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Abstract

In recent years, there has been a strong consensus on the changes in climate caused by increased
concentrations of anthropogenic greenhouse gas emissions. Global CO; emission rates have been
following high-end climate change pathways leading to a future global temperature that is likely to
surpass the target limits of +1.5°C and +2°C, and reach levels of +4°C and higher at the end of the
21%t century. Freshwater availability under such conditions is a key issue of concern and thus,
scientific research has focused on estimating the range of changes in the future climate and the
effectiveness of different adaptation strategies. The main tool for the investigation of future climate
is the utilization of global climate models (GCMs). GCMs are based on physical principles that
describe the components of the climate system. The next step for hydrological impacts’ assessments
is to force global hydrological models (GHMs) or land surface models (LSMs) with GCM outputs.
Due to the systematic biases they feature, GCM outputs need some kind of bias correction prior to
their application as forcing to impact models, especially for hydrological studies. Most bias
correction techniques focus mainly on the variables of precipitation and temperature. However
most state-of-art hydrological models require more forcing variables, additionally to precipitation
and temperature, such as radiation, humidity, air pressure and wind speed. The biases in these
additional variables can hinder hydrological simulations, but the effect of the bias of each variable

is unexplored.

In the present thesis, a methodological framework of a multi-faceted assessment of the effects of
high-end climate change on the global hydrological regime is presented. The tool for the
hydrological simulations in our study is the LSM JULES, a physically based model operating at
the global scale. The first component of our methodological framework is the evaluation of the
model for a historical period and the assessment of the model’s sensitivity to input forcing. A runoff
routing algorithm is designed and implemented, to allow the comparison of the model output with
discharge measurements. The second part of the methodological framework aims to assess the
effect of the GCM biases on the performed runoff simulations, with the scope of deciding on the
meteorological variables that should be included in bias correction. To this end, a methodology for
the classification of the effect of biases in four effect categories (ECs), based on the magnitude and
sensitivity of runoff changes, is developed and applied. The final part of the methodological
framework of this thesis is the assessment of hydrological climate change impacts under high-end
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warming scenarios. Assessment of impacts focuses on water availability and droughts at the global,
European, regional and basin scale, employing a number of different and complementary methods.
Climate change impacts are examined for different levels of warming (+1.5, +2 and +4°C) and the
uncertainty in the projected changes is assessed throughout this analysis.

The results of this study could assist scientists make informed decisions on variables and methods
that should be considered in future climate change impacts’ studies, focusing on the uncertainty
component of the impact analysis, by examining a wide range of “hydrologically opposing” future
climates. The results of the present study could also be useful for policy makers, who need
information relevant to this thesis, in order to decide on planning and legislations regarding climate

change adaptation and mitigation.
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Iepiinyn

Ta tedevtaio ypdvia £xel emttevyOel o LEYOAN OLOP®VID, TG ETIOTNOVIKNAG KOWVOTNTOG OC TPOG
TIG 0AAOYEC TOV KAPLOTOG TTOV OPEIAOVTOL GTNV OLENUEVT) GUYKEVTPMGT EKTTOUTMV 0VOp®TOYEVDV
aepiov Tov Bepuoknmiov. Ot exkmoumés Tov O010E€1diov TOL AvOpaKo o€ TOYKOGUO €mimEDO,
aKoAovBovV Ta IO aKpaic GEVAPLO KALLATIKNG OAANYNG, 0ONYDVTAG OE LEALOVTIKEC TOYKOGULES
Beppokpacieg mov mOavadg va Eemepdoouvv Ta 0pla-aTtoyovs tTwv +1.5°C ko +2°C, kot va pTdcovy
oe emimeda tov +4°C N kot akopo peyolvtepng vrepbépuavons ota €A tov 21ov awwva. H
B IUOTNTO VIATIKAOV TOP®V VIO AVTEC TIC CLVONKES, elvar éva (RTNUO EEAPETIKNG oNUACTOGS,
YEYOVOG OV €YEL GTPEYEL TNV EMGTNUOVIKY £PEVLVO GTNV EKTIUNOT TOL EXPOVG TOV AAAAYDV VIO
mBové HEAAOVTIKA KAUOTIKG GEVAPLO KOl TNG OMOTEAEGUOTIKOTNTOS OLPOP®V GTPOTNYIKAOV
Tpocappoyng oty kKhMpatikny aAdayn. To Bacikd epyadeio yio tnv pHeEAETN TOL KAIMOTOG €lvan M
¥PNON TOV TayKOGHOV KAMPoTIK®V povtéAwv (GCMS). Ta GCMSs Baciloviat og puoikovg vOLovg
OV TTEPLYPAPOVY TO GLCTAUTIKA LEPT TOV KALOTIKOY GUOTHHATOS. To emdpevo Prina yio tnv LeAét
EMNTOGEMY TNV VOpoAoyio eivar M ewoywyn tov dsdopévav amd GCMS oe maykdouo
voporoyka povtéda (GHMS) 1 povtéha tpocopoinong diepyaciov emipaveiog (LSMS). E&attiog
TOV UEPOMTITIKOV CQUANATOV oV gpeaviovv, ta dedopéva towv GCMSs ypeidlovtal kamolo
gldovg 010pBmon mpwv ypnopomomBovv ¢ dedopuEvVa €160V YloL TOL HOVTEAM EKTIUMOMG
EMNTOCEMV, W0UTEPA Y10 LEAETES VOPOAOYIKOD YapaKTpa. Ot TEPIGGATEPES TEXVIKES O10pHLONG
TOV UEPOANTITIKAOV OVTMOV GPOAUATOV, £0TIALOVV GTIC TOPAUETPOVS TNG PPoYOTTOONG KOl TNG
Oeppoxpaciag. Ta mepiocoOTEPA OUOS VIPOAOYIKA LOVTEAQ TTPONYLEVNG TEXVOAOYiaG, YpetdlovTan
O TOAAES TOPAUETPOVS E1GOO0V, emmpdsbeta amd v PpoyodmTmon Kot TV Beppokpacio, OTwg
n aktvofolio, n vypaocia, n wieon Kot 1 TaxOTNTE TOL AVELOL. AV KoL TO GOAALATO GE QVTEG TIG
emmpOGOETEC TOPAUETPOVG UTOPETL VOL TPOKAAEGOVY TPOPANLOTO GTIG VOPOAOYIKES TPOGOUOIDGELS,
TOL YOPOKTNPLOTIKE TNG EMIOPACTG TOV LEPOANTTIKOD COAALATOC KAOE TOPAUETPOV, LELOVOUEVA,

dev €yovv peretnOet.

2mv napovoa epyacio, mapovcstaletar Eva peBodoroyIKO TAAIGLO Hio TOAOTAELPTG EKTIUNONG TOV
EMNTAOCE®V OKPOLOV CEVAPIOV KALATIKNG 0AAOYNG OTO TOYKOGHO VOpoAoyikd kabeotdc. To
EPYOAELD TTOV YPNCUOTOLEITOL Y10 TIC VOPOAOYIKEG TPOGOUOIDGELS EIVOL TO LOVTEAO EMLPOVEIOKDV
depyaswov JULES, éva poviého Proguoikng Paong mov Asttovpyel oe maykdopuo kAipoka. To

TPOTO KOUUATL TOV LeBOOOAOYIKOV TALGI0V £tval 1 AELOAOYNON TOV OMOTEAEGLATMOV TOV LOVTEAOV
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Yo poe Tpde@aTn 10TOPIKY TEPIOd0 KO 1 EKTIUNON ™S evausHnciog Tov OTIC TAPAUETPOVG
€10000V. [l T OVYKPION TOV TPOGOUOIDCEMY HE UETPNOELS TOPOYNG, OYEOAOTNKE Kot
EQOPUOCTNKE EVOG aAYOp1OL0g d10dgvong ¢ amoppong. To devtepo Koppudtt Tov peBodoAoyiko
TAOLGIOV GTOYEVEL GTNV EKTIUNOT TNG EMIOPAOTG TOV UEPOMTTIKOV oAbtV Tov GCMS otig
TPOGOUOIDGELS TNG OTOPPONGS, OVTMG MGTE VoL TOGOTIKOTONOEL 1) evacOncio Kot va emleyBovv ot
UETEMPOLOYIKEG TAPAUETPOL TTOL B TPETeL va eviayBovv o dradikacio 010pOoNC LEPOANTTIKOV
o@AaAipatog. Mio pebodoroyia yio TNV KATNYOPlOMOINoN TOV EMOPACEDOV TOV GPIALUT®OV CE
téooeplg katnyopieg, pe Paon 1o péyebog kol v evoicOncio TV oaAloydv GtV omoppon,
avamTuyOnke Kol €QOPUOCTNKE YO TOVG TOPOTAvV® oKomovs. To televtoio KOUPATL TOV
pefodoroyikov mAaiciov TG mopovcag OaTpPrg etvar M EKTIUNOT VOPOAOYIKNG (VGEMC
EMNTAOGE®V OKPOL®OV cevapiov KALaTkNG oAlayne. H extiunon tov emmtodcemv eot1dlel oty
SBESIUOTNTO VIATIKDV TOP®V Kot 6TIS cLVONKES Enpaciag, oe maykdoua, Evpomaikn kot Tomk
KAMpoKo Kobdg kol 6€ EMimedo AEKAVNG ATOPPONS, YPNCLLOTOIOVTAS TANODPO SLLPOPETIKAOV KO
CUUTANPOUATIKOV peBddwv. Ot emmTMOES TG KMUATIKNG ahdayne e&etdlovton ywa didpopa
enineda Oéppovong (+1.5°C, +2°C xor +4°C) evd mapdAAnia yivetar kot ektiunon ng

afefordrag otic TpoPaAlopeves oAAAYEC.

Ta amoteAéopato TG TaPoHGUS EPYACING ATOGKOTOVV Vo fon0GouY TNV EXIGTNLOVIKT KOWOTNTO
GTNV MY EVNUEPOUEVOV OMOPACEDV CYETIKA e TaPAUETPOVS Kot LeBddovg mov Ba mpémet va
INeBoVV VTOYN G€ PEANOVTIKEG HEALTEG EMMTAOGEMY TNG KAMUOTIKNG aAAAYTG, £0TIALOVTOG GTNV
aroeuvyn ™G vrepPorkng PePardttog e€etalovrog por TANODPA «VOPOAOYIKE AVTIPOTIKMDVY
KMpoTk@v mpocopowwcemy. Ta amoteAéopota g mapodoos epyaciog eivar emiong ypnowyo
GTOVG POPELS YEPAENG KEVTPIKNG TOMTIKNG GE S10KPATIKO EMimed0, KaBmg o1 televtaiot ypetdlovron
GYETIKEG LE TNV TOPOVCO. EPYACIO TANPOPOPIEG MOTE VO ATOPAUGIGOVV GE ToYEd10 Kol VOpoBesieg

GYETIKA LE TNV TPOCOPLOYN KOl TNV UETPIOGT TNG KALUATIKNG GAAAYNC.
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Introduction

Chapter 1. Introduction

1.1.

The climate and its basic mechanisms

1.1.1. Climate definition and components

Climate is generally defined as the description, in terms of the mean and variability, of relevant

atmospheric variables such as temperature, precipitation and wind. Climate can thus be viewed as

an aggregate of weather, or more precisely, as the probability distribution of possible weather states
(Goose et al., 2010; Ridgwell and Valdes, 2009). Thus, the depiction of the climate of a specific

region has to involve analysis of mean conditions, seasonality and of the probability of extremes

(such as severe storms and heat waves). The World Meteorological Organisation (WMO), suggest

a time period of thirty years for analysing climate statistics.

The climate system is comprised of the following components (Goose et al., 2010):

1i.

111,

1v.

1.1.2.

The atmosphere: dry air is composed of nitrogen (~78 % v/v), oxygen (~21 % v/v) and
other trace gases such as argon, carbon dioxide, neon, helium, methane, and krypton. Water
vapour constitutes around 0.25 % of the mass of the atmosphere on average, but this fraction
is highly variant, ranging from around 0 % in the coldest parts of the atmosphere to 5 % for
areas of high temperature and humidity.

The ocean: covers about 71 % of the Earth’s surface and is composed of 96.5 % water, 3.5
% dissolved salts, particles, gases, and organic matter.

The cryosphere: is the portion of the Earth’s surface where water is encountered in solid
form. The cryosphere includes sea ice, lake ice, river ice, snow cover, glaciers, ice caps, ice
sheets, and frozen ground.

The land surface and terrestrial biosphere: climate is influenced by the distribution and

topography of the land surface and by the presence of terrestrial vegetation.

Energy balance of the climate system and the greenhouse effect

The climate system receives energy in the form of electromagnetic radiation by the Sun. In an

equilibrium climate, the temperature of the system is constant, meaning that the input energy from
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the Sun is balanced by an equivalent energy loss by the climate system. Outgoing energy is the
radiation emitted by the Earth. The average temperature of the Earth is the result of the balance
between the incoming solar energy absorbed by the Earth and the radiation emitted by the Earth
into space. As radiations emitted by the Earth are of a longer wavelength compared to solar
radiation, the term longwave radiation is used for Earth’s radiation and shortwave radiation
describes input solar radiation (Goose et al., 2010). As shown in Figure 1, solar radiation can be
reflected by clouds and aerosols or be absorbed in the atmosphere. Radiation that is transmitted
through the atmosphere will be reflected or absorbed by the land surface and will contribute to
sensible and latent heat fluxes. After the absorption of shortwave radiation, the land surface emits
longwave radiation, a fraction of which escapes to space while another fraction is absorbed by the

atmosphere and re-emitted back to the land surface.

The latter mechanism is the basis of the “greenhouse effect”, a term used to describe the increase
of the Earth’s temperature due to re-emission of longwave radiation by atmospheric aerosols and
gases. Specific atmospheric gases (called greenhouse gases — GHGs) are nearly transparent to
incoming shortwave radiation but almost opaque to outgoing longwave radiation. This way they
prevent the longwave radiation from exiting the atmosphere, causing increased energy in the system
and thus increased temperature (Bowman, 1990; Jain, 1993). Natural GHGs are water vapour and
ozone (Oz). Other GHGs whose concentrations have been increased due to anthropogenic activities

are: carbon dioxide (CO.), methane (CHsa), nitrous oxide (N20) and chlorofluorocarbons (CFCs).
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Figure 1. The Earths’s global annual mean energy budget (W/m?). The broad arrows indicate the schematic
flow of energy in proportion to their importance (Trenberth et al., 2009).

The energy balance at the land surface is described by equation (1):

(1—a)-Swl+ Lwl:LWT+HS+/1E+G (1)

Where a [-] is the albedo of the surface, S,,,[W/m?] is the downward shortwave radiation, L,,,
[W/m?] is the downward longwave radiation, L,,; [W/m?] is the upward longwave radiation, H,
[W/m?] is sensible heat flux from the surface, AE [W/m?] is latent heat flux from the surface and G

[W/m?] is heat conducted away from the surface.

Net radiation is defined by equation (2):

Ry=0—a) Sy + (Lwi— Lyt) )



Chapter 1

Based on net radiation, the surface energy balance can be simplified to equation (3):

R,=H,+E+G 3)

This equation describes the balance of net radiation by sensible, latent and conduction heat fluxes.
1.1.3. Hydrological cycle

Water and energy cycles are tightly connected. Water vapour is the most important GHG and thus
poses a significant effect on radiative balance. The hydrological cycle is driven by the incoming
solar energy, which causes the vertical transfer of water from Earth to the atmosphere through the
process of evapotranspiration (evaporation from surfaces and loss of water from plant leaves —
transpiration). Moreover, water plays a dominant role in energy transfers between the land surface
and the atmosphere. Latent heat is released during water vapour condensation and sensible heat is
transferred along with water vapour in the atmosphere and water in the ocean. The largest water
reservoirs are the oceans, followed by the cryosphere (Figure 2). A relatively small fraction of the
global water budget corresponds to storage in the atmosphere. If the stored atmospheric water
precipitated at once, the precipitation would correspond to only 2.5 % of global annual precipitation
(Goose et al., 2010). Thus, the atmospheric water is quickly replaced through evaporation and
transpiration. Most of the water evaporated from the ocean will precipitate back to the ocean (and
respectively for the land surface). At the same time, around 35 % of total precipitation over land
corresponds to water precipitated from the ocean. This ocean to land water transfer is balanced by

the surface flow of water (mainly river flow) from the land back to the ocean.
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At the hydrological basin scale, the hydrological budget describes the balance between hydrological

inputs and outputs. For a specific basin, the water balance is described by equation (4):

AS =P —ET — Q + Gip — Gous (4)

Where AS is the change in storage in the basin over some period of time, P is precipitation, ET is
evapotranspiration, Q is discharge, and G;,and G,,; are groundwater inflows and outflows from
the basin. Storage and groundwater inflows and outflows can be considered as negligible, and the

water balance equation is simplified to equation (5):

P=ET+Q (5)

5
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Where precipitation expresses the water that enters the basin system and evapotranspiration and

discharge the water leaving the basin.
1.1.4. Carbon cycle

The carbon cycle is important for the climate as it involves changes in the atmospheric
concentration of two important GHGs: carbon dioxide and methane. Carbon in the Earth system is
stored in the following main reservoirs: i) in the biosphere — as organic molecules in living and
dead organisms, ii) in the atmosphere — as gas carbon dioxide, iii) in soils — as organic matter, iv)
in the lithosphere — as fossil fuels and sedimentary rock deposits, v) in the oceans — as dissolved
atmospheric carbon dioxide and as carbonate shells in marine organisms. Various processes govern
the exchange of carbon between the active carbon pools. Such processes, for example, are
photosynthesis and respiration for the land surface and the atmosphere, and dissolution and
diffusion between the ocean and the atmosphere.

At the pre-industrial period (before 1750), the exchanges of carbon between the different pools
were close to equilibrium. In the last 150 years, anthropogenic activity related to fossil fuel
combustion, deforestation and agricultural processes has resulted in a dramatic increase in the
carbon flux into the atmosphere (Figure 3). Around 45 % of the anthropogenically released carbon
dioxide remains in the atmosphere, while the remaining fraction has been absorbed by the ocean
(~30 %) or the terrestrial biosphere (~25 %) (Goose et al., 2010). In the atmosphere, the
concentration of carbon dioxide has increased from around 280 ppm in 1800, to 384 ppm in 2007,
while it exceeded 400 pm during 2017 (Figure 4).
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1.1.5. Enhancement of the natural greenhouse effect

The increased amounts of carbon dioxide and other GHGs that humans have released into the
Earth’s atmosphere since the industrial revolution, have resulted in an enhancement of the natural
greenhouse effect. With higher concentrations of GHGs, additional heat is retained in the climate
system, causing an increase in global temperature. The enhanced greenhouse effect is also referred

to as global warming or anthropogenic climate change.

1.2. Studying climate and climate change

1.2.1. Modelling the climate system
Climate models

Climate models are of the most essential tools for studying and understanding climate and climate
change. Climate models are mathematical representations of the climate system, based on physical,
biological and chemical principles that describe each component of the system and their complex
interactions. The equations that describe the system are discretized in space and time, in order to

be solved numerically.

The main types of climate models, from lower to higher complexity are: energy balance models
(EBMs), Earth system models of intermediate complexity (EMICs) and global climate models
(GCMs). EBMs simulate the energy balance of the climate system as a whole, without accounting
for the components of the system and the Earth’s geography. EMICs include a representation of the
Earth’s geography, in a relatively coarse and simplified manner. GCMs are the most precise and
complex tool for the simulation of the climate system. GCMs have higher resolution compared to
the other climate model types and represent explicitly a wide range of atmospheric and oceanic
processes. The typical spatial resolution of the GCMs is in the order of 100 to 300 km. Moreover,
state-of-the-art GCMs include biogeochemical processes of the climate system (Earth system
models — ESMs) (Katzav and Parker, 2015).
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Regional Climate Models

Complementary to GCMs, regional climate models (RCMs) have higher resolution and allow a
more detailed representation of regional scale processes. However, RCM domain covers only a
portion of the globe (at continent or sub-continent level). RCMs run over a specified region, using

boundary conditions from GCMs.
Parameterizations in GCMs

Even for the highest resolution GCMs, there are still important processes of the climate system,
such as cloud phenomena and ocean eddies, that are related to more detailed spatial scales.
Moreover, some phenomena have not been understood in a degree that would allow their explicit
representation in a model. Consequently, parameterizations of these physical processes are
designed and implemented in the models in order to approximate certain phenomena. As there is
not a definite way to be followed for the construction of parametrizations, the latter constitute a

considerable source of uncertainty in GCMs.
1.2.2. Climate change scenarios

Changes in climate are largely related to changes in external forcing. IPCC has employed the
concept of radiative forcing to quantify the effect posed on climate by changes in parameters that
affect the equilibrium of the climate system (such as the concentration of GHGs in the atmosphere).
According to the IPCC 5" Assessment Report: “ Radiative forcing is a measure of the net change
in the energy balance of the Earth system in response to some external perturbation, with positive

radiative forcing leading to a warming and negative radiative forcing to a cooling”.

By inserting estimates of the changes in radiative forcing in climate models, “predictions”
(scientifically termed as projections) of the future climate are produced. Changes in radiative
forcing are described through different emission scenarios for GHGs, various pollutants, land use
change, etc. The latest set of scenarios includes four representative concentration pathways (RCPs),
which cover a wide range of future changes in radiative forcing (van Vuuren et al., 2011). The four
RCPs, RCP2.6, RCP4.5, RCP6, and RCP8.5, are named after the value of radiative forcing in the
year 2100 relative to pre-industrial values (+2.6, +4.5, +6.0, and +8.5 W/m?, respectively). The
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trends in radiative forcing, carbon dioxide and methane for the different RCPs are shown in Figure
5.
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Figure 5. Trends in radiative forcing (left), carbon dioxide (middle) and methane (right) (adapted from van
Vuuren et al., 2011).

1.2.3. Impact models

In order to assess climate change impacts for different sectors, climate model outputs based on an
emission scenario are used to force respective impact models, specifically designed to represent the
examined sector (e.g. water, biophysical, energy, health). For hydrological purposes, the most
important tools for examining the impacts of climate change at the global scale are two model

categories: global hydrological models (GHMs) and land surface models (LSMs).

GHMs describe the lateral transfer of water and are focused on water resources (Haddeland et al.
2011) while LSMs focus on flux exchanges mainly at the vertical direction, simulating the energy,
water and carbon exchanges between the land surface and the atmosphere (Zulkafli et al. 2013), as
they were originally developed to provide the lower boundary for climate models. GHMs aim at
analysing global water resources and operate at a daily or monthly time-step. The processes
typically described within GHMs are: evaporation, soil moisture, river flow, irrigation demands,

reservoir operation, and water extraction. On the other hand, LSMs usually employ an hourly time-
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step and represent the following processes: surface energy balance, photosynthesis and carbon

fluxes, soil temperature and moisture, and river flow.

It should be noted however that for some models, their classification in one of the two categories
cannot be definitive, and they have been reported in the literature both as GHMs and as LSMs.
According to the classification proposed by Haddeland et al. (2011), the models that solve the water
balance are considered as GHMs and the models that solve both the water and energy balance are

categorized as LSMs.
1.2.4. Biases in climate modeling

Apart from the spatial resolution issue discussed above, GCM uncertainty can stem from
uncertainties regarding the boundary and initial model conditions (Bromwich et al., 2013), and
from misrepresentations of physical atmospheric processes (Maraun, 2012). These uncertainties
result in GCM biases that express as deviations of the modelled climate variables from respective
historical observations. As a result, outcomes of hydrological climate change impact studies have
been reported to become unrealistic without a prior adjustment of climate forcing biases (Ehret et
al., 2012; Hansen et al., 2006; Harding et al., 2014; Sharma et al., 2007). To overcome this
limitation, various bias correction techniques have been developed to post-process climate model
data to statistically match observations. Bias correction methods are calibrated based on a historical
time-period for which observations are available. The adjustment is then applied to both modelled

historical period and to the period beyond the time-frame of the observations.

Bias correction procedures have mainly focused on adjusting the biases of precipitation and/or
temperature (Christensen et al., 2008; Li et al., 2010; Miao et al., 2016; Photiadou et al., 2016; Piani
et al., 2010). These variables have traditionally been prioritized for bias correction as they are
considered the most important driving variables of hydrological processes in modelling
applications -even though from a physical perspective radiation is the driving force of the
hydrological cycle. However, many state-of-the-art regional models, GHMs, and LSMs, require -
apart from precipitation and temperature- additional meteorological forcing, such as solar radiation,
air humidity, surface air pressure and wind speed (a summary of the input variables needed by
various hydrological models can be found in the Supplement of Hattermann et al. (2017). For this

reason, biases in variables like radiation, humidity and wind speed can hinder the representation of
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hydrological fluxes such as runoff, evapotranspiration (ET), snow accumulation and snowmelt by
the impact models (Haddeland et al., 2012; Hagemann et al., 2011a), indicating that bias correction

should be extended to include more input variables.

Bias correction itself also has limitations, as it is a demanding process, both in terms of
computational cost and of the involved methodological development. Moreover, the use of bias
correction is challenged by conceptual pitfalls such as the disruption of the physical consistency of
climate variables, the mass/energy balance and the omission of correction feedback mechanisms to
other climate variables (Ehret et al., 2012). For these reasons, it is worth examining whether the
effect of biases of input variables on hydrological outputs justifies the use of bias correction. Even
though this information would be key for making informed decisions on the variables that should
be bias corrected for a specific model application, few relevant studies can be found in literature.
Some insight is given by Haddeland et al. (2012), who investigates the combined effect of bias
correcting radiation, humidity and wind speed in addition to precipitation and temperature on
hydrological simulations. However, the extent to which individual forcing variable biases affect
hydrological simulations and the way that this effect varies spatially are important research

questions that remain open.
1.2.5. The modelling “chain”

The tools and methods employed for climate and climate change impacts’ studies constitute a
modelling “chain”, which is summarized in Figure 6. Scenarios of future GHG emissions are used
to drive GCMs, which produce simulations of the future climate. GCM output can be used directly
as forcing to impact models. Alternatively, the steps of downscaling with the used of RCMs and/or
correction for systematic GCM biases with bias correction can intervene to improve the
representation of observed climate by the GCMs. The impact model output is used to produce the
final climate change impacts’ assessment for the examined sector (e.g. freshwater, agriculture,

biomes, energy, health, etc.).
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Figure 6. Climate change impacts’ assessment modelling chain.

1.3. The need for climate change impact studies

With the Paris Agreement in 2016, the United Nations Framework Convention on Climate Change,
decided to pursue efforts to limit global warming to well below +2°C. The increasing trajectory of
GHG emissions up to present day however, constitute the accomplishment of the above target
increasingly difficult. Global CO2 emission rates have been following high-end climate change
pathways leading to a future global temperature that is likely to surpass the target limit of +2°C,
and reach levels of +4°C and higher at the end of the 21% century. Currently, global mean
temperature has increased by 0.85°C relative to pre-industrial and already 18 % of the moderate
daily precipitation extremes is attributed to this warming. At +2°C, the fraction of the global

warming driven precipitation extremes is projected to rise up to 40 % (Fischer and Knutti, 2015).
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By the end of the 21% century, the seasonality of river discharge is expected to get more pronounced
for one-third of the global land surface, which translates to increased high flows and decreased low
flows (Van Vliet et al., 2013). By the mid-century, the hydrological regime is projected to change
considerably for a significant part of the global land surface (Arnell and Gosling, 2013).

In this context, information on future climate conditions is of paramount importance for policy
makers at the national and international level, in order to plan actions and adaptation strategies to
climate change under higher levels of warming. International climate policy often views climate
change as levels of warming compared to pre-industrial conditions, and require information on the

impacts of different levels of warming in order to decide on the target of warming that is set.

1.4. Hydrological impacts under a changing climate

Especially for water resources, the effect of global warming raises serious concerns on future water
availability, especially under the pressure of the growing global population and the consequent
increased food production needs. It is projected that the number of people coping with significantly
reduced water availability will increase by 15 % globally due to climate change, while the
percentage of the global population living under conditions of absolute water scarcity is also

projected to increase (Schewe et al., 2014).

Moreover, under global warming, hydrological extremes —such as droughts and floods- are
expected to become more often and destructive. Drought events affect millions of people each year
and constitute one of the most disruptive natural events for the environment, the society and even
the economy (Carréo et al., 2016). Drought is an extreme hydrological event affecting land areas,
characterized by periods of below normal precipitation over a period of months to years. Drought
is defined as a dry period compared to normal conditions of a region, and in that sense is different
from aridity which is a permanent condition that characterizes a region (Dai, 2011). Droughts can
be classified into three categories (Dai, 2011; Mishra and Singh, 2011): i) Meteorological drought,
which is period of months or years with below normal precipitation, triggered by anomalies in
large-scale atmospheric circulation patterns, ii) Hydrological drought, which is related to river

discharge and water storages (e.g. lakes and reservoirs) that have fallen below their long-term mean
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level, and iii) Agricultural drought, which is a period of reduced soil moisture, caused by a
sustained lack of precipitation and/or increased evapotranspiration. A meteorological drought can
evolve into an agricultural or hydrological drought, but other factors (such as soil moisture stores,
temperature, water management, soil erosion) can enhance or moderate the progression of

meteorological drought into the other categories.

The runoff production is the component of the hydrological cycle most representative to describe
freshwater availability, as it expresses the amount of available water after the evapotranspiration
and infiltration losses and before any stream formation process intervenes. Furthermore, ensembles
of mean annual and seasonal runoff can provide information about the climate change impact on
river flows (D61l and Schmied, 2012). Studies have shown that changes in runoff are not linearly
correlated with changes in global mean temperature (Arnell and Gosling, 2013), neither are
meteorological with hydrological droughts (van Huijgevoort et al., 2013), concluding that for
climate change impact assessments it is fundamental to use an impact model to translate the

precipitation derived signal into runoff.

A substantial number of recent large-scale climate change impact studies examine the future
hydrological state analysing projections of runoff or river flow. Fung et al. (2011) compared the
projected future water availability under +2°C and +4°C of global warming, forcing the MacPDM
GHM with twenty-two GCMs from the CMIP3 experiment. Arnell & Gosling (2013) performed a
global assessment of the climate driven changes in runoff based hydrologic indicators in mid-21%
century, using multiple scenarios derived from the CMIP3 experiment. Schneider et al. (2013)
focused on the impacts of climate change for the European river flows, using data from three bias
corrected GCM scenarios. Van Vliet et al. (2013) performed a global assessment of future river
discharge and temperature under two climate change scenarios, forcing a GHM with an ensemble
of bias corrected GCM output. They found that the combination of lower low flows with increased
river water temperature can lead to water quality and ecosystem degradation in south-eastern
United States, Europe, eastern China, southern Africa and southern Australia. An investigation of
the future trends in flood risk at the global scale was performed by Dankers et al. (2014) and for
the European region by Alfieri et al. (2015). Betts et al. (2015) performed a global assessment of
the impact posed on river flows and terrestrial ecosystems by climate and land use changes

described by four RCPs. Various multi-model hydrological simulations have been also performed,
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in an attempt to quantify the climate change analysis’ uncertainty resulting from the impact model

(Hagemann et al., 2013; van Huijgevoort et al., 2013; Dankers et al., 2014).

Significant climate change induced alterations are projected for the flow regime in Europe, with
the most pronounced changes in magnitude projected for the Mediterranean region and the northern
part of the continent (Schneider et al., 2013). Moreover, considering that southern Europe is
identified as a possible hotspot where the fraction of land under drought will increase substantially
(Prudhomme et al., 2014), along with global temperature rise exceeding +2°C, concerns for future
water availability in Europe are raising. Prolonged water deficits during long-term droughts surpass
the resilience of the hydrological systems and are a significant threat to water resources security in
Europe (Parry et al., 2012). In the Euro-Mediterranean regions the severity of droughts has
increased during the past fifty years, as a consequence of greater atmospheric evaporative demand
resulting from temperature rise (Vicente-Serrano et al., 2014). Besides southern European areas,
north-western and central-eastern regions appear more drought prone than the rest of Europe
(Bonaccorso et al., 2013). Streamflow projections indicate more severe and persistent droughts in
many parts of Europe due to climate change, except for northern and north-eastern parts of the
continent. The opposite is projected for the middle and northern parts with a highly significant
signal of reduced droughts that may be reversed due to intensive water use (Forzieri et al., 2014).
Consequently European cropland affected by droughts is projected to increase seven-fold (up to
700,000 km?/year) at about +3°C of global warming (Ciscar et al., 2014) compared to the situation
of the last decades. Similarly, under the same warming level, European population affected by

droughts is expected to increase by a factor of seven, overcoming the 150 million/year.
1.5. Scope of the present dissertation

The present dissertation focuses on providing a detailed and multi-faceted assessment of the effects
of high-end climate change on hydrological resources at the regional, continental and global scales
based on a wide range of “hydrologically opposing” future climates. In pursuit of the above scope,
the following objectives have been set:

e Set up and validate a hydrological impact model, which serves as the tool for the performed hydrological
climate change impact assessment.

o Better understanding of historical hydrological regimes at the regional and global scale.
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e Understand the extent and the effect of GCM biases on historical hydrological simulations.

e Development of a methodology for the quantification of the effect of GCM biases on historical
hydrological simulations.

¢ Provide simulations of future water availability and droughts, using state-of-the-art climate model outputs,
under scenarios of high-end climate change.

e Combination of methods for the analysis of water availability and droughts at the regional, European and

global scale.

1.6. Points of innovation

The innovative points of this thesis concern the sectors of basic science, applied science, and

information technology development as follows:
Basic science:

e Coupling of a routing algorithm with the output of the hydrological model, to allow model validation.
e Development of a new methodological framework for the categorization of the effects of GCM biases.

e Combination of methods for the analysis of runoff regimes and drought events.
Applied science:

e Hydrological simulations at the global scale.

Evaluation of the hydrological model for a historical period. Assessment of the role of the forcing dataset.

e Processing and analysis of state-of-the-art GCM outputs and hydrological outputs, extraction of climatic
trends.

¢ Drought analysis under different methods, for droughts of different types and durations.

e Study of climate change impacts on mean and extreme hydrological regimes.
Information technology development:

e Development of a routing application in MATLAB.
o Development of the application for the categorization of the effects of GCM biases in MATLAB.
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e Development of applications for the analysis of NetCDF type GCM output data in MATLAB.
o Development of applications for the analysis of NetCDF type hydrological model outputs in MATLAB.

1.7. Outline

Up to this point, the theoretical background on climate and its basic mechanisms and on the science
of studying the climate and climate change have been presented. Moreover, the need for climate
change impact studies -which is the rationale of the present thesis-, has been advocated and a
literature review on hydrological climate change impacts has been presented. The points of
innovation of the thesis are also included in this first Chapter.

In the second Chapter, the various datasets used in the thesis are presented, starting from forcing
datasets (observational and GCM outputs) and continuing with runoff and discharge data along

with other datasets employed for the purposes of this thesis.

Chapter 3 includes the description of the model JULES, which was used to perform the hydrological
simulations analysed in the present thesis. Moreover, Chapter 3 includes descriptions of the
developed methodologies of runoff routing and categorizing the bias correction effects. Finally, the
methodologies employed for bias correction and for climate change impact assessment are also

included in Chapter 3.
In Chapter 4, the regions and hydrological basins selected for regional analysis are presented.

Chapter 5 includes the results of this study. Firstly, the historical model evaluation results are
presented, followed by an analysis of the effect of GCM biases on runoff at the global scale.
Afterwards, the projections of hydrological impacts under high-end climate change for the
European region and for the global scale are analysed and inter-compared.

In the final Chapter 6, the findings of the thesis are summarized, conclusions are drawn and

suggestions for future research are proposed.
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Chapter 2. Datasets

2.1. Observational forcing datasets

State-of-the-art meteorological datasets based on observations have been developed by different
institutes, in response to the needs of global impact modelling. They have been designed to provide
input for land surface water and energy balance simulations. Typically, they are provided at the
global scale, covering an extended historical period of at least thirty years and include near surface
values for various meteorological variables commonly required by the impact models (e.g.
precipitation, temperature, radiation, humidity, pressure, wind speed). Typical steps for the
derivation of observational datasets is some kind of interpolation of station and/or satellite data,
elevation adjustments of the variables and corrections of the extracted meteorological variables
against observations. The datasets are all based on weather models but employ different analysis

methodologies (e.g. for interpolation or bias correction) and observation data.

WATCH Forcing Data Methodology Applied to ERA-Interim Reanalysis (WFDEI): The WFDEI
dataset (Weedon et al., 2014) was developed within the Integrated Project Water and Global
Change (WATCH). The WFDEI dataset is based on its predecessor WFD (WATCH Forcing Data;
Weedon et al. 2010), which was derived from the ERA-40 reanalysis product (Uppala et al., 2005)
based on gridded station observations of the Climate Research Unit (CRU) and the Global
Precipitation Climatology Centre (GPCC). WFDEI data span from 1979 to 2012, with three-hourly
and daily time-steps. For detailed information on the derivation of the WFDEI dataset the reader is
referred to Weedon et al. (2014).

Princeton Global Meteorological Forcing Dataset version 2 (PGFv2): PGFv2 is an updated
version of the dataset developed by Sheffield et al. (2006), and spans from 1901 to 2012, with three-
hourly and daily time steps. PGFv2 combines global observation-based datasets from stations and
satellites with the National Centers for Environmental Prediction-National Center for Atmospheric
Research (NCEP-NCAR) reanalysis.

Global Soil Wetness Project Phase 3 (GSWP3): GSWP3 (http://hydro.iis.u-tokyo.ac.jp/ GSWP3/)
is the latest version of the GSWP dataset (Dirmeyer, 2011; Dirmeyer et al., 2006). It covers the

time-period from 1901 to 2010, with a daily time-step. GSWP3 is derived based on the 20" Century
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Reanalysis (20CR) using the NCEP atmosphere land model. The correction of the variables was
based on observational data from GPCC and CRU.

2.2. GCM datasets

Climate data from multiple GCMs of the latest Climate Model Inter-comparison Project (CMIP5,
Taylor et al., (2012)) were used in this study. CMIP5 constitutes the state-of-the-art experiment for
the climate science at the global scale. In total, three different GCM ensembles were formed: one
for the European domain and two for the global scale. For all the ensembles, the members were
selected so as to cover a wide range of climate sensitivities and thus explore a wide range of model

uncertainty.

For the European domain, regionally downscaled CMIP5 climate data from the Coordinated
Downscaling Experiment — European Domain (EURO-CORDEX, Jacob et al., (2014)) were used.
The CORDEX experiments are coordinated by the World Climate Research Programme (WCRP)
and aim at the production of downscaled climate simulations, mainly at the continent level. For the
European domain, the EURO-CORDEX climate simulations are produced at the spatial resolution
of 0.44° while for fewer models there are also simulations of higher resolution (0.11°, or ~12km).
The time period covered by the EURO-CORDEX simulations extends from 1951 to 2100. For the
purposes of this study, five EURO-CORDEX models run under the RCP8.5 emission scenario and
with a spatial resolution of 0.44° were selected (Table 1). This set of GCMs is referred as EURO-
CORDEX ensemble throughout this study.
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Table 1. List of EURO-CORDEX models used in this study and time-slices of SWL2 and SWL4 according

to the RCP8.5 emission scenario.

RCM Driving GCM Time-slices (RCP8.5)
SWL2 SWL4
1 SMHI-RCA4 GFDL-ESM2M 2040-2069  2071-2100 (+3.2 °C)
2 SMHI-RCA4 NorESM1 2036-2065 2071-2100 (+3.75 °C)
3 SMHI-RCA4 MIROCS 2037-2066 2071-2100 (+3.76 °C)
4 SMHI-RCA4 IPSL-CM5A 2018-2047 2055-2084
5 SMHI-RCA4 HadGEM2-ES 2024-2053 2060-2089

The first model ensemble for the global scale is comprised of three CMIP5 GCMs, under RCP8.5

(Table 2). The second global scale ensemble includes thirteen members (Table 3). Two high
resolution GCMs (EC-EARTH and HadGEM) in Atmospheric General Circulation Model

(AGCM) mode, are run using boundary conditions of sea surface temperature (SST) of multiple

CMIP5 GCMs. The CMIP5 members used to provide SST forcing were selected as representative

of a wide range of outcomes for future climate change, as they include models of both low and high

sensitivity and with various global patterns of precipitation change. The produced high-resolution

climate simulations span from 1971 to 2100 and beyond, have a spatial resolution of 0.5° and follow

the RCP8.5 emission scenario. This latter sets of GCMs is referred as HELI1X ensemble throughout

this study.

Table 2. List of non-downscaled CMIP5 models used in this study, and their original spatial resolution.

No GCM °Lon x °Lat
1 IPSL-CM5A-LR 3.75x1.88
2 MIROC-ESM-CHEM 2.81x2.81
3 GFDL-ESM2M 2.50x 2.00
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Table 3. List of high-resolution CMIP5 models used in this study and time-slices of SWL1.5, SWL2 and
SWL4 according to the RCP8.5 emission scenario. The driving GCM provides boundary conditions to the
high-resolution GCM.

High-resolution Driving GCM Time-slices (RCP8.5)

GCM SWL 1.5 SWL2 SWL4
ECEARTH - R1 IPSL-CM5A-LR 2010-2039  2021-2050  2059-2088
ECEARTH - R2 GFDL-ESM2M 2023-2052  2039-2068
ECEARTH - R3 HadGEM2-ES 2006-2035  2020-2049  2060-2089
ECEARTH - R4 EC-EARTH 2013-2042  2028-2057  2075-2104
ECEARTH - R5 GISS-E2-H 2016-2045  2032-2061
ECEARTH - R6 IPSL-CM5A-MR 2009-2038  2023-2052  2057-2086
ECEARTH - R7 HadCM3LC 2011-2040  2025-2054  2073-2102
HADGEM-R1 IPSL-CM5A-LR 2009-2038  2020-2049  2056-2085
HADGEM-R2 GFDL-ESM2M 2021-2050  2036-2065
HADGEM-R3 HadGEM2-ES 2004-2033  2018-2047  2056-2085
HADGEM-R6 IPSL-CM5A-MR 2008-2037  2021-2050  2054-2083
HADGEM-R8 MIROC-ESM-CHEM 2005-2034  2017-2046  2053-2082
HADGEM-R9 ACCESS1-0 2011-2040  2025-2054  2066-2095

2.3. Other datasets

2.3.1. Global gridded runoff data

The University of New Hampshire (UNH)/Global Runoff Data Centre (GRDC) composite runoff
dataset (Fekete and VVorosmarty, 2011) includes gridded monthly runoff values spanning from 1986
to 1995. This dataset is one of the products of the International Satellite Land-Surface Climatology
Project, Initiative 1l (ISLSCP Il) data collection. UNH/GRDC Composite Monthly Runoff is
derived by combining water model runoff estimates with measured river discharge. It is described
as a data assimilation application on water balance, which is done by preserving the spatial
specificity of the water balance calculations while also constraining them by the more accurate

discharge measurements.
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2.3.2. Discharge measurements

Discharge measurements from the GRDC database were used in this study. The GRDC database
(http://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge node.html) has collected data

from thousands of stations worldwide. For this work, data for twenty-one stations were obtained,
corresponding to the different study basins, listed in Table 4. Each station was selected based on
two criteria: data availability and minimum distance from the actual basin outlet. Discharge data

were obtained in daily and monthly time resolution, according to availability.

Table 4. Numbers of the GRDC station humbers used in this study.

Basins GRDC station number
Amazon 3629001
Congo 1147010
Nile 1362100
Mississippi 4127800
Parana 3265601
Lena 2903430
Yangtze 2181900
Niger 1734500
Volga 6977100
Murray 5404270
Indus 2335950
Ganges 2646200
Orange 1159100
Danube 6742900
Huang He 2180800
Saskatchewan 4213551
Rhine 6335020
Elbe 6340110
Oder 6357010
Guadiana 6116200
Kemijoki 6854700
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2.3.3. E-OBS

E-OBS is a gridded dataset of precipitation and temperature for the European land region (Haylock
et al., 2008). E-OBS is derived from station observations in Europe, after interpolation procedures.

It has a spatial resolution of 0.25° and covers the period from 1950 to 2006 with a daily time-step.
2.3.4. Total Runoff Integrating Pathways (TRIP)

TRIP (Oki and Sud, 1998) is a global gridded data set providing information on the lateral water
movement over land, following the paths of river channels. The dataset was originally derived with
a spatial resolution of 1°, but the latest version employed for this study provides information on the
0.5° grid. The TRIP component used here is the flow direction, which is an ASCI|I file that provides

for each grid-box a number that indicates the outflow direction from the grid-box.
2.3.5. ISIMIP runoff simulations

Runoff simulations produced by the JULES model are obtained from the server of the ISIMIP
project (Inter-Sectoral Impact Model Intercomparison Project, https://www.isimip.org/). The
simulations span from 1971 to 2099 and are forced by five GCMs, listed in Table 5. This set of

simulations will be referred to as ISIMIP ensemble.

Table 5. List of ISIMIP simulations used in this study and time-slices of SWL2 and SWL4 according to the
RCP8.5 emission scenario.

ISIMIP ensemble RCP8.5
GCM SWL 1.5 SWL 2 SWL 4
1 GFDL-ESM2M 2040 2055  [2113]
2  NorESM1 2035 2052 -
3 MIROC-ESM 2023 2035 2071
4 IPSL-CM5A-LR 2015 2030 2068
5 HadGEM2-ES 2027 2039 2074
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Chapter 3. Methods

3.1. The JULES land surface model

3.1.1. Overview

JULES is a physically based, fully distributed land surface model established in 2006. It is
comprised of two parts: the Met Office Surface Exchange Scheme (MOSES; Cox et al., 1998) and
the Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID; Cox,
2001) component. MOSES is an energy and water balance model which is JULES’ forerunner, and
TRIFFID is a dynamic global vegetation model (Best et al., 2011; Clark et al., 2011; Cox, 2001).
In our model application for this study, we do not examine vegetation dynamics and thus we are
focusing on the MOSES component of JULES.

The meteorological forcing data required for running JULES are: precipitation rate, air temperature,
downward shortwave and downward longwave radiation, wind-speed, air pressure and specific
humidity (Best et al., 2011). Other data required by the model are ancillary soil and land use data

as well as information on the grid setup (land mask).

JULES has a modular structure, which makes it a flexible modelling platform, as there is the
potential of replacing modules or introducing new modules within the model. The physics modules
that comprise JULES include the following themes: surface exchange of energy fluxes, snow cover,
surface hydrology, soil moisture and temperature, plant physiology, soil carbon and dynamic
vegetation (Best et al., 2011), with the latter being disabled for this application.

The plant physiology component of JULES includes the plant response to atmospheric CO..
Elevated atmospheric COz causes the plant stomata to close, which generally means that the plant
becomes more water efficient and evapotranspiration losses are reduced, leaving more water
available as runoff. This feature is of particular importance for climate change impact studies and
is usually omitted from the standard hydrological models.
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In JULES, each grid-box is represented with a number of surface types, each one represented by a
tile. JULES recognises nine surface types (Best et al., 2011), of which five are vegetation surface
types (broadleaf trees, needleleaf trees, C3 (temperate) grasses, C4 (tropical) grasses and shrubs)
and four are non-vegetated surface types (urban, inland water, bare soil and ice). A full energy
balance equation including constituents of radiation, sensible heat, latent heat, canopy heat and
ground surface heat fluxes is calculated separately for each tile and the average energy balance for
the grid-box is found by weighting the values from each tile (Pryor et al., 2012). In JULES, the
default soil configuration consists of four soil layers of thicknesses 0.1 m, 0.25 m, 0.65 m and 2.0
m. This configuration however can be altered by the user. JULES simulates the energy, water and
carbon fluxes at the vertical direction and does not account for possible exchanges and transfers

between the different grid-boxes.

The JULES science modules and their linkages, along with a typical JULES grid-box and soil layers
are shown in Figure 7. In the following sections, the different science modules will be briefly
described. The definitions for the symbols in the equations to follow are tabulated in Appendix A,

for clarity and space-saving reasons.
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Figure 7. (Left) Graphical description of the main processes and fluxes modelled by JULES (Best et al.,
2011, modified) and (Right) a typical JULES grid-box and underlying soil layers

3.1.2. Surface exchanges

The energy balance and the surface fluxes of heat and moisture are calculated in the surface
exchange module of JULES. The surface related parameters (such as albedo), are treated differently
for vegetated and non-vegetated surfaces. For non-vegetated surfaces these parameters are set by
the user, while for vegetation surface types they are calculated in the model from the structure of

the vegetation (e.g. based on leaf area index, canopy height, etc.).

The typical energy balance equations for the land surface have been extended to include additional
physical processes: thermal inertia -coupled to the underlying soil and coupling of vegetation to the
soil through radiative fluxes and heat conduction. The extended surface energy balance in the model
is described by equations (6-9):

ST,

Cosr=0-a)Sy+ely—0e() —H~LE—G (6)
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Where:
pc
Hy = —L2(T. — T,) 7)
a
E=— (Hyo(T,) - Hy) (8)
ra + T_'S- sa
Pp

G=v O-EGS(T*)4 - GEES(T51)4 + (T* - Tsl) + (1 - v)/’lsoil(T* - Tsl) (9)

Acan

The surface heat capacity C; is prescribed for non-vegetation surfaces, but for vegetation types is

calculated based on leaf and woody biomass, accordant to equation (10):

CS =CL BL+CW BW (10)

Larger heat capacity corresponds to larger thermal inertia of the surface.
3.1.3. Evaporative fluxes

Evaporation in JULES can stem from different sources, depending on the examined surface type.
Firstly, possible sources of evaporation are evapotranspiration (water extraction from the soil
through vegetation) and bare soil evaporation. Both fluxes depend on a surface resistance
representing the restrictions in water availability. For bare soil, the surface conductance g,;;, which
is the inverse of resistance, is calculated based on the moisture content of the top soil layer, based
on equation (11):

1 /6;\°
o1 (A 11
Ysoit = 700 (06) (1)

For vegetative surfaces, the resistance is determined using a photosynthesis model, which links the

stomatal conductance g, to net photosynthetic uptake A via the CO> diffusion equation (12):

A=gs(C.—C)/16 (12)
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Other sources of evaporation are freely evaporating moisture stores, for which resistance is zero.
These sources include evaporation from open water surfaces, evaporation from water held in

vegetation canopy and snow sublimation.

Water in the plant canopy is freely evaporated and can thus be depleted. In this case, possible
additional evaporation will happen through the evapotranspiration mechanism, with an according
stomatal or surface resistance. When snow is present on a surface type, it is treated as a moisture
store with zero surface resistance. Snow sublimation from the surface snow store can deplete the

snow mass, accordingly to canopy water.
3.1.4. Snow

In JULES, snow in a tile can be stored on the ground or be partitioned between snow intercepted
in the plant canopy and snow on the ground. Surface resistance for sublimation is zero for snow on

the ground but is determined according to equation (13) for snow on the canopy:

2 0.4

pi T 1
= =(—) (19
0.03 Dy (1.79 + 3 WZ) \Imax

Where:
Lnarx = 4.4L, is the snow interception capacity for a canopy with leaf area index L
r=0.5 mm is a nominal grain radius for intercepted snow

In the snow model, the thermal conductivity and density of snow are set by the user. Heat capacity
of snow is considered negligible, but the bulk thermal conductivity of the surface changes due to
the presence of snow. If the snow depth is less than half the surface soil layer thickness (4z,), the
thermal conductivity used in the surface energy balance is modified to account for the effect of
snow insulation according to equation (14):

-1

2.ds [ Asoir
A=2 -[1+—S< ot —1)] (14)
soil Azl ASTLOW

For deeper snow, the surface conductivity is set equal to snow conductivity.
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In the presence of snow on the ground, the surface skin temperature cannot exceed 0°C. The heat
flux used to melt the snow is accounted for in the surface energy balance as a residual. The snow

water that melts leaves the snowpack, and is partitioned into soil infiltration and runoff.
3.1.5. Surface hydrology

Within the surface hydrology module, rainfall rate is assumed to fall on a fraction e, of the grid-
box (typically set to a value of 0.3), to account for the size of convective storms compared to grid
size. From the precipitating water, the amount of water that reaches the soil surface depends on the
surface type. For non-vegetated surfaces, all the precipitation water reaches the land surface. For
non-vegetation surfaces, some water is intercepted in the plant canopy. The capacity of the canopy

to hold intercepted water, C,,, is defined in equation (15):

Cp = Apm + By, L (15)

Throughfall is the water that reaches the soil surface in case of vegetated surfaces, and depends on

canopy water holding capacity and precipitation rate, as show in equation (16):

c €, Cp c
_p(1_C _ -~ 16
Tr P<1 Cm)exp( PAt)+PCm (16)

Throughfall reduces the canopy water in the next computation time-step. Changes in canopy water
can also result from dewfall (downward surface moisture fluxes), which increases canopy water
and by evaporation, which decreases the water held in the canopy. With a similar mechanism, snow
cover can be increased with frost deposition (modelled as dewfall at surface temperatures below

freezing).

The water that reaches the surface infiltrates the soil at a rate K, equal to the saturated soil
conductivity modified due to the presence of vegetation. If the throughfall rate exceeds the
infiltration rate there is surplus water on the surface and surface runoff is produced. Throughfall
can be different for different surface types in a grid-box but infiltration is the same as there is not
sub-grid-box heterogeneity for soil in JULES. Therefore, calculation of runoff at the grid-box
requires the combination of the grid-box mean infiltration and the grid-box aggregate of infiltration.

The runoff calculation equation is shown in equation (17):
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C € KC, C ErCm>
— _— e — <
RF:{P Cmexp< PC )+P<1 Cm)exp( P At KAt<C
$ [ I(At+Cm—C]
P At

17

kPexp KAt >C

Where:

K = Bs Ky, where B [-] is an enhancement factor and K, [m s?] the saturated hydraulic

conductivity

The water balance for the land surface is described by equation (18):

Wo =) v;(Ty, + Sm, = RE,) 18)

J

Where:
W, is infiltration flux into the soil [kg m? s?]
3.1.6. Soil temperature

The temperatures in the different soil layers are calculated using a finite difference form of the heat
diffusion equation, accounting for the latent heat fluxes of solid-liquid phases of water. For the k™

soil layer, equations (19-21) describe the soil temperature calculations:

dT.
Co Azig —2 = Gy = Gy — Jidz (19)
Where the fluxes are calculated as:
oT.
G = Asoir a_ZS (20)
oT.
J= Cwater w' a_ZS (21)

Z is the vertical coordinate

C, is the volumetric heat capacity of the soil, including the effect of phase changes [J m= K]
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The top boundary condition for equation (19) is the surface heat flux calculated by the surface

exchange module and the lower boundary condition is a zero flux boundary.
3.1.7. Soil water fluxes

The amount of soil moisture accessible by vegetation for extraction depends on plant root density,
which is modelled with the assumption of exponential distribution with depth. The fraction of roots

in soil layer k extending from depth z,_; to z; is shown in equation (22):

e_z Zk—l/dr — e_z Zk/dT

e = 1— e_z 7/ dr (22)

Soil water contents are updated using a finite difference form of the Richards equation. The

moisture content of each layer is updated as shown in equation (23):

do
— = Wiy — W — ET, (23)

Where

W;._, and Wy, are the vertical fluxes of soil water flowing in from the layer above and out to the

layer below respectively [kg m2s?]

ET; is the evapotranspiration extracted by plant roots in the layer (and bare soil evaporation from

the top soil layer)

The vertical fluxes follow Darcy’s law in equation (24):

oV

The top boundary condition for equation (23) is the infiltration of water at the soil surface and the
lower boundary condition is drainage, which contributes to sub-surface runoff. Sub-surface runoff
is assumed to depend only on the soil moisture content, in contrast to surface runoff, which depends
on the canopy throughfall and snowmelt rate, and is a relatively slow process. The relationship

between soil water content, suction and hydraulic conductivity can be described either by the
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Brooks and Corey relationship (Brooks and Corey, 1964), or by the van Genuchten relationship
(Van Genuchten, 1980).

3.1.8. Carbon

The surface fluxes of CO> associated with photosynthesis and plant respiration are determined in
the physiology component of JULES. The photosynthesis model is based on the biogeochemistry
of plant photosynthesis at the leaf scale. These processes are then scaled up to the canopy scale
through different methods (big leaf or multi-layer approach). Photosynthesis is calculated in terms
of three potentially limiting factors: the Rubisco-limited rate, light-limited rate and rate of transport

of photosynthetic products.
3.1.9. Applications of the JULES model

JULES has been used in many recent studies as a tool for evaluating the exchange of water, energy
and carbon fluxes between the land surface and the atmosphere. Van den Hoof et al. (2013) assessed
JULES’ performance in simulating evaporative flux (and its partitions) and carbon flux in
temperate Europe. Marthews et al. (2012) implemented JULES in tropical forests of Andes-
Amazon to simulate all components of carbon balance and study possible flux variations between
sites of different altitude. Zulkafli et al. (2013) implemented JULES in a humid tropical mountain
basin of the Peruvian Andes-Amazon. MacKellar et al. (2013) evaluated JULES, implemented in a
region of Southern Africa, concerning its ability to simulate the catchment streamflow. In the study
of Bakopoulou et al. (2012), the sensitivity of the JULES outputs to the soil parameters of the model
at a point scale was estimated. Dadson et al. (2010) sought to quantify the feedback between
wetland inundation and heat and moisture fluxes in the Niger inland delta by adding an overbank
flow parameterization into JULES. Burke et al. (2013) used JULES to simulate retrospectively the
pan-arctic changes in permafrost and Dankers et al. (2011) assessed JULES’ performance in
simulating the distribution of surface permafrost in large-scale catchments. In a study by Jiménez
et al. (2013), soil moisture modelled with JULES is evaluated against satellite soil moisture

observations.

Other studies give insight into the hydrological performance of JULES specifically. Blyth et al.
(2011) extensively evaluated the JULES model for its ability to capture observed fluxes of water
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and carbon. Concerning discharge, their findings suggest that for the European region seasonality
is captured well by the model. For temperate regions (like most of central Europe), the model
exhibited a tendency towards underestimating river flows due to overestimation of
evapotranspiration. Prudhomme et al. (2011) assessed JULES’ ability in simulating past
hydrological events over Europe. In general, the model was found to capture the timing of major
drought events and periods with no large-scale droughts present were also well reproduced. The
model showed a positive drought duration bias, more profoundly present in northwest Spain and
east Germany-Czech Republic. Prudhomme et al. (2011) argue that this feature is related to
overestimation of evaporation by the model. For regions where droughts tend to last longer, JULES
exhibited a better ability of reproducing the drought events’ characteristics. Gudmundsson et al.
(2012) compared nine large-scale hydrological models, and their ensemble mean, based on their
skill in simulating the inter-annual variability of observed runoff percentiles in Europe. According
to the overall performance (accounting for all examined percentiles and evaluation metrics), JULES
was ranked third best out of the ten models, after the multi-model ensemble mean and the GWAVA
model. For low and moderately low flows, expressed as 5™ and 25" percentile respectively, JULES
is also in the top three models regarding the representation of inter-annual variability in runoff. In
the study of Gudmundsson et al. (2012b), where an ensemble of hydrological models is evaluated
for their ability to capture seasonal runoff climatology in three different hydro-climatic regime
classes in Europe, JULES exhibits a good performance, comparable to that of the best performing
multi-model ensemble mean. In other studies employing multi-model ensembles, focusing on the
whole European region (Gudmundsson and Seneviratne, 2015) or a single basin in Europe (Harding
et al., 2014; Weedon et al., 2015) JULES’ simulations also correspond with these of the other

models.
3.1.10. Technical information

JULES operates on UNIX systems. The user interface of JULES consists of several files with the
extension .nml containing Fortran namelists. The model parameters, switches of different science
options, and specification of inputs and outputs are all included in the various namelists. JULES
can be run for a number of grid-boxes from one upwards. JULES inputs and outputs are in NetCDF
format files, which is also the file format used for meteorological gridded datasets (observational

and GCM outputs). Meteorological input files have a 2D gridded structure (for the x and y
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dimension). In terms of outputs, JULES supports both 2D and 1D outputs. The 1D output is a land-
points-only grid, supplied as a vector of land points. This option limits the size of the output file,
as it does not store unnecessary information on sea points that are not being processed. For this
reason, the 1D output option was used in this study. Due to this, a post-processing step was required
in order to present outputs in a grid and thus look at the global scale patterns. Each grid-box of the
1D output was placed on its respective position on the 2D grid, based on the latitude and longitude
information of each grid-box, which is included in the model output. The post-processing step to
re-grid the 1D JULES output was performed with a relative algorithm, developed and run with the
MATLAB software.

3.2. Development of a routing algorithm for historical model evaluation

JULES simulates the energy, water and carbon fluxes at the vertical direction for each grid-box and
does not account for possible transfers between the different grid-boxes. For hydrological
applications, this means that the model calculates the runoff produced in each grid-box at each time
step. In physical systems, the produced runoff moves and accumulates through the river network
and is converted to river discharge. The lack of such a mechanism in the model does not limit its
applicability for hydrological climate change impact studies, for which runoff production can serve
as a good indicator of freshwater availability. However, it hinders the evaluation of the model, as
the model output cannot be compared to measured discharge. The transformation of runoff
production to discharge requires a river routing scheme. Until recently (February 2015) the standard
version of the JULES model did not account for a routing mechanism. To overcome this model

limitation, a routing algorithm was developed and applied to the model’s runoff output.
3.2.1. The routing algorithm

The developed routing algorithm is conceptual, based on the concept of time of concentration

(TOC). It is a semi-distributed model, which routes the water with a source-to-sink approach.

TOC is the time that runoff needs to travel from its origin grid-box (source) to the outlet of a basin.
TOC is defined as in equation (25):
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TOC = L)V (25)

Where L [m] is the flow length, and V [m/s] is the flow velocity.

The concept of the routing algorithm is to find the time (day) that runoff from each grid-box of a
basin contributes to discharge at the outlet. Then, discharge at the basin outlet can be calculated as
the aggregation of runoff from the contributing grid-boxes, delayed by the adequate number of days
depending on the TOC of each grid-box. As each grid-box has a different distance from the outlet,
and thus a different flow length, the TOC is calculated for each contributing grid-box separately.
Flow velocity V is treated as a calibration parameter of the model, which is the same for all the
grid-boxes of a basin but different for each basin.

The algorithm is described by equation (26):

n
Q= g (26)
i=1

Where Q, [m®/s] is discharge at the basin outlet at time t, n is the number of grid-boxes contributing
to the specific basin, g; [m®/s] is discharge contribution of grid-box i, produced at the time-step t-
TOCi. g, is calculated from the runoff output [kg m s], by dividing with the density of water and
multiplying with the grid-box area.

As the output of the model has a daily time-step, the algorithm also operates daily, resulting in daily

time series of discharge at the outlet of a study basin.

In order to implement the algorithm we need to identify the grid-boxes that contribute to a specific
basin, as well as their distance from the outlet (flow length). This is done with a GIS application
and the TRIP river routing dataset. In ArcGIS, the Hydrology toolbox is used to set the location of
the GRDC gauging station of a study basin as the basin pour point, define the basin contributing

grid-boxes and calculate their flow length.

The routing methodology is applied to historical runoff simulations for 16 basins, for which
observations of daily discharge were available. The implementation of the developed routing

algorithm allows the comparison of JULES simulated discharge with discharge measurements,
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essentially providing a way to assess the model performance for a historical period at the basin

scale.
3.2.2. Evaluation metrics

For the evaluation of JULES’ hydrological performance for the historical period, three widely used
evaluation metrics were employed: Nash-Sutcliffe efficiency (NSE), Percent bias (PBIAS) and the
coefficient of determination (R?). The formulas for the calculation of NSE and PBIAS are given in
equations (27) and (28):

Z(Qsim - Qobs)2 l
NSE 1 Z(Qobs - Qmean)2 ( )
PBIAS = IZ(QsimZ_QQobbs) * 100] % (28)

where Q;, is simulated discharge, Q,, is observed discharge and Q,,,.4n iS the mean of observed
discharge data. Discharge observations were obtained from the Global Runoff Data Centre (GRDC)

database for 16 large-scale basins.

Calibration of flow velocity, V, was done using the NSE index and daily data. For the historical
model evaluation, the metrics are calculated based on monthly data, based on the period 1981 to
2010. The time-periods missing from the observed discharge time-series were neglected from the

calculation of the evaluation metrics.

3.3. Bias correction methods

3.3.1. Multi-segment Statistical Bias Correction (MSBC)

The MSBC method (Grillakis et al., 2013) follows the principles of quantile mapping correction
techniques and was originally designed and tested for GCM precipitation adjustment. According to
the method, the Cumulative Distribution Function (CDF) space is split into discrete segments and
then the individual quantile mapping correction is applied on each segment, achieving better fit of

the parametric equations on the data and thus better correction, especially on the CDF edges. The
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optimal number of segments is estimated by the Schwarz Bayesian information criterion to balance
between complexity and performance. MSCB is used for precipitation correction while a
modification of the methodology is used for bias adjustment of the rest of the meteorological
variables required as input by JULES. For the other variables, the methodology is modified to use
linear functions instead of the gamma that were used in the original methodology. This change
allows for the facilitation of negative variable values that the gamma functions cannot simulate.
Hence, the methodology becomes more universal and adequate to use in different variable types
and distributions. An additional methodological change is performed to the edge segments
correction, which are explicitly corrected using only the difference between the historical period
model data and the observations. This provides rigidity to the correction, avoiding unrealistic
temperature values at the edges of the corrected data CDF. This choice costs to the methodology
the persistence of a small portion of the bias in the corrected data.

The EURO-CORDEX data (Table 1) were corrected with the MSBC method against the WFDEI
dataset. Additionally, they were corrected against the E-OBS dataset, in order to assess the effect
that the use of different observational dataset during bias correction of GCM outputs can have for
hydrological simulations.

The three-member ensemble of CMIP5 models (Table 2) was corrected with the MSBC method
against the WFDEI dataset.

3.3.2. Trend preserving bias correction

The trend preserving bias correction method (Hempel et al., 2013) is designed to preserve the
absolute changes in monthly temperature, and relative changes in monthly values of precipitation.

The methodology was applied for the correction of all the variables required as input by JULES.

The high-resolution GCM data of the HELIX ensemble (Table 3) were corrected with the trend
preserving method, against the PGFv2 dataset.
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3.4. Assessment of the effect of GCM biases on runoff simulations

3.4.1. Experiment description

In order to examine the effect of each forcing variable’s bias on runoff we designed and
implemented an experiment comprised of two parts (bias assessment and partial correction bias
assessment) and nine sets of JULES’ runs in total. A graphical description of the performed
experiment is shown in Figure 8. Climate data from three GCMs and the WFDEI dataset are used
as JULES’ forcing. The sets of runs forced with GCM data, include three model runs —one per
GCM. Then the analysis progresses using the ensemble mean. The time span of this analysis is the
historical period 1981-2010. This is also the time span of the period used for bias correction of the
GCM output.
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Figure 8. Graphical description of the experiment performed for the assessment of the effect of GCM biases
on runoff simulations.

The first part of the experiment is the bias assessment. In this first part of the experiment, the aim
is to assess initial and remaining biases in the forcing data and in simulated runoff. Initial bias refers
to the difference between raw GCM variables and the respective WFDEI variables. Remaining bias
is the bias in the forcing variables after the bias correction, i.e. the difference between bias corrected
GCM variables and the respective WFDEI variables. Referring to runoff, “initial” and “remaining”
biases are defined as the difference between runoff simulations forced with raw and bias corrected

forcing respectively from simulations forced with the WFDEI dataset. This definition is employed
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to shorten and simplify the expressions used in the text of this thesis (i.e. “initial bias in runoff”
instead of “the difference between runoff forced with raw GCM data and WFDEI data”). In this
part of the experiment, three sets of JULES’ runs were conducted:

i. forced with WFDEI (WFDEI);
i1.  forced with uncorrected climate data (raw); and

iii.  forced with bias corrected climate data (BC).

The second part of the experiment is the partial correction bias assessment. For this, six more sets
of JULES’ runs were performed. In each of these runs, one of the six forcing variables
(precipitation, temperature, radiation, humidity, surface pressure and wind speed) is used in its raw
form while the rest of the input forcing is bias corrected. The partial correction assessment runs are
symbolized as NobcV (NOt Bias Corrected variable V), where V is one of the six forcing variables:
precipitation (P), temperature (T), radiation (R), specific humidity (H), surface pressure (Ps) and
wind (W). It has to be noted here that -longwave (RI) and shortwave (Rs) were examined together,
hence in respective NobcR run, both shortwave and longwave radiation were forced in uncorrected
form. Partial correction assessment is composed as a tool to quantify the individual effect of each

forcing variable on runoff but is not designed to suggest and assess run formats.

The simulated runoff of each partially corrected input is compared to the respective simulation in
which all input variables are bias corrected (denoted BC). This comparison allows us to assess the
“loss” of the performance of simulations when a variable is neglected from the bias correction
procedure. It must be noted however that the “loss of performance” concept bears the assumption

that the BC simulation is closer to the WFDEI simulation comparing to a partially corrected set.
3.4.2. A new framework for the categorization of the effect of GCM biases

A new framework for the classification of the effects of forcing variables’ biases on modelled runoff
is developed and implemented. The classification employs the comparison of the bias in each
forcing variable (AV) and the corresponding relative effect in simulated runoff (ARF), discretizing
four different categories (Figure 9). To facilitate the comparison among the different forcing
variables, AV and ARF are expressed as percentages. More specifically, AV and ARF are defined

as follows.
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AV is the difference between the raw and the bias corrected variable value, divided by the bias

corrected variable value. AV is estimated by equation (29).

AV=(Raw variable - BC variable)/(BC variable) *100% (29)

As an exception, for temperature AV refers to the absolute difference between raw and bias

corrected temperature (in K).

ARF expresses the effect of a variable’s bias on runoff and is calculated from the difference between
runoff forced with all bias corrected variables except for the examined variable VV (NobcV) and
runoff forced with all bias corrected variables (BC), divided by the runoff of all bias corrected
variables (BC). ARF is estimated by equation (30).

ARF=(RF from NobcV - RF from BC)/(RF from BC) *100% (30)

Sensitivity of runoff to changes in forcing variables (S) is the fraction of runoff change over the
forcing variable change and serves as a measure to assess the relative magnitude of ARF compared
to AV. When ARF is sensitive to AV, relatively smaller changes in the variable should cause
relatively larger changes in runoff and vice versa. Sensitivity is in general dimensionless, but for

temperature has units of K. S is estimated by equation (31):

S=ARF/AV (31)

In total, there are six sets of AVs and six sets of ARFs, one for each examined variable and
experiment respectively, and six sets of sensitivities (S). The absolute values of AV, ARF and S
denoted as |AV/|, |JARF| and |S| are used to avoid dealing with the sign of the changes and rather
focus on their magnitude.

As shown in Figure 9, the effect of each variable’s bias (|AV|) on runoff (JARF]) is separated into
four different categories according to two rules. The first rule is the characterization of |ARF| among
all the experiments (except AT) as “low” or “high” relatively to its median value, shaping the
ordinate y=median(JARF|). Median(|ARF]|) is derived considering the |ARF| values of all land grid-
boxes and for all the experiments. The second rule is the characterization of sensitivity |S| as high
or low relatively to its median value. The latter forms a bisectrix s=median(|S|). Median(|S]) is,

accordingly to median(|ARF|), derived from the |S| values of all grid-boxes and for all the
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experiments-apart from temperature. In the case of temperature, median (|S|) is explicitly
recalculated from the values of all the land grid-boxes of this specific experiment. These two rules
form the four categories of Figure 9. Combinations of the two rules result to four different effect

categories (ECs) presented in decreasing order of the effect of a variable’s bias on runoff:

i.  High change and high sensitivity (ECI);
i1.  High change and low sensitivity (ECII);
i, Low change and high sensitivity (ECIII); and

iv.  Low change and low sensitivity (ECIV).
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Figure 9. Categorization of the effect of changes in forcing variables (V) on runoff (RF). The four areas
correspond to four defined Effect Categories. The x axis corresponds to relative changes in forcing variables
and the y axis to relative changes in runoff. For all changes, the absolute value is considered.
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3.5. Climate change impact assessment
3.5.1. Indicators of hydrological impact
Water availability

A number of hydrological indicators and drought indices are calculated, in order to perform a multi-
faceted analysis of climate change impacts on hydrological resources. Firstly, analysis of mean
precipitation gives us a metric of the total hydrological input in the examined system. Precipitation
is acquired from the input meteorological data. Secondly, freshwater availability is a metric of net
water that remains in the system after evaporation and infiltration losses. Freshwater availability is
modelled using the runoff output of JULES. Average runoff (RFmean) is a good and widely used
indicator of the mean hydrological state of a region. 10" percentile runoff (RFlow) is considered as
a representative indicator of the low flow regime (Prudhomme et al., 2011). Consistent low flows
(relative to the mean state) are connected with the formation of hydrological drought conditions.
Thus the assessment of the changes in low flows could reveal trends towards more intense or/and
often extreme lows in the future hydrological cycle.

Drought climatology

A number of methods are employed for the study of droughts. The first method is used to examine
changes in drought climatology and is based on the threshold level method. The threshold level
method is a widely used tool for drought identification applications (Fleig et al., 2006; VVrochidou
et al., 2013). According to this method, drought conditions are characterized as the periods during
which discharge falls below a pre-defined threshold level. In our application, the threshold is
varying daily and is established as in Prudhomme et al. (2011): for each Julian day k, the 10%
percentile of a 31-day window discharge centering at day K is derived, from data of all the years of
the baseline period. The daily modelled time-series for the whole period simulated (from the start
of the baseline period to the end of the projected period) is compared to the daily varying drought
limit, and the number of days that fall below the threshold is summed up on an annual basis. The
drought threshold is derived from the flows of the baseline period and is applied to both historical
and projected flows, in order to capture the climate change induced changes in drought climatology.
This method will be referred to as DVTM (Daily Varying Threshold Method).
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Short- and long-term droughts

The standardized precipitation index (SPI, Mckee et al., 1993) is a widely used index for the
identification of drought events’ onset, intensity and duration. The calculation of the SPI is based
on time series of precipitation. First the time series are fitted to a gamma distribution and then the
cumulative probability of precipitation values is estimated. Finally, the cumulative probability is
transformed to a standard normal deviate with zero mean and unit standard deviation (Mckee et al.,
1993). Negative values of SPI indicate the existence of drought conditions. According to the SPI
value, drought is grouped into one of four arbitrarily defined intensity tiers, ranging from “mild” to
“extreme” (Mckee et al., 1993). This work was focused on intense drought conditions, thus only
the “severe drought” (-2<SPI<-1.5) and “extreme drought” (SPI<-2) categories were considered.
Following the SP1 concept, Shukla & Wood (2008) developed the standardized runoff index, which
characterizes droughts by assessing modelled runoff time series. SRI has the same intensity tiers as
SPI. While SPI is an indicator of meteorological drought, SRI incorporates hydrologic processes
that determine seasonal lags in the influence of climate on streamflow and can serve as an indicator

of hydrological drought.

For the assessment of climate change impact on droughts we used the relative versions of SPI and
SRI (Dubrovsky et al., 2009). Relative indices use input data of two time periods. The first period
serves as the reference period and is used for model calibration. The calibrated model is then applied
to data of the second time period. This allows us to assess the drought conditions of the future
compared to the benchmark drought conditions of the baseline period. The relative drought indices
were calculated using two periods of temporal aggregation (6 and 48 months), in order to capture
droughts of different duration. The 6-months temporal scale was selected for the examination of
short-term meteorological drought associated to agricultural drought and changes to the seasonal
variations. The 48-months temporal scale was employed for the description of long term droughts
and effects on high capacity reservoirs related to drought indices at long time scales (Lorenzo-
Lacruz et al., 2010).

3.5.2. Identifying changes in the hydrological regime

In order to identify the changes posed on the hydrological regime by the changing climate, analysis

of hydrologic indicators is performed based on time-slices and time-series.
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Time-slices

Climate change impacts are examined as differences between the temporal mean states of a future
(projected) time-slice and the baseline period. The time-slices are comprised of thirty years. The
baseline (or historical) period time-slice spans from 1976 to 2005 for the EURO-CORDEX analysis
and from 1981 to 2010 for the high-resolution GCMs. The definition for determining the projected
time-slices is to take a slice of thirty years, centered on the year where a Specific Warming Level
(SWL) —for example 2°C- is exceeded. It is important to mention that the SWLs are defined with
respect to the pre-industrial period while the baseline period corresponds to the recent past.

Throughout this work, three different SWLs are considered: +1.5°C, +2°C and +4°C. The projected
time-slices corresponding to the examined SWLs are given in Table 1 and Table 3 respectively for
the EURO-CORDEX and the HELIX ensembles of GCM data. For some models, the +4 SWL is
achieved outside the temporal extend of the GCM input. In these cases, the last thirty-year period
available is considered instead (2071-2100). For reasons of consistency in terminology the time-

slice of all models describing the greater SWL achieved will be referred to as +4 SWL time-slice.

For the assessment of the impact of +1.5, +2 or +4°C warming relative to pre-industrial, the
projected time-slices are compared to the baseline period in terms of both absolute and percent
change. This is done for each ensemble member individually in order to check the variability of the

projected changes and also for the ensemble mean.

The use of the SWL concept constitutes the results independent of the timing that the warming
occurs. Although by definition of the SWL, the models reach the same level of warming in their
time-slices, the different model sensitivity reflects on the evolution of temperature in the time-slice,
as more sensitive models are expected to have higher rates of changes in the period before and after

a specific SWL is achieved compared to the less sensitive models.
Time-series

For basin aggregates of hydrologic and drought indicators, the trend of the whole length of
simulated time-series (e.g. 1981-2100) was studied. The trend of the time-series was investigated
employing a linear regression analysis to estimate the sign and the average rate of the trend. The
significance of the trend was tested at the 95 % confidence interval via a Student-t test.
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3.6. Summary of methodological framework

The methodological framework used in this study aims to provide a multi-faceted assessment of
the effects of high-end climate change on the global hydrological regime. A graphical description

of methodological framework of the present thesis can be found in Figure 10.

The first part is the historical model evaluation, which is implemented by forcing JULES with
different observational datasets. Afterwards, the hydrological output is compared to a historical
runoff dataset (runoff evaluation) and discharge measurements (discharge evaluation), after the

newly developed routing algorithm is applied to the runoff output of the model.

The second part of the analysis is designed to assess the impact of GCM biases on hydrological
simulations. To this end, JULES is forced with a combination of raw and bias corrected historical
GCM data and with observational data that serve as a baseline simulation. Runoff output of the
different runs participate in a newly developed methodological framework for the categorization of
the effect of GCM biases.

The final part of the methodology presented in this dissertation concerns the assessment of
hydrological climate change impacts. JULES is forced with historical and projected GCM data, and
the assessment of hydrological impacts of climate change is done by comparing the changes of the
projected simulations compared to the respective historical component. Hydrological impacts are
described as effects on water availability and drought conditions, and are assessed at both the
European and global scales.

Presentation of the results of this study follows the same structure as Figure 10.
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Figure 10. Schematic summary of methodological framework.
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Chapter 4. Study regions

The results are firstly analysed at the whole spatial extend studied, which is the European region
for the EURO-CORDEX experiments and the global scale for the rest of the runs. Focus on the
European region is also given with the global high-resolution GCM data runs of the HELIX
ensemble. At the global and continental scale, the spatial variation of the hydrologic indicators and
their chaanges under climate change are examined, through presentation of gridded data. Moreover,
spatial aggregations of hydrologic indicators are calculated and regional focus is given at

hydrological basins and climatic regions around the globe.
4.1. Hydrological basins

The focus hydrological basins (shown in Figure 11), are large scale basins selected as representative
of different hydro-climatic regimes, of different geographical regions and according to data

availability.
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ns:‘s:;r River name
y 1 AMAZONAS
2 CONGO
3 NILE
4 MISSISSIPPI
5 PARANA
; 6 LENA
7 YANGTZE
8 NIGER
9 VOLGA
10 MURRAY
1 INDUS
12 GANGES
N - 13 ORANGE
) 14 DANUBE
15 HUANG HE (YELLOW RIVER)
16 SASKATCHEWAN
17 RHINE
18 ELBE
19 ODER
20 GUADIANA
21 KEMIJOKI

Figure 11. The 21 hydrological study basins. The basins are numbered in descending order according to their size.

52



Study regions

4.2. Global sub-regions

Regional focus is also given at 24 regions of the globe. The examined regions were selected from
the 26 regions presented in Giorgi and Bi (2005) (in our study Alaska and Greenland are excluded
from the analysis), derived to express the climatic variation of the regions. The selected regions are

shown in Figure 12. The abbreviations of the regions’ names can be found in Table 6.

60° N NEU NEE NAS
WNA [cNA| ENA MED CAS TIB
30° N} EAS
SAH
CAM .
WAF EAF
o — SEA
AMZ [EQF|
SQF
NAU
-30° 5 CSA SAF
SAU
SSA
I I ) I )
180° 120° W 60° W 0° 60° E 120° E 180°

Figure 12. Outlines of study focus regions. With red colour are denoted the regions selected for more detailed
analysis.
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Table 6. 24 study focus regions, selected from Giorgi and Bi (2005).

Region name Abbreviation
North Europe NEU
Mediterranean Basin MED
Northeast Europe NEE
North Asia NAS
Central Asia CAS
Tibet TIB
Eastern Asia EAS
Southeast Asia SEA
Northern Australia NAU
Southern Australia SAU
Sahara SAH
Western Africa WAF
Eastern Africa EAF
East Equatorial Africa EQF
South Equatorial Africa SQF
Southern Africa SAF
Western North America WNA
Central North America CNA
Eastern North America ENA
Central America CAM
Amazon AMZ
Central South America CSA
Southern South America SSA
South Asia SAS
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4.3. European sub-regions

For the European continent, focus is given at eight sub-regions, shown in Figure 13.

Short Full
name name
BI British
Isles
Tberian
IF Peninsula
FR France

ME Mid-Europe

SC Scandinavia

AL Alps

MD  Mediterranean

Eastern

EA Europe

Figure 13. Studied European sub-regions (Christensen and Christensen, 2007).
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Chapter 5. Results

5.1. Model evaluation for the historical period

Model evaluation for the historical period allows the assessment of the performance of the model
on the representation of mean, low and seasonal hydrological states. The first part of model
evaluation is done by comparing the un-routed JULES runoff output with a Global Gridded Runoff
Dataset (described in Section 2.3.1). This comparison is done both for gridded data at the global
scale and for basin aggregates of the same data. The second part of model evaluation is done at the
basin scale, by comparing GRDC measured discharge to the JULES simulated discharge, after the
post-processing routing algorithm has been applied. In summary, the first part of model evaluation
is based on runoff and aims at the evaluation of mean and low hydrological states while the second
part is based on discharge, and aims at the evaluation of monthly and seasonal discharge profiles at

the basin scale.

In parallel with comparing the model to observations, the sensitivity of the model to the forcing
dataset is assessed, as the model has been forced by three different observational datasets (WFDEI,
PGFv2 and GSWP3).

5.1.1. Runoff based evaluation

Figure 14 shows the differences in mean monthly runoff production between the JULES
simulations and the observed runoff dataset. The biggest differences appear in the west and central
equatorial African region and in South America, around the Amazon. Concerning the rest of the
land surface, runoff underestimations of up to 25 mm/month are found at the northern regions while
overestimations of the same magnitude are found in regions of central North America, Europe, east
Asia and Oceania. According to Figure 15, which illustrates the differences in the lower 10
percentile of runoff between simulations and observations, low runoff is underestimated by the
model in west and south equatorial Africa, east South America and Indonesia. Regions of low
runoff overestimation are northern Europe and west North America, together with west South

America.
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For a closer insight on the differences between the simulations and the observed runoff dataset as
well as on the effect of the forcing dataset on the simulations, the gridded data were spatially
aggregated and compared at the basin scale. The basin aggregated mean runoff values of
simulations and observations are shown in Figure 16, along with a scatterplot of simulations versus
observations. Table 7 contains information on the mean runoff value of the observed dataset and
simulations aggregated at the basin scale and additionally includes the range of the simulations.
Respective information for low runoff can be found in Table 9. Table 8 tabulates the absolute and
relative difference between simulations and observations of mean runoff aggregated at the basin

scale, and Table 10 provides the respective differences for low runoff.

In general terms the deviations between observations and simulations are small and their
correlation is strong (R-squared is 0.91, 0.93 and 0.85 for the WFDEI, PGFv2 and GSWP3 datasets
respectively). The larger runoff underestimation is reported for Congo and overestimation for
Amazon and Volga. However, this concerns the absolute difference between observed and
modelled values. Expressing these deviations as relative (percent) differences (see Table 8) it is
found that Amazon is one of the basins with the smaller deviations from observed runoff (5.7 % to
17.0 %). Other basins with small relative differences between simulations and observations are
Mississippi, Danube and Rhine. The largest runoff underestimation in relative terms is found for
Guadiana (-71.6 % to -80.2 %) followed by Niger and Congo.

The forcing dataset used has a considerable impact on mean runoff simulations. The range of the
three simulations expressed as percent of the average (see Table 7) varies between 10.1% (for
Amazon) to 83.5% (for Kemijoki). For some basins with large range of simulations (Lena, Oder
and Kemijoki) it is observed that a single forcing dataset leads to very small values of percent
difference from runoff observations while the other datasets result in large deviations from the
observed values (Table 8).

The comparison and correlation between observed and simulated values of 10" percentile runoff
are shown in Figure 17. Low runoff simulations are well correlated with observations, although
their correlation is slightly weakened compared to the one documented for mean runoff (R-squared
values are 0.86, 0.87 and 0.77 respectively for the WFDEI, PGFv2 and GSWP3 datasets).

Concerning the differences of simulations from observations, they appear much smaller in absolute
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terms but are significantly more pronounced in relative terms. The range of the simulations is also
augmented for low runoff (21.9 % to 287.4 %).
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Figure 14. Mean runoff [mm/month] of the period 1986-1995, a) Observed runoff and b)-d) Difference
between JULES simulated runoff for three forcing datasets and observed runoff.
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a. Observed

R
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Figure 15. 10" percentile runoff [mm/month] of the period 1986-1995, a) Observed runoff and b)-d)

Difference between JULES simulated runoff for three forcing datasets and observed runoff.
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Figure 16. Basin aggregated mean runoff. Comparison between observed runoff and JULES simulated

runoff for three forcing datasets.
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Figure 17. Basin aggregated 10" percentile
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Table 7. Basin aggregated values of mean runoff for observations and JULES simulations. The range of
simulations (difference between higher and lower simulated value) and the range as percent of average value
(range divided with the mean of the three simulations).

Mean runoff [mm/month]

Range of
simulations as
Range of percent of

Basin OBS WFDEI PGFv2 GSWP3 simulations average value
AMAZON 77.73 82.15 88.28 90.96 8.81 10.11%
CONGO 50.17 29.09  36.29 26.00 10.29 33.79%
MISSISSIPPI 11.23 11.80 14.63 13.79 2.83 21.12%
LENA 5.90 6.11 5.35 10.04 4.68 65.34%
NIGER 7.73 3.13 4.18 3.91 1.05 28.06%
VOLGA 6.56 950 14.44 18.10 8.59 61.33%
MURRAY 2.02 1.27 1.42 0.82 0.61 52.06%
GANGES 21.65 3283 2237 31.50 10.46 36.18%
ORANGE 0.30 0.18 0.30 0.15 0.15 69.04%
DANUBE 18.82 1753  16.52 14.93 2.60 15.95%
SASKATCHEWAN  3.33 1.93 3.14 2.10 1.21 50.50%
RHINE 46.73 4422 4134 46.23 4.89 11.12%
ELBE 7.28 1141  10.50 14.93 4.43 36.06%
ODER 3.29 3.43 5.18 5.70 2.27 47.58%
GUADIANA 3.28 0.93 0.71 0.65 0.28 36.78%
KEMIJOKI 21.66 21.26 14.25 33.44 19.19 83.50%
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Table 8. Difference between basin aggregated mean runoff and observed mean runoff. The difference is
expressed both as an absolute and as a relative difference.

Difference from observations

[Simulation — Observation] Percent difference from
Mean Runoff [mm/month] observations

Basin WFDEI PGFv2 GSWP3 WFDEI PGFv2 GSWP3
AMAZON 4.42 10.55 13.23 569%  1357%  17.02%
CONGO -21.08 -13.88 2417 -42.02% -27.67% -48.18%
MISSISSIPPI 0.56 3.40 2.56 502%  30.23%  22.79%
LENA 0.21 -0.54 414  3.61% -9.20%  70.23%
NIGER -4.60 -3.55 -3.83 -59.52% -45.96%  -49.48%
VOLGA 2.94 7.88 1153 4477% 119.99% 175.71%
MURRAY -0.76 -0.60 -1.21  -37.40%  -29.62%  -59.69%
GANGES 11.17 0.72 9.85 51.61% 3.32%  45.48%
ORANGE -0.12 -0.01 -0.15 -39.27% -1.70%  -49.84%
DANUBE -1.29 -2.30 -3.89 -6.86% -12.24% -20.69%
SASKATCHEWAN -1.40 -0.19 -1.22  -41.98% -5.70% -36.78%
RHINE -2.50 -5.39 -0.50 -5.35% -11.53% -1.07%
ELBE 4.13 3.22 7.65 56.76%  44.27% 105.11%
ODER 0.14 1.89 240  4.14%  57.50%  73.09%
GUADIANA -2.35 -2.57 -2.63 -71.61% -78.40% -80.17%
KEMIJOKI -0.40 -7.41 11.79 -1.84% -3420%  54.43%

64



Results

Table 9. Basin aggregated values of 10" percentile runoff (low runoff) for observations and JULES
simulations. The range of simulations (difference between higher and lower simulated value) and the range
as percent of average value (range divided with the mean of the three simulations).

Low runoff [mm/month]

Range of
simulations as
Range of percent of
Basin OBS WFDEI PGFv2 GSWP3 simulations average value
AMAZON 23.09 1255 1571 13.07 3.16 22.94%
CONGO 7.82 2.27 3.18 0.81 2.37 113.72%
MISSISSIPPI 0.68 0.69 1.25 1.10 0.56 55.32%
LENA 0.14 0.00 0.00 0.01 0.01 287.41%
NIGER 0.24 0.03 0.02 0.02 0.01 33.78%
VOLGA 0.18 1.99 3.29 2.46 1.30 50.43%
MURRAY 0.04 0.04 0.01 0.01 0.03 159.08%
GANGES 0.60 0.64 0.23 0.52 0.41 89.58%
ORANGE 0.01 0.01 0.00 0.00 0.00 171.11%
DANUBE 2.69 3.98 3.72 3.12 0.87 24.07%
SASKATCHEWAN  0.10 0.06 0.27 0.20 0.21 116.29%
RHINE 7.50 7.56 9.47 9.22 1.91 21.86%
ELBE 0.21 1.65 2.27 1.76 0.62 32.55%
ODER 0.08 0.40 0.84 0.65 0.44 69.80%
GUADIANA 0.00 0.00 0.00 0.00 0.00 53.07%
KEMIJOKI 0.92 1.13 0.27 2.40 2.13 168.06%
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Table 10. Difference between basin aggregated 10" percentile runoff (low runoff) and observed 10"
percentile runoff. The difference is expressed both as an absolute and as a relative difference.

Low Runoff Difference from observations Percent difference from observations
[Simulation — Observation]
[mm/month]

Basin WEFDEI PGFv2 GSWP3 WEFDEI PGFv2 GSWP3
AMAZON -10.54 -7.38 -10.02 -45.65% -31.97% -43.41%
CONGO -5.55 -4.64 -7.01 -70.97% -59.38% -89.69%
MISSISSIPPI 0.01 0.57 0.42 1.31% 83.88% 62.54%
LENA -0.14 -0.14 -0.13 -99.77%  -100.00% -94.80%
NIGER -0.21 -0.22 -0.21 -88.89% -92.15% -90.00%
VOLGA 1.81 3.11 2.28 1021.69%  1755.15% 1286.41%
MURRAY 0.00 -0.03 -0.03 -8.35% -79.36% -78.37%
GANGES 0.04 -0.38 -0.08 6.17% -62.44% -13.97%
ORANGE 0.00 -0.01 0.00 -23.40% -91.85% -64.74%
DANUBE 1.29 1.03 0.43 48.09% 38.21% 15.83%
SASKATCHEWAN -0.04 0.17 0.10 -37.57% 164.43% 94.25%
RHINE 0.06 1.97 1.72 0.83% 26.33% 22.87%
ELBE 1.44 2.06 1.55 678.28% 968.73% 729.81%
ODER 0.32 0.76 0.57 392.87% 933.54% 697.52%
GUADIANA 0.00 0.00 0.00 -97.86% -96.48% -97.86%
KEMIJOKI 0.20 -0.65 1.48 22.14% -70.59% 159.91%

5.1.2. Discharge based evaluation

Annual cycles of discharge, derived from the 1981-2010 period, for 16 examined basins are shown
in Figure 18. The evaluation metrics calculated from monthly discharge are tabulated in Table 11
and a visual comparison of the difference in the achieved evaluation metrics due to the dataset used

to force the discharge simulation is presented in Figure 19.

Regarding the model’s performance, there are significant variations between the studied basins.
The hydrological regime is well captured (NSE>0.5) regardless the forcing dataset used for
Amazon, Mississippi, Lena, Ganges and Danube. For other basins the model’s performance is
highly dependent on the choice of the forcing dataset. For example, NSE for Kemijoki is 0.8 for
the WFDEI forcing but negative for the other two datasets. Respectively, the PGFv2 dataset results
in an NSE value of 0.4 for the Orange river basin while the other two forcing datasets give negative
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NSE values. PBIAS values indicate that discharge is underestimated by the model for most basins,
a behavior that has been identified in many LSMs and GHMs (Gudmundsson et al., 2012). However
for few basins (Niger and Murray) discharge is highly overestimated (PBIAS>100 %).

Considerable variations in PBIAS are documented for the different forcing datasets. The PBIAS
range spans from around 10 % to 110 %, with a mean value of 40 %. Regarding the R? metric, good
correlations (R?>0.5) are found for most basins. The value of R? for some basins is highly affected
by the choice of the forcing dataset. An example is Rhine, for which GSWP3 gives very good
correlation (R? = 0.9) in contrast to PGFv2 which results in a poor correlation (R? < 0.1).

Comparison of model performance with previous studies

The seasonality cycles derived in the present study resemble those found by Blyth et al. (2011),
while evaluating JULES’ runoff for seven large scale basins, characteristics of different hydro-
climatic regimes. The R? values for mean and low runoff, agree with the values calculated by
Gudmundsson et al. (2012) on an evaluation of JULES (together with other models) over Europe.
Moreover, our results compare well with the results presented in a multi-model evaluation project
performed by Hattermann et al. (2016) for a number of basins worldwide, in the context of the
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). Finally, in terms of evaluation
metrics, our results indicate a better model performance compared to other published studies that
evaluate the hydrological performance of JULES (MacKellar et al., 2013; Zulkafli et al., 2013).

It should be noted however that it is unrealistic for a global LSM to achieve top performance around
the world (Hattermann et al., 2017), as, due to its global nature, some fixes in some regions could

result in deteriorations in performance in other parts of the land surface.

The shown persistent departure from the mean climatology of discharge could include three types
of errors. The first is the error stemming from the insufficient description of the runoff processes
by the land surface model and from the routing algorithm (Blyth et al., 2011b). The second type of
error is a result of errors in the forcing datasets (either observational or GCM output) with regards
to depicting the real climatic drivers (Elsner et al., 2014; Mizukami et al., 2014). A third possible
error comes from the comparison of naturalized discharge of the simulations with measured

discharge due to influences like abstractions and dams regulating the natural river flow (Miiller
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Schmied et al., 2014). An extra error component, which is not considered here, could result from

the uncertainty in discharge measurements (Coxon et al., 2015).
Discussion of limitations of the modelling approach

Here we discuss the limitations of the modelling approach employed in this study. The spatial
resolution used for the model runs follows the resolution of the observational datasets used as input
in the model. However, a resolution of 0.5° is quite coarse to capture some of the hydrological
processes that occur at the basin level. This especially applies to basins with highly variable
elevation and basins of mountainous regions. Moreover, some natural processes with great
significance for the hydrological regime of specific mountainous basins, like the glacier melting

contribution to runoff in the case of the Indus river basin, cannot be described by JULES.

68



Results

300000 1. Amazon 90000 2. Congo
80000
250000
& > 70000
2 200000 2 60000
© s 50000
% 150000 o
= £ 40000
Ny _C
S 100000 S 30000
o 50000 O 20000
10000
0 0
c o 5 5 >»>c 35 »ag 2 9 c o9 5 5 >¢c 35 @ a5 2z @
See=<323°>32F0 328 T P=<2 322038
3. Mississippi
30000 PP 70000 4. Lena
= =
@ £ 50000
[32) [3]
E 200 E  Loooo
& 15000 S
ki E 30000
S 10000 (S
z £ 20000
5000 10000
0 0
c o 5 5 >»>c 35 a5 2z 9 c o 5 5 >c 35 2 a g 2z 9
Se=<23°>20 28 Se=<23°>230 2848
12000 5. Niger 35000 6. Volga
10000 30000
w =
& £ 25000
[52) [52]
E e E 20000
& o000 &
8 § 15000
S 4000 (S
£ £ 10000
2000 5000
0 0
cC o 5 5 >c 35 2ag z 9 cC o 5 5 > 3 9 ag z @
T gs2E&E35280328 T P22 E3528028
7. Murra
800 Y 50000
700 45000
= 600 w 0000
& & 35000
E 500 E 30000
& a0 & 25000
@ ©
5 oo
a 200 a
e 2 o000
100 5000
0 0
c 2 5 5 >c 35 9ag 2z 9 c 2 g 5 > 35 @2 aB z @
5f228333838:34 5822233236238
—OBS —WATCH+WFDEI —PGFv2 —GSWP3

Figure 18. Observed (GRDC) and simulated discharge seasonality for 16 major hydrological study basins.
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Table 11. Evaluation metrics for monthly discharge, for 16 major hydrological study basins.
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Figure 19. Comparison of monthly derived evaluation indices between discharge simulation forced with three different observational datasets, for 16 major

hydrological study basins.
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5.2. The effect of GCM biases on runoff

Here we investigate the effect of the biases in GCM climate variables on the historical runoff output
of the large scale LSM JULES. To this end, we firstly quantify the improvements in the
representation of historical modelled runoff when bias corrected variables are used as forcing.
Secondly, we examine the individual effect that the bias of each climate variable can have on runoff
simulations. This way we can provide an assessment of the variables beyond precipitation and
temperature that may be considered as “priority” variables for bias correction, due to their possible

pronounced effect on hydrological simulations.
5.2.1. Long-term annual biases in forcing variables at the global scale

Global maps of the initial and remaining biases of the forcing variables are shown in Figure 20.
Respective information on the seasonal biases is presented in Figure B 1 and Figure B 2 of
Appendix B. In general terms the remaining annual biases are smaller than the initial ones by one
to two orders of magnitude. For precipitation (Figure 20a), the largest initial wet biases are observed
for regions with high mountain ranges (the Andes in South America, the Alaska Range and the
Rocky Mountains in North America and the Himalayas in Asia) and for the tropical African and
Indonesian regions. Only a very small percentage (0.75%) of the land surface has small biases (-
0.01 to 0.01 mm/day) while the largest biases (>5 mm/day or <-5 mm/day) occupy 31.18 % of the
land surface. The remaining biases in precipitation are small (up to 0.01 mm/day in absolute terms,
for 80.32 % of the land surface) and located in the tropics. The initial biases in temperature are cold
biases for 57.82 % of the land surface while warm biases (mainly found in the Alaskan, Greenland,
north and central Asia regions as well as in the Mediterranean and the Andes) occupy 42.12 % of
the land surface (Figure 20b). Initial biases greater than 2 K in absolute terms cover approximately
one third of the land surface (34.74 %). After bias adjustment, the remaining temperature bias is
less than 0.1 K for the vast majority of the land surface (97.27 %).

The initial biases of longwave and shortwave radiation (Figure 20c and Figure 20d respectively)
exhibit similar spatial variations but have different signs. Shortwave radiation shows a greater
extent of large biases (>50 W/m? in absolute terms) compared to longwave radiation (8.16% as
opposed to 2.95% of the land surface). Initial biases in specific humidity are greater than 10 kg/kg
(1g/kQg), in absolute terms, for one quarter of the land surface (23.65%) (Figure 20e). The largest
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biases in surface pressure (>50 or <-50 HPa) occupy 10.01% of the land surface and are found in
the areas where high mountain ranges are located (Rocky Mountains, Andes, Himalayas) (Figure
20f). The remaining bias in surface pressure is less than 0.1 HPa (in absolute terms) for most of the
land surface (96.50 %). For more than half of the land surface (55.79 %) wind’s initial biases are
larger than 0.5 m/s or smaller than -0.5 m/s (Figure 20g). The remaining biases of the wind variable

range between -0.01 and 0.01 m/s for the majority of the land surface (87.71 %).

Generally, the initial GCM biases in precipitation and temperature are more pronounced over high
mountainous regions and the tropics. Recent studies argue towards a dependency between biases
and altitude. According to the study of Haslinger et al. (2013), both temperature and precipitation
biases of a GCM tested over the Alpine Region, show increasing trends with height. Regarding the
tropics, various studies show increased GCM biases in these regions compared to model
performance in other climate zones (Koutroulis et al., 2016; Randall et al., 2007; Solman et al.,
2013). The initial surface pressure biases are also linked to altitude, as surface pressure heavily
depends on elevation. Initial biases in surface pressure have an elevation-similar pattern and could
be a result of the different spatial resolution of the elevation model in the GCMs and WFDEI. The
WFDEI dataset resolution is 0.5 degrees while the original GCM spatial resolution is considerably
lower (around 2.5 degrees). GCM surface pressure is simulated taking into account a relatively low
resolution elevation model. Although GCM surface pressure is interpolated to the WFDEI

resolution, this does not correct the elevation induced error in the GCM simulations.

The remaining biases in precipitation at the tropical regions were also identified and discussed
extensively by Grillakis et al. (2013) and are related to the error in the CDF approximation during
bias correction. For the rest of the variables, the remaining bias although not actually zero is very
close to zero (well below the smallest positive and above the smallest negative rank in the legend,
e.g. below -0.1 K and below 0.1 K for temperature). The color scale in Figure 20 was selected with
the intention of showing the remaining biases, but this does not mean that their values are
accountable. They are rather trace errors occurring due to truncation numerical errors during the
bias correction process. Hence the remaining biases (except for precipitation) could not be
attributed to a specific mechanism.
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calculated between the long-term annual averages (ANN) of the 1981-2010 period.
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5.2.2. Regional and seasonal biases in forcing variables

Figure 21 illustrates the initial biases of the GCM ensemble, spatially aggregated over 24 regions
of the globe. To account for possible seasonality variations, the biases are calculated for the annual
mean (ANN) and for the December-January-February (DJF) and June-July-August (JJA) means.
The remaining biases are not shown because their regionally aggregated values are negligible and
would be indistinguishable on the Figure. Additionally, an insight on the behavior of each ensemble
member, in comparison to the ensemble mean and WFDEI is given by Table B 1 of Appendix B.
Table B 1 provides the values of raw input variables for each ensemble member, the ensemble mean

value and the respective WFDEI value, averaged for the 24 study regions.

Precipitation biases are less pronounced in Europe (NEU, MED, NEE) and in central and north
Asian regions (CAS, NAS). The wettest precipitation biases are encountered in the equatorial and
Southern Africa (EQF, SQF and SAF) and concern DJF precipitation (Figure 21). The driest biases
are found for the CAM, AMZ and SAS regions, for JJA precipitation. Temperature displays cold
biases in most regions. A notable exception is the warm bias in DJF temperature in the NAS region,
which is the most pronounced temperature bias found. Generally the DJF temperature biases are
the largest, followed by ANN, while the JJA season has the smallest temperature biases.

The two radiation components, long-wave (RI) and short-wave (Rs) radiation, show an inverse
behavior in their biases (Figure 21). That is to say, in regions where Rl has negative biases Rs
exhibits positive biases and vice versa. According to Demory et al. (2014), overestimation of
shortwave radiation is a common issue amongst the GCMs. Negative biases are dominant for Rl in
contrast to the Rs variable, which mostly shows positive biases. Specific humidity has negative
biases over the north part of the African continent (SAH, WAF, EAF, EQF), central and south
America (CAM, AMZ, CSA) and south Asia (SAS). Positive humidity biases are identified in the
south part of Africa (SQF and SAF) and north America (WNA, CNA and ENA).

Surface pressure shows almost exclusively positive biases (Figure 21). The regions that distinguish
for the largest biases are MED, SEA, SAH, SAF, CAM, CSA and SSA. The most dominant
negative wind speed bias is found in NAU. Most of the African continent (SAH, WAF, EAF, EQF,
SQF) and of South America (AMZ, CSA) also have negative biases in wind. The largest positive

76



Results

biases are encountered in the southern part of South America (SSA) for the JJA season and for the
DJF season in regions of North America (WNA, CAM), Europe (MED) and Asia (CAS, TIB, SEA).
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Figure 21. Initial biases (Raw-WFDEI) of the GCM ensemble forcing variables, spatially averaged for 24
Giorgi regions. Biases are calculated between long-term annual averages (ANN), December-January-
February (DJF) and June-July-August (JJA) averages of the period 1981-2010.
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5.2.3. Long-term biases in runoff at the global scale

Figure 22 shows the initial and remaining biases in runoff, derived from ANN, DJF and JJA long
term means. As with the biases in the input forcing variables, the remaining bias in runoff is one to
two orders of magnitude smaller than the initial bias. Hence, the use of bias corrected data led to
an improved representation of runoff by the model, compared to the baseline of the WFDEI run.
Accordingly, the studies of Teutschbein & Seibert (2012) and Rojas et al. (2011) found that
hydrological simulations are substantially improved with the use of bias corrected forcing.

Regarding the raw GCM run, the largest runoff underestimation biases (<-5 mm/day) are
encountered in central-north America, the central-east part of South America and East Asia. The
most pronounced runoff overestimation biases are found in the west part of North and South
America, in equatorial, south Africa, northern Europe, the Tibetan region and Indonesia. Initial
runoff biases are larger than 1 mm/day in absolute terms for 16.26 %, 14.85 % and 20.18 % of the
land surface respectively for ANN, DJF and JJA. The differences between the seasonal means (DJF,
JJA) and the annual mean (ANN) are in general subtle. Yet, the increases in runoff overestimation
biases in DJF in south equatorial Africa and in JJA in the Tibetan plateau are worth noting. Large
initial biases (>5 mm/day in absolute terms) in seasonal means occupy a greater percentage of the
land surface compared to annual mean (0.70 % for ANN, compared to 1.25 % and 1.97 % for DJF
and JJA respectively).

The remaining biases in runoff range from -0.1 to 0.1 mm/day for the majority of the land surface
(95.19 %, 87.40 % and 80.30 % for ANN, DJF and JJA respectively). Negligible biases (smaller
than 0.01 mm/day in absolute terms) are found for more than one third of the land surface
(specifically for 38.06 % of the land area for ANN, 37.60 % for DJF and 34.42% for JJA). The
(negative) remaining bias in ANN runoff is more pronounced in the west Amazonian region. This
probably corresponds to the remaining bias in precipitation identified for the Amazon region
(Figure 20). In addition to the significant reduction of the biases in runoff forced with bias corrected
data, it can be observed that the remaining biases have switched signs compared to the initial biases.
This means that in regions where the initial bias in runoff is positive (negative), thus the raw GCM
forced runoff is larger (smaller) than runoff forced with WFDEI, the use of bias corrected forcing

results in runoff slightly lower (higher) than WFDEI runoff. A respective behavior was not
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observed in the initial and remaining biases of the most impacting forcing variables (P and T) but
it was, to an extent, present for other variables (RI, Rs and H). Thus, the “overcorrection”
manifested for bias corrected runoff compared to WFDEI runoff cannot be attributed to remaining
biases in precipitation and temperature. Instead, it could plausibly be associated with the compound

effect of the remaining biases in part of (or in all other) forcing variables.
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Figure 22. Runoff [mm/day], from WFDEI data (left column). Initial (Raw-WFDEI) and remaining (BC-
WEFDEI) biases in runoff are shown in middle and right columns respectively. Results are shown for long-
term annual averages (ANN), December-January-February (DJF) and June-July-August (JJA) averages of
the 1981-2010 period.
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5.2.4. Effect of each forcing variable’s bias on runoff

The effect that the bias of each forcing variable can have on runoff is investigated here, by
comparing runoff from the bias corrected run to the partial correction assessment runs. The results
are shown in Figure 23, for ANN, DJF and JJA averages.

First, we discuss the runoff differences calculated from the ANN period. Precipitation and
temperature are the only two variables that cause runoff differences larger than 5 mm/day (in
absolute terms) when neglected from bias correction. However, these differences regard a very
small percentage of the land surface: 0.61 % for precipitation and only 0.02 % for temperature.
Moreover, precipitation bias causes changes in runoff greater than 1 mm/day (in absolute terms)
for 14.28 % of the land area. Such changes for the other variables occupy a significantly smaller
fraction of the land area (ranging from 1.21 % for temperature to 0.05 % for wind). Based on the
above it can be stated that precipitation is the variable that mostly affects runoff response.
Precipitation bias causes both wet and dry biases in different regions of the land surface, with a
pattern that closely resembles the effect of the initial GCMs’ biases on runoff (Figure 22). A similar
pattern between precipitation and runoff biases was also observed by Teng et al. (2015), who noted
that precipitation errors are magnified in modelled runoff. Temperature biases result in runoff
overestimation for around 60 % of the land surface (e.g. over west- and east-North America, the
Amazon region, equatorial Africa, northern Europe and parts of Asia) and runoff underestimation
for around 40 % (example regions: parts of central-south America and of central Asia). Temperature
biases correspond with small changes in runoff (up to 0.01 mm/day in absolute terms) over about
one third of the land area. Excepting the radiation components from the bias correction procedure
produces negative runoff changes for the majority of the land surface (67.60 %), while for around
80 % of the land surface the differences in runoff range between -0.1 and 0.1 mm/day. The bias in
the specific humidity variable corresponds to runoff overestimations for 64 % of the land area. The
areas of runoff overestimation are mainly located at the higher latitudes (northern part of north
America, Europe, north Asia). For 36.43 % of the land surface, changes in runoff due to specific
humidity biases span between 0.1 and 0.5 in absolute terms. Surface pressure and wind are the
variables that show the smaller effect on the hydrological output, as their exclusion from bias
correction corresponds to small changes in runoff (less than 0.1 mm/day in absolute terms) for the

vast majority of the land surface (around 94 % and 92 % of the land surface respectively for surface
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pressure and wind speed). The most pronounced differences in runoff due to surface pressure biases
are negative and are encountered over the high mountain ranges’ regions of South America and

Asia (Andes and Himalayas respectively).

The patterns of runoff changes due to the biases of the forcing variables derived from annual (ANN)
and seasonal (DJF, JJA) averages show only subtle variations. In general the above analysis on the
ANN runoff differences applies also to the seasonal values, with small variations on the land

fractions that show a specific response to forcing biases.

From this analysis it can be deduced that apart from the main hydrological cycle drivers
(precipitation and temperature), radiation and specific humidity can also pose a substantial effect
on runoff, especially for specific regions. These findings will be further investigated and discussed
in the following sections. Other studies also advocate towards the considerable effect that biases in
radiation (Mizukami et al., 2014) and humidity (Masaki et al., 2015) can have on hydrological

fluxes.
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Figure 23. (top row) Runoff [mm/day], from bias corrected GCM ensemble forcing (BC), and (second to
last row) runoff differences between the bias corrected run (BC) and the partially corrected runs (NobcV,
where V is one of the forcing variables P, T, R, H, Ps, W). Results are shown for long-term annual averages
(ANN), December-January-February (DJF) and June-July-August (JJA) averages of the 1981-2010 period.
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5.2.5. Runoff sensitivities to forcing variables

Sensitivity of runoff changes to the biases of the forcing variables is examined by exploring the
relationship between the input forcing biases (AV) and the corresponding changes in runoff (ARF).
The regional variation of this relationship is also investigated. Figure 24 shows scatterplots of ARF
versus AV for each examined variable, for 10 selected regions. The dots in each scatterplot
correspond to the land grid-boxes of each region. The presented regions are selected as
representative of different parts of the land surface, as the number of the regions shown in the main
text had to be reduced for clarity of the results. Scatterplots of the 24 examined regions can be
found in Appendix B (Figure B 3). The median values of AV, ARF and S of the land grid-boxes of

each region, for the 24 examined regions, are shown in Table 12.
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Figure 24. Scatterplots of relative changes in forcing variable (AV, x axis) and corresponding relative
changes in runoff (ARF, y axis), for all the forcing variables and for selected regions. In each panel, each
dot represents the ARF/ AV relationship of each land grid-box in the examined region.
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Table 12. Relative change (%) in forcing variable (AV), corresponding relative change (%) in runoff (ARF)
and sensitivities (S= ARF/ AV) per region, for each variable. For each region, the median of the AV, ARF
and S values of all land grid -boxes is shown.

Variables P T R H Ps w
GLOBAL AV 14.46 -0.57 1.73 0.91 -0.02 -5.86
ARF 2.49 3.38 -3.71 2.04 -0.04 0.21
S 1.76 -0.05 -2.12 0.81 1.18 -0.06
NEU AV 14.6 -0.46 1.86 4.1 -0.05 -9.79
ARF 27.97 22.68 -5.25 25.49 -0.02 3.62
S 2.10 -0.31 -3.31 5.24 2.90 -0.36
MED AV -14.39 -0.15 0.55 -1.34 0.41 14.94
ARF -58.56 1.55 -1.51 4.07 0.44 -0.47
S 2.02 -0.04 -2.52 0.77 1.08 -0.08
NEE AV 4.89 -1.44 2.44 3.32 01 -11.77
ARF 5.75 47.11 -5.39 32.73 0.26 5.98
S 2.28 -0.32 -2.64 9.58 3.31 -0.50
NAS AV 26.05 0.67 3.53 8.05 -0.06 -1.08
ARF 59.36 11.8 -10.08 63.98 0.02 4.06
S 2.35 -0.07 -2.95 7.58 2.43 -0.29
CAS AV 6.44 -0.03 1.37 -13.00 -0.41 8.09
ARF -9.94 1.31 -0.44 -0.19 -0.36 -1.29
S 2.49 -0.05 -3.50 0.31 0.88 -0.09
TIB AV 128.47 -2.94 -1.14 7.69 -0.12 12.59
ARF 1017.17 5.38 0.97 0.81 0.02 0.06
S 7.27 -0.02 -2.07 0.18 0.40 0.00
EAS AV 19.25 -0.94 2.51 2.92 -0.2 -3.55
ARF 4.36 5.54 -2.96 3.66 -0.05 0.76
S 1.70 -0.06 -1.53 0.82 1.07 -0.09
SEA AV 19.76 -0.87 1.11 0.89 0.23 34.57
ARF 43.92 5.97 -3.2 1.66 0.32 -1.04
S 2.07 -0.08 -2.68 1.16 1.54 -0.05
NAU AV 41.15 -0.04 1.43 7.71 0.1  -28.46
ARF -5.13 1.02 -1.16 1.38 0.09 -0.44
S 0.37 -0.03 -0.75 0.31 0.56 0.00
SAU AV 18.92 -0.28 0.85 2 -0.13 -11.2
ARF -9.29 1.07 -0.11 14 0.06 -0.49
S 0.82 -0.05 -0.88 0.67 1.00 -0.03
SAH AV 54.11 -2.73 -0.47 -8.96 0.22  -13.59
ARF -2.59 -0.68 0.64 -0.32 0 0.08
S 0.94 0.00 -0.25 0.04 0.04 -0.01
WAF AV 26.74 -1.51 -0.88 -5.79 -0.1  -15.13
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ARF 58.24 5.61 -1.57 -0.71 -0.13 0.09
S 2.78 -0.04 -2.61 0.22 1.28 -0.04
EAF AV 23.22 -1.68 -0.06 -5.76 -0.25  -12.11
ARF 42.13 7.24 -1.51 -3.74 -0.28 0.09
S 2.12 -0.05 -1.95 0.48 0.95 0.00
EQF AV 5.64 -1.55 -0.25 -2.15 -0.2  -10.09
ARF -0.14 6.21 0.92 -1.29 0 0.07
S 2.26 -0.05 -1.73 0.49 0.92 -0.01
SQF AV 36.45 -0.9 0.9 0.89 -0.03 -15.6
ARF -73.18  -82.26 -85.07 -84.68 -84.2  -84.18
S 2.94 -0.07 -1.91 0.59 1.10 -0.04
SAF AV 89.8 -141 -0.38 14.28 0.68 -4.74
ARF 85.47 55 0.54 5.33 0.42 -0.02
S 1.35 -0.04 -1.66 0.45 0.72 -0.05
WNA AV 65.92 -1.75 -1.23 13.55 0.14 10.23
ARF 112.66 17.94 -0.48 9.85 0.16 -2.5
S 2.12 -0.13 -2.01 0.77 0.98 -0.17
CNA AV -12.84 0.11 1.68 2.29 -0.08  -14.79
ARF -50.86 1.53 -2.06 6.57 -0.05 1.96
S 2.54 -0.07 -1.47 1.08 1.09 -0.13
ENA AV 4.08 0.49 2.71 134 0.1 5.47
ARF -0.38 -0.38 -5.18 39.72 0.13 0.86
S 1.69 -0.07 -1.92 3.17 1.54 -0.11
CAM AV 11.43 -0.98 -0.4 -6.16 0.15 25.27
ARF -7.73 3.65 -0.1 -2.55 0.14 -0.52
S 1.32 -0.04 -1.58 0.49 0.77 -0.02
AMZ AV -26.58 -0.35 4.06 -13.19 -0.19 -4
ARF -40.52 4.88 -9.34 -6.01 -0.23 0.038
S 1.42 -0.05 -2.37 0.53 1.44 -0.04
CSA AV -32.8 0.7 3.05 -11.53 -0.23 -1.5
ARF -63.21 -1.49 -3.22 -5.75 -0.13 0.38
S 1.59 -0.04 -1.16 0.53 0.83 -0.04
SSA AV 72.07 -1.22 -1.77 5.07 0.08 9.91
ARF 84.32 10.06 -0.47 12.05 0.34 -2.44
S 1.53 -0.09 -0.50 1.48 1.29 -0.04
SAS AV -9.19 -1.08 1.39 -13.11 -0.05 -6.81
ARF -26.35 52 -4.07 -2.53 -0.09 0.51
S 1.62 -0.05 -2.46 0.29 0.90 -0.05

*AV for temperature is the absolute change in temperature.
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The correlation between the six AVs and respective ARFs differs substantially between the
examined regions. Generally, the correlations show a non-uniform behavior, identified by the
highly scattered data clouds. This implies a high spatial variability of runoff sensitivity to the

examined variables.

For precipitation, the ARF over AP relationship exhibits a nonlinear behavior, indicating that the
relative change is runoff is not proportional to precipitation bias, but also depends on the magnitude
of precipitation bias. Renner et al. (2012) also identified nonlinearities in the relationship between
relative changes in streamflow and changes in precipitation and argued that nonlinear behavior is a
result of the combined effects of water and energy balances. Temperature biases have an inversely
proportional and highly nonlinear relationship with changes in runoff. The ARF over AT
relationship is also variant for different regions. For example, the scatterplots for NEU and WNA
indicate that small temperature biases may correspond with large changes in runoff. In contrast, the
scatterplot for CAM indicates that larger temperature biases correspond with smaller changes in
runoff compared to the other regions. Radiation biases are small but can correspond with high
changes in runoff for some regions (WNA, SAS, WAF, AMZ). For specific humidity it can be
observed that small positive biases correspond to high changes in runoff for some region (NEU,
MED, WNA and ENA). A different behavior is observed for CAM, SAS, AMZ and CSA where
the data cloud is more scattered on the x axis (meaning larger biases in specific humidity) and less
scattered on the y axis (i.e. changes in runoff are smaller). Surface pressure has smaller biases
compared to the other forcing variables and its effect on runoff also appears reduced. Wind has a
wide range of both positive and negative biases which, however, do not seem to affect runoff

accordingly.

The variation of the ARF over AV relationships across the different regions can be attributed to a
number of factors. First, it depends on the magnitude and signal of the biases in the forcing
variables. As previously shown, these can have significant spatial variations (Figure 20). For
example, according to the median values of relative changes in Table 12, some regions are
dominated by negative precipitation biases (MED, SAS, AMZ, CSA) and others by positive biases
(NEU, WNA, ENA, CAM, WAF, SAU). Second, it reflects the climatology of each region. The
same biases would affect differently regions with different runoff (and evapotranspiration) fractions

of each region. The precipitation partitioning to runoff and evapotranspiration is a climate
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characteristic and is controlled by either water or energy limitations depending on the region.
Additionally, we should consider that although we assess the effect of long-term annual biases on
long-term annual runoff, the results are still depended on the seasonal cycles of the variables and/or
runoff, especially if the seasonality of precipitation in the region is strong. For example, the same
annual bias in temperature would translate differently to runoff changes in a region with
precipitation evenly dispersed throughout the year and in another region where most of annual
precipitation happens during the summer months. Finally, as this is a model-based experiment, we
should consider whether high sensitivities of some variables for specific regions are a result of over-
sensitivity of the model. Vano et al. (2012) documented considerable differences in the spatial

distribution of sensitivities to precipitation modelled by five LSMs.
5.2.6. Spatial distribution of bias effect categories

Figure 25 shows global maps of bias effect categories (ECs) for each forcing variable, derived
according to the methodology described in Section 3.4.2. The land area fraction corresponding to
each EC is tabulated in Table 13.

Precipitation is the variable whose biases have the largest effect on runoff, with the vast majority
of the land surface (92 %) corresponding to the high change categories ECI (67.80 %) and ECII
(24.20 %). Radiation has the second largest land fraction in ECI but temperature has the second
largest land fraction in the high change categories (ECI and ECII). Radiation also has the largest
land fraction in the high sensitivity categories (ECI and ECIII). This is possibly a result of
combining shortwave and longwave radiation for the calculation of the radiation biases. For specific
humidity, the most affected areas (ECI) show a significant spatial coherence and are clustered in
the higher latitudes of the globe. Surface pressure biases belong to ECI for around one tenth of the
land surface. The highly affected areas mainly correspond to regions with high mountain ranges.
For wind, the majority of the land surface corresponds to ECIV. Still, around one quarter of the
land surface belongs to the high change categories (ECI and ECII).
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Figure 25. Global maps of bias Effect Categories (ECs) for each forcing variable.
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Table 13. Percent of land area (%) under each of the four Effect Categories (ECs).

Variables | I 1 v
ECs

P 67.80 24.20 1.82 6.18
T 45.15 22.03 2.46 30.35
R 48.74 1.30 26.16 23.80
H 40.80 13.76 5.58 39.86
Ps 12.17 1.83 38.48 47.52
W 6.09 19.19 2.35 72.37

5.2.7. Discussion of runoff sensitivities

Here we compare our findings to the respective literature to assess the realism of JULES’
sensitivity. We use the median sensitivity value of the grid-boxes of each region (Table 12) as the
representative sensitivity S for each region. Moreover, we discuss issues of possible model over-
sensitivity in particular regions and the caveats of this study.

Sensitivity of runoff to precipitation

Most studies have examined the sensitivity (also reported as elasticity) of runoff (or discharge) to
precipitation. A number of studies have examined sensitivity to precipitation for regions or basins
in the United States. Values of runoff sensitivity (S) to precipitation between 1.5 and 2.5 were
reported by Sankarasubramanian and Vogel (2003) for the US (WNA, CNA and ENA). Fu et al.
(2007) reported values of 1.5 to 1.67 for the Spokane River basin (located in WNA). Vano et al.
(2012) found that S to precipitation ranged from 2.2 to 3.3 for different LSMs for the Colorado
River basin (also located in WNA). For the Mississippi River basin (mainly located in CNA),
Renner et al. (2012) found that S of streamflow to precipitation is 2.38 and 2.55 using two different
methods for sensitivity estimation. For another basin located in CNA, Brikowski (2015) reported
runoff S to precipitation to be 2.64. For the US region, the S values found in this study compare
very well with the literature values. Runoff S to precipitation is 2.12 for WNA, 2.54 for CNA and
1.69 for ENA. Many studies report S to precipitation for regions or basins of China. Reported values

of runoff S to precipitation in the Yellow River basin (located in EAS) are 1.4 to 1.69 (Fu et al.,
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2007), 1.6 to 3.9 for 89 catchments of the EAS region (Yang and Yang, 2011), 1.71 and 1.74
(estimates of two different methods) for the headwaters of the Yellow River (Renner et al., 2012).
Again, the value found in our study is in good agreement with the literature (S to precipitation for
EAS is 1.70).

Sensitivity of runoff to temperature and other variables

A number of studies have examined runoff sensitivity to temperature changes. Vano et al. (2012)
reported S to temperature values ranging from -2 to -9 C between 5 LSMs for the Colorado River
basin (WNA) and Brikowski (2015) reported a value of -0.41 C* for S to temperature in a basin in
CNA. Our values for these regions are substantially lower (-0.13 K for WNA and -0.07 K™ for
CNA). This divergence could be attributed to two factors. First, to an extent it could be connected
to possible non-sensitivities of our model to temperature changes for these regions. Second, the
differences could arise from the inclusion (or not) of the physical link between temperature and
other variables in the analysis. Vano et al. (2012) use different LSMs to calculate sensitivities by
perturbing daily temperature maxima and minima. These changes also affect the downward
longwave radiation and humidity, which are then used by the evapotranspiration routines of the
LSMs. In our case, the change in temperature does not interact with radiation and humidity, as those
are read as input variables by the model. When temperature is allowed to interact with humidity,
increased temperature will increase the water vapour capacity of the air, and more water will be
evaporated. The lack of this physical link in our simulations could, to an extent, explain the
decreased sensitivity of runoff to temperature changes compared to Vano et al. (2012). In the
analysis of Brikowski (2015), sensitivities of runoff to precipitation and temperature are derived
from respective historical data. Thus, sensitivity to temperature will also include the changes caused
by the interaction of temperature with other meteorological variables. In a study with a different
approach, Yang and Yang (2011) separated the effect of precipitation, temperature, net radiation,
relative humidity and wind speed on runoff and calculated sensitivities for each variable. They
reported values of S to temperature ranging from -0.11 to -0.02 C* between 89 catchments of the
EAS region. For the same region, we have computed S to temperature as -0.06 K, which is
included into the literature stated range. Moreover, our S values for radiation, humidity and wind
speed are also in good agreement with Yang and Yang (2011). According to Yang and Yang (2011),
S to radiation ranges from -1.9 to -0.3, S to humidity from 0.2 to 1.9 and S to wind speed from -0.8
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to -0.1. The range refers to values computed for 89 catchments in the EAS region. Our respective
values for this region are -1.53 for radiation, 0.82 for humidity and -0.09 for wind speed. This
supports the argument that the large deviations of the sensitivity to temperature between our study
and the studies of Vano et al. (2012) and Brikowski (2015), result from interactions in the forcing

variables included in the referenced studies.
Sensitivity of runoff to radiation

The reported S to radiation values are higher in absolute terms than S to precipitation values for
many of the examined regions and also globally (Table 12). However, according to the findings
presented in section 5.2.4, precipitation and temperature correspond to higher changes in runoff
compared to radiation. That is because high S to radiation results from relatively low AV values,
rather than from relatively high ARF values (compared e.qg. to precipitation). Small AV for radiation
IS possibly the consequence of combining shortwave and longwave radiation to calculate the total

bias in radiation, as the two radiation components have inverse signs for most regions (Figure 21).
Sensitivity of runoff to specific humidity at high-latitude regions

Although S to humidity for EAS compares well with literature, unexpectedly high values of S to
humidity are found for other regions (5.24 for NEU, 9.58 for NEE, 7.58 for NAS). We performed
an extra analysis to investigate this issue and the basic findings are included in Figure 26 and
Appendix B. Figure 26 examines the differences between latitudinal mean of raw and bias corrected
specific humidity and the resulting runoff. Very high sensitivity of runoff to H is observed for a
specific area, the zone between 70 N and 40 N latitudes. In that zone, a difference of about 10 % in
H corresponds to an increase of 40 % to 60 % in runoff. Investigation of the different fluxes related
to runoff production in the model revealed two mechanisms that explain this behavior. First, due to
higher humidity, the water vapour deficit of the air is reduced and evapotranspiration is decreased,
thus allowing more of the precipitated water available as runoff. This mechanism explains around
one third of the magnitude of reported changes in runoff (Figure B 4 of Appendix B). The second
mechanism happens due to super-saturation of the air, especially during the colder months of the
year when the dew point is lower, and includes the condensation and deposition of water vapour

(direct transition from vapour to ice). Depositioned water accumulates as snowmass. Snowmass is
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higher for the raw H run (H has positive biases), which results in increased snowmelt and thus

increased runoff (Figure B 5 of Appendix B).

A comparison of super-saturated air conditions for the different sets of data (WFDEI, Raw, BC and
NobcH) can help us identify the origin of the aforementioned behavior. From the input specific
humidity H, we estimated the respective relative humidity (this transformation also requires
temperature T and surface pressure Ps as input to the Clausius-Clapeyron equation). Then we
calculated the fraction of time (based on a daily timestep) that super-saturated conditions occur, for
the historical period 1981-2010. The estimation was performed for a) the WFDEI H, T, Ps, b) the
raw H, T, Ps, c) the bias corrected H, T, Ps and d) for a combination of data corresponding to the
NobcH run (raw H combined with bias corrected T and Ps). The results are presented in Figure B
6 of Appendix B. The analysis reveals that the higher latitude regions -that display high sensitivity
of runoff to H-, are under super-saturated conditions for more than 10% of the time (Figure B 6).
The length of supersaturated conditions estimated for the WFDEI, Raw or BC data do not exhibit
a respective spatial pattern, although super-saturation is found in all three datasets (Figure B 6).
Thus, the high runoff sensitivity over the high latitude regions is not a result of supersaturated
conditions in the raw GCM H and it rather stems from: 1) raw GCM H being higher than BC H and
2) the calculation of relative humidity within JULES, done by combining raw GCM H with bias
corrected T and Ps. This inconsistency strengthens the argument for the need of bias correction of
more forcing variables -in addition to P and T. Specific humidity is a variable that is often left
uncorrected, a practice that could possibly result to runoff overestimations in the northern latitudes
based on our findings, in cases that hydrological models which account for deposition and

condensation are used.

Since this experiment was performed with a single LSM, it cannot be concluded whether this
behavior is common between the LSMs or is an over-sensitivity of the JULES model. However, it
highlights the importance of bias correction for specific humidity for specific regions, where runoff

would have been highly overestimated using raw specific humidity as forcing.
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Figure 26. a. Latitudinal means of raw and bias corrected specific humidity [g/kg], b. Latitudinal means of
JULES’ runoff forced with raw and bias corrected specific humidity [mm/day], c. Percent differences of the
latitudinal means in a (H) and b (RF). The latitudinal means are calculated from the 1981-2010 period.
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Caveats

An issue that must be considered for the interpretation of the results of this study is that they have
been based on a single impact model. As the uncertainty stemming from the selection of the impact
model is large (Gudmundsson et al. 2012; Hagemann et al. 2013), it is preferable to use multiple
models in order to capture a wide range of possible results. The effect of the meteorological forcing
on a hydrological output is heavily model dependent, as different models employ different concepts
and/or equations for the representation of key hydrological processes. This concern has been also
discussed by other single model studies on meteorological variables’ effects on hydrological
outputs (Mizukami et al. 2014; Masaki et al. 2015). Nonetheless, the results of single model studies
are useful in giving indicative answers on the issues they examine and set a basis for the

methodology needed for respective multi-model applications.

5.3. Projections of hydrological impacts under high-end climate change —

European scale

Here, transient hydrological simulations for the period 1971 to 2100 performed by forcing the
JULES model with five Euro-CORDEX (Coordinated Downscaling Experiment over Europe)
climate projections are analyzed. The scope of this part of the results is to assess future water
availability and identify drought conditions in the European region under high-end scenarios of
climate change. To this end, the following points are studied. Firstly, changes posed on the
hydrological cycle (mean state and lower extremes) at +4 °C global warming compared to a baseline
situation, and relative to the target of 2 °C warming are identified. Secondly, the effect of bias
correction on projected hydrological simulations is analyzed. To achieve this, both raw and bias
corrected Euro-CORDEX data were used as input forcing in the impact model. Thirdly, climate
change induced changes in drought climatology at the basin scale are examined and finally, the
effect of the observational dataset used for bias correction on the projection is assessed.
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5.3.1. Hydrological simulation at Pan-European scale with raw Euro-CORDEX forcing data

Figure 27 shows the average runoff production estimated by JULES forced with the five
participating EURO-CORDEX dynamically downscaled GCMs, for each model separately and for
the ensemble mean. Measures of model agreement (coefficient of variation between the ensemble
members and model agreement on a wetter change in the projected time-slice) are also shown in
Figure 27. The change in runoff in the +4 SWL projected time-slice with respect to the baseline
period is expressed as both absolute and percent relative difference. It is interesting to observe the
variations between the models for the historical time-slice, with the low climate sensitivity GFDL
and NorESM1 exhibiting generally wetter patterns for northern Europe and Scandinavian
Peninsula, and with IPSL describing drier patterns, especially for southern Europe. Concerning the
overall agreement of the ensemble members in the baseline period the coefficient of variation is
below 0.5 for most of the European region (Figure 27, bottom), indicating a good agreement of the
models. In more detail, the coefficient of variation is lower for the Scandinavian region and is

reduced towards the lower latitudes.

For the projected time-slice, all models agree in a general pattern of increased runoff production in
northern Europe and a small part in central Europe and decreased runoff production in Spain,
Greece and parts of Italy. Especially for the negative trends shown in southern Europe it is
important that though small in absolute terms they increase in magnitude when expressed as a
percentage, meaning that small negative changes can pose severe stress in regions where water

availability is already an issue.

Concerning the ensemble mean, smoothing of the projected changes due to averaging has revealed
clear patterns of change, which however have to be interpreted considering the full spread of the
GCM-forced outcomes and the agreement between them in order to avoid misguided conclusions.
Less extreme values are encountered in the ensemble mean of projected changes in runoff,
compared to the change projected by each ensemble member individually (Figure 27). Especially
for percent change a clear trend of runoff increase is revealed in northern Europe and decrease in
southern Europe, with a mixed pattern for central Europe. Four or five out of the five ensemble
members agree on the wetter response in the northern regions and the drier response in the southern

part of Europe. The smaller cv value (cv<0.1) for the southern regions indicates that the models
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agree more on the value of the change compared to the changes in the Scandinavian region
(0.11<cv<0.75). For central Europe there are areas of reduced agreement, with two models showing
a change different in sign than the other three of the ensemble. For the same areas cv has values

greater than 1, marking a large spread between the values of the five ensemble members.

Figure 28 has the same features as Figure 27 but concerns the 10" percentile runoff production
instead of the average. The 10" percentile limit is used to describe low flows that are related to the
creation of hydrological drought conditions. For 10" percentile runoff, model agreement in the
baseline period is notably reduced compared to agreement for average runoff, with the coefficient
of variation for most regions exceeding 0.5 while it exceeds the unity for a large part of Europe.
For the +4 SWL projected time-slice, according to Figure 28, all models agree in relative decreases
in runoff production in western and southern Europe which are specifically pronounced in the
western Iberian and Balkan Peninsulas. Another common trend between the models is the
significant increase in runoff production in the Scandinavian Peninsula, with MIROC5 and

HadGEM2 being the two ensemble member that expand this wetter climate down to central Europe.

Regarding the ensemble mean changes, percent change in 10" percentile runoff (Figure 28) shows
more significant reductions (up to 100 %) compared to average runoff (for which changes range
between -50 % and 50 %). It is thus deduced that the changes in low flows are more pronounced
than the changes in the mean, a conclusion that points towards the overall intensification of the
water cycle. The decreasing trend in 10" percentile runoff covers most of the west and south
European area (with 80 % to 100 % agreement on the sign of the change) while all models agree in

an increase in 10" percentile runoff in the Scandinavian region.
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Average runoff production Absolute change from
for the baseline period in the proj
[mmiyear] time-slice [nm/year]

Ensemble Mean

Figure 27. Average runoff production from raw Euro-CORDEX data for all dynamical downscaled GCMs
and their ensemble mean. Runoff production averaged over the baseline period (1976-2005) (left column),
absolute change in runoff in the +4 SWL projected time-slice (middle column) and percent change in the +4
SWL projected time-slice (right column). Bottom row: coefficient of variation of the ensemble members for
the baseline period (left column), coefficient of variation of the projected absolute changes in the +4SWL
projected time-slice (middle column) and model agreement towards a wetter change in the +4 SWL projected
time-slice.
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10" percentile runoff Absolute change from Percent change from
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Figure 28. 10th percentile of runoff production from raw Euro-CORDEX data for all dynamical downscaled
GCMs and their ensemble mean. 10th percentile runoff production derived on an annual basis and averaged
over the baseline period (1976—2005), absolute change in 10th percentile runoff in the +4 SWL projected
time-slice (middle column) and percent change in the +4 SWL projected time-slice (right column). Bottom
row: coefficient of variation of the ensemble members for the baseline period (left column), coefficient of
variation of the projected absolute changes in the +4SWL projected time-slice (middle column) and model
agreement towards a wetter change in the +4 SWL projected time-slice.
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5.3.2. Hydrological simulation at Pan-European scale with bias adjusted Euro-CORDEX

forcing data

The ensemble mean of average runoff derived from the five participating EURO-CORDEX
downscaled GCMs, whose temperature and precipitation were bias adjusted according to the
WFDEI dataset is presented in Figure 29. Bias adjustment of the forcing data resulted in a drier
ensemble mean runoff for the baseline period for 70.40 % of the pan-European land surface, in
comparison to 26.01 % of the land area that had a wetter response after bias adjustment. The
remaining 3.59 % of the European area had changes that were classified as insignificant (see Figure
B 7 of Appendix B for details). Projected changes from bias adjusted data exhibit very similar
patterns and magnitudes with the raw data derived changes. For some regions in central Europe,
where a small negative change is reported by the raw data run, a sign change of the projected
difference is documented after bias correction. Lastly, bias correction has a strong positive effect
on model agreement as it can be documented from the low values of the coefficient of determination
all over Europe, with the exception of the Scandinavian Peninsula where model disagreement

appears increased after bias correction.

In Figure 30, the effect of bias correction on the representation of the 10" percentile runoff is shown.
Some hotspots of pronounced negative changes in western Europe have been eliminated and
replaced with milder projected absolute changes. There are areas where sign change is observed
(central and central-west Europe) however it is difficult to interpret this result and correlate it with
bias correction as these are also the areas where models show the lowest agreement (coefficient of
variation exceeding one and agreement towards wetter change 40 %-60 %). Although the
coefficient of variation for the baseline period is considerably reduced compared to the raw data

runs, there are still areas of high model uncertainty in the representation of lower flows.
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Figure 29. Ensemble mean of average runoff production from Euro-CORDEX data bias adjusted against the
WFDEI dataset. Top row: Runoff production averaged over the baseline period (1976-2005) (top row),
absolute (middle row) and percent change (bottom row) in ensemble mean runoff in the +4 SWL projected
time-slice. Bottom row: coefficient of variation of the ensemble members for the baseline period (left
column), coefficient of variation of the projected absolute changes in the +4 SWL projected time-slice
(middle column) and model agreement towards a wetter change in the +4 SWL projected time-slice.
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Figure 30. Ensemble mean of 10" percentile runoff production from Euro-CORDEX data bias adjusted
against the WFDEI dataset. Top row: 10" percentile runoff production derived on an annual basis averaged
over the baseline period (1976-2005) (top row), absolute (middle row) and percent change (bottom row) in
ensemble mean runoff in the +4 SWL projected time-slice. Bottom row: coefficient of variation of the
ensemble members for the baseline period (left column), coefficient of variation of the projected absolute
changes in the +4 SWL projected time-slice (middle column) and model agreement towards a wetter change
in the +4 SWL projected time-slice.
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5.3.3. Basin averaged runoff regime

In Figure 31, annual time-series of basin averaged runoff production (average and 10" percentile)
for five European basins are shown. These cover the whole length of historical and projected years
simulated (1971-2100) in an attempt to identify general trends in average and low runoff,
calculating 10-year moving averages from the ensemble mean. Results in Figure 31linclude both
raw and bias adjusted output, thus an assessment of the effect of the bias correction on the basin
scale hydrology can be made. A common observation for all the basins is that runoff decreases
considerably for bias adjusted input forcing.

For Danube and Guadiana, significantly important negative trends are identified for average runoff
(-0.24 mm/year and -0.35 mm/year respectively for raw output, -0.11 mm/year and -0.31 mm/year
respectively for bias adjusted output) which are more pronounced for the 10" percentile runoff. For
Rhine, the identified trends in average runoff production of both raw and bias corrected forcing are
not statistically significant. In contrast, the 101" percentile runoff production in Rhine exhibits
statistically significant decreasing trends, for both raw (-0.74 mm/year) and bias corrected (-0.50
mm/year) outputs. For Elbe, raw output gives an insignificant trend in average runoff and a slight
decreasing trend for 10" percentile runoff. Bias corrected data result in a small but statistically
significant increasing trend (0.18 mm/year) in annual average runoff while for 10" percentile runoff
the trend is decreasing (-0.06 mm/year, statistically significant). For Kemijoki average and low

flows, of raw and bias adjusted forcing, are all exhibiting statistically significant increasing trends.

Basin scale average annual runoff production for raw and bias adjusted Euro-CORDEX data as
well as the +4°C absolute and percent change for each ensemble member and ensemble mean is
included in Table 14. Similar information but for low flows (10" percentile) are presented in Table
15. In Table B 2 and Table B 3 of Appendix B, the results of the linear regression applied to the
average and 10" percentile runoff time-series for the estimation of the trend and its significance

can be found.
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Figure 31. Annual time-series of basin averaged runoff production (average and 10" percentile of annual
runoff) for raw and bias adjusted Euro-CORDEX data. For both average and 10" percentile time-series, the

ensemble range, mean and 10-year moving average is shown.
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Figure 31 (continued).
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Table 14. Basin’s annual average runoff production for raw and bias adjusted Euro-CORDEX data.

Basin's Annual Average Runoff Production [mm/year]

Raw Bias Corrected
Historical average 1976-2005 Historical average 1976-2005

Danube 462.05  362.35 383.78 304.02 266.21 355.68 219.37 249.80 201.95 226.70 229.00 225.36
Rhine 79421  845.83 616.94 710.16 495.99 692.63 426.67 503.68 415.00 439.11 470.29 450.95
Elbe 371.88  356.72 219.68 337.42 174.41 292.02 148.70 203.39 135.98 174.79 202.12 173.00
Guadiana 166.13 71.44 116.14 46.60 81.51 96.36 93.14 96.42 90.06 79.22 89.82 89.73
Kemijoki 428.17  482.28 427.95 418.03 507.48 452.78 174.68 327.78 197.30 238.28 450.70 277.75

RCA4- RCA4- RCA4- RCA4- RCA4- MEAN  RCA4- RCA4- RCA4-  RCA4- RCA4- MEAN
> GFDL- NorES MIROC IPSL- HadGEM2 GFDL- NorESM  MIROC IPSL- HadGEM2
8 ESM2M M1 5+3.76 CM5A -ES +4 ESM2M 1+3.75 5+3.76 CM5A -ES +4
< +3.2 +3.75 (2071- +4 (2060- +3.2 (2071- (2071- +4 (2060-
O (2071-  (2071- 2100) (2055- 2089) (2071- 2100) 2100) (2055- 2089)

2100) 2100) 2084) 2100) 2084)
Absolute change from baseline in the projected time-slice Absolute change from baseline in the projected time-slice
Danube -54.57 3.36 -13.20 -42.04 -14.96 -24.28 -11.83 -1.38 3.61 -30.04 -11.48 -10.22
Rhine 59.95 -19.81 -13.23 -39.31 -20.14 -6.51 53.83 -5.91 6.09 -44.17 -21.73 -2.37
Elbe 2.05 33.91 30.00 -28.39 19.05 11.32 22.81 33.28 31.55 -5.57 25.71 21.55
Guadiana -55.70  -37.02 -17.16 -14.09 -46.16 -34.03 -26.23 -48.81 -10.37 -28.52 -45.23 -31.83
Kemijoki 146.86 67.46 67.48 174.94 108.26 113.00 149.69 97.38 89.71 179.15 119.97 127.18
Percent change from baseline in the projected time-slice Percent change from baseline in the projected time-slice

Danube -11.81 0.93 -3.44 -13.83 -5.62 -6.83 -5.39 -0.55 1.79 -13.25 -5.01 -4.54
Rhine 7.55 -2.34 -2.14 -5.54 -4.06 -0.94 12.62 -1.17 1.47 -10.06 -4.62 -0.53
Elbe 0.55 9.51 13.66 -8.42 10.92 3.88 15.34 16.36 23.20 -3.19 12.72 12.46
Guadiana -33.53  -51.82 -14.78 -30.24 -56.63 -35.31 -28.16 -50.63 -11.51 -36.00 -50.35 -35.47
Kemijoki 34.30 13.99 15.77 41.85 21.33 24.96 85.69 29.71 45.47 75.19 26.62 45.79
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Table 15. Basin’s 10" percentile of runoff production, derived on an annual basis, for raw and bias adjusted Euro-CORDEX data.

Basin's 10™ percentile on annual basis [mm/year]

Raw Bias Corrected
Historical average 1976-2005 Historical average 1976-2005
Danube 146.63 96.81 80.55 79.71 58.69 92.48 31.49 41.73 28.54 30.32 37.94 34.00
Rhine 250.22 258.37 162.58  200.59 109.23 196.20 98.23 120.41 93.24  101.58 107.68 104.23
Elbe 118.79 99.15 29.98 98.30 28.95 75.04 10.22 20.08 11.23 16.75 22.14 16.08
Guadiana 0.74 0.00 0.12 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00
Kemijoki 0.80 4.50 1.10 1.47 10.79 3.73 0.25 591 0.53 1.00 11.60 3.86
RCA4- RCA4- RCA4-  RCA4- RCA4- MEAN  RCA4- RCA4- RCA4- RCA4- RCA4- MEAN

> GFDL- NorESM1 MIROC  IPSL- HadGEM2- GFDL- NorESM1 MIROC  IPSL- HadGEM2-

8 ESM2M +3.75 5+3.76 CMB5A ES +4 ESM2M +3.75 5+3.76 CM5A ES +4

< +3.2 (2071- (2071- +4 (2060- +3.2 (2071- (2071- +4 (2060-

O (2071- 2100) 2100) (2055- 2089) (2071- 2100) 2100) (2055- 2089)

2100) 2084) 2100) 2084)
Absolute change from baseline in the projected time-slice Absolute change from baseline in the projected time-slice
Danube -53.89 -23.89 -18.83 -38.22 -27.41 -32.45 -18.03 -15.89 -9.68 -22.28 -24.37 -18.05
Rhine -89.38 -87.03 -20.39  -103.94 -43.25 -68.80 -31.43 -49.93 -19.49 -69.92 -52.57 -44.67
Elbe -29.14 -21.01 1.21 -44.80 -9.96 -20.74 -2.03 -2.73 -0.91 -8.90 -8.52 -4.62
Guadiana -0.73 0.00 -0.11 0.00 0.00 -0.17 0.00 0.00 0.00 0.00 0.00 0.00
Kemijoki 16.77 53.16 36.71 56.80 72.44 47.18 3.24 3.12 5.05 22.55 16.79 10.15
Percent change from baseline in the projected time-slice Percent change from baseline in the projected time-slice

Danube -36.75 -24.68 -23.38 -47.95 -46.71 -35.09 -57.26 -38.07 -33.90 -73.50 -64.22 -53.08
Rhine -35.72 -33.68 -12.54 -51.82 -39.59 -35.07 -32.00 -41.46 -20.91 -68.83 -48.82 -42.86
Elbe -24.53 -21.19 4.04 -45.57 -34.41 -27.64 -19.86 -13.58 -8.11 -53.15 -38.47 -28.71
Guadiana -98.67 -73.37 -96.24 -26.22 -76.38 -98.01 -48.53 -50.67 -65.42 -32.31 -56.63 -53.36
Kemijoki 2088.40 1181.25 3328.72 3877.01 671.51 1264.16 1283.66 52.88  946.08 2265.11 144,71 263.09
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5.3.4. Drought climatology at basin scale

Figure 32 shows the results of the drought threshold level method analysis for the five study basins,
for raw and bias corrected output. For each year, the number of days under the historical drought
threshold has been counted. This allows a comparison of the tendency towards the formation of
drought conditions between the historical period and the projected period. As this is a statistically
oriented interpretation of our data, we can see that the differences between raw and bias corrected
time-series are very small, especially compared to the difference in the magnitude of their absolute
values. For Danube, Rhine and Guadiana strong rising trends (all statistically significant) were
identified in the time-series of ensemble mean of days under threshold per year. Before bias
correction these were 0.43, 0.37 and 0.52 days/year for the three basins respectively and changed
t0 0.39, 0.39 and 0.38 days/year respectively after bias correction. For Elbe, non-bias corrected data
give a slight but statistically significant increasing trend (0.14 days/year) in contrast to bias
corrected output that shows a statistically insignificant trend. For Kemijoki strong decreasing
(statistically significant) trends are found for both for raw (-0.20 days/year) and bias corrected (-

0.18 days/year) data.
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Figure 32. Number of days under drought threshold per year for raw and bias adjusted Euro-CORDEX data.
Ensemble mean and 10-year moving average of the ensemble mean (top), ensemble range (bottom).
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Figure 32 (continued).
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Figure 32 (continued).

5.3.5. Impacts of +4°C warming relative to +2°C warming

Figure 33 shows the basin average runoff production for raw and bias corrected Euro-CORDEX
data with respect to the corresponding SWL in degrees Celsius. This analysis considers the runoff
values corresponding to the +2°C and +4°C SWLs, the latter ranging from 3.2 to 4 between the
GCMs, and also the SWL achieved by each participating GCM in the baseline period (0.3 - 0.5°C).
It is thus allowing us to examine the changes in basin runoff as temperature increases and to

compare the effect of different SWLs.

Comparing the annual average runoff production for raw and bias corrected input forcing it is clear
that bias corrected output exhibits a considerably reduced range, which translates in increased
model agreement for the basins of Danube, Rhine, Elbe and Guadiana. In Kemijoki basin the bias
adjusted output has a greater range than the raw output. Concerning the range of the low flows, an

increase in model agreement for the bias corrected forcing is observed for all basins.
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Examining the changes in annual average runoff, a slight decreasing trend can be identified for
Danube and a slight increasing trend for Elbe while for Rhine there is not a clear trend present. In
contrast, Guadiana and Kemijoki exhibit strong decreasing and increasing trends respectively. The
falling trend in Guadiana is marginally intensified between +2 and +4 SWL compared to O to +2

SWL. The rising trend in Kemijoki does not have evident differences between +2°C and +4°C.

According to the results in Figure 33, the 10" percentile runoff in Danube and Rhine decreases as
SWLs increase while the opposite trend is observed for the low flows in Kemijoki. For Elbe the
raw results show an intense decreasing trend up to +2 SWL which continues more moderately until
+4 SWL, in contrast with the bias corrected output that shows milder changes with temperature
increase . For Guadiana it is difficult to observe a trend in the bias corrected low percentile runoff
as the values are already very low. For the raw output however there is an abrupt decrease from 0
to +2°C which continues with a milder trend up to +4°C.

Figure 34 illustrates the correlation between the percent projected change in annual average and

10" percentile runoff production from bias corrected and raw forcing, for the +2 and +4 SWLs.

Concerning the effect of bias adjustment it can be observed that regardless the significant
differences in magnitude between runoff from raw and bias corrected data discussed before, the
projected change in average flow by the two forcings almost coincide for the +2 SWL. For the +4
SWL the GCM range has increased for Kemijoki after bias adjustment while for the rest of the
basins raw and bias corrected data result in very similar levels of same percent change. For the
projected change in 10" percentile runoff, the larger spreading of the values in Figure 34 (right
column) shows that the GCM uncertainty on this field is higher. Guadiana is the only basin where
bias corrected data result in an improvement in GCM agreement, probably due to its very low values
of 10" percentile runoff. Kemijoki is not included in the 10" percentile scatterplots as its projected
increase far exceeds the 100 % limit selected. For the rest of the basins, the effect of the bias
correction on the change of the 10" percentile runoff is not constant. For Guadiana and Elbe bias
adjustment mostly increases percent change while for Rhine and Danube percent change is in

general terms decreased after bias correction.

Comparing the difference on percent projected change in average annual runoff from +2 to +4 SWL

it can be observed that temperature increase results in a slight decline in percent change for basins
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with small absolute values of change, causing sign changes for Danube and Rhine, and it intensifies
the negative and positive changes of Guadiana and Kemijoki respectively. For the 10" percentile
runoff there is a similar response to temperature increase. For Elbe there is positive percent change
at +2 SWL which falls below zero at +4 SWL while for Danube, Rhine and Guadiana the already

declining projected changes present are further intensified.
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Figure 33. Variation of runoff production with respect to temperature change (+2 and +4 SWLs) for raw
(light blue) and bias adjusted (light red) Euro-CORDEX data, for both annual average (left column) and 10*"
percentile (right column) runoff production. Small markers represent the value of each individual model and
bigger markers correspond to ensemble mean value.
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5.3.6. Effect of observational datasets for bias correction on the output of the hydrological

model

The aspect of the impact posed by the observational dataset used for bias correction to the results
of the hydrological simulations is introduced in this part of our analysis. Additional model runs
performed with bias adjusted Euro-CORDEX precipitation and temperature, corrected against the
E-OBS (instead of the WFDEI) dataset participate in a comprehensive comparison between all the
outputs used in this study. The results are illustrated in Figure 35. Three different sets of outputs
are compared: one driven by raw downscaled and two driven by Euro-CORDEX data bias corrected
against two different datasets. The comparison considers both the mean and range of the ensembles
and results are presented as basin aggregates. The first part of the comparison concerns the long-
term annual average for the period 1976 to 2005 (Figure 35, top row) and apart from the model
results includes values corresponding to observations, derived from GRDC discharge
measurements. Observations can serve as a baseline for this comparison, allowing us to evaluate
which configuration can better simulate “true” water budget numbers and the effect of bias

correction with respect to this baseline.

For all basins the raw data result in overestimates of runoff production which is though significantly
reduced after bias correction. E-OBS corrected data however produce values lower than the
observations (with the exception of Guadiana) while the WFDEI-corrected data produce the best
simulation in terms of approximating the observed values. From Figure B 8 and Figure B 9 of
Appendix B (showing the effect of bias correction on the forcing variables of precipitation and
temperature) it can be deduced that that E-OBS corrected precipitation has lower values than
precipitation adjusted against the WFDEI dataset. This explains the lower runoff produced by the
E-OBS bias adjusted dataset, as it is reasonable for the differences in precipitation to reflect on the
output of the hydrological model. As already has been revealed in previous stages of this analysis,
it is again clear the positive impact that bias adjustment has on the increase of model agreement.
The only exception is Kemijoki basin due to its high latitude position (coefficient of variation was

increased after bias correction for the high latitude areas).

Changes in annual average runoff production at the +4 SWL appear to be more intensified

compared to the +2 SWL (Figure 35, middle and bottom). Although for percent change the
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differences of the distinctive configurations are less pronounced, variations can be observed
between the two bias corrected data driven simulations. It is also interesting that the effect of bias
correction on reducing the uncertainty is not that strong when looking the results from the more
statistical perspective of percent projected change. The improvements in model agreement after

bias adjustment however are still pronounced for all basins except for Rhine.

From the application of the same analysis on 10" percentile runoff production (Figure B 10 of
Appendix B), it is deduced that for the low flows the E-OBS corrected data again produce lower
values of runoff compared to WFDEI. In this case, however, even the raw forced output (which is
wetter than the bias corrected) underestimates the observed 10" percentile runoff values. Regarding
the percent projected changes, results from bias corrected data produce smaller values compared to
the raw data while E-OBS adjusted data result in decreased changes compared to output from
WFDEI adjusted forcing.
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Figure 35. Comparison between the simulations of raw Euro-CORDEX data and bias adjusted against two
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5.3.7. Hydrological response to +4°C global warming

In our analysis we investigated the effects of climate change on the European hydrological
resources, extracting time periods that correspond to an increase of 4°C of the global temperature,
rather than using pre-defined time-slices. The same approach was followed by Vautard et al. (2013),
stating that reduced GCM induced uncertainty is achieved with this method and thus the regional

patterns of change in the variables of study are strengthened.

In our study only one impact model (JULES) was used. Hagemann et al. (2013) argue that impact
model induced uncertainty in future hydrological simulations is larger than that of the GCMS for
some regions of the land surface and suggest using multi-impact model ensembles to deal with this
issue. However useful conclusions can be drawn also from studies employing a single GHM/LSM.
Examples of such single model climate change impact assessments performed recently are the
studies of Schneider et al. (2013) and Laizé et al. (2013) with the WaterGAP GHM, the studies of
Arnell and Gosling (2013), Gosling and Arnell (2013) and Arnell et al. (2013) with the GHM
MacPDM and of Hanasaki et al. (2010) using the HO8 LSM.

The findings of the study regarding the climate changed induced alterations of the mean
hydrological state in Europe show decreasing trends for southern Europe, including the
Mediterranean region, and strong increasing trends for northern and north-eastern Europe. These
follow the same patterns as identified by previous studies. Schneider et al. (2013) found that the
most pronounced changes in the magnitude of European river flows are projected for the
Mediterranean region and the northern part of the continent. Hagemann et al. (2013) reported
positive changes in projected runoff for the high latitudes and negative changes for southern
Europe. For central Europe the projected changes are smaller (mostly in the range of -25 % to 25
%) and thus more easily obscured by GCM and bias correction uncertainty. Arnell & Lloyd-Hughes
(2014) report that the main source of uncertainty in the projected climate impact stems from the
GCMs, with a range of uncertainty for the CMIP5 ensemble that is similar to that of older climate

model experiments.

The projected relative changes found for 10" percentile runoff are far more pronounced than the
changes in average, even for the regions where changes in average-state annual runoff were

negligible. This finding implies that seasonality in runoff is likely to intensify under climate change

119



Chapter 5

and is in accordance with the results of Fung et al. (2011) and Van Vliet et al. (2013) who also
reported pronounced seasonality in their projected simulations. This may translate to increased dry
spells and thus elevated drought risks in the future. Under the light of these findings (mean-state
runoff changing slightly and low-state changing significantly), more extreme hydrological droughts
are expected in the future. It should be noted however that projections of low flow bear higher
uncertainty compared to average-state, as indicated by the higher values of the coefficient of
variation. Similar results of increased model spread expressed as cv for low flows compared to

average state flows were found by Koirala et al., (2014).

Specifically for the Guadiana River, the close to zero values of 10th percentile runoff encountered
even in the historical period indicate that the river exhibits intermittent flow regime. This is relevant
for this particular river, as it is located in a semi-arid region and intermittent flows typically
characterize its hydrological regime (Collares-Pereira et al., 2000; Filipe et al., 2002; Pires et al.,
1999). Given the changes that are projected for the Iberian Peninsula at +4 SWL, it is expected that

the intermittent flow regime in Guadiana might intensify.

Concerning the effects of a +4°C temperature increase on the European hydrological regime
compared to a +2 °C increase, significant alterations posed by the +2 degrees of global warming
are identified for south Europe and northern and north-eastern Europe, where the respective
decreasing and rising trends are intensified. Fung et al. (2011) also found that changes in mean
annual runoff identified at +2 are intensified at +4. More specifically, their study reports that regions
where decreasing runoff trends have been found become even drier and, in contrast, areas where
runoff is projected to increase are getting wetter. For most of the river basins examined by Fung et
al. (2011), water stress is increased at +4 compared to +2, with the exception of a few basins where
an increase in rainfall is projected thus decreasing water stress. In our study, the basins located at
central Europe (Danube, Rhine and Elbe) do not exhibit significant changes in their annual average
runoff values due to temperature increase from +2 to +4. For 10" percentile runoff, however, a
temperature increase of +4°C from the pre-industrial baseline results in an aggravation of the

lowering trends that are already significantly affecting the low runoff regime at +2°C.

Our analysis of drought climatology at the basin scale was based on the total number of days under

a predefined daily varying drought threshold. We did not employ any buffering criterion for the
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days under threshold to be accounted for in the total sum (as discussed for example by Sung and
Chung (2014) and Tallaksen et al. (1997)). The use of such a criterion would have decreased the
calculated dry days. However, as the interpretation of the results of this study is mostly oriented in
identifying trends of change rather than absolute numbers describing the future regime, the lack of
a buffering criterion is not supposed to notably affect the extracted conclusions. Wanders et al.
(2015) employed a transient variable threshold for the assessment of the drought conditions under
climate change, considering a gradual adaptation of the ecosystem on the altered hydrological
regime. This is an interesting alternative, especially for climate change mitigation and adaptation
studies. In our study we aimed to identify global warming induced changes in the future
hydrological state without considering adaptation, thus the same historically derived threshold was

applied to the whole length of the simulated runoff time-series.

From the analysis performed on drought climatology, increased number of days per year under the
historically defined drought threshold are found for the basins of Danube, Rhine and Guadiana. Our
results correspond with the findings of previous studies about drought regime under climate change.
Giuntoli et al. (2015), investigating future high and low flow regimes at the global scale, using
multiple impact models and climate scenarios, found increased number of low flow days in
Southern Europe. In the study of Wanders & Van Lanen (2015) the impact of climate change on
the hydrological drought regime of different climate regions was assessed, using a conceptual
hydrological model forced with 3 GCMs. The study findings describe a decrease in the frequency
of drought events in the future, which however does not point towards drought alleviation. In
contrast, it relates to increased drought event duration and deficit volume. These effects are more

pronounced for the arid climates that already face problems of water availability.
5.3.8. The effect of bias correction

As proposed by Ehret et al. (2012), both raw and bias corrected data driven simulations are
presented in our study, in order to comprehensively assess the effect of bias correction on our
results. In four of the five study basins, raw data driven simulated runoff overestimates the
corresponding observed values. After bias correction, the modelled results represent more
accurately the past hydrological regime. Similar improvements in the bias corrected output have
been reported by Hagemann et al. (2011), Muerth et al. (2013) and Harding et al. (2014).
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For some regions, the sign of the projected change in runoff shifted after bias correction. This
finding was also encountered in the study of Hagemann et al. (2011). Hagemann et al. (2011)
underline that these changes in the climate signal reveal another uncertainty aspect of the GCM to
GHM modelling procedure, that is inherent to the GCM but becomes apparent after the bias
adjustment of the climate model output. Teng et al. (2015) argue that signal changes are produced
by bias correction errors in higher percentiles’ precipitation, thus adding another factor to the

uncertainty of the runoff projections.

Although the absolute values of raw and bias corrected simulations differ significantly, this does
not apply to the projected relative changes. Liu et al. (2014) also found that raw and bias corrected
data resulted in similar estimations of relative changes for a series a variables, including ET and
runoff. The study of Muerth et al. (2013) investigates the effect of bias adjustment on hydrological
simulations and their climate change induced alterations. Concerning the relative changes between
baseline and future time-slices, it is reported that bias correction does not influence notably the

hydrologic indicators, apart from the one describing flow seasonality.

Chen et al. (2011) identify three uncertainty components in bias correction applications: the
uncertainty of: the different GCM, the variable emission scenarios and that of the decade used for
bias adjustment. From a comparison of the latter uncertainty source with the two former, concluded
that the choice of correction decade has the smallest contribution to total uncertainty. In the present
study we address another uncertainty source; that of the dataset used for correction. It was found
that the WFDEI-bias corrected simulation captured better the past hydrological regime compared
to the E-OBS-bias corrected configuration. The differences between the two simulations abate
when results are expressed as percent change but still their variation are of the same magnitude as
that between raw and bias corrected data. This implies that the selection of the observational dataset
used for bias correction is not a trivial step of the modelling procedure and it should be treated as
an extra factor that causes the uncertainty window of the projected hydrologic conditions to further

open.
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5.4. Projections of hydrological impacts under high-end climate change —

Global scale

This section presents hydrological projections forced with the 13 models of the HELIX ensemble
and run by the JULES model. The analysis is based on transient hydrological simulations for the
period 1971 to 2100. In this part, water availability and droughts are studied at the global scale,
under high-end scenarios of climate change. A first aim is to assess the changes on mean and low
runoff and droughts of different types and durations, due to high-end climate. Secondly, the
progression of the changes as the level of warming increases is assessed. Thirdly, the uncertainty
in the projections is estimated by considering the agreement of the ensemble members and the
values of each individual member. Climate change induced changes in mean and low runoff and

drought climatology are also assessed at the basin scale level.
5.4.1. Hydrological projections at the global scale

Figure 36 shows the ensemble mean of percent changes in mean runoff per SWL and the associated
model agreement, based on JULES’ runoff simulations forced by the HELIX ensemble. Mean
runoff is projected to increase for the majority of the land surface, with the increase intensifying
for higher SWLs. Regions with decreased projected mean runoff, especially at SWL4, are the
Mediterranean, north Africa and parts of central and south America. Model agreement is high (80
to 100 %) for the regions with large changes in mean runoff, especially at SWL4. Respective
projected changes for low runoff are shown in Figure 37. The areas where low runoff of the baseline
period is zero have been masked out from the relative changes’ panel (shown with black colour).
Large increases in low runoff are projected for the majority of the land surface with high model
agreement. However, low agreement of the ensemble members is observed for the projected
changes over Europe, which means that the ensemble mean climate change signal for this region

should be interpreted with particular caution.

Figure B 11 of Appendix B shows the relative changes in mean annual precipitation per SWL.
Mean annual precipitation is projected to increase for a largest part of the land surface. Thus the
positive signal in runoff projections stems, to a degree, from the increased precipitation but it could

also be attributed, to the stomatal closure due to increased CO: in the atmosphere — a plant
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mechanism that reduces evapotranspiration losses and consequently leaves more of the precipitated

water available as runoff.
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Figure 36. (top) Percent change in mean annual runoff (RFmean) per SWL compared to the baseline period, derived from the HELIX ensemble and (bottom)
the respective agreement of the ensemble members on the sign of the change.

125



Chapter 5

RFlow
Relative change [%)]

-75 50 -26 -5 5 25 60 75

Model agreement on sign of change[%)]

Figure 37. (top) Percent change in 10" percentile runoff (RFlow) per SWL compared to the baseline period, derived from the HELIX ensemble and (bottom)
the respective agreement of the ensemble members on the sign of the change. The black areas in the relative change panels correspond to regions of zero
historical low runoff values.
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5.4.2. Projections of extreme drought duration at the global scale

Figure 38 and Figure 39 present the projected changes in drought duration and the respective model
agreement derived based on 6- and 48-month SPI and SRI indices. For short-term extreme droughts,
modelled with SPI6 and SRI16 (shown in Figure 38 and Figure 39 respectively), increased drought
duration by 10-25 % is found for regions of Europe (west Europe and the Mediterranean) at +4°C of
warming and less intense increases (5 to 10%) are found for small areas over north and south America
and Australia. For long-term extreme droughts, modelled with SP148 and SR148 (Figure 38 and Figure
39respectively) increases in drought duration are more pronounced and apparent even from +1.5°C of
warming. Under the highest examined level of warming (+4°C), the areas with the largest increases
in drought duration are the Mediterranean, the north part of South America and south Africa. Increased
drought duration is also projected for regions extended over central North America, north Africa, the
middle East and Australia. Both short- and long-term SRI drought calculations show increases of
more than 50% in drought duration for the Sahara region. However, this does not mean that the Sahara
region should be regarded as the most affected area, as the large computed increase in drought duration
is probably virtual due to the arid climate of this region and the percent calculation of changes in
drought duration.
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Figure 38. Ensemble mean change in time under extreme drought duration [%] based on SPI6 and SP148,
derived from the HELIX ensemble, and respective model agreement of the ensemble members on the sign of
change per SWL.
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Figure 39. Ensemble mean change in time under extreme drought duration [%] based on SRI6 and SRI48,
derived from the HELIX ensemble, and respective model agreement of the ensemble members on the sign of
change per SWL.
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5.4.3. Basin averaged runoff regime

Changes in basin aggregated mean and low runoff per SWL for the basins of study are shown in
Figure 40 and Figure 41 respectively. Increases in mean runoff are projected for 19 out of the 21
basins. The two basins with projected decreases in mean runoff are both located in Europe (Danube
and Guadiana). For most of the basins, the range of the ensemble members increases at SWL4
compared to the lower levels of warming. Another important observation is that the range of projected
changes between the ensemble members is large and for some basins it spans through negative and

positive values.

Low runoff is also projected to increase for the majority of the examined basins and especially for
those located in the northern latitudes. Projected decreases in low runoff are found for 6 basins. The
largest decreases concern the Guadiana basin, located in the Mediterranean region that has been
identified as a hotspot for increased extreme drought duration from the global maps in Figure 38 and
Figure 39. The range of the ensemble members at SWL4 is remarkably reduced, highlighting the
agreement of the models towards low runoff decrease in this basin. A decreasing signal in low runoff
is found for Amazon, which intensifies at higher warming levels. Negative signals for low runoff are
also encountered in the Orange, Murray, Danube and Rhine basins. For some basins, particularly the
largest ones, the projected changes are small because there are regions of both positive and negative

signals in the domain of the basin.
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Figure 40. Changes in basin aggregated mean runoff per SWL compared to the baseline period, derived from the HELIX ensemble. Column bars show the
ensemble median changes and the error bars the range of the ensemble members. The number in brackets [] corresponds to the basin aggregated mean runoff
of the baseline period in mm/year. Changes are shown as percentages [%]. For the basins that changes exceed 200% the absolute differences (in mm/year)
are shown instead.
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Figure 41. Changes in basin aggregated low runoff per SWL compared to the baseline period, derived from the HELIX ensemble. Column bars show the
ensemble median changes and the error bars the range of the ensemble members. The number in brackets [] corresponds to the basin aggregated mean runoff

of the baseline period in mm/year. Changes are shown as percentages [%]. For the basins that changes exceed 200% the absolute differences (in mm/year)
are shown instead.
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5.4.4. Drought climatology at the basin scale

DVTM is implemented to the ensemble mean daily runoff of the HELIX ensemble and a linear
regression is then employed to examine the trend of the annual time series of drought days per years
and its statistical significance. The regression results for the 21 examined basins are presented in
Table 16. Increased drought days per year are found for eight basins, with the largest positive
statistical significant trends reported for Rhine and Danube (0.80 and 0.60 days/year respectively).
A decrease in drought days is found for 10 basins, with the largest negative statistically significant
trend found for Congo (-0.33 days/year) and the smallest for VVolga (-0.12 days/year). For three
remaining basins (Lena, Elbe and Oder), the calculated trends were evaluated as statistically

insignificant.
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Table 16. Linear regression analysis’ results for drought days per years, according to the daily varying
threshold level method, per basin. Results are derived from the mean of the HELIX ensemble. Statistical
significance is tested at the 95% confidence interval.

Basin beta (trend) p Statistical

(days/year) significance

of the trend

Amazon 0.46 9.25E-14 YES
Congo -0.33 5.57E-15 YES
Nile -0.27 1.77E-20 YES
Mississippi 0.06 0.048827 YES
Parana -0.31 5.62E-24 YES
Lena -0.05 0.075708 NO
Yangtze -0.30 2.31E-18 YES
Niger -0.13 5.92E-11 YES
Volga -0.12 0.001648 YES
Murray 0.24 2.19E-11 YES
Indus -0.28 1.59E-26 YES
Ganges -0.25 2.97E-20 YES
Orange 0.31 3.67E-24 YES
Danube 0.60 9.14E-24 YES
Huang He -0.27 6.20E-17 YES
Saskatchewan 0.12 1.35E-07 YES
Rhine 0.80 3.02E-27 YES
Elbe -0.05 0.098452 NO
Oder -0.01 0.668181 NO
Guadiana 0.35 2.68E-18 YES
Kemijoki -0.18 1.55E-07 YES

5.5.  Comparison of hydrological projections from different forcing data

Here we compare the hydrological projections derived from the HELIX ensemble to EURO-
CORDEX projections and simulations of the ISIMIP ensemble. The HELIX and EURO-CORDEX
are of higher spatial resolution compared to ISIMIP. The aim posed in this section is to explore the
differences and similarities between the projections of the three ensembles and assess possible

added value provided by the higher resolution simulations. This analysis focuses on the European
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region, as it the common domain of all the three ensembles (HELIX and ISIMIP cover the global
domain but EURO-CORDEX only the European area).

5.5.1. General comparison between three ensembles

Figure 42 to Figure 49 provide a comparison between the projected changes in hydrologic
indicators and drought indices derived from the three examined ensembles (ISIMIP, EURO-
CORDEX and HELIX). Figure 42 and Figure 44 show the projected changes per SWL in mean and
low runoff respectively and Figure 43 and Figure 45 show the model agreement on the sign of
change of mean and low runoff respectively. Moreover, spatially aggregated relative projected
changes in the two runoff indicators for each single ensemble member, for eight European sub-
regions can be found in Appendix B (Table B 4, Table B 5 and Table B 6).

The projections of the eight ensembles exhibit a considerably different behavior. The ISIMIP
projections are far less detailed than the other two, due to the lower resolution of the ISIMIP
ensemble. In contrast, EURO-CORDEX projections show more variant spatial patterns than the
HELIX ensemble, although the two ensembles have a similar resolution. A common pattern on the
projected changes in mean runoff between the three ensembles (Figure 42) is the increasing signal
in north and north-eastern Europe and the decreasing signal in the south part of the continent.
Northern and southern Europe are regions with higher agreement on the sign of mean annual runoff

change, while agreement is lower for central Europe (Figure 43).

Projected changes in low runoff by the ISIMIP and EURO-CORDEX ensembles show similar
patterns of increased low runoff in the north-east and decreased low runoff in the south-west,
although the latter ensemble projects greater changes (Figure 44). The HELIX ensemble has quite
a distinguished behavior of projected increases in low runoff over the majority of the continent.
Concerning model agreement on the signal of low runoff projections (Figure 45), the HELIX
ensemble has the lower extent of high model agreement (80-100%), mainly at the Scandinavian
Peninsula. The ISIMIP ensemble has higher agreement for the increasing changes in Scandinavian
countries and the decreasing signal in the Mediterranean while EURO-CORDEX projections highly
agree (80-100% of the models) on the sign of changes in low runoff over the majority of the

continent.
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The comparison of the projected changes in hydrologic indicators of the three examined ensembles
reveals remarkably diverse patterns between the ensembles. A greater similarity can be observed
between the spatial patterns of projected changes in extreme drought duration of the three
ensembles. For short-term droughts (modelled with SP16), all the ensembles project increases in
drought duration in the Mediterranean region at SWL4, while only ISIMIP shows spatially coherent
regions of increased drought duration at lower levels of warming (SWL1.5 and 2) (Figure 46).
Especially at SWL4, the regions of increased drought duration are also regions with high model
agreement on the sign of the change of short term drought duration (Figure 47). The projected
changes in time under long term extreme drought conditions (modelled with SP148) are more
intense and spatially extended compared to short term droughts (Figure 48). Again, similar patterns
can be found between the three ensembles. Under +4 °C of warming, increased drought duration is
projected for south Europe by all the ensembles. The agreement of the models is less uniform
between the three ensembles (Figure 49). At SWL4, the ISIMIP ensemble exhibits high agreement
over the whole south-European region, EURO-CORDEX shows patches of high agreement all over
south Europe while the HELIX ensemble shows high agreement on increased drought duration only
for the south Iberian Peninsula, Sardinia and south Italy.
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EURO-CORDEX ISIMIP

HELIX

Figure 42. Relative change in mean annual runoff (RFmean) per SWL, simulated by the three different
ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom).
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EURO-CORDEX ISIMIP
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Figure 43. Model agreement on the sign of change in mean annual runoff (RFmean) per SWL, simulated by
the three different ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom).
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EURO-CORDEX ISIMIP

HELIX

Figure 44. Relative change in 10" percentile runoff (RFlow) per SWL, simulated by the three different
ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom).

139



Chapter 5

EURO-CORDEX ISIMIP

HELIX

Figure 45. Model agreement on the sign of change in 10" percentile runoff (RFlow) per SWL, simulated by
the three different ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom).
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5.5.2. Evaluation of a combined ensemble

So far we have examined differences in the projected changes in runoff indicators and duration of
drought conditions derived by three different ensembles. Here we combine the three ensembles
(ISIMIP, EURO-CORDEX and HELIX) into one, and examine the projected changes in short and
long term drought conditions (Figure 50 and Figure 51 respectively) along with the model

agreement of the extended ensemble on the sign of change of drought duration.

The combined ensemble shows virtually no change in short term drought duration at SWL1.5, small
increases in short term drought duration over regions of the Iberia Peninsula at SWL2 and increases
ranging from 5 to 25 % for the Mediterranean region at SWL4 (Figure 50). It is important to note
that the aforementioned regions of drought duration increases in the Mediterranean, also show a

high level of model agreement.

Regarding long term droughts (Figure 51), the combined ensemble shows increases of 5 to 25 % in
duration over the Iberian Peninsula, west France, Italy and Greece at SWLs 1.5 and 2. However the
confidence on these changes is debatable, as only 60-80 % of the combined ensemble members
agree on the sign of the changes. At SWL4, the combined ensemble shows increases in long term
drought conditions up to 50 %, affecting all the south part of Europe and even regions of central
Europe. Nonetheless, regions of high agreement (80-100 %) on these changes, are only the

Mediterranean regions.
5.5.3. Ensemble differences and attributions

The comparison of the different model ensembles revealed large differences in the projected
hydrological impacts, with conflicting signs of change for some runoff metrics. In summary, the
highest level of consensus between the ensembles was observed for changes in mean runoff. The
climate change signal for mean runoff regards increases in the north of Europe, decreases in the
south and only small changes with lower model agreement for central Europe. For low runoff, the
HELIX ensemble shows increased response over most of Europe, but also exhibits low model
agreement on the sign of change for most of the European area. The other two ensembles show a
different response of low runoff to climate change, as both consent on increased low runoff in the

north-eastern part of Europe and decreased low runoff over the south-western part of the continent.
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The three examined ensembles show a markedly more similar response regarding the drought
duration projections. For short-term droughts, all the ensembles show increased drought duration
over the Mediterranean while for long-term droughts the region of increased drought duration
extents to the whole of southern Europe. Moreover, the projected increase in drought duration is

larger for long-term compared to short-term droughts.

In a set of figures provided in Appendix B (Figure B 12 to Figure B 15), an examination of the
differences in the projected changes caused by the selection of the HEL1X model (EC-EARTH of
HadGEM) is attempted. Only the ensemble members forced with common driving models
participate in this comparison. Examination of the role of the HELIX model for the hydrological
simulations reveals that the two HELIX models project very different futures of conflicting climate
change signals. Specifically, HadGEM projects a dramatically drier future while EC-EARTH
projects a wetter future in terms of runoff production metrics. Regarding the drought analysis,
HadGEM shows increased drought duration for a considerably larger part of Europe compared to
EC-EARTH. The projected climate change signal is determined by the HELIX model rather than
by the SST driving model.

The combined ensemble shows that spatially coherent regions of increased drought duration and

high model agreement appear under +4°C of warming over the Mediterranean region.
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Figure 46. Relative change in extreme short term drought (SRI<=-1.5) duration per SWL, simulated by the
three different ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom).
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Figure 47. Model agreement on the sign of change in extreme short term drought duration per SWL,
simulated by the three different ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom).
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Figure 48. Relative change in extreme long term drought (SRI<=-1.5) duration per SWL, simulated by the
three different ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom).
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Figure 49. Model agreement on the sign of change in extreme long term drought duration per SWL,
simulated by the three different ensembles: ISIMIP (top), EURO-CORDEX (middle) and HELIX (bottom).
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Figure 50. Relative change in extreme short term drought (SRI<=-1.5) duration per SWL, simulated by the
three the combined ensemble (top), and model agreement on the sign of change (bottom).
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Changes

Agreement

Figure 51. Relative change in extreme long term drought (SRI<=-1.5) duration per SWL, simulated by the
three the combined ensemble (top), and model agreement on the sign of change (bottom).
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Chapter 6. Conclusions

6.1. Summary and concluding remarks

In this section, a summary of the thesis is presented, the main findings are highlighted and
conclusions are drawn. The present thesis provides a complete methodological framework for a
detailed assessment of the effects of high-end climate change on hydrological resources at the
regional, European and global scale. Hydrological simulations are performed with the large scale
LSM JULES. JULES, as a physically based model, provides an advantage to our impact assessment
compared to assessments established on pure hydrological models, as it can account for the effects

of rising atmospheric CO2 on plant physiology.
Model evaluation for the historical period

The first step in our methodological framework is the evaluation of the JULES model for the
historical period and the assessment of the model’s sensitivity to the observational dataset used as
forcing. The evaluation of the hydrological performance of the JULES model is done in two stages.
The first part of model evaluation is based on runoff and aims at the evaluation of mean and low
hydrological states while the second part is based on discharge, and aims at the evaluation of
monthly and seasonal discharge profiles at the basin scale. To implement the second stage of model
evaluation, a routing algorithm was developed and applied to the model output, to convert the
vertical runoff production flux to discharge at the basin outlet. The algorithm uses a conceptual
semi-distributed model based on time of concentration, following a source-to-sink routing
approach. Meanwhile, the sensitivity of the model to the forcing dataset is assessed by comparing
model runs of the same model configuration forced by three different observational datasets
(WFDEI, PGFv2 and GSWP3).

From the analysis described above it can be concluded that JULES can capture well the shape of the
annual discharge cycle for most of the examined basins, although a tendency towards discharge
underestimation by the model was identified. The use of different forcing datasets produces
considerable changes in the results for some regions (especially in the African continent). For the

studied basins the different forcing results in at least 10 % difference in the magnitude of simulated
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discharge, while the median range of PBIAS is 30 % and the average range 40 %. It can thus be stated

that JULES exhibits high sensitivity to the climate drivers.
The effect of GCM biases on runoff

The second step of the methodological framework presented in this thesis concerns the examination
of GCM biases and their effect on hydrological simulations. More specifically, the present study
examined the effect of the biases in GCM output variables on historical runoff simulations, using
the JULES LSM. The effects of biases were studied for each forcing variable separately, for six
meteorological variables (precipitation, temperature, radiation, specific humidity, surface pressure
and wind speed) in total. Biases of each variable and the respective effect of runoff were quantified
at the global and regional scale. A framework for the categorization of the effects of biases of the

different variables was developed and implemented, leading to global maps of bias ECs.

According to the findings of this study, bias correction of GCM outputs results to substantially
improved representation of historical runoff. For this reason, the present study adds to the numerous
studies that advocate on the use of some kind of bias correction of GCM data prior to their use as
impact model forcing. Precipitation and temperature biases were identified to cause the largest
changes in runoff. Radiation and specific humidity can also pose a substantial effect on runoff,
especially for specific regions. The sensitivity of runoff to the different forcing variables exhibits a
high spatial variability. Depending on the region, runoff can be more sensitive to radiation or
humidity compared to precipitation or temperature. The produced EC maps show that all variables
can potentially affect runoff to a high extent depending on the region. The fraction of the land
surface occupied by the high effect category ECI (high changes in runoff and high sensitivity of
runoff to the variable’s changes) ranges between the variables from 67.80 % for precipitation to
6.09 % for wind.

The produced maps of ECs aid the identification of the regions mostly affected by the bias of each
variable. Thus, they could serve as a decision tool in cases when an informed decision needs to be
made on the variables that would need to be bias corrected or could be neglected from bias
correction, according the planned model application. Moreover, when raw forcing is used in model
applications, EC maps could provide a guidance towards the areas where the results would need a

more careful interpretation.
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Based on the findings of this study it is suggested that the widely used concept of bias correcting
precipitation and temperature should be extended to include more input variables. Radiation and
specific humidity should be added to the priority variables for bias correction in hydrological
applications, along with precipitation and temperature.

Due to the heavily model dependent nature of runoff sensitivity to forcing variables, generalized
conclusions for the behavior of other impact models to GCM biases cannot be drawn from the
present single model assessment. Nevertheless, this study aims to initiate a discussion on the effect
of GCM biases on hydrological output, as the consideration of these sensitivities is crucial to

understand the uncertainty spectrum of hydrologically relevant climate change assessments.
Projections of hydrological impacts under high-end climate change — European scale

The next step of our methodological framework includes the projections of hydrological impacts
of high-end climate change. The first set of hydrological projections concerns the European region
and is forced by the novel dataset of the Euro-CORDEX climate projections. The spatial patterns
of changes in future mean- and low- hydrological states under +4°C of global warming are assessed
and an analysis of the changes in future drought climatology is performed for five major European
basins. Moreover, the impact of +2°C versus +4°C global warming is estimated. Concurrently, the
effect of bias correction of the climate model outputs on the projected climate and the role of the

observational dataset used for bias correction are also evaluated.

Projections show an intensification of the water cycle at +4 SWL, as even for areas where the
average state is not considerably affected, there are remarkable projected decreases of low flows.
With the exception of the Scandinavian Peninsula and some small areas in central Europe, 10%
percentile runoff production is projected to reduce all over Europe. This favours the formation of
extreme hydrological events, thus more droughts compared to the current state could be expected

in the future due to the warming climate.

Drought climatology is projected to change to more dry days per year for the Danube, Rhine and
Guadiana basins. Thus these areas are projected to experience more usual and more intense drought

events in the future.
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For the areas where clear decreasing or increasing runoff trends are projected, the changes are
considerably intensified when moving from the +2 SWL to the +4 SWL. Decreasing trends apply
to southern Europe, including the Mediterranean region, while strong increasing trends are
projected for northern and north-eastern Europe. For the rest of the European region where trends
are not clear or ensemble members do not agree towards the change, the effect of the further
warming from +2 SWL to +4 SWL, does not seem to severely affect the hydrological state, which

Is however already significantly altered at +2 SWL compared to pre-industrial.

Bias correction results in an improved representation of the historical hydrological conditions.
However, raw and bias corrected simulations exhibit minor variations for results of statistical

interpretation (in our study: percent change, number of days under drought threshold).

The dataset used for bias correction can affect the quality of the projections in absolute terms to a
great extent. The comparison performed here showed that the WFDEI-corrected dataset produces
simulations that capture better the past observed hydrologic state compared to the E-OBS-corrected
dataset and should thus be preferred for bias correction applications over Europe. The selection of
the “correct” dataset is an added uncertainty to the climate impact modelling chain, with magnitude

similar to that of the bias correction procedure itself.
Projections of hydrological impacts under high-end climate change — Global scale

The second set of hydrological projections regards the global scale. The global hydrological
projections are forced with the thirteen models of the HELIX ensemble and run by the JULES
model. Here only bias corrected data of the HELIX GCM ensemble are included in the analysis. In
this part, the water availability and drought duration analysis under high-end scenarios of climate
change of the previous section is extended to the global scale. In addition, the study of droughts is
approached with different methods (SP1 and SRI) and different types of drought (short- and long-
term) are examined. While our first aim is to assess the changes on mean and low runoff and
droughts of different types and durations due to high-end climate, concurrently, the progression of
the changes as the level of warming increases is assessed (from +1.5, to +2, to +4°C). Climate
change induced changes in mean and low runoff and drought climatology are also assessed at the
basin scale level. Finally, estimation of the uncertainty in the projected impacts is also integrated

in this part of the study.
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The global scale analysis provides information on the regions of the globe that are projected to have
increased or decreased mean and low runoff in a future under high-end climate change. Runoff
indicators (mean and low runoff) are projected to increase for the majority of the land surface.
However, there are areas (the European region included in these) that model agreement on the sign
of change is low and thus we cannot be definitive on the impacts projected for these regions. The
global scale drought analysis revealed regions with projected increases in extreme drought duration.
Increased short-term extreme drought duration is mainly projected for the Mediterranean region
while for long-term extreme droughts, the regions that are expected to experience increases in the
events’ duration are located in the Mediterranean, central North America, north Africa, the middle

East and Australia.

The basin scale drought analysis concluded in eight basins that are expected to experience increased
days per year under drought conditions in the future. The mean and low runoff regime analysis at
the basin scale showed that the impacts are exacerbated as the level of warming increases for most
basins. An important finding is that the range of the projections is very large and for many basins
spans through both negative and positive changes. In these cases, the use of the ensemble mean
may not be a particularly useful indicator of the projected changes. Moreover, since there is not a
way to favour or reject a projected response, policy makers and adaptation strategies should account

and prepare for both possible outcomes.
Comparison of hydrological projections from different forcing data

In this final section, the EURO-CORDEX- and HELIX- driven hydrological projection are inter-
compared and also examined in contrast to respective simulations of the former GCM ensemble
generation (denoted ISIMIP) which has a lower spatial resolution. This analysis is limited to
European region, as the common domain of all the three ensembles. Generally there are large
differences between the projected impacts for mean and low runoff, and a greater consensus on the
projected changes in drought duration. For the HELIX ensemble specifically, it has been revealed
that the projected climate change signal is determined by the HELIX model rather than by the SST
driving model. Finally, combination of three ensembles into one highlights the Mediterranean
region as a hotspot of increased drought duration.
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6.2. Innovation and contribution

The present thesis contributes to the basic science with two newly developed methodologies. The
first contribution is the development of a routing algorithm, which allows the comparison of the
gridded JULES output to observed discharge, thus allowing the evaluation of the model against
actual discharge measurements. The second contribution is the new methodology for the
categorization of the effects of GCM biases.

Regarding applied science, the present thesis contributes providing maps of effect categories of
GCM biases, which can be a very useful tool for scientists planning climate change impacts’
studies. Moreover, the contribution to applied research lies in the use of state-of-the art GCM data
of the highest available spatial resolution to produce a detailed and multi-faceted assessment of the
effects of high-end climate change on hydrological regime. Many different methodologies were
combined to provide the assessment of impacts for mean and low state hydrological states and
drought conditions. The output of the climate change impacts’ study is important to policy makers

at the inter-governmental level in order to plan relevant legislations and adaptation practices.

For the implementation of the routing algorithm, the methodologies described in this thesis and the
processing of GCM data and JULES’ outputs, an extensive number of coding scripts were produced
in the MATLAB programming language. The total volume of data processed for the purposes of
this thesis is close to nine T (a detailed description of the size of inputs and outputs of the JULES
model is presented in Table 17). The JULES’ simulations performed in the context of the present
thesis correspond to around 6730 years in total, and were produced in a computational time of

around 350 days.

Table 17. Size of input and output JULES’ data used in the present thesis.

Input Output
Historical 1T 128 GB
Europe Ensemble 32 GB 200 GB
Global Ensemble 1 908 GB 228T
Global Ensemble 2 29T 145T
Total ~5T ~4T
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6.3. Recommendations for future research

Future development of the JULES model, and of other similar models, should focus on the depiction
of hydrological processes of the basin level. Firstly, parameterizations of regional scale processes
(such as contributions from glaciers for mountainous basins) should be added in the models.
Secondly, in order for the models to give simulations of higher spatial resolution, forcing data of
respective higher resolution are also required.

Regarding the evaluation of the model, the development of a more complicated routing scheme and
the integration of human impacts (such as dams and abstractions) in the JULES model are proposed
as future research steps. The need for inclusion of more processes in the models highlights the
scientific community’s request for more data to be used for model evaluation and development,
such as information on dams and abstractions, water management, agricultural and irrigated areas,

etc.

The present study could be complemented by using more than one hydrological impact models for
the assessment of both the effects of GCM biases and the effects of climate change on the
hydrological regime. Multi-impact model assessments provide the opportunity to assess the

uncertainty of the impact model component of the modelling chain.

Although a considerable number of GCMs was used in the present thesis, an extension of the used
GCMs should be a goal for future assessments, as the uncertainty component due to the GCM

choice is an important factor that defines the assessed climate change signal.

In future research, the assessment of climate change impacts should be accompanied by scenarios
of changes in land use and agricultural practices. Finally, the next proposed research step after
climate change impacts’ studies is to study the effects of climate change adaptation and mitigation
practices. Such studies are of particular importance for policy makers who need to assess the level
of action needed to avoid adverse effects of climate change, and the possible synergies and trade-

offs between adaptation and mitigation actions.
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Appendix A

Definition of symbols

Symbol Units Definition
A mol CO, m2st Net photosynthesis uptake
A, kg m™2 Puddling of water on soil surface and interception by
leafless vegetation
B, kg C m? Leaf biomass
B, kgCm2 Rate of change of water holding capacity with leaf area
index
B, kgCm Woody biomass
C kg m2 Canopy water
C. Pa Leaf surface carbon dioxide concentration
C; Pa Internal leaf carbon dioxide concentration
C, JkgtK? Specific heat capacity of leaves
Cn kg m2 Vegetation canopy water holding capacity
Cs Jm?2ZK? Areal heat capacity associated with the surface
material
Cp Jkgt Kt Specific heat capacity of air
C, Jkgt K™ Specific heat capacity of wood
Chater Jkg*K! Specific heat capacity of water
C, Jm3K? Volumetric heat capacity of the soil
d, m Root depth
dy m Snow depth
Ly m? st Diffusivity of water vapour in air
E Kgm?2s? Turbulent moisture flux
ET kg m2s? Evapotranspiration rate
G W m? Surface/Soil heat flux
G, kgm3st Groundwater inflow
Gouwr  kgm?st Groundwater outflow
9gs mst Leaf level stomatal conductance
gsoit MSH Bare soil surface conductance
Hg W m? Sensible heat flux
Hgy, (T) kgkg™ Saturated specific humidity at the temperature T
H, kg kg Specific humidity at the reference atmospheric level
I kg m2 Intercepted snow load
Iy M2 Snow interception canopy capacity
J Wm3 Vertical advective flux for soil moisture
K kgm2st Surface infiltration rate
K, mst Hydraulic conductivity
Kps ms* Hydraulic conductivity for saturated soil
L m? m2 Leaf area index
L, Jkg? Latent heat of condensation of water at 0 °C
L, Wm? Downward longwave radiation
L,, Wm? Upward longwave radiation
P kg m2s! Precipitation rate
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Ps Pa Surface air pressure
Q kg m2st Discharge rate
r pum Snow grain size
Ta smt Aerodynamic resistance
Gean S m? Aerodynamic resistance between the surface canopy of
vegetation and the underlying soil
T - Fraction of roots in the k-th soil layer
T smt Stomatal or surface moisture resistance
R, W m? Net radiation
RF kgm?2s? Total runoff
RF, kgm?Zst Surface runoff
Sm kgm2s? Snowmelt
Swi W m? Downward shortwave radiation
T, K Reference level atmospheric temperature
Tr kgm?2s?t Throughfall rate
T, K Soil temperature
Ts1 K Temperature of the first soil level
Ty K Temperature of the k-th soil level
T, K Surface temperature
1% ms? Atmospheric wind speed
w, kgm?2s? Infiltration rate into the soil
w’ kgm?2st Vertical flux of soil water
a - Surface albedo
B - Soil moisture factor
AS kg m2st Change in storage in a basin
Az; m Thickness of the i-th soil layer
€ - Surface emissivity
€, - Fraction of gridcell occupied by convective
precipitation
€ - Emissivity of the underlying soil surface
0 mém2 Soil moisture concentration
0, mé m3 Soil moisture concentration in the top soil layer
0, m*m3 Soil moisture concentration at critical point
A WmtK? Thermal conductivity
AE W m? Latent heat flux
Aspow WmMTKH? Thermal conductivity of the snow
Aoz WmIK™? Thermal conductivity of the soil
V; - Fraction of gridbox covered by surface type j
p Kgm Density of air
pi kgm™ Density of ice
o Wm?2K* Stefan Boltzmann constant
'4 m Soil water suction
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Appendix B

Supplementary information and results
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Figure B 1. Difference maps, showing initial (Raw-WFDEI) and remaining (BC-WFDEI) biases of the GCM
ensemble forcing variables: a.Precipitation, b.Temperature, c.Longwave downward radiation, d.Shortwave
downward radiation, e.Specific humidity, h.Surface pressure, g.Wind. Differences are calculated between
the December-January-February averages (DJF) of the 1981-2010 period.
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Figure B 2. Difference maps, showing initial (Raw-WFDEI) and remaining (BC-WFDEI) biases of the GCM
ensemble forcing variables: a.Precipitation, b.Temperature, c.Longwave downward radiation, d.Shortwave
downward radiation, e.Specific humidity, h.Surface pressure, g.Wind. Differences are calculated between
the June-July-August averages (JJA) of the 1981-2010 period.
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Table B 1. Values of input variables, for each GCM (GFDL, IPSL and MIROC), the ensemble mean
(Ens.Mean) and WFDEI data, spatially averaged for 24 Giorgi regions.

P [mm/day] T [K]
GFDL IPSL MIROC  Ens.Mean  WFDEI GFDL IPSL MIROC  Ens.Mean  WFDEI
NEU 2.61 2.30 2.53 2.48 2.43 277.90 277.15 281.16 278.74 279.50
MED 1.44 1.08 1.44 1.32 1.56 288.73 287.57 290.13 288.81 288.26
NEE 1.71 1.67 1.79 1.72 1.67 274.42 274.15 277.89 275.49 276.75
NAS 1.59 1.66 1.78 1.68 1.25 267.91 269.70 270.71 269.44 267.53
CAS 0.92 0.79 1.36 1.02 0.93 284.84 284.00 287.60 285.48 285.79
TIB 1.36 1.05 1.99 1.47 0.63 274.44 271.79 273.20 273.14 275.70
EAS 2.96 2.88 2.96 2.94 2.57 286.26 285.73 288.39 286.79 284.48
SEA 8.77 6.74 6.80 7.44 6.96 299.45 299.15 298.99 299.19 299.21
NAU 2.97 1.37 3.46 2.60 1.65 297.80 297.47 298.36 297.87 297.40
SAU 1.79 1.60 2.28 1.89 1.28 289.28 286.59 287.49 287.79 290.68
SAH 0.22 0.06 0.35 0.21 0.15 297.02 294.15 296.73 295.97 298.18
WAF 4.60 2.92 4.02 3.85 2.86 298.65 298.50 299.70 298.95 300.57
EAF 2.15 1.52 2.87 2.18 1.99 297.86 297.14 298.09 297.69 298.99
EQF 2.87 3.34 2.80 3.00 2.67 295.21 295.47 295.61 295.43 296.00
SQF 3.33 3.18 2.79 3.10 3.04 295.89 295.95 296.37 296.07 295.96
SAF 2.37 1.62 2.20 2.06 1.27 291.60 290.33 290.83 290.92 290.89
WNA 1.92 1.88 2.32 2.04 1.49 282.01 282.41 284.29 282.90 282.96
CNA 2.48 211 2.12 2.23 2.62 283.22 283.91 286.66 284.59 284.58
ENA 3.53 3.49 3.77 3.60 3.20 286.57 287.57 289.45 287.86 282.26
CAM 3.43 2.17 2.22 2.60 2.84 295.70 295.89 297.40 296.33 295.32
AMZ 3.57 3.55 4.06 3.72 5.32 297.74 297.44 297.66 297.61 297.94
CSA 2.37 1.71 2.20 2.09 2.83 291.79 290.06 291.07 290.97 290.61
SSA 2.58 2.76 2.70 2.68 2.57 281.71 278.10 279.75 279.85 281.32
SAS 3.61 2.94 4.76 3.77 3.75 296.89 296.78 297.21 296.96 296.36
RI [W/m2] Rs [W/m2]
GFDL IPSL MIROC  Ens.Mean  WFDEI GFDL IPSL MIROC Ens.Mean WEFDEI
NEU 298.76 289.91 313.39 300.69 295.33 106.90 113.95 105.91 108.92 115.03
MED 325.96 306.36 328.73 320.35 314.19 194.08 207.62 202.13 201.27 199.11
NEE 283.96 268.51 293.05 281.84 286.82 113.46 130.74 131.76 125.32 113.86
NAS 255.12 250.35 261.36 255.61 245.13 115.27 125.07 132.40 124.24 117.66
CAS 294.43 276.17 300.68 290.43 295.95 208.62 212.39 224.00 215.01 204.59
TIB 254.00 226.63 239.74 240.12 239.85 193.41 203.32 238.30 211.68 216.40
EAS 330.69 311.34 329.96 324.00 310.11 175.70 203.77 197.67 192.38 171.51
SEA 412.92 398.55 404.30 405.26 415.89 217.69 235.62 220.55 224.62 194.56
NAU 375.94 353.13 375.57 368.22 357.89 245.74 275.31 245.39 255.48 248.10
SAU 330.27 314.19 326.86 323.77 326.54 197.93 190.86 185.11 191.30 216.98
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SAH 337.31 309.98 339.92 329.07 337.15 262.15 275.38 277.74 271.75 264.56

WAF 384.32 363.56 388.70 378.86 392.92 230.64 281.46 240.12 250.74 231,51

EAF 371.89 347.30 372.53 363.91 384.45 251.09 292.60 247.54 263.74 237.33
EQF 372.31 356.07 365.27 364.55 377.08 240.21 278.16 231.80 250.05 232.56
SQF 378.02 362.43 370.00 370.15 373.27 234.04 268.65 237.10 246.60 223.85
SAF 344.64 323.67 334.37 334.23 321.71 217.70 237.28 219.01 224.66 232.14
WNA 296.89 293.37 302.39 297.55 281.30 196.70 183.22 195.71 191.87 205.10
CNA 311.69 298.60 310.79 307.03 308.70 178.09 198.56 207.13 194.59 185.28
ENA 339.03 327.43 341.57 336.01 305.46 171.46 189.71 187.69 182.95 164.46

CAM 377.27 360.63 370.16 369.35 366.67 229.89 252.57 248.63 243.70 229.00

AMZ 386.81 370.84 385.43 381.03 410.20 236.57 276.72 229.83 247.71 195.18

CSA 345.94 327.65 331.53 335.04 336.63 213.80 221.64 223.21 219.55 210.34
SSA 306.49 300.96 309.79 305.75 296.61 143.79 119.23 129.33 130.78 149.19
SAS 376.44 362.65 375.76 371.62 373.47 232.43 252.54 230.45 238.47 207.03
H [ka/kg] Ps [HPa]
GFDL IPSL MIROC  Ens.Mean WFDEI GFDL IPSL MIROC  Ens.Mean  WFDEI
NEU 0.0051 0.0048 0.0066 0.0055 0.0055 995.14 994.72 992.99 994.28 983.13
MED 0.0075 0.0075 0.0087 0.0079 0.0076 981.06 979.10 980.40 980.19 958.26
NEE 0.0042 0.0041 0.0054 0.0046 0.0045 998.58 997.13 995.35 997.02 994.48
NAS 0.0031 0.0036 0.0042 0.0037 0.0033 966.94 964.29 964.13 965.12 955.25
CAS 0.0044 0.0044 0.0057 0.0048 0.0055 900.50 896.25 899.36 898.70 893.06
TIB 0.0033 0.0034 0.0042 0.0036 0.0034 735.65 728.50 736.90 733.68 734.45
EAS 0.0090 0.0089 0.0108 0.0096 0.0078 974.67 969.55 973.25 972.49 947.43
SEA 0.0176 0.0178 0.0186 0.0180 0.0176 1000.13 1001.34 1003.18 1001.55 977.85
NAU 0.0121 0.0117 0.0140 0.0126 0.0096 991.65 994.78 994.03 993.49 978.92
SAU 0.0079 0.0068 0.0081 0.0076 0.0071 1004.23 1001.10 1002.27 1002.53 988.15
SAH 0.0061 0.0055 0.0068 0.0061 0.0061 965.67 965.58 966.70 965.98 955.18
WAF 0.0132 0.0123 0.0145 0.0133 0.0124 982.76 982.58 982.96 982.77 970.86
EAF 0.0113 0.0112 0.0130 0.0118 0.0122 939.81 936.28 940.58 938.89 928.97
EQF 0.0126 0.0135 0.0132 0.0131 0.0131 927.28 923.68 927.22 926.06 897.12
SQF 0.0134 0.0136 0.0144 0.0138 0.0123 964.04 963.95 964.50 964.16 924.14
SAF 0.0104 0.0094 0.0104 0.0101 0.0077 970.87 970.37 970.88 970.71 909.10
WNA 0.0059 0.0062 0.0074 0.0065 0.0051 908.11 909.20 907.96 908.42 867.44
CNA 0.0071 0.0067 0.0078 0.0072 0.0071 970.30 967.75 964.45 967.50 967.64
ENA 0.0092 0.0097 0.0113 0.0101 0.0068 1005.31 1003.65 1001.77 1003.58 986.35
CAM 0.0135 0.0136 0.0147 0.0140 0.0122 983.62 983.88 982.98 983.49 928.03
AMZ 0.0135 0.0140 0.0158 0.0144 0.0158 969.59 970.66 970.49 970.25 956.50
CSA 0.0100 0.0091 0.0096 0.0096 0.0095 976.00 975.62 973.88 975.17 935.84
SSA 0.0060 0.0047 0.0057 0.0055 0.0050 997.59 994.17 993.09 994.95 957.83
SAS 0.0134 0.0136 0.0152 0.0141 0.0132 965.75 965.46 965.67 965.63 932.59
W [m/s]
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GFDL IPSL MIROC  Ens.Mean  WFDEI

NEU 5.50 4.47 4.10 4.69 3.64
MED 4.02 3.99 4.32 411 3.17
NEE 3.61 2.93 3.01 3.18 3.56
NAS 3.57 3.46 3.85 3.63 3.05
CAS 2.85 3.64 4.33 3.61 3.27
TIB 2.46 3.98 5.50 3.98 3.49
EAS 4.54 4.39 4.18 4.37 3.15
SEA 5.09 3.75 3.89 4.24 1.83
NAU 4.48 3.93 4.24 4.22 4.24
SAU 6.46 6.87 7.14 6.83 4.16
SAH 3.59 412 4.53 4.08 4.33
WAF 2.84 2.54 3.12 2.83 2.77
EAF 2.95 3.23 3.85 3.34 3.24
EQF 3.08 2.75 3.19 3.01 2.68
SQF 3.82 3.55 4.01 3.79 2.49
SAF 5.15 5.40 5.78 5.44 3.79
WNA 3.88 3.50 4.78 4.05 3.06
CNA 3.29 3.28 3.34 3.30 3.90
ENA 5.22 4.72 4.46 4.80 2.86
CAM 4.48 3.89 4.55 431 2.50
AMZ 291 2.73 2.10 2.58 1.71
CSA 4.68 4.83 5.11 4.87 3.24
SSA 7.94 7.90 8.54 8.12 5.14
SAS 431 3.56 3.13 3.67 2.49
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Figure B 3. Scatterplots of relative changes in forcing variable (AV, x axis) and corresponding relative
changes in runoff (ARF, y axis), for all the forcing variables and for the 24 regions. In each panel, each dot
represents the ARF/ AV relationship of each land grid-box in the examined region. The regions names in red
colour correspond to the selected focus regions that are presented in the main text.
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Figure B 4. Difference between the long term means (of the 1981-2010 period) of three fluxes
(SnM:snowmelt, ET: evapotranspiration and RF:runoff), forced with raw and bias corrected humidity
(forced with Raw H- forced with BC H). The fluxes are calculated for a representative grid-box with center
location at 60.25 Longitude and 60.25 Latitude.
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Figure B 5. Annual cycle of JULES' snowmass, forced with raw and bias corrected humidity [mm/day] and
bias corrected precipitation (common forcing for both runs). Annual cycles are calculated from the 1981-
2010 period, for a representative grid-box with center location at 60.25 Longitude and 60.25 Latitude.

183



d. Nobc
"~ x Taa B S

——
0%-5%  5%-10% >10%

Figure B 6. Fraction of time under supersaturated air conditions (Relative humidity>100%), calculated from
specific humidity H, temperature T and surface pressure Ps for: a. WFDEI data, b. Raw GCM data, ¢. BC
GCM data and d. data corresponding to NobcH (raw H, BC T and BC Ps). Calculation of relative humidity
uses the Clausius-Clapeyron equation. Fraction of time refers to the historical period 1981-2010.
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Percent of pan-
European land 70.40% 26.01% 3.59% 83.62% 14.67% 1.70%
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Figure B 7. The effect of bias correction on the ensemble mean of average runoff production for the baseline
period. Figures: Relative difference between the ensemble means of bias corrected (left:with WFDEI,
right:with E-OBS) and raw forcing data. Differences between -5% and 5% are classified as insignificant,
differences <-5% as drier output and differences >5% as wetter output after bias correction. Table: percent
of land area that falls into each category of change and average of the changes
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Table B 2. Results of linear regression applied to basin aggregated annual average runoff production for raw and bias adjusted Euro- CORDEX data.

Basin's Annual Average Runoff Production [mm/year]

Raw Bias Corrected
Danube Coeff. St. Error tStat P-value r 0.32 Coeff. St. Error tStat P-value r 0.19
Interc. 829.12 127.91 6.48 1.82E-09 R? 0.10 Interc. 451.47 104.08 434  291E-05 R? 0.04
X -0.24 0.06 -3.77  2.45E-04 Adj.R? 0.09 X -0.11 0.05 -219 3.02E-02 Adj. R? 0.03
Rhine Coeff. St. Error tStat P-value r 0.10 Coeff. St. Error tStat P-value r 0.08
Interc. 950.24 228.55 416 5.87E-05 R? 0.01 Interc. 640.82 204.57 3.13 2.15E-03 R? 0.01
X -0.13 0.11 -1.14  258E-01 Adj.R? 0.00 X -0.09 0.10 -0.93 356E-01 Adj.R? 0.00
Elbe Coeff. St. Error tStat P-value r 0.10 Coeff. St. Error tStat P-value r 0.26
Interc. 112.23 155.05 0.72 4.70E-01 R? 0.01 Interc. -171.71 11948 -144  153E-01 R? 0.07
X 0.09 0.08 1.18 2.39E-01 Adj.R?> 0.00 X 0.18 0.06 2.99 3.38E-03 Adj.R? 0.06
Guadiana Coeff. St. Error tStat P-value r 0.54 Coeff. St. Error tStat P-value r 0.49
Interc. 794.88 98.58 8.06 4.76E-13 R? 0.29 Interc. 713.59 100.97 7.07 931E-11 R? 0.24
X -0.35 0.05 -7.21 4.46E-11 Adj.R> 028 X -0.31 0.05 -6.28 4.87E-09 Adj.R? 0.23
Kemijoki Coeff. St. Error tStat P-value r 0.80 Coeff. St. Error  tStat P-value r 0.86
Interc.  -2257.94 186.45 -12.11  6.46E-23 R? 0.63 Interc.  -2717.09 159.07 -17.08 1.06E-34 R? 0.74
X 1.36 0.09 1483 1.72E-29 Adj.R> 063 X 1.50 0.08 19.16 2.81E-39 Adj. R? 0.74
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Table B 3. Results of linear regression applied to basin aggregated annual 10th percentile runoff production for raw and bias adjusted Euro- CORDEX data.

Basin's Annual 10" percentile Runoff Production [mm/year]

Raw Bias Corrected
Danube Coeff. St. Error tStat P-value r 0.78 Coeff. St. Error tStat P-value r 0.75
Interc. 817.99 53.05 1542  6.94E-31 R2 0.61 Interc. 442.02 3250 13.60 1.49E-26 R2 0.56
X -0.36 0.03 -13.96  2.09E-27 Adj.R2 0.60 X -0.20 0.02 -12.80 1.29E-24 Adj.R2 0.56
Rhine Coeff. St. Error tStat P-value r 0.72 Coeff. St. Error tStat P-value r 0.69
Interc. 1665.80 127.58 13.06 3.13E-25 R2 0.52 Interc. 1102.30 9445 1167 7.82E-22 R2 0.48
X -0.74 0.06 -11.76  459E-22 Adj.R2 052 X -0.50 0.05 -10.78 1.21E-19 Adj.R2 0.47
Elbe Coeff. St. Error tStat P-value r 0.46 Coeff. St. Error tStat P-value r 0.39
Interc. 530.57 79.89 6.64 8.18E-10 R2 0.21 Interc. 139.24 26.24 531  4.84E-07 R2 0.15
X -0.23 0.04 -5.84  419E-08 Adj.R2 021 X -0.06 001 -475 5.40E-06 Adj.R2 0.14
Guadiana Coeff. St. Error tStat P-value r 0.60 Coeff. St. Error tStat P-value r 0.54
Interc. 4.70 0.55 861 235E-14 R2 0.36 Interc. 0.02 0.00 763 497E-12 R2 0.29
X 0.00 0.00 -8.47 5.23E-14 Adj.R2 036 X 0.00 0.00 -715 6.16E-11 Adj.R2 0.28
Kemijoki Coeff. St. Error tStat P-value r 0.91 Coeff. St. Error tStat P-value r 0.80
Interc.  -1048.22 43.96 -23.85 9.80E-49 R2 0.82 Interc. -247.59 16.93 -14.62 535E-29 R2 0.64
X 0.53 0.02 2441  8.67E-50 Adj.R2 0.82 X 0.13 0.01 1518 262E-30 Adj.R2 0.64
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Figure B 8. Absolute differences between Euro-CORDEX data bias adjusted against the WFDEI dataset and
raw Euro-CORDEX data, for the variables of precipitation (right block) and temperature (left block).
Differences are calculated from the historical, +2 SWL and +4 SWL time-slice averages, for all dynamical
downscaled GCMs and their ensemble mean. Bottom block: Coefficient of variation between the ensemble
members, for raw and bias corrected against the WFDEI dataset precipitation and temperature forcing
variables, for the historical, +2 SWL and +4 SWL time-slices. The average value for the pan-European area
is shown in each sub-figure.
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Figure B 9. Absolute differences between Euro-CORDEX data bias adjusted against the E-OBS dataset and
raw Euro-CORDEX data, for the variables of precipitation (right block) and temperature (left block).
Differences are calculated from the historical, +2 SWL and +4 SWL time-slice averages, for all dynamical
downscaled GCMs and their ensemble mean. Bottom block: Coefficient of variation between the ensemble
members, for raw and bias corrected against the E-OBS dataset precipitation and temperature forcing
variables, for the historical, +2 SWL and +4 SWL time-slices. The average value for the pan-European area
is shown in each sub-figure.
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Figure B 10. Comparison between the simulations of raw Euro-CORDEX data and bias adjusted against two
different datasets (WFDEI and E-OBS) for five study basins. Bars show the ensemble means and error bars
the minimum and maximum ensemble member values. (Top row) Annual 10th percentile runoff production
for the historical period.OBS values are derived from GRDC discharge measurements converted to basin
averages at the annual time-scale. (Middle row) Percent change in annual 10th percentile runoff production
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Precipitation Change (%)

Figure B 11. Percent change in mean annual precipitation per SWL compared to the baseline period, derived
from the HELIX ensemble
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Table B 4. Relative changes in mean and low and high runoff, per SWL, for each ensemble member of the
ISIMIP ensemble, aggregated for 8 European sub-regions.

ISIMIP RF_mean

SWL1.5 Bl IP FR ME SC AL MD EA
GFDL 13.59% 12.02%  11.98% 8.31% 0.46%  12.01% 3.42% -3.29%
NorESM 437%  1.64% 1.54% -2.61% -5.98% -1.57% -5.52% -6.53%
MIROC 7.42%  8.08%  10.69%  11.70% 4.22%  13.67% 5.28% 0.23%
IPSL -1.31% -1.97% -3.09% 0.10% 6.64% 0.43% 5.32% 7.48%
HadGEM 3.73%  4.13% 1.98% -3.48% -1.35% -6.15% -1.84% -0.28%
EnsMean 5.88%  5.24% 5.12% 3.64% 0.90% 4.74% 1.59% -0.55%
SWL2 Bl IP FR ME SC AL MD EA
GFDL 16.96% 15.86%  16.00%  12.61% -0.23%  16.42% 3.49% -7.41%
NorESM 588%  4.20% 2.26% -2.02% -4.99% -2.00% -5.03% -6.79%
MIROC 12.41% 11.92%  18.65%  20.47% 6.46%  23.73% 8.83% -1.96%
IPSL 1.88%  1.40% -0.07% 0.32% 5.72% -0.86% 3.82% 4.30%
HadGEM 443%  4.84% 2.94% -5.44% -3.00% -8.31% -4.50% -2.75%
EnsMean 8.74%  8.20% 8.68% 6.49% 0.96% 7.42% 1.73% -2.99%
SWL4 Bl IP FR ME SC AL MD EA
GFDL

NorESM 12.78%  8.29%  11.83% 4.77% -3.36% 5.12% -2.69% -5.88%
MIROC 32.75% 32.14%  40.74%  3331%  11.71%  34.39%  15.62% -4.27%
IPSL 18.42% 17.53%  18.45% 7.70% -3.76% 6.06% -0.06% -11.27%
HadGEM 8.24%  7.60% 5.75% 0.71% -4.57% -1.72% -4.45% -7.18%
EnsMean 14.76% 12.31%  15.73% 8.54% -1.58% 8.20% 0.60% -7.44%
ISIMIP RF _low

SWL1.5 Bl IP FR ME SC AL MD EA
GFDL 40.95% 55.05% 36.19%  24.03% 9.39% 28.29%  11.62% 3.61%
NorESM 18.21% 11.22% 11.22% 3.59% -3.15% 4.83% -2.66% -4.42%
MIROC 27.92% 34.27% 32.08%  21.39%  10.93%  2331%  11.94% 5.42%
IPSL 441% 1531%  4.40% 9.32% 15.90% 7.31% 13.36%  14.61%
HadGEM 8.92% 16.35%  5.17% -10.01%  -11.45% -15.93%  -9.26% -9.52%
EnsMean 21.23% 28.25%  19.11%  12.15% 5.23% 13.05% 5.97% 2.06%
SWL2 BI IP FR ME SC AL MD EA
GFDL 4951% 67.09%  46.65%  35.02%  10.48%  40.00%  14.41% -1.73%
NorESM 27.12% 23.46%  19.17%  13.20% 097%  12.04% 1.09% -3.17%
MIROC 40.94% 47.06%  46.62%  33.54%  12.56%  36.86%  14.45% 0.02%
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IPSL 7.94% 28.87% 4.48%  10.69%  13.81% 7.26%  11.93% 9.40%

HadGEM 12.75% 21.73% 7.81% -11.09% -1451% -14.79% -12.82% -15.37%

EnsMean 28.79% 39.43%  26.53%  19.66% 5.78%  20.90% 7.06% -2.07%

SWL4 Bl IP FR ME SC AL MD EA

GFDL

NorESM 41.77% 33.25%  38.21%  26.30% 8.30%  28.78% 6.98% 3.26%

MIROC 93.47% 93.69%  96.53%  54.05%  19.29%  53.83%  23.31% -1.77%

IPSL 57.87% 95.19%  51.00%  24.34% -6.92%  20.29% 0.09% -19.27%

HadGEM 18.63% 27.50% 8.22% -6.98%  -17.30% -5.24%  -16.11%  -23.96%

EnsMean 43.47% 56.74%  43.07%  25.66% 1.95%  25.62% 5.04% -9.00%

Table B 5. Relative changes in mean and low runoff, per SWL, for each ensemble member of the EURO-
CORDEX ensemble, aggregated for 8 European sub-regions.

EURO- RF_mean

CORDEX

SWL1.5 BI IP FR ME SC AL MD EA
GFDL 12.89%  -2.34%  22.22%  12.37%  23.39% 7.32%  -532%  -1.92%
NorESM 5.34% -10.36%  -1.59% 8.29% 7.63%  -544%  -4.99% 6.36%
MIROC5 2.23% 2.70% 4.52% 6.08% 351% 11.02%  11.36% 7.24%
IPSL 571%  -4.23%  -2.82% 8.25%  10.10%  -2.83% 8.00% 3.41%
HadGEM?2 6.66% 7.83% 12.65%  14.87% 8.92% 3.57% 9.06% 9.10%
EnsMean 6.33%  -1.45% 6.72%  10.00% 9.93% 2.64% 3.42% 5.05%
SWL2 BI IP FR ME SC AL MD EA
GFDL 11.56%  -3.11% 17.13% 511%  28.31% 462%  -201%  -0.90%
NorESM 2.52% -11.78% 0.22% 9.32% 10.68%  -2.81% 0.80% 5.38%
MIROC5 6.45% -12.44% 756%  1955%  13.32%  10.29% 2.26%  14.15%
IPSL 6.56% -14.04%  -8.32% 8.13% 13.64%  -6.40% 3.84% 7.39%
HadGEM?2 3.69%  -7.89%  -2.88% 17.26% 11.59%  -1.51% 9.47%  13.04%
EnsMean 590%  -9.79% 2.77%  11.99%  14.46% 0.82% 2.78% 7.84%
SWL4 Bl IP FR ME SC AL MD EA
GFDL

NorESM 8.58% -37.80%  -9.65%  15.15%  20.30% -10.77% -10.31% 3.77%
MIROC5 13.69% -14.18% 4.52% 7.48%  26.73%  -1.29%  -4.33% 5.28%
IPSL 16.40% -28.02% 7.10%  10.62%  39.41% -12.55% -11.55% 0.34%

HadGEM?2 8.12% -30.99% -6.93%  20.30%  21.10% -8.25% 0.40% 4.17%
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EnsMean 15.49% -28.38%  -0.71% 17.96% 34.83% -7.81%  -7.20% 6.74%
EURO- RF_low

CORDEX

SWL1.5 BI IP FR ME SC AL MD EA
GFDL 4.04% -39.52%  14.50%  48.54%  84.00%  17.42% -23.01% -36.47%
NorESM -12.79%  -49.00%  -33.82% 409%  33.49%  -1.57% -18.19% 3.85%
MIROC5 -16.53% -27.12% -36.25% 9.73%  46.49%  45.28% 6.33% 67.87%
IPSL 15.30% -31.05%  -4.77% 20.63% 61.90% -10.01%  -4.81% -20.35%
HadGEM2 -10.59% -46.46% -24.97%  -3.90% 43.17%  -2.38% -20.20% -34.70%
EnsMean -5.93% -40.50% -21.06%  11.52%  49.01% 8.50% -12.77% -11.29%
SWL2 BI IP FR ME SC AL MD EA
GFDL -6.83% -67.03% -15.98% 9.57% 101.94%  -7.03% -32.02% -54.98%
NorESM -25.19% -62.95% -42.50%  -8.58%  53.62% 2.20% -25.92%  -2.98%
MIROC5 -19.07% -60.15% -43.69%  54.27%  76.68%  50.31% -16.31% 154.01%
IPSL 7.32% -50.15% -25.52%  22.84%  96.95% -17.56% -19.71% = 17.30%
HadGEM2 -1558% -71.14% -47.20% 2.86%  51.61% -13.06% -23.17% -11.96%
EnsMean -13.40% -63.97%  -36.98% 9.97%  69.75% 2.05% -23.82% 3.20%
SWL4 BI IP FR ME SC AL MD EA
GFDL

NorESM -28.05% -92.04% -69.23% -23.88%  63.72% -31.22% -53.01% -27.68%
MIROC5 -20.92% -82.25% -69.06% -10.14%  93.02% -12.64% -41.45% 2.89%
IPSL -9.84% -75.02% -55.61% -24.65% 151.22% -70.38% -46.55% -41.36%
HadGEM2 -20.71% -89.96% -69.43% -24.91%  78.99% -67.74% -47.67% -47.45%
EnsMean -15.78% -87.39% -66.07% -14.83% 112.70% -44.76% -48.69% -28.35%

Table B 6. Relative changes in mean, low and high runoff, per SWL, for each ensemble member of the
HELIX ensemble, aggregated for 8 European sub-regions.

HELIX RF_mean

SWL1.5 Bl IP FR ME SC AL MD EA
EC_EARTH_r1 3.06% -5.74% -0.93% 9.18%  16.94% 1.92% 6.45%  20.84%
EC_EARTH_r2 5.19%  10.71% 3.02% 8.98%  13.53% 6.47% 0.73% 6.72%
EC_EARTH_r3 6.17% 8.69% 5.76% 4.01% 6.90% -0.32% 6.01% 8.20%
EC_EARTH_r4 1.08% -13.51% -1.92%  1541%  12.45% 7.01% 7.78%  40.03%
EC_EARTH_r5 5.37% 216%  12.09%  24.68%  19.58%  12.30% -1.03% 8.91%
EC_EARTH_r6 5.92% 7.23% 9.38% 8.40%  11.61% 14.01% 1992%  13.35%
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EC_EARTH_r7 6.26%  -357%  512%  12.35%  16.41%  -4.19% -1538%  2.41%
HadGEM_r1 279% -15.38%  -7.83%  -1.34%  1534%  -3.48% -10.86%  -8.14%
HadGEM_r2 1.09%  -5.80%  -529%  -2.16%  9.76%  -2.07%  -0.86%  -2.90%
HadGEM_r3 361%  -9.04%  -7.15% -13.13%  3.15%  -9.94%  0.45% -10.73%
HadGEM_r6 159%  4.20%  125%  -4.03%  4.94%  9.49%  659%  0.47%
HadGEM_r8 134%  650% -0.10%  -5.34%  959%  -1.87%  -1.82%  -5.35%
HadGEM_r9 270% -16.34%  2.81%  530%  8.44%  1.96%  1.33% -12.56%
EnsMean 3.35%  -2.30%  1.34%  454%  11.10% = 225%  1.44%  4.30%
SWL2 BI IP FR ME sC AL MD EA
EC_EARTH_rl 875%  826%  9.96%  7.99% 23.31%  4.03%  3.69%  12.79%
EC_EARTH_r2 6.71%  19.03%  12.03% 1027%  17.19%  1228%  7.22%  13.52%
EC_EARTH_r3 499%  14.48%  9.12%  1.86% 11.71%  0.92%  7.84%  6.56%
EC_EARTH_r4 847% -15.36%  3.42%  24.81%  27.69%  11.94%  -1.00%  33.32%
EC EARTH r5  12.77%  -3.06%  11.64% 26.33%  28.20%  9.45%  -8.33%  4.74%
EC_EARTH_r6 8.61%  -0.31% 11.72%  18.65%  13.63%  1527%  13.39%  14.69%
EC EARTH r7  11.66%  -541%  811% 2055%  30.79%  -5.26% -18.37%  7.12%
HadGEM_r1 -0.12% -11.66%  -337%  -1.60% 14.41%  -3.37%  -855% -10.37%
HadGEM_r2 448% -12.83%  -7.58%  -1.35%  12.45%  -431%  -590%  -6.78%
HadGEM_r3 391%  -753% -10.28% -17.40%  586% -1127%  0.83% -14.20%
HadGEM_r6 -357%  -110%  -0.06%  -7.07%  556%  3.80%  -0.80%  -9.80%
HadGEM_r8 091%  -5.63%  -9.14%  -7.25% 17.58%  -8.55%  -5.65%  -6.33%
HadGEM _r9 272% -2322%  -207%  2.42%  1355%  -431%  0.63% -15.45%
EnsMean 5.44%  -3.60%  240%  567% 1691%  124%  -121%  1.90%
SWL4 BI I2 FR ME sC AL MD EA
EC EARTH rl  17.08%  5.12% 26.98%  36.96% 62.97% 17.47%  -2.14%  24.80%
EC_EARTH_r2

EC EARTH r3  13.96%  -420%  2.04%  656% 43.05%  053%  3.12%  8.12%
EC EARTH r4  19.03% -16.79%  8.90% 3543%  48.84%  9.34%  -459%  26.89%
EC_EARTH_r5

EC EARTH 6  13.79% -1559%  16.59%  30.72%  51.22%  1657%  8.96%  25.85%
EC EARTH r7  22.95%  0.19% 27.36%  38.28%  49.15%  9.05%  -8.82%  17.44%
HadGEM rl 410% -19.09%  -6.30%  -3.83%  42.40% -1122% -15.83% -10.86%
HadGEM_r2

HadGEM_r3 191% -16.81% -13.77% -17.06%  1055% -11.75%  -3.71%  -8.91%
HadGEM _r6 11.22% -16.13%  513%  3.72% 2332%  053% -16.87% -11.31%
HadGEM_r8 6.68%  -9.04%  -7.04%  -856% 21.57% -19.69% -16.27% -20.86%
HadGEM_r9 5.22% -22.28%  -2.06%  8.84%  2358%  -5.64%  -2.82% -13.26%
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EnsMean 11.32% -12.05%  524% 1351% 39.53%  0.23%  -5.88%  4.04%
HELIX RF_low

SWL15 BI IP FR sC AL MD EA
EC EARTH r1  11.85% -18.98% -19.40% -31.40%  63.65%  -7.57% 68.31%  71.66%
EC_EARTH_r2 719%  17.68%  -7.53%  -3.37%  33.68%  16.02%  3.35% -23.59%
EC_EARTH_r3 528% -13.99%  -2.28%  7.05% 2159%  -0.90%  -3.01%  -6.21%
EC_EARTH_r4 249% -60.97%  -7.35%  38.86%  28.83%  24.68%  9.88% 146.34%
EC_EARTH_r5 1.66%  653%  19.00%  39.79%  57.81%  14.79%  16.33%  -5.20%
EC_EARTH_r6 3.70% 169.88%  39.99%  -141%  33.28%  16.15% 91.26%  8.55%
EC_EARTH_r7 -1.45% -35.60%  457%  16.63%  34.39%  -3.60% -59.85% -15.58%
HadGEM_r1 7.48% -66.96% -39.05% -38.70%  29.31%  -1.64% -43.70% -40.51%
HadGEM_r2 -12.90% -35.36% -13.13% -11.61%  1594% -11.96% -43.20% -47.26%
HadGEM _r3 8.02% -54.93% -29.70% -45.84%  10.62% -21.62% -29.63% -62.51%
HadGEM_r6 11.81%  6.42%  -9.67% -2855%  21.58%  2.14% -11.40% -54.08%
HadGEM _r8 -958%  7.76% -31.17% -4553%  16.00%  -8.02% -24.32% -52.97%
HadGEM _r9 -6.15% -51.24% -11.83%  -3.92% 12.21%  4.14% -26.63% -51.57%
EnsMean -0.67% -20.14%  -7.18%  -7.72%  2633%  1.15%  -9.66% -21.19%
SWL2 BI IP FR sC AL MD EA
EC EARTH r1  20.33%  -127%  -5.92% -33.88% 87.25%  -523%  39.07%  10.58%
EC_EARTH r2  1137%  98.44%  2510%  12.32%  37.83%  24.47%  26.93%  4.67%
EC_EARTH_r3 572% -25.83%  -2.04%  -6.12%  38.18%  -0.13% -11.28% -24.44%
EC_ EARTH r4  14.06% -39.66%  23.87%  93.24%  73.12%  2530% -17.06% 144.88%
EC_EARTH_r5 078%  4.79%  1457% 5437%  83.17%  14.09% -14.99% -17.49%
EC_EARTH_r6 536% 77.83%  40.48%  24.68% 51.03% 17.15%  55.88%  9.40%
EC_EARTH_r7 2.96% -22.55%  37.75%  28.47%  67.77%  10.65% -75.04% -15.22%
HadGEM_r1 -1156% -62.60% -16.01% -39.77%  36.68%  1.71% -49.60% -46.32%
HadGEM_r2 -1336%  -46.06% -11.34%  0.64%  19.72%  -9.76% -55.30% -49.96%
HadGEM r3 3.01% -68.29% -40.12% -57.25%  15.00% -24.01% -57.41% -75.62%
HadGEM_r6 1761% -21.95% -21.97% -4550%  30.68% -14.99% -27.83% -75.86%
HadGEM _r8 -18.24%  -3850% -43.98% -48.63%  28.71% -15.06% -36.84% -57.82%
HadGEM_r9 5.13% -77.46% -24.93% -17.57%  26.92% -1554% -32.42% -59.85%
EnsMean 022% -25.84%  -2.40%  -4.67%  42.70%  -0.39% -24.82% -29.54%
SWL4 BI 2 FR sC AL MD EA
EC EARTH r1  19.36%  37.68%  60.35%  69.00% 224.62%  20.78%  8.75%  7.02%
EC_EARTH_r2

EC_EARTH_r3 -120% -45.77% -10.06% -17.95% 117.94%  -8.65% -20.14%  -40.50%
EC_ EARTH r4  22.16% -17.97%  72.23% 118.88% 159.41%  21.11%  -0.44%  34.51%
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EC_EARTH_r5

EC_EARTH_r6 13.64%  82.26%  75.20%  67.28% 148.32% 520%  75.36% -7.99%
EC EARTH_r7 -5.35% 9.60%  84.69%  59.78% 118.17% -255% -1357%  25.12%
HadGEM r1 -19.72%  -78.36%  -20.98%  -43.00% 101.46% -29.18% -58.82%  -60.24%
HadGEM _r2

HadGEM_r3 -16.67% -82.68% -44.19% -58.80%  32.09% -29.93% -42.03% -72.73%
HadGEM_r6 -10.01%  -63.96% -4.99% -19.45%  57.52% -33.28% -60.79% -77.25%
HadGEM_r8 -23.64%  -77.99% -41.33% -52.36%  34.45% -53.51% -65.30% -77.93%
HadGEM_r9 -17.50% -66.56% -11.33% -752%  55.17% -21.19% -10.67% -56.48%
EnsMean -5.19%  -43.73% 9.20% 6.21% 101.17% -15.63% -22.96% -39.09%

196



HELIX-EC-EARTH ISIMIP

HELIX-HADGEM

Figure B 12. Relative change in mean annual runoff (RFmean) per SWL, simulated by the three different
sub-ensembles with common forcing models: ISIMIP (top), HELIX-EC-EARTH (middle) and HELIX-
HADGEM (bottom).
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HELIX-EC-EARTH ISIMIP
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Figure B 13. Relative change in 10" percentile runoff (RFlow) per SWL, simulated by the three different
sub-ensembles with common forcing models: ISIMIP (top), HELIX-EC-EARTH (middle) and HELIX-
HADGEM (bottom).
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ISIMIP

HELIX-EC-EARTH

HELIX-HADGEM

Figure B 14. Relative change in extreme short term drought (SRI<=-1.5) duration per SWL, simulated by
the three different sub-ensembles with common forcing models: ISIMIP (top), HELIX-EC-EARTH (middle)
and HELIX-HADGEM (bottom).
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Figure B 15. Relative change in extreme long term drought (SRI<=-1.5) duration per SWL, simulated by
the three different sub-ensembles with common forcing models: ISIMIP (top), HELIX-EC-EARTH (middle)
and HELIX-HADGEM (bottom).
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