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Abstract 

 
This thesis investigates the preservation of Electroencephalogram’s (EEG) 

focal epileptic seizure’s information after compression and reconstruction of the 
signal through the Compressed Sensing (CS) technique and the effectiveness of 
Common Spatial Patterns (CSP) analysis of EEG signals on the automatic detection 
of focal epileptic seizures. Epilepsy is a neurological disorder characterized by an 
enduring predisposition to generate epileptic seizures with great neurological, 
cognitive, psychological and social consequences. According to the World Health 
Organization (WHO), it is estimated that in 2019, epilepsy affects around 50 
million people worldwide which is quite common in childhood. In 2017, the 
prevalence and incidence of epilepsy are estimated to be 6.38 and 0.67 per 1000 
persons respectively. In this thesis, we use the Discrete Cosine Transform (DCT) 
to have a sparse representation of the information, in order to be able to apply 
the CS technique. We further reduce the power of the EEG in order to have a 
sparser signal. After compressing the signals, we use the Basis Pursuit algorithm 
to reconstruct the sparse DCT signal and then the inverse Discrete Cosine 
transform to return to the time domain. Then we apply the Fourier transform and 
the Approximate Entropy to check the preservation of the original information of 
the seizure. CSP analysis has been frequently used in literature for multichannel 
EEG signal separation between -mainly- two states. In the present thesis, the EEG 
recordings from 10 subjects aged 6.8±5.9 years, including 63 seizures, were 
analyzed with respect to seizure detection and discrimination between inter-ictal 
and ictal signal periods. Machine learning techniques of feature selection and 
classification were used in the analysis. 
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Περίληψη 
 

Η διπλωματική εργασία διερευνά τη διατήρηση των δεδομένων των 
εστιακών επιληπτικών κρίσεων του Ηλεκτροεγκεφαλογραφήματος (ΗΕΓ) μετά 
από συμπίεση και ανακατασκευή του σήματος μέσω της τεχνικής συμπιεσμένης 
ανίχνευσης (Compressed Sensing) και την αποτελεσματικότητα της ανάλυσης 
κοινών χωρικών προτύπων (Common Spatial Patterns) των σημάτων ΗΕΓ στην 
αυτόματη ανίχνευση εστιακών επιληπτικών κρίσεων. Η επιληψία είναι μια 
νευρολογική διαταραχή που χαρακτηρίζεται από μια διαρκή προδιάθεση για τη 
δημιουργία επιληπτικών κρίσεων με μεγάλες νευρολογικές, γνωστικές, 
ψυχολογικές και κοινωνικές συνέπειες. Σύμφωνα με τον Παγκόσμιο Οργανισμό 
Υγείας (WHO), εκτιμάται ότι το 2019, η επιληψία επηρεάζει περίπου 50 
εκατομμύρια ανθρώπους παγκοσμίως, κάτι που είναι συνηθισμένο στην 
παιδική ηλικία. Το 2017, η επικράτηση και η επίπτωση της επιληψίας εκτιμάται 
ότι είναι 6,38 και 0,67 ανά 1000 άτομα αντίστοιχα. Σε αυτή την εργασία 
χρησιμοποιούμε το Discrete Cosine Transform (DCT) για να έχουμε μια αραιή 
αναπαράσταση των πληροφοριών για να μπορέσουμε να εφαρμόσουμε την 
τεχνική CS. Μειώνουμε περαιτέρω την ενέργεια του ΗΕΓ προκειμένου να έχουμε 
ένα πιο αραιό σήμα. Μετά τη συμπίεση των σημάτων, χρησιμοποιούμε τον 
αλγόριθμο Pursuit Basis για την ανακατασκευή του αραιού DCT σήματος και 
κατόπιν τον αντίστροφο Discrete Cosine μετασχηματισμό για να επιστρέψουμε 
στο πεδίο χρόνου. Στη συνέχεια, εφαρμόζουμε το μετασχηματισμό Fourier και 
την Approximate Entropy για να ελέγξουμε τη διατήρηση των αρχικών 
πληροφοριών της κρίσης.  Η ανάλυση CSP έχει χρησιμοποιηθεί συχνά στη 
βιβλιογραφία για διαχωρισμό σήματος πολυκαναλικού ΗΕΓ μεταξύ - κυρίως - 
δύο κατηγοριών. Στην παρούσα διπλωματική εργασία, οι καταγραφές ΗΕΓ από 
10 άτομα ηλικίας 6,8 ± 5,9 ετών, περιλαμβανομένων 63 επιληπτικών κρίσεων, 
αναλύθηκαν σε σχέση με την ανίχνευση κρίσεων και τη διάκριση μεταξύ inter-
ictal και ictal χρονικών διαστημάτων σήματος. Τεχνικές Machine learning για την 
επιλογή και την ταξινόμηση χαρακτηριστικών χρησιμοποιήθηκαν στην 
ανάλυση. 
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Chapter One: Introduction 

1.1 Epilepsy 

 Epilepsy is a brain disease characterized by abnormal brain activity provoking seizures or 

abnormal behavior, sensations and sometimes loss of awareness [1]. It results in neurological, cognitive, 

psychological and social consequences. Epilepsy is affecting around 50 million people worldwide and 

accounts for a considerable percentage of the world’s burden of disease. In 2017, the point prevalence of 

active epilepsy was 6.38 per 1.000 persons, while the lifetime prevalence was 7.60 per 1,000 persons.  The 

annual cumulative incidence and incidence rate of epilepsy were 67.77 and 61.44 per 100,000 person-

years respectively.  Age group, sex, or study quality did not affect the prevalence of epilepsy. Low to 

middle-income countries had higher rates of active annual period prevalence, lifetime prevalence, and 

incidence rate of epilepsy. The highest prevalence was on epilepsies of unknown etiology and those with 

generalized seizures [2]. 

The percentage of the people worldwide ailing with epilepsy is anticipated to increase further due to 

rising life expectancy worldwide and also because of the increasing proportion of people surviving insults 

which frequently lead to epilepsy, such as birth trauma, traumatic brain injury (TBI), brain infections and 

strokes.  Practically just about 80% of people with epilepsy live in low- and middle-income countries 

(LMIC). In those countries, the treatment gaps transcend 75% in the majority of the low-income and 50% 

in the majority of middle-income countries. Although the effectiveness and low cost of antiseizure 

medicines, these problems persist. Epileptic people ailing from recurring seizures that often occur 

spontaneously and without any warning. With suitable diagnosis and usage of cost-effective, and 

commonly available, antiseizure medicines up to 70% of epileptic people could become seizure-free [1]. 

This can result in epileptic people to continue, or get back to a full, productive, normal life. The definition 

and the classification of seizures and epilepsy were recently revised by the ILAE to meet advances in 

scientific knowledge.  Classification of seizure types is of great importance for the selection of suitable 

therapies and renders a common language for providing adequate quality care. The classification of 

seizures, originally based on the 1981 classification [3], was revised by the ILAE with modifications in 

terminology and recognition of new seizure types based on advances in scientific knowledge [4]. A 

fundamental distinction is made between seizure onset that is focal (seizures arise in one hemisphere of 

the brain); generalized (originates in both hemispheres simultaneously); and seizures of unknown onset. 
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Focal seizures are subclassified according to whether awareness (a marker for consciousness) is intact or 

impaired [4]. 

Epilepsy has a higher appearance in children and elder people, while teenagers and adults are more 

scarcely affected.  Based on the International League Against Epilepsy (ILAE), epilepsy is characterized by 

the following [5]: 

1. At least two unprovoked (or reflex) seizures occurring more than twenty-four hours apart 

2. One unprovoked (or reflex) seizure and a probability of further seizures similar to the general 

recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10 years. 

3. Diagnosis of an epilepsy syndrome 

Epilepsy is considered to be resolved for individuals who had age-dependent epilepsy syndrome but 

are now past the applicable age or those who have remained seizure-free for the last 10 years, with no 

seizure medicines for the last 5 years. 

Epilepsy syndrome adverts to a complex of features incorporating types of seizures, EEG and imaging 

features, which incline to be shewed together. Typically, it has age-related features such as the age of 

onset and recession (possibly), seizure triggers, daytime fluctuation, and sometimes prognosis. 

It may also have discreet co-morbidities, such as mental and psychiatric dysfunction, along with specific 

findings in EEG and imaging studies. It may have relevant etiology, prognosis, and effects on the 

treatment. It is important to note that an epilepsy syndrome does not have a one-to-one connection with 

an etiological diagnosis and subserves a different purpose, such as management guidance. There exist 

many well-known syndromes, such as childhood epilepsy, West syndrome, and Dravet syndrome. 

 

 

Elements of Consciousness 

 Awareness of ongoing activities 

 Memory for time during the event 

 Responsiveness to verbal or nonverbal stimuli 

 Sense of Self as being distinct from others 
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Causes of epilepsy  

The causes of epilepsy are divided into the following categories: structural, genetic, infectious, 

metabolic, immune and unknown [6]. Investigating the causes of epilepsy is crucial to ensure early 

detection and management of the various etiologies, but also to implement interventions aimed at 

decreasing the large portion of preventable epilepsies, for example, from traumatic brain injury (TBI), 

stroke, etc. 

 Structural: Abnormalities visible on structural neuroimaging which may be acquired (e.g. 

epilepsy from stroke, trauma and infection), or may be genetic (e.g. epilepsy from malformation 

in development of the cerebral cortex).  

 Genetic: A known or presumed genetic mutation in which seizures are a core symptom of the 

disorder.  

 Infectious: A known infection in which seizures are a core symptom (such as meningitis or 

encephalitis). Common examples are neurocysticercosis, tuberculosis, HIV, cerebral malaria, and 

congenital infections such as Zika virus and cytomegalovirus. 

 Metabolic: A known or presumed metabolic disorder in which seizures are a core symptom (e.g. 

porphyria, uraemia or pyridoxine-dependent seizures).  

 Immune: An immune disorder in which seizures are a core symptom. Autoimmune disorders 

affect multiple organ systems and frequently involve CNS inflammation. 

 Unknown: The cause of the epilepsy is not yet known 

 

Effects of epilepsy  

 Epilepsy is a brain disorder and cause of that, it is able of affecting many different systems 

throughout the body. Seizures can cause arrhythmia by affecting the normal rhythm of the heart. This can 

be caused by slowing the beating rate of the heart or making it go faster or even erratically. Another effect 

caused by epilepsy is the change in the hormonal that can cause interference with the reproduction of 

both men and women. Of course, the majority of the epileptic people can reproduce normally. 

Furthermore, seizures can disrupt the autonomic nervous system that regulates body functions like 

breathing, causing it to briefly stop functioning correctly. Last but important mention is that certain types 

of epilepsy can affect the nervous system, causing a disturbance to the muscles that enable you to walk, 
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jump, and lift things. Some types of seizures can provoke involuntarily tightening, jerking and twitching to 

the muscles (e.g. tonic, atonic, clonic,...). 

1.2 Types, Syndromes and Characteristics  

The epilepsy classification is based on the location of the neuron discharge and the extent of the 

electrical activity spreading to the other cerebral neurons. Regarding the 3rd citerion, it concludes in 3 

different types of seizure, the partial or focal, the generalized and the unknown. These segregations are a 

consequence of the seizures that the patient suffers. Seizures are divided into Focal (or partial) and 

Generalized. Furthermore, Focal seizures are subclassified according to whether awareness (a marker for 

consciousness) is intact or impaired. Next, focal seizures are further divided into motor or non-motor. A 

seizure that begins focally (in one area of the brain) and then spreads bilaterally is termed focal to bilateral 

tonic-clonic. Tonic refers to the stiffening and clonic to the rhythmical jerking. In the same way, we have 

the Generalized seizures categorized as motor and non-motor (absence). 

 

 

 

Figure 1: Classification of Seizures 
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Figure 2: Classification of Focal Seizures 

 

 

 

Figure 3: Classification of Generalized Seizures 
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Figure 4: Classification of Unknown Seizures 

 

Epilepsy classification aligns with the seizure classification. Levels of classification include seizure type, 

epilepsy type and epilepsy syndrome.  

 

 

Seizure Types 

Focal Onset Generalized Onset Unknown Onset 

Motor Onset Non-motor Onset Motor Onset Non-motor Onset Motor Onset Non-motor Onset 

Automatisms Autonomic Tonic-clonic Typical Tonic-clonic  

Atonic Behavior arrest Clonic Atypical 
Epileptic 

spasms 
Behavior arrest 

Clonic Cognitive Tonic Myoclonic 

  

Epileptic spasms Emotional Myoclonic Eyelid myoclonia 

hyperkinetic sensory 
Myoclonic-

tonic-clonic 

 
Myoclonic 

 

Myoclonic-

atomic 

tonic atonic 

 
Epileptic 

spasms 

Figure 5: Seizure Types 
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Figure 6: Classification of the Epilepsies 

 

Indeed, epilepsy is an umbrella term that includes a sum of different types of epilepsies, some of which 

are recognized syndromes (e.g. childhood absence epilepsy) but a significant number for which an 

epilepsy syndrome has not been defined. When a person first presents with seizures, a physician or other 

health care provider starts by classifying the type of seizure. Then, the person’s type of epilepsy needs to 

be classified and, in many cases, a specific epilepsy syndrome diagnosis can be made. There is augmenting 

awareness that many of the epilepsies are associated with co-morbidities such as intellectual and 

psychiatric impairment, and behavioral problems. The causes of epilepsy are divided into the following 

categories: structural, genetic, infectious, metabolic, immune and unknown. Investigating the causes of 

epilepsy is crucial to ensure premature detection and management of the various etiologies, but also to 

implement interventions aimed at decreasing the large portion of preventable epilepsies, for example, 

from traumatic brain injury (TBI), stroke, etc. [1].  
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Characteristics  

 
Focal seizures 
According to the previously referenced, if seizures are caused cause of abnormal activity in a certain area 

of the brain, they are termed focal seizures. These seizures fall into two main categories and carry the 

following characteristics: 

Seizures without loss of consciousness.  

These seizures do not cause loss of consciousness. They can cause a variation in feelings or affect 

eyesight, odor, sensation, taste or hearing. They can also lead to an involuntary jolt of a part of the body, 

such as an arm or leg, and spontaneous sensory symptoms such as tingling, dizziness, and flashes. 

Seizures with Impaired Awareness.  

These include impairment or loss of consciousness or awareness. During a complex partial seizure, 

the patient may be gazing in the vacuum and not responding normally to his surroundings or making 

repetitive movements, such as hand rubbing, chewing, swallowing or walking in circles. Symptoms of focal 

seizures may be confused with other neurological disorders, such as migraine, narcolepsy or mental 

illness. Extensive examination and control are required to distinguish epilepsy from other neurological 

disorders. 

 

Generalized seizures 

Generalized seizures are affecting both cerebral hemispheres (sides of the brain) from the onset of 

the seizure. They produce a loss of consciousness, either briefly or for a longer period of time. Generalized-

onset seizures are categorized into motor and non-motor (absence) seizures. The level of awareness is 

not used as a classifier for generalized seizures since the large majority (although not all) of generalized 

seizures are associated with impaired awareness. By definition of the generalized branch of the 

classification, motor activity should be bilateral from the onset, but in the basic classification, the type of 

motor activity does not need to be specified. In cases where the bilateral onset of motor activity is 

asymmetrical, it may be difficult in practice to determine whether a seizure has focal or generalized onset. 

The sudden suspension of activity and awareness are some of the characteristics of absence seizures. 

Their appearance is more frequent in younger age groups, the start, and termination of these seizures is 

briefer, and they commonly demonstrate less complex automatisms than focal seizures with impaired 

awareness. One of the main issues is that they are not easily distinguished from the focal seizures. For 

accurate classification, EEG information may need to be provided. Focal epileptiform activity is possible 
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to be seen with focal seizures. Also, bilaterally synchronous spike-waves can be perceived with absence 

seizures. 

Unknown seizures 

Seizures of unknown onset can be categorized as motor, non-motor, or unclassified. The term 

unclassified was used because it can accommodate both seizures with patterns that do not match into 

either of the two other categories or seizures displaying insufficient data to allow categorization to one. 

The most significant usage of this classification is for the tonic-clonic seizures for which the beginning was 

overclouded. Sufficient information might permit reclassification as a focal or generalized-onset seizure. 

Some other types of unknown onset seizures are epileptic spasms and behavior arrests. Detailed video-

EEG monitoring is necessary for the clarification of the nature of the onset of the epileptic spasms, and 

also it can help with the treatment, because it may correspond to a focal pathology that may be treatable. 

This classification is used for any seizures with inadequate information to be classified to either focal or 

generalized and for seizures that present characteristics that do not match with the characteristics of 

known seizures, like an unknown-onset behavior arrest seizure could represent a focal impaired 

awareness behavior arrest seizure or an absence seizure. 

 

Characteristics – Description 

 
Here are the descriptions of some types and glossary terms [7]: 

Absence, typical: A sudden onset, interruption of ongoing activities, a blank stare, possibly a brief up-

ward deviation of the eyes. Usually the patient will be unresponsive when spoken to. Duration is a few 

seconds to half a minute with very rapid recovery.  

Absence, atypical: An absence seizure with changes in tone that are more pronounced than in typical 

absence or the onset and/or cessation is not abrupt, often associated with slow, irregular, generalized 

spike-wave activity. 

Atonic seizures: Atonic seizures, also known as falling seizures, are seizures with sudden loss or 

diminution of muscle tone without apparent preceding myoclonic or tonic event lasting ~ 1 to 2 seconds, 

involving head, trunk, jaw, or limp musculature. 

Automatism: A more or less coordinated motor activity usually occurring when cognition is impaired 

and for which the subject is usually (but not always) amnesic afterwards. This often resembles a voluntary 

movement and may consist of an inappropriate continuation of pre-ictal motor activity. 
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Autonomic seizure: A distinct alteration of autonomic nervous system function involving 

cardiovascular, pupillary, gastrointestinal, sudomotor, vasomotor, and thermoregulatory functions. 

Aura: A subjective ictal phenomenon that, in a given patient, may precede an observable seizure. 

Behavior Arrest: A focal behavior arrest seizure shows arrest of behavior as the prominent feature of 

the entire seizure. Arrest (pause) of activities, freezing, immobilization. 

Clonic seizures: Clonic seizures are associated with recurrent or rhythmic movements of the muscles. 

These seizures usually affect the neck, face and hands. Jerking, either symmetric or asymmetric, that is 

regularly repetitive and involves the same muscle groups. 

Epileptic spasms: A sudden flexion, extension, or mixed extension–flexion of predominantly proximal 

and truncal muscles that is usually more sustained than a myoclonic movement but not as sustained as a 

tonic seizure. Limited forms may occur: Grimacing, head nodding, or subtle eye movements. Epileptic 

spasms frequently occur in clusters. Infantile spasms are the best-known form, but spasms can occur at 

all ages. 

Eyelid myoclonia: Are myoclonic jerks of the eyelids and upward deviation of the eyes, often 

precipitated by closing the eyes or by light. Eyelid myoclonia can be associated with absences, but also 

can be motor seizures without a corresponding absence, making them difficult to categorize. 

Focal onset bilateral tonic–clonic seizure: A seizure type with focal onset, with awareness or impaired 

awareness, either motor or nonmotor, progressing to bilateral tonic–clonic activity. The prior term was 

seizure with partial onset with secondary generalization. 

Myoclonic seizures: Myoclonic seizures usually appear as sudden jerks or spasms of the hands and 

feet. Sudden, brief (<100 mseconds) involuntary single or multiple contraction(s) of muscle(s) or muscle 

groups of variable topography (axial, proximal limb, distal). Myoclonus is less regularly repetitive and less 

sustained than is clonus 

Myoclonic–atonic: A generalized seizure type with a myoclonic jerk leading to an atonic motor 

component. This type was previously called myoclonic–astatic. 

Myoclonic–tonic–clonic: One or a few jerks of limbs bilaterally, followed by a tonic–clonic seizure. 

The initial jerks can be considered to be either a brief period of clonus or myoclonus. Seizures with this 

characteristic are common in juvenile myoclonic epilepsy. 

Tonic seizures: Tonic seizures are brief seizures (usually < 60 seconds) consisting of the sudden onset 

of increased tone in the extensor muscles, cause muscle stiffness. These seizures usually affect the 

muscles of the patient's back, hands and feet and may cause a fall on the ground. These seizures are 

invariably longer than myoclonic seizures. Occasionally tonic seizures terminate with a clonic phase. 
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Tonic-clonic seizures: Tonic-clonic seizures, also known as grand mal seizures, are the most dramatic 

type of epileptic seizure and can cause a sudden loss of consciousness, blood pressure and trembling, and 

sometimes the loss of control of the bladder or tongue. During a tonic– clonic seizure, awareness is lost 

before or contemporaneously with the stiffening and jerking movements. Some tonic–clonic seizures may 

invoke a nonspecific feeling of an impending seizure or a brief period of head or limb version. 

Unclassified: 75-year-old man known to have epilepsy reports an internal sense of body trembling 

and a sense of confusion. No other information is available. EEG and MRI are normal. This event is 

unclassified. 
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 Chapter Two: Electroencephalogram and Diagnostic Epilepsy 

Techniques 

2.1 Electroencephalogram  

 

The Electroencephalogram (EEG) was discovered in 1924 and it’s a method of recording the 

electrophysiological activity of the brain. EEG is to date the only and irreplaceable method of diagnosis, 

classification, assessment of epileptic seizures. Previously, its diagnostic use was wider (as in brain tumors, 

hematomas, etc.), but with the discovery of imaging examinations (mainly Axial and Magnetic Resonance 

imaging), its diagnostic value in these conditions was almost nullified. The EEG remains potentially useful 

outside of epilepsy and in various other conditions of functional brain disorders such as headaches, 

disturbances of the level of consciousness. 

The first recording of the electrical field of the human brain was made by the German psychologist H. 

Berger in 1924, who gave the recording the name Electroencephalogram (EEG) [1]. The EEG is the 

recording of electrophysiological activity of the brain utilizing electrodes attached to the scalp [2]. 

Differences in electrical potentials are caused by aggregated postsynaptic graded potentials from 

pyramidal cells that generate electrical dipoles between soma (cell of the neuron) and apical dendrites 

(neural branches). Brain electrical current consists predominantly of the fluctuation of the concentration 

of K+, Ca++, Na+, and Cl- ions, that are pumped through different channels in neuron membranes in the 

direction governed by membrane potential. The measurement of these signals requires special attention 

and accuracy since the measured electrical signals are weak and range from about 10μV to 200μV [3]. 

Thus, the need to amplify these signals (for optimum imaging) and the denser head cover with lead 

electrodes (for greater precision and superintendence of brain function) becomes apparent. 

2.2  Acquisition systems  

Many patterns have been invented for the selection of the positions of each electrode on the scalp, but 

what has preponderated is the International System 10-20 [4]. The name of the system is due to selecting 

20% of the interval between the two ears as the interval between two electrodes and selecting 10% of 

the interval between the two ears as the interval from the ear to the nearest electrode. Additionally, 

abductions are positioned on the ear lobes as well as in positions near the eyes. 
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Abductions in the ear lobes can be used as ground electrodes – reference electrodes. Note that in 

actuality, the ground electrode can be situated anywhere on the scalp or ear. The reason being that in 

order to acquire the Probe Dynamics at a point on the dermal surface of the skull, we measure it as the 

difference in potential between this point and the ground electrode, which is mutual for all the electrodes 

of the same hemisphere.  Cause to the fact that the auricles are perforated by a small number of nerves 

and have low perfusion, they have a particularly constant and low potential, making them optimal for 

attaching the ground electrodes. The widespread usage of the 10-20 system is because it can be adjusted 

to different scalp sizes, from infants to grown adults. Dr. Jasper established some specific guidelines at his 

work [4], which would be established in recommending a specific system to the federation. The specific 

guidelines were: 

1. The position of electrodes placed should be determined by specific measurements of standard 

skull landmarks. The measurements should be proportional to the size and shape of the skull, insofar 

as possible. 

2. Adequate coverage of all parts of the head should be provided with standard electrode 

placement, even if some would not be used in a given examination.  

3. Designation of positions would be expressed in terms of brain areas covered (Frontal, Parietal, 

etc.) rather than only in numbers, in order to make communications more meaningful to the non-

specialist, as well as workers in other laboratories. 

4. Finally, anatomical studies would be carried out, which would provide additional 

documentation determining the cortical areas beneath each standard electrode position in the 

average subject. 

The 10-20 electrode system was adopted for trial and the meetings of the General Assembly of the 

International Federation in Paris in 1949. The use of this system helps to make the results obtained in 

each examination more comparable with the result from various examinations. Also, it facilitates the 

communication between doctors and physicians who become familiar with the localization of EEG 

abnormalities in terms of the standard skull landmarks [5]. It should be pointed that each laboratory can 

use any system deemed appropriate. 
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Figure 7: Position of Electrodes in 10-20 Model  - source [6] 

 

In these names the letter indicates the region of the brain (e.g. F - Frontal lobe). The even numbers 

correspond to electrodes located on the right side of the head and the redundant numbers on the left 

side of the head. To date, various extensions of model 10-20 (A), such as model 10-10 (B) [7] and model 

10-5, in which electrodes are inserted between the positions of the 10-20 system, have been proposed. 

 

 

Figure 8: 10-20 Model (A) - 10-10 Model (B) - source [8] 
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 These extensions are made in order to increase the number of channels provided. The model that 

has been accepted and documented by the American Electroencephalographic Society is 10-10 which is 

widely used today [16]. Model 10-5, although promising, is still in experimental stages. It is used to 

diagnose diseases of motor neurons and brain muscles, brain damage and epilepsy. 

 With this method, the neurologist can diagnose epilepsy and determine the type of epileptic seizures. 

It is also used to study sleep disorders (e.g. Narcolepsy) or when there are symptoms such as loss of 

consciousness, convulsions, disorientation, headaches and diffuse intense dizziness. 

The electrodes are specific sensors that convert the ion current into the head of the electron beam. 

The received current, which is also the original electrical signal for the system, is advanced to the next 

processing steps. The contact of the electrodes with the surface of the skin is through an adhesive 

substance or through a small ring, which on one side adheres to the skin and on the other side to the main 

electrode. At the positions where the electrodes will be instated, the skin should be thoroughly cleaned 

with alcohol to achieve a low contact resistance of less than 5kΩ. In the same position, a special 

electrolyte-containing liquid is used. The electrode thus comes in direct contact with the underlying 

electrolyte used. Thus, it is possible to move the ions through the electrode-electrolyter border until 

equilibrium is achieved. This equilibrium is the outcome of the ionic concentration on both sides of the 

border. Finally, two charged layers are created on both sides of the border, one onto the metal surface 

and one on the liquid around the electrode, thereby generating a potential difference that obstructs the 

ion from continuing but is also sensitive to changes in ion concentration. When there exists electrical 

activity in the brain, i.e. ion flux, a change in ionic concentration is induced and a change in the potential 

difference of the layers and thus an electron flow from the conductive electrode side. It is desirable that 

the trend at the "boundary" be influenced only by ionic currents of the human brain and not by 

temperature changes or mechanical movements of the electrodes [10]. 
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Figure 9: EEG Electrode Recording – source [11]  

  

The amplifier differs from system to system depending on the signal to be amplified. The amplifier is 

used to amplify the signal, especially in the case of EEG, which is very weak. Electrodes that lie above brain 

regions that are active are said to correspond to active points. Instead, electrodes located above areas 

considered unrelated to cerebral function are said to correspond to inactive points. When the measured 

signal arises as a potential difference of two electrodes of active regions, then according to the 

terminology of EEG we have a bipolar measurement.  

This method offers the advantage of rejecting any artifacts common to the two electrodes [2]. In the case 

of psychophysiological research, however, the measured signal results as a potential difference of an 

active region electrode and an inactive region electrode, so we have unipolar measurement.  

Montages are logical and orderly arrangements of electrodes, that display EEG activity over the entire 

scalp, allow comparison of activity on both sides of the brain and aid in the localization of recorded activity 

to a specific brain region. From a clinical and practical standpoint, only a limited number of montages are 

needed during a recording session. The most mainly used montages are longitudinal bipolar "Double 

Banana", coronal bipolar, circumferential bipolar, laplacian, common average referencial and ear (A1, A2) 

referential [12]. The use of bipolar montages during recording sessions provides better localized focal or 

regional features, while the use of referential montages is better for the detection of the morphology of 

widespread phenomena [13]. Each laboratory may use a variety of montages, but a significant amount of 

the used montages occasionally fails to display the EEG adequately or are inordinately complex. In order 
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to have an adequate EEG examination or for finding the solution to specific problems, additional EEG 

montages may be requisite.  

 

 

2.3 EEG Rhythms 

An approach to the study of EEG is based on the existence or not of specific waveforms called rhythms 

which are specific sub-bands of spectral content. The main EEG rhythms are delta, theta, alpha, beta and 

gamma. Their spectral content, location commonly appearing and the activity mostly associated with are 

shown in the image and table: 

 

 
Figure 10: Representation of Brain Rhythms – source [14] 
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Sub-band Freq (Hz) Location AMP (μV) Activity 

Delta 0.5 – 4 Thalamus 20 – 200 Deep sleep 

Theta 4 – 7 Hippocampus, Cortex 20 – 100 
Deep Relaxation 

Creativity 

Alpha 8 – 13 
Posterior regions, occipital lobe, 

Cortex 
20 -60 Relaxation 

Beta 13 – 30 Cortex 2 – 20 
Memory, problem-

solving 

Gamma 30 - 100 Cortex 20 - 70 
Cognition, information 

processing, learning 

Table I: Brain Rhythms 

 
In about 75% of adults when they close their eye, the alpha rhythm is rising and the opening of 

their eyes cause reduction. It was named alpha because it was the first rhythm studied. The beta rhythm 

has been associated with active thinking, focus, high alert, anxiety. The delta rhythm has been associated 

with deep sleep in the adults and in infants. Theta rhythm has been associated with suppressive 

mechanisms like at the relaxation phase entry and drowsiness in adults. It is higher in young children. As 

a result, the EEG signal is also highly correlated with the level of alertness of the subject. When human 

activity is increased, the prevailing frequency of the EEG also increases but the amplitude lowers. During 

eye closure, alpha rhythm is dominant. When the subject is asleep, the EEG has lower frequency. Sleep is 

generally divided into 2 broad types: non-rapid eye movement (NREM) sleep and REM sleep. In deep 

sleep, EEG has long and slow deflections called delta rhythms. No brain activity can be detected by a 

patient in complete stroke death [15]. EEG signals are small enough, measured in microvolt (μV), making 

them very sensitive to noise. The rhythms of human brain are: 

Delta: has a frequency of 0.5 to 4 Hz. The amplitude is between 20-200μV and has the highest peak 

among the rhythms and the slowest waves. It is the predominant rhythm in infants up to one year and in 

stages 3 and 4 of sleep. It may occur out of sleep and may indicate the existence of structural or functional 

impairment. It is usually more prominent in adults (e.g. FIRDA - Frontal Intermittent Rhythmic Delta [16]) 

and posterior to children, e.g. OIRDA - Occipital Intermittent Rhythmic Delta [17]). 

Theta: It has a frequency of 4 to 8 Hz, width up to 100μV and is characterized as "slow" activity. It is 

perfectly normal in children up to 13 years of age and sleep, but abnormal in sleeping adults (non-

sleeping). It can be considered as a manifestation of focal subcortical lesions.  
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Alpha: It has a frequency of between 8 to 13 Hz and a width of 20-60μV. It usually looks better at the 

rear areas of the head on each side and is higher in width on the predominant side. Observed in people 

who have eyes closed and relaxed, but not sleepy. With the onset of mental or physical activity, a de-

synchronization is observed, as the rate is replaced by asynchronous rates of higher frequency and lower 

amplitude. The same phenomenon occurs as soon as the subject opens his eyes (blocking reaction). It is 

the main rhythm observed in relaxed adults, for the biggest part of their life, especially after the thirteenth 

year. 

Beta: It is low in width about 20 μV, mainly from parietal and frontal area. It has a frequency of 13 to 

30Hz. It usually appears on both sides of the brain in a symmetrical distribution and is more apparent 

frontal. It is enhanced by sedative-hypnotic drugs, especially benzodiazepines and barbiturates. It may be 

absent or reduced in areas of cortical wear. It is generally considered to be a normal rhythm. It is the 

dominant rhythm in patients who are awake or anxious or with their eyes open. 

Gamma: has a frequency above 30Hz. What is interesting is that rhythm is associated with 

consciousness, a function that is still incomprehensible, and which stimulates the interest of many 

scientists from many disciplines. Some researchers, however, do not distinguish rhythm c as a separate 

class, but place it on rhythm b. 

 
 
 

2.4 Epilepsy diagnosis through EEG  

Because of their nature, EEG signals can be used effectively to study the mental states and ailments 

related to the brain. Electroencephalogram (EEG) signals are a direct reflection of the electrophysiological 

junctures of the brain at a given timestamp. There are inherent issues with the EEG signals, because of 

the highly non-linear nature and the visual interpretations are subjective prone to inter-observer 

variations. In order to aid researchers and doctors to better analyze EEG signals, the use of various signal 

analysis techniques such as linear, non-linear, frequency domain and time-frequency methods are 

significant. Depending on the patient’s behavior and current psychological condition the EEG differs, but 

even though the patient may be nervous or blinking his eyes, the EEG can still be rightly categorized as 

normal. The doctor can interpret the EEG and categorize it as normal or abnormal.  If the EEG is abnormal, 

then there is a possibility of the patient being epileptic. With the help of EEG, the seizure type and epilepsy 

syndrome in patients with epilepsy can be defined, and thereby the selection of antiepileptic medication 

and the prediction of prognosis. The multi-axial diagnosis of epilepsy is being aided by the findings in the 
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EEG recordings, in terms of whether the seizure disorder is focal or generalized, idiopathic or 

symptomatic, or part of a specific epilepsy syndrome [14]. A significant number of epilepsy syndromes 

associated with specific EEG features is shewed in infancy or childhood. Not all the epileptic syndromes 

are accepted, others are questionable or they cannot be included in the current ILAE classification systems 

due to inadequate data on this particular type of epilepsy. The clinical diagnosis of epilepsy requires many 

matters to be evaluated. Some of these are neurological tests along with blood tests, sometimes 

cerebrospinal fluid tests to check for the probability of related causes and detailed patient history. Imaging 

techniques like CT (Computerized Tomography) or MRI (Magnetic Resonance Imaging) scans may be used 

to check for any structural abnormalities, such as tumors, abnormal blood vessels, and ischemia in the 

brain, which may be causing seizures that may not be due to epilepsy. However, the most common and 

effective diagnostic method for the detection of epilepsy is the EEG test. Seizure disorders, like focal or 

generalized seizures, display a percentage of overlap of both clinical and electrographic manifestations. 

The existence of unihemispheric epilepsies makes the differentiation even more difficult. All the same, 

the conceptual segregation of partial and generalized seizures or epilepsy types is up to the present time 

valid and clinically helpful. In practice, ground on the information provided by the patient and/or eye 

witness, the clinicians will be reasonably confident about the seizure type. On the other hand, when the 

history is indecipherable, EEG can assist in the differentiation betwixt a complex partial seizure with focal 

IED and an absence type seizure with generalized IED inter-ictal epileptiform discharge. 
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Chapter Three: EEG compression using compressed sensing (CS) 

3.1 Representation of EEG using compressed sensing (CS) 

Compressed sensing belongs to the field of signal processing. Its purpose is typically to measure, filter 

or compress continuous analogue physical signals. Prior to compressed detection, the main method for 

signal sampling without loss of information was Shannon-Nyquist. This had the undesirable consequence 

of the very high rate in wireless applications, the excessive waste of time, energy, and resource use. 

With the theory of compressed detection, we are given the ability to construct sparse signals from several 

samples significantly smaller than Nyquist's [1] [2]. It has been proven that reconstruction is possible when 

the signal or even some transformation is sparse, that is, it contains few non-zero elements in relation to 

its total length. 

 

   
Figure 11: Nyquist Theorem – source ( [3]) 

 

To succeed in rebuilding the signal, CS is based on 2 principles: sparsity and in-coherence. This means that 

the test signal is sparse or it has a sparse representation in a certain base/domain, and the information 

can be encoded by a small number of inconsistent measurements. Therefore, Compression Analysis 
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theory is required to solve underdetermined, ie cases where the number of available measurements is 

much smaller than under-sampling. 

 

 

 

Such problems are in the form of: 

y x   ||  y x x    , 
Equation 1: Compressed Sensing 

where x=sparse, 

[ f x  ]=not sparse  

Ψ=orthonormal basis[2] || frame  

and m n    matrix (sensing matrix || measurement matrix) 

 
Figure 12: Compressed Sensing – source( [4]) 

 
Figure 13: Compressed Sensing Basis Transform - sources( [5] [6]) 
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Our main assumption is that the signal x, that we are attempting to recover, is itself sparse or has a 

sparse representation s on an orthonormal basis, such that x=Ψ*s.  The compressed Sensing problem is 

how to recover x if the information we have comes from y x , or in the case where x is not sparse 

then to recover its sparse representation s from y s  . In both situations, we have an 

underdetermined linear system of equations and only the fact that x or s are sparse. Φ is our sensing 

matrix and it possesses no zero columns. Usually, it is a random matrix, like an independent and 

identically distributed random Gaussian matrix, but we will analyze in a later part the attributes 

our sensing matrix must-have so that we can recover x or s. 

 

Questions arising: 

Which are the right signals and sparse models? 

Which are suitable sensing matrices? 

How to reconstruct the original signal? 

 

 

3.2 Sparsity 

Sparsity is the prerequisite information about the vector we seek to detect efficiently or whose 

dimension we intend to reduce. Many signals, if expressed on a different basis, can be described in a 

sparse representation. If the sparse signal x or s is k-sparse, meaning it has k non-zero data, then we can 

determine our solution. 

 The signal is measured by l0 "norm" and is defined as follows: 

 
0

: # i : x 0ix k    

The total of all the k-sparse signals will be denoted by ΣΚ. The issue in the problem y x   ||  

y s  , is to find the as sparsest as possible solution, if it exists. This solution comes from solving 

the following problem: 

(S0) 
0

min x  subject to y x  

Equation 2: Sparsest Solution 
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The specific problem to solve is characterized as NP-hard, so the l0-minimization problem usually 

reduces it to l1- and l2- minimization problems. Candes and Tao have discovered that this problem can be 

solved using the l1 norm. With this method we can achieve accurate results. Thus the conclusion that the 

reconstruction is good enough. This problem is known as Basis Pursuit and is proposed as a cost-effective 

method for finding sparse solutions. 

 

 

Figure 14: Representing the sparsest l1-ball solution 

 

As a result, our new problem transforms to the following minimization problem (S1)
1

min x  subject to 

y x . However, in order to be able to implement it, we need both necessary and sufficient 

conditions, which are not only based on the sparsity of the original vector x but also on the incoherence 

of the sensing matrix Φ. 

If the signal shows little or no sparsity then we can transform it to different representation systems, 

ie dictionary, until we get the desired sparsity. Various of these systems are wavelets, shearlets, Fourier 

base and so on. The existence or not of certain characteristics leads us to choose bases such as those 

mentioned above. In this case, however, the sparsity we will achieve may not be ideal. To improve 

sparsity, we need to select a dictionary-adaptive label, and to get it done we need a set of tests to learn 

it. This method is called dictionary learning, and the most well-known and used algorithm is the K-SVD 

algorithm. Certainly, from a mathematical point of view there are also some problems with the specific 

dictionaries. 
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3.3 Conditions for sparse recovery 

After introducing sparsity, in the sense of signal models, we next need to find which conditions 

are needed to impose on the sparsity of the original vector and on the sensing matrix for a perfect 

recovery. The so-called spark is the condition we need on the sensing matrix in order to have an exact 

recovery. The concept of spark verbally fuses the notions of ‘sparse’ and ‘rank’. If A is a m n  matrix, then 

the spark of A, declared by spark(A), is the minimal number of linearly dependent columns of A. We now 

need to reformulate the concept of spark in terms of the null space of A, until the end to be denoted by 

N(A), and state its range. 

  (A) min : (A) 0spark k N     

and  (A) 2, 1spark m  . 

Equation 3: Spark(A) 

With ΣK being the set of all k-sparse signals, as mentioned before. Through this concept, we can extract 

an equivalent condition on the unique solvability of (S0). 

For A a m n  matrix and k ∈ N, the two conditions are equivalent. 

(i) If x is a solution of (S0) and satisfies 
0

x k , then x is the unique solution. 

(ii) (A) / 2k spark . 

 

Because of the underdeterminedness of A and therefore the ill-posedness of the recovery problem, the 

N(A) has a  special role in the analysis of the unique solution of the minimization problem (S1) and is 

through the null space property that is defined as follows. A has the null space property (NSP) of order k, 

if, for all  (A) \ 0h N  and for all index sets k  , 

1
21 1

1 h h  . 

Equation 4: Null Space Property 

In terms of the null space property, we can state an equivalent condition for the unique and sparse 

solution of (S1). For A a m n  matrix and k ∈ N, the two conditions are equivalent. 

(i) If x is a solution of (S1) and satisfies 
0

x k , then x is the unique solution. 
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(ii) A satisfies the null space property of order k. 

 

The main idea of compressed sensing is by determining when 1o  , meaning when the unique 

solutions of (S0) and (S1) concur. The mutual coherence and the restricted isometry property are the most 

well-known conditions for when the two solutions coincide. The mutual coherence of a matrix measures 

the smallest angle between each pair of its columns. If  
1

n

i i
A a


  is a m n  matrix, its mutual 

coherence μ(Α) is stated as 

 
2 2

,
max

i j

i j
i j

a a

a a



   

Equation 5: Mutual Coherence μ(Α) 

When two separate columns coincide then mutual coherence is 1, and it is the maximal value. The Welch 

bound is the lower bound displayed in the next equation. If A is a m n  matrix, then 

 
 

,1
1

n m

m n


 
  

  

 

There exist different variants of mutual coherence, in particular, the Babel function, the cumulative 

coherence function, the structured p-Babel function, the fusion coherence and cluster coherence. 

 

 

Restricted Isometry Property 

The restricted isometry property measures the degree to which each subset of k column vectors 

of A is close to being an isometry. If A is a m n  matrix, then A has the Restricted Isometry Property (RIP) 

of order k, if there exists a  0,1k   such that 

   
2 2 2

2 2 2
1 1x Ax x        for all kx  

Equation 6: Restricted Isometry Property 

 
Matrix A satisfies the k-class RIP if the constant δk does not have a value very close to one. When this 

property holds true, all k-subsets of the columns of table A are almost rectangular. If this property is not 

valid then it may be impossible to reconstruct these vectors. Evaluating the RIP property is in itself an NP-
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Hard problem and thus, while serving as a fundamental theorem for Compressed Sensing, it still does not 

give a perspective on how to construct a compressed sensing matrix [7]. 

 
As already mentioned, sensing matrices are required to satisfy certain incoherence conditions such as, for 

instance, a small so-called mutual coherence. If we are allowed to choose the sensing matrix freely, the 

best choice are random matrices such as Gaussian iid matrices, uniform random ortho-projectors, or 

Bernoulli matrices [8].  

 

 

3.4 Recovery algorithms 

 

Having completed the above procedures, we will need to proceed to a sparse recovery process. There are 

3 types of algorithms that we can use for this process. Convex Optimization, Combinatorial and Greedy. 

The measurements required for Curved Convex Optimization algorithms are few in number but have 

higher complexity from a computational view. On the other hand, are the Combinatorial algorithms, which 

are very fast, often sub-linear, require a lot of measurements that are not always possible to obtain. The 

best compromise between the two aforementioned algorithms are Greedy algorithms in terms of 

computational complexity and the required number of measurements. 

 

 

 

Convex Optimization Algorithms 

 

We've analyzed the Convex Optimization problem above 

1
min x  subject to y x  

 

In case that the measurements were affected by noise, there is a requirement for a conic constraint and 

the minimization problem needs to be altered to 

1
min x  subject to 

2

2
y x    for ε > 0. 
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For this purpose, cumulative optimization algorithms specifically developed for CS have been 

developed. These algorithms include the interior-point methods, the projected gradient, and the iterative 

thresholding. 

Combinatorial Algorithms 

These algorithms are applying a group testing to highly structured samples of the original signal. Of 

the various types of this category of algorithms, we refer the HHS pursuit and the sub-linear Fourier 

transform. 

 

Greedy Algorithms 

The greedy algorithms repeatedly approach the coefficients and support of the original signal. Their 

main advantages are that they are very fast and easy to implement. Frequently their theoretical 

performance guarantees are very akin to the l1 minimization results. The best-known greedy approach is 

Orthogonal Matching Pursuit [9]. Known greedy algorithms are stagewise OMP (StOMP), regularized OMP 

(ROMP), and compressive sampling MP (CoSamp). 

 

Basis Pursuit Algorithm  

Basis Pursuit (BP) is the convex optimization problem 
1

min x  subject to y x , where the 

optimization variable is
nx R , 1 21

... nx x x x    is the 1 -norm of the vector x, and
m nA R  is 

a matrix with more columns than rows. BP seeks the “smallest” (in the 1 -norm sense) solution of the 

underdetermined linear system y x  [10]. To make sure that y x  has at least one solution, 

Φ is required to be full rank. BP has recently attracted attention due to its ability to find the sparsest 

solution of a linear system under certain conditions. In particular, BP is a convex relaxation of the 

combinatorial and nonconvex problem obtained by replacing the 1 -norm in (BP) by the 0 -norm 
0

x , 

which counts the number of nonzero elements of x. Note that the linear system y x , has a unique 

k-sparse solution, i.e., a solution whose 0 -norm is k, if every set of 2k columns of Φ is linearly 

independent. Notice that A is full rank with probability one if the entries of A are independent and 
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identically distributed (i.i.d.) and drawn from some (nondegenerate) probability distribution, as 

commonly seen in compressed sensing. 

 

 

 

3.5 Reconstruction of Compressed EEG 

For the use of the Compressed Sensing technique, we need a sparse signal. However, 

electroencephalogram is not a sparse signal due to its increased complexity. In order to be able to use the 

CS technique we need to bring it in a sparse form. To achieve this, we convert the signal using Discrete 

Cosine Transform (DCT). 

   

 

Figure 15: Inter-Ictal EEG (Above) and DCT of EEG (Below) 

 

The green signal is the recording of the original channel, in which no epileptic event is recorded, and 

blue is its modification with DCT 
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Figure 16: Ictal EEG (Above) and DCT of EEG (Bellow) 

 

The green signal is the recording of the original channel, in which an epileptic event is recorded, and 

in blue is the modification of DCT 

We notice that our new signal has several values around zero. If, for example, we have a signal 

segment of approximately 12 minutes (N) (190.000 samples), then to maintain 99.5% of the total energy 

and reset the rest of the information, we have about fifty four thousand (N99.5) (54,000) non-zero values, 

about the 28% of the original information. 

 

Figure 17: 100%,99.5% Energy for inter-Ictal and Ictal DCT 
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With blue is represented the 100% of the energy, while in red is represented 99.5% 

 

Depending on the energy we want to keep, the number of non-zero elements is fluctuating, for example. 

If we want to have 99.9%, the number is increased to sixty-eight thousand (68.000) and if we want 99% 

to forty-five thousand (N99)(45.000) non-zeros data.  The important question that arises is: What is the 

acceptable loss of information to continue to have meaningful information about brain activity?  

For this purpose, we have been testing enough to be able to decide on this percentage.  

To find the right percentage, we compared the energy-reduced signal to the original to see what we're 

missing out on - what we earn. At first, we tried 99.5% of the initial energy. The results were as follows: 

 

 

 

Figure 18: Inverse Transform 99.5% Energy, inter-Ictal(Above)-Ictal(Below) 

 

 

In which, initially, there is no significant reduction, but if we focus on the point of epilepsy, we can 

see that we have a loss of intensity in the vertices, and the phenomenon intensifies in constant 

fluctuations. 

Then we reduced energy to 99% of the original. The number of non-zero data was reduced to 24% of 

non-zero data but the lost information is now visible and pronounced at the point of epilepsy. 
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Figure 19: Inverse Transform 99% Energy, inter-Ictal(Above)-Ictal(Below) 

 

Therefore, this price was also rejected. Other tests were performed with lower values to see the 

consequences, but the loss of information was too great, and epilepsy was almost normalized. Finally, we 

checked to maintain 99.9% of the total energy that raised the number of non-zero data to 36% of the 

original data and the loss of information was now very low. In channels with no intense seizure, the 

aforementioned numbers of data are valid, on the contrary, in the case of record-seizure channels, the 

figures number of non-zero elements rise by a little. 

These tests were performed over the whole range of the signal, i.e. in N. But for the application of 

compressed detection we need to create some tables, as we have seen from the theory of the method. 

 
In our case and due to the fact that our initial signal is not sparse, we have the second case, where 

for Sensing matrix we have an independent and identically distributed Gaussian matrix (iid Gaussian) and 

an Inverse Discrete Cosine Transform Matrix (IDCT) . 

 So that Φ*c gives our original signal. From the theory of linear algebra it results that the dimensions 

of the matrices will be: Φ [length c, length c] and A [length y, length c]. This, however, results in a signal 

of one hundred and ninety thousand (190,000) elements requiring a matrix of Φ thirty six billion one 

hundred million (36,100,000,000) elements which will require excessive computer memory, which makes 

it impossible to apply to even a supercomputer. This led us to the implementation of smaller matrices. 

The N-size signal is now broken into parts of thirty thousand (P) (30,000) elements. In this way we ensure 

that the total size of the sensing matrix and the frame is limited to editable Giga Bytes. It is noted that the 
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ratio of non-zero elements in relation to the totality of the data remains approximately the same, with 

some fluctuations depending on the information contained. 

Here is the whole process that was implemented in this thesis 

First is the original EEG signal (green), then we have the DC transform (blue) the signal 

  

Figure 20: original EEG (green) - DCT (blue) 

Next is the reduced DCT signal (red)(99.5% of the original DCT (blue)) and the compressed signal (black) 

after applying the compressed sensing method ( y x x    , where Φ the i.i.d. random 

gaussian, Ψ the DCT basis and x the reduced DCT signal (red)) 

 
Figure 21: reduced DCT (red) - Compressed signal after CS (black) 

Finally, we have the algorithmic reconstruction of the signal (dark red) using the BP algorithm and the 
inverse DC transform (time domain).  If the reconstruction was without further loss of information then 
the reconstructed signal (dark red) and the reduced DCT signal (red) will be the same. We can not recover 
the original DCT signal, because after the energy reduction the constants that were removed are lost. 
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Figure 22: Reconstructed signal (dark red) - inverse DCT signal (light green) 

 
 

Frequency Domain Reconstruction (Fourier) 

 

 We then checked the frequency of the compressed signals to see the frequency changes. The test 

was performed in 2 steps: first across the data range and then at selected points where the intensity of 

the modified signal was observed. In the first case (across the range) there was no significant difference 

but only a reduction in energy in the frequency domain. 

Mean Square Error (MSE) is calculated from the formula 

 
2

1

1 n

i i

i

MSE Y Y
n 

   

 
2

1

1 n

i i

i

RMSE Y Y
n 

   

Equation 7: Mean Square Error (Above) and Root Mean Square Error (Bellow) 

Where iY  is our original signal and iY  is the signal after the energy deduction. 

Mean square error averaged 8.8 for crisis recording intervals and 6.1 for non-crisis intervals, and RMSE 

averaged 2.7 and 2.4 respectively. 

 

In the second case, the points we checked were selective and related to high frequencies and 

oscillations on one hand and points with normal frequencies and oscillations on the other. The test was 



38 

performed in a 4-second window, i.e. 1024 samples (256Hz EEG sampling frequency * 4), for all three data 

reduction cases, 99%, 99.5% and 99.9% of the total initial energy. Below are illustrative graphs: 

  

 

 

Figure 23: inter-Ictal EEG (Above) and Ictal EEG (Below) 

The graph shows the 4sec windows for segments with ictal and inter-ictal recordings. 

 

Figure 24: 100%, 99% Comparison in Frequency Spectrum 
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Figure 25: 100%, 99.5% Comparison in Frequency Spectrum 

 

Figure 26: 100%, 99.9% Comparison in Frequency Spectrum 

 

Then we present three images showing the Fourier Transform in 4 second windows and at a time 

before the start of the crisis. The results show that channel frequencies remained virtually the same. There 

is a reduction in the energy of these frequencies, which is normal, since we have reduced the energy of 

the signals. Greater loss was the first picture, which accounts for 99% of the initial energy, then the second 

with 99.5% and last with 99.9%. 
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We then provide the Fourier Transform for a point where there is judgment for all three cases. 

 

Figure 27: 100%, 99% Comparison in Frequency Spectrum 

 
 

 

Figure 28: 100%, 99.5% Comparison in Frequency Spectrum 
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Figure 29: 100%, 99.9% Comparison in Frequency Spectrum 

The results are like the previous ones, with the difference that the loss phenomenon focuses on high 

frequencies. 

This research has shown us that after the information is reduced, the frequencies of the original signal 

are not lost. This information alone does not give enough information as to whether the important 

epileptic information has actually been maintained. For this another parameter, Approximate Entropy 

(ApEn) was tested. 

We then estimated the approximate entropy size for various compression steps to control the 

performance achieved in crisis detection. 

Reconstruction based on Approximate Entropy (ApEn) 

Approximate entropy (ApEn) is a newly developed statistical quantification of regularity and 

complexity, which seems to be likely to apply to a wide variety of relatively small and noisy data. 

Approximate Entropy (ApEn) was suggested by Pincus [11]. It is essentially an improvement of the 

Kolmogorov-Sinai (K-S entropy) [12], which could not be used in statistical problems while there were 

significant discrepancies when there was noise in the time series to be examined. Pincus for the first time 

applied his method of estimating their regularity heart rate in healthy and diseased newborns [13]. In 

general, cardiology is one from the areas the method is widely applied [14]. Quickly however, the method 

has been applied to other physiological problems and areas, such as endocrinology but also neurology for 

analysis electroencephalograms [15]. Approximate entropy estimates the regularity of a time series in the 

sense of identifying similar patterns of observation groups that reappear within the time series. 
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Specifically, for each window of a specific length, the algorithm searches for the frequency of appearance 

of a sample sequence within the time series. The reappearance of a sequence is considered to occur when 

the differences of the observational groups do not exceed a certain threshold. The sequences that are 

similar (are smaller than the threshold) are involved in the creation of a quotient which then gives the 

value of approximate entropy. A low entropy value indicates that the time series are deterministic, while 

a high value indicates randomness. The development of ApEn was caused by the data length limitations 

commonly encountered, e.g. heart rate, EEG. The advantages of ApEn include: 

Lower computational requirement: ApEn can be designed to work for small data samples and can be 

implemented in real time.  

Less impact from noise: If the data is noisy, the ApEn measure can be compared to the noise level in the 

data to determine what quality of real information can be present in the data. 

Details of the process are described as follows with the example of a single-channel EEG segment. 

U=[u(1),u(2),…..,u(N-1),u(N)] that includes N measurements. Define the parameters of the algorithm as, 

the parameter m of the number of sample points to be used for the comparison and the parameter r 

which is the similarity threshold between the groups of observations. Based on these parameters the 

calculation of the ApEn consists of the steps: 

The vector sequence x(i)=[u(i),u(i+1),..u(i+m-1)], i=1,2,…,N-m+1 is formed. These vectors contain m 

consecutive values of the sequence U starting from the ith point. 

Defined as    ,d x i x j   the distance between the vectors x(i), x(j) as the maximum absolute 

difference between the m vector components of the two vectors according to the equation 

        
1

, max 1 1
k m

d x i x j x i k x j k
 

         

For each vector x(i), the number of indices  1 1j j N m    is calculated for which the distance

   ,d x i x j   is less than or equal to the filter threshold r, that is:     ,d x i x j r    

If  m

iN r the number of vectors that satisfy the above relationship, for all i=1…N-m+1 the parameters m 

are calculated such as: 

 
 

1

m

im

i

N r
C r

N m


 
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The values  m

iC r indicate the frequency with which the patterns resemble vector x(i) appear in the U 

timeserie, with tolerance due to filtering on level r. Calculate the mean  m r of the logarithmic values 

of the parameters m

iC according to the equation 

 
 

1

1

ln

1

N m
m

i
m i

C r

r
N m



 


 


 

 

The above steps are repeated using as input parameter the value m + 1. That is, we are gradually 

calculating the new vector sequences, the values 
1m

iC 
and finally, the value 

1m 
. The ApEn is ultimately 

defined by the following relation: 

1( ) ( )m mApEn r r     

Equation 8: Approximate Entropy 

Comparison window length m: This parameter specifies the number of observations group that are 

compared with the same number of observations in the rest of the series. The bigger is the comparison 

window, the more difficult it is to find groups of observations in the time series approaching the 

comparison window. 

Filter threshold r: This parameter determines the similarity tolerance between a pair of windows that are 

compared. When comparing two windows we consider that they are similar if the differences in their 

components are no greater than the filter threshold r. The threshold is given as a function of the standard 

deviation of the time series because the size must be comparable to the variation of time series. Large 

values of r denote high similarity tolerance while low values r indicates the strict version with low 

tolerance on the similarity of comparison windows. 

Length of time series N: This is the number of measurements that constitute the under-consideration time 

series. ApEn is essentially a statistic, so to have reliable results it needs to have a sufficient amount of 

measurements. In practical applications, ApEn have been used for N> 60. In this particular work the length 

of the EEG recording time series that is used is N = 512 measurements (2 seconds window). 

To check if there was a substantial change in the original information, we applied ApEn to the 

complete sample, then to the reduced and to the reconstructed. Below we list a channel with a 

strong epileptic event. The first 10 minutes are Inter-Ictal (1-300, 300 segments) and the last 80 

seconds are Ictal (301-340, 40 segments). 
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Figure 30: Approximate Entropy (ApEn) 

 
The graph above shows the original channel in green. It is noted that in the normal state the values 

are between 0.13 and 0.25 while at the crisis point there are at 0.01 and 0.12. Then we get the results 

after the information is reduced through the DC Transform, red color. ApEn values show a slight increase 

of 0.05 in the reference values at normal points, whereas in crisis the increase was 0.01. However, the 

general form of ApEn remains the same. The energy of the above signal amounts to 99.5% of the original. 

Finally, entropy on the signal was checked after using compressed sensing. The signal was broken into 

pieces and then reunited. After the merger, ApEn was tested. Note that the form remained the same, 

except that we had a normal increase of 0.1 while there was a decrease in rates during epilepsy. This is 

due to the fact that there has been a slight loss of information in the recovery process. 

The other two energy reductions have been tested, but we have decided to select 99.5% of the total 

energy for further research as it has a good retention of information after use of CS and the number of 

non-zero data is 1 / 3 of the original. This means that it gives a good compression of data but at the same 

time it keeps the information of the crisis.   
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Chapter Four: Analysis and Classification of epileptic seizures using 

Common Spatial Patterns 

  The aim of the noninvasive brain-computer interfaces (BCIs) is to translate brain activity of control 

sequences so that a subject, such as a person with disabilities, so that he will be able to commune with 

the outside world, such as a computer, without the usage of the peripheral nervous system. The wide 

usage of Electroencephalography for capturing the electrical potentials generated by the central nervous 

system and inferring the user's desires is because of the simplicity of the method, the inexpensiveness, 

and the high temporal resolution provided. [1]. Low signal-to-noise ratio (SNR) are the common trait of 

multichannel EEG signals and as a result they give a rather blurred image of the brain activity, making 

them unusable for BCI applications. 

 

4.1 Common Spatial Patterns (CSP) 

The common spatial patterns (CSP) method is a frequently utilized algorithm in order to extract the most 

discriminative information from EEG recordings. The first recommendation of the method was for the 

binary classification of EEG trials [2]. CSP is a spatial filtering method that seeks to optimize filters that will 

result in having the most difference in power/variance ratios in the feature space. The projections/filters 

are computed by a simultaneous diagonalization of the covariance matrices of the two classes that we 

want to individualize. The first few most discriminative filters are usually used for classification cause of 

the highest discrimination ability they procure. The reason is that the nth filter obtained has a relative 

variance of dn for trials of class 1 and relative 1-dn variance for trials of class 2. If  it is close to 1, the filter 

maximizes variance for class 1, and since is close to 0, minimizes variance for class 2 and vice versa [3].  

The Common Spatial Standard (CSP) is a signal processing method mainly used in EEG analysis to help 

distinguish between two categories of data by calculating a set of spatial filters that can maximize 

variation for a data category and at the same time minimize time. fluctuation for the other [4]. Specifically, 

the main use of this method is to retrieve the signals that best carries the brain activity for a specific task, 

such as the movement of a hand or foot, for Brain-Computer Interface (BCI) purposes. It can also be used 

to separate patterns from encephalographic signals [5].  

Mathematically, the method relies on the simultaneous diagonalization of two matrices closely 

related to the covariance matrices [6]. To summarize briefly, given two distributions in a high-dimensional 
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space, the CSP algorithm finds directions (spatial filters) that maximize variance for one class and that at 

the same time minimize variance for the other class. [2].  

The formal use of this method is by selecting windows that correspond to different activation sources, 

such as during the movement the hand and during the foot. Another possibility is the selection of windows 

that belong to two different frequency bands in order to identify components that have a particular 

frequency pattern. For efficiently using the CSP algorithm, several parameters have to be taken into 

accounts, such as the frequencies for band-pass filtering of EEG recordings and the time interval of the 

recordings taken on the stimuli. Usually, the frequency band is between 7-30 Hz for the encephalogram 

when the study is for BCI purposes. The reason being that the sensorimotor rhythms (SMRs) are 

oscillations at the aforementioned band frequency in the EEG recorded from the scalp. In our research, 

the bandwidth was from 0.5 Hz to 70 Hz, because epilepsy affects the whole spectrum. 

Because of the dependence of the eigenvector matrix only on the covariance matrices acquired by 

the two classes, it is possible to obtain the same results if the process is applied in the frequency domain 

of the recording, namely after the use of the Fourier transformation on the recordings. None the less, it 

should be stated that the conventional CSP algorithm is relying on sample-based covariance matrix 

estimations and for that reason, the performance in EEG categorization can deteriorate when there is only 

a small quantity of samples available for training. Similar problems have arisen in a lot of other 

applications that rely on the quantity of the samples provided. 

Mathematical Formulation 

Common spatial pattern method was firstly suggested for classification of multi-channel EEG for 

performing one of 4 movements (pressing a micro-switch with the left or right index finger, flexing the 

toes of the right foot, or moving the tongue to the upper gum) by J. Müller-Gerking [2]. The main idea, 

behind the common spatial patterns, is to use a linear transformation to project the multi-channel EEG 

data into a low-dimensional spatial subspace with a projection matrix, of which each row is a filter that 

consists of weights for each channel. This transformation can maximize the variance of two-class signal 

matrices. The CSP method is based on determining projection matrix in such a way that the variance of its 

first row is maximal for the trials of class 1 and at the same time minimal for the trials of class 2. The last 

row is the opposite of the first meaning, it has maximal for the trials of class 2 and at the same time 

minimal for the trials of class 1.  

Details of the process are described as follows with the example of classifying single-trial EEG for class 

1 and class 2. Class 1 or 2 can be any to two different cases that we want to classify. 1X  and 2X  denote 
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the preprocessed EEG matrices under two conditions (e.g. hand and foot movement, left hand right hand 

movement) with dimensions MxN, where M is the number of channels and N is the number of samples 

per channel. The normalized spatial covariance of the EEG can be represented as: 

1 1
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1 1(X X )
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X X
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    2 2
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TX is the transpose of X and trace(A) computes the sum of the diagonal elements of A. The averaged 

normalized covariance 1COV  and 2COV  are computed by calculating the average values for all the 

trials of each class separately. The composite spatial covariance can be factorized as 

1 2 0 0

TCOV COV COV U D U      

where 0U  is the matrix of  the eigenvectors and D  is the diagonal matrix of  the eigenvalues. The 

whitening transformation matrix is then defined as 

1/2

0

TP D U   

And transforms the average covariance matrices as  

1 1

TS P COV P        2 2

TS P COV P    

1S  and 2S  share the same eigenvectors and the aggregation of the corresponding eigenvalues for the 

two matrices will always be one, 

1 1

TS U D U     2 2

TS U D U     1 2D D I   

The eigenvectors with the largest eigenvalues for 1S  have the smallest eigenvalues for 2S  and vice versa. 

The transformation of whitened EEG onto eigenvectors corresponding to the largest eigenvalues in 1D  

and 2D  is optimal for separating variance in two signal matrices. The projection matrix W  , that also 

consist of the spatial filters is denoted as 

TW U P   

With the projection matrix W , the original EEG can be transformed into uncorrelated components 

Z W X   

Z  can be seen as EEG source components including mutual and unique components of different classes. 

The original EEG X can be reconstructed by 

1X W Z   
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Where 1W   is the inverse matrix of W . The columns of 1W 

 are spatial patterns, which can be 

considered as EEG source distribution vectors. The first and last rows of W are the most important spatial 

filters that provide the largest variance of one class and the smallest variance of the other [2]. The 

explanation is below: 
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Where 
1 2 ... chd d d   , therefore, the first CSP filter (W1) provides maximum variance for the class 1 

and the last CSP filter (Wch) provides the maximum variance for the second class. 

 

 

4.2 Time window determination   

In this section, we discuss about the time window determination. The length of the time window is an 

import factor when dealing with seizures. If you have a relative big window in comparison with the seizure 

then, the non-seizure samples of the window may have a negative effect in classifying the segment as ictal 

or inter-ictal. On the other hand, if the window is too small then, the information included may be unable 

to characterize the segment as ictal. So what consist a good time window for seizure detection? The 

window length m, specifies the number of observations group that are compared with the same number 

of observations in the rest of the series. Based on previous researches, a seizure can last from 4-5 seconds 

to 1-2 minutes. In order, to be able to have segments that consist purely of seizure data or at the very 

least, be more than the inter-ictal samples, we chose a 2 second time window, meaning 512 

measurements-samples, because the sampling frequency used at the Hospital was 256Hz. With the help 

of a doctor we confirmed that the 2 second where enough to classify the segment as ictal. Another factor 

in determining the duration of the window was the total amount of seizures we had to conduct our 

research. The more sections to check and check, the more accurate the results of this research. The total 

amount of ictal segments, after determining the 2 seconds time window, was nearly one thousand 

segments. The original length was 4 seconds (1024 measurements), but the total amount of ictal segments 

was around 500, so in order to have more segments available, we halved that time. The procedure of 

creating the segments consist of a sliding temporal window of Δt=2sec and a step of 0.5sec.   
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4.3 Frequency Analysis of EEG for Common Spatial Patterns filters (CSP) 

The Common Spatial Pattern (CSP) algorithm is applied to the data, in order to categorize the 

segments between Ictal and Inter-Ictal, by maximizing the variances of one class and minimizing for the 

other. To use the algorithm, we use 2-second segments (512 samples) and group them into a three-

dimensional array, the sides being: the data (2 seconds), the encephalogram’s channels, and finally the 

segments to be checked. 

 
Figure 31: Data Organization for CSP 

 

Then for each Patient, a sliding temporal window of Δt = 2sec and a step of 2 sec was used. There is no 

overlap between the segments and they are continuous without significant gaps. 

Then we decompose each segment into the δ {0.5-4 Hz}, θ{4-8 Hz}, α {8-13 Hz}, β {13-30 Hz} and γ {30-70 

Hz} rhythms.  in order to investigate the spectral content of each sub-band. For each temporal window, 

the 5 EEG rhythms (δ, θ, α, β, γ) timeseries were extracted using the corresponding bandpass filtering on 

the aforementioned frequency bands. The filter used in this thesis is a finite impulse response (FIR), non-

causal and with zero phase filter. The brain rhythms have specific bandwidth and they are continuous, we 

cannot afford to have a high roll of factor, because we will be overlapping the neighbor rhythms. For that 

we have a roll off area of 0.5Hz, to ensure the individuality of each rhythm-band. An example of the 

filtering procedure and rhythm decomposition is presented in Figure 2, where the full spectrum of the 

signal is displayed at the top. Then follows from top to bottom each rhythm. First, we have the δ rhythm 

between 0.5-4Hz, then Θ {4-8Hz}, α {8-13 Hz}, β {13-30 Hz} and finally, γ {30-70 Hz} rhythm. It can be seen 
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that there has been used a bandstop filter around 50Hz, because of the fact that the machines operate 

with 50Hz frequency current provided by the Public Power Corporation of Greece, the machines create a 

very intense noise distortion, so we are obliged to use a bandstop filter between 48-52Hz. 

 

Figure 32: Spectrum of Each Rhythm 

 
 
Here are the individual spectrums of each rhythm and the total initial spectrum of the signal. As can be 

seen, if we add the individual spectrums, then the initial one is obtained. In the next graph, we can see 

our data, for a specific segment, after the bandpass filtering is applied. As before, we follow the same 

order of illustration, at the top we have the original signal, next is the δ {0.5-4 Hz}, then Θ {4-8Hz}, α {8-

13 Hz}, β {13-30 Hz} and finally, γ {30-70 Hz} rhythm. After we create the specific data, for each segment, 

we continue to the feature extraction. 
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Figure 33: Time Domain of Whole Spectrum and Rhythms 

 

 

4.4 Feature Extraction Using Common Spatial Patterns filters (CSP) 

  After the extraction of the frequencies, we proceed with the feature extraction using the CSP 

algorithm. First, we need to calculate the covariance matrix. 
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, where Ε: matrix M*N (M-channels, N samples) for each segment  

trace{E*ET} = the sum of the diagonal elements of (E*ET), which is also the sum of (E*ET)'s eigenvalues 

This happens for each segment and then we calculate the average spatial covariance matrix for each class 

separately. 
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, c: class, k: trial and K: total trials for the class c 
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Then we add the two tables and get the corresponding eigenvectors and eigenvalues of the whole. 

1 2

TS S U U   , where U  the eigenvectors matrix and   the diagonal matrix of corresponding 

eigenvectors. For the construction of the final projection matrix, several matrices need to be calculated.  

Initially we have 
1/2

P U
 

   then we get the average spatial covariance matrices  and we calculate 

the 
1 1

T

P S P     and  
2 2

T

P S P     matrices. Furthermore 
1 1

T

B B     where B  is the 

eigenvectors matrix and  1  the diagonal matrix of corresponding eigenvectors for 1  . Τhe final 

projection matrix is defined as 
0

T

W B P  .
 

The first and last columns of 0W  are the most important spatial patterns that explain the largest variance 

of one task and the smallest variance of the other. 

For each patient, the overall departments train the algorithm in 2 classes (Ictal and Inter-Ictal). Next, an 

M-channel by M-channel matrix is generated which is used to extract the final 19 CSP features for each 

segment. Specifically, for feature extraction, a segment E is first projected as 
0

T

Z W E  .  

Then, a N-dimensional feature vector y  is formed from the variance of the rows of Z as 
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Where ny  is the nth component of y , nZ is the nth row of Z , and  var nZ is the variance of the vector 

nZ . The transformation to logarithmic values is done in order to make the distribution of the elements in 

ny  normal. The extracted features are equal to the number of the total number of common spatial filters, 

which is the same number as the number of channels available. In our study, the number of channels was 

19, so the total amount of features for each rhythm and the whole spectrum was 19 measurements and 

a total of 95 for each segment. The features are then to be used as inputs to machine learning algorithms 

in order to determine if the segments belong to an ictal or an inter-ictal time window. 
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Data balancing procedure 

The seizure detection problem is highly non-balanced, i.e. data from ictal periods are much fewer than 

inter-ictal periods, a balanced dataset should be ensured for formulating a proper model and increasing 

its performance. Thus, all samples from ictal and the same samples from inter-ictal periods were selected 

for the subsequent analysis. In our study, these procedures lead to a feature matrix X [984x95] of 984 

time-window cases for each class and 19 channels x 5 rhythms = 95 features. Specifically, the columns of 

X are (19 features for δ, 19 for θ, 19 for α, 19 for β and 19 for total spectrum) and the rows represent each 

temporal window EEG segment. 

Specifically the rows of the matrix Y  represent  the CSP features (19 features for Whole Spectrum - 19 

features for Delta Rhythm - 19 features for Theta Rhythm - 19 features for Alpha Rhythm - 19 features for 

Beta Rhythm - 19 features for Gamma Rhythm), and the columns represent the 2 second Segments of the 

Encephalogram (Segment 1,…,Segment n). The first half of the total (1, 2, ..., n/2) Segments are inter-ictal 

recordings and the rest (the other half) (n/2 +1, +2, ..., n) Segments are Ictal recordings. Because of the 

balancing process the inter-ictal and ictal segments are equal in number, and n=2*ictal or inter-ictal 

segments. 

 

 
 

Matrix Y Seg-1 … Seg-n/2 Seg-n/2 +1 … Seg-n  

19 Features          WS Inter-Ictal Inter-Ictal Inter-Ictal Ictal Ictal Ictal 

19 Features          DR Inter-Ictal Inter-Ictal Inter-Ictal Ictal Ictal Ictal 

19 Features          THR Inter-Ictal Inter-Ictal Inter-Ictal Ictal Ictal Ictal 

19 Features          AR Inter-Ictal Inter-Ictal Inter-Ictal Ictal Ictal Ictal 

19 Features          BR Inter-Ictal Inter-Ictal Inter-Ictal Ictal Ictal Ictal 

19 Features          GR Inter-Ictal Inter-Ictal Inter-Ictal Ictal Ictal Ictal 
Table II: Feature matrix with the extracted features, consists of the patient-subject segments after the balancing procedure 

 

 

Next we take the transpose of the matrix and we add an extra column which represents the class for each 

segment (1 for Inter-ictal segment and 2 for ictal segment). This column is to be used by the machine 

learning algorithm to estimate the accuracy of the classification, the specificity and the sensitivity. The 

new matrix is formed as follows and it is used for classification. 
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Matrix X 19 Features          
WS 

19 Features          
DR 

19 Features          
THR 

19 Features          
AR 

19 Features          
BR 

19 Features          
GR 

Class 

Seg-1 Inter-Ictal Inter-Ictal Inter-Ictal Inter-Ictal Inter-Ictal Inter-Ictal 1 

… Inter-Ictal Inter-Ictal Inter-Ictal Inter-Ictal Inter-Ictal Inter-Ictal 1 

Seg-n/2 Inter-Ictal Inter-Ictal Inter-Ictal Inter-Ictal Inter-Ictal Inter-Ictal 1 

Seg-n/2 +1 Ictal Ictal Ictal Ictal Ictal Ictal 2 

… Ictal Ictal Ictal Ictal Ictal Ictal 2 

Seg-n Ictal Ictal Ictal Ictal Ictal Ictal 2 

Table III: Final Feature Matrix for each Segment 

 
Fig. 34 presents the most significant spatial filters learned by CSP for the first patient in our dataset and 

represent the most important spatial filters that explain the largest variance of inter-ictal and ictal class. 

Next we can see the results in the data after applying all the filters that we learned through the training 

of the CSP algorithm. The scalps show the mean values for all the inter-ictal and ictal data segments of the 

patient. The scale for the data is based on the mean highest and lowest values of the patient. 

 

CSP maps  

The CSP maps are constructed using the FieldTrip toolbox for EEG/MEG-analysis (REF; Donders Institute 

for Brain, Cognition and Behaviour, Radboud University, the Netherlands. http://fieldtriptoolbox.org) [7]. 

The figure 4 shows the most important spatial filter for each class, for the first patient of our study. To 

create these maps, we use the measurements of the first and last row of W and with the use of the fieldtrip 

toolbox we create the scalp maps. Each measurement represents a weight for each of the 19 channels. 

The left represents the filter that maximizes the variance for inter-ictal segments and minimizes the 

variance for ictal and the right vice versa. The first patient has focal epilepsy in the right frontal lobe. The 

right scalp CSP map shows similar results to the doctor's deduction. The figure 5 shows the CSP feature 

map for the inter-ictal and the ictal classes. The specific feature maps are created from averaging the 

features of each class and can serve as a reference for the application of the spatial filters as we can notice 

that the values of the ictal period are higher than the corresponding mean values of the inter-ictal 

features. The features being averaged are from the whole spectrum of the patient and not from a 

particular rhythm. Similar maps can be obtained from every segment and rhythm of each patient. 

http://fieldtriptoolbox.org/
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Figure 34: Inter-ictal (left graph) and ictal (right graph) most significant spatial filters for the patient (PAT_13) 

 

 
Figure 35:The graphs represent the mean CSP features map for inter-ictal (left graph) and ictal (right graph). 

 

 

4.5 Feature Selection Methods 

Nowadays, the growth of the high-throughput technologies has resulted in exponential growth in 

the harvested data with respect to both dimensionality and sample size. Efficient and effective 

management of these data becomes increasing challenging. Traditionally manual management of these 
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datasets to be impractical. Therefore, data mining and machine learning techniques were developed to 

automatically discover knowledge and recognize patterns from these data [8] [9]. Dimensionality 

reduction is one of the most popular techniques to remove noisy (i.e. irrelevant) and redundant features. 

Dimensionality reduction techniques can be categorized mainly into feature extraction and feature 

selection. 

Feature extraction approaches project features into a new feature space with lower 

dimensionality and the new constructed features are usually combinations of original features. Examples 

of feature extraction techniques include Principle Component Analysis (PCA), Linear Discriminant Analysis 

(LDA) and Canonical Correlation Analysis (CCA). On the other hand, the feature selection approaches aim 

to select a small subset of features that minimize redundancy and maximize relevance to the target such 

as the class labels in classification. Representative feature selection techniques include Information Gain, 

Relief, Fisher Score and Lasso. Both Feature extraction and feature selection are capable of improving 

learning performance, lowering computational complexity, building better generalizable models, and 

decreasing required storage.   

For the classification problem, feature selection aims to select a subset of highly discriminant 

features. In other words, it selects features that are capable of discriminating samples that belong to 

different classes. For the problem of feature selection for classification, due to the availability of label 

information, the relevance of features is assessed as the capability of distinguishing different classes. 

Furthermore, feature selection serves one more purpose. It detects not only the features with increased 

distinctive ability, but also those with low or zero contribution to the class separation. The removal of the 

later from the features set is equally important, since they act as noise for classification, usually leading 

to reduction of the classification efficiency. The three general categories of feature selection methods are 

categorized as: 

 Filter based: We specify some metric and based on that filter features. An example of such a 

metric could be correlation/chi-square [10]. 

 Wrapper-based: Wrapper methods consider the selection of a set of features as a search problem. 

Example: Recursive Feature Elimination [11]. 

 Embedded: Embedded methods use algorithms that have built-in feature selection methods. For 

instance, Lasso and RF have their own feature selection methods [12]. 

Filter algorithms use a threshold to select the best features, while wrapper algorithms, through a 

variety of strategies, select subsets of the original features, evaluate their distinctive ability using a 

classifier, and result in the best subset, which then use for classification. 



58 

 

 

 
Figure 36: Feature Selection 

Relief is a feature weight based algorithm inspired by instance-based learning. Relief has two critical 

components, the averaged vector relevance and the threshold. Relevance is the averaged vector of the 

value for each feature over m sample triplets. Each element of relevance corresponding to a feature shows 

how relevant the feature is to the target concept. The threshold is determining whether the feature should 

be selected or not. Relief is a simple algorithm which relies entirely on a statistical method. The algorithm 

employs few heuristics, and is less often fooled. It is efficient and its computational complexity is 

polynomial. Relief is also noise tolerant and is unaffected by feature interaction [13]. 

The RFE-SVM algorithm which is a wrapper method for feature selection method using Support Vector 

Machines. RFESVM method ranks all the features according to some score function and eliminates one or 

more features with the lowest scores. This process is repeated until the highest classification accuracy is 

obtained. Due to its successfully use in selecting informative genes for cancer classification, SVM-RFE 

gained a great popularity and is well known as one of the most effective feature selection method. 

However, the RFESVM is a greedy method that only hopes to find the best possible combination for 

classification [14]. 

Sequential forward selection (SFS) is the simplest greedy search algorithm. The way it operates is 

starting from an empty set, sequentially add the feature 𝑥 that maximizes S(𝑌 + 𝑥) when combined with 

the features 𝑌 that have already been selected prior. SFS performs best when the optimal subset is small, 

because at the beginning a large number of feature states can be potentially evaluated. When the set is 

almost full, the region examined by SFS is narrower since most of the features have already been selected. 
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The main disadvantage of SFS is that it is unable to remove features that become obsolete after the 

addition of other features [15]. 

The mRMR is a feature selection approach that tends to select features with a high correlation with 

the class (relevance) and a low correlation between themselves (redundancy). Relevance can be 

calculated by using the F-statistic (for continuous features) or mutual information (for discrete features) 

and redundancy can be calculated by using Pearson correlation coefficient (for continuous features) or 

mutual information (for discrete features). After that, features are selected one by one by applying a 

greedy search to maximize the objective function, which is a function of relevance and redundancy. Two 

commonly used types of the objective function are MID (Mutual Information Difference criterion) and 

MIQ (Mutual Information Quotient criterion) representing the difference or the quotient of relevance and 

redundancy, respectively. For temporal data, mRMR feature selection approach requires some 

preprocessing techniques that flatten temporal data into a single matrix in advance. This may result in a 

loss of possibly important information among temporal data [16]. 

 

4.6 Classification Schemes 

Classification is the problem of identifying to which of a set of categories (subpopulations) a new 

observation belongs, on the basis of a training set of data containing observations (or instances) whose 

category membership is known [17]. Many real-world problems can be modeled as classification problems 

such as assigning a given email into “spam” or “non-spam” classes and assigning a diagnosis to a given 

patient as described by observed characteristics of the patient (gender, blood pressure, presence or 

absence of certain symptoms, etc.).  

In the training phase, data is analyzed into a set of features based on the feature generation models 

such as the vector space model for text data. These features may either be categorical (e.g. A, B), ordinal 

(e.g. large, small), integer-valued or real-valued (e.g. a measurement of height). Some algorithms work 

only in terms of discrete data such as ID3 and require that real-valued or integer-valued data be discretized 

into groups (e.g. less than 5, between 5 and 10, or greater than 10). After representing data through these 

extracted features, the learning algorithm will utilize the label information as well as the data itself to 

learn a map function f (or a classifier) from features. 

In the prediction phase, data is represented by the feature set extracted in the training process, and 

then the map function (or the classifier) learned from the training phase will perform on the feature 

represented data to predict the labels. Note that the feature set used in the training phase should be the 
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same as that in the prediction phase. There are many classification methods in the literature. These 

methods can be categorized broadly into Linear classifiers, support vector machines, decision trees and 

Neural networks. A linear classifier makes a classification decision based on the value of a linear 

combination of the features. Examples of linear classifiers include Fisher’s linear discriminant, logistic 

regression, the naive Bayes classifier and so on. Intuitively, a good separation is achieved by the 

hyperplane that has the largest distance to the nearest training data point of any class (so-called functional 

margin), since in general the larger the margin the lower the generalization error of the classifier. 

Therefore, support vector machine constructs a hyperplane or set of hyperplanes by maximizing the 

margin. In decision trees, a tree can be learned by splitting the source set into subsets based on a feature 

value test. This process is repeated on each derived subset in a recursive manner called recursive 

partitioning. The recursion is completed when the subset at a node has all the same values of the target 

feature, or when splitting no longer adds value to the predictions. 

K-nearest Neighbors is a lazy learning algorithm and is used to assign a data point to clusters based 

on similarity measurement. It uses a supervised method for classification. The steps to the algorithm are 

to choose the number of k and a distance metric. The most common choice of k is 5. Next, according to 

their distance, it finds the k-nearest neighbors of the sample that you want to classify. After finding the k 

nearest neighbors it weights the contribution of each of the k neighbors and assigns the class label by 

majority vote [18]. 

Named after Thomas Bayes from the 1700s who first coined this in the Western literature. Naive Bayes 

classifier works on the principle of conditional probability as given by the Bayes theorem. It is used for a 

variety of tasks such as spam filtering and other areas of text classification. Advantages of Naive Bayes 

Classifier are that it is very simple and easy to implement, it needs less training data, it can handle both 

continuous and discrete data, it is highly scalable with the number of predictors and data points and as it 

is fast, it can be used in real-time predictions. On the other hand, if the categorical variable belongs to a 

category that it was not followed up during the training set, then the model will give it a probability of 0 

which will prevent it from making any prediction [19]. 

Artificial Neural Network is a set of connected input/output units where each connection has a weight 

associated with. It started by neurobiologists to develop and test computational analogs of neurons. 

During the learning phase, the network learns by adjusting the weights so as to be able to predict the 

correct class label of the input tuples. There can be multiple hidden layers in the model depending on the 

complexity of the function which is going to be mapped by the model. Having more hidden layers will 
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enable to model complex relationships such as deep neural networks. On the other hand, when exists 

many hidden layers, it takes significantly more time to train and adjust weights [20]. 

 

4.7 Cross Validation methods 

Validation 

This process of deciding whether the numerical results quantifying hypothesized relationships between 

variables, are acceptable as descriptions of the data, is known as validation. Generally, an error estimate 

for the test model is performed after training, known as residual evaluation. In this process, a numerical 

estimate of the difference between the predicted and the original responses is made and it is also called 

training error. The problem is that it provides an idea about the functionality of our model to the specific 

input of data. It is possible that the model is underfitting or overfitting the data. The problem that occurs 

based on this, is that the evaluation technique does not give an indication of how well the learning 

algorithm will perform to an independent or unseen data set. Getting this idea about our model is known 

as Cross Validation [21]. 

 

K-Fold Cross Validation 

As there is never enough data to train your model, by removing a part of the data for validation purposes 

arises the problem of the remaining data being underfitting.  The reduction of the training data my lead 

in losing important patterns in the data set.  K Fold cross validation does is a method that we use our data 

for both the training and testing purposes and we can test the whole data without having to worry about 

underfitting. In K Fold cross validation, the data is divided into partitioned into k equal sized subsamples. 

The holdout method is repeated k times, so that each time on of the subsets is for testing the model while 

the others are used for training the model. The k results can then be averaged to produce a single 

estimation to acquire the total effectiveness of our model.  As mentioned before, the cross-validation 

process is repeated k times, with each of the k subsamples used exactly once as the validation data. With 

this method we can significantly reduce bias as we are using all of the data for fitting, and also significantly 

reduces variance as the data are also being used in the validation set. The most common choice of k is 5 

or 10, but it is not fixed and can take any value depending on the data [22]. If the number of k equals to 
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the number of the segments\observation then the k-fold cross validation is equivalent to leave-one-out 

cross-validation. [23] 

 
Figure 37: 4-fold cross validation 
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Chapter Five: Proposed Approach and Results  

5.1 Clinical Protocol and procedures 

Inclusion criteria and ethics 

Subjects participating in this study are patients diagnosed with non-idiopathic focal epilepsy. If a 

sustained seizure freedom is not ensured, then even the occurrence of at least one seizure event makes 

the subject eligible for inclusion in the study. There were some cases for which long-term video EEG and 

synchronous ECG were recorded, but when evaluated by the two neuropediatricians (see Section 0), they 

did not present any epileptic seizure. These cases were excluded from our analysis. The study’s protocol 

has been approved by the appropriate scientific board of the University Hospital of Heraklion under the 

reference number 5631/15-5-14. Informed consent was obtained from all patients following a detailed 

explanation of the study objectives and protocol to each patient and/or caregiver. All caregivers/patients 

provided written informed consent prior to being monitored. This study compiles with the obligations and 

procedures of confidentiality and privacy, to implement the security and protection policies of the 

personal data and to comply with the Rules established by the Greek legislation and by the European 

Parliament's Regulation (EU) 2016/679 and of 27 April 2016 (General Data Protection Regulation - GDPR) 

 

Procedure 

A patient that meets the criteria, as evaluated by an expert neuropediatrician, was admitted to 

the hospital. Their medical health record were created including clinical data about demographics, 

medical history, family history, medication, epilepsy classification, etc. An EEG cap with 10/20 electrode 

system was placed in the head of the patient, a camera was placed opposite the patient’s bed and 

additional sensors for recording the breath rate and SpO2 were utilized. Video and surface EEG were 

recorded simultaneously for each patient during routine long-term hospital monitoring. The EEG signals 
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were recorded at 19 scalp loci of the international 10– 20 system (channels Fp1, Fp2, F7, F3, Fz, F4, F8, T3, 

C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2), with all electrodes referenced to the earlobe. An electrode 

placed in the middle of distance between Fp1 and Fp2 on the subject's forehead served as ground. EEG 

data were sampled at 256Hz. The long-term EEG recordings were independently evaluated and annotated 

for epileptic seizures and pathological findings by two expert neuropediatricians. 

 

 

Dataset 

The clinical dataset has been recorded at the University Hospital of Heraklion and contained 10 

participants (3 females, 7 males).  Their age was 6.8±5.9 years at the moment of monitoring. The recorded 

dataset included 63 seizures in total. The seizures classification into standardized types and subtypes was 

performed according to the criteria of the International League Against Epilepsy (ILAE) [1]. Table I presents 

patients demographic data as well as selected clinical data. It should be noted that the dataset contains 

only cases of focal seizures in order to share similar clinical characteristics. Four additional cases were 

excluded from the study due to excessive body motion induced artifacts in the ECG or other errors, such 

as the removal of an electrode from the chest. 
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Patient Code 
# 

seizures 
Age Gender Epilepsy 

PAT_11 
1 3 Male focal right frontal lobe 

PAT_13 
1 9 Female focal right frontal lobe 

PAT_14 
8 7 Female focal right frontal lobe 

PAT_15 
1 13 Male focal fronto-polar lobe 

PAT_24 
14 10 Female focal left frontal lobe 

PAT_27 
7 13 Male focal right frontal lobe 

PAT_29 
1 0 Male focal bifrontal lobe 

PAT_32 
1 13 Male focal right frontotemporal lobe 

PAT_34 
28 5 Male focal right frontal lobe 

PAT_35 
1 4 Male focal 

Total seizures  63    

Table IV: Study population Demographics and Seizure Types 

 
 
 
 

EEG preprocessing and feature extraction  

The EEG recordings were digitized in sampling frequency fs=256 Hz which is used by the University 

Hospital of Heraklion for EEG recordings. Because the subjects were free to move and also during the 

seizures they exhibited various movements and actions the artifacts related to these activities (body 

movements, eye blinks, spikes, head movements, chewing, general discharges) contaminated the EEG 

recordings with unwanted noise components [2]. There was a need to suppress these artifacts and spikes, 

and the process of suppression was performed with the usage of Independent Component Analysis (ICA) 

[3]. Another step was the removal of the noise caused by mechanical interferences. The recording 

machines, amplifiers, and various others are operating with an electrical current of 50Hz, causing noise to 

the EEG recording at the specific frequency [4]. Finally, the application of the CSP method mentioned in 

the previous chapter took place. We segmented the preprocessed EEG recordings, into segments of 2sec 
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with the usage of a sliding temporal window. We then extracted the rhythms (δ, θ, α, β and γ) of each 

temporal window and applied the CSP [5] method to each rhythm and total spectrum separately and 

extracted the features that were to be used for classifying the segments as inter-ictal or ictal. 

 

5.2 Proposed Pipeline and Use of Techniques 

Feature Selection 

The outline followed in this thesis for classification was to create combinations of different feature 

selection methods, classifications schemes and parameters, in order to evaluate their performance and 

determine which combination gives the best results for the specific data. The feature selection methods 

used are Correlation Coefficient, ReliefF algorithm [6], Minimum Redundancy Maximum Relevance 

algorithm (mRMR) with MID and MIQ schemes [7], linear Support Vector Machines Recursive Feature 

Elimination algorithm (SVM-RFE) [8], Sequential Forward Selection (SFS) [9]. There was also the case of 

selecting all variables (no feature selection). The result of each feature selection method was a ranking of 

the most important features. Based on this ranking, we created combinations of features: the first 

combination was the 1 top ranked feature, the second combination was the 2 top ranked features, the 

third combination was the 3 top ranked features, and so on. Each combination was used to train an SVM 

classifier and estimated its performance. The combination achieving the best performance, was finally 

used as the outcome of each feature selection method. 

 

Classification 

The discrimination between the two states under investigation (interictal, ictal) was performed 

by evaluating the CSP features through classification schemes comparison. The classification schemes 

used in this study are the trivial classifier, Naïve Bayes classifier, k-Nearest Neighbors with k=5, Artificial 

Neural Networks with hidden layer size 10. The trivial classifier is used in order to determine the accuracy 

of random classification, which depends on the class distribution of the data, and serves as a reference 

point for the performance of the other classifiers. In order to assess the performance of each classification 

scheme the performance accuracy metric was used which is given by the equation 
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TP TN
Accuracy

TP FP FN TN




  
(10) 

TP
Sensitivity

TP FN



 

TN
Specificity

TN FP



 

 
where TP is the true positive, TN the true negative, FP is the false positive and FN the false negative cases. 

Sensitivity is the ability of a classification scheme to correctly identify those with the disease (true positive 

rate), whereas specificity is the ability of the classification scheme to correctly identify those without the 

disease (true negative rate). The classification schemes (combinations of classifier and parameters) were 

cross-validated in order to evaluate their performance and select the best combination. A standard 10-

fold cross validation method was utilized for each classification scheme for testing the performance of 

each system. 

 

Figure 38: Sensitivity – Specificity – source( [10]) 
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5.3 Results 

 

The feature selection was applied aiming to find the optimal feature subset for improving discrimination 

ability. The automatic feature selection methods used are the Correlation Coefficient (with R=0.1), the 

ReliefF, the mRMR_MID, the mRMR_MIQ, backward greedy search, the linear SVM-RFE and the 

Sequential Forward Selection (SFS). The top ranked features were inserted iteratively in the feature subset 

evaluating its each candidate subset’s performance in terms of 10-fold SVM classification accuracy used 

as the objective function. The next 2 tables provide information in the form of concentrating the 

algorithms used in order to extract the final percentages of accuracy, sensitivity, and specificity for both 

cases. At the top are displayed the features/CSP coefficients used for each case. Next follows the feature 

selection methods used to extract the final features/CSP coefficients that were used for classification, and 

finally, the classifiers and the number of folds for cross-validation process. 

 

PARAMETERS 

Features 

19 CSP Coefficients Total Power                                                                                       

19 CSP Coefficients δ Rhythm                                                                                       

19 CSP Coefficients θ Rhythm                                                                                         

19 CSP Coefficients α Rhythm                                                                                      

19 CSP Coefficients β Rhythm 

Feature 

selection 

methods: 

 

selectallvariables 

Correlation Coeficient, R=0.1 

ReliefF 

mRMR_MID 

mRMR_MIQ 

backward greedy search, linear SVM-RFE 

Sequential Forward Selection (SFS) 
 

 

 

 

+SVM for 

selecting 

top 

features 

Classifiers: 

Trivial classifier 

Naïve Bayes 

KNN, K=5 

Artificail Neural Networks, hidden layer size: 10 
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Cross-

Validation: 
number of folds: k=10 

 

Table V: Features and Methods used in the analysis of the EEG signals (γ rhythm out) 

 

 

PARAMETERS 

Features 

19 CSP Coefficients Total Power                                                                                       

19 CSP Coefficients δ Rhythm                                                                                       

19 CSP Coefficients θ Rhythm                                                                                         

19 CSP Coefficients α Rhythm                                                                                      

19 CSP Coefficients β Rhythm 

19 CSP Coefficients γ Rhythm 

Feature 

selection 

methods: 

 

selectallvariables 

Correlation Coeficient, R=0.1 

ReliefF 

mRMR_MID 

mRMR_MIQ 

backward greedy search, linear SVM-RFE 

Sequential Forward Selection (SFS) 
 

 

 

 

+SVM for 

selecting 

top 

features 

Classifiers: 

Trivial classifier 

Naïve Bayes 

KNN, K=5 

Artificail Neural Networks, hidden layer size: 10 

Cross-

Validation: 
number of folds: k=10 

 

Table VI: Features and Methods used in the analysis of the EEG signals 

 

 



72 

This procedure revealed that for the problem under investigation, the best feature selection method was 

ReliefF selecting a features subset of 49 features from the feature set for the case with 114 features/CSP 

coefficients included and all the 95 features for the other case, meaning without the features of the γ 

rhythm.The figure that follows is for visualization purposes only, to better understand the usage of the 

SVM classifier and do not represent our real data. It represents the 2 best features for classification, in 

our case, those two would be the features 105 and 97, as presented by Table VIII: Results of the analysis. 

 

 

Figure 39: Classification between non-ictal (green color) and ictal period (red color) representing the first 2 best features (for 
visualization purposes) – source( [11]). 

 

Then, the classification phase was applied. The trivial classifier’s accuracy was 50%, defining the random 

classification accuracy. The best accuracy, sensitivity and specificity was achieved with the ReliefF 

algorithm, the SVM classifier (with Gaussian kernel) and 10-fold cross-validation achieving classification 

of 92% accuracy, 89.4% sensitivity and 94.5% specificity for all the rhythms included (19 features for δ, 19 

for θ, 19 for α, 19 for β, 19 for γ and 19 for total spectrum) to a total of 114 features and the best accuracy, 

sensitivity and specificity achieved for all the rhythms without the gamma features included (19 features 

for δ, 19 for θ, 19 for α, 19 for β  and 19 for total spectrum) to a total of 95 features were with the selection 

of all 95 features, the KNN classifier (with k=5) and 10-fold cross-validation achieving classification of 

91.2% accuracy, 90.6% sensitivity and 91.7% specificity. 
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RESULTS 

FeatSel 

Method 

Selected

Vars_N 
SelectedVars Classifier 

Accura

cy 
 

all variables 95 all Trivial classifier 0.5000   

FeatSel 

Method 

Selected

Vars_N 
SelectedVars Classifier 

Accura

cy 

Sensiti

vity 

Specifi

city 

all variables 95 all KNN, K=5 0.9121 0.9066 0.9176 

CorrCoef, 

R=0.1 

95 50   8  19  44  48   2  12  57  

42  54  63  18  27  86  56  

71  16  69  65   6  15  31  82  

90  84  72  17  46  10  88  

11  21  52  80  23  35  75  

51  67   4   7  76  13  93  61  

14  38  73  94  37  59  40  

74  91  29  92  87  33  55  

68  47  70  53   3  83  66  45  

28  25  49  95  26   9  36  64   

5  32  89   1  78  34  85  81  

30  43  62  79  20  41  24  

77  22  58  60  39 

SVM, gaussian 

kernel 

0.9111 0.8872 0.9350 

all variables 95 all SVM, gaussian 

kernel 

0.9106 0.8861 0.9350 
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ReliefF 94 93  47  84  90  30  55  88  

49  80  38  16   2  53  10  36  

69  50  35  39  22  71  56  

48  21   4  27  66  52  34  29  

85  54  44  45  78  94  76  

91  87  42  40  65  74  24  

25   7  75  51  11  81   8   6  

92  12  46  31  15  70  14   1  

20  68  23  62  17  72  86  

95   9  33  41  57  60   3  58  

82  19  83  32  73  43  59  

61   5  26  89  13  37  63  64  

28  79  18  67 

SVM, gaussian 

kernel 

0.9080 0.8841 0.9318 

mRMR_MID 33 56  88  50  47  91  42  19  

44  82  31  54  80  72  10  

57  75  69  30  61  20  46  

84  51   8  93  48  24  86  49  

87  12  68   2 

SVM, gaussian 

kernel 

0.9079 0.8810 0.9349 

CorrCoef, 

R=0.1 

95 50   8  19  44  48   2  12  57  

42  54  63  18  27  86  56  

71  16  69  65   6  15  31  82  

90  84  72  17  46  10  88  

11  21  52  80  23  35  75  

51  67   4   7  76  13  93  61  

14  38  73  94  37  59  40  

74  91  29  92  87  33  55  

68  47  70  53   3  83  66  45  

28  25  49  95  26   9  36  64   

5  32  89   1  78  34  85  81  

30  43  62  79  20  41  24  

77  22  58  60  39 

KNN, K=5 0.9070 0.8994 0.9146 
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ReliefF 94 93  47  84  90  30  55  88  

49  80  38  16   2  53  10  36  

69  50  35  39  22  71  56  

48  21   4  27  66  52  34  29  

85  54  44  45  78  94  76  

91  87  42  40  65  74  24  

25   7  75  51  11  81   8   6  

92  12  46  31  15  70  14   1  

20  68  23  62  17  72  86  

95   9  33  41  57  60   3  58  

82  19  83  32  73  43  59  

61   5  26  89  13  37  63  64  

28  79  18  67 

KNN, K=5 0.9070 0.8983 0.9157 

backw. 

greedy 

search, lin. 

SVM-RFE 

50 25  21   5  10  24  22  82  35  

26  34  28  23  37   3  31  12  

27   6  78  64  32  20  29   1  

86  77  81  16  33  71  54   4  

69  49  50  39   7  79  36  83  

47  89  68  41  14  58  18  

15  57   2 

SVM, gaussian 

kernel 

0.9065 0.8872 0.9259 

mRMR_MIQ 47 56  88  50  19  42  91  69  

44  47  80  31  72   8  82  54  

61  86  11  10  93  46  17  

75  84  57  63  76  90  51   2  

49  15   1  95  12  65  45  67  

35  71  48  13  52  83   7  16  

94 

SVM, gaussian 

kernel 

0.9060 0.8842 0.9278 

SFS 17 42  35  84  44  12  94  82  

54  93  23  61  68   1  83  67  

39  89 

SVM, gaussian 

kernel 

0.8989 0.8710 0.9269 
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mRMR_MIQ 47 56  88  50  19  42  91  69  

44  47  80  31  72   8  82  54  

61  86  11  10  93  46  17  

75  84  57  63  76  90  51   2  

49  15   1  95  12  65  45  67  

35  71  48  13  52  83   7  16  

94 

KNN, K=5 0.8989 0.8923 0.9055 

mRMR_MID 33 56  88  50  47  91  42  19  

44  82  31  54  80  72  10  

57  75  69  30  61  20  46  

84  51   8  93  48  24  86  49  

87  12  68   2 

KNN, K=5 0.8979 0.8781 0.9176 

SFS 17 42  35  84  44  12  94  82  

54  93  23  61  68   1  83  67  

39  89 

KNN, K=5 0.8913 0.8812 0.9014 

backw. 

greedy 

search, lin. 

SVM-RFE 

50 25  21   5  10  24  22  82  35  

26  34  28  23  37   3  31  12  

27   6  78  64  32  20  29   1  

86  77  81  16  33  71  54   4  

69  49  50  39   7  79  36  83  

47  89  68  41  14  58  18  

15  57   2 

KNN, K=5 0.8913 0.8802 0.9024 

all variables 95 all ANN, hidden 

Layer 

Size=10 

0.7947 0.8435 0.7460 
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CorrCoef, 

R=0.1 

95 50   8  19  44  48   2  12  57  

42  54  63  18  27  86  56  

71  16  69  65   6  15  31  82  

90  84  72  17  46  10  88  

11  21  52  80  23  35  75  

51  67   4   7  76  13  93  61  

14  38  73  94  37  59  40  

74  91  29  92  87  33  55  

68  47  70  53   3  83  66  45  

28  25  49  95  26   9  36  64   

5  32  89   1  78  34  85  81  

30  43  62  79  20  41  24  

77  22  58  60  39 

ANN, hidden 

Layer 

Size=10 

0.7799 0.8221 0.7376 

mRMR_MID 33 56  88  50  47  91  42  19  

44  82  31  54  80  72  10  

57  75  69  30  61  20  46  

84  51   8  93  48  24  86  49  

87  12  68   2 

NB 0.7734 0.9004 0.6464 

ReliefF 94 93  47  84  90  30  55  88  

49  80  38  16   2  53  10  36  

69  50  35  39  22  71  56  

48  21   4  27  66  52  34  29  

85  54  44  45  78  94  76  

91  87  42  40  65  74  24  

25   7  75  51  11  81   8   6  

92  12  46  31  15  70  14   1  

20  68  23  62  17  72  86  

95   9  33  41  57  60   3  58  

82  19  83  32  73  43  59  

61   5  26  89  13  37  63  64  

28  79  18  67 

ANN, hidden 

Layer 

Size=10 

0.7657 0.8183 0.7132 
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mRMR_MIQ 47 56  88  50  19  42  91  69  

44  47  80  31  72   8  82  54  

61  86  11  10  93  46  17  

75  84  57  63  76  90  51   2  

49  15   1  95  12  65  45  67  

35  71  48  13  52  83   7  16  

94 

ANN, hidden 

Layer 

Size=10 

0.7632 0.8323 0.6942 

mRMR_MIQ 47 56  88  50  19  42  91  69  

44  47  80  31  72   8  82  54  

61  86  11  10  93  46  17  

75  84  57  63  76  90  51   2  

49  15   1  95  12  65  45  67  

35  71  48  13  52  83   7  16  

94 

NB 0.7623 0.9046 0.6199 

mRMR_MID 33 56  88  50  47  91  42  19  

44  82  31  54  80  72  10  

57  75  69  30  61  20  46  

84  51   8  93  48  24  86  49  

87  12  68   2 

ANN, hidden 

Layer 

Size=10 

0.7607 0.8363 0.6851 

backw. 

greedy 

search, lin. 

SVM-RFE 

50 25  21   5  10  24  22  82  35  

26  34  28  23  37   3  31  12  

27   6  78  64  32  20  29   1  

86  77  81  16  33  71  54   4  

69  49  50  39   7  79  36  83  

47  89  68  41  14  58  18  

15  57   2 

ANN, hidden 

Layer 

Size=10 

0.7602 0.8120 0.7084 

SFS 17 42  35  84  44  12  94  82  

54  93  23  61  68   1  83  67  

39  89 

NB 0.7480 0.9035 0.5925 



80 

SFS 17 42  35  84  44  12  94  82  

54  93  23  61  68   1  83  67  

39  89 

ANN, hidden 

Layer 

Size=10 

0.7434 0.8231 0.6636 

CorrCoef, 

R=0.1 

95 50   8  19  44  48   2  12  57  

42  54  63  18  27  86  56  

71  16  69  65   6  15  31  82  

90  84  72  17  46  10  88  

11  21  52  80  23  35  75  

51  67   4   7  76  13  93  61  

14  38  73  94  37  59  40  

74  91  29  92  87  33  55  

68  47  70  53   3  83  66  45  

28  25  49  95  26   9  36  64   

5  32  89   1  78  34  85  81  

30  43  62  79  20  41  24  

77  22  58  60  39 

NB 0.7429 0.9045 0.5812 

ReliefF 94 93  47  84  90  30  55  88  

49  80  38  16   2  53  10  36  

69  50  35  39  22  71  56  

48  21   4  27  66  52  34  29  

85  54  44  45  78  94  76  

91  87  42  40  65  74  24  

25   7  75  51  11  81   8   6  

92  12  46  31  15  70  14   1  

20  68  23  62  17  72  86  

95   9  33  41  57  60   3  58  

82  19  83  32  73  43  59  

61   5  26  89  13  37  63  64  

28  79  18  67 

NB 0.7419 0.9025 0.5814 

all variables 95 all NB 0.7419 0.9034 0.5804 
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backw. 

greedy 

search, lin. 

SVM-RFE 

50 25  21   5  10  24  22  82  35  

26  34  28  23  37   3  31  12  

27   6  78  64  32  20  29   1  

86  77  81  16  33  71  54   4  

69  49  50  39   7  79  36  83  

47  89  68  41  14  58  18  

15  57   2 

NB 0.7369 0.8893 0.5845 

 

Table VII: Results of the analysis (γ rhythm out) 
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Results 

FeatSel 

Method 

Selected 

Vars_N 

Selected 

Vars 

Classifie

r 

Accuracy   

all variables 114 all Trivial 

classifier 

0.5000 

FeatSel 

Method 

Selected 

Vars_N 

Selected 

Vars 

Classifie

r 

Accuracy Sensitivity Specificity 

ReliefF 49 105 97 107 111 84 108 47 54 

101 90 34 49 66 88 109 50 44 

30 85 12 93 40 87 29 10 104 

38 31 103 76 52 46 68 75 42 

36 56 69 22 78 102 7 91 33 

27 48 35 71 106 

SVM, 

gaussian 

kernel 

0.9197 0.8943 0.9451 

all variables 114 all SVM, 

gaussian 

kernel 

0.9172 0.8953 0.9390 

all variables 114 all KNN, 

K=5 

0.9162 0.9055 0.9269 

backw. 

greedy 

search, 

lin.SVM-RFE 

49 10 25 21 5 24 35 34 28 26 22 

20 1 16 29 32 78 3 TJ 23 82 

77 37 64 31 6 7 86 33 81 4 12 

36 39 69 45 58 54 99 18 14 2 

43 40 15 41 38 13 9 105 

SVM, 

gaussian 

kernel 

0.9157 0.8944 0.9369 

ReliefF 49 105 97 107 111 84 108 47 54 

101 90 34 49 66 88 109 50 44 

30 85 12 93 40 87 29 10 104 

38 31 103 76 52 46 68 75 42 

36 56 69 22 78 102 7 91 33 

27 48 35 71 106 

KNN, 

K=5 

0.9136 0.9025 0.9247 
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mRMR_MIQ 50 97 51 12 44 111 50 69 106 47 

42 19 105 82 61 54 108 56 10 

8 101 63 76 80 46 57 86 72 

110 17 103 91 31 84 65 49 

104 75 11 71 90 35 67 2 107 

48 102 45 95 13 16 

KNN, 

K=5 

0.9131 0.9056 0.9207 

CorrCoef, 

R=0.1 

82 50 8 19 2 42 44 48 97 57 12 

54 63 105 18 86 27 82 71 65 

69 84 107 101 90 106 80 16 6 

46 110 88 31 56 104 111 10 

17 102 72 67 15 21 61 4 75 

73 51 103 52 76 93 23 35 108 

7 94 59 14 112 11 109 13 40 

37 113 38 114 29 99 91 92 87 

74 55 100 96 47 33 68 3 95 

83 

SVM, 

gaussian 

kernel 

0.9125 0.8891 0.9359 

mRMR_MIQ 50 97 51 12 44 111 50 69 106 47 

42 19 105 82 61 54 108 56 10 

8 101 63 76 80 46 57 86 72 

110 17 103 91 31 84 65 49 

104 75 11 71 90 35 67 2 107 

48 102 45 95 13 16 

SVM, 

gaussian 

kernel 

0.9111 0.8893 0.9329 

mRMR_MID 32 97 56 50 61 10 106 47 44 12 

111 54 82 105 57 108 19 42 

69 75 46 20 101 63 8 51 72 

80 48 76 102 31 49 

SVM, 

gaussian 

kernel 

0.9106 0.8790 0.9421 

SFS 15 42 12 109 3 84 85 10 99 6 7 

78 105 89 113 22 

SVM, 

gaussian 

kernel 

0.9080 0.8902 0.9258 
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CorrCoef, 

R=0.1 

82 50 8 19 2 42 44 48 97 57 12 

54 63 105 18 86 T7 82 71 65 

69 84 107 101 90 106 80 16 6 

46 110 88 31 56 104 111 10 

17 102 72 67 15 21 61 4 75 

73 51 103 52 76 93 23 35 108 

7 94 59 14 112 11 109 13 40 

37 113 38 114 29 99 91 92 87 

74 55 100 96 47 33 68 3 95 

83 

KNN, 

K=5 

0.9065 0.8932 0.9197 

mRMR_MID 32 97 56 50 61 10 106 47 44 12 

111 54 82 105 57 108 19 42 

69 75 46 20 101 63 8 51 72 

80 48 76 102 31 49 

KNN, 

K=5 

0.9019 0.8922 0.9115 

backw. 

greedy 

search, lin. 

SVM-RFE 

49 10 25 21 5 24 35 34 28 26 22 

20 1 16 29 32 78 3 27 23 82 

77 37 64 31 6 7 86 33 81 4 12 

36 39 69 45 58 54 99 18 14 2 

43 40 15 41 38 13 9 105 

KNN, 

K=5 

0.8968 0.8912 0.9024 

SFS 15 42 12 109 3 84 85 10 99 6 7 

78 105 89 113 22 

KNN, 

K=5 

0.8923 0.8649 0.9197 

mRMR_MID 32 97 56 50 61 10 106 47 44 12 

111 54 82 105 57 108 19 42 

69 75 46 20 101 63 8 51 72 

80 48 76 102 31 49 

ANN, 

hidden 

Layer 

Size=10 

0.7897 0.8405 0.7388 

mRMRJVIID 32 97 56 50 61 10 106 47 44 12 

111 54 82 105 57 108 19 42 

69 75 46 20 101 63 8 51 72 

80 48 76 102 31 49 

NB 0.7870 0.8922 0.6819 
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CorrCoef, 

R=0.1 

82 50 8 19 2 42 44 48 97 57 12 

54 63 105 18 86 27 82 71 65 

69 84 107 101 90 106 80 16 6 

46 110 88 31 56 104 111 10 

17 102 72 67 15 21 61 4 75 

73 51 103 52 76 93 23 35 108 

7 94 59 14 112 11 109 13 40 

37 113 38 114 29 99 91 92 87 

74 55 100 96 47 33 68 3 95 

83 

ANN, 

hidden 

Layer 

Size=10 

0.7836 0.8262 0.7409 

mRMR_MIQ 50 97 51 12 44 111 50 69 106 47 

42 19 105 82 61 54 108 56 10 

8 101 63 76 80 46 57 86 72 

110 17 103 91 31 84 65 49 

104 75 11 71 90 35 67 2 107 

48 102 45 95 13 16 

ANN, 

hidden 

Layer 

Size=10 

0.7820 0.8364 0.7275 

all variables 114 all ANN, 

hidden 

Layer 

Size=10 

0.7815 0.8170 0.7459 

backw. 

greedy 

search, lin. 

SVM-RFE 

49 10 25 21 5 24 35 34 28 26 22 

20 1 16 29 32 78 3 27 23 82 

77 37 64 31 6 7 86 33 81 4 12 

36 39 69 45 58 54 99 18 14 2 

43 40 15 41 38 13 9 105 

ANN, 

hidden 

Layer 

Size=10 

0.7744 0.8374 0.7114 

ReliefF 49 105 97 107 111 84 108 47 54 

101 90 34 49 66 88 109 50 44 

30 85 12 93 40 87 29 10 104 

38 31 103 76 52 46 68 75 42 

36 56 69 22 78 102 7 91 33 

27 48 35 71 106 

ANN, 

hidden 

Layer 

Size=10 

0.7729 0.8203 0.7255 



86 

mRMR_MIQ 50 97 51 12 44 111 50 69 106 47 

42 19 105 82 61 54 108 56 10 

8 101 63 76 80 46 57 86 72 

110 17 103 91 31 84 65 49 

104 75 11 71 90 35 67 2 107 

48 102 45 95 13 16 

NB 0.7713 0.8903 0.6524 

ReliefF 49 105 97 107 111 84 108 47 54 

101 90 34 49 66 88 109 50 44 

30 85 12 93 40 87 29 10 104 

38 31 103 76 52 46 68 75 42 

36 56 69 22 78 102 7 91 33 TJ 

48 35 71 106 

NB 0.7627 0.8912 0.6343 

CorrCoef, 

R=0.1 

82 50 8 19 2 42 44 48 97 57 12 

54 63 105 18 86 27 82 71 65 

69 84 107 101 90 106 80 16 6 

46 110 88 31 56 104 111 10 

17 102 72 67 15 21 61 4 75 

73 51 103 52 76 93 23 35 108 

7 94 59 14 112 11 109 13 40 

37 113 38 114 29 99 91 92 87 

74 55 100 96 47 33 68 3 95 

83 

NB 0.7566 0.8974 0.6158 

all variables 114 all NB 0.7475 0.8964 0.5987 

SFS 15 42 12 109 3 84 85 10 99 6 7 

78 105 89 113 22 

NB 0.7434 0.9014 0.5854 

backw. 

greedy 

search, 

lin.SVM-RFE 

49 10 25 21 5 24 35 34 28 26 22 

20 1 16 29 32 78 3 27 23 82 

77 37 64 31 6 7 86 33 81 4 12 

36 39 69 45 58 54 99 18 14 2 

43 40 15 41 38 13 9 105 

NB 0.7429 0.8892 0.5966 
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SFS 15 42 12 109 3 84 85 10 99 6 7 

78 105 89 113 22 

ANN, 

hidden 

Layer 

Size=10 

0.7313 0.8180 0.6447 

 

Table VIII: Results of the analysis 

 

 

The results were very encouraging, as they achieved very good classification accuracy, specificity 

and sensitivity percentages. The usage of the Common Spatial Patterns proved to be able to provide 

features that can help in the classification of the ictal and inter-ictal periods of time. From the observation 

of the results, we can extract that Naive Bayes and Artificial Neural Network with 10 hidden layers, had 

the lowest accuracy achieved from the four classifiers by a percent of at least 10% lower than Support-

vector machine and K-nearest neighbors classifiers. The reason is the average percentage of specificity 

that was near 72% for the Artificial Neural Network and around 62% for the Naive Bayes. The percentages 

are from matrix VIII with all the features included, but similar results where extracted from the other case 

of the 95 features (without γ rhythm). The reason for this could be investigated in a later study, as well as 

the usage of for selection algorithms and more classifiers. The Support-vector machine and K-nearest 

neighbors classifiers had similar percentages of accuracy but we can extract from the matrices that SVM 

achieved the highest specificity of 94.5% for the 114 features and KNN the highest sensitivity of 90.6% for 

the 95. In general, the SVM had better overall specificity in both matrices and KNN better overall 

sensitivity. The percentages of the accuracy of classification were higher when we used the features from 

all the rhythms (δ, θ, α, β and γ). That is could be investigated in future studies, of the role of γ rhythm in 

seizures and the discrimination ability in classification. The reason for the speculation is that a lot of its 

features/CSP coefficients provide better classification results. 
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Chapter Six: Conclusion  

6.1 Conclusion 

The aim of this diploma thesis is to investigate the preservation of epileptic data after the compression 

and reconstruction of the EEG using the Compressed Sensing method and to develop a seizure detection 

model based on CSP features. An issue in the area of seizure detection using EEG signal analysis is that 

information from the multivariate signals coming from different EEG channels should be taken into 

account in order to discriminate a possible ictal period. This information presented in EEG head maps that 

can be represented using specific coefficients is very useful towards this direction. The is a signal 

processing technique for efficiently acquiring and reconstructing a signal, by finding solutions to 

underdetermined linear systems. We propose the Discrete Cosine basis to sparsify the EEG. Next we make 

the DCT signal sparser by reducing its energy. After the reduction we apply the CS technique and 

reconstruct the reduced DCT signal by solving the Basis Pursuit problem. In the end we check the 

frequency spectrum and applying the Approximate Entropy. The results indicate that the epileptic data 

are preserved with a small reduction and can be used to identify the epilepsy. On the next phase of the 

thesis we use the CSP method to create a seizure detection model. The CSP method is an advanced signal 

processing method that provides information using the multivariate signals data and using spatial filters 

extracts meaningful spatial coefficients that describe cerebral activity. These CSP features using automatic 

feature selection and classification techniques led to a best achieved time-window classification of 91.1% 

using the combination ReliefF and SVM (Gaussian Kernel) and 10-fold cross validation. These results 

indicate that CSP features could be used in combination with other feature for seizure detection, although 

their effectiveness might be improved.  
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6.2Future Work 

In the future, we propose to combine the 19-channel CSP features of each rhythm in a specific metric 

that will represent the underlying EEG map with the appropriate normalizations needed. The validation 

of the proposed methodology could be validated with a greater number of participants in a follow up 

study. It is also important that the features of the method can be used with other features and improve 

the detection model. 
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