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Abstract 
 

Reinforcement Learning is a Machine Learning technique, where a decision making algorithm,            
also known as autonomous agent, interacts with an (unknown) environment by making            
observations and taking actions, while it is receiving positive or negative rewards at each step               
based on its performance. During this process, the agent tries to learn an optimal decision               
making policy, namely which action selections at each state will help to maximize the expected               
total reward in the long term. This technique is ideal for optimal control problems, games and                
many other domains. Many RL architectures use a discrete set of actions to represent a               
continuous Cartesian action space and the agent is called to select one of these discrete actions at                 
each time step. Usually, this discretization of a continuous action space reduces the ability of the                
agent in taking actions that perform best, since the agent is forced to choose among the discrete                 
actions. There are two alternative solutions to this problem: either increase the density of discrete               
points, which affects the responsiveness of the agent, or adopt a discretization of variable              
resolution which adapts to the needs of the problem. In this thesis we present a method for                 
creating discretizations able to adapt dynamically according to the use of the action space. The               
proposed adaptive discretization can match automatically a big variety of different patterns in a              
few adaptation steps, while maintaining a constant number of discrete points. We embed this              
adaptive discretization method into the action space of a particular Deep RL agent performing in               
specific environments that require precision. Our adaptive discretizations take advantage of the            
selective use the agent makes over the action space and adjusts the density of the discrete points                 
in the space, giving increased number of discrete actions and thus higher resolution to regions               
where it is needed. As a result, the agent’s precision and learning performance is increased,               
without significant increase in computational resources.  
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Περίληψη  
 
 

Η Ενισχυτική Μάθηση είναι μια τεχνική Μηχανικής Μάθησης, όπου ένας αλγόριθμος λήψης            
αποφάσεων, γνωστός και ως αυτόνομος πράκτορας, αλληλεπιδρά με ένα (άγνωστο) περιβάλλον           
κάνοντας παρατηρήσεις και ενέργειες σε αυτό, ενώ ταυτόχρονα παίρνει θετική ή αρνητική            
επιβράβευση σε κάθε βήμα με βάση την απόδοσή του. Μέσα από αυτή τη διαδικασία, ο               
πράκτορας προσπαθεί να μάθει τη βέλτιστη πολιτική λήψης αποφάσεων, πιο συγκεκριμένα να            
βρει επιλογές ενεργειών σε κάθε κατάσταση που θα βοηθήσουν να μεγιστοποιηθεί η            
αναμενόμενη συνολική επιβράβευση μακροπρόθεσμα. Η τεχνική αυτή είναι ιδανική για          
προβλήματα βέλτιστου ελέγχου, για παιχνίδια και πολλά άλλα πεδία. Πολλές αρχιτεκτονικές           
πρακτόρων Ενισχυτικής Μάθησης χρησιμοποιούν ένα σύνολο διακριτών ενεργειών που         
αναπαριστούν έναν συνεχή Καρτεσιανό χώρο ενεργειών και ο πράκτορας καλείται να επιλέξει            
μία από αυτές τις διακριτές ενέργειες σε κάθε χρονικό βήμα. Συχνά, αυτή η διακριτοποίηση του               
συνεχή χώρου ενεργειών μειώνει την ικανότητα επιλογής ενεργειών που αποδίδουν καλύτερα,           
ενώ ο πράκτορας είναι αναγκασμένος να επιλέξει μόνο μεταξύ των διακριτών ενεργειών.            
Υπάρχουν δύο εναλλακτικές λύσεις σε αυτό το πρόβλημα: είτε να αυξηθεί η πυκνότητα των              
διακριτών σημείων, το οποίο θα επηρεάσει την ταχύτητα αντίδρασης του πράκτορα, είτε να             
υιοθετηθεί διακριτοποίηση με μεταβλητή ανάλυση προσαρμοσμένη στις ανάγκες του         
προβλήματος. Σε αυτήν την εργασία παρουσιάζουμε μια μέθοδο δημιουργίας διακριτοποιήσεων          
που έχουν τη δυνατότητα να προσαρμόζονται δυναμικά ανάλογα με τη χρήση του χώρου             
ενεργειών. Η προτεινόμενη μέθοδος προσαρμοσμένης διακριτοποίησης μπορεί να χειριστεί         
αυτόματα μια μεγάλη ποικιλία μοτίβων μέσα σε λίγα βήματα προσαρμογής, ενώ διατηρεί τον             
αριθμό των διακριτών σημείων σταθερό. Ενσωματώσαμε αυτή τη μέθοδο στον χώρο ενεργειών            
ενός συγκεκριμένου πράκτορα Βαθιάς Ενισχυτικής Μάθησης που ενεργεί σε περιβάλλοντα που           
χρήζουν αυξημένης ακρίβειας. Οι προσαρμοσμένες διακριτοποιήσεις μπορούν να        
εκμεταλλευτούν την επιλεκτική χρήση που κάνει ο πράκτορας στο χώρο ενεργειών και να             
αυξομειώσουν την πυκνότητα των διακριτών σημείων ανά περιοχή, δίνοντας αυξημένο αριθμό           
ενεργειών και συνεπώς υψηλότερη ανάλυση σε περιοχές όπου υπάρχει ανάγκη. Αυτό είχε σαν             
αποτέλεσμα να αυξηθεί η ακρίβεια και τελικά και η απόδοση του πράκτορα, χωρίς σημαντική              
αύξηση στις απαιτήσεις υπολογιστικών πόρων. 
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1. Introduction 

1.1 Thesis Introduction 
Reinforcement Learning (RL) architectures (Sutton and Barto, 1998) are used to solve a big              
variety of problems, such as strategic decision making, optimal control, games and many others.              
RL agents repeatedly compute their next actions based on their previous observations until they              
will get to their target, while they are continuously receiving rewards at each step. By processing                
the information collected through the interaction with their environment, they have the ability to              
adοpt complex action decision policies, which maximize the total expected reward in the long              
run. Their actions are usually multi-dimensional continuous control signals within a specified            
range. Some RL agents are designed to work with discrete control signals, also known as discrete                
action spaces. In these cases, the agent is forced to select one of the available discrete actions at                  
each time step. This setting restricts their ability to be flexible and perform smoothly or, in other                 
words, to make use of the action space in any way they want. As a result, agents that use discrete                    
action spaces are forced to use discretizations with increasingly higher resolution, which reduces             
their performance, making them incompetent to address problems that require real-time           
responses.  

1.2 Thesis Contribution 
Most times, agents are using extensively some parts of the action space, while others may not get                 
used at all. By taking advantage of this behavior, it is possible to create discretizations that use                 
lower resolution on the parts that are used less, to increase the resolution on the other parts that                  
are used more. This thesis presents a method that creates adaptive discretizations. These             
discretizations are adapting according to the frequency of the use of each part of the space, while                 
the number of discrete points remain constant. If a part is used more, the resolution on this part                  
will increase and vice versa. The goal is to embed this method to RL agents with discrete action                  
space, to provide them with the ability to be smoother and faster at the same time. This method                  
gives them also the ability to be competitive in high-dimensional environments where a uniform              
discretization that would cover the whole space would be prohibitively large. This method was              
implemented in Python 3, with extensive use of many well-known libraries and tools like              
Tensorflow and openai-gym environments. All the plots in this thesis were made with using the               
maplotlib ​​library. 

1.3 Thesis Overview 
Chapter 2 contains a basic theoretical background on the Machine Learning algorithms that are              
used later and a brief mathematical background on discretizations. Chapter 3 contains the             
statement of the problem we study and an introduction to the Deep Reinforcement Learning              
agent we used. In Chapter 4, a detailed description of the structure and functionality of the                
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proposed Adaptive Discretization method is given, as well as its embedding in the RL agent.               
Finally, the results and the conclusion of the proposed method can be found in Chapter 5.  
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2. Background 

The complexity of the problems assigned to computers is increasing with enormous rate. Due to               
this complexity, the ability to solve problems with hard-coded programs is very limited. Thus,              
Artificial Intelligence (AI) was created (Russell and Norvig, 1995), a field of computer science              
that attempted to give to computers the ability to solve complex problems and find strategies that                
bring the best results. Reverse engineering of the behavior of human thinking and many other               
intelligent behaviors found in nature created autonomous agents, able to solve problems without             
any knowledge of the rules and limitations that govern them. 

2.1 Machine Learning 
Machine Learning (ML) is a subfield of AI that focuses on making computers discover the best                
strategies by using learning as the main tool. Learning is a procedure of understanding the goals                
of a given task within a certain domain and the ways to reach these goals, by collecting and                  
generalizing over experience collected from the target domain. Every ML algorithm has an             
architecture able to learn things using a training procedure. This training procedure is where the               
system is trying to generalize over the collected experience and reach as close as possible to an                 
optimal solution in rational time. ML splits into three main categories that are differentiated by               
the training techniques used:  

● Supervised learning​: A procedure of repeatedly feeding the system with inputs and the             
desirable output trying to discover the hidden mapping function. This learned function            
will be used afterwards to output results for any given input, even unseen ones.  

● Reinforcement learning​: A technique used frequently in environment-interaction        
problems, where an agent must adapt its actions in order to reach certain goals. Through               
behaviorism, the agent is trying to find the best action in each state it encounters and                
finally discover the best action strategy to follow in the environment. 

● Unsupervised learning​: Like supervised learning, the agent is given a set of inputs and              
tries to discover patterns behind them, but this time without any output labels or any kind                
of help. The algorithm by itself has to generalize over the input and understand the               
hidden structures. 

2.1.1 Reinforcement Learning  

In reinforcement learning (RL), the environment is modeled as an Markov Decision Process             
(MDP) (Bellman, 1957), where a decision maker, known as the agent, interacts with a stochastic               
environment in sequential steps and collects rewards at each step depending on its ability to               
fulfill the goal. The agent can be at any given time ​t in any state ​s ​of the state space S ​∊ ℝ​m​, ​and                        
has to select one action ​a ​from the action space ​A ​∊ ℝ​n to apply to the environment. Each state or                      
action is a ​n​-dimensional and ​m​-dimensional vector respectively inside a continuous or discrete             
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space. Applying the selected action the agent, stochastically transits to the next state ​s​t+1 ​with               
probability P​(​s​t+1​|s ​t​, a​t​)​. After each step, it is rewarded by a value drawn from the reward                
function ​r​(​s​t​, a ​t​). The rewards are discounted by a factor ​γ ​∊ [0, 1] over time, so the total reward                    
shrinks in the long run and becomes a finite number even for an infinite horizon of steps. After a                   
full episode ​E​ of interaction that lasted ​T​ steps, the agent collects a total reward R​E​ as follows: 

r(s , )RE = ∑
T

t=0
γt

t at  

Using samples of state, action, next state and reward (​s​t​, a ​t​, s ​t+1​, r​) at each step, and no other                   
information, the agent has to adopt a behavior, called policy, ​π​(​s​)​=a​, under which it will select                
its action ​a for any state ​s​. Most RL algorithms make use of the recursive state-action value                 
function ​Q(s, a)​, which can be computed using Bellman’s equation, ​to calculate the expected              
reward and thus evaluate the current policy ​π​.  

(s , ) (s , ) (s |s , ) Q (s , (s ))  Qπ
t at = r t at + γ ∑

 

s ∊St+1

P t+1 t at
π

t+1 π t+1  

The goal is to learn an optimal policy ​π​(​s​) ​that maximizes the expected total reward over all                 
possible episodes. Because the transition model ​P is part of the environment, the reward system               
is the only thing that forces the agent to improve itself. Thus, setting the goals of the agent is                   
done by customizing the reward function to reward the desirable behaviors and punish the              
unwanted ones.  

In real world problems, the agent can be the brain of a robot, with the measurements of the                  
sensors as input states and all the possible combinations of control signals to the actuators as                
actions. By setting the appropriate reward function, the agent can learn to perform any task in a                 
way that delivers the maximum expected total reward, such as controlling a vehicle, playing a               
game or performing competitively in any other decision making domain. 

2.1.2 Neural Networks  

Neural networks (NN) are supervised learning models inspired by the biological neurons found             
in the brains of all animals, including human. They process and transmit signals in parallel and                
form complex circuits that are able to implement all kinds of intelligent behavior. 

A NN consists of a set of neurons connected in a network topology formation. Neurons have                
input and output connections. Each input connection of a neuron holds a weight that acts as a                 
multiplicative factor to the carried incoming signal. The neuron itself sums up all these weighted               
input signals and transfers the result to its output connections. If ​x is the input signal vector and                  
W the weight matrix, then the output vector is ​y=​W​​×x+b ​where ​b is the bias value preventing                 
the neuron to give always zero output in case of zero weight. Finally, a ​sigmoid function is                 
applied to ​y to constrain the output value into the desirable range. By adjusting the ​W and ​b                  
parameters, it is able to modify the output to a great variety of functions, while stacking many                 

 

 

Adaptive Action Space in RL 12 



 

neurons in a layer with the same inputs, the output can implement more complex functions. Also,                
stacking multiple layers in a row, creating a multi-layer NN, or Deep Neural Network (DNN),               
the functionality is extended to even more complex function approximations.  

A procedure for training is essential for the network to adjust its weights and biases in order to                  
produce the desired outputs. This process of adjustment is called backpropagation. A comparison             
between the current output of the network and the desirable one, gives enough information to               
trace back into the network to refine any weight and bias, so that it will produce the right result.                   
Repeating this procedure for many inputs customizes all the parameters as needed. So, training              
requires a large number of labeled samples, that is a set of inputs with their corresponding                
outputs, to feed into the network repeatedly followed by back propagations. The samples must be               
carefully selected, so that they match most of the possible inputs. NN’s and DNN’s ability to                
generalize over the input samples make them a powerful tool for classifying inputs or for               
approximating functions.  

2.2 Discretization 
Discretization is the procedure of associating a continuous set to a discrete one. It splits the                
continuous set into smaller subsets and assigns a discrete value to each one of them to represent                 
them. These sets can be of any type, but most of the times they are continuous spaces that are                   
approximated by discrete points. If the space is restricted, then the number of the discrete points                
is always finite which makes the discretization function a mechanism that associates elements of              
an infinite set with a finite one. This is really useful in computer science, where information is                 
always discrete. In order for the representation to be accurate, points of the continuous set have                
to be “close” to points of the discrete set. It is possible for discretizations of the same continuous                  
space to provide different accuracy. This brings out the term of efficiency of a discrete set.  

2.2.1 Annotations and symbols 

For this thesis, it is assumed that the continuous and the discrete spaces that are used are                 
multi-dimensional with specified limited ranges along each axis. Discrete points sit inside the             
continuous space at specified locations. Continuous points are assigned to their closest neighbor             
discrete point, meaning that for each discrete point, there is a region around it, where all                
continuous points are nearest to that point. Where one regions ends, another one starts, so they                
all collectively cover to the complete continuous space. 

Before digging into the details, it is necessary to introduce some terminology and a list of                
symbols that will be used.  

● Symbols 
➝ n​ : number of dimensions, {​n∊ℤ​+​} 
➝ R ​: continuous space 
➝ a, b​: the lower and the upper limit of ​R, ​{​a,b∊ℝ​n​} 
➝ x​ ​= ​[​x​1​, x​2​, ..., x​j​, …, x ​n-1​]​ ​: a point inside the space, {​x∊ℝ​n​}​ ​and {​j∊ℤ: 0 ≤ j ≤ n-1 ​} 
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➝ k​ : the total number of discrete points, ​k∊ℤ​+ 
➝ x​i ​ = ​[​x ​i,1​, x​i,2​, ..., x​i,j​, …, x​i,n-1​] : ​i​-th​ ​discrete point of the discretization, 

 {​i∊ℤ: 0 ≤ i ≤ k-1​}​ and ​{​j∊ℤ: 0 ≤ j ≤ n-1​} 

➝ R​i​ ​: region around the discrete point ​x ​i​, whose points ​x ​ are assigned to ​x ​i  
➝ a​i,j​,b​i,j​ ​: the lower and the upper limit of ​R​i​ along axis ​j​,  {​a​i,j​,​b​i,j​∊ℝ​n​: ​ ​a ​i,j ​< ​b​i,j​}​ ​and 

{​j∊ℤ: 0 ≤ j ≤ n-1​} 

 

● Formulas 

➝ : The volume of ​R​i​. In case of ​n=1 ​, ​V ​i​ is just the length of this(b )V i = ∏
n

j=0
i,j − ai,j  

range, and in case of ​n=2​, ​V​i​ is the surface area of the corresponding plane. 

➝  : The well known Euclidean distance of a discrete(x , )   d i x = √ (x )∑
n−1

j=0
i,j − xj

2  

point to a point in the continuous space. 

 

Also, a discretization is rated by its accuracy and its error, which is associated with the distance                 
of a point ​x to its neighbor ​x​i​. Distances and errors are correlated through an Error Function (EF),                  
error = EF(distance)​. For the purpose of this introduction and in order to make it simpler, we                 
will eliminate the EF and assign directly the distance to the error, (​error = distance​). Error                
functions will be covered in detail later. The average distance, or Mean Error (​ME​), will be used                 
as evaluation metric for each discrete point ​x​i ​or for the whole set of discrete points. ​ME ​(​x ​i​) will                  
be the annotation for the error produced by the point ​x​i ​and ​ME will be the total average error                   
produced by the whole set of discrete points of the current discretization.  

E(x ) (x) d(x , ) dxM i = ∫
 

∀x∊Ri

P i x  

.. (x) dx dx ...dx= ∫
bi,0

ai,0

∫
bi,1

ai,1

. ∫
bi,n−1

ai,n−1

P √(x ) x ) ... x )i,0 − x0
2 + ( i,1 − x1

2 +  + ( i,n−1 − xn−1
2

1 2 n−1  

P(x) is the probability of the appearance of ​x​. Total ME is the sum of all the errors produced by                    
the set of the discrete points: 

E E(x )M = ∑
k−1

i=0
M i  

2.2.2 Uniform PDF 

Most of the times, discretization of a space is done by simply setting the ​k ​discrete points at a                   
constant distance to each other, creating a uniform grid. ​Behind this discretization, there is a               
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hidden assumption, that each ​x in that space is equally possible to appear. In other words, the                 
Probability Density Function (PDF) of ​x​ is uniform, with value: 

(x)P = 1
V R

= p  

For a specific ​x​i​, ​ME ​(​x ​i​) becomes: 

E(x ) (x) d(x , ) (x , )M i = ∫
 

x∊Ri

P i x = p ∫
 

x∊Ri

d i x  

For example, let’s set ​n=1​: 

p = 1
V R

= 1
b −a  

 

and 

E(x ) (x , ) dx  M i = p ∫
 

x∊Ri

d i x = 1
b −a  

∫
bi 

ai 
√(x )i − x 

2
 =  b−a 

x −(a +b )x +i
2

i i i 2
a +bi

2
i
2

 

The minimum of this function is located at the middle of [​a​i​, b ​i​] 

rgmin(ME(x ))a i = 2
a +bi i  

with value 

 E( )  M 2
a +bi i = 4(b−a)

(b −a )i i
2

  

 

It is clear that ME depends only on the length of the range. Applying this to the total ME formula                    
gives: 

E E(x )  M = ∑
k−1

i=0
M i = ∑

k−1

i=0
4(b−a)

(b −a )i i
2

 = 1
4(b−a) ∑

k−1

i=0
(bi − a )i

2
  

The placement of the discrete points inside the space affects the lengths of the ranges and finally                 
the total ​ME​. The minimum of ME function for the set of ​x​i​’s in this case can be found through                    
the Cauchy–Schwarz inequality.  

y )   ( ∑
k−1

i=0
xi i

2 ≤ ∑
k−1

i=0
xi

2
* ∑

k−1

i=0
yi

2  

 

Setting ​x​i​=b ​i​-a ​i​ ​and ​y ​i​=1​: 

)) )    ( ∑
k−1

i=0
(bi − ai

2 ≤ ∑
k−1

i=0
(bi − ai

2
* ∑

k−1

i=0
1 2  
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On the left side is the sum of all the sub-regions of the space that add up to ​b-a. Also the sum of                       
k ​ones is ​k.  

b ) )   ( − a 2 ≤ k * ∑
k−1

i=0
(bi − ai

2
⇔  

)   k
(b−a)2

≤ ∑
k−1

i=0
(bi − ai

2  

The minimum is at the point where the equality is satisfied. Then apply to the total ME to                  
calculate the minimum value: 

E  M = 4(b−a)

−a )∑
k−1

i=0
(bi i

2
 

= (b−a)2

4k(b−a) = 4k
b−a  

This proves that the optimal discretization for a uniform PDF is the discretization where the               
ranges are the same for each point and where the points are exactly at the middle of their ranges.                   
The same concept is true for any uniform PDF with ​n≥1​, but with slightly different values.                
That’s why the uniform grid is used most of the times for discretizing a space. 

Example: 
Assume n=1, ​a=0, b=1, k=1 

 
Making ​k​=3 and arranging the points arbitrarily in locations ​x​0​=0.2, x​1​=0.5, x​2​=0.8 ​with ​a​0​=0, 
b​0​=0.4, a​1​=0.4, b​1​=0.6, a​2​=0.6, b​2​=1 ​gives: 
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Spreading uniformly the points, in locations ​x​0​=0.16665, x​1​=0.5, x​2​=0.83335 ​with ​a​0​=0,           
b​0​=0.33, a​1​=0.33, b​1​=0.66, a​2​=0.66, b​2​=1 ​gives the optimal discretization: 

  

2.2.3 Non-uniform PDF 

Uniform PDF of ​x is one possible PDF among infinite others, so chances are that most of the                  
time PDF won’t be a uniform one. In case of a non-uniform PDF, the above principles no longer                  
apply. To achieve optimal discretization, discrete points have to be more concentrated near the              
regions, where the PDF is high. In other words, the resolution of points has to adapt to the PDF.                   
But, solving the equations with the new PDF is complex, especially for more than one               
dimensions. Also, most of the times it is not known, and/or is not even stable, as it can change                   
slowly over time. In those cases, a uniform discretization is just a safe solution, with sub-optimal                
results. One possible solution is an adaptation procedure of repeatedly estimating the PDF,             
evaluating the current set of discrete points, and adjusting their positions in such a way that                
decreases the total ME. Assuming that each of these steps is done correctly, this procedure will                
converge to a solution close to the optimal.  

Estimation of the PDF  
This step is the easiest, as the only thing it requires is a number of samples big enough to make                    
an good estimation. Of course, this number has to be the smallest possible, so in case of a                  
non-stable PDF, the buffered samples would match the current shape of this PDF.  

 

Evaluating the current discretization 

The total ​ME can be used as evaluation metric, as it describes the error that has to be minimized.                   
If ​N is the total number of samples, and ​x​Ri ​the sampled continuous points inside ​R ​i​, ME ​(​x ​i​)                 
becomes: 

E(x )  M i = ∑
 

∀x∊xRi  

N
d(x ,x)i  

The constant factor can stay outside the sum, and also outside of the sum for the total ​ME.1
N  
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E ( (x , ) )M = 1
N ∑

k−1

i=0
∑
 

∀x∊xRi  

d i x  

The above formula of ​ME can be read as the average sum of the distance between each sampled                  
continuous point ​x​ and its nearest discrete point ​x​i​.  

Adaptation of discrete points 

The last and most important step is to use the information from the two previous steps to move                  
the discrete points, such that the total ​ME will decreased. This part is the most difficult, because                 
there is no straightforward way to be done. Changing the location of a ​x​i​, changes its                
corresponding ​a​i​, b ​i as new continuous points will be closer to this new location. Those new                
edges produce another ​ME for that ​x​i​. This procedure for each point can recursively solve the                
equations, but its complexity rises very quickly, which makes it untrackable.  
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3. Problem Description 

Environments in RL usually have continuous action spaces that represent control signals, such as              
forces, electric pulses, etc. A great variety of RL architectures use discrete action spaces with a                
fixed number of possible actions. Often, this number is limited by the ability of the agent to                 
process them at every step and maintain a real time response. Most of the times, if the action                  
space is bounded, agents use a grid of actions evenly spread over the whole space. This makes                 
any part of it accessible with a constant resolution. The problem with this approach is that the                 
resolution is constrained to a constant “actions per unit of space” ratio. If we try to increase this                  
ratio to achieve better precision and sensitivity, we have to increase the number of discrete               
points. This may work well in single dimensional spaces, despite the fact that this ratio is                
increased in the whole space, which is suboptimal. In case of a space with higher dimensionality,                
the increase in the number of points is exponential and becomes intractable very quickly. So, in                
domains that require both real-time response and sensitive controls, agents with discrete action             
space are doomed. 

A technique to increase the resolution locally, without exceeding the fixed number of discrete              
actions and without making parts of the actions space unavailable, is what would solve this               
problem. In almost all the classic-control domains, the agent has to use mostly a few specified                
regions of the action space. For example, balancing an inverted pendulum by using force on its                
bottom part, requires strong forces only at the beginning to bring it in an upright position, but                 
after that only slight corrections have to be made for the rest of the episode in order to keep it                    
that way. In terms of action spaces, this results to a frequent use of actions near zero, and to a                    
rare use of all the other actions. This is the case in most control problems, where most of the                   
times few of the actions are used consecutively, while other may never get used at all. By taking                  
advantage of this situation it is possible to gain an increased resolution, while maintaining the               
number of actions. 

3.1 Introducing the agent 
The goal of this thesis is to help agents with discrete action space to handle tasks that require                  
gentle controls. Of course, this ability doesn’t come only from the discretization, but also from               
the potential of the agent itself. To do so, it requires plenty of skills that depend on its                  
architecture. Skills, like the ability to generalize over previously unseen actions and dealing with              
a great number of actions, are essential.  

A very suitable agent for this job, is the Wolpertinger architecture (Gabriel Dulac-Arnold,             
Richard Evans et al., 2016) presented by the Google DeepMind team in the paper ​Deep               
Reinforcement Learning in Large Discrete Action Spaces​. As shown in the figure below, this              
agent uses the actor-critic (Sutton and Barto, 1998) framework with multi-layer NNs to             
implement both actor and critic that are trained according to the Deep Deterministic Policy              
Gradient (DDPG) algorithm (Lillicrap et al., 2015). The Fast Library for Approximate Nearest             
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Neighbors (FLANN) (Muja and Lowe, 2014) is also used to search in logarithmic time among               
the actions for the nearest neighbors. 

 

 

Wolpertinger architecture. 
[from Gabriel Dulac-Arnold, Richard Evans et al., 2016] 

 

Briefly, the current state of the environment is feed into the Actor NN, where a continuous                
action, called proto-action, is produced. This proto-action is used to search its K nearest discrete               
actions, where 1 ≤ K ≤ total actions. Those K discrete actions are then evaluated from the Critic                  
NN, which assigns a Q-value to each one of them. Finally, the action with the highest rate is                  
selected to be applied. After the agent applies the action to the environment, it observes the next                 
state and the reward it got. Each (state, action, reward, next state) sample is stored into a replay                  
buffer. At each step, a batch of samples is drained from the buffer to be used for training the                   
Actor and Critic NNs. Critic is trained directly from the samples, while for the Actor, a                
Q-Learning evaluation of the current policy must be done in the beginning in order to apply                
Policy Gradient to change the policy. More information about the exact procedure can be found               
in the corresponding papers. 

The creators of this agent, break this procedure into two stages: the generation of the action and                 
its refinement. Generation is the stage where K discrete actions are created from an input state                
and refinement is the stage where a single discrete action is selected among those K. It is like the                   
Actor recommends some actions and the Critic makes the final decision. By changing the value               
of K, it is able to choose which one will dominate the final selection. The two extreme cases are                   
where K equals to a single action and where K equals to the total number of discrete actions. For                   
K=1, the Actor dominates, because it recommends a single action and leaves the Critic with no                
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alternative actions to choose from. For K=total actions, the Actor is forced to recommend all the                
possible actions and the Critic is the one that will make the actual choice.  

A recommended value for the K, depending the environment, is around 10% of the total number                
of actions, as the authors suggest. With this value, it is able to achieve a performance close                 
enough to the performance of 100%, but with ten times less computational load. Also, as the                
experiments during the progress of this thesis revealed, for most domains used here, ratios bigger               
than that were confusing the agent. This happens, because this agent is actually an extension of                
another agent introduced in the ​Deep Deterministic Policy Gradient paper. All its structure is              
based on the DDPG agent, except that action selection and refinement process. For the DDPG               
agent, the Critic’s role is only to help the Actor get trained by helping on the policy evaluation                  
and policy gradient step. As a result, the Critic is not actually made for taking actions, and when                  
it is called to do so, its results are not optimal. We will see more about that in the final results. 

What makes this agent perfect for this kind of problems is that it is generalizing over these                 
environments. A classic control environment is ruled by deterministic laws that are described by              
physics and mathematical equations. Actor and Critic NNs are able to learn those formulas, if               
trained well. This actually means that they understand the environment and are able to predict               
results for states and actions that were never seen before. Of course, states and actions have to be                  
the control variables of theses formulas with enough information to recreate the missing parts.              
For example, if the representation of the action space is good, actions near the proto action will                 
be similar, and have similar effects, if applied. Thus, the K discrete actions will be representative                
of the proto action, so the Critic can help to find the best one. Discretization then, will affect only                   
the resolution of the space and the sensitivity of the agent, but not its behavior.  

 

3.2 Related work 
Although there is a lot of work in the literature on variable-resolution discretizations of state               
spaces, there is not much on agents with discrete actions spaces that were using anything else                
than a uniform discrete action space. Binary Action Search (Pazis and Lagoudakis, 2009) is a               
method that is able to search entire continuous action spaces with a binary search procedure,               
similar to the expansions of our proposed method. In follow-up paper, the same authors show               
how this binary search procedure can be extended to multi-dimensional action spaces (Pazis and              
Lagoudakis, 2011). 

There are also some techniques that use continuous spaces with dynamic discrete resolution.             
Some of them were also used as an inspiration for the proposed method of this thesis. Adaptive                 
Mesh Refinement (Berger and Colella, 1989), or AMR, is one of them, a method of adapting the                 
resolution on a grid in order to improve the accuracy of a solution within certain sensitivity.                
Also, quadtrees and octrees, acted as inspiring architectures for the placement of the discrete              
points on a multidimensional spaces.  
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4. Proposed Approach 

Actor and Critic are actually function approximators that generalize over continuous spaces,            
which makes the discretization of the action space detached from the agent’s action selection and               
it only affects the quantity of available actions on each region of that space. In the training                 
process, the agent tries to explore the environment and discover how actions affect its              
observations and rewards. This results in a wide exploratory use of the action space. After               
gaining some experience, the agent starts understanding the physics behind the environment and             
what the goals are. Thereafter, the action space is used more selectively, as the agent tries to                 
optimize its policy. When it is finally trained, it only uses the exact required actions, which most                 
of the time are a small subset of the whole discrete action set.  

The goal of this thesis is to find a way to take advantage of this fact in order to provide a more                      
flexible action space that will adapt to the needs of the agent. This means that is has to have                   
increased resolution of available actions on the regions that the agent is more interested in, and                
decreased resolution on regions that the agent is less interested in, so that the total number of                 
actions will remain constant to a number set by the designer. However, the agent must always                
have the ability to choose all kinds of actions, which means that there must always be enough                 
coverage of discrete actions in the whole action space. Also, it is very important to make all this                  
changes without disturbing the real-time action response of the agent. Changes also have to be               
made with a small computational cost. This is almost impossible, because changes in a particular               
area trigger changes over the whole action space, which means that all actions have to be                
processed during this process. Another option is to make heavier changes at times that agent is                
not busy and with a very small frequency. Also, another thing that we have to consider is that RL                   
agents are model-free architectures and are made to work in any environment. This means we               
have no prior information about the final “shape” of the action space for each case. So, the action                  
space has to be uniform at the beginning, and adapt over time through a fully automated way.                 
Last, but not least, this architecture has to work for action spaces with any number of dimensions                 
and any number of discrete points. 

The available input data for this method will be: 

➢ The number of dimensions, ​n​. 
➢ The limits of the action space, {​a,b∊ℝ​n​}. 
➢ The total number of discrete points, ​k​. 
➢ The continuous points produced by the Actor, {​x∊ℝ​n​}. 

  

 

 

Adaptive Action Space in RL 22 



 

4.1 Adaptive discretization 
As mentioned before, creating a discretization that fits perfectly on a PDF is a procedure that can                 
be done by repeatedly improving a current one. This forces a pass through all the current points                 
in order to adjust their positions. The presented method works a bit differently, as it doesn’t                
actually moves the points, rather it chooses between fixed sets and combination of points. It is                
inspired by tree structures that explore the action space by growing branches across all              
dimensions. Regions where branches are taller have higher resolution and vice versa. An             
example of such a tree in one dimension is shown below.  

 

Note​​: Before digging into the details of the functionality and the structure of this methods, we                
will make an assumption that will be explained later. Each axis of the multidimensional space               
will have a range of [0,1]. So, finally the space will be an ​n​-dimensional unit cube. We will                  
explain later why and how this is happening. For now, let’s just assume this is always true. 

4.1.1 Structure 

In detail, the base structure of this architecture is the ​n​-dimensional tree, or ​n​-tree. Each node                
holds a discrete action-point and the two other points that define the edges of the space that is                  
associated with that point, which we will call as the action-point’s region. These lower and               
higher edge points are the ​a and ​b we talked about on the discretization background. The inside                 
space is an ​n​-dimensional cube and the discrete point is located right on the middle of this cube.                  
If we assume that this point sits at the center of the axis system, it will subdivide its cube into ​2​n                     
smaller equal cubes. 
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2-dimensional point in the middle of its associated space 

These cubes will be the regions of each one of the child nodes in case of expansion. So, when a                    
node expands, ​2​n ​child nodes will be created at the middle of each smaller cube. 

 

 

Expansion in 2 dimensions 

 

Child nodes share equally their parent’s region, which means that their region is a subset of their                 
parent’s region, and these regions together will cover exactly their parent’s region. Also, it is               
important that no-overlapping occurs between nodes at the same level. Because no node will end               
up with the same low and high edge point, no discrete point will end up being the same with any                    
other from the whole tree. This mean that any continuous point of the space belongs to exactly                 
one region per level. If ​k is the total number nodes of a fully-grown tree, each continuous point                  
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belongs to ​log(k) nodes, one for each level. One of these nodes will contain the nearest discrete                 
point to that continuous one, and if we want to get closer to it, we have to expand the node in the                      
highest level among those ​log​(​k​) nodes. Of course, root node’s region is the whole actions space,                
which in this case is a n-dimensional unit cube, and is located on [​0.5, 0.5, …, 0.5​]. Initially, the                   
tree is fully grown to a certain level, so its size will approach as close as it can to the maximum                     
number of discrete points user set. This produces an almost uniform discretization consisted of              
multiple layers of nodes. The size ​s of a fully grown ​n​​-dimensional tree at a certain height ​h is                   
given by the formula:  

 s = ∑
h

l=0
2n l*   

If, for example, the user sets the maximum number of discrete points to 1000 in a 3-dimensional                 
space, the initial tree will grow up to 3 levels with size ​s​=2​3*0​+2​3*1​+2​3*2​+2​3*3​=1+8+64+512=585             
discrete points. Changes can be made to the tree, by expanding or cutting nodes, according to the                 
evaluation of each node. Expansion will increase the resolution of discrete points in the area of                
the expanded node, and cuts will remove leaf nodes to save space for expansions. After all the                 
changes, a new set of points is returned, which is actually the new discretization, or the new ​x​i​’s.  

To make it more clear, let’s take an example with ​n=1​. The root, the node in level zero, will have                    
the point [​0.5​] ​in the middle of the associated range [​0, 1​] (1-dimensional unit cube). Its ​2​n​=2                 
children, or branches, will split this area in 2 equal 1-dimensional cubes and the tree will end up                  
with the following structure: 

● Root node at level 0 with range [​0, 1​] and point [​0.5​] 
● First child node at level 1 with range [​0, 0.5​] and point [​0.25​] 
● Second child node at level 1 with range [​0.5, 1​] and point [​0.75​] 

Because each point is unique, nodes can be referred to with the location of their point from now                  
on  (node[0.5], for example). 

Creating one more layer to this tree will add four more nodes: 

● Node with range [​0, 0.25​],​ ​point [​0.125​] and parent node[0.25] 
● Node with range [​0.25, 0.5​],​ ​point [​0.375​] and parent node[0.25] 
● Node with range [​0.5, 0.75​],​ ​point [​0.625​] and parent node[0.75] 
● Node with range [​0.75, 1​],​ ​point [​0.875​] and parent node[0.75] 
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Example 1D-tree of height=2 and size=7. 

4.1.2 Evaluation 

The most important part of creating a good discretization, is the evaluation. While there are               
many different methods for producing new discretizations, the optimality of the result depends             
on the ability to select the best between all of these sets. As said earlier, ME is a very good factor                     
for evaluation, as it provides the ability to evaluate each discrete point separately. If every ​x​i has                 
its own value, then the selection between all points becomes trivial. Because, the ME is               
correlated to the average distance between a continuous point ​x and its nearest discrete point ​x​i​,                
another useful information is the ME of its parent in case of removing that ​x​i​. We will call the                   
difference between these MEs the pruning error from now on. Thus, nodes must keep some               
useful information that helps on their evaluation. Each node stores the total error produced on it,                
and information about the pruning error of each of its branches. 

For each continuous point ​x searched in the space, all the associated nodes are recursively               
traversed from the root to the leaves. Between those nodes, there are some that play an important                 
role. One is the node with the nearest discrete point to that ​x​. This node and its parent, will store                    
a record of the error produced by the distance between their point and ​x. The distance of the                  
nearest point and ​x is used to calculate the error produced by this point. The distance of its parent                   
point and ​x is used to calculate the estimated pruning error. Also, another important node from                
this traverse, is the leaf, which is the node that should be expanded in order to get closer to this ​x                     
and minimize the error. After searching a representative sample of ​x​’s that follow the PDF, all                
tree nodes have collected the desired information. Each node has collected the error of its               
discrete point ​x​i​, which is the ME(​x ​i​). The sum of ME(​x ​i​) for each ​x​i is the total ME. Also, all                    
nodes have collected the pruning errors of their branches. 

Using the previous example, for ​x=​[​0.3​], the traverse will pass through the root node[0.5], its               
branch node[0.25] and will finish on node[0.375]. Node[0.25] is the nearest one and the distance               
dist​([​0.25​]​, ​[​0.3​])​=0.05 will be stored as the error. Node[0.5] will keep a record of the distance                
dist​([​0.5​]​, ​[​0.3​])​=0.2 ​as information for the pruning error of this particular child. Also,             
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node[0.375] is the leaf node, which is the only one among these three that has the ability to be                   
expanded, but this is going to be explained later. 

4.1.3 Modification 

At this point, we have available the ME(​x​i​)’s and the pruning error for each node of the tree. This                   
is enough information to start making expansions and cuts and change the shape of the tree.                
There are many ways to choose which nodes to expand and which to cut. The method used in                  
this thesis brings very nice results, as each adaptation always decreases the total ME until it                
reaches close to the convergence point. It doesn’t ensure that the solution will be the closest                
possible to the optimal, but it is fast and stable.  

Because each discrete point has a fixed location that must not change, the goal is to select the                  
points that perform the best. So the adaptation procedure is actually a careful selection using the                
information collected through the sampling. Each adaptation step has two sub-steps. First is             
pruning, that cuts unused nodes to save space, and second is the expansion which increases               
resolution in the regions of interest to decrease ME. In order for the adaptation to be stable,                 
pruning and expansion is applied only to the outer layer of the tree. 

● Decrease resolution 

Decreasing resolution almost any time increases the ME, because almost every node has             
smaller ME than pruning error. But, it is necessary to maintain the right number of               
points, so we have to cut as many as we can to make more space for other nodes to be                    
expanded. Pruning is done by simply deleting/cutting a leaf node from its parent. Because              
leaf nodes have no sub-branches, the total number of points is decreased by 1 for each                
cut. 

● Increase resolution 

In order to decrease the ME, the resolution of points in regions that is needed must                
increase. Obviously, the way to increase resolution on the desired regions is to expand the               
corresponding nodes. There is a limited number of nodes that can be expanded depending              
on the current size of the tree, and the maximum size set by user. Nodes with the biggest                  
error are prioritized for expansion, regardless of their position in the tree. Their position              
on the tree categorize them into two sets. The expandable ones, that have unexpanded              
sub-branches, and the not expandable that are already fully expanded and are located in              
lower levels. 
Expanding an expandable node is done by creating all its sub-branches, if this doesn’t              
exceed the maximum acceptable size of the tree. New points are spread in all directions               
trying to fill up uniformly the space around the parent point. The goal is to actually                
search this region for a place of interest. Points that fall into this place will be marked as                  
useful by the evaluation process and will “survive”. The other points will be deleted in               
the next update. 
Expanding a non-expandable node is trickier than expanding an expandable one. The            
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evaluation system marked them for expansion, but they are already fully expanded. Fully             
expanding its closest expandable children would be a solution, but it will create too many               
useless new nodes. The other option is to expand some of its descendants from the outer                
layer; only the 2​n​ nodes that are closer to the initial non-expandable node. 
Finally, all the nodes that will approach the desired point are created. This means that               
distant and also direct (if there are any) sub-branches will be added to the tree. So, the                 
expansion always creates 2​n​ new nodes, but not necessarily in the same levels. 

       Expansion of an expandable node.        Expansion of a non expandable node. 

4.1.4 Adaptation 

Evaluation and modification are two powerful tools that can be used to achieve a great               
discretization. Evaluation gives enough information for the utility of each node, and modification             
makes possible to make any changes on the set of the nodes. Adaptation is the mechanism that                 
combines these two tools. It uses the available information and decides where to apply              
modifications. Also, this is where decisions about quality and speed trade-offs are made. An              
extensive search on which nodes should be cut and which should be expanded, would lead to a                 
deeper improvement that throughout time will create an optimal solution. But, the computational             
cost may grow enough to make it intractable. On the other hand, a fast sketchy selection may                 
provide pure results and finally produce an unconverged solution.  

As described in the theory chapter, the optimal goal is to end up with the ​k nodes that produce                   
the lowest error. Some nodes collect small total error because they are out of region of interest                 
and the recursive search rarely traverses them. Other because they reached very close to a point                
of interest. Cutting nodes of the first case will increase the ME by a small amount and will free                   
one slot for another node to be created and decrease it again. Though, cutting nodes of the                 
second case will lead to a big increase of the ME, as the resolution of points will shrink in a                    
region of interest and the pruning error is very big. But, as it is described on evaluation, each                  
node’s parent holds the information that is needed to predict that increase. The difference              
between this value, and the actual error produced in it, is an estimation for the pruning error.                 
Also, only leaf nodes are available for pruning. Cutting a non-leaf node will result cutting its                
branches too, which is not always what we want. For expansions, nodes with the highest error                
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are the first one to expand, so they get expanded in descending error order. Note that in                 
expansion, it doesn’t matter if the nodes are located in the leaves or anywhere else. There is                 
always the option to add new leaves in order to decrease the ME of any node.  

With those two factors available, selection of which nodes to cut and which to expand is trivial.                 
But there are some other things that have to be taken into account, like the stage of the adaptation                   
that the tree is already in. If the solution is found, then there is no reason to keep making                   
changes. Ignoring the adaptation factor, and keep making changes to the tree after that will lead                
to instabilities on convergence. There must be a criterion that stops the modifications once              
adaptation is achieved. The error of the nodes outside the regions of interest is the sum of a few                   
big errors, and the error of the nodes inside the regions of interest is a sum of many tiny errors.                    
When these errors are almost equal, we can assume that adaptation has achieved. There are no                
longer nodes with very high or very low total errors. But this similarity is subjective and cannot                 
be measured or normalized into a standard range. The only factor that provides some information               
is the average error of all the nodes. Before pruning process, a pass through all the nodes is made                   
to calculate the total ME. Then a second pass is made to cut all the nodes whose pruning error is                    
less than this value. This ensures that, if the predictions of the pruning errors are correct, then                 
there will be no cuts that will increase the total ME very much. Also, when adaptation achieved,                 
no node will satisfy this condition and no cuts will be made. After the pruning, the size of the                   
tree will be less than ​k​. The rest of the nodes will be iterated in descending value order. One by                    
one, they will suggest the ​2​n nodes that are closer to them for expansion. These suggested nodes                 
are selected in order to decrease the error of this particular node. Expansions will be made that                 
way until the tree reaches again the maximum size. Sometimes, because the number of prunes               
was way too big, there are not enough nodes for expansion and the tree is left with less nodes                   
than ​k​. This of course is not optimal, but it will be fixed on the next update. This happens usually                    
at the first adaptation step where the shape of the tree is usually at its maximum distance from                  
the optimal one and there are many nodes that need to be cut. Another alternative is to expand                  
some nodes more than once, but this will lead to instabilities. So, at each update, the outer layer                  
of the tree can lose and gain one level of nodes at each region. Finally if no changes are made to                     
the tree after an adaptation update, we can assume that the tree is adapted to the current PDF and                   
we can stop making updates. Sometimes though, because of some small changes, this detection              
malfunctions. This of course doesn’t mean that the tree is not adapted. It is just unable to                 
automatically detect it. A threshold value of differences or a maximum number of iterations can               
solve this problem. 
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Algorithm​​: Adaptation Update 

1. points_before = tree.get_points() 

2. ME = tree.get_mean_error() 

3. pruned_nodes = 0 

4. for all ​​node ​in ​​tree.get_leaf_nodes() ​do​​: 
5.      ​if ​​node.pruning_error < ME ​then​​: 
6.           node.delete() 

7.           pruned_nodes += 1 

8. nodes_to_expand = max_size_of_tree - tree.current_size 

9. nodes_in_descending_error_order =  

sort(tree.nodes, key=node.error) 

10. suggestions = [] 

11. for all ​​node ​in ​​nodes_in_descending_error_order ​do​​: 
12.      suggestions.extend(node.suggest_for_expansion())  

13. while ​​nodes_to_expand>0 ​do​​: 
14.      new_nodes = node.expand(limit=nodes_to_expand) 

15.      nodes_to_expand -= new_nodes 

16. tree.refresh_nodes() 

17. points_after = tree.get_points() 

18. if ​​points_before ​equals ​​points_after ​then​​: 
19.      return True  # adapted 

20. else​​: 
21.      Return False # not adapted 

4.1.5 Error function 

Now that we know how the errors affects the shape of the tree, it is time to talk about its exact                     
correlation with the distance between two points. As we said before, EF converts distance to               
error. This conversion aims to give user the ability to focus on some distance values and affect                 
slightly the shape of the adapted tree.  

To understand the way it affects the shape of the tree we must first analyze the adapting                 
procedure. When it is time to make an update, nodes will get expanded depending on the total                 
error they collected, from highest to lowest. So nodes with the highest total error will be                
expanded first. There are two cases for these nodes. In the first case, there are nodes on regions                  
of high interest whose error is a sum of very large number of tiny errors. In the second case,                   
there are nodes on regions with very low interest. Because the resolution there is very low, they                 
cover big regions, and their error is a sum of a small number of very big errors. 
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Now, with that in mind, let’s assume we have an EF that gives an error equal to the squared                   
distance. Big distances will be affected more than the smaller ones and will produce greater               
errors. Nodes from the second case will end up with a slightly increased total error and nodes                 
from the first case will end up with decreased total error. This will change their order of                 
expansion on the updating procedure, as some nodes from the second case will climb the ordered                
list a little bit. Finally, the tree will end up more wide and less tall than before. 

Of course, the opposite will happen if we use an EF that returns an error equal to the square root                    
of the distance. Depending on the what user prefers, small distances might be more important               
than larger ones gain some sensitivity, or in reverse, user might want to spread the points more to                  
avoid saturation of points. There are many options for error functions, but for this thesis, we will                 
use only square, square root and direct EFs. 

Error functions used in this thesis. 

4.1.6 Performance 

One key feature this architecture should have, was its ability to take care about the adaptation                
without disturbing the real time response of the agent. This means that it should perform in                
sub-linear time at each step. This method requires two procedures in order to work properly. The                
feeding procedure where samples of ​x​s that follow the current PDF are fed into the tree to                 
calculate the errors and estimate the PDF, and the update procedure where the modifications and               
the adaptations occur according to these errors. 

Starting with feeding procedure, it is done by making the corresponding searches for each ​x​. A                
traverse from root to a particular leaf is made for each search. Depending on the shape of the                  
tree, this ranges from ​O​(​log k​) ​for a balanced tree, ​to ​O​(​k​) ​for a tree that grow up mostly on its                     
depth. Also, the ​x samples have to be enough in number to give a representative view of the                  
PDF. Assuming that ​N is the number of sampled ​x​s, the whole feedback procedure will cost                
between ​O​( ​N log k​) ​and ​O​(​N k​). It is important to note that the probability for the tree to end up                      
being a “list” and the search to cost ​O​(​k​) is so small that there is almost no need to take into                     
account. 

The cost of the update is bigger but is paid much more rarely. Even the fastest update requires a                    
couple of passes through the whole set of nodes, which means that in the best case, is scales                  
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linearly with ​k​. For an extensive update, using dynamic programming techniques that are able to               
predict very accurately all the possible results in order to select the optimal one, the complexity                
becomes exponential. Adaptation is done once per many steps, which makes a linear or even               
slightly bigger complexity affordable. Though, exponential complexity may sometimes be a           
problem even for a very rare use. Actually, it depends on the problem whether it is possible to                  
pay that cost or not. The method suggested here provides stable results that are converging on a                 
decent solution the vast majority of times, with an acceptable computational cost of ​O​(​k log k​).                
Each pass through the whole set of nodes costs ​O​(​k​), while the sorting that needs to be made in                   
order to expand the nodes with the highest errors costs ​O​(​k log k​).  

These costs are not too high, and there are many options on when to pay them. It is not                   
mandatory to make the search right when a new ​x is sampled, as it can be stored to a buffer and                     
feed them all together before the update. This will leave the real time response unaffected.               
Additionally, updates are essential for the adaptation, but their frequency can be reduced as we               
get closer to the final solution. It is all about what user needs, and what the problem requires. A                   
PDF that is constantly changing would require frequent updates whereas a stable PDF will need               
a few updates in the beginning until adaptation achieved, and never again. This is a general                
purpose tool that can be used in most cases, but can work more optimal in special cases.  

4.1.7 Efficiency 

Efficiency here describes the utility of each point in a discretization. The fact that points have                
fixed locations, constrains the overall efficiency of this architecture. Some points contribute            
more to the decrease of ME while others are necessary and act as base branches that support                 
other branches on top of them. Other approaches of spatial division that use trees, delete parent                
after expansion. When a reduction is required, all the child nodes merge together to create again                
the parent. This forces all the child nodes to remain and reduces the ability of deleting single leaf                  
nodes which often is a waste of space and count as overhead. Keeping the parent after the                 
expansion makes possible to delete any of the children with only a little overhead.  
All the locations of the discrete points are predetermined by the geometry of the tree. For                
example, root will always be at the center of the unit cube, its children will split the space into                   
predetermined equal sub-spaces and so on. The final distribution will be result of selection of the                
right subset of possible discrete points. Child nodes can’t exists without their parents, thus              
reaching a particular region of the space requires a number of ancestor nodes to predate. These                
base nodes may not be necessarily useful on the reduction of the ME while they take up space.                  
The nodes that actually do decrease ME, are called optimizer nodes and most of them are on the                  
outer layers. Some can be both base nodes and optimizers, but the count only as optimizer when                 
efficiency is calculated. Also, some nodes are not used as base, but don’t contribute on the                
decrease of ME either. They have no meaning of existence and they will be deleted on the next                  
few adaptations. Finally the efficiency is described by the ratio of the optimizers to the total                
number of nodes. 
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Base nodes are usually on the lowest layers of the tree. Few levels higher, the tree is more                  
flexible and can spread on the whole space to reach very easily any region of interest. Because of                  
the expansion rate, each level adds exponentially more nodes that count as optimizers. Base              
nodes quickly become a very small portion of the total nodes and the efficiency rises. Of course                 
PDF affects the efficiency, but in general the smaller the tree, the bigger the chances of being                 
more inefficient. In conclusion, the geometry of the tree has a size threshold, under which the                
tree has not enough nodes to adapt properly to the PDF. On the example below, we can see how                   
a tree with 31 nodes adapted to this particular PDF. Nodes at level 0 and 1 are base nodes, as                    
they are actually outside of the range of the PDF. Nodes at level 2 and 3 are both base nodes and                     
optimizers, as they are inside PDF’s range, but they mostly support the layers of optimizers               
above them. 

  

    An example PDF.     The corresponding adapted tree. 

Speaking about efficiency, there is one more that worths to be mentioned. As described before,                
the initial size of the tree may differ from the maximum size that user set as parameter. This                  
difference comes from the fact that the maximum number of points must never be exceeded so                
the level of initialization is calculated as the maximum possible level on which the tree doesn’t                
exceed this limit. This means that the difference on the size may be big in some cases, but it is                    
actually only one level away. Of course this is will produce a bigger ME on the use of the tree                    
before the first update. But this difference will be replenished immediately on the first update. 

4.2 Adaptive action space 
Now it is time to plug the adaptive discretization tool on the agent’s action space and configure it                  
to work properly. This tool needs some information to work in the first place. Firstly, it needs the                  
number of dimensions of the space and the maximum number of discrete points. Both numbers               
are available to the agent on the initialization. The limits of the space are also known and the                  
only information left is the continuous points ​x ​sampled from the PDF.  

Because action space has to be adapted to the needs of the agent, PDF must be a distribution that                   
describes this information. There are two options here. Actor’s proto-action and Critic’s result             
action. As we said earlier, Critic’s main job is to train the Actor, so its ability to select actions is                    
not that reliable, while on the other hand, Actor is the heart of the action selection process. Also,                  
using Critic’s action may result to an action space that constrains the Actor, as less discrete                
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actions may be near to proto-action. Finally, Critic’s actions are discrete and cannot provide the               
desirable resolution for PDF. So Actor’s continuous actions will be used as continuous points ​x               
to be fed on the tree. 

Another issue is the frequency of the adaptation updates. The number of sampled ​x​s must be big                 
enough to be representative to the PDF, but small enough to take most advantage of the                
adaptation and to be always updated in case of small changes. The updating procedure starts               
when agent requests an adaptation. After waiting for the adaptation to finish, agent can use the                
resulted new discrete points as discrete action space. Of course nearest neighbor search module              
(FLANN) have to be reset after that so it can return the new nearest neighbors of each point. This                   
whole process might take enough time to disturb the real time response so it has to be done when                   
the agent is not very busy, for example at the end of an episode. After it is done, agent can                    
continue with a brand new action space to use. 

4.2.1 Adaptability on training 

As the RL agent interacts with the environment, it passes through a number of different stages. In                 
the beginning, it has no idea of what the goal is, what the state vector means and how its actions                    
influence those states and the environment. After collecting some experiences, it starts            
understanding the mechanics of the environment and starts exploring the state and action space.              
Finally it understands its goal and tries to reach it and bring optimal results. All these stages have                  
a different imprint on physiology and the behavior of the agent. The use of the action space in all                   
this stages is different. In the beginning agent makes almost random actions, and while it starts                
understanding how things work, it starts making more specific use of the some portions of the                
space.  

But environment is pretty much random, meaning that there is no certainty on where all the                
different scenarios will appear. The same is true for the training of the neural networks. We can’t                 
predict the time that the agent will be trained or even the time that it will start providing some                   
correct results. Before that, both Actor and critic are spitting out random results as proto-actions               
and state-action evaluations. The adaptable action space will adapt to these random actions and              
will constrain the agent from searching any other regions of the actions space, as the resolution                
on these region will drop. After the point that agent starts gaining some understanding about the                
environment and starts seeking for optimizations, it searches the state and action space passing              
through many different regions. Again, it won’t be profitable to make any changes to the action                
space while agents searching it. Due to the above facts, adaptation of the action space is better to                  
be disabled while training, or at least at the first stages.  

4.2.2 Square error function 

Agent uses some actions more times than others, but this is not necessarily means that the ones                 
that uses less are not important. Adaptive discretization tries to minimize the total ME and in this                 
process it deletes points that are used less if needed. If some points are used the vast majority of                   
times, it will focus on them because they produce way more ME that the others. This may                 
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eliminate the other points, leaving the agent without the option to choose actions from some               
regions. In some cases, this can lead to a decreased performance, making the uniform              
discretization a better pick. To reduce or even eliminate this effect, we can use an error function                 
that will produce a wider tree, such as a square function. That way, errors produced by small                 
distances on the regions of high resolution will decrease, and errors produced by greater              
distances on regions out of interest will attract more attention. 

Another issue comes from the fact that this particular agent makes an approximate nearest              
neighbor search in the space, which returns a constant number of points K, as it is described on                  
the introduction. Increasing the resolution on a region means that this search will return neighbor               
points from a smaller range of the space. These actions will be very similar to each other which                  
leads to saturation. This will make the agent unable to pick the best action on the refinement as                  
all alternative actions are now almost the same. Action refinement can take advantage of a bigger                
variety of different actions, not bigger on quantity. Again, a square error function can provide a                
solution. Because it produces a wider tree, and the number of total actions is constant, the tree                 
will end up shorter too. Shorter tree means slightly lower resolution on regions of interest, which                
decrease the saturation effect. Because square error function reduces both effects, we use it as the                
default option in this thesis. For other cases or other agents, where the maximum resolution is                
poor, a square root function will fix it. 

In conclusion, the agent needs a supportive tool to improve its freedom of choosing actions and                
counteract the restrictions made by the discrete action space. The actual selection have to remain               
on its hands and the adaptive action space has to play a secondary role by just following the                  
agent. There must always be discrete actions close to any proto-action and a rich variety of                
different actions among the ​K​ neighbors. 

4.2.3 Normalization of action space 

We previously assumed that the range on each axis of the space is [0, 1]. The reason for that is                    
that we normalize the action space. From now on, ​a=​[​0, 0, …, 0​] and ​b=​[​1, 1, …, 1​] for any                    
space ​R which makes this n-dimension rectangle a n-dimensional unit cube. Each ​x will be               
linearly transferred into this space, where all the discrete points sit. After the nearest neighbor               
search, all the ​K actions will be transferred back to the original action space, to be evaluated by                  
the Critic. There are two reasons for that. 

One reason is to simplify things, as from now on there will be no need to care about limits and                    
ranges. The only overhead of this procedure is the two transformations, the first to import the                
proto action into the unit cube, and the second to export the K points to the action space. These                   
transformations are just a couple of linear operations, a minor overhead that doesn’t affect the               
real time response.  

The second and more important reason is to make nearest neighbor search work properly in any                
case. When the action space is more stretched in some of its directions, discretizing becomes               
tricky as the sensitivity on each axes and the distance between the neighbor points can’t be the                 
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same. For example, assume there is an environment with 2-dimensional action space, where x-              
axis is ranged between [0, 8] and y-axis is ranged between [3, 5]. A uniform grid of 16 points                   
will be like: 

   

This discretization gives 4 times greater resolution in x-axis that y, meaning that the agent’s               
sensitivity in x will be 4 times more. The other option it to make the discretization uniform in a                   
relative way, with relative distances, to get a 4x4 grid.  

 

The problem now is even bigger because actions in y axis are closer to each other relative to                  
actions in x. Searching for the nearest neighbors of point will return more points from y-axis than                 
x-axis which is suboptimal. Normalizing the action space will detach the sensitivity and the              
distance of the points from the geometry of the the space, and will fix both issues with almost no                   
trade-off. 

 

 

 

Adaptive Action Space in RL 36 



 

  

 

 

Adaptive Action Space in RL 37 



 

5. Results 

The first part of this thesis was to find an architecture that implements the adaptive               
discretization, and the second part to embed this architecture on a discrete RL agent. Because               
these two parts are independent and have different evaluation factors, we have to test them               
separately to conclude for each one.  

5.1 Adaptive Discretization 
As we said in the beginning, discretizations are evaluated through their accuracy. In other words,               
a discretization is good when it matches the PDF of the space. For adaptive discretizations, two                
more evaluation factors are added. The adaptability, or in other words the ability of the methods                
to adapt to all kinds of PDFs, and the time needed to do this, or the adaptation time. 

The accuracy of a discretization on a certain space is measured as the average distance from the                 
continuous points that appear in this space according to the PDF, to the nearest discrete points of                 
the discretization. This accuracy must be compared then to the accuracy of a uniform              
discretization. Also the number of updates needed to achieve this adaptation must be considered              
too. Lastly, adaptability and efficiency can be evaluated through the accuracy achieved for a              
variety of different PDFs, and through a comparison of the resulted shape of the tree to the actual                  
PDF.  

Before going to the results, we must note that evaluation on low dimensional spaces is easier as it                  
is possible to visualize them. So we will use them more here. There are infinite combinations and                 
extreme cases that will not perform as the experiments below. For this thesis we must refer to the                  
behavior that describes the most usual cases. So the results will be representative to the common                
case.  

5.1.1 Adaptation 

At the beginning, just for the demonstration, we will present an adaptation of a single               
dimensional tree to a simple PDF, step by step. 
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We can see the tree on the left side, and the distribution of its points on the right side. We can                     
also see that at each step, the tree can lose or gain only one layer. On the area around 0.3 the tree                      
gains one layer at each step, and on the area at the left of 0.5 the tree loses one layer a each step.                       
We can notice that the adaptation time depends on the levels of the tree and this restriction. If a                   
certain number of layers had to be removed or added, then the adaptation can’t take less steps                 
than this number. Also, the final distribution of the points matches the most with the given PDF.                 
This match is getting better with bigger trees. Finally, the following diagram shows clearly what               
happened with ME. 

 

The ME of the adaptive discretization started at the value of the ME a uniform discretization                
would produced, and ended up at almost a quarter of this value. At the first update it decreased to                   
half of its initial value, and very soon it adapted and reached the minimum value. Note that ME                  
never increased in this process. Also, note that in this particular example, the ME of a the                 
uniform discretization happened to be slightly above the theoretical value. This happens because             
the theoretical value assumes that the PDF is uniform and errors greater than this value are                
eliminated by the corresponding errors that are lower than it. If more points happen to be in the                  
maximum possible distance of their nearest discrete ones, then the ME will be greater than the                
theoretical one, and in reverse. Something that won’t happen with an adaptive discretization. 

 

  

 

 

Adaptive Action Space in RL 40 



 

Next step is to demonstrate the effect of the error functions. We will use a similar PDF as before                   
and trees with the exact same sizes. 

 

As expected, square error function produce a tree wider and shorter than direct, while square root                
error function produces a taller and more narrow one. 

5.1.2 Efficiency 

Measuring the efficiency of tree would be trivial if we knew the number of base and optimizer                 
nodes. Yet, there is no simple method of classifying the nodes of a tree into base nodes and                  
optimazires. Factors like the distance to the nearest high resolution region and the error of a node                 
comparing to its height can be taken into account. However, in most of the cases these factors                 
won’t produce any reasonable result. So, as an alternative, we can use the ratio of the ME before                  
any update, and the ME of the adapted tree. Once again, the same number of dimensions and the                  
same PDF will be used. Additionally, to eliminate the initialization size error of the tree and its                 
imprint on the ME before the first update, sizes will be selected to much the sizes of full grown                   
trees.  
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As expected, below a certain size the tree is unable to work properly, but above that point, the                  
tree reaches close to its maximum efficiency, like a threshold value. It is very important to                
mention that this result are not the same for any tree and for any PDF. Some regions can be                   
reached easier than other, which means that the same trees with a different PDF would perform                
slightly different. Complexity of the PDF plays an important role as well. If there are many                
regions of interest, optimizers have to split to those regions and require more base nodes too. But                 
most of the times the behavior of the adaptation is similar to the above. In conclusion, as we said                   
earlier the results are representative and describe an overall behavior.  

5.1.3 Adaptability 

To test adaptability, few complex shapes of PDFs will be tested for the visual demonstration.               
For each row, the first plot shows the PDF we used for the samples, second plot shows the                  
adapted tree, the third plot shows the distribution of the points of the tree, in other words the final                   
distribution of the adaptive discretization, and last plot shows the decrease of the ME comparing               
to the ME produced by a uniform discretization of similar size. 
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1 dimension 

 

 

2 dimensions
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More dimensions 

 

One the last experiment, we sampled 4 different PDFs, and used these samples as coordinates of                
4-dimensional points, on the first coordinate samples from the first PDF, one the second from the                
second PDF and so on. So this function has a different shape for each different axis. We then fed                   
this samples to a tree of size 4369 nodes and update until it adapts. After, we did the reverse                   
procedure. We take the points of the adapted tree and plot the distribution of each               
coordinate-dimension of these points to see if it matches the corresponding PDF. There was no               
other way to visualize this experiment or the shape of the PDF or the point distribution. Of                 
course, PDF graphs are not to scale. 

 

Also, a uniform PDF should be tested as well. This 3-dimensional PDF was tested with tree of                 
size 4681. This method is designed to work well on non uniform PDFs so as expected it does not                   
perform well. It is still slightly better than uniform discretization, because of samples are not               
perfectly sampled and don’t match exactly a uniform PDF, and adaptive discretization can take              
advantage of this. Also, the size of the uniform discretization is 4096 (16​3​), which is about 13%                 
less that the size of the adaptive. So in fact, adaptive performs slightly worse than uniform. One                 
last thing we notice in this situation is that there are tiny bumps on ME on the first updates                   
which means that it is not always decreasing, due to imperfections on the adaptation update. 
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A PDF with a single lobe, that takes a very small portion of the space. We can see here that the                     
tree manages to reach that location with the least amount of base nodes, and then it expands all                  
its available nodes there. This is the best case scenario for this method as it manages to maximize                  
its efficiency. 

  

Tree adapted to single-lobe PDF Tree adapted to uniform PDF 

 

 

Finally, this example demonstrates multiple adaptations. We let the tree adapt fully to the first               
PDF and then we swap to a completely different one. This is an extreme case, as most of the                   
times changes on PDF are occurring slowly. This example aims to show the ability of these                
methods to adapt to a changing pdf. On this process, ME rises as new base nodes have to created                   
before new optimizers start decreasing it again. 

Similar behavior as the examples above, is extended for any number of dimensions. If the size is                 
above the lower efficiency limit, the tree will adapt. Bigger size will result a better adaptation.                
Though, as the dimensionality rises, exponentially more points are needed.  

5.2 Adaptive action space in RL 
Applying Adaptive Discretization to this particular discrete RL agent was a straightforward            
process, thanks to the fact that it is completely detached from the actual discrete action space.                
Evaluating this application is a bit trickier though, because it is difficult to isolate the results of                 
the adaptation from all the other factors. Wolperdinger agent is a bit unstable at the beginning by                 
itself as its actor and critic neural nets are initialized randomly. The environments (or domains)               
that were used are also initialized randomly at each episode, so different agents architectures, or               
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the same agent but trained differently might end up using different policies that may benefit               
more from an adaptation of the action space. While it’s very easy to examine if this method                 
actually improved agent’s performance or not, all this noise make a precise evaluation of how               
much it is improved impossible. So we will focus more on showing the quality of the results. 

Candidate domains for this architecture are domains with continuous state and action spaces. A              
very important feature of each one is to implement a deterministic like behavior so the agent will                 
be able to generalize over the states and the actions. Applicable problems with these features are                
optimal control problems and real world games. Another feature is for the domain to reward               
sensitivity of the actions of the agent. For example, a domain where the goal is to just balance an                   
inverted pendulum between a certain range of angles does not require that much sensitivity as the                
agent can keep it in this range with jerky actions. If the goal is to keep it as close as it can to zero                        
angle, then more gentle actions have to be taken, something that will take advantage of the                
adaptive action space. 

5.2.1 Inverted Pendulum 

The goal in this domain is to keep a stick as upright as possible by applying forces to its                   
bottommost part. Balancing occurs only in one axis. Positive reward is given depending on the               
distance of the perfect upright position. This problem has a 4-dimensional state space where the               
position and the velocity of the bottommost and uppermost points of the stick are described, and                
a single-dimensional action space that refers to the force applied on the end of the stick. The                 
environment resets when the episode ends. This happens after a maximum number of steps, or               
when the angle of the stick becomes greater than a threshold value (where we assume that it fell)                  
or when the whole stick goes out of the space limits (on the left or the right edge) as it cannot                     
move further to this direction. 

This environment is one of the implemented openai-gym mujoco environments. Its reward            
function is giving a small positive reward for each step until the episode ends. This reward                
doesn’t motivate the agent to keep it upright, as it can swing it inside the acceptable range of                  
angles and take the same reward. To make it keep the pendulum closer to zero angle, and check                  
its ability to be precise, we changed this reward to be a positive number proportional to the                 
angle. 

Let’s begin with a typical performance plot of the agent on evaluation run, and the corresponding                
final distribution of the adapted actions space. The size of the action space in this example is 255                  
discrete points and the k nearest neighbors are 25 (10%). 
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The first two plots are showing the performance of the agent. The first plot shows the reward per                  
episode. Red dots are indicating the episodes that an adaptation update is made. Notice that their                
frequency is not constant because the x axis is counting episodes which have not constant length.                
There are 3 distinct parts on this plot. The episodes before the first red dot, where is the                  
performance of the uniform discretization where no adaptation updates have been made. The             
second part is the maximum peak. This comes after a few updates and is the maximum                
performance that the agent achieved with only the help of adaptive discretization. Last part is the                
decrease in performance that is caused by the saturation of the action space. Sometimes, there is                
no saturation and this part is an extension of the previous one.  

The second plot shows running average on the timeline of the displacement. Displacement is the               
distance of the upper part of the stick to the lower in x axis, which we use as an angle. This is a                       
more accurate evaluation factor as is shows how adaptation affect the ability of the agent to keep                 
the stick upright. It is more accurate than the reward plot because the total reward of an episode                  
is affected by other things too. On this plot, updates are shown to have a constant frequency                 
because x axis is in steps. At the points that this frequency drops is due to an adaptation that                   
didn’t actually change anything.  

Finally, the distribution of the discrete points at the end is the expected one. Agent uses big                 
forces for the first steps to bring the pendulum upright and little forces for the rest of the episode                   
to stabilize it. We can see that the middle spike contains more than 100 of the 255 actions, which                   
is about 40%. Considering that the histogram uses 15 discrete bins, this density would require a                
uniform discretization of more than 1500 points to provide the same resolution. This means that               
this method gave us the ability to use a discretization 83% smaller, with almost the same results.                 
Distribution plot also gives much information about the policy that the agent adopted. 

We run many different test configurations to get a clear view of the performance of this method                 
relative to some factors. Also we tried two agent trained differently. The one was trained               
extensively, while the training of the second stopped before it managed to optimize its policy.               
Because there are many different test configurations, we can’t show all the plots separately, so               
we categorize them in 2 plots for each agent, one for the rewards and one for the                 
angles/displacement. We tried sizes of 15, 31, 63, 127, 255 and 511, for 10%, 20% and 30%                 
nearest neighbors (k).  
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Less trained agent 

Reward: 

 

Angle: 

 

 

Extensively trained agent 

Reward 
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Angle 

 

Before analyze the data, let’s describe what we actually see on these plots. Each plot contain the                 
performance of the agent for each number of k-nearest neighbors. Reward and angle             
performance is plotted separately. On x-axis there is always the size of the action space. On y-                 
axis, there is a ratio between the average(blue line) or maximum(red line) performance of the               
agent with adaptive action space, and its performance without it. A ratio above one means better                
performance on rewards. Because the goal is to reduce the angles of the pendulum, the ratio in                 
angle plots is better when it is below one. Average performance is the average value of the                 
rewards or the angles ​after the first adaptation​, and maximum performance is the average value               
of the rewards or angles ​between the adaptation that brought the best results and its next​. If on an                   
experiment, the agent reaches its maximum performance and saturation doesn’t affect it, then             
this performance will remain. This will keep the average and the maximum performance almost              
equal. In reverse, great difference between these two lines means big saturation most of the               
times. So we have almost all the data on these four graphs.  

Starting with the well trained agent, it manages to increase its performance at least 5 times on all                  
configurations for action spaces with size greater or equal to 63. For smaller ones, there is still an                  
increase but a smaller one. This is similar to the efficiency graph we saw on the architecture of                  
adaptive discretization. We can assume that the efficiency limit for this PDF is around this size.                
For k=10%, performance rises as the size increases, while for the other two ks it drops,                
especially for the k=30%. As more decision making is shifted to Critic, saturation effects get               
bigger and bigger. If Critic was able to make correct decisions, the increase of the resolution                
combined with a high k value would be very beneficial for the agent. The best performance                
comes for sizes of 63 and 127 and ks of 20% and 30%. At this point, there is a great variety of                      
discrete actions to select while saturation effect is still low. 

Proceeding to the less trained agent, things change. For k=10% its rewards drops, while at its                
best, it barely manages to produce results higher that the results of a uniform discretization. Of                
course at this time Actor is not trained enough to produce good proto-actions. As the action                
space adapts to these proto-actions, situation gets even worse as the density of points increases in                
regions of space that is not needed, and decrease on region that is needed. For k=20%, reward                 
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performance is pretty good but it quickly drops again when increasing k to 30% due to Critic                 
saturation. Though, it still performs better than uniform. Angles on the other side are constantly               
worse than uniform’s. This seems as a disadvantage of the adaptive action space at the first                
glance, but if we combine the results with the performance on the rewards we can clearly see that                  
it is not. What is happening actually is that the agent at this point hasn’t yet figured what the goal                    
is and has adopted a slightly wrong policy. Its policy at this time makes it to oscillate left and                   
right around zero angle. This oscillation will shrink after some more training time when it               
corrects its policy. The reason that it manages to increase its rewards with this angles, is that                 
adaptive action space actually helps it to follow this policy. It gives the agent the ability to be                  
more precise on this oscillation, which keeps the pendulum from falling. So it is actually an                
advantage for adaptive discretization and for the agent too, as it increases its performance even               
before training and with a wrong policy. 

5.2.2 Cart-Pole 

This domain is just like Inverted-Pendulum, but it is open-source. This gives us the ability to                
experiment further with the reward function and the dimensionality. First we removed the spatial              
restriction for the position of the cart, giving the agent the freedom to use as much space as it                   
needs to balance the pole. This will result a smaller variation on performance, and a more precise                 
inprint of the angles on the rewards. So for this experiment, there is no need to use angle graphs,                   
as the information on the rewards graphs contains all the essential information. We also added               
the ability to extend the problem to one more dimension, so that the agent will have use forces on                   
both axes to keep the pole upright. Additionally to make the adaptation more complex, forces on                
one axis have twice the range of the forces on the other. This will make the adaptive                 
discretization to adapt differently to match the desired sensitivity. 

1 dimension 

First we quote the results of the 1d version for reference, because cart-pole and inverted               
pendulum may use different physics parameters. Of course, we will need two different agents for               
1d and 2d, which may end up with different policies. This difference in policies will affect the                 
performance for each setup and the magnitude of the increase. But as we said earlier, because of                 
all these differences on the agent policies and on the environmental noise, we can’t provide any                
precise information for the magnitude of the increase. 
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As we can see, due to this freedom of movement, agent is producing much more stable results, 
and the improvement is smaller as the reward is affected only by the angle.  

2 dimensions 

Because action space is now spread into two dimensions, there are more nearest neighbors in a                
close distance. For this reason, we have to use bigger values of k, to represent a similar “range”                  
of the space.  

 

The use of space is similar to the previous experiments, but extended in two dimensions. This 
will produce a tree wider on x axis and more narrow on y to produce the same sensitivity. 

 

The quality of the results for one and two dimensions is similar to the inverted pendulum. On 
most of the cases adaptive action space increase the performance of the agent, especially for 
medium size discrete action sets and k~=20%. 
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6. Conclusion 

The presented method adapts decently to all the possible PDFs, regardless the shape, the              
complexity or the dimensionality. This adaptability, means that it is able to produce a very wide                
range of different resolutions across the space. Also, it performs better than a uniform              
discretization in almost any case, as it produces an almost optimal ME with low computation               
cost overhead. From the very first adaptation steps it almost reaches close to its maximum               
performance. This allows adaptation on PDFs that change over time, with low ME increase. The               
worst case scenario is PDFs similar to uniform, with flat regions, where it performs slightly               
worse. Still, if there are any imperfections to that uniformity, adaptive discretization will take              
advantage of them.  

Nevertheless, the proposed method has some disadvantages too. Firstly, it doesn’t work for any              
number of discrete points, as it has a lower limit. Depending on the dimensions and the shape of                  
the PDF, there is a certain number of base nodes that have to be created. Sizes smaller than this                   
number, make this method work inefficiently, as there are not enough optimizations to actually              
decrease the mean error. Also, there is a limitation that comes from the adaptation update               
complexity. Because of this complexity, there are cases of very large discretizations, where             
performance may be not acceptable. 

As for the adaptive action space, the results show that this action embedding was beneficial to                
the agent’s behavior. The increased density of discrete actions gives the agent the precision it               
needs to follow better any policy and produce better results. Also, due to the more effective use                 
of the action space, a smaller set of discrete actions is required. This can be used to speed up the                    
response of the agent, or to extend the abilities and the problems we can address to it. 

Limitations, such as the Critic’s saturation effect and the inability to use adaptations on early               
training stages, have an impact on agent’s behavior too. Both make the agent get confused and                
decrease its performance. Also, results show that the efficiency of the presented method in very               
small discretizations acts as a threshold value, below which the performance drops as adaptations              
for these discretization leave large parts of the space empty of discrete actions.  

6.1 Future work 
For this thesis, we focus more on providing a method for discretizing spaces adaptively, and to 
show how it can affect agents with discrete actions spaces. Most of the disadvantages of this 
method have to do with special features of the agent or the domains and are easy to fix. But, we 
focused more on provide generalized results about this method. Each application of these method 
will require a set of settings that depend on this exact case. 

Future work on a method to decide automatically when to make updates, would be able to detect                 
and avoid any saturation, so the agent can use adaptive action space at its maximum advantages.                
Also, a more exploratory method to extend the current tree’s adaptation procedure would be able               
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to discover expansions and prunnings that our current method misses and would reach closer to               
the optimal solution with no computational overhead. 
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