K] 

 
GFDL IPSL MIROC Ens.Mean WFDEI GFDL IPSL MIROC Ens.Mean WFDEI 

NEU 2.61 2.30 2.53 2.48 2.43 277.90 277.15 281.16 278.74 279.50 

MED 1.44 1.08 1.44 1.32 1.56 288.73 287.57 290.13 288.81 288.26 

NEE 1.71 1.67 1.79 1.72 1.67 274.42 274.15 277.89 275.49 276.75 

NAS 1.59 1.66 1.78 1.68 1.25 267.91 269.70 270.71 269.44 267.53 

CAS 0.92 0.79 1.36 1.02 0.93 284.84 284.00 287.60 285.48 285.79 

TIB 1.36 1.05 1.99 1.47 0.63 274.44 271.79 273.20 273.14 275.70 

EAS 2.96 2.88 2.96 2.94 2.57 286.26 285.73 288.39 286.79 284.48 

SEA 8.77 6.74 6.80 7.44 6.96 299.45 299.15 298.99 299.19 299.21 

NAU 2.97 1.37 3.46 2.60 1.65 297.80 297.47 298.36 297.87 297.40 

SAU 1.79 1.60 2.28 1.89 1.28 289.28 286.59 287.49 287.79 290.68 

SAH 0.22 0.06 0.35 0.21 0.15 297.02 294.15 296.73 295.97 298.18 

WAF 4.60 2.92 4.02 3.85 2.86 298.65 298.50 299.70 298.95 300.57 

EAF 2.15 1.52 2.87 2.18 1.99 297.86 297.14 298.09 297.69 298.99 

EQF 2.87 3.34 2.80 3.00 2.67 295.21 295.47 295.61 295.43 296.00 

SQF 3.33 3.18 2.79 3.10 3.04 295.89 295.95 296.37 296.07 295.96 

SAF 2.37 1.62 2.20 2.06 1.27 291.60 290.33 290.83 290.92 290.89 

WNA 1.92 1.88 2.32 2.04 1.49 282.01 282.41 284.29 282.90 282.96 

CNA 2.48 2.11 2.12 2.23 2.62 283.22 283.91 286.66 284.59 284.58 

ENA 3.53 3.49 3.77 3.60 3.20 286.57 287.57 289.45 287.86 282.26 

CAM 3.43 2.17 2.22 2.60 2.84 295.70 295.89 297.40 296.33 295.32 

AMZ 3.57 3.55 4.06 3.72 5.32 297.74 297.44 297.66 297.61 297.94 

CSA 2.37 1.71 2.20 2.09 2.83 291.79 290.06 291.07 290.97 290.61 

SSA 2.58 2.76 2.70 2.68 2.57 281.71 278.10 279.75 279.85 281.32 

SAS 3.61 2.94 4.76 3.77 3.75 296.89 296.78 297.21 296.96 296.36 
 

Rl [W/m2] Rs [W/m2] 
 

GFDL IPSL MIROC Ens.Mean WFDEI GFDL IPSL MIROC Ens.Mean WFDEI 

NEU 298.76 289.91 313.39 300.69 295.33 106.90 113.95 105.91 108.92 115.03 

MED 325.96 306.36 328.73 320.35 314.19 194.08 207.62 202.13 201.27 199.11 

NEE 283.96 268.51 293.05 281.84 286.82 113.46 130.74 131.76 125.32 113.86 

NAS 255.12 250.35 261.36 255.61 245.13 115.27 125.07 132.40 124.24 117.66 

CAS 294.43 276.17 300.68 290.43 295.95 208.62 212.39 224.00 215.01 204.59 

TIB 254.00 226.63 239.74 240.12 239.85 193.41 203.32 238.30 211.68 216.40 

EAS 330.69 311.34 329.96 324.00 310.11 175.70 203.77 197.67 192.38 171.51 

SEA 412.92 398.55 404.30 405.26 415.89 217.69 235.62 220.55 224.62 194.56 

NAU 375.94 353.13 375.57 368.22 357.89 245.74 275.31 245.39 255.48 248.10 

SAU 330.27 314.19 326.86 323.77 326.54 197.93 190.86 185.11 191.30 216.98 
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SAH 337.31 309.98 339.92 329.07 337.15 262.15 275.38 277.74 271.75 264.56 

WAF 384.32 363.56 388.70 378.86 392.92 230.64 281.46 240.12 250.74 231.51 

EAF 371.89 347.30 372.53 363.91 384.45 251.09 292.60 247.54 263.74 237.33 

EQF 372.31 356.07 365.27 364.55 377.08 240.21 278.16 231.80 250.05 232.56 

SQF 378.02 362.43 370.00 370.15 373.27 234.04 268.65 237.10 246.60 223.85 

SAF 344.64 323.67 334.37 334.23 321.71 217.70 237.28 219.01 224.66 232.14 

WNA 296.89 293.37 302.39 297.55 281.30 196.70 183.22 195.71 191.87 205.10 

CNA 311.69 298.60 310.79 307.03 308.70 178.09 198.56 207.13 194.59 185.28 

ENA 339.03 327.43 341.57 336.01 305.46 171.46 189.71 187.69 182.95 164.46 

CAM 377.27 360.63 370.16 369.35 366.67 229.89 252.57 248.63 243.70 229.00 

AMZ 386.81 370.84 385.43 381.03 410.20 236.57 276.72 229.83 247.71 195.18 

CSA 345.94 327.65 331.53 335.04 336.63 213.80 221.64 223.21 219.55 210.34 

SSA 306.49 300.96 309.79 305.75 296.61 143.79 119.23 129.33 130.78 149.19 

SAS 376.44 362.65 375.76 371.62 373.47 232.43 252.54 230.45 238.47 207.03 
 

H [kg/kg] Ps [HPa] 
 

GFDL IPSL MIROC Ens.Mean WFDEI GFDL IPSL MIROC Ens.Mean WFDEI 

NEU 0.0051 0.0048 0.0066 0.0055 0.0055 995.14 994.72 992.99 994.28 983.13 

MED 0.0075 0.0075 0.0087 0.0079 0.0076 981.06 979.10 980.40 980.19 958.26 

NEE 0.0042 0.0041 0.0054 0.0046 0.0045 998.58 997.13 995.35 997.02 994.48 

NAS 0.0031 0.0036 0.0042 0.0037 0.0033 966.94 964.29 964.13 965.12 955.25 

CAS 0.0044 0.0044 0.0057 0.0048 0.0055 900.50 896.25 899.36 898.70 893.06 

TIB 0.0033 0.0034 0.0042 0.0036 0.0034 735.65 728.50 736.90 733.68 734.45 

EAS 0.0090 0.0089 0.0108 0.0096 0.0078 974.67 969.55 973.25 972.49 947.43 

SEA 0.0176 0.0178 0.0186 0.0180 0.0176 1000.13 1001.34 1003.18 1001.55 977.85 

NAU 0.0121 0.0117 0.0140 0.0126 0.0096 991.65 994.78 994.03 993.49 978.92 

SAU 0.0079 0.0068 0.0081 0.0076 0.0071 1004.23 1001.10 1002.27 1002.53 988.15 

SAH 0.0061 0.0055 0.0068 0.0061 0.0061 965.67 965.58 966.70 965.98 955.18 

WAF 0.0132 0.0123 0.0145 0.0133 0.0124 982.76 982.58 982.96 982.77 970.86 

EAF 0.0113 0.0112 0.0130 0.0118 0.0122 939.81 936.28 940.58 938.89 928.97 

EQF 0.0126 0.0135 0.0132 0.0131 0.0131 927.28 923.68 927.22 926.06 897.12 

SQF 0.0134 0.0136 0.0144 0.0138 0.0123 964.04 963.95 964.50 964.16 924.14 

SAF 0.0104 0.0094 0.0104 0.0101 0.0077 970.87 970.37 970.88 970.71 909.10 

WNA 0.0059 0.0062 0.0074 0.0065 0.0051 908.11 909.20 907.96 908.42 867.44 

CNA 0.0071 0.0067 0.0078 0.0072 0.0071 970.30 967.75 964.45 967.50 967.64 

ENA 0.0092 0.0097 0.0113 0.0101 0.0068 1005.31 1003.65 1001.77 1003.58 986.35 

CAM 0.0135 0.0136 0.0147 0.0140 0.0122 983.62 983.88 982.98 983.49 928.03 

AMZ 0.0135 0.0140 0.0158 0.0144 0.0158 969.59 970.66 970.49 970.25 956.50 

CSA 0.0100 0.0091 0.0096 0.0096 0.0095 976.00 975.62 973.88 975.17 935.84 

SSA 0.0060 0.0047 0.0057 0.0055 0.0050 997.59 994.17 993.09 994.95 957.83 

SAS 0.0134 0.0136 0.0152 0.0141 0.0132 965.75 965.46 965.67 965.63 932.59 
 

W [m/s] 
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GFDL IPSL MIROC Ens.Mean WFDEI 

NEU 5.50 4.47 4.10 4.69 3.64 

MED 4.02 3.99 4.32 4.11 3.17 

NEE 3.61 2.93 3.01 3.18 3.56 

NAS 3.57 3.46 3.85 3.63 3.05 

CAS 2.85 3.64 4.33 3.61 3.27 

TIB 2.46 3.98 5.50 3.98 3.49 

EAS 4.54 4.39 4.18 4.37 3.15 

SEA 5.09 3.75 3.89 4.24 1.83 

NAU 4.48 3.93 4.24 4.22 4.24 

SAU 6.46 6.87 7.14 6.83 4.16 

SAH 3.59 4.12 4.53 4.08 4.33 

WAF 2.84 2.54 3.12 2.83 2.77 

EAF 2.95 3.23 3.85 3.34 3.24 

EQF 3.08 2.75 3.19 3.01 2.68 

SQF 3.82 3.55 4.01 3.79 2.49 

SAF 5.15 5.40 5.78 5.44 3.79 

WNA 3.88 3.50 4.78 4.05 3.06 

CNA 3.29 3.28 3.34 3.30 3.90 

ENA 5.22 4.72 4.46 4.80 2.86 

CAM 4.48 3.89 4.55 4.31 2.50 

AMZ 2.91 2.73 2.10 2.58 1.71 

CSA 4.68 4.83 5.11 4.87 3.24 

SSA 7.94 7.90 8.54 8.12 5.14 

SAS 4.31 3.56 3.13 3.67 2.49 
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Figure B 3. Scatterplots of relative changes in forcing variable (ΔV, x axis) and corresponding relative 

changes in runoff (ΔRF, y axis), for all the forcing variables and for the 24 regions. In each panel, each dot 

represents the ΔRF/ ΔV relationship of each land grid-box in the examined region. The regions names in red 

colour correspond to the selected focus regions that are presented in the main text. 
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Figure B 3 (continued). 
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Figure B 3 (continued). 
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Figure B 4. Difference between the long term means (of the 1981-2010 period) of three fluxes 

(SnM:snowmelt, ET: evapotranspiration and RF:runoff), forced with raw and bias corrected humidity 

(forced with Raw H- forced with BC H). The fluxes are calculated for a representative grid-box with center 

location at 60.25 Longitude and 60.25 Latitude. 

 

Figure B 5. Annual cycle of JULES' snowmass, forced with raw and bias corrected humidity [mm/day] and 

bias corrected precipitation (common forcing for both runs). Annual cycles are calculated from the 1981-

2010 period, for a representative grid-box with center location at 60.25 Longitude and 60.25 Latitude. 
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Figure B 6. Fraction of time under supersaturated air conditions (Relative humidity>100%), calculated from 

specific humidity H, temperature T and surface pressure Ps for: a. WFDEI data, b. Raw GCM data, c. BC 

GCM data and d. data corresponding to NobcH (raw H, BC T and BC Ps). Calculation of relative humidity 

uses the Clausius-Clapeyron equation. Fraction of time refers to the historical period 1981-2010. 

 

Figure B 7. The effect of bias correction on the ensemble mean of average runoff production for the baseline 

period. Figures: Relative difference between the ensemble means of bias corrected (left:with WFDEI, 

right:with E-OBS) and raw forcing data. Differences between -5% and 5% are classified as insignificant, 

differences <-5% as drier output and differences >5% as wetter output after bias correction. Table: percent 

of land area that falls into each category of change and average of the changes
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Table B 2. Results of linear regression applied to basin aggregated annual average runoff production for raw and bias adjusted Euro- CORDEX data. 

 

  

 Basin's Annual Average Runoff Production [mm/year] 

 Raw Bias Corrected 

Danube 

  

Coeff. St. Error tStat P-value r 0.32   Coeff. St. Error tStat P-value r 0.19 

 Interc. 829.12 127.91 6.48 1.82E-09 R2 0.10 Interc. 451.47 104.08 4.34 2.91E-05 R2 0.04 

 X -0.24 0.06 -3.77 2.45E-04 Adj. R2 0.09 X -0.11 0.05 -2.19 3.02E-02 Adj. R2 0.03 

Rhine   Coeff. St. Error tStat P-value r 0.10   Coeff. St. Error tStat P-value r 0.08 

 Interc. 950.24 228.55 4.16 5.87E-05 R2 0.01 Interc. 640.82 204.57 3.13 2.15E-03 R2 0.01 

 X -0.13 0.11 -1.14 2.58E-01 Adj. R2 0.00 X -0.09 0.10 -0.93 3.56E-01 Adj. R2 0.00 

Elbe   Coeff. St. Error tStat P-value r 0.10   Coeff. St. Error tStat P-value r 0.26 

 Interc. 112.23 155.05 0.72 4.70E-01 R2 0.01 Interc. -171.71 119.48 -1.44 1.53E-01 R2 0.07 

 X 0.09 0.08 1.18 2.39E-01 Adj. R2 0.00 X 0.18 0.06 2.99 3.38E-03 Adj. R2 0.06 

Guadiana   Coeff. St. Error tStat P-value r 0.54   Coeff. St. Error tStat P-value r 0.49 

 Interc. 794.88 98.58 8.06 4.76E-13 R2 0.29 Interc. 713.59 100.97 7.07 9.31E-11 R2 0.24 

 X -0.35 0.05 -7.21 4.46E-11 Adj. R2 0.28 X -0.31 0.05 -6.28 4.87E-09 Adj. R2 0.23 

Kemijoki   Coeff. St. Error tStat P-value r 0.80   Coeff. St. Error tStat P-value r 0.86 

 Interc. -2257.94 186.45 -12.11 6.46E-23 R2 0.63 Interc. -2717.09 159.07 -17.08 1.06E-34 R2 0.74 

 X 1.36 0.09 14.83 1.72E-29 Adj. R2 0.63 X 1.50 0.08 19.16 2.81E-39 Adj. R2 0.74 
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Table B 3. Results of linear regression applied to basin aggregated annual 10th percentile runoff production for raw and bias adjusted Euro- CORDEX data. 

 

 

 Basin's Annual 10th percentile Runoff Production [mm/year] 

 Raw Bias Corrected 

Danube 

  

Coeff. St. Error tStat P-value r 0.78   Coeff. St. Error tStat P-value r 0.75 

 Interc. 817.99 53.05 15.42 6.94E-31 R2 0.61 Interc. 442.02 32.50 13.60 1.49E-26 R2 0.56 

 X -0.36 0.03 -13.96 2.09E-27 Adj. R2 0.60 X -0.20 0.02 -12.80 1.29E-24 Adj. R2 0.56 

Rhine   Coeff. St. Error tStat P-value r 0.72   Coeff. St. Error tStat P-value r 0.69 

 Interc. 1665.80 127.58 13.06 3.13E-25 R2 0.52 Interc. 1102.30 94.45 11.67 7.82E-22 R2 0.48 

 X -0.74 0.06 -11.76 4.59E-22 Adj. R2 0.52 X -0.50 0.05 -10.78 1.21E-19 Adj. R2 0.47 

Elbe   Coeff. St. Error tStat P-value r 0.46   Coeff. St. Error tStat P-value r 0.39 

 Interc. 530.57 79.89 6.64 8.18E-10 R2 0.21 Interc. 139.24 26.24 5.31 4.84E-07 R2 0.15 

 X -0.23 0.04 -5.84 4.19E-08 Adj. R2 0.21 X -0.06 0.01 -4.75 5.40E-06 Adj. R2 0.14 

Guadiana   Coeff. St. Error tStat P-value r 0.60   Coeff. St. Error tStat P-value r 0.54 

 Interc. 4.70 0.55 8.61 2.35E-14 R2 0.36 Interc. 0.02 0.00 7.63 4.97E-12 R2 0.29 

 X 0.00 0.00 -8.47 5.23E-14 Adj. R2 0.36 X 0.00 0.00 -7.15 6.16E-11 Adj. R2 0.28 

Kemijoki   Coeff. St. Error tStat P-value r 0.91   Coeff. St. Error tStat P-value r 0.80 

 Interc. -1048.22 43.96 -23.85 9.80E-49 R2 0.82 Interc. -247.59 16.93 -14.62 5.35E-29 R2 0.64 

 X 0.53 0.02 24.41 8.67E-50 Adj. R2 0.82 X 0.13 0.01 15.18 2.62E-30 Adj. R2 0.64 



 

187 

 

 

Figure B 8. Absolute differences between Euro-CORDEX data bias adjusted against the WFDEI dataset and 

raw Euro-CORDEX data, for the variables of precipitation (right block) and temperature (left block). 

Differences are calculated from the historical, +2 SWL and +4 SWL time-slice averages, for all dynamical 

downscaled GCMs and their ensemble mean. Bottom block: Coefficient of variation between the ensemble 

members, for raw and bias corrected against the WFDEI dataset precipitation and temperature forcing 

variables, for the historical, +2 SWL and +4 SWL time-slices. The average value for the pan-European area 

is shown in each sub-figure. 
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Figure B 9. Absolute differences between Euro-CORDEX data bias adjusted against the E-OBS dataset and 

raw Euro-CORDEX data, for the variables of precipitation (right block) and temperature (left block). 

Differences are calculated from the historical, +2 SWL and +4 SWL time-slice averages, for all dynamical 

downscaled GCMs and their ensemble mean. Bottom block: Coefficient of variation between the ensemble 

members, for raw and bias corrected against the E-OBS dataset precipitation and temperature forcing 

variables, for the historical, +2 SWL and +4 SWL time-slices. The average value for the pan-European area 

is shown in each sub-figure. 
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Figure B 10. Comparison between the simulations of raw Euro-CORDEX data and bias adjusted against two 

different datasets (WFDEI and E-OBS) for five study basins. Bars show the ensemble means and error bars 

the minimum and maximum ensemble member values. (Top row) Annual 10th percentile runoff production 

for the historical period.OBS values are derived from GRDC discharge measurements converted to basin 

averages at the annual time-scale. (Middle row) Percent change in annual 10th percentile runoff production 

at the +2 SWL and (bottom row) at the +4 SWL. 
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Figure B 11. Percent change in mean annual precipitation per SWL compared to the baseline period, derived 

from the HELIX ensemble 
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Table B 4. Relative changes in mean and low and high runoff, per SWL, for each ensemble member of the 

ISIMIP ensemble, aggregated for 8 European sub-regions. 

ISIMIP RF_mean 

SWL1.5 BI IP FR ME SC AL MD EA 

GFDL 13.59% 12.02% 11.98% 8.31% 0.46% 12.01% 3.42% -3.29% 

NorESM 4.37% 1.64% 1.54% -2.61% -5.98% -1.57% -5.52% -6.53% 

MIROC 7.42% 8.08% 10.69% 11.70% 4.22% 13.67% 5.28% 0.23% 

IPSL -1.31% -1.97% -3.09% 0.10% 6.64% 0.43% 5.32% 7.48% 

HadGEM 3.73% 4.13% 1.98% -3.48% -1.35% -6.15% -1.84% -0.28% 

EnsMean 5.88% 5.24% 5.12% 3.64% 0.90% 4.74% 1.59% -0.55% 

SWL2 BI IP FR ME SC AL MD EA 

GFDL 16.96% 15.86% 16.00% 12.61% -0.23% 16.42% 3.49% -7.41% 

NorESM 5.88% 4.20% 2.26% -2.02% -4.99% -2.00% -5.03% -6.79% 

MIROC 12.41% 11.92% 18.65% 20.47% 6.46% 23.73% 8.83% -1.96% 

IPSL 1.88% 1.40% -0.07% 0.32% 5.72% -0.86% 3.82% 4.30% 

HadGEM 4.43% 4.84% 2.94% -5.44% -3.00% -8.31% -4.50% -2.75% 

EnsMean 8.74% 8.20% 8.68% 6.49% 0.96% 7.42% 1.73% -2.99% 

SWL4 BI IP FR ME SC AL MD EA 

GFDL 
        

NorESM 12.78% 8.29% 11.83% 4.77% -3.36% 5.12% -2.69% -5.88% 

MIROC 32.75% 32.14% 40.74% 33.31% 11.71% 34.39% 15.62% -4.27% 

IPSL 18.42% 17.53% 18.45% 7.70% -3.76% 6.06% -0.06% -11.27% 

HadGEM 8.24% 7.60% 5.75% 0.71% -4.57% -1.72% -4.45% -7.18% 

EnsMean 14.76% 12.31% 15.73% 8.54% -1.58% 8.20% 0.60% -7.44% 

ISIMIP RF_low 

SWL1.5 BI IP FR ME SC AL MD EA 

GFDL 40.95% 55.05% 36.19% 24.03% 9.39% 28.29% 11.62% 3.61% 

NorESM 18.21% 11.22% 11.22% 3.59% -3.15% 4.83% -2.66% -4.42% 

MIROC 27.92% 34.27% 32.08% 21.39% 10.93% 23.31% 11.94% 5.42% 

IPSL 4.41% 15.31% 4.40% 9.32% 15.90% 7.31% 13.36% 14.61% 

HadGEM 8.92% 16.35% 5.17% -10.01% -11.45% -15.93% -9.26% -9.52% 

EnsMean 21.23% 28.25% 19.11% 12.15% 5.23% 13.05% 5.97% 2.06% 

SWL2 BI IP FR ME SC AL MD EA 

GFDL 49.51% 67.09% 46.65% 35.02% 10.48% 40.00% 14.41% -1.73% 

NorESM 27.12% 23.46% 19.17% 13.20% 0.97% 12.04% 1.09% -3.17% 

MIROC 40.94% 47.06% 46.62% 33.54% 12.56% 36.86% 14.45% 0.02% 
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IPSL 7.94% 28.87% 4.48% 10.69% 13.81% 7.26% 11.93% 9.40% 

HadGEM 12.75% 21.73% 7.81% -11.09% -14.51% -14.79% -12.82% -15.37% 

EnsMean 28.79% 39.43% 26.53% 19.66% 5.78% 20.90% 7.06% -2.07% 

SWL4 BI IP FR ME SC AL MD EA 

GFDL         

NorESM 41.77% 33.25% 38.21% 26.30% 8.30% 28.78% 6.98% 3.26% 

MIROC 93.47% 93.69% 96.53% 54.05% 19.29% 53.83% 23.31% -1.77% 

IPSL 57.87% 95.19% 51.00% 24.34% -6.92% 20.29% 0.09% -19.27% 

HadGEM 18.63% 27.50% 8.22% -6.98% -17.30% -5.24% -16.11% -23.96% 

EnsMean 43.47% 56.74% 43.07% 25.66% 1.95% 25.62% 5.04% -9.00% 

 

Table B 5. Relative changes in mean and low runoff, per SWL, for each ensemble member of the EURO-

CORDEX ensemble, aggregated for 8 European sub-regions. 

EURO-

CORDEX 
RF_mean 

SWL1.5 BI IP FR ME SC AL MD EA 

GFDL 12.89% -2.34% 22.22% 12.37% 23.39% 7.32% -5.32% -1.92% 

NorESM 5.34% -10.36% -1.59% 8.29% 7.63% -5.44% -4.99% 6.36% 

MIROC5 2.23% 2.70% 4.52% 6.08% 3.51% 11.02% 11.36% 7.24% 

IPSL 5.71% -4.23% -2.82% 8.25% 10.10% -2.83% 8.00% 3.41% 

HadGEM2 6.66% 7.83% 12.65% 14.87% 8.92% 3.57% 9.06% 9.10% 

EnsMean 6.33% -1.45% 6.72% 10.00% 9.93% 2.64% 3.42% 5.05% 

SWL2 BI IP FR ME SC AL MD EA 

GFDL 11.56% -3.11% 17.13% 5.11% 28.31% 4.62% -2.01% -0.90% 

NorESM 2.52% -11.78% 0.22% 9.32% 10.68% -2.81% 0.80% 5.38% 

MIROC5 6.45% -12.44% 7.56% 19.55% 13.32% 10.29% 2.26% 14.15% 

IPSL 6.56% -14.04% -8.32% 8.13% 13.64% -6.40% 3.84% 7.39% 

HadGEM2 3.69% -7.89% -2.88% 17.26% 11.59% -1.51% 9.47% 13.04% 

EnsMean 5.90% -9.79% 2.77% 11.99% 14.46% 0.82% 2.78% 7.84% 

SWL4 BI IP FR ME SC AL MD EA 

GFDL         

NorESM 8.58% -37.80% -9.65% 15.15% 20.30% -10.77% -10.31% 3.77% 

MIROC5 13.69% -14.18% 4.52% 7.48% 26.73% -1.29% -4.33% 5.28% 

IPSL 16.40% -28.02% 7.10% 10.62% 39.41% -12.55% -11.55% 0.34% 

HadGEM2 8.12% -30.99% -6.93% 20.30% 21.10% -8.25% 0.40% 4.17% 
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EnsMean 15.49% -28.38% -0.71% 17.96% 34.83% -7.81% -7.20% 6.74% 

EURO-

CORDEX 
RF_low 

SWL1.5 BI IP FR ME SC AL MD EA 

GFDL 4.04% -39.52% 14.50% 48.54% 84.00% 17.42% -23.01% -36.47% 

NorESM -12.79% -49.00% -33.82% 4.09% 33.49% -1.57% -18.19% 3.85% 

MIROC5 -16.53% -27.12% -36.25% 9.73% 46.49% 45.28% 6.33% 67.87% 

IPSL 15.30% -31.05% -4.77% 20.63% 61.90% -10.01% -4.81% -20.35% 

HadGEM2 -10.59% -46.46% -24.97% -3.90% 43.17% -2.38% -20.20% -34.70% 

EnsMean -5.93% -40.50% -21.06% 11.52% 49.01% 8.50% -12.77% -11.29% 

SWL2 BI IP FR ME SC AL MD EA 

GFDL -6.83% -67.03% -15.98% 9.57% 101.94% -7.03% -32.02% -54.98% 

NorESM -25.19% -62.95% -42.50% -8.58% 53.62% 2.20% -25.92% -2.98% 

MIROC5 -19.07% -60.15% -43.69% 54.27% 76.68% 50.31% -16.31% 154.01% 

IPSL 7.32% -50.15% -25.52% 22.84% 96.95% -17.56% -19.71% 17.30% 

HadGEM2 -15.58% -71.14% -47.20% 2.86% 51.61% -13.06% -23.17% -11.96% 

EnsMean -13.40% -63.97% -36.98% 9.97% 69.75% 2.05% -23.82% 3.20% 

SWL4 BI IP FR ME SC AL MD EA 

GFDL         

NorESM -28.05% -92.04% -69.23% -23.88% 63.72% -31.22% -53.01% -27.68% 

MIROC5 -20.92% -82.25% -69.06% -10.14% 93.02% -12.64% -41.45% 2.89% 

IPSL -9.84% -75.02% -55.61% -24.65% 151.22% -70.38% -46.55% -41.36% 

HadGEM2 -20.71% -89.96% -69.43% -24.91% 78.99% -67.74% -47.67% -47.45% 

EnsMean -15.78% -87.39% -66.07% -14.83% 112.70% -44.76% -48.69% -28.35% 

 

Table B 6. Relative changes in mean, low and high runoff, per SWL, for each ensemble member of the 

HELIX ensemble, aggregated for 8 European sub-regions. 

HELIX RF_mean 

SWL1.5 BI IP FR ME SC AL MD EA 

EC_EARTH_r1 3.06% -5.74% -0.93% 9.18% 16.94% 1.92% 6.45% 20.84% 

EC_EARTH_r2 5.19% 10.71% 3.02% 8.98% 13.53% 6.47% 0.73% 6.72% 

EC_EARTH_r3 6.17% 8.69% 5.76% 4.01% 6.90% -0.32% 6.01% 8.20% 

EC_EARTH_r4 1.08% -13.51% -1.92% 15.41% 12.45% 7.01% 7.78% 40.03% 

EC_EARTH_r5 5.37% 2.16% 12.09% 24.68% 19.58% 12.30% -1.03% 8.91% 

EC_EARTH_r6 5.92% 7.23% 9.38% 8.40% 11.61% 14.01% 19.92% 13.35% 
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EC_EARTH_r7 6.26% -3.57% 5.12% 12.35% 16.41% -4.19% -15.38% 2.41% 

HadGEM_r1 2.79% -15.38% -7.83% -1.34% 15.34% -3.48% -10.86% -8.14% 

HadGEM_r2 1.09% -5.80% -5.29% -2.16% 9.76% -2.07% -0.86% -2.90% 

HadGEM_r3 3.61% -9.04% -7.15% -13.13% 3.15% -9.94% 0.45% -10.73% 

HadGEM_r6 -1.59% 4.20% 1.25% -4.03% 4.94% 9.49% 6.59% 0.47% 

HadGEM_r8 1.34% 6.50% -0.10% -5.34% 9.59% -1.87% -1.82% -5.35% 

HadGEM_r9 2.70% -16.34% 2.81% 5.30% 8.44% 1.96% 1.33% -12.56% 

EnsMean 3.35% -2.30% 1.34% 4.54% 11.10% 2.25% 1.44% 4.30% 

SWL2 BI IP FR ME SC AL MD EA 

EC_EARTH_r1 8.75% 8.26% 9.96% 7.99% 23.31% 4.03% 3.69% 12.79% 

EC_EARTH_r2 6.71% 19.03% 12.03% 10.27% 17.19% 12.28% 7.22% 13.52% 

EC_EARTH_r3 4.99% 14.48% 9.12% 1.86% 11.71% 0.92% 7.84% 6.56% 

EC_EARTH_r4 8.47% -15.36% 3.42% 24.81% 27.69% 11.94% -1.00% 33.32% 

EC_EARTH_r5 12.77% -3.06% 11.64% 26.33% 28.20% 9.45% -8.33% 4.74% 

EC_EARTH_r6 8.61% -0.31% 11.72% 18.65% 13.63% 15.27% 13.39% 14.69% 

EC_EARTH_r7 11.66% -5.41% 8.11% 20.55% 30.79% -5.26% -18.37% 7.12% 

HadGEM_r1 -0.12% -11.66% -3.37% -1.60% 14.41% -3.37% -8.55% -10.37% 

HadGEM_r2 4.48% -12.83% -7.58% -1.35% 12.45% -4.31% -5.90% -6.78% 

HadGEM_r3 3.91% -7.53% -10.28% -17.40% 5.86% -11.27% 0.83% -14.20% 

HadGEM_r6 -3.57% -1.10% -0.06% -7.07% 5.56% 3.80% -0.80% -9.80% 

HadGEM_r8 0.91% -5.63% -9.14% -7.25% 17.58% -8.55% -5.65% -6.33% 

HadGEM_r9 2.72% -23.22% -2.07% 2.42% 13.55% -4.31% 0.63% -15.45% 

EnsMean 5.44% -3.60% 2.40% 5.67% 16.91% 1.24% -1.21% 1.90% 

SWL4 BI IP FR ME SC AL MD EA 

EC_EARTH_r1 17.08% 5.12% 26.98% 36.96% 62.97% 17.47% -2.14% 24.80% 

EC_EARTH_r2         

EC_EARTH_r3 13.96% -4.20% 2.04% 6.56% 43.05% 0.53% 3.12% 8.12% 

EC_EARTH_r4 19.03% -16.79% 8.90% 35.43% 48.84% 9.34% -4.59% 26.89% 

EC_EARTH_r5         

EC_EARTH_r6 13.79% -15.59% 16.59% 30.72% 51.22% 16.57% 8.96% 25.85% 

EC_EARTH_r7 22.95% 0.19% 27.36% 38.28% 49.15% 9.05% -8.82% 17.44% 

HadGEM_r1 4.10% -19.09% -6.30% -3.83% 42.40% -11.22% -15.83% -10.86% 

HadGEM_r2         

HadGEM_r3 1.91% -16.81% -13.77% -17.06% 10.55% -11.75% -3.71% -8.91% 

HadGEM_r6 11.22% -16.13% 5.13% 3.72% 23.32% 0.53% -16.87% -11.31% 

HadGEM_r8 6.68% -9.04% -7.04% -8.56% 21.57% -19.69% -16.27% -20.86% 

HadGEM_r9 5.22% -22.28% -2.06% 8.84% 23.58% -5.64% -2.82% -13.26% 
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EnsMean 11.32% -12.05% 5.24% 13.51% 39.53% 0.23% -5.88% 4.04% 

HELIX RF_low 

SWL1.5 BI IP FR ME SC AL MD EA 

EC_EARTH_r1 11.85% -18.98% -19.40% -31.40% 63.65% -7.57% 68.31% 71.66% 

EC_EARTH_r2 7.19% 17.68% -7.53% -3.37% 33.68% 16.02% 3.35% -23.59% 

EC_EARTH_r3 5.28% -13.99% -2.28% 7.05% 21.59% -0.90% -3.01% -6.21% 

EC_EARTH_r4 2.49% -60.97% -7.35% 38.86% 28.83% 24.68% 9.88% 146.34% 

EC_EARTH_r5 1.66% 6.53% 19.00% 39.79% 57.81% 14.79% 16.33% -5.20% 

EC_EARTH_r6 3.70% 169.88% 39.99% -1.41% 33.28% 16.15% 91.26% 8.55% 

EC_EARTH_r7 -1.45% -35.60% 4.57% 16.63% 34.39% -3.60% -59.85% -15.58% 

HadGEM_r1 -7.48% -66.96% -39.05% -38.70% 29.31% -1.64% -43.70% -40.51% 

HadGEM_r2 -12.90% -35.36% -13.13% -11.61% 15.94% -11.96% -43.20% -47.26% 

HadGEM_r3 8.02% -54.93% -29.70% -45.84% 10.62% -21.62% -29.63% -62.51% 

HadGEM_r6 -11.81% 6.42% -9.67% -28.55% 21.58% 2.14% -11.40% -54.08% 

HadGEM_r8 -9.58% 7.76% -31.17% -45.53% 16.00% -8.02% -24.32% -52.97% 

HadGEM_r9 -6.15% -51.24% -11.83% -3.92% 12.21% 4.14% -26.63% -51.57% 

EnsMean -0.67% -20.14% -7.18% -7.72% 26.33% 1.15% -9.66% -21.19% 

SWL2 BI IP FR ME SC AL MD EA 

EC_EARTH_r1 20.33% -1.27% -5.92% -33.88% 87.25% -5.23% 39.07% 10.58% 

EC_EARTH_r2 11.37% 98.44% 25.10% 12.32% 37.83% 24.47% 26.93% 4.67% 

EC_EARTH_r3 5.72% -25.83% -2.04% -6.12% 38.18% -0.13% -11.28% -24.44% 

EC_EARTH_r4 14.06% -39.66% 23.87% 93.24% 73.12% 25.30% -17.06% 144.88% 

EC_EARTH_r5 0.78% 4.79% 14.57% 54.37% 83.17% 14.09% -14.99% -17.49% 

EC_EARTH_r6 5.36% 77.83% 40.48% 24.68% 51.03% 17.15% 55.88% 9.40% 

EC_EARTH_r7 2.96% -22.55% 37.75% 28.47% 67.77% 10.65% -75.04% -15.22% 

HadGEM_r1 -11.56% -62.60% -16.01% -39.77% 36.68% 1.71% -49.60% -46.32% 

HadGEM_r2 -13.36% -46.06% -11.34% 0.64% 19.72% -9.76% -55.30% -49.96% 

HadGEM_r3 3.01% -68.29% -40.12% -57.25% 15.00% -24.01% -57.41% -75.62% 

HadGEM_r6 -17.61% -21.95% -21.97% -45.50% 30.68% -14.99% -27.83% -75.86% 

HadGEM_r8 -18.24% -38.50% -43.98% -48.63% 28.71% -15.06% -36.84% -57.82% 

HadGEM_r9 -5.13% -77.46% -24.93% -17.57% 26.92% -15.54% -32.42% -59.85% 

EnsMean -0.22% -25.84% -2.40% -4.67% 42.70% -0.39% -24.82% -29.54% 

SWL4 BI IP FR ME SC AL MD EA 

EC_EARTH_r1 19.36% 37.68% 60.35% 69.00% 224.62% 20.78% 8.75% 7.02% 

EC_EARTH_r2         

EC_EARTH_r3 -1.20% -45.77% -10.06% -17.95% 117.94% -8.65% -20.14% -40.50% 

EC_EARTH_r4 22.16% -17.97% 72.23% 118.88% 159.41% 21.11% -0.44% 34.51% 
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EC_EARTH_r5         

EC_EARTH_r6 13.64% 82.26% 75.20% 67.28% 148.32% 5.20% 75.36% -7.99% 

EC_EARTH_r7 -5.35% 9.60% 84.69% 59.78% 118.17% -2.55% -13.57% 25.12% 

HadGEM_r1 -19.72% -78.36% -20.98% -43.00% 101.46% -29.18% -58.82% -60.24% 

HadGEM_r2         

HadGEM_r3 -16.67% -82.68% -44.19% -58.80% 32.09% -29.93% -42.03% -72.73% 

HadGEM_r6 -10.01% -63.96% -4.99% -19.45% 57.52% -33.28% -60.79% -77.25% 

HadGEM_r8 -23.64% -77.99% -41.33% -52.36% 34.45% -53.51% -65.30% -77.93% 

HadGEM_r9 -17.50% -66.56% -11.33% -7.52% 55.17% -21.19% -10.67% -56.48% 

EnsMean -5.19% -43.73% 9.20% 6.21% 101.17% -15.63% -22.96% -39.09% 
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Figure B 12. Relative change in mean annual runoff (RFmean) per SWL, simulated by the three different 

sub-ensembles with common forcing models: ISIMIP (top), HELIX-EC-EARTH (middle) and HELIX-

HADGEM (bottom). 
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Figure B 13. Relative change in 10th percentile runoff (RFlow) per SWL, simulated by the three different 

sub-ensembles with common forcing models: ISIMIP (top), HELIX-EC-EARTH (middle) and HELIX-

HADGEM (bottom). 
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Figure B 14. Relative change in extreme short term drought (SRI<=-1.5) duration per SWL, simulated by 

the three different sub-ensembles with common forcing models: ISIMIP (top), HELIX-EC-EARTH (middle) 

and HELIX-HADGEM (bottom). 
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Figure B 15. Relative change in extreme long term drought (SRI<=-1.5) duration per SWL, simulated by 

the three different sub-ensembles with common forcing models: ISIMIP (top), HELIX-EC-EARTH (middle) 

and HELIX-HADGEM (bottom). 


