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Abstract: Traffic congestion on motorways is a serious threat for the economic and social life of modern 

society as well as for the environment, which calls for drastic and radical solutions. Conventional traffic 

management measures, currently applied, are valuable, but face limitations. During the last decades, a 

variety of vehicle automation and communication systems (VACS) have been developed and deployed, and 

many more are expected to appear in the near future. These systems provide a novel basis for a new 

generation of traffic management, which exploits emerging vehicle automation functions and connectivity 

channels to enable sensible traffic flow improvements in terms of efficiency and safety. A number of 

innovative concepts, tools and results that open up new horizons for traffic management research and 

practice in presence of VACS have been produced recently in the frame of TRAMAN21, an ERC Advanced 

Grant. This paper presents a collection of novel problems as well as of related traffic flow modelling, 

estimation and control developments for motorway traffic that can be used in the evolving traffic 

environment with VACS. 

Keywords: Vehicle Automation and Communication Systems; Traffic Flow Modelling; Traffic Flow 

Estimation; Traffic Flow Control 

Funding: This work was supported by the European Research Council under the European Union's Seventh 

Framework Programme (FP/2007-2013)/ERC Advanced Grant Agreement n. 321132, project TRAMAN21. 

Nikolaos Bekiaris-Liberis was also supported by the European Commission’s Horizon 2020 research and 

innovation programme under the Marie Sklodowska-Curie Grant Agreement n. 747898, project PADECOT. 

 

Abbreviations included as a footnote1 

                                                           
1
 ACC: Adaptive Cruise Control; CACC: Cooperative Adaptive Cruise Control; CTM: Cell-Transmission Model; CV: 

Coefficient of Variation; DE: Differential Evolution; DP: Dynamic Programming; ERC: European Research Council; FD: 
Fundamental Diagram; FDA: Feasible Direction Algorithm; FIFO: First-in-first-out; GKT: Gas-Kinetic Traffic flow; IDM: 
Intelligent Driver Model; LCC: Lane Changing Control; LPV: Linear Parameter Varying; LQR: Linear Quadratic Regulator; 
MS: Merging Sequence; MPC: Model Predictive Control; MTFC: Mainstream Traffic Flow Control; NGSIM: Next 
Generation SIMulation; NLP: Nonlinear Programming; PDE: Partial Differential Equation; PR: Penetration Rate; QP: 
Quadratic Programming; RM: Ramp-metering; TRAMAN21: TRAffic MANagement for the 21

st
 century; TTT: Total 

Travel Time; TTS: Total Time Spent; UCO: Uniform Complete Observability; VACS: Vehicle Automation and 
Communication Systems; V2I: Vehicle-to-Infrastructure; V2V: Vehicle-to-Vehicle; VMS: Variable Message Signs; VSL: 
Variable Speed Limit 

mailto:dmanolis@dssl.tuc.gr
mailto:kmountakis@dssl.tuc.gr
mailto:jnikolo@dpem.tuc.gr
mailto:claudio.roncoli@aalto.fi
mailto:markos@dssl.tuc.gr


2 
 

1. Introduction 

Traffic congestion on motorways is a serious threat for the economic and social life of modern society as 

well as for the environment, which calls for drastic and radical solutions. Some conventional traffic 

management measures currently applied may mitigate traffic congestion, but may also face various kinds of 

limitations. During the last decade, there has been a considerable effort to develop a variety of VACS that 

are expected to revolutionize the features and capabilities of individual vehicles within the next decades. 

Vehicles are goods manufactured and offered in a market, wherein they compete for the preference of the 

customers; therefore, most VACS are typically developed to benefit the individual vehicle and driver, often 

without a clear view or understanding for the implications, potential advantages and disadvantages they 

may have for the induced, accordingly modified traffic flow characteristics. From the community point of 

view, the gradual introduction of VACS brings along the necessity and continuously growing opportunities 

for accordingly adapted or utterly new traffic management actions and strategies aiming at a sensible 

decrease of traffic congestion and its detrimental implications for travel delays, traffic safety and the 

environment. It was the main objective of TRAMAN21 (www.traman21.tuc.gr), an ERC Advanced Grant, to 

develop foundations and first steps that pave the way towards a new era of future motorway traffic 

management research and practice, which is indispensable in order to accompany, complement and exploit 

the evolving VACS deployment. 

VACS comprise on-board systems that undertake several vehicle functions at various levels of automation. 

Such systems, enhanced via novel communication features, aim at assisting or take on the driving task; but 

may also be exploited for improved traffic flow efficiency, see (Diakaki, Papageorgiou, Papamichail, & 

Nikolos, 2015; Diakaki et al., 2014) for an overview. To this end, specific developments and options are 

required, particularly for network weak points, such as bottlenecks. In more detail, required contributions 

include the development of: 

- microscopic and macroscopic traffic flow models and related simulation tools in presence of VACS;  

- traffic state estimation algorithms and tools for the cross-lane case and for the per-lane case;  

- traffic control algorithms and tools at various levels.  

The main aim of this paper is to raise awareness and interest in novel problems and related approaches 

that emerge in various aspects of motorway traffic management due to the gradual introduction of VACS at 

increasing levels of sophistication and penetration. For each addressed area, the presentation outlines the 

respective motivation, essential issues and main pursued approaches in the technical literature (if any), 

before concentrating on the concise description of respective methods and results produced within the 

TRAMAN21 project. In this context, the three following sections address problems of traffic flow modelling, 

estimation and control, respectively. 

Under the influence of vehicle automation (at different levels), the car-following and lane-changing vehicle 

behavior is changing compared to manual driving. Such changes reflect also on the macroscopic 

characteristics of the emerging traffic flow. Section 2 discusses a microscopic simulation framework for 

ACC-equipped vehicles and the calibration of a microscopic traffic simulator in presence of VACS for a real 

large-scale motorway network. Subsequently, a macroscopic multi-lane model with ACC and CACC vehicles 

at various penetration rates is presented, along with a novel numerical integration approach. Finally, a 

discrete (in space and time) first-order macroscopic traffic flow model, to be used in model-based 

optimization approaches, is also outlined.  

In conventional traffic, real-time measurements are provided by spot sensors (based on different 

technologies), which are placed at specific motorway locations and monitor traffic variables at the 

respective specific locations. With the introduction of connected vehicles, which may transmit information 

to a traffic control center, thus acting as mobile sensors, a new era of traffic monitoring and estimation has 
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started. In this new context, section 3 presents a novel real-time estimation scheme, for both cross-lane 

and lane-based traffic variable estimation, exploiting information from connected vehicles under virtually 

all penetration rates. 

In the VACS era, a number of further significant changes emerge, which open up new prospects for traffic 

management and control: 

- Connected vehicles may receive advice or commands from the traffic control center, something that 

reduces, and potentially eliminates, the need for road-side actuators, such as traffic signals, VMS,  VSL 

gantries etc. 

- Vehicles may receive individual advice or commands, something that increases control granularity, 

compared to road-side actuators that convey the same message to all vehicles; this also enables new 

control actions, such as lane assignment and lane-change control, which are not feasible with 

conventional means. 

- Vehicles may (be asked to) behave in a way that is beneficial for the whole traffic flow, i.e. they may 

become part of the traffic control logic; we call this possibility vehicle-based traffic flow control. 

Section 4 presents a selection of new opportunities for more efficient traffic control enabled by VACS. First, 

some developments belonging to the exciting area of vehicle-based traffic flow control are presented, 

including: cooperative merging at motorway on-ramps; automated vehicle trajectory optimization; ACC-

vehicle control for improved traffic flow; and feedback-based lane assignment. Subsequently, an integrated 

network-wide control approach is outlined, exploiting novel opportunities offered by VACS. Specifically, an 

optimization-based traffic control approach was developed, wherein the presence and use of VACS permits 

the implementation of an increased range of control actions in an integrated synergistic way. The obtained 

test results show significant improvements enabled by the combined use of VACS. Finally, a number of 

other applications are briefly touched upon. Section 5 concludes the overview of developed methods. 

2. Traffic Flow Modelling 

Since the penetration rate and sophistication level of VACS are still low, real data are sparse, and the main 

way to investigate their future impact on the traffic flow or to design,  test and demonstrate novel traffic 

control approaches for various scenarios of VACS types, presence and use is modelling and simulation. This 

marks the very basic need of developing new or expanding existing traffic flow modelling and simulation 

methods and tools that account for the VACS presence. It must be emphasized that models are tools, which 

provide a necessary basis for a variety of different tasks, each requiring a different level of model 

granularity, accuracy or computational effort. Thus, in the following subsections, different traffic flow 

models (in presence of VACS) are presented, which serve as valuable tools for different purposes of 

motorway traffic management. 

2.1. Microscopic modelling 

Microscopic simulators are very useful and widely adopted tools for the analysis and management of 

transportation systems. However, when vehicles equipped with various kinds of VACS at various 

penetration levels are present in the traffic flow, there are no ready available simulation tools for 

immediate use. Different open-source (e.g. SUMO, see (Lopez et al., 2018)) or commercial microscopic 

traffic simulators provide to the user the possibility to introduce self-developed car-following and lane-

changing models, which reflect the modified behavior of equipped vehicles. In the works reviewed in this 

paper, most reported microscopic simulation investigations are based on Aimsun (TSS-Transport Simulation 

Systems, 2014), which provides the necessary tools for introducing the VACS presence by coding self-

developed vehicle models. Similar possibilities are also available with other commercial simulators, such as 

VISSIM, see (Aria, Olstam, & Schwietering, 2016). 
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2.1.1. Adaptive cruise control impact 

The control objectives of an ACC system are (Shladover, Su, & Lu, 2012): 

- Speed control mode: to travel close to the pre-set (by the driver) desired speed, in cases where no 

leading vehicle is detected by the vehicle’s sensors; or a leading vehicle is detected but its speed is 

higher than the driver-defined desired speed. 

- Gap control mode: to adjust the speed of the equipped vehicle to the speed of the leading vehicle and 

maintain the user-defined desired time-gap to the leading vehicle, in cases that a leading vehicle is 

identified by the sensors, and its speed is lower than the pre-set by the user desired speed. 

Several works investigated the influence of ACC systems on traffic flow, attempting to capture the impact 

of different settings (mainly different time-gaps) and penetration rates, by use of microscopic simulation, 

see e.g. (Arnaout & Bowling, 2011; Bayar, Sajadi-Alamdari, Viti, & Voos, 2016; Schakel, Van Arem, & Netten, 

2010; Shladover et al., 2012). General conclusions that may be drawn from those studies are that: (i) ACC 

systems have the potential to improve or deteriorate, depending on their settings, the traffic conditions 

compared to the case of conventional manually driven vehicle traffic; and (ii) the level of the influence is 

closely related to the ACC penetration rate. In particular, Ntousakis, Nikolos, & Papageorgiou (2015) 

reviewed previous modelling efforts reported in the literature, concerning ACC-equipped vehicles, and 

discussed some critical aspects to be considered when designing or simulating such systems. Moreover, a 

microscopic simulation framework for ACC-equipped vehicles was developed within the Aimsun 

microscopic traffic flow simulator, utilizing its so-called API and MicroSDK tools. Simulation experiments 

have been performed to examine:  

a) the impact of ACC on traffic flow capacity for different penetration rates and different ACC time-gap 

settings for a single-lane open-stretch road; and  

b) the effect of ACC on preventing the formation of stop-and-go waves in a ring-road.  

For simulating manually driven vehicles, two different car-following models were employed, the one by 

Gipps (Gipps, 1981) and IDM (Treiber, Hennecke, & Helbing, 2000). The simulation results for case (a) 

showed that the ACC time-gap has a direct impact on the capacity: the smaller the time-gap, the higher the 

capacity, and vice-versa. Thus, the traffic flow capacity can be increased if the ACC time-gap is smaller than 

that of manual vehicles; else deterioration of capacity may occur. Figure 1 illustrates that, when ACC and 

manual vehicles have a similar time-gap (here around 1.1 s), then the ACC vehicles have no influence on 

capacity for any penetration rate. However, if the ACC time-gap is higher (lower) than that employed by 

manual vehicles, then any increase of the ACC penetration leads to a decrease (increase) of capacity; and 

the potential changes at both ends of the spectrum are indeed substantial. These results highlight the need 

and potential for appropriate use of ACC systems with regard to traffic management, as discussed in 

section 4.3.  

For the case (b), it was observed that ACC vehicles may improve the stability of traffic flow, since they 

mitigate string-instability and hence the amount and intensity of stop-and-go waves. Such observations 

were indeed made also in other similar works, indicating that ACC systems have the potential to smooth 

traffic flow, decrease fuel consumption, and improve traffic flow efficiency (Ioannou & Stefanovic, 2005; 

Ngoduy, 2012). However, it should be stressed that the real dynamic behavior of real ACC vehicles is not 

well-known and hence not necessarily well-captured in microscopic simulation studies that are based on 

idealized ACC time-gap regulators. In fact, some more recent studies (Gunter, Gloudemans, et al., 2019; 

Gunter, Janssen, Barbour, Stern, & Work, 2019; Milanés & Shladover, 2014), employing data from real ACC 

vehicles, indicate that real ACC vehicles may behave (like manually-driven vehicles) in a string-unstable 

way. Corresponding model identification exercises for ACC vehicles using real data may enable more 

realistic assessment of the impact of ACC systems on the traffic flow. 
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Figure 1: Traffic flow capacity (veh/h/lane) for different ACC time-gaps and different ACC penetration rates 

2.1.2. Microscopic model calibration 

Microscopic simulation is a valuable tool for assessment of novel control strategies that exploit VACS of 

various kinds. Although there is some uncertainty regarding the exact dynamic behavior of equipped 

vehicles, a microscopic simulator should provably reflect with sufficient accuracy the traffic flow resulting 

when only manually driven vehicles are considered. Calibration and validation of microscopic models by use 

of real data for conventional traffic has been the subject of many recent studies, see e.g. (Toledo, Ben-

Akiva, Darda, Jha, & Koutsopoulos, 2007; Treiber & Kesting, 2012).  In order to produce a simulation-based 

testbed for a variety of traffic control investigations, a thorough calibration of a microscopic multi-lane 

traffic flow model for a real sizable motorway was carried out by Perraki, Roncoli, Papamichail, & 

Papageorgiou (2018). The modelled network is a 12 km-long stretch of the motorway A20, from Rotterdam 

to Gouda, The Netherlands (Figure 2(a)). Its topological and traffic characteristics (it includes a lane-drop, 

strong merging flow from on-ramps and partly saturated off-ramps) make it a very interesting testbed for 

investigating various different scenarios with and without the presence of VACS. The microscopic simulator 

Aimsun was used, with critical additions and adaptations made in order to improve the realism of the 

simulation and enable it to reproduce complex traffic phenomena (e.g. the capacity drop at the head of 

congestion). More specifically, different new features were introduced, including the IDM car-following 

model (Treiber et al., 2000) as well as improved heuristic rules to capture more accurately the lane-

changing behavior in the proximity of on-ramps and lane-drops (vehicle merging). Figure 2(b) illustrates the 

similarity of the real data and model outcome, respectively, in terms of mean speed. Note that the shock 

wave entering the stretch from the downstream boundary in Figure 2(b-upper) is not reproduced by the 

model, which was intentionally not fed with the corresponding boundary conditions to avoid interference 

with congestion triggers that are not included in the considered stretch. 

This model was eventually enriched with features related to VACS (e.g. connected vehicles, partially and 

fully automated cars) and was used for testing the accuracy of proposed macroscopic models (see section 

2.2), estimation tools (see section 3), as well as various proposed control strategies (see section 4). 
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(a) 

 

(b) 

Figure 2: (a) A real motorway testbed; (b) Space-time plot of mean speed (real data - upper row - and 

microscopic model – lower row). 

2.2. Macroscopic modelling 

Macroscopic models characterize traffic in terms of aggregate density, space-mean speed, and flow, as 

opposed to microscopic ones that describe interactions between individual vehicles Macroscopic traffic 

flow modelling has a long history, see (Hoogendoorn & Bovy, 2001) for a review. Macroscopic models are 

valuable for traffic management purposes, because, except for their use as efficient simulators (see e.g. 

(Papageorgiou, Papamichail, Messmer, & Wang, 2010), they are analytic in nature and may therefore 

provide a solid basis for the application of modern estimation and control tools, see (Kotsialos & 

Papageorgiou, 2001). In the context of VACS, conventional macroscopic models need to be appropriately 

modified and extended. To start with, the modified microscopic behavior of equipped vehicles, appearing 

in different penetrations, reflects into accordingly modified macroscopic traffic behavior, which needs to be 

captured not merely via modified model parameters, but also via structural changes in the model 

equations. In addition, VACS enable utterly new control measures, such as lane-change commands to 

individual vehicles, which are not possible in conventional traffic. To support the design and testing of such 

lane-change control strategies, macroscopic models need to be lane-based, i.e. able to describe not only 

longitudinal flow, but also lateral (lane-changing) flow, something very rare in conventional traffic flow 

modelling.  

Available conventional macroscopic models feature significant differences in complexity and potential 

accuracy. Macroscopic models may be first-order (comprising one PDE) or second-order (two PDEs) or 

higher-order. For the convenience and computational efficiency of their application, macroscopic models 

may be discrete in space and time, i.e. comprise a number of difference state equations instead of PDEs. 
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Clearly, like in other domains, there is no best model form for any use; rather the most appropriate 

macroscopic model form depends on its intended use.  

The outlined variety of different conventional macroscopic models reflects also in their extension for the 

case of VACS presence and is probably a reason why macroscopic model developments including VACS are 

still scarce. In the following, a PDE-based second-order macroscopic multi-lane traffic flow model with ACC 

and CACC vehicles at various penetration rates is presented first. Then, a simpler discrete first-order multi-

lane macroscopic traffic flow model, to be used in model-based optimization approaches is outlined. 

2.2.1. Second-order modelling in presence of VACS 

Essentially, macroscopic models are governed by the continuity equation, which is derived from vehicle 

conservation and describes the evolution of density based on flow gradients. In addition, second-order 

models include a second PDE to describe how speed changes dynamically. Some parameters from this 

second equation can be used to differentiate the characteristics between manual vehicles and those 

equipped with ACC or CACC systems. Although the literature following this modelling approach is rather 

limited, the approach has been used to model ACC (Junmin Wang & Rajamani, 2004; Yi & Horowitz, 2006), 

V2V communication (Ngoduy & Jia, 2017; Zheng, Jin, & Huang, 2015) and CACC (Ngoduy, 2013; Ngoduy, 

Hoogendoorn, & Liu, 2009). Although most of literature following this approach focuses on homogeneous 

traffic, i.e. assuming 100% penetration rate, there exist some very recent attempts that consider varying 

penetration rates of ACC or CACC systems (Ngoduy, 2012).  

In this section, we present a PDE-based multi-lane GKT traffic flow model (Delis, Nikolos, & Papageorgiou, 

2014; Shvetsov & Helbing, 1999; Treiber & Kesting, 2013) extended with ACC or CACC modelling terms to 

account for the effect on traffic dynamics of variable penetration rates of ACC or CACC vehicles, as well as 

of different classes of drivers using different time-gaps. In a highway with N  lanes, numbered by 

1,2,...,l N , with 1l  being the slowest lane, we aim to model the evolution, in space x  and time t , of 

traffic density (number of vehicles per unit length) ( , )l x t  and traffic flow rate (number of vehicles per unit 

of time) ( , )  l l lq x t u , with ( , )lu x t  being the mean speed of vehicles in the l th  lane. To this end, the 

extended ACC/CACC multi-lane GKT model may be written for each lane l  as 

   


    (1)
, ,1

1

m

t l x l rmp k j l
k

q w  (1) 

 𝜕𝑡𝑞𝑙 + 𝜕𝑥(𝑞𝑙
2 𝜌𝑙⁄ + 𝜃𝑙𝜌𝑙) = ∑ ℎ𝑟𝑚𝑝,𝑘𝛿𝑙,1

𝑚
𝑘=1 + 𝑤𝑙

(2)
+ (

𝜌𝑙𝑉𝑒,𝑙
∗ −𝑞𝑙

𝜏𝑙
) [1 − 𝑃𝐹𝑙(𝜌𝑙)] + 𝑃𝒱(𝑐)𝑎𝑐𝑐,𝑙 (2) 

 𝜌𝑙(𝑥, 0) = 𝜌𝑙,0(𝑥); 𝑞𝑙(𝑥, 0) = 𝑞𝑙,0(𝑥),     𝑙 = 1, 2, … , 𝑁. (3) 

System (1)-(3) constitutes a weakly coupled system of conservation laws, with a total of 2N  equations, for 

traffic density and flow for each lane. In what follows, definitions and explanations related to these 

equations are provided step-by-step: 

The core multi-lane model: In the momentum (flow) equation (2), we introduce the modelling terms that 

account for the ACC or CACC vehicles in the flow, namely the terms [1 ( )]l lPF  and  ( ) ,c acc lPV . The 

parameter P  in these terms accounts for the penetration rate of ACC or CACC vehicles. For 0P  , the 

original multi-lane GKT model for manually driven vehicles is recovered. In the flux term of equation (2), 

 l l  represents a pressure-like term, where 2( )l ll lA u   with ( )l lA  being a density-dependent variance 

factor given by the Fermi function as   0, ,( ) 1 tanh /l l l l l cr l lA A A        
  , where  ,cr l  is the critical 

density for the l th  lane, with 0,lA  and 0, 2l lA A   the variance pre-factors between the two states; while 

l  denotes a transition density width. Typical range of values for the constants 0,lA ,  lA  and l  along 

with the typical range of the other parameters for this model can be found in (Delis et al., 2014; Delis, 

Nikolos, & Papageorgiou, 2015a; Delis, Nikolos, & Papageorgiou, 2018; Ngoduy, 2013). Term ,rmp k  ( ,rmp kh ) 
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models the incoming (outgoing) traffic flow from the k th on-ramp (or to the k th off-ramp) on the first 

lane. 

The model also includes a (non-local) relaxation term in the flow equation (2) aiming to keep flow in 

equilibrium at each lane. We denote with 
* *
, , ,( , , , )e l e l l l lV V u u    the non-local and dynamic equilibrium 

speed, with l  being a relaxation time. 
*
,e lV  depends not only on the local lane density l  and mean speed 

lu , but also on a non-local density ,a l  and mean speed ,a lu , and is defined as 

 
 

 
2

, ,*
, ,

, , ,2 1 /
1 .l l l l

e l max l l

l max l l max l

T
V u B u

A
 



  


  

   
 

 


 

 


 (4) 

*
,e lV  is given by the maximum lane velocity ,max lu , reduced by a term that reflects necessary deceleration 

maneuvers. Both ,l  and ,lu  are computed at an anticipated location , ,(1/ )l l l max l l lx x Tu      with lT  

being the desired time-gap for manual driving, ,max l  the maximum lane density and l  a scale factor. 

Finally, B  is a so-called Boltzmann (interaction) factor, which, with    , ,l l a l l lu u u      , is 

determined as 

 𝐵(𝑧) = 2 [𝑧
𝑒−𝑧2 2⁄

√2𝜋
+ (1 + 𝑧2) ∫

𝑒−𝑦2 2⁄

√2𝜋

𝑧

−∞
𝑑𝑦]. (5) 

Multi-lane terms: The basic assumptions that the multi-lane model aims to satisfy, in terms of vehicles' 

interactions are: a) changing to the left;  b) changing to the right; c) breaking; d) acceleration-following; e) 

acceleration-free flow (Delis, Nikolos, & Papageorgiou, 2015b; Delis et al., 2018). To this end, source terms 
(1),(2)
lw  in the model equations account for the sources and sinks due to lane-changing for the quantities 

(1)
l lv   and (2)

l lv q  that satisfy the above assumptions 

 𝑤𝑙
(1),(2)

= (
1

𝑇𝑙−1
𝐿 𝑣𝑙−1

(1),(2)
−

1

𝑇𝑙
𝑅 𝑣𝑙

(1),(2)
) (1 − 𝛿𝑙,1) + (

1

𝑇𝑙+1
𝑅 𝑣𝑙+1

(1),(2)
−

1

𝑇𝑙
𝐿 𝑣𝑙

(1),(2)
) (1 − 𝛿𝑙,𝑁) (6) 

where terms 1 / L
lT  and 1 / R

lT  are the lane changing rates from lane l  to the left 1l   and right 1l   lane, 

respectively, and ,i j  the Kronecker delta. These rates are given as 

 
1

𝑇𝑙
𝐿 = 𝑃𝐿(𝜌𝑙+1)𝜎(𝜌𝑙) + 𝑆𝑙

𝐿 ,     
1

𝑇𝑙
𝑅 = 𝑃𝑅(𝜌𝑙−1)(1 − 𝑃𝐿(𝜌𝑙+1))𝜎(𝜌𝑙) + 𝑆𝑙

𝑅 , (7) 

with  ,R LP   being the lane-changing probabilities due to vehicle interactions and     21f l l       

denote the interaction frequencies regarding decelerations and accelerations. 

Furthermore in (7) we take into account spontaneous lane changes, which are not caused by interactions 

with other vehicles, through the terms ,L R
lS . We assume that these terms depend on the density, l , and 

are given as 

 𝑆𝑙
𝐿,𝑅 = 𝑘𝑙

𝐿,𝑅 (1 −
𝜌𝑙±1

𝜌𝑚𝑎𝑥,𝑙±1
)

𝛽

 (8) 

where ,L R
lk   and   are spontaneous lane-changing parameters. 

The ACC/CACC terms: Terms [1 ( )]l lPF  and  ( ) ,c acc lPV in the flow equation (2) are related to the extension 

of the multi-lane model, so as to incorporate the effects of ACC/CACC in traffic dynamics. The control 

objectives of an ACC/CACC system, mentioned earlier, should be satisfied here (A.I. Delis et al., 2016; 

Nikolos, Delis, & Papageorgiou, 2015). 

At densities below a threshold ,acc l  (being lower than or equal to the critical lane density ,cr l ), the 

additional term to the multi-lane GKT model has no influence, since it is assumed that the vehicles apply 

the desired speeds as in manual driving. At densities around ,acc l , a smooth but fast transition between 

the previous manual case and the ACC or CACC model is established, using the Fermi-like function 
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  ,( ) 0.5 1 tanh /l l l acc l lF        
 

 with ,0.025l max l   . As a result, the corresponding source for 

ACC vehicles in each lane reads 

 𝑉𝑎𝑐𝑐,𝑙(𝜌𝑙 , 𝑢𝑙 , 𝜌𝑙
∗, 𝑢𝑙

∗) = 𝐹𝑙(𝜌𝑙) (
𝜌𝑙

∗𝑢𝑙
∗−𝜌𝑙𝑢𝑙

𝜏𝑙
∗ ) (9) 

which forces the speed to relax to the speed of the preceding vehicle *
lu  after a relaxation time *

l . 

Assuming that different classes of drivers choose different desired time-gaps, we denote j , 

1, ,j Nclass , the percentage of drivers with different time-gaps 
*
jT . These gaps can be imposed through 

their corresponding influence on a desired lane density *
l  in (9), that is given as: 

 𝜌𝑙
∗ =

1

(1 𝜌𝑚𝑎𝑥,𝑙⁄ +∑ 𝜔𝑗𝑇𝑗
∗𝑢𝑗,𝑙

∗𝑁𝑐𝑙𝑎𝑠𝑠
𝑗=1 )

  (10) 

where 
* *
, ,( )j l j lu u x  is evaluated at location 

* * *
, ,(1/ )j l l l max l j lx x T u     and the mean preceding vehicle 

speed in (9) * *
,1

 
Nclass

l j j lj
u u


 . Indicative values used for ACC traffic are * [0.8,2.2]T  s, following [ISO 

15622, 2010] standards, and * 1  s. 

To model the impact of CACC vehicles in traffic flow dynamics, a similar approach is utilized, with the only 

difference being that a vehicle can exchange information with M  preceding vehicles, each of which has a 

different relaxation time. Thus, the corresponding source term of the momentum equation for lane l takes 

now the form 

 𝑉𝑐𝑎𝑐𝑐,𝑙(𝜌𝑙 , 𝑢𝑙 , 𝜌𝑙
∗, 𝑢𝑙

∗) = 𝐹𝑙(𝜌𝑙) ∑ (
𝜌𝑙

∗𝑢𝑙
∗−𝜌𝑙𝑢𝑙

𝜏𝑙
∗ )𝑀

𝑖=1  (11) 

where now 

 𝜌𝑙
∗ =

1

(1 𝜌𝑚𝑎𝑥,𝑙⁄ +∑ 𝜔𝑗𝑇𝑗
∗𝑢𝑗,1,𝑙

∗𝑁𝑐𝑙𝑎𝑠𝑠
𝑗=1 )

,           𝑢𝑖,𝑙
∗ = ∑ 𝜔𝑗𝑢𝑗,𝑖,𝑙

∗𝑁𝑐𝑙𝑎𝑠𝑠
𝑗=1  (12) 

with  
* *
, , , ,( )j i l l j i lu u x  at location 

* * *
, , ,(1/ )j i l l l max l j lx x i T u    . For example, for CACC systems, one can 

assume that 3M  , while 
* * *
1, 2, 3,[ , , ] [2,3,6]l l l     as in (A.I. Delis et al., 2015b, 2016; Anargiros I. Delis et al., 

2018). 

The numerical integration of the PDE model equations is based on an accurate and robust higher-order 

finite-volume relaxation scheme. A fifth-order weighted essential non-oscillatory-type interpolant approach 

is used for the spatial discretization, while time integration is based on a third-order implicit-explicit Runge-

Kutta method (A.I. Delis et al., 2014, 2015b). 

The developed macroscopic model has been used to simulate traffic flow for either manual or ACC/CACC or 

mixed vehicle traffic, in single-lane or multi-lane highways (Delis et al., 2016, 2018; Nikolos, Delis, & 

Papageorgiou, 2015; Porfyri, Nikolos, Delis, & Papageorgiou, 2016; Porfyri, Delis, Nikolos, & Papageorgiou, 

2017; Strofylas, Porfyri, Nikolos, Delis, & Papageorgiou, 2018). In the work by Delis et al. (2018), the multi-

lane second-order GKT model, extended with the modelling of ACC/CACC vehicles was presented and 

evaluated. A real motorway network has been used as a test-case, where a recurrent congestion occurs, 

and for which real traffic measurements are available for manual traffic. The main parameters of the multi-

lane GKT model for manual driving were calibrated and validated; eventually, keeping these parameters 

fixed, simulations were conducted for various penetration rates of ACC and CACC vehicles, assuming a 

constant time-gap, which was different for each case. The numerical simulations demonstrate that ACC 

systems with low time-gap may mitigate congestion at bottlenecks at an extent that depends on their 

penetration rate; and that CACC systems lead to higher efficiency at the same penetration rates. In 

(Strofylas et al., 2018), numerical simulations have been presented using real traffic data from a freeway 

stretch of Attiki Odos motorway, Greece, where recurrent congestion occurs during the morning peak 

hours. A parallel, synchronous or asynchronous, metamodel-assisted DE algorithm was employed for the 

calibration of the second-order macroscopic GKT model. Two Artificial Neural Networks, a multi-layer 
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perceptron and a radial basis function network, were used as surrogate models to decrease the 

computation time of the evaluation phase of the DE optimizer. The obtained results demonstrate that the 

proposed model is reasonably accurate in reproducing traffic dynamics, while the parallel DE algorithm can 

be effectively used for its calibration. 

2.2.2. Control-oriented motorway traffic modelling 

As mentioned earlier, macroscopic models may serve different purposes, some of which require availability 

of simpler than PDE-based models to enable higher computational efficiency and methodological simplicity. 

Network-wide integrated traffic control strategies employing, beyond conventional ramp metering, 

appropriate VACS-based actuators, such as vehicle speed control and lane-assignment or lane-changing 

recommendations in the aim of mitigating motorway traffic congestion are presented in section 4. To 

enable some of these approaches by use of optimal control methods, an appropriate low-complexity traffic 

flow model is needed, both for control strategy design and as a no-control base case for comparative 

evaluation studies.  

Such a multi-lane first-order space-time discrete model was built starting from the well-known CTM 

(Daganzo, 1994), which was modified and extended to consider additional important aspects of the traffic 

dynamics, such as lane changing and the capacity drop. The model was derived with a view to combine 

realistic traffic flow description with a simple discrete piecewise-linear mathematical structure, which can 

be exploited for efficient optimal control problem formulations, as well as for the development of advanced 

model-based nonlinear feedback control concepts, as will be reported in section 4. Although the model was 

primarily designed for use in future traffic conditions including VACS, it may also be employed, with 

appropriate parameter values, for conventional traffic flow representation. The accuracy of the simple 

model was demonstrated through calibration and validation procedures using conventional real data from 

an urban motorway located in Melbourne, Australia, see (Roncoli, Papageorgiou, & Papamichail, 2015b)  

and section 4.5 for more details. 

Regarding, in particular, the crucial phenomenon of capacity drop, it is well-known that classic first-order 

traffic flow models are not able to reproduce it. Therefore, various research groups investigated different 

possibilities of including capacity drop in a first-order traffic flow model (Ferrara, Sacone, & Siri, 2015; Z. Li, 

Liu, Xu, & Wang, 2016; Manolis, Papamichail, Kosmatopoulos, & Papageorgiou, 2016; Muralidharan & 

Horowitz, 2015; Ngoduy, 2012; Torné, Soriguera, & Geroliminis, 2014). To comprehensively address this 

fundamental issue, some modelling approaches presented in the literature, together with some novel 

approaches, were analyzed, with particular emphasis on the practical applicability of such models for traffic 

management and control. A subset of the most promising modelling approaches was thoroughly tested, 

calibrated and compared using real data from a motorway network in U.K., and the obtained results, 

reported in (Kontorinaki, Spiliopoulou, Roncoli, & Papageorgiou, 2017), may guide the proper choice of a 

simple traffic flow model for use in various traffic control endeavors. 

3. Traffic State Estimation Using Connected Vehicle Data 

The availability of real-time data is a prerequisite for traffic management and control. Spot detectors are 

conventionally used, but they are costly to acquire, install and maintain; while the data they provide are 

local, rather than spatial, as required by traffic control strategies. Abundant information stemming from 

equipped vehicles may be used to reduce the cost and increase the accuracy of real-time information. In 

fact, with the introduction of VACS of various kinds, an increasing number of vehicles become “connected,” 

i.e., enabled to send (and receive) real-time information to a local or central monitoring and control unit. 

Thus, connected vehicles may communicate their position, speed and other relevant information, i.e., they 

can act as mobile sensors. The transforming of such information into real-time estimates for the traffic 
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states calls for appropriate estimation schemes, and various research works attempt to exploit these data 

for travel time or highway state estimation; employing various kinds of traffic models and estimation 

schemes, see e.g. (Deng, Lei, & Zhou, 2013; Herrera & Bayen, 2010; Piccoli, Han, Friesz, Yao, & Tang, 2015; 

Seo, Kusakabe, & Asakura, 2015; Yuan, Van Lint, Van Wageningen-Kessels, & Hoogendoorn, 2014). These 

estimation approaches involve some sort of empirical traffic flow modelling, typically a fundamental 

diagram, which calls for appropriate model calibration and validation to the specific highway traffic 

conditions prior to deployment. An alternative estimation approach was developed by Bekiaris-Liberis, 

Roncoli, & Papageorgiou (2016), which employs only exact traffic flow physical laws, such as the 

conservation-of-vehicles equation, which eliminates the need for model calibration prior to usage. The 

method exploits position and speed data from connected vehicles, as well as total flow measurements 

obtained from a minimum number of fixed detectors using a time-variant Kalman filter. Observability of the 

underlying model and stability of the estimators are rigorously addressed. Cross-lane and per-lane traffic 

state estimation schemes are developed and validated using both real data and data generated via 

microscopic simulation. 

3.1. Cross-lane estimation 

3.1.1. Traffic density dynamics  

The discrete-time dynamics of total densities i  of vehicles in N  highway segments are given by the 

conservation equation 

             11 ,i i i i i i

i

T
k k q k q k r k s k       


 (13) 

where, for all traffic variables, we denote by index i  their value in segment i ; iq  is the total flow; T  is the 

time step, i is the length of segment i , and 0,1,k  is the discrete time index. The variables ir  and is  

denote the unmeasured inflow and outflow of vehicles at on-ramps and off-ramps, respectively, whose 

dynamics may be reflected by a random walk. Thus, using the known relation 

 ,i i iq v  (14) 

where iv  is the mean speed in segment i , we get 

            1 11 1 ,i i i i i i

i i i

T T T
k v k k v k k k    

 
     

   
   1 ,i ik k    (15) 

with i i ir s   . Assuming that the mean speed of all vehicles is not systematically different from the 

average speed of connected vehicles, denoted by c
iv , and defining  

T

1 1, , , , ,N Nx       , system (15) 

can be written in the form of a linear parameter-varying system of the form 

         c1 ,x k A v k x k Bu k       ,y k Cx k  (16) 

for appropriate A , B , C  where u  is the measured mainstream inflow, and y  consists of a minimum 

amount of measured flows, which are necessary to guarantee observability; all these flow measurements 

are obtained from fixed flow detectors. 

3.1.2. Estimation scheme 

For estimating vector x , we employ a Kalman filter (see e.g. (Cha, Rotkowitz, & Anderson, 2008)) using 

model (16) and measurements cv , y , u . As mentioned, a main assumption of the estimation approach is 

that the average of speed measurements stemming from connected vehicles reports is representative of 

the all-vehicles average speed. Figure 3 validates this assumption, showing the noise statistics derived for 

the speed measurement error using both real data (specifically, the processed by Montanino & Punzo 

(2013) real microscopic traffic data collected within the NGSIM program (US DoT, 2005)) as well as traffic 
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data generated using microscopic simulations (namely, simulations in Aimsun see (Fountoulakis, Bekiaris-

Liberis, Roncoli, Papamichail, & Papageorgiou, 2017) for details). 

 

  

 (a) (b) 

Figure 3: Mean and standard deviation of the speed error (connected-vehicles versus all-vehicles speed) as 

the penetration rate of connected vehicles varies. (a) The case of NGSIM data; (b) The case of data 

generated in microscopic simulation. 

3.1.3. Observability and stability 

To guarantee the stability of the estimation scheme (Bekiaris-Liberis et al., 2016), the most crucial element 

is establishing the UCO property of system (16). Assuming that the mean speeds are nonzero for all times, it 

can be shown, using an algebraic or a graph-theoretic approach (Bekiaris-Liberis et al., 2016; Bekiaris-

Liberis, Roncoli, & Papageorgiou, 2017), that (16) is UCO when a fixed flow detector is placed, in addition to 

the highway mainstream exit and entry, at every segment immediately upstream a ramp whose flow is 

unmeasured, as illustrated in Figure 4(a). In practice, observability is guaranteed when a fixed flow detector 

is placed anywhere between two consecutive unmeasured ramps (Bekiaris-Liberis et al., 2017). 

3.1.4. Case studies 

Real data validation using NGSIM data: We employ NGSIM traffic data (see Section 3.1.2) for a 400-m 

stretch of highway I-80, Emeryville, California. The stretch is divided into 8 homogeneous segments of 50 m 

in length, and an on-ramp is located within the fourth segment. All necessary information needed for 

estimation is extracted from the available vehicle trajectory data, i.e., cv (computed as average of speeds of 

a subset of vehicles randomly tagged as connected), y , u . For brevity, only results for 5% penetration rate 

are shown in Figure 5; see (Roncoli, Bekiaris-Liberis, & Papageorgiou, 2016b) for details. 

Microscopic simulation-based validation: For various percentages of connected vehicles, we use as 

evaluation metric the CV of the root mean square error between real and estimated densities. We show in 

Figure 6 estimation results for a realistic scenario in a sizable network, consisting of a 10-km, three-lane 

highway stretch with several on/off-ramps, under various traffic conditions, utilizing the microscopic traffic 

simulation software Aimsun. It may be seen from Figure 6 that the accuracy of the estimation scheme does 

not degrade substantially even for very low penetration rates, see (Fountoulakis et al., 2017) for details. 
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(a) 

 

(b) 

Figure 4: (a) Graph of system (16); (b) Graph of system (20). Green vertices denote measured states and 

directed arcs indicate reverse traffic flow, which exist when the corresponding elements of the matrices are 

nonzero. 

   

Figure 5: Cross-lane estimation – Real and estimated densities for the NGSIM case study for 5% penetration 

rate of connected vehicles. 
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Figure 6: Cross-lane estimation – Performance indices of density estimation for various penetration rates in 

the microscopic simulation experiments for 6 and for 12 time steps used when calculating the moving 

average of speed computed from connected vehicle reports. 

3.2. Per-lane estimation 

Real-time traffic information per lane is crucial for the implementation of some novel, VACS-enabled traffic 

control measures, such as lane assignment and lane-change control. To the best of our knowledge, the 

estimation approach presented in this section is the only one in the technical literature to address the 

problem of per-lane estimation. 

3.2.1. Traffic density dynamics 

We provide the discrete-time dynamics of per-lane densities based on the conservation equation for each 

segment-lane cell ( , )i j  as 

                    , , 1, , , 1 , 1 , 1 , 1 , .1 ,i j i j i j i j i j j i j j i j j i j j i j i j

i

T
k k q k q k L k L k L k L k r k s k                   


 

  (17) 

where ,i j  is the total traffic density in cell  ( , )i j ; ,i jq  is the total longitudinal inflow entering cell ( 1, )i j ; 

,i jr  and .i js  are the total on- and off-ramp flows entering and exiting from cell ( , )i j , respectively; and 
1 2,i j jL 

is the total lateral (lane-changing) flow at segment i  that enters lane 2j  from lane 1j  . 

We assume in our model that the following relations hold 

      , , , , 1 , 1 , 1 , 1 , ,( ) ( ) ( ),i j i j i j i j j i j j i j j i j j i j i jq k v k k p L k p L k p r k             (18) 

 1 2

1 2 1

1

,

, ,

,

( )
( ) ( )

( )

c
i j j

i j j i jc
i j

L k
L k k

k






   (19) 

where  
1 2, ,, 0,1i j j i jp p  are parameters that indicate the percentages of "diagonal" lateral movements and 

 
c

 represents the measurement involving only connected vehicles of variable  . The first term in (18) is 

the same as in (14), while the rest terms are motivated by the fact that, at locations featuring strong lateral 

flows (e.g. at on-ramps or lane-drops), the flow is more accurately described by considering that a 

percentage of lateral or on-ramp flows acts as additional exiting longitudinal flow (i.e. flow may also move 

diagonally). Relation (19) is based on the reasonable assumption that the average behavior of the 

population of connected vehicles in a given cell, with respect to lateral movements, is representative for 

the total vehicle population in that cell (for further details see (Bekiaris-Liberis et al., 2017; Papadopoulou, 

Roncoli, Bekiaris-Liberis, Papamichail, & Papageorgiou, 2018); and the variables involved in (19) and 
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referring to connected vehicles may be readily extracted as measurements from the connected vehicles 

reports. 

Similarly to the case of cross-lane estimation, we can write (17)-(19) in the following form 

         c1 , ( ), ( ) ,c cx k A v k L k k x k Bu k         c , ( ), ( ) ,c cy k C v k L k k x k  (20) 

where  
T

1,1 ,1 1, , 1, , 1, ,, , , , , , , , , , , , ,N M N M M N M M N Mx r r s s          while y  and u  consist of flow 

measurements from fixed detectors, as in Section 3.2.3. 

3.2.2. Estimation scheme  

For estimation of x  we employ a Kalman filter using model (20) and measurements , , , ,c c cv L y u . 

3.2.3. Observability and stability 

As in the cross-lane case, in order to guarantee exponential stability of the Kalman filter utilized for state 

estimation of system (20), the most crucial fact is to show the strong structural observability of (20) 

(Bekiaris-Liberis et al., 2017). Under the assumptions that the average speeds of connected vehicles are 

nonzero and satisfy a modified (to account for lateral flows) Courant-Friedrichs-Lewy-type condition, 

system (20) (where, for simplicity, all percentage values for diagonal lateral and on-ramp flows are set to 

zero) is strong- structurally observable if and only if fixed flow detectors are placed at the mainstream exit 

and entry in each lane of the considered stretch, as well as at every cell immediately upstream of a cell with 

a ramp (see Figure 4(b)). For physical systems, weak structural observability is usually sufficient for 

observability, which may be guaranteed when, for each pair of unmeasured ramps, an additional fixed flow 

sensor is placed anywhere between them (Bekiaris-Liberis et al., 2017). 

3.2.4. Case studies  

Real data validation using NGSIM data: We employ again NGSIM data, now dividing the stretch in four 100-

m long segments. The performance of the per-lane estimation scheme is shown in Figure 7. 

Microscopic simulation-based validation: We utilize a model of the stretch of motorway A20 from 

Rotterdam to Gouda, in the Netherlands, (see Figure 2(a)) implemented and validated, as outlined in 

section 2.1.2, with real, lane-specific, traffic data, thus providing a realistic ground truth scenario. The 

estimation results are shown in Figure 8 and indicate good estimation results even for very low penetration 

rates, see (Papadopoulou et al., 2018) for details. 

4. Traffic Flow Control 

VACS give rise to new opportunities for more efficient traffic control. This is due to the increased control 

granularity (e.g. control by lane, control by destination, control of individual vehicles) and the arbitrary 

space-time resolution of control measures that one may use (instead of the fixed-location traffic signs, 

VMS, VSL etc.). Vehicle speed control or efficient lane assignment are just two such new opportunities 

where automated vehicles can be exploited as actuators to improve traffic flow. Some more examples of 

related developments are given in what follows. 

4.1. Cooperative merging 

The very first article addressing the problem of efficient merging of two single-lane streams of automated 

vehicles was published as early as 1969 (Athans, 1969) using the then innovative LQR methodology. Some 

few works addressing vehicle merging appeared in the following decades, but the problem gained 

significance and popularity in the last decade thanks to the emergence of VACS, which led to multiple, 

partly overlapping approaches by various groups, see (Rios-Torres & Malikopoulos, 2017; Schmidt & Posch, 

2010) for dedicated informative overviews of past and more recent developments. Automated vehicle 

merging may be viewed as a general problem in the wider transportation domain. In the particular case of 
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motorways, merging of vehicles entering the mainstream from on-ramps is one of the major causes of 

congestion. Moreover, in manual driving, the merging procedure is stressful for the drivers, since it requires 

a synchronized set of fast observations and actions. Therefore, the development of automated procedures 

for equipped vehicle merging is important, as it can increase passengers' safety and convenience and 

alleviate congestion.  

 

Figure 7: Per lane estimation – Real and estimated densities for the NGSIM case study for 20% penetration 

rate of connected vehicles. 

 

Figure 8: Per-lane estimation – Performance indices of density estimation for various penetration rates in 

the microscopic simulation experiments. 
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As suggested by Ntousakis, Nikolos, & Papageorgiou (2016), the overall problem complexity may be 

mitigated by appropriate functional decomposition. A merging location point is specified on the 

mainstream towards the end of the on-ramp’s acceleration lane. This is the point where all merging 

vehicles (from either the mainstream or the on-tamp) end the merging maneuvers. All vehicles located 

upstream of the merging point up to a certain distance (of, e.g., some 200 m), on either the mainstream or 

the on-ramp, belong to the merging control region and are subject to merging control.  We distinguish the 

following functional control layers: 

- The traffic management layer specifies the required speed and time-headway that vehicles should have 

when reaching the merging point. These quantities are specified, depending on the current demand, so 

as to maximize safety and throughput for the merged total flow. For example, for high demand, the 

time-headway (which is the inverse of flow) may be set corresponding to capacity; while for lower 

demand, there is a range of possible settings to select from according to other considerations. 

- The merging sequence layer specifies the sequence of vehicles in the control region in reaching the 

merging point. There are various ways of doing this, such as: FIFO; according to current vehicle speeds 

and distances; optimal. The MS is updated regularly, e.g. whenever a new vehicle enters the control 

region. Once a MS is specified, each vehicle obtains a putative leader, which is the vehicle to merge 

ahead of it. A putative leader may or may not be the physical leader (i.e. the same-lane vehicle ahead). 

- The vehicle control layer calculates a longitudinal vehicle trajectory up to the merging point by solving a 

finite-horizon optimal control problem. Specifically, based on a simple model of vehicle kinematics, the 

trajectory problem consists in moving the vehicle from its current state to the final state, at which: final 

position is the merging point, final speed is the one prescribed by traffic management, and final 

acceleration and jerk are zero. The time horizon is fixed according to the MS, the specified time-

headway and the merging time of the putative leader. A quadratic criterion leads to smooth, 

passenger-convenient and fuel-saving trajectories. Specifically, the minimization of acceleration is 

directly connected to the minimization of fuel consumption, while the minimization of jerk is connected 

to passenger comfort. The overall problem is readily solved analytically or via a time-variant LQR. 

- The vehicle trajectory problem must be solved repeatedly (MPC approach), using updated 

measurements in real time, until the merging procedure is finalized. Application of MPC is necessary 

due to many potential disturbances or changes, such as: physical leader constraints, putative leader 

trajectory changes, insufficient actual trajectory tracking, MS update, final speed and headway update. 

As it was demonstrated by Ntousakis, Porfyri, Nikolos, & Papageorgiou (2014), even relatively simple MS 

schemes may produce smooth merging and efficient total merged traffic flow, although partial differences 

in the resulting behavior are also observed. More specifically, Ntousakis et al. (2014) tested and compared 

two MS algorithms. In a first algorithm, vehicles are merging in the same sequence as they are entering the 

control region (FIFO). In a second algorithm, vehicles are merging in a sequence which depends on the time 

they need to arrive to the merging point, assuming constant (current) speed inside the control region. Both 

algorithms specify and update (at each time step) the MS. It was assumed that all vehicles in the network 

are equipped with ACC systems and are enabled with V2V communication capabilities. The microscopic 

simulator Aimsun was used to perform the corresponding simulations for testing and demonstration. Both 

algorithms provided similar results concerning the macroscopic values of total merged flow and density. 

However, the second algorithm is closer to real driving behavior, since it evaluates also forward gaps and 

mitigates unnecessary decelerations. 

4.2. Vehicle trajectory control 

Fully automated vehicles could improve safety and efficiency of traffic operations by reducing accidents 

caused by human driver errors, improve driver and passenger comfort and, at the same time, help to 

reduce traffic congestion. The development of fully automated driving systems is inherently related to 

planning and updating a vehicle path, which should be safe, collision-free, user-acceptable, as well as 
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efficient for the vehicle itself, but also for the emerging traffic flow. Planning such a path can be seen as a 

trajectory generation problem, i.e. creation of a quasi-continuous sequence of states that must be tracked 

by the vehicle control. 

The complexity of real-world environments, avoidance of static and moving obstacles, compliance with 

traffic rules and consideration of human driving behavior aspects are some of the factors that make 

automated vehicle trajectory control a challenging problem. More in particular, the trajectory generation 

process must not only be effective according to a variety of criteria, but also perform real-time adaptations 

to an ever-changing environment, with surrounding vehicles continuously deviating from their projected 

trajectories. Last not least, as the penetration rate of automated vehicles increases, their behavior should 

account not only for individual criteria (selfish behavior), but also for the efficiency of the emerging traffic 

flow. 

Potential field methods generate a two-dimensional (road surface) field, based on the design of appropriate 

potential functions for obstacles, road structures, traffic regulations and the goals to be achieved. Then, a 

vehicle trajectory is generated by moving, at any road location towards the maximum descent direction 

(gradient) of the field (Jianqiang Wang, Wu, & Li, 2015; Wolf & Burdick, 2008). Ji, Khajepour, Melek, & 

Huang (2017) proposed a trajectory generation method along with a model-predictive path tracking 

controller. However, the potential field methods do not behave well in the presence of mobile obstacles, as 

they do not consider future path information regarding the own and other vehicles movements (Shum, 

Morris, & Khajepour, 2015). Due to the fact that the system dynamics and the movement of other vehicles 

are not considered during the trajectory generation, the planned path may in some situations turn out to 

be non-feasible to be tracked by the vehicle (Erlien, 2015). Potential field methods are quite popular due to 

the intuitive problem formulation and their low computational cost (Rasekhipour, Khajepour, Chen, & 

Litkouhi, 2017), even with complex potential functions. However, there are still open issues regarding the 

integration of system dynamics and constraints within such methods that were discussed some three 

decades ago (Koren & Borenstein, 1991). 

This drawback can be alleviated by formulating the trajectory generation problem as an optimal control 

problem. Such approaches allow for concurrent consideration of system dynamics and anticipated obstacle 

movements during the trajectory generation process, thus avoiding myopic actions. For example, in 

(Carvalho, Gao, Lefevre, & Borrelli, 2014), the distance between the vehicle and an obstacle is used to 

generate approximate linear constraints for obstacle avoidance, while in (Gao, Gray, Tseng, & Borrelli, 

2014), the obstacles are considered as ellipse-shaped constraints, in order to keep the automated vehicle 

robustly far from them. In the same spirit, Gao, Lin, Borrelli, Tseng, & Hrovat (2010) included in the cost 

function factors dependent on the longitudinal distance between the automated vehicle and the obstacles, 

in order to generate a collision-free path. In some works, the merits of both potential field and optimal 

control path planning techniques are combined. Rasekhipour et al. (2017) and H. Wang et al. (2019) 

developed an MPC controller for path planning of autonomous vehicles, which avoids obstacles and 

observes road regulations by introducing appropriate penalty functions in the objective function of the 

optimal control problem. 

Optimal control approaches usually map the optimal control problem to a NLP problem that can be solved 

using numerical NLP solvers, see for example (Gray, Ali, Gao, Hedrick, & Borrelli, 2012; Werling & Liccardo, 

2012; Ziegler, Bender, Dang, & Stiller, 2014). The main drawback of this mapping is that it produces a locally 

optimal solution, the quality of which is very much dependent on the initial guess trajectory employed.  

Another attractive alternative for solving optimal control problems is the use of DP techniques (Bertsekas, 

2005). DP can be applied to a broad range of system models and allows for easy integration of system and 

obstacle constraints. In addition, DP techniques produce a globally optimal solution for the optimal control 

problem. Unfortunately, due to the curse of dimensionality (Bellman, 1954), DP techniques are restricted to 
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small-scale problems. For this reason, they are sometimes combined with other optimization methods. For 

example, Tanzmeister, Friedl, Wollherr, & Buss (2013) used DP to generate a rough reference vehicle 

trajectory for parking scenarios, where all obstacles are considered static. 

Makantasis & Papageorgiou (2018) derived an algorithm for generating a feasible path for an automated 

vehicle from the opportune formulation of a discrete-time optimal control problem. Vehicle dynamics form 

the state equations of the problem; while the road geometry, the presence of obstacles (i.e. other moving 

vehicles and road-boundaries) and traffic rules are taken into account via appropriate potential-field like 

functions to ensure path feasibility. Exploiting the structure of the system dynamics (state equations), a 

reduced gradient may be readily obtained, and, thereby, the optimal control problem is mapped to a NLP 

problem in the reduced space of the control variables. Starting from an arbitrary initial solution (or path), a 

local minimum is obtained with a very efficient iterative FDA (Papageorgiou, Marinaki, Typaldos, & 

Makantasis, 2016). A simplified DP algorithm is also conceived to deliver the initial solution, greatly 

enhancing the quality of obtained local minima. 

Based on the above work, Typaldos, Mountakis, Papageorgiou, & Papamichail (2019) take advantage of low 

computation times to embed this optimization-based path-planning approach within a MPC framework, 

which is implemented in Aimsun’s micro-simulation platform (TSS-Transport Simulation Systems, 2014). 

Considering a homogeneous motorway stretch and alongside other vehicles following Aimsun’s default 

driving behavior, one or more vehicles are instructed to track a path produced by the MPC-based 

optimization approach. The path for each such controlled vehicle is generated according to the current lane 

and speed of surrounding vehicles and is re-generated online in case of substantial changes. Aimsun’s 

micro-simulation platform enables a thorough experimental evaluation of the approach, by creating a huge 

number of different traffic scenarios as the vehicles drive in the simulated road environment. In addition, 

this experimental framework allows the investigation of the impact of the suggested approach on the 

traffic flow as a whole for increasing penetration rates of automated vehicles. Some first results (see Figure 

9) indicate faster advancement of the ego vehicle compared to others, particularly in free-flow conditions. 

Ongoing work delivers further improvements to the open-loop path-planning method by employing state-

of-the-art non-convex optimization techniques, such as sequential convex programming (Lipp & Boyd, 

2016), for the solution of the optimization problem. In future work, we aim for a thorough investigation of 

the effects of fully automated vehicles (guided in a decentralized way by our approach) on traffic flow as a 

function of penetration rate. In addition, it is interesting to design a common optimal control problem for 

the simultaneous path-planning of multiple vehicles to study the synergistic effects on overall traffic flow. 

Finally, we aim to design optimization objectives or weights that will not merely serve each individual 

automated vehicle, but also contribute to a more efficient traffic flow (e.g. focusing on mitigating 

congestion). 

4.3. Real-time ACC time-gap control 

The ACC systems have been designed to increase the driving safety and comfort. However, if conservative 

values are set for their parameters (e.g. the time-gap), then the ACC systems may actually lead to a 

deterioration rather than improvement of traffic flow efficiency, as already seen in Figure 1. By the same 

token, lower than manual time-gap settings would lead to increased motorway capacity per lane and 

decreased capacity drop at the head of congestion, and this impact can be exploited for increased traffic 

flow efficiency if the settings of the ACC-vehicles could be updated dynamically in real time through the 

operation of an ACC-based control strategy, see (Kesting, Treiber, Schönhof, & Helbing, 2008). 
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Figure 9: In a simple highway stretch and for various traffic loads, vehicles following our path-planning 

approach yield a lower deviation from optimal travel time (with everyone moving at their desired speed) 

than conventional vehicles. 

For the design of such a control strategy (Spiliopoulou, Manolis, Vandorou, & Papageorgiou, 2018), 

consider a motorway with both manually-driven and ACC-vehicles. The ACC-vehicle drivers may introduce 

their desired ACC system settings, i.e. desired speed, dv , and minimum time-gap, dT , but these settings are 

subject to change if the control strategy recommends (or orders) different values. The motorway is 

considered to be divided in sections, and the traffic management center applies the proposed control 

strategy at every motorway section 1,2,i   independently, as illustrated in Figure 10, in dependence of 

the current traffic conditions. In particular, at every control interval ct , the strategy receives real-time 

measurements (or estimates) of the exiting flow iq  and mean speed iv  of every section i to decide on 

appropriate settings. The control strategy determines in real time the time-gap of the ACC vehicles that 

lead to increase of the static and dynamic road capacity, but this is indeed only done where and when 

needed. The proposed strategy has two goals which are presented below. 

Capacity increase: To increase the (static) capacity, the strategy gradually decreases the suggested time- 

gap, when traffic flow is approaching the nominal capacity. In particular, the strategy calculates the 

suggested time-gap as a monotonically decreasing function of the current section flow,  
iT q k   , as shown 

in Figure 11. Note that the suggested time-gap value is reduced to the minimum value before the flow 

reaches the nominal capacity of the section. In this way, the strategy aims to delay, or even prevent, the 

formation of congestion, by maximizing timely the section's capacity. If, despite the capacity increase, the 

section becomes congested (e.g. due to even higher arriving demand or due to a shockwave arriving from 

downstream), then the strategy activates its second goal. 
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Figure 10: Illustration of the control strategy operation. 

 

Figure 11: Calculation of the suggested time-gap value for real-time capacity increase. 

Discharge flow increase: The second goal of the proposed control strategy is the maximization of the 

discharge flow during congestion (dynamic capacity). It is empirically known that the discharge flow at the 

head of a congested area is lower than capacity, and the second goal is to mitigate this capacity drop. The 

strategy first identifies the location of active bottlenecks (congestion head), then suggests the minimum 

admissible time-gap minT  for all ACC vehicles in the sections just upstream and just downstream of the 

congestion head. In that way, the strategy achieves the increase of the discharge flow at the congestion 

head. 

The above control decisions are summarized in the following equation which determines the suggested 

time-gap, 

 

 

, min
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( ) ( )

( )
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stg i

T q k if v k v

T k T at active bottlenecks

T else

 


 



 (21) 

where 1,2,k  , is the discrete time index, and congv  indicates the congestion limit. The control strategy 

decisions are calculated externally, at an infrastructure-based traffic management center (or road-side unit) 

and are disseminated to the ACC-vehicles, e.g. via V2I communication. The ACC-vehicles receive the 

suggested time-gap, but they apply it only if their individual time-gap setting, dT , is higher than the time-

gap calculated by the controller. 

The proposed strategy was tested through microscopic simulation in Aimsun using the real motorway 

stretch of section 2.1.2, where congestion is created due to an on-ramp bottleneck. The simulation results 
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showed that, the higher the penetration rate, the bigger the improvement of the traffic conditions. Figure 

12 and Figure 13 present the spatio-temporal diagrams of speed, considering various penetration rates, for 

the no-control case and the strategy application case, respectively. It can be seen that, for the no-control 

case, the conservative ACC time-gap values lead to an increasingly strong congestion as the penetration 

rate of ACC-vehicles increases. On the contrary, in the control case, the control strategy achieves significant 

improvement even for low penetration rates (e.g. 5%), while for high penetration rates the congestion is 

almost resolved. 

 

Figure 12: No-control case: spatio-temporal diagrams of speed considering various PRs. 

 

Figure 13: Traffic control case: spatio-temporal diagrams of speed considering various PRs. 
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4.4. Lane-change control 

4.4.1. Introduction 

Lane-change control is a promising feature that can be exploited for traffic management at merging 

bottlenecks (e.g. lane-drops, on-ramp merges), where human drivers usually perform suboptimal lane-

changes based on erroneous perceptions, which may trigger premature congestion; but even at non-merge 

bottlenecks (e.g. bridge, tunnel, strong curvature, grade), congestion usually starts at one lane, while other 

lanes still have capacity reserves, hence better lane distribution of vehicles may increase the cross-lane 

capacity. In the presence of a sufficient percentage of vehicles equipped with lane-changing automatic 

controllers or advisory systems, the overall throughput at the bottleneck location may be improved by 

execution of specific lane-changing commands dictated by a central decision maker. 

Early works addressed the lane assignment problem for fully automated highway systems. The seminal 

work by Varaiya (1993)  proposed a hierarchical framework for a fully automated motorway, in which the 

decisions on the lane-changing behavior of vehicles are addressed in the link layer. Following this 

framework, several strategies have been proposed to solve the problem of lane assignment in the link 

layer; strategies include designing control methods suitable for real-time applications, with the 

development of structured heuristic rules (Rao & Varaiya, 1994); implementing lane-routing algorithms 

(Lee & Lee, 1997); and defining control laws to stabilize traffic conditions (P. Y. Li, Horowitz, Alvarez, 

Frankel, & Robertson, 1997). Optimization methods for path planning through lanes have also been 

developed, but the computation complexity of the proposed optimization problems makes them hardly 

applicable in a real-time context (Hall & Caliskan, 1999; Hall & Lotspeich, 1996; Kim, Cho, & Medanić, 2005; 

Ramaswamy, Medanic, Perkins, & Benekohal, 1997).  

More recently, in a mixed traffic context with conventional and VACS-equipped vehicles, lane-changing 

control has been considered, together with variable speed limits and ramp metering, in integrated traffic 

management strategies (see section 4.5). Also, a combined lane-changing and VSL control strategy was 

developed by Zhang & Ioannou (2017) with the purpose of avoiding lane changes in the immediate 

proximity of a bottleneck, which, especially in the case of heavy vehicles, may lead to premature triggering 

of congestion. In particular, lane-changing commands delivered as recommendations to drivers are 

delivered in real time according to a set of case-specific rules. Schakel & van Arem (2014) proposed a 

system that aims at improving traffic conditions by sending advice on lane, speed, and headway to vehicles 

equipped with an in-car advisory system. The advice is computed at a traffic management center based on 

a lane-level traffic state prediction model. Furthermore, Guériau, Billot, Faouzi, Hassas, & Armetta (2015) 

proposed a multi-agent decentralized framework with the aim of performing cooperative lane-changing 

tasks according to information exchange between vehicles and a roadside unit located in the proximity of a 

bottleneck. 

An optimal feedback control strategy formulated as a LQR was recently proposed by Claudio Roncoli, 

Bekiaris-Liberis, & Papageorgiou (2016a, 2017). The resulted linear state-feedback control law is highly 

efficient in real time even for large-scale networks. In contrast to other approaches, this strategy is based 

on a rigorous application of LQR methodology and does not involve heuristic rules. The control strategy 

aims at regulating the lane assignment of vehicles upstream of a bottleneck location so as to maximize the 

bottleneck throughput, targeting critical densities as set points.  

4.4.2. Linear multi-lane traffic flow model 

We consider a multi-lane motorway subdivided into segments of length iL  , where each segment is 

composed of 1i iM m   lanes ( im  and iM  being the minimum and maximum indices of lanes in segment 

i ) indexed by j , denoting each element of the resulting grid as "cell", indexed by  ,i j . The model is 



24 
 

formulated considering the discrete time step T , indexed by 0,1,k  . We define traffic density ,i j , 

whose dynamics evolves according to (Roncoli et al., 2016a): 

               , , 1, , , 1 , ,1i j i j i j i j i j i j i j

i

T
k k q k q k f k f k d k

L
           (22) 

where ,i jq  is the longitudinal flow from cell  ,i j  to cell  1,i j ; ,i jf  is the net lateral flow from cell  ,i j  

to cell  , 1i j   (i.e., from right to left lanes); and ,i jd  is the external flow entering the network in cell  ,i j . 

Considering the well-known relation , , ,i j i j i jq v  and assuming that speeds ,i jv are known parameters, 

model (22) can be seen as an LPV system in the form 
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4.4.3. LQR problem formulation 

The proposed control actions are intended for usage prior to the possible onset of congestion, aiming to 

delay or avoid it. Therefore, we may assume that the overall traffic flow entering the controlled area does 

not yet exceed the bottleneck capacity, and, hence, that the speed in all cells is high and roughly constant,  

which implies that (23) can be written as an LTI system 

      1 ( ).x k Ax k Bu k d k     (24) 

We define the following quadratic cost function, over an infinite time horizon, that accounts for the 

penalization of the difference between some selected densities and pre-specified (constant) set-point 

values, as well as a penalty term aiming at maintaining small control inputs, i.e. small lateral flows: 

     
0

ˆ ˆ( ) ( ) ( ) ( ) ,
T T

k

J Cx k y Q Cx k y u k Ru k




     (25) 

where 0TQ Q  and 0R I   are weighting matrices associated to the state tracking error and control 

actions, respectively, while C  reflects the cells that are tracked, namely the cells at the bottleneck location 

for which set-points ŷ  are used. 

4.4.4. Stabilizability, detectability, and regulator 

The problem of minimizing (25) subject to (24) can be solved through an LQR, which provides a stabilizing 

feedback control law if the original system is, at least, stabilizable and detectable (Lewis, Vrabie, & Syrmos, 

2012). Since eigenvalues   of matrix A  are equal to the elements in the main diagonal ( A  is, by 

construction, lower triangular) and v  is always positive, the only marginally stable modes are the ones 

related to segments without any other segment downstream (i.e. at a lane-drop). Applying the Hautus-test 

(Lewis et al., 2012) to marginally stable modes for the pair ( , )A B , we see that stabilizability is trivially 

satisfied for any system following the defined network structure. On the other hand, testing the pair ( , )A C  

for detectability results in the requirement for an arbitrary set-point also for cells that do not have any 

other cell downstream. 

The solution to the proposed LQR problem is the linear feedback/feedforward control law 

 *
ff ,u Kx u   (26) 

    


    
1 1

ff
ˆ( ( ) ) ,T T T Tu R B PB B I A BK C Qy Pd  (27) 

where the feedback gain matrix K  is defined according to classic LQR theory and can be computed offline 

by using the solution P  of the Algebraic Riccati Equation (Williams & Lawrence, 2007). Note that in the LQR 
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derivation we assumed that the external flows d  are constant, but (27), which is an affine function of ,d

may be computed online for (slowly) time-varying inflows. 

4.4.5. Optimal set-point tuning via extremum seeking 

The set-points ŷ  should typically be set equal to the critical density values (for each lane), at which the 

flows are maximum. If these values are not known reliably at the bottleneck location, one may employ 

discrete-time extremum seeking (Anderson & Moore, 1971) for tuning set-points, aiming at achieving an 

optimal value of a cost (flow maximization) utilizing only real-time measurements. We use as a cost 

function TTT over a finite time horizon K, as defined by Ariyur & Krstić, (2003). Experimental results show a 

fast convergence to the optimum TTT, corresponding to set-points equal to critical densities, as can be seen 

in Figure 14. 

 

Figure 14: Cost function value achieved by applying the extremum seeking algorithm. 

4.4.6. Policy-based density distribution at bottlenecks 

As a result of implementing the control law (26)-(27), the traffic density distribution among different lanes 

remains (roughly) constant under any demand scenario. Although this behavior would not produce any 

negative impact on the traffic performance, it may be, in some circumstances, undesirable to road traffic 

authorities, who may, for various reasons (e.g. because of lane usage regulations), prefer different specific 

lane distributions for different flow demand. In such cases, the control law may be switched on only when 

the flow approaches capacity and congestion seems imminent. Alternatively, one may extend the control 

strategy so that, besides aiming at tracking the critical density (e.g., when demand is close to bottleneck 

capacity), it also aims at distributing the vehicles in the bottleneck area among the different lanes according 

to a given policy. This is achieved by modifying the feed-forward term of control law (27) as follows 

    
1 1

ff ( ) ( ( ) ) ( ( )) ( ) ,T T T Tu k R B PB B I A BK C Q d k P d k


      (28) 

where the function   defines the pursued lane distribution policy. 

The reported results were obtained by use of macroscopic simulation, whereby the controller decisions are 

directly applied to the simulator as macroscopic lateral flows. For practical applicability of the method, the 

macroscopic lateral flows need to be converted to individual messages to be submitted to a corresponding 

number of connected vehicles, something that does not create any major methodological difficulties. In 

fact, such a realization was developed by Markantonakis, Skoufoulas, Papamichail, & Papageorgiou (2019), 

where the lane-change control method was combined with mainstream flow control (implemented by use 

of vehicle speed control) and was tested in microscopic simulation. 
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(a)  

(b)  

Figure 15: Density contour plots for: (a) the no-control case; and (b) the control case applying strategy (26)-

(27) with constant set-points. 

   

 (a) (b) 

Figure 16: The flow exiting the bottleneck area for the feedback control strategy: (a) with constant set-

points; and (b) for policy-based density distribution. 

4.5. Integrated motorway network control 

As discussed, the use of VACS permits the implementation of an increased range of control tasks, including 

vehicle-actuated variable speed limits and lane-changing control, which produce unprecedented 

capabilities for link-level motorway control. We present here a model-based control approach, which 

addresses simultaneously, in an integrated way, multiple control measures for a whole motorway link or 

network through the formulation of a linearly-constrained convex QP problem, based on a first-order multi-

lane model that has been appropriately designed (see section 2.2.2). 
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4.5.1. Optimal control problem formulation 

We subdivide a given motorway stretch into segments 1, ,i I   and lanes 1, ,j J  , while considering a 

discrete time index 1, ,k K  , whereK is the optimization horizon. We manipulate the following three 

control actions, where each action   has a different index k reflecting different control steps: 

- RM, described by  
,

R
i jr k , that represents the inflow from the on-ramps to the motorway mainstream. 

- MTFC, described by  
,

Q
i jq k , that represents the mainstream flow from a cell to the downstream one, 

which could be implemented via variable speed limits. 

- LCC to define ordered lateral flows for each segment-lane, enabling an optimal distribution of traffic 

flow among the different lanes; the corresponding control variables are  
, ,

F

i j jf k , denoting the flow of 

vehicles moving from lane j  to lane j   1j j   of segment i .   

The dynamic equation for densities ,i j  is given by the following conservation equation: 
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where , ( )i j k  are estimated turning rates at off-ramps. RM actions may lead to the creation of queues at 

on-ramps , ( )i jw k , modelled by the following dynamics, where  ,i jd k   is the external demand feeding the 

ramp queue 

 , , , ,( 1) ( ) ( ) ( ) .R
i j i j i j i jw k w k T d k r k       (30) 

Longitudinal flows are modelled via a piecewise-linear FD, with an additional linear function to reflect the 

capacity drop phenomenon if the upstream density is over-critical (Roncoli et al., 2015b), although 

alternative approaches may be employed, as shown in (Kontorinaki et al., 2017), see section 2.2.2. Since 

longitudinal flows are assumed controllable via corresponding lowering of equipped vehicle speeds, the FD 

is converted to upper bounds for the controllable longitudinal flows as follows. 

 , , ,( ) ( ),free
i j i j i jq k v k  (31) 

 
 , , , ,, , ,

, ,

, , , ,

( ) ( ) ,

cr free jam jamfree cr jam
i j i j i j i ji j i j i j

i j i jjam cr jam cr
i j i j i j i j

v qv q
kq k

 


   


  

 
 (32) 

 , 1, 1,( ) ,free cr
i j i j i jq k v    (33) 

 
1, 1, 1, 1, 1,

, 1,

1, 1, 1, 1,

( ) ( ) ,
free cr free cr jam
i j i j i j i j i j

i j i jjam cr jam cr
i j i j i j i j

v v
q k k

  


   

    



   

  
 

 (34) 

where ,
free
i jv  is the free-flow speed, ,

cr
i j  is the critical density, ,

jam
i j  is the maximum admissible density, and 

,
jam
i jq  is the minimum flow achievable due to the capacity drop. 

The computation of lateral flows is fully delegated to the optimizer, while only upper bounds are specified 

to the non-negative lateral flows as follows: 
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 , , 1(  ) .F max
i j jf k f   (38) 

Finally, we employ a quadratic cost function that includes (Roncoli, Papageorgiou, & Papamichail, 2015c). 

- Linear terms reflecting TTS, as the most crucial control objective, which includes both the total travel 

time on the mainstream and the total waiting time at on-ramp queues, and a penalty term to avoid 

excessive lateral (lane-changing) flows at specific locations. 

- Quadratic penalty terms to reduce time variations of RM and LCC control variables, as well as to reduce 

time and space fluctuations of the speed values (approximated via appropriate linearized expressions). 

- The resulting optimization problem has a convex QP form, which allows achieving a global optimum (in 

contrast to other nonlinear approaches) in very low computation time also for large-scale systems. 

4.5.2. Case study 1: Open-loop optimization 

We implement our optimization problem for a 4-lane network stretch of 5.26 km in length, which includes 

three on-ramps and three off-ramps, of the Monash Freeway (M1) around Melbourne, Australia. We 

investigate the morning peak period (5 AM to 9 AM), where a major congestion appears due to high 

demand and weaving close to the ramps. First, the model parameters of the multi-lane traffic flow model 

were calibrated by use of real traffic data (Roncoli et al., 2015b) (no-control case); then, the optimization 

problem, with tuned parameters was applied for the entire 4-hour horizon. We observe that the TTS 

improves by 23% with respect to the no-control case, employing only RM and LCC actions. In addition, we 

test a scenario where the on-ramp demands are increased by 30% and the resulting optimization shows a 

52% improvement of TTS with respect to the corresponding no-control case (see Figure 17), with the use of 

all three control actions; see (Roncoli et al., 2015a) for more details. 

  

 (a) (b) 

Figure 17: Speed contour plots: (a) for the no-control case; and (b) the optimized case; of Case Study 1 for 

on-ramp demand increased by 30%. 

4.5.3. Case study 2: Model predictive control in microscopic simulation 

We perform further experiments in an MPC framework using the microscopic traffic simulator Aimsun, with 

opportunely modified car-following and lane-changing models. We implemented the model of a stretch of 

motorway A20 from Rotterdam to Gouda in the Netherlands, validated with real traffic data (as discussed 

in section 2.1.2) featuring a daily congestion pattern (see Figure 18, top). The stretch contains all 

ingredients of a complex infrastructure (lane-drop, on- and off-ramps). We implement appropriate 

algorithms to translate optimal flows to speed or lane-changing commands. Results show the capability of 

the proposed method to improve traffic conditions, via flexible coordination of all available control actions 
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(see Figure 18, middle), as well as when excluding RM from the set of control actions (see Figure 18, 

bottom). In addition, in (Roncoli, Papamichail, & Papageorgiou, 2015), we evaluate a scenario where 

different percentages of vehicles are equipped with ACC systems, showing that the detrimental effects due 

to the choice of a high headway in ACC systems (capacity reduction) may be mitigated by using an 

appropriate control strategy acting at a macroscopic level. 

 

Figure 18: Contour plots of the speed in the no-control case (top), applying MPC considering all control 

actions for 50% penetration rate (middle), and applying MPC without RM (bottom) in Case Study 2.  

4.6. Other developments 

Further interesting developments of vehicle-based traffic control, beyond those addressed in previous 

sections, concern the design of eco-driving vehicle trajectories (Typaldos, Papamichail, & Papageorgiou, 

2018) and of string-stable ACC control laws (Bekiaris-Liberis, Roncoli, & Papageorgiou, 2018).  

Another stream of work extends and applies recent advanced nonlinear feedback concepts to a variety of 

motorway traffic control problems. A number of related significant and rigorous results are of significance 

for both conventional and VACS-including traffic flow (Karafyllis, Kontorinaki, & Papageorgiou, 2017; 

Kontorinaki, Karafyllis, & Papageorgiou, 2019). This work stream may indeed attract more researchers to 

adopt the proposed paradigm for nonlinear feedback traffic control. Finally, motorway traffic control with 

novel PDE-based approaches delivered preliminary, but promising results (Karafyllis, Bekiaris-Liberis, & 

Papageorgiou, 2018; Karafyllis & Papageorgiou, 2019). 

5. Conclusions 

The emergence of novel technologies pertaining to vehicle automation and connectivity at various levels 

bears some risks with regard to their impact on the emerging traffic flow efficiency; but also offers 

unprecedented opportunities for safer and more efficient traffic flow. The latter is conditioned by the 

development of appropriate traffic management concepts that exploit the available and forthcoming novel 

features in a multitude of ways. This paper presented an overview of developments and needs regarding 

motorway traffic management in presence of VACS, with particular focus on achievements obtained within 

TRAMAN21. 
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TRAMAN21 was the first ERC Advanced project to address traffic management and produced a number of 

innovative concepts, tools and results that open up new horizons for traffic management research and 

practice in presence of VACS. In a first step, one needs to gain awareness about the opportunities offered 

by novel vehicle technologies, hence an extensive review established the set of VACS features, which are 

most relevant from a motorway traffic management perspective. Traffic flow modelling in presence of 

VACS is a prerequisite for the design and testing of efficient traffic management approaches and must be 

addressed at two levels, microscopic and macroscopic, for a variety of utilizations. A microscopic simulator 

in presence of VACS was outlined as an add-on of a commercial conventional simulator by appropriately 

modifying the vehicle behavior to reflect the impact of selected VACS. At the macroscopic level, novel 

macroscopic traffic flow models were presented, able to capture multi-lane highway traffic as well as traffic 

comprising VACS-equipped vehicles at arbitrary penetration levels. 

In the evolving traffic environment with VACS, equipped vehicles may act as moving sensors as well as 

actuators, exhibiting a driving behavior that improves the emerging traffic flow and executing orders and 

advice received from the traffic control center so as to maximize network efficiency and minimize 

congestion. To this end, innovative traffic estimation and control methods and tools were presented and 

tested in simulation. In particular, traffic control was addressed at vehicle level, local level and network 

level and comprises unconventional actions that are not feasible by use of the current road-side actuator 

technology. 

It is worth mentioning at this point that, in the frame of the EU H2020 project INFRAMIX 

(www.inframix.eu), the presented estimation tools and some of the control methods described in this 

paper are being tested in real traffic conditions. 
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