
Technical University of Crete, Greece

School of Electrical and Computer Engineering

Machine Learning for Enhancing

Robotic Perception and Control

Dimitrios Chatziparaschis

Thesis Committee

Associate Professor Michail G. Lagoudakis (ECE)

Professor Aggelos Bletsas (ECE)

Associate Professor Panagiotis Partsinevelos (MRE)

Chania, November 2020

http://www.tuc.gr
http://www.ece.tuc.gr

Dimitrios Chatziparaschis ii November 2020

Πολυτεχνειο Κρητης

Σχολη Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων

Μηχανική Μάθηση για την Ενίσχυση

της Ρομποτικής Αντίληψης και Ελέγχου

Δημήτριος Χατζηπαράσχης

Εξεταστική Επιτροπή

Αναπληρωτής Καθηγητής Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)

Καθηγητής ΄Αγγελος Μπλέτσας (ΗΜΜΥ)

Αναπληρωτής Καθηγητής Παναγιώτης Παρτσινέβελος (ΜΗΧΟΠ)

Χανιά, Νοέμβριος 2020

http://www.tuc.gr
http://www.ece.tuc.gr

Dimitrios Chatziparaschis iv November 2020

Abstract

In recent years, there is an emerging need to use robotic systems to facilitate human mis-

sions, especially in Search-and-Rescue scenarios. Such systems may operate in cluttered

and human-unfriendly environments, in which there may be no ideal circumstances to es-

tablish a remote control connection and delays may be detrimental due to the emergency

of such scenarios. Henceforth, the most essential trait of these systems is their ability

to deal with the uncertainty of the operating environment, in order to make appropri-

ate decisions and accomplish their objectives autonomously. In this thesis, we utilize

Machine Learning approaches to enhance robotic perception and control, namely vision

and navigation, of a simulated Unmanned Aerial Vehicle (UAV) to be able to act fully

autonomously in reconnaissance and rescue procedures. On the perception side, we use a

custom Deconvolutional Neural Network trained on tailor-made loss functions to achieve

autonomous visual target detection. On the control side, we applied Deep Reinforcement

Learning using Deep Deterministic Policy Gradient, based on a custom lightweight train-

ing simulator, to obtain the appropriate autonomous navigation behavior in unknown

worlds. The enhanced UAV system can navigate safely through an unknown environ-

ment, search and detect any existing humans in its surroundings with its onboard gimbal

system, engage and take distance measurements from the acquired target, and georefer-

ence it to the global coordinate system. Thenceforth, the UAV pinpoints the positioned

target in the generated map, shares it with the responding team, and proceeds with

the exploration of the unmapped area to locate other individuals who may be in need.

Throughout this study, each developed autonomous behavior of the UAV was thoroughly

evaluated to demonstrate experimental results in various custom environments within

the Gazebo robot simulation environment. The proposed system has been developed

as a Robot Operating System (ROS) package and is deployable to both simulated and

real UAV systems, as long as they meet the minimum proposed software and sensory

requirements.

Dimitrios Chatziparaschis vi November 2020

Περίληψη

Τα τελευταία χρόνια, υπάρχει μια αναδυόμενη ανάγκη χρήσης ρομποτικών συστημάτων για

τη διευκόλυνση ανθρώπινων αποστολών, ειδικά σε σενάρια έρευνας και διάσωσης. Τέτοια

συστήματα μπορεί να λειτουργούν σε ακατάστατα και μη-φιλικά προς τον άνθρωπο πε-

ριβάλλοντα, στα οποία ενδέχεται να μην υπάρχουν ιδανικές συνθήκες για τη δημιουργία

απομακρυσμένης σύνδεσης τηλεχειρισμού και οι καθυστερήσεις μπορεί να είναι επιζήμιες

λόγω της κρισιμότητας του σεναρίου. Επομένως, το πιο βασικό χαρακτηριστικό αυτών των

συστημάτων είναι η ικανότητά τους να αντιμετωπίζουν την αβεβαιότητα του περιβάλλοντος

όπου ενεργούν, προκειμένου να λαμβάνουν τις κατάλληλες αποφάσεις για να επιτυγχάνουν

αυτόνομα τους στόχους τους. Στην παρούσα διατριβή, χρησιμοποιούμε προσεγγίσεις Μη-

χανικής Μάθησης (Machine Learning) για την ενίσχυση της ρομποτικής αντίληψης και

ελέγχου, συγκεκριμένα της όρασης και της πλοήγησης, για ένα προσομοιωμένο μη-επανδρω-

μένο εναέριο όχημα (Unmanned Aerial Vehicle - UAV) που θα μπορεί να ενεργεί πλήρως

αυτόνομα στις διαδικασίες αναζήτησης και διάσωσης. Στην πλευρά της αντίληψης, χρησιμο-

ποιούμε ένα προσαρμοσμένο Deconvolutional Neural Network, εκπαιδευμένο πάνω σε ειδικά

σχεδιασμένες συναρτήσεις κόστους, για να πετύχουμε αυτόνομο εντοπισμό οπτικού στόχου.

Στην πλευρά του ελέγχου, εφαρμόσαμε Βαθιά Ενισχυτική Μάθηση (Deep Reinforcement

Learning) χρησιμοποιώντας Deep Deterministic Policy Gradient, πάνω σε ένα ειδικά δια-

μορφωμένο και χαμηλής υπολογιστικής πολυπλοκότητας περιβάλλον εκπαίδευσης, για να

αποκτήσουμε την κατάλληλη αυτόνομη συμπεριφορά για πλοήγηση σε άγνωστους κόσμους.

Το βελτιωμένο σύστημα UAV μπορεί να πλοηγηθεί με ασφάλεια μέσα στο άγνωστο πε-

ριβάλλον, να αναζητήσει και να εντοπίσει ανθρώπους στη γύρω περιοχή με το ενσωματωμένο

σύστημα gimbal, να εστιάσει και να λάβει μετρήσεις απόστασης από τον αναγνωρισμένο

στόχο και να τον αναφέρει στο καθολικό σύστημα συντεταγμένων. Στη συνέχεια, το UAV

εντοπίζει τον προσδιορισμένο στόχο στον παραγόμενο χάρτη της άγνωστης περιοχής, τον

μοιράζεται με την διασωστική ομάδα και προχωρά στην εξερεύνηση της μη-χαρτογραφημένης

περιοχής για να εντοπίσει άλλα άτομα που βρίσκονται σε κίνδυνο. Σε όλη τη διάρκεια της

εργασίας, κάθε ανεπτυγμένη αυτόνομη συμπεριφορά του UAV αξιολογήθηκε διεξοδικά για

να επιδείξει πειραματικά αποτελέσματα σε διάφορα προσαρμοσμένα περιβάλλοντα στο πε-

ριβάλλον προσομοίωσης ρομπότ Gazebo. Το προτεινόμενο σύστημα έχει αναπτυχθεί ως

πακέτο Robot Operating System (ROS) και μπορεί να εφαρμοστεί τόσο σε προσομοιωμένα

όσο και σε πραγματικά συστήματα, εφόσον πληρούν τις ελάχιστες προτεινόμενες απαιτήσεις

λογισμικού και αισθητηρίων.

Dimitrios Chatziparaschis viii November 2020

Acknowledgements

First of all, I am deeply and cordially thankful to my two research supervisors

and professors that I had in both my undergraduate and graduate years, Michail G.

Lagoudakis and Panagiotis Partsinevelos. Their abundant support, constant guidance,

and unbounded trust even in my early steps in their laboratories, made me discover and

focus on what I really like and be truly prepared for my future steps.

I strongly believe that their mentality and the common experiences that we had are

the main reasons that I love what I do today, and I cannot really imagine myself if I

would not have met them.

I would like to express my deep gratidute to the Pancretan Endowment Fund, which

provided me the financial support to fullfil my graduate studies and research at the

Technical University of Crete.

I am also grateful for being part of the Senselab and Kouretes research teams. I am

grateful for being part in all these collaborative experiences, in each competition that

we participated and every presentation that we performed, in all of these places here

in Greece and abroad. I am grateful for every person that I have met and for all the

cordially friends that I have made throughout my years in these teams.

I would like to thank all my friends, and especially Angelos Antonopoulos, Stelios

Manoudakis, Dimitris Trigkakis, Manos Stefanakis, Ilias Tsichlis and George Vougioukas

which were always by my side throughout this memorable trip.

Finally, and above all, I am deeply greatful to my mother Alexia, my father Antonis,

and my uncle Kostis, for their abundant love and support since I remember me.

Dimitrios Chatziparaschis x November 2020

Contents

1 Introduction 1

1.1 Thesis Contribution . 2

1.2 Thesis Outline . 4

2 Background 7

2.1 Robot Operating System (ROS) . 7

2.2 Gazebo Simulator . 8

2.3 Sensors . 9

2.3.1 Camera Sensor . 9

2.3.2 Distance Measurement Sensor . 11

2.3.3 Global Navigation Satellite System Receiver 12

2.4 Machine Learning . 14

2.4.1 Semantic Segmentation Metrics 14

2.4.2 Batch Normalization . 16

2.5 Reinforcement Learning . 17

2.5.1 Deep Reinforcement Learning . 19

3 Problem Statement 23

3.1 Autonomy in Search-and-Rescue Robots 23

3.2 Related Work . 24

4 Our Approach 27

4.1 Simulated Robot Model and Sensors . 27

4.1.1 Onboard Coordinate Systems and Spatial Transformations 27

4.1.2 Simulated UAV Model and the Onboard Sensor Units 29

4.1.3 Simulated 3D Gimbal Frame and the Embedded Sensors Units . . 32

Dimitrios Chatziparaschis xi November 2020

CONTENTS

4.2 Autonomous Navigation and Obstacle Avoidance 37

4.2.1 UAV Teleoperation and Action Server 38

4.2.2 UAV Control and OpenAI Gym Environment 43

4.2.3 Creating the Autonomous Navigation Behavior 46

4.3 Autonomous Target Detection and Gimbal Aiming 49

4.3.1 Target Recognition through Optical Data 49

4.3.2 Target Recognition through Thermography Data 59

4.3.3 Fusion of Optical and Thermal-Positive Areas 60

4.3.4 Gimbal Scanning Behavior and Aiming 61

4.4 Search-and-Rescue UAV Behavior . 63

4.4.1 2D Simultaneous Localisation and Mapping 64

4.4.2 Target Identification and Spatial Correlation 65

4.4.3 Target Prioritization and Gimbal Engagement 72

4.4.4 Target Global Positioning . 75

4.4.5 Search-and-Rescue Map and Visualization of Positioned Targets . 82

4.4.6 Occupied Area Coverage and Unexplored Area Investigation . . . 82

5 Results 89

5.1 Autonomous Navigation and Experiments 89

5.1.1 Training and Evaluation of the Navigational Behavior 89

5.1.2 Application of the Trained Models in the Gazebo and Results . . 94

5.2 Autonomous Human Detection and Experiments 96

5.2.1 Training on COCO Dataset and Detection Performance 96

5.2.2 Training on Gazebo Dataset and Results 109

5.3 Navigation and Reconnaissance Experiments in Unknown Gazebo Worlds 115

6 Conclusion 125

6.1 Conclusion . 125

6.2 Future Work . 126

6.2.1 Evaluation in Real-World Scenarios 126

6.2.2 Multi-Agent Collaboration . 126

References 133

Dimitrios Chatziparaschis xii November 2020

List of Figures

2.1 The Gazebo environment. 8

2.2 The pinhole camera model. 10

2.3 Thermographic images that depicts the temperature information of the

viewing environment. The selected colormap is the “jet”, which has been

used to as a pseudocolor to represent the temperature values. Image cour-

tesy of Angelos Antonopoulos and the SenseLab. 11

2.4 A snapshot of the simulated UAV system in the Gazebo world. The blue

perpendicular line represents the z-axis of the world’s origin point. 13

4.1 The UAV’s onboard coordinate systems sketch. 28

4.2 The DJI M100 quadcopter inside the Gazebo world. 29

4.3 The simulation world and UAV coordinate systems, with their spatial

transformation relations, as appeared in RViZ visualization tool. 30

4.4 The DJI M100 quadcopter inside the Gazebo world. 32

4.5 Gimbal System embedded frames relations as appeared in RViZ tool. De-

spite the illustration of the gimbal motor frames, a selection of embedded

sensor frames is also included. 33

4.6 A chessboard snapshot using the color camera. 35

4.7 A chessboard snapshot using the thermography camera. 35

4.8 Third-person view of UAV flight for the cameras calibration procedure. . 35

4.9 Thermography raw data. 36

4.10 Thermal objects placed in the Gazebo world. 36

4.11 Coordinate systems’ transformation and relation tree. 38

4.12 The geometry msgs :: Twist ROS message variable fields. 39

4.13 The hector uav msgs/PoseActionGoal ROS message variable fields. . . . 40

Dimitrios Chatziparaschis xiii November 2020

LIST OF FIGURES

4.14 GeoGebra tool script for extracting UAV poses .csv files given a target

position. 42

4.15 The simulated UAV and the maximum range distances from its onboard

LiDAR. 43

4.16 Examples of polygon maps. 44

4.17 Autogenerated polygon maps, with various spatial properties (length, nar-

rowness, width). 45

4.18 Drawing a custom polygon map of 25 edge points. 45

4.19 Autogenerated 3D maps for the GazeboSim under various specifications,

in terms of length (size) and narrowness levels. 46

4.20 RGB images with their standardized depictions. 51

4.21 The Network Architecture. The network takes the color camera’s raw data

as an input, and through feature extraction and the deconvolution procedure

retrieves a heatmap array that contains the trained semantic map. 52

4.22 Human models in Gazebo world. 55

4.23 Gazebo environment and the corresponding coordinate system relations. . 56

4.24 Moments during the dataset creation. The images of the right column,

depict the positive areas of the current captures. 57

4.25 The captured RGB image and the auto-generated annotation image. . . . 58

4.26 Distant image with its corresponding label image. 58

4.27 Thermal-Target detection. 59

4.28 The convex-hull procedure applied on target-positive areas. a) Input im-

age. b) The probability map of the located targets. c) Binary represen-

tation of the detection, after adaptive thresholding. d) Convex hull post

processed detections. 61

4.29 Gimbal-unit engage on located target, during simulated UAV’s flight. . . 63

4.30 Gimbal aiming on distant target, based on optical frame center point. . . 64

4.31 Moments of SLAM procedure during the UAV flight in unknown Gazebo

environment. 66

4.32 Map initializations according to the corresponding UAV global pose and

in respect of the {world} frame. 67

4.33 The registered target description fields. 69

Dimitrios Chatziparaschis xiv November 2020

LIST OF FIGURES

4.34 Snapshots during the UAV targets’ positioning procedure. Each time a

target is globally positioned, its sphere ROI is projected on the image

plane to prohibit the area scanning. 71

4.35 Unregistered targets prioritization scenario. 73

4.36 Target regions along with their generated ROIs. 73

4.37 Target areas detection during abrupt UAV movements. The green cross

markers indicate the previous center point positions of the targets’ detec-

tion ROIs. 74

4.38 Gimbal engagement on yellow target 97. The gimbal aiming and engaging

behavior remains unaffected even with a close UAV flight above from an

area that is crowded with available and unlocalized targets. 75

4.39 Trilateration method on t point positioning. Given the three sphere centers ci with

their radius lengths ri, we can approximate their intersection point t, in the 3D space.

The sphere centers represent UAV system positions in 3D space and the radius lengths

are the corresponding estimated ranges from the target marker. 77

4.40 Illustration of the first three ranging measurements, in the world area. . . 80

4.41 The addition of the fourth ranging measurement. 81

4.42 Voxelized-segmented environment area. 81

4.43 Targets localization by the UAV and their illustration in the rescuing map. The

green markers depict the approximated positions of mapped targets. As the

targets have been positioned, they are viewable within the image frame of the

UAV’s cameras. 83

4.44 Unknown areas extraction. The left image illustrates the current map boundaries (ob-

stacles) and the right image illustrates grid cells that need to be classified. The middle

image show the fusion of the current map status along with the detected maps areas

that need further exploration. 84

4.45 Snapshots during the UAV mapping procedure. The blue areas indicate

map cells that can be furtherly investigated. 85

4.46 The ROS graph of the package. Every ROS node is illustrated with an

oval shape and each ROS topic with a rectangle. The arrow lines show the

topic publications and subscriptions of each node and the names of the

group rectangles represent the topic namespaces. 86

Dimitrios Chatziparaschis xv November 2020

LIST OF FIGURES

5.1 Training procedure of the OpenAI UAV agent, with 128-sized dense-layered

critic and actor networks, Mean Squared Error loss function, and map up-

date rate of 30. 90

5.2 Training on Mean Squared Error and Mean Absolute Error loss function

models, for 8, 16, 32, and 64 dense layer dimensions. 91

5.3 The episode rewards for the different in size dense layers of the actor and critic

neural networks. 91

5.4 The MAE loss value for the different in size dense layers of the actor and

critic neural networks. 92

5.5 Agent training under different map maximum widths. 92

5.6 Moments of an OpenAI Gym experiment UAV movement in a randomly

generated Gazebo world. 94

5.7 Moments of autonomous UAV movement in a randomly generated Gazebo

world. The center image illustrates the current map and UAV position

belief, as appeared in RvIZ tool. The aqua line depicts the UAV trajectory

within the map. 95

5.8 Loss function values during training and testing procedures for COCO dataset

(25 epochs). In each figure, the fluctuating lines depict the loss values during

the training process and the smooth lines during the testing. Figures (a) : MSE,

(b) : MSE + DL, (c) : IoU, (d) : BCE , (e) : Fβ(β = 2), (f) : Fβ(β = 0.5),

(g) Tversky(α = 0.7, β = 0.3), (h) : Tversky(α = 0.3, β = 0.7), (i) : DL,

(j) : BCE + DL, (k) : BCE + Tversky(α = 0.7, β = 0.3) and (l) : BCE +

Tversky(α = 0.3, β = 0.7). 97

5.9 Both Tversky Loss model performances, during training and testing pro-

cedures. 98

5.10 Tversky Loss models with the Dice loss trained model (middle line graph). 99

5.11 Fβ loss models performances, during training and testing procedures. . . 100

5.12 Tversky and Fβ loss models performance similarity. 100

5.13 MSE loss values, for Dice Loss and IoU trained models. 101

5.14 Trained model with a combination of BCE and Dice loss functions. The

pink line illustrates the testing scores of the combined model. 101

5.15 Trained model with a combination of BCE and Tversky(α = 0.3, β = 0.7)

loss functions. The brown line illustrates the testing scores of the fused

model. 102

Dimitrios Chatziparaschis xvi November 2020

LIST OF FIGURES

5.16 Trained model with a combination of BCE and Tversky(α = 0.7, β = 0.3)

loss functions. The green line illustrates the testing scores of the combined

model. 102

5.17 Trained model with a combination of MSE and Dice loss functions. The

orange line illustrates the testing scores of the combined model. 103

5.18 Single person detection. The predicted areas (a) and the comparison with the segmen-

tation (groundtruth) mask (b). The comparison images (b) depict with green color the

TP , with black color the TN , with red color the FN and with gray color the FP .

Figures (1) : BCE , (2) : DL, (3) : IoU , (4) : BCE + Tversky(α = 0.7, β = 0.3),

(5) : BCE + Tversky(α = 0.3, β = 0.7), (6) : BCE + DL, (7) : Fβ(β = 0.5), (8) :

Fβ(β = 2), (9) : MSE + DL, (10) Tversky(α = 0.7, β = 0.3), (11) : Tversky(α = 0.3,

β = 0.7) and (12) : MSE. 105

5.19 Human detection in group of people. The predicted areas (a) and the comparison with

the segmentation (groundtruth) mask (b). The comparison images (b) depict with green

color the TP , with black color the TN , with red color the FN and with gray color the

FP . Figures (1) : BCE , (2) : DL, (3) : IoU , (4) : BCE + Tversky(α = 0.7, β = 0.3),

(5) : BCE + Tversky(α = 0.3, β = 0.7), (6) : BCE + DL, (7) : Fβ(β = 0.5), (8) :

Fβ(β = 2), (9) : MSE + DL, (10) Tversky(α = 0.7, β = 0.3), (11) : Tversky(α = 0.3,

β = 0.7) and (12) : MSE. 106

5.20 Human detection in a tennis scene. The predicted areas (a) and the comparison with the

segmentation (groundtruth) mask (b). The comparison images (b) depict with green

color the TP , with black color the TN , with red color the FN and with gray color the

FP . Figures (1) : BCE , (2) : DL, (3) : IoU , (4) : BCE + Tversky(α = 0.7, β = 0.3),

(5) : BCE + Tversky(α = 0.3, β = 0.7), (6) : BCE + DL, (7) : Fβ(β = 0.5), (8) :

Fβ(β = 2), (9) : MSE + DL, (10) Tversky(α = 0.7, β = 0.3), (11) : Tversky(α = 0.3,

β = 0.7) and (12) : MSE. 107

5.21 Human detection experiments under various scene contexts and conditions. . 108

5.22 Loss function values during training and testing procedures for Gazebo Dataset

(25 epochs). In each figure, the fluctuating lines depict the loss values during

the training process and the smooth lines during the testing. Figures (a) : MSE,

(b) : MSE + DL, (c) : IoU, (d) : BCE , (e) : Fβ(β = 2), (f) : Fβ(β = 0.5),

(g) Tversky(α = 0.7, β = 0.3), (h) : Tversky(α = 0.3, β = 0.7), (i) : DL,

(j) : BCE + DL, (k) : BCE + Tversky(α = 0.7, β = 0.3) and (l) : BCE +

Tversky(α = 0.3, β = 0.7). 111

Dimitrios Chatziparaschis xvii November 2020

LIST OF FIGURES

5.23 Single person detection in the Gazebo world. The predicted areas (a) and the com-

parison with the segmentation (groundtruth) mask (b). The comparison images (b)

depict with green color the TP , with black color the TN , with red color the FN and

with gray color the FP . Figures (1) : BCE , (2) : DL, (3) : IoU , (4) : BCE +

Tversky(α = 0.7, β = 0.3), (5) : BCE + Tversky(α = 0.3, β = 0.7), (6) : BCE + DL,

(7) : Fβ(β = 0.5), (8) : Fβ(β = 2), (9) : MSE + DL, (10) Tversky(α = 0.7, β = 0.3),

(11) : Tversky(α = 0.3, β = 0.7) and (12) : MSE. 112

5.24 Human detection based on the simulated UAV’s optical data. 113

5.25 Multi-target detection and prioritization, in obstructed area. 114

5.26 Multi-target detection and prioritization, in open area. 114

5.27 Evaluating the UAV’s navigation performance in a 25-meter-long area. . 115

5.28 Evaluating the UAV’s navigation performance in a 32-meter-long area with

included obstacles. 116

5.29 Evaluating the UAV’s navigation performance in a 52-meter-long area,

with the minimum narrowness value of 2 meters, and maximum wideness

value of 10 meters. 116

5.30 A Gazebo environment based on a random maze object enriched with

various objects, and reconnaissance targets. 117

5.31 The detection of the first two targets. 117

5.32 Camera captures during the positioning of the first viewed target. 118

5.33 Camera captures during the positioning of the second viewed target. . . . 119

5.34 Rescuing map depiction in RViZ, during the exploration and positioning

procedures of the first two targets. 120

5.35 The detection of the third and fourth target. 121

5.36 The mapping procedure of the third and fourth targets. 121

5.37 Human detection moments during the UAV’s autonomous operation. The

detection frames, along with predicted human regions and their final seg-

mented forms, indicate the abitily of the UAV to locate humans within

the Gazebo environment. 123

5.38 The discovery of the fifth human object. 124

5.39 Human detection moments during the UAV’s autonomous operation and

the localization of the fifth target. 124

Dimitrios Chatziparaschis xviii November 2020

List of Algorithms

1 Deep Q-learning with Experience Replay 21

2 UAV Behavior on Target Identification, Prioritization and Enganging . . . 68

3 Measurements Criteria Node . 87

Dimitrios Chatziparaschis xix November 2020

LIST OF ALGORITHMS

Dimitrios Chatziparaschis xx November 2020

Chapter 1

Introduction

Over recent years, due to the emerging advance of robotics field, there is an increasing

spectrum of applications that include robot usage, either for research purposes or for

common everyday use-cases. A notable percentage of the latter category refers on Search-

and-Rescue (SAR) scenarios, on which first-responder teams have to act rapidly and

efficiently in an emergency occurence to provide assistance to people and animals that

are in need.

Specifically, these emergency situations may be occurred in distant areas which may

be destructed, inaccessible, and even hazardous for the first-responders, to conduct a safe

operation. Also, these places can be characterized as dynamically changing, as they can

change spatially while as the incident is still active (building collapses, extreme natural

phenomena, etc.), which raises the complexity of the rescuers’ work, and therefore in-

creases their reaction time. For this reason, some rescuing teams have recruited robotic

systems to facilitate their work, by providing a broader view of the current situation

and also by helping them with their rescuing actions. In the meantime, establishing

a teleoperation station to manually control these robots can be inefficient, and some-

times infeasible, due to the existing circumstances. Henceforth, an essential trait for the

rescuing robots would be their ability to act semi-autonomously, or even better totally

autonomously, to perform their tasks alone and act like a real independent rescuer.

The main problem which these robots have to face is the environment uncertainty. To

deal with this matter, these robots are equipped with a plethora of sensors that enable

them to obtain a belief about the spatial structure of their surrounding world. In many

situations, since there is no prior or adequate map information of the current area, the

Dimitrios Chatziparaschis 1 November 2020

1. INTRODUCTION

robots have to create the map and continuously localize themselves in it, to explore and

operate safely. Additionally, these robots should be able to decide about their upcoming

actions (either in navigation or rescuing) autonomously, as there would be limited or no

human intervention in their decisions. In this part, even though there are remarkable

works that propose probabilistic approaches to decision making and acting, emerging

applications utilize machine learning techniques to create more general and adaptive

behaviors of such robots, by training them in simulated and real scenarios, and thus

enabling them to deal with new and unforeseen environmental conditions.

At the same time, an essential characteristic of rescuing robots should be their ability

to locate key objects in the unknown area, such as individuals that need help, throughout

their operation. Indubitably, this procedure should be precise and trustworthy, since

minor mistakes during the rescue might produce inaccurate rescuing intel and therefore

may imply the delay of the first-responders’ work. For this reason, since present robots

have the ability to carry multiple onboard sensors and support sufficient computational

resources for online processing, it is vital to utilize their online processing capabilities

and combine information taken from different sensors, to enhance their detection ability,

cross-validate their findings, and finally obtain an accurate belief about their surrounding

emergency situation.

Overall, as the operation of a robot can be quite demanding, in such human-unfriendly

environments, more general and robust approaches for its autonomy should be followed

to ensure its efficient navigation, target detection, and decision making characteristics.

Hence, the autonomous robotic rescuer should seize every available bit of captured in-

formation and onboard computational resource, in order to maximize its performance in

the unknown field, and thus contribute actively to the mission, as a real rescuer would

do.

1.1 Thesis Contribution

This thesis proposes an Unmanned Aerial Vehicle (UAV) system solution, which can

autonomously navigate and locate individuals, for reconnaissance purposes in Search-

and-Rescue (SAR) scenarios, in totally unknown environments. This system is designed

and tested in the Gazebo simulator, and its behavior has been developed as a ROS

software package, that allows its installation on any other UAV system (simulated or

Dimitrios Chatziparaschis 2 November 2020

1.1 Thesis Contribution

not), as soon as it meets the necessary structure and sensory requirements. The goal

of this UAV is to navigate safely and autonomously in the unknown area, construct the

area map, detect and localize every person or object of interest in the generated map,

and proceed with the search of the unexplored areas. The UAV forms a map of the

rescuing environment with the pinpointed interest areas and is able to transmit it via the

established wireless network to the first-responders in order to plan their operation.

Specifically, the UAV system is equipped with a three-dimensional system, which inte-

grates a dual-camera setup (optical and thermal unit) and a one-dimensional rangefinder.

This gimbal system has been developed to act independently from the UAV body move-

ment, since it can move in all three directions, and its main role is to search and localize

object of interest in the searching area during the UAV navigation. Particularly, by

obtaining distance measurements from a detected target, it performs a multilateration

approach with applied custom spatial criteria and concludes with high accuracy target

positionings.

In terms of target recognition, the UAV utilizes the image data from both the ther-

mal and the optical camera. On the side of the thermography camera, it excludes and

prioritizes image regions that contain high-temperature values and resemble human be-

ings. On the side of the optical camera, a custom neural network has been implemented

and trained on the image datasets that contain humans. This network has been initially

tested on real-world datasets to test its performance in real SAR circumstances, and

afterwards on generated Gazebo imagery data, and was successfully integrated into the

proposed UAV solution. For the evaluation and improvement of the detector, a variety

of loss functions and metrics have been implemented, combined, and tested for training,

to conclude with the most appropriate detector setup for this problem. The architecture

of this network has been suitably selected to be able to run online and onboard during

either simulated or real UAV flight.

At the same time, a LiDAR system is rigidly mounted on the UAV body, by which

it performs simultaneously localization and mapping procedures. Since the UAV has

to operate autonomously, as there is no human intervention, it learned flight behaviors

through a Deep Reinforcement Learning (DRL) approach, by using the Deep Determinis-

tic Policy Gradient (DDPG) algorithm to learn the Q-function and the optimal policies.

Specifically, the UAV agent utilizes only 6 distance measurements captured by its LiDAR

sensor in specific directions to decide for the upcoming move. To accelerate the learning

Dimitrios Chatziparaschis 3 November 2020

1. INTRODUCTION

procedure, we have developed a dedicated OpenAI Gym environment that simulates the

Gazebo world and UAV control specifications and can be used with or without User In-

terface (UI). Hence, we could perform numerous training and testing experiments, and

obtain the ideal UAV behavior without the need to perform the training on the Gazebo

simulator and be subject to its system requirements. Thenceforth, the pretrained models

are transferred on the UAV system in the Gazebo simulator, and thus the UAV could

maneuver safely and navigate by using its LiDAR measurements, in the unknown world.

Overall, this work demonstrates the use of Machine Learning (ML) in both vision and

control of a simulated UAV model, to act autonomously in SAR scenarios. The selection

of each sensor and the development of each detector system has been made concerning

recent UAV computational onboard capabilities and optimal cost efficiency. The complete

UAV solution has been tested and evaluated in a variety of randomly-generated Gazebo

SAR environments and modified appropriately to complete successfully its reconnaissance

missions. This work will be made available1 as a complete ROS package and can be

executed on both simulated and real UAVs, by applying proper adjustments, as long as

they satisfy the required technical specifications.

1.2 Thesis Outline

In Chapter 2 we present all the background information needed for this thesis. We give

an overview of the used framework for development, the simulator environment, and

the used sensory specifications, which will be used throughout this study. Also, a brief

description will be made around the fundamentals of recent Machine Learning (ML)

approaches in both the robotic perception and the robotic control spectrum. In Chapter

3 we state the issues around the autonomous reconnaissance approach, from the aspect of

a rescuing UAV robot, and also mention notable studies that have been made to address

these problems. In Chapter 4 we describe in detail the implementation steps of the

proposed solution, starting with the robot setup and required specifications and ending

with the overall UAV behavior toward the human positioning and exploration problems.

In Chapter 5 we present the results and remarks from the creation of the autonomous

rescuing UAV. Specifically, we present the training and testing results of both UAV’s

1https://github.com/jimcha21

Dimitrios Chatziparaschis 4 November 2020

https://github.com/jimcha21

1.2 Thesis Outline

human detection and navigation procedures, by noting important characteristics that

aim to enhance the UAV’s autonomous operation, and we perform rescuing experiments

within the Gazebo simulator. This work is concluded in Chapter 6, in which future plans

for extending our approach are presented.

Dimitrios Chatziparaschis 5 November 2020

1. INTRODUCTION

Dimitrios Chatziparaschis 6 November 2020

Chapter 2

Background

In this section, we present background information that is essential to support the ap-

proach of this study. Specifically, we describe fundamental information about the used

framework for development, the robotic simulator tool, and the proposed UAV model

that will be used in this scenario. Also, a brief description will be made of the sensors’

functionality and noise models, which will be required to resolve the Search-and-Rescue

problem. In the end, concise details will be given about the Machine Learning field and

recent applications, which are necessary to support our approach in both autonomous

robotic perception and control.

2.1 Robot Operating System (ROS)

The Robot Operating System [1] is a framework that was developed by the Willow Garage

robotics research lab, to introduce a common basis for robotic application development

and maintenance. Specifically, it is a middleware that runs on an established network

master device, on which, one or more robotic devices may be connected. Due to its

distributed architecture, given a selected central node (computer system or robot system),

all sensory or actuator messages can be monitored and accessed in real time, as they

are published asynchronously from each robot system. Thus, this framework allows

the implementation of high-end robotic applications that can run real-time on a robot

depending on their onboard sensor units, despite their software development kit setup.

Dimitrios Chatziparaschis 7 November 2020

2. BACKGROUND

2.2 Gazebo Simulator

Figure 2.1: The Gazebo environment.

The Gazebo [2] simulator is an open source robot simulation tool, that is broadly

used for robotic application development and testing scenarios. Many companies and

associations, like NASA1 and RoboCup Rescue2,3, use this simulator in order to develop

applications for specific simulated robots and then test it on real world conditions. It

integrates a world physics engine and dynamics simulation tools, for realistic simulated

scenarios. Figure 2.1 illustates a snapshot of a simulated world created in the Gazebo.

This tool also includes many simulated models, of real and familiar robots, and they can

be used and manipulated in the simulation environment. These robots may have sensor

units (like cameras, distance sensors, and etc.) that are also usable and adjustable to work

in this simulator software. Every simulated sensor within the Gazebo environment can be

characterized by its own noise model, which resembles the captured noise in measurements

as in real-world scenarios. The ROS framework is fully compatible with the GazeboSim,

as each spawned robot has a developed ROS driver (ROS-Software Development Kit

(SDK) package), which enables its control within the environment and provides access on

1https://www.nasa.gov/feature/space-robotics-challenge
2https://rescuesim.robocup.org/news/2018-robocup-rescue-virtual-robot.

-simulation-competition/
3http://gazebosim.org/ariac

Dimitrios Chatziparaschis 8 November 2020

https://www.nasa.gov/feature/space-robotics-challenge
https://rescuesim.robocup.org/news/2018-robocup-rescue-virtual-robot.-simulation-competition/
https://rescuesim.robocup.org/news/2018-robocup-rescue-virtual-robot.-simulation-competition/
http://gazebosim.org/ariac

2.3 Sensors

the information captured by its onboard simulated sensors. Thus, this makes it ideal for

initial application development and testing, and then, due to ROS framework scalability

and adjustability features, it can be installed on a real UAV system and be tunned and

evaluated in real-world scenarios.

2.3 Sensors

Every robot needs a variety of sensors in order to adapt in the operation environment,

deal with spatial uncertainty, and finally fulfil the requested objectives.

2.3.1 Camera Sensor

One of the foremost used sensors nowadays in robotic systems is the camera sensors.

Due to the emerging advancement of the Machine Vision applications, these sensors are

employed for various purposes, such as object identification, scene’s depth estimation,

visual localization and mapping, and more. In specific, the camera modules contain an

image sensor, namely the imager, which is sensitive to light or electromagnetic radiation

waves exposure, and through the captured energy it creates the image.

Generally, a conventional 2D camera model is based on the pinhole camera’s func-

tionality, which describes a box with a single and tiny hole, namely the aperture, by

which only the correctly aligned light-rays pass through and “project” an inverted image

on the opposite surface of the box, namely the projective plane. As an extension to this

model, Figure 2.2 illustrates an object been projected upright on the camera’s image

plane, which plane represents the slice of all those light rays that end up passing through

the pinhole’s aperture.

In this way, every three-dimensional point P can be projected on the focal plane on

its corresponding two-dimensional coordinates Pc(x, y). To achieve this, we define the

camera’s initrincs matrix K, as follows,

K =

fx s cx
0 fy cy
0 0 1

 (2.1)

Dimitrios Chatziparaschis 9 November 2020

2. BACKGROUND

Z

Y

X

y
x

Pc(x, y)

P (X, Y, Z)

im
ag

e
pl

an
e

f

Center of projection
O Optical axis

Principal point (cx, cy)

Figure 2.2: The pinhole camera model.

In specific, the fx and fy parameters represent the focal length values of each image

plane axis, the s is the skew parameter and cx and cy the principal point coordinates,

which indicate the intersection point of projection center and image plane.

Also, as cameras use lenses to focus the incoming light, their images are disposed of

distortion effects. Hence, to suppress these consequences we define the distortion matrix

D, which contains the distortion coefficients that can transform and undistort the image

to its original acquisition. Specifically,

D =
[
k1, k2, p1, p2, k3, k4, k5, k6

]
(2.2)

where the ki’s and the pi’s are the radial and tangential distortion coefficients respectively.

Both K and D matrices can be approximated by a calibration procedure of a monocular

camera, by using a measured calibration pattern board, like a chessboard grid.

Thermography Camera Sensor

As an extension of the color cameras, there are camera modules that capture information

from the wavelengths of infrared radiation. In contrast to the visible light, the infrared

wavelengths span from 0.75µm to 15µm (the long-wave infrared) and reach until 1000µm

which is defined as the far-infrared wave region. In specific, the margin from 1µm to 14µm

can be used for thermal measurements, and this is where the thermographic cameras are

Dimitrios Chatziparaschis 10 November 2020

2.3 Sensors

sensitive. In this way, the camera sensor captures the infrared energy, which is implied

to the temperature value and forms a thermal image in which every pixel represents the

captured temperature. Every thermography camera can be characterized by its camera

matrix K, like a color camera, and also is prone to distortion effects depending on its

used lenses. Figures in 2.3 illustrate thermography images that are captured in real-world

environments.

Figure 2.3: Thermographic images that depicts the temperature information of the view-

ing environment. The selected colormap is the “jet”, which has been used to as a pseu-

docolor to represent the temperature values. Image courtesy of Angelos Antonopoulos

and the SenseLab.

As it is apparent, the usage of such cameras can be ideal for human and generally living

creature detection, as also can be used for other objects that can be distinguished by their

particular temperature information. This fact can be crucial for a Search-and-Rescue

operating robot, which performs in low-lighting or cold environments, as it directly locates

any thermal-positive object in the viewing scene and thus proceeds with its investigation.

2.3.2 Distance Measurement Sensor

In many robotic applications, from autonomous cars to surveying UAVs, laser rangefind-

ers are used to obtain a precise spatial belief of the current environment. These sensors

are based on the method called “LiDAR”, namely light detection and ranging, by which

the system emits a pulsed laser light on single or multiple predefined directions and ex-

tracts the distance of the reflected surface by utilizing physical principles of operation,

like the intensity of reflection, triangulation and time of flight. There is a variety of

Dimitrios Chatziparaschis 11 November 2020

2. BACKGROUND

laser rangefinder sensors for selection, depending on the mapping scenario conditions,

the desired measurement accuracy level, and the cost profile.

In particular, these sensors can be distinguished into three categories depending on

their dimensional perception, namely the 1D, 2D, and 3D LiDARs. As each category

indicate the physicality of the captured measurements, these sensors can create pointcloud

data that are described with respect to the LiDAR’s receptor sensor module. In this

way, the robotic system can be instantly aware of the spatial condition of its operating

environment, and so it can plan its actions accordingly. It is worth noting, these sensors

are also prone to measuring noise, as they can be occurred due to the existing environment

circumstances (dusty air, humidity, etc.) or by possible sensor malfunctions.

2.3.3 Global Navigation Satellite System Receiver

The Global Navigation Satellite System (GNSS) is defined as the procedure of utilizing

time signals and positioning data from satellites, to determine the global position of a

GNSS receiver. These positioning receivers are broadly used in robotic applications, when

it is essential to know the exact position of the robots in the global coordinate system, to

perform more accurate navigation and maneuvring corrections (along with information

from onboard Inertial Navigation Systems) and also to utilize to perform georeferenced

tasks.

One of the most common navigational systems is the World Geodetic System 1984

(WGS84), which is the reference coordinate system of Global Positioning System (GPS)

sattelite navigation and is an earth-fixed, global ellipsoid model. The ROS middleware

and the Gazebo simulator uses the WGS84 elipsoid as the standard to define the longitide

and latitude coordinates.

Specifically, the Gazebo simulator initiates a simulated form of the WGS84 coordinate

system to map the simulation world. In particular, by initializing a global coordinate

system in the starting point of its world, it geo-references every object in respect with

this coordinate system, as there is constant access on their global position (groundtruth)

by the simulation system. Figure 2.4 shows the Gazebo world coordinate system origin,

as is projected by a blue perpendicular line that represents the z-axis of the world’s origin

point.

Dimitrios Chatziparaschis 12 November 2020

2.3 Sensors

Figure 2.4: A snapshot of the simulated UAV system in the Gazebo world. The blue

perpendicular line represents the z-axis of the world’s origin point.

In our study, in order to map and utilize the captured positioning data, we to trans-

form the captured GNSS data on the global Cartesian coordinate system. For this reason,

we use the earth-centered earth-fixed geocentric coordinate system (ECEF), which ex-

presses each point according to its position relative to the Earth’s center of mass, with

geocentric x, y and z coordinates. So, given the latitude (φ), longitude (λ) and height

(h) values, the transformation into ECEF coordinates is performed by,

x =
(
N(φ) + h

)
· cosφ · cosλ (2.3)

y =
(
N(φ) + h

)
· cosφ · sinλ (2.4)

z =
(b2

a2
N(φ) + h

)
· sinφ (2.5)

where,

N(φ) =
a2√

a2 cos2 φ+ b2 sin2 φ
(2.6)

and a, b parameters be the equatorial radius and the polar radius of the Earth, re-

spectively. In this way, every global position can be referenced in the Cartesian ECEF

Dimitrios Chatziparaschis 13 November 2020

2. BACKGROUND

geographic coordinate system, and thus can be described relatively to the Gazebo’s en-

vironment coordinate system.

2.4 Machine Learning

2.4.1 Semantic Segmentation Metrics

The Semantic Segmentation in Machine learning fields, defines the procedure of extracting

image regions that contain similar informatio/context. In this way, the image is “seg-

mented” into separate parts that depict different objects, which can reveal the contextual

meaning of the current captured scene.

First of all, in binary classification over the input image X, we assume that the

network output Y will be a binary annotated image with the same size as X, which

indicates the possible areas of the trained object’s depiction. In specific, the image Y

forms a probability distribution of the class instance appearance on the image frame, and

thus can be represented as a heatmap.

During the learning procedure, the network tries to approximate on the groundtruth

image Y by making the estimation of Ŷ image. As we assume that images Y and Ŷ are

formed by pixel units yi and ŷi for i ∈ [1,M], which indicate the classification of pixel

value xi in X input image, we can define parameters that can evaluate the precision of

the estimation Ŷ in respect of groundtruth annotated image Y . Specifically, True and

False Positives (TP and FP), and True and False Negatives (TN and FN) quantities

are essential in semantic segmentation scenarios, as they indicate the amount of correct

and incorrect predictions over the image according to the groundtruth annotated image

Y . Specifically, their definitions are,

True Positives (TP) = Y ∩ Ŷ (2.7)

False Positives (FP) = Y ∪ Ŷ − Y = Y c ∩ Ŷ = Ŷ − TP (2.8)

True Negatives (TN) = Y c ∩ Ŷ c, where Y c = 1 - Y . (2.9)

Dimitrios Chatziparaschis 14 November 2020

2.4 Machine Learning

False Negatives (FN) = Y ∪ Ŷ − Ŷ = Y ∩ Ŷ c = Y − TP (2.10)

Furthermore, we define the confusion matrix C, which is a table that contains the

aforementioned values,

C =

[
TP FP
FN TN

]
(2.11)

Given the definitions in the confusion matrix of Equation 2.11, we proceed with the

definition of metric functions, that are used as the basis to evaluate detector accuracy in

semantic segmentation.

Specifically, the Sensitivity parameter, also known as the Recall parameter and True

Positive Rate (TPR), depicts the number of correct positives values derived by the num-

ber of total positive predicted areas,

Sensitivity (TPR) =
TP

TP + FN
(2.12)

Similarly, to evaluate the ratio of correct negatives compared with the mount of the total

negatives, we define the Specificity parameter, known also as the True Negative Rate

(TNR).

Specificity (TNR) =
TN

TN + FP
(2.13)

Also, the Accuracy metric in semantic segmentation is defined as,

Accuracy =
TP + TN

N
, where N is the number of pixels y. (2.14)

Additionally, it is worth defining the Precision parameter which shows the percentage

of correct positive predictions over the image in respect of the total amount of positive

predictions. This proportion can be calculated as follows,

Precision =
TP

TP + FP
(2.15)

Dimitrios Chatziparaschis 15 November 2020

2. BACKGROUND

Since we have stated the fundamental metric parameters, we will describe essential

semantic segmentation metrics which are used to evaluate the performance of such object

detectors.

Mean Squared Error One of the most common loss and metric functions in machine

learning is the Mean Squared Error (MSE), which is defined as follows,

MSE(Y, Ŷ) =
1

N

N∑
i=1

(yi − ŷi)2. (2.16)

Mean Absolute Error Similarly, with the Mean Squared Error, the Mean Absolute

Error (MAE) is defined as follows,

MAE(Y, Ŷ) =
1

N

N∑
i=1

|yi − ŷi|. (2.17)

Binary Cross Entropy A widely used loss function in binary classification problems,

is the Binary Cross Entropy (BCE) metric, known also as the Log-Loss function, which

is formulated as,

BCE(Y, Ŷ) = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (2.18)

2.4.2 Batch Normalization

In 2015, Ioffe S. et al. [3] presented the Batch Normalization mechanism which is can

mitigate the covariance shift that occures during the training procedure of a convolutional

neural network. This mechanism can be applied on the sub-parts of the network and the

layers, and aids to minimize internal-covariate-shift effect of convolutional layers. In

specific, input distributions in each layer change over iterations during training as the

parameters of the previous layers are updated. So, by applying batch normalizations

on convolutional layer outputs, we normalize the input distributions of every layer to

the standard Gaussian distribution, and so we avoid situations of poor local optimum

Dimitrios Chatziparaschis 16 November 2020

2.5 Reinforcement Learning

during the training. This procedure leads to significant improvements in the speed of the

training

2.5 Reinforcement Learning

Reinforcement Learning (RL) is a part of Machine Learning scientific field, which aims

on learning through action performing and cumulative reward maximization as provided

by the environment. In particular, the learner discovers the optimal policy (strategy) of

its actions to achieve a specific goal, by evaluating the accumulated rewards during its

experimentation, as they are formed by the environment. In the early steps of learning,

a trial-and-error approach is followed as there is no prior guidance to make appropriate

decisions, and afterwards, there may be a balance between further exploration (continu-

ation of random moves) and utilization of prior knowledge to achieve short- or long-term

optimal results.

First, we consider an agent interacting within an environment E which can be in-

spected at any time t by forming an observation ot. Also, agent actions are denoted as at,

and can be taken from pre-defined and known set of K actions, namely the A = (1, ..., K).

Hence, each time t in which an action at is executed, the environment emits the obser-

vation ot as an outcome of this event.

In the meantime, in order to determine the optimal agent’s move in the current en-

vironment, we define the state st as the information used to make the action selection

at time-step t. Specifically, there are two approaches of state definition which are distin-

guished by the current environment’s observability. In one hand, there may be partial

observation of the environment, and so the history of prior observations and actions is

required to describe the current state. Thus, the state s at time-step t is,

st = (o1, a1, ..., ot−1, at−1, ot) (2.19)

On the other hand, in case of fully observed environments there is no need to re-

tain information from previous observations and states, since the current observation is

adequate to decide about the upcoming action.

st = ot (2.20)

Dimitrios Chatziparaschis 17 November 2020

2. BACKGROUND

Henceforth, due to this distinction we can assume all states st (sequences of actions and

observations) can form a finite Markov Decision Process (MDP), in which each state is

represented at time t.

Furthermore, given an action execution, the agent receives a reward value rt according

to the affection of the environment due to this action. The goal of the learner is to

interact with the environment by selecting proper actions in such way to maximize the

future rewards. For this reason, it is considered that the future rewards are discounted

by a factor γ per time-step, and the future discounted return, at time-step t, is formed

as,

Rt =
T∑
i=t

γ(i−t)rt, where γ ∈ [0, 1). (2.21)

Overall, the future reward function is denoted as the accumulation of state rewards from

time t until a terminate state T . Meanwhile, the agent’s behavior is controlled by a

policy π, which forms a probability distribution over the available actions in A, given the

current state S.

π : S → P (A) (2.22)

In order to approximate the optimal agent’s behavior, we define the action-value

function Qπ(s, a), which gives the return of a given strategy π, after being in state s,

and have taken an action a.

Qπ(s, a) = Eπ
[
Rt|st = s, at = a

]
(2.23)

Also, the value function V π(s) evaluates the presence of the agent in state s, and is

defined as,

V π(s) = Eπ
[
Rt|st = s

]
(2.24)

The optimal policy can be approximated through Q∗(s, a), which is defined as the

maximum expectation of the aforementioned return values over all policies π, such as,

Q∗(s, a) = max
π

Qπ(s, a) = max
π

Eπ
[
Rt|st = s, at = a

]
(2.25)

Dimitrios Chatziparaschis 18 November 2020

2.5 Reinforcement Learning

The optimal action-value function, as appeared in Equation 2.25, satisfies the Bellman

optimality equation, by which implies the following recursive relationship,

Q∗(s, a) = Eπ
[
rt + γmax

a′
Q∗(s′, a′)|st = s, at = a

]
(2.26)

The purpose of many RL algorithms is to estimate the Q(s, a) function by using

the Equation 2.26 as an iterative update. For example, the value and policy iteration

approaches utilize the Bellman optimality equation into an update rule, and thus ap-

proximate the optimal V ∗(s) and Q∗(s, a) functions, respectively, after a finite number

of iterations. Nonetheless, in action-value function approximation for every sequence,

it is implied that there is lack of generalisation during learning. For this reason, many

RL approaches utilize a function approximator, of either linear or non-linear format, to

estimate the optimal function. In the latter approaches, the neural network is utilized as

the Q-network.

2.5.1 Deep Reinforcement Learning

Due to the emerging usage of deep learning techniques to extract high-level features,

there was a need to apply such approaches to maximize agents’ behavior performance

in reinforcement learning applications. In 2013, Mnih V. et al. [4] presented a deep

learning model for reinforcement learning based on Q-learning, namely the Deep Q-

Learning (DQN), by showing its outstanding capabilities on seven Atari 2600 computer

games only by using raw pixel information. In particular, this method outperformed in

six out of seven Atari 2600 games in prior RL methods and also achieved better scores

than expert human players in three of them.

Specifically, the DeepMind team proposed the usage of a convolutional neural network

with weights θ as the function approximator Q∗(s, a), instead using a linear formated

estimator, as appeared in many RL approaches. In specific, the Q-network (as a neural

network) is trained by minimizing the loss functions Li(θi) that changes at each iteration

i.

Li(θi) = Es,a∼p(·)
[
(Q∗(s, a; θi−1)−Q(s, a; θi))

2
]

(2.27)

The Q∗(s, a; θi−1) is aqcuired from Equation 2.26 and it resembles the target in iteration

i. The p(s, a) is a probability distribution over the sequences s and actions a, defined as

Dimitrios Chatziparaschis 19 November 2020

2. BACKGROUND

behavior distribution. Thus, by differentiating the loss function in Equation 2.27 with

respect to the weights, the gradient ∇θiLi(θi) is occured, which can be approximated

by optimizing the loss function by stochastic gradient descent. Overall, this approach

is considered as model-free, since it does not estimate the environment E, as it takes

environment samples from the emulator directly. Also, it is characterized as off-policy,

similarly to Q-learning, as we assume that a greedy policy is followed, with probability

1− ε, during the estimation of return value of action-state pairs.

Additionally, a vital feature of DQN approach is the integration of experience replay

technique. Each time-step an experience is gained by the agent, namely the et =

(st, at, rt, st+1), this information is stored in an array D, which holds experiences over

many episodes in to a replay memory. Hence, each time there is an inner iteration of

the DQN approach, Q-learning or minibatch updates are implied on random experiences

which are sampled from the D array. Given that, the agent follows the ε-greedy policy,

by selecting the most greedy action given the current state. Overall, this method offers

greater data efficiency compared with the Q-learning approach, it reduces the variance of

the updates, by breaking the correlations between samples as it performs randomization,

and finally it can avoid local minimum selections as it averages over many of its previous

states and mitigates divergence in parameter approximation. Algorithm 1 presents the

main body of the proposed DQN approach.

The DeepMind team performed preprocess steps to the Atari frames, before building

the main body. These colored frames are initially transformed into 84 × 84 grayscale

images to be sucessfully inserted in the 2D convolutional layers. Also, despite other

works, this network took only the state representation as an input and resulted to the

Q-values for every available action as its output. The main body of the presented neural

network, contained 2 consequetive hidden convolutional layers of 16 and 32 filters, sepa-

rately, and a fully-connected layer in the end, which had a single output for each action.

This approach was evaluated and compared with state-of-the-art implementations, and

presented significant advances among the vast majority of Atari games.

Dimitrios Chatziparaschis 20 November 2020

2.5 Reinforcement Learning

Algorithm 1: Deep Q-learning with Experience Replay

1 Initialize replay memory D to capacity N ;

2 Initialize action-value function Q with random weights;

3 for episode = 1, M do

4 Initialise sequence s1=x1 and preprocessed sequenced φ1=φ(s1);

5 for t = 1, T do

6 With probability ε select a random action at,

7 otherwise select at = maxaQ
∗(φ(st), a; θ);

8 Execute action at in emulator and observe reward rt and image ot+1;

9 Set st+1 = st, at, ot+1 and preprocess φt+1 = φ(st+1);

10 Store transitions (φt, at, rt, φt+1) in D;

11 Sample random minibatch of transitions (φj, aj, rj, φj+1) from D;

12 Set yj =

{
rj for terminal φj+1

rj + γmaxa′ Q(φj+1, a
′; θ) for non-terminal φj+1

13 Perform a gradient descent step on (yj −Q(φj, aj; θ))
2;

14 end

15 end

Dimitrios Chatziparaschis 21 November 2020

2. BACKGROUND

Dimitrios Chatziparaschis 22 November 2020

Chapter 3

Problem Statement

3.1 Autonomy in Search-and-Rescue Robots

Search and Rescue situations can be quite demanding in terms of responders’ operation,

as there may be on hazardous areas, obstructed places, and remote locations, in which

the responding team cannot perform immediate rescuing actions. For this reason, many

responding teams have recruited robotic systems to facilitate the rescuing mission and

ensure fast operation. Nonetheless, in such emergency scenarios, it may be inapplicable

to successfully deploy and teleoperate rescuer robots (either ground or aerial), and thus

there is a need for these systems to be able to fulfill their assigned missions autonomously.

Initially, the rescuing robots are equipped with a plethora of sensors, which make them

“perceive” their surrounding world and plan their future moves. In reconnaissance, such

systems have to search and find individuals that are in need and obtain important optical

facts, that could enhance the rescuers’ approach. For this reason, it is quite important

for a robot system to successfully detect the requested objects, and avoid the inclusion

of false information towards the rescuers. Henceforth, it is vital that the operating robot

can fuse information from more than one onboard sensors, in order to validate its findings,

and thus proceed with their exploration.

In addition, an important fact in such scenarios and environments, is the robot’s

movement availability. Search-and-Rescue scenarios may be occurred in inaccessible ar-

eas, in which there may be no sufficient ways to establish teleoperation with the operation

robot, to monitor and intervene in its actions. As many emergency situations contain

Dimitrios Chatziparaschis 23 November 2020

3. PROBLEM STATEMENT

uncertainty in terms of area structure, because they are continuously changing, the op-

erating robots should be able to quickly adapt to environment variations, and select the

appropriate and safest moves along its path. For this reason, as the environments can

differ, it is quite important that the deployed robot can make immediate decisions by

itself and plan its path in the unknown environment.

Considering that, these robotic systems have limited specifications and operation

time, each implemented algorithm should be able to run onboard and in real-time, while

it consumes the minimum computational resources. Lastly, it is worth noting that, de-

veloped behaviors like this should be designed to be easily adaptable and installable on

other robotic systems, which meet the necessary structure and sensory requirements, in

order to help other responding teams setup and enhance their robotic co-worker’s rescuing

behavior.

3.2 Related Work

During the past decade, some notable studies and applications utilize robot systems to act

in human-related operations. In many studies, ground robots [5, 6, 7] and aerial robots

[8, 9, 10] act semi-autonomously in the operation environment, as they are monitored

and teleoperated through an established control station, in order to fulfill a specific

mission. Search-and-Rescue situations are one of the foremost reasons to employ robotic

systems, like bushfires situations [11], in underwater scenarios [12], and even nuclear

disasters like in Fukushima in 2011 [13] in which a plethora of different robots have

been employed to investigate the nuclear accident areas. Also, there are studies, like

Khasawneh A. et .al [14], which investigate the latency between the human responses

and the UAV actions in a Search-and-Rescue scenario and suggest a set of measures to

increase the trust between them. Meanwhile, these robots have been proposed and tested

to operate in such scenarios under the control of a human team, to provide a broader

view of the operation area. However, such scenarios may be at places that teleoperation

is inapplicable or ineffective, due to the signal interferences, and thus, the robots have

to be more autonomous and independent to proceed with their missions, despite the

communication malfunctions with its human or robot cooperators.

Additionally, visual detection ability is vital for all robotic systems, as they should be

able to interpret the viewing scene and recognize if any object of interest is in their view,

Dimitrios Chatziparaschis 24 November 2020

3.2 Related Work

regardless of the environment circumstances. In recent years, many visual detectors utilize

convolutional neural networks (CNNs) to classify an image to the trained predicting

categories [15, 16, 17] and also to apply object detection [18, 19, 20] within the captured

frame, to approximate the rectangle occupied area of the image plane. Nonetheless, in

many situations we need pixel-wise object detection [21, 22], which can be enhanced with

batch normalisation [3] techniques and more a directive learning procedure, in order to

develop more extensive and detailed vision applications that can be fused with other

sensory data.

At the same time, it is also important to have a flexibility in the inspection of the

surrounding world. There are publications that propose UAV systems with onboard

gimbal units, equipped with sensory modules, in order to minimize its flight planning

complexity. Specifically, Zhang et al. [23] develops a vision-based 3D geolocation method

that calculates 3D coordinates of a target, using a stereo vision approach. Also, Sun et

al. [24] developed an all-in-one camera-based target detection and positioning system, for

fixed-wing UAVs and Search-and-Rescue scenarios, and evaluated it through simulation

experiments. Even though the aforementioned research studies achieve target detection

and spatial approximation in a global coordinate system, they highly depend on the

used image processing approaches and corresponding camera unit specifications. For this

reason, it is essential to utilize more precise sensors, combined with the acquired visual

data, in order to perform target detection and positioning more efficiently.

Dimitrios Chatziparaschis 25 November 2020

3. PROBLEM STATEMENT

Dimitrios Chatziparaschis 26 November 2020

Chapter 4

Our Approach

4.1 Simulated Robot Model and Sensors

In this section, the proposed UAV system architecture will be described along with the

onboard sensory modules, which are required to build the autonomous Search-and-Rescue

quadcopter system. Specifically, an extended report for the onboard coordinate systems

and their relations will be made, and details about the specifications of the used sensors

will be presented.

4.1.1 Onboard Coordinate Systems and Spatial Transforma-

tions

A UAV, as a complex and rigid robotic system, can be described through a group of

coordinate systems, namely frames. Moreover, each equipped sensor defines its coordinate

system origin position, on which every spatial measurement can be referenced. For this

reason, it is mandatory to define unique coordinate system for each onboard sensor.

Despite that, UAV body points like its center of mass or a joint point of two relatively-

connected moving parts can have their coordinate frame.

Assuming that {G} is the global coordinate system and {A} a local frame which

indicates the UAV’s body center point, the latter is expressed as,

{A} = {GAR,
GPAORG

} (4.1)

Dimitrios Chatziparaschis 27 November 2020

4. OUR APPROACH

Figure 4.1: The UAV’s onboard coordinate systems sketch.

where, G
AR is the rotation matrix that describes frame {A} relative to {G}, and GPAORG

is

the vector [x, y, z]T that localizes the origin of the frame {A} in the {G} global coordinate

system.

Thus, in order to map a point P which was spatially described by the frame {A} to

the frame {G}, we define the transformation matrix,

G
AT =

[
G
AR

GPAORG

0 0 0 1

]
(4.2)

So,

GP = G
AR ·

AP + GPAORG
⇔

⇔ GP = G
AT ·

AP ⇔

(4.2)⇔
[

GP
1

]
=

[
G
AR

GPAORG

0 0 0 1

]
·
[

AP
1

]
(4.3)

Dimitrios Chatziparaschis 28 November 2020

4.1 Simulated Robot Model and Sensors

The point GP is described in global coordinates in frame {G}. Also, to revert on to

the initial coordinate system, the inverse of the homogeneous transform is used,

A
GT = G

AT
−1 =

[
G
AR

T − G
AR

T · GPAORG

0 0 0 1

]
(4.4)

In this way, every captured spatial measurement can be described in respect of any

other UAV onboard coordinate system, as long as there is a direct transformation relation

(connection) between them. Figure 4.1 illustrates a sketch of selected onboard coordinate

systems that will be furtherly described in succeeding sections, with their main role within

the scenario approach.

4.1.2 Simulated UAV Model and the Onboard Sensor Units

In our tests, we use the DJI Matrice 100 (M100) Gazebo model, which is based on the

Hector Quadrotor model1 [25]. This UAV model features quadcopter flight dynamics

inside the Gazebo environment, and supports control commands (wrench, velocity and

pose waypoints) as a real UAV system. Figure 4.2 shows the M100 model operation in

the Gazebo world environment.

Figure 4.2: The DJI M100 quadcopter inside the Gazebo world.

Particularly, this model consists on various coordinate systems, like the {base link}
(center of mass) and {base stabilized} (pose stabilized center of mass), and also there

1https://github.com/tu-darmstadt-ros-pkg/hector_quadrotor

Dimitrios Chatziparaschis 29 November 2020

https://github.com/tu-darmstadt-ros-pkg/hector_quadrotor

4. OUR APPROACH

is conterminous access to its groundtruth spatial relations through the Gazebo tool.

Therefore, the accuracies of the mapping, detection, and global positioning procedures

can be evaluated, as they can be cross-checked with the groundtruth values. Figure 4.3

illustrates the existing onboard frames of the UAV model, at a given moment, within the

RViZ tool1.

Figure 4.3: The simulation world and UAV coordinate systems, with their spatial trans-

formation relations, as appeared in RViZ visualization tool.

Meanwhile, the Gazebo simulator features sensor plugin creation and development, by

which we can simulate real sensor models in the simulator world. Hence, we included the

appropriate sensors for the Search-and-Rescue approach in the UAV and gimbal simulated

system models and setup their technical specifications, and noise models.

1https://github.com/ros-visualization/rviz

Dimitrios Chatziparaschis 30 November 2020

https://github.com/ros-visualization/rviz

4.1 Simulated Robot Model and Sensors

4.1.2.1 2D Laser-Scanner Module

To perform planar localization and mapping methods a two-dimensional LiDAR device

is required, mounted onboard on the UAV system. By capturing surrounding distance

measurements in reference with the ranging sensor coordinate system and geo-referencing

them in respect of the UAV body frame, a local map of the area can be constructed

and the position of the UAV can be approximated. For our scenario, we utilized the

Hokuyo UTM-30LX-EW [26] sensor model, and we defined its coordinate system as the

{hokuyo frame}. Figure 4.2 shows the simulated onboard 2D LiDAR sensor on the UAV

body, and Figure 4.3 depicts the {hokuyo frame} coordinate system inclusion.

4.1.2.2 GNSS Receiver Module and the Navigational Coordinate System

Additionally, in order to acquire global positioning data within the Gazebo environment,

we selected the Hector Quadrotor GNSS receiver model that has been developed as a

Gazebo sensor plugin tool. Specifically, this sensor plugin publishes navigation satellite

fix data, based on sensor msgs :: NavSatF ix1 ROS message structure, which includes

longitude, latitude and altitude information, along with the position’s covariance matrix,

the fix covariance type category and the Header field, which describes the measurement

timestamp, and coordinate system. The fix data are defined using the World Geodetic

System 84 (WGS84) reference ellipsoid.

For this reason, we included the global positioning sensor plugin in the UAV’s Unified

Robot Description Format file 2 (URDF), and placed it on a static position on its body

frame (0.2m above the {base link} frame origin). The coordinate system of the GNSS

receiver will be referred under the name of {gnss receiver}, as shown in Figure 4.4.

Having that, the taken measurements can be spatially described and geo-referenced in

respect of the selected navigational global system, like the GPS, Galileo, etc., depending

on the running scenario.

Furthermore, the Gazebo tool uses by convention a right-handed coordinate system,

with x,y values referring on the plane, and z defining the altitude value. Also, Euler an-

gles are used to indicate objects’ rotation in the three-dimensional space and thus their

orientation in the field. Given that, each time a simulated world is loaded, the Gazebo

1http://docs.ros.org/api/sensor_msgs/html/msg/NavSatFix.html
2http://wiki.ros.org/urdf

Dimitrios Chatziparaschis 31 November 2020

http://docs.ros.org/api/sensor_msgs/html/msg/NavSatFix.html
http://wiki.ros.org/urdf

4. OUR APPROACH

Figure 4.4: The DJI M100 quadcopter inside the Gazebo world.

initializes the global coordinate system by defining the the rigid xyz origin position and

orientation, and maps it directly on the selected navigational coordinate system. Conse-

quently, each point in the simulated world can be either be described in the Cartesian or

the desired navigational system.

4.1.3 Simulated 3D Gimbal Frame and the Embedded Sensors

Units

Meanwhile, since our purpose is to develop an autonomous UAV system that can easily

deploy and act in a rescuing occurrence, the foremost feature is to ensure its adaptability

in the new and unforeseen environment conditions. Therefore, to achieve sufficient area

coverage and freedom during its detection and localization of objects of interest, we

propose a gimbal unit to be attached underneath the UAV body, which will be equipped

with the essential sensors to fulfill this purpose.

4.1.3.1 3D Gimbal Architecture and Specifications

Specifically, we developed a gimbal mechanism within the Gazebo environment, that

has three degrees of freedom and is based on the dji m100 ros GitHub organization

Dimitrios Chatziparaschis 32 November 2020

4.1 Simulated Robot Model and Sensors

model1. During the flight, the gimbal unit can perform 3-axis orientating and searching

movements, and can either rotate independently of the UAV heading orientation or follow

its movement heading, according to the current UAV searching status and priorities. The

gimbal movements are motorized through the simulator environment and are limited to

the gimbal model’s architecture specifications.

Specifically, roll, pitch, and yaw (RPY) gimbal joints are created, which resemble the

gimbal subsystem movements. A stable point is defined in the front of the UAV body

as the gimbal’s mounting point, namely the {gimbal yaw} frame, and we denoted the

RPY frames with their relations in order to construct the three-dimensional simulated

gimbal module. The transformation between the {gimbal yaw} and the {base link}
frames indicates the relative orientation of the gimbal frame with respect to the UAV

heading global orientation. Figure 4.5 show the gimbal sub-frames relations, as appeared

in RViZ visualizer tool. This illustration also depicts the {gimbal pitch} frame, which

corresponds to the second motor of the gimbal and defines the gimbal pitch axis.

Figure 4.5: Gimbal System embedded frames relations as appeared in RViZ tool. Despite

the illustration of the gimbal motor frames, a selection of embedded sensor frames is also

included.

1https://github.com/dji-m100-ros

Dimitrios Chatziparaschis 33 November 2020

https://github.com/dji-m100-ros

4. OUR APPROACH

According with the current development, the gimbal roll movement is locked as there

is no utilization of it during the target positioning procedure, and the pitch and yaw

limitations are set to [−π
4
, π
2.3

] and [−π
4
, π
4
] radians, individually. Those values are se-

lected according to real limitation ranges of common three-dimensional gimbal units on

quadcopters. Thus, every embedded sensor is positioned on the same horizontal axis of

the gimbal frame and their relative pose remains unchangeable during the gimbal axis

orientation movements. Consequently, each spatial measurement of every embedded sen-

sor, can be transformed to any other embedded sensor coordinate system, and also to

any UAV’s body frames or other equipped sensor frame (like the GNSS receiver), as long

as there is a direct transformation between selected frames.

Henceforth, to detect existing objects of interest in the surrounding surveying area,

we propose a gimbal frame equipped with two cameras, an optical- and a thermal-type

respectively, and a 1D laser rangefinder module unit. The selection of these sensors is

made mainly because they offer a cost-effective solution for real-world implementation,

since there is no a particular requirement for their specifications, and also due to their

sufficient combination to approach the detection and localization procedures.

Overall, the main behavior of the UAV gimbal system is to recognize requested objects

in the simulation field, center and engage on the acquired target, and perform distance

measurements to approximate the relative position and geo-reference the target in the

rescuing map’s coordinate system.

4.1.3.2 Color Camera Unit

Given the developed UAV’s URDF model file, we included a camera module within the

gimbal body. The selected camera module integrates a typical pinhole camera sensor,

that captures RGB imagery with 1280×768 resolution and provides 30 frames per second

(fps). The camera’s main body coordinate system is initialized to the {camera frame}
frame, and the two-dimensional coordinate system on which every image plane detection

is referenced, is defined as the {camera optical frame}.
Since the camera is attached to the gimbal frame, it is calibrated with a chessboard

pattern object inside the Gazebo world. By applying a calibration procedure, the intrinsic

camera parameters K and the distortion coefficients matrix D are acquired, as defined

in Equations 2.1 and 2.2, respectively, which help us reference every 3D spatial data

Dimitrios Chatziparaschis 34 November 2020

4.1 Simulated Robot Model and Sensors

described in respect of the camera’s body frame into their 2D image plane projection

(image coordinates). Figures 4.6, 4.7 and 4.8 show moments during the UAV flight for

the calibration of the color camera.

Figure 4.6: A chessboard snapshot using

the color camera.

Figure 4.7: A chessboard snapshot using

the thermography camera.

Figure 4.8: Third-person view of UAV flight for the cameras calibration procedure.

4.1.3.3 Thermal Camera Unit

As the UAV is operating in a Search-and-Rescue scenario, one of its primary goals is

to locate individuals. For this reason, we enriched our gimbal system’s “perception”

capability with the addition of a thermography camera module, based on the Hector

Dimitrios Chatziparaschis 35 November 2020

4. OUR APPROACH

Gazebo thermal camera plugin1.

Similarly with the aforementioned color camera plugin, the thermal imaging camera

module is defined as a pinhole camera model, which provides single-channel image data

with the captured pseudo-temperatures of the Gazebo environment. The specifications of

this camera module selected to be the same as the color camera, as it features 1280×768

resolution at 30 fps.

Nevertheless, since there is no temperature information within the Gazebo simulator

objects, the thermal camera receives their warmth condition according to the percentage

of red color into their body meshes. For this reason, we designed dedicated human models

to contain the necessary red color in their meshes, and thus to be able to recognized as

positives (high in temperature) objects by the simulated thermography camera module.

Figures in 4.9 and 4.10 illustrate thermal objects in the Gazebo environment and their

appearance in the simulated thermography raw-data.

Figure 4.9: Thermography raw

data.

Figure 4.10: Thermal objects placed in

the Gazebo world.

As a pinhole camera module, it is characterized by the {thermal cam} and {thermal optical cam}
frames, on which every captured positive area is referenced, in 3D and 2D respectively.

Also, a specific calibration procedure was followed for this camera module to obtain its in-

trinsic and distortion coefficient matrices, with the use of a dedicated custom chessboard

pattern board as illustrated in Figure 4.7.

1http://wiki.ros.org/hector_gazebo_thermal_camera

Dimitrios Chatziparaschis 36 November 2020

http://wiki.ros.org/hector_gazebo_thermal_camera

4.2 Autonomous Navigation and Obstacle Avoidance

4.1.3.4 1D Laser-Scanner/ Rangefinder Module

For the target positioning procedure, a one-dimensional laser rangefinder is utilized in

order to measure UAV distances from the detected target. In specific, a common noise

model is used, based on the Leica DISTO D110 sensor, which assumes a measurement

tolerance of ±1.5mm with a confidence level of 95%, in smaller than 5m distance mea-

surements, and ±3mm in other cases.

The coordinate system of this ranging unit is defined as the {rangefinder frame},
in which every distance measurement will be referenced.

4.1.3.5 Frames’ Relations and the Transformation Tree

Overall, since the aforementioned frames’ relations are developed and calculated, they

are included in the transformation library’s server, namely the tf [27], in order to be

easily accessible during the UAV execution when a frames’ relation is needed. Also, each

transformation carries timestamp information, that indicates the exact moment in which

this transformation was updated. This library is selected due to its plethora of handy

transformation tools and its integration in the ROS environment. The total tf tree with

its frame components, is depicted in Figure 4.11.

4.2 Autonomous Navigation and Obstacle Avoidance

In this section, the development of the UAV’s autonomous navigation behavior will be

discussed, along with noteworthy tools that were implemented to enhance its overall

efficiency.

As we propose an autonomous Search-and-Rescue UAV system, a significant per-

centage of its autonomy refers to being able to move in the unknown area without any

human supervision and intervention. For this reason, we focused on achieving such an

autonomous behavior by using Deep Reinforcement Learning (DRL) approaches. Mean-

while, we developed a special OpenAI environment world to facilitate the development,

modification, and training of our agent, and thus, we describe the transition and the

deployment of the trained model into the Gazebo environment.

Dimitrios Chatziparaschis 37 November 2020

4. OUR APPROACH

Figure 4.11: Coordinate systems’ transformation and relation tree.

4.2.1 UAV Teleoperation and Action Server

In order to achieve exploration in the unknown operating area, the UAV system has to

support teleoperation within the simulator environment. Throughout our work, we have

utilized two ways of controlling the UAV system; either by publishing velocity commands

to the simulated model or by using an action server that calculates the corresponding

command controls to achieve a final UAV pose.

4.2.1.1 Velocity Control

The DJI M100 simulated model, as a Hector quadrotor model, supports velocity com-

mands within the Gazebo environment, which are distinguished by the linear velocity

vector and the angular velocity vector.

For this reason, we developed a joystick ROS node which takes input from the buttons

and switches input of a computer gamepad, and according to the selected profile, it

Dimitrios Chatziparaschis 38 November 2020

4.2 Autonomous Navigation and Obstacle Avoidance

$ rosmsg show geometry msgs/Twist

geometry msgs/Vector3 linear

float64 x

float64 y

float64 z

geometry msgs/Vector3 angular

float64 x

float64 y

float64 z

Figure 4.12: The geometry msgs :: Twist

ROS message variable fields.

Linear or angular velocity com-

mands can be applied on the UAV

model along with its x,y and z

axis, under the structure of the

geometry msgs/Twist message

type which appears in Figure 4.12.

sends appropriate teleoperation commands to the simulated UAV. The main purpose of

this node is to provide teleoperation access of the UAV control during its autonomous

navigation, in case there is a need for an immediate action to avoid a certain situation

or to command the UAV system to follow the desired path.

4.2.1.2 Action Pose Server

In the meantime, since our goal is to create an autonomous controlled UAV system, we

attached the Hector quadrotor action tool1 on the simulated DJI M100 drone, which

features UAV pose command execution. As this tool’s functionality is based on the

action server of the ROS Navigation stack, this package features UAV velocity and wrench

calculation given its current pose, in order to obtain a desired final pose. The desired

UAV poses must be described in the {map} or {world} coordinate system, and thus the

UAV has to know its position and orientation in respect to these frames.

Specifically, the action server captures a hector uav msgs/PoseActionGoal ROS mes-

sage, which contains the new pose spatial description with respect to a coordinate sys-

tem, its unique identification number, and the timestamp information of the requested

command. Figure 4.13 shows the format and variable fields of a PoseActionGoal ROS

1http://docs.ros.org/kinetic/api/hector_quadrotor_actions/html/classhector_

_quadrotor__actions_1_1PoseActionServer.html

Dimitrios Chatziparaschis 39 November 2020

http://docs.ros.org/kinetic/api/hector_quadrotor_actions/html/classhector__quadrotor__actions_1_1PoseActionServer.html
http://docs.ros.org/kinetic/api/hector_quadrotor_actions/html/classhector__quadrotor__actions_1_1PoseActionServer.html

4. OUR APPROACH

$ rosmsg show hector uav msgs/PoseActionGoal

std msgs/Header header

uint32 seq

time stamp

string frame id

actionlib msgs/GoalID goal id

time stamp

string id

hector uav msgs/PoseGoal goal

geometry msgs/PoseStamped target pose

std msgs/Header header

uint32 seq

time stamp

string frame id

geometry msgs/Pose pose

geometry msgs/Point position

float64 x, y, z

geometry msgs/Quaternion orientation

float64 x, y, z, w

Figure 4.13: The hector uav msgs/PoseActionGoal ROS message variable fields.

message. Each time a message is captured, the corresponding velocity commands are

calculated and executed by the simulated UAV to obtain the desired position and ori-

entation values. The server makes pose corrections under predefined criteria, like the

relative distance of the UAV and the goal position, or a pose timeout parameter. In the

end, if any of the restrictions are enabled, or in contrast, the pose has been acknowledged

and acquired, the server provides a actionlib msgs/GoalStatus response which describes

the current situation. The message format can be distinguished in the following status

categories,

(i) PENDING : The goal has yet to be processed by the action server.

(ii) ACTIVE : The goal is currently being processed by the action server.

Dimitrios Chatziparaschis 40 November 2020

4.2 Autonomous Navigation and Obstacle Avoidance

(iii) PREEMPTED : The goal received a cancel request after it started executing and has since com-

pleted its execution (Terminal State).

(iv) SUCCEEDED : The goal was achieved successfully by the action server (Terminal State).

(v) ABORTED : The goal was aborted during execution by the action server due to some failure

(Terminal State).

(vi) REJECTED : The goal was rejected by the action server without being processed, because the

goal was unattainable or invalid (Terminal State).

(vii) PREEMPTING : The goal received a cancel request after it started executing and has not yet

completed execution.

(viii) RECALLING : The goal received a cancel request before it started executing, but the action server

has not yet confirmed that the goal is canceled.

(ix) RECALLED : The goal received a cancel request before it started executing and was successfully

cancelled (Terminal State).

(x) LOST : An action client can determine that a goal is LOST. This should not be sent over the wire

by an action server.

4.2.1.3 Automated/Preplanned Flights

As an extent to the UAV’s pose execution functionality, as mentioned in Section 4.2.1.2,

we created a separate node that sends sequential pose commands on the UAV system

taken from a list of poses. Specifically, in the target positioning procedure, it is essential

to be able to repeat flight trajectories, in order to further evaluate the precision and

efficiency of the positioning approaches. Hence, the developed ROS node can process a

.csv file which includes distinct UAV poses and can parse them to the simulated drone

system to perform them consecutively. The given poses can be written in respect of the

following formats,

• x, y, z,Euler(roll, pitch, yaw) (4.5)

• x, y, z,Quaternion(x, y, z, w) (4.6)

The position data are expressed in meter units and the orientation Euler angles in

degrees. Also, through this script, we can adjust the action server parameters like the

Dimitrios Chatziparaschis 41 November 2020

4. OUR APPROACH

smoothness or the accuracy of the UAV’s positioning procedure, as well as the speed of

flight. During the execution of the sequential poses, joystick controlling intervention is

permitted, in case there is a need to take manual control of the drone or to perform a

correction.

Also, an automated GeoGebra [28] tool has been developed which can calculate the

desired amount of UAV poses based on the drawn trajectory within the tool. Initially, the

number of the desired UAV poses is selected, which is desired according to our scenario

and target position, and thus the script computes the poses and creates a .csv file with

them in respect of the aforementioned saving formats, in Equations 4.5 and 4.6. Figure

4.14 shows 20 UAV poses, named with letters from B to U alphabetically, that are

calculated by selecting a circular trajectory around the given marker, which is located at

(-3,2,1). As it is apparent from the GeoGebra script, there can be also more straight or

hyperbolic-lined calculated trajectories.

Figure 4.14: GeoGebra tool script for extracting UAV poses .csv files given a target

position.

Dimitrios Chatziparaschis 42 November 2020

4.2 Autonomous Navigation and Obstacle Avoidance

4.2.2 UAV Control and OpenAI Gym Environment

The GazeboSim tool, as a fully operational robot and physics simulator, requires mod-

erate to high computational resources during its runtime. This fact makes it ineligible

for deep reinforcement learning training and agent development purposes, as it may be

time ineffective. For this reason, we developed a lightweight OpenAI environment that

resembles the control of the UAV in the Gazebo simulation, to facilitate and accelerate

the agent’s behavior development and training procedures.

Figure 4.15: The simulated UAV and the maximum range distances from its onboard

LiDAR.

Specifically, given the initiative of A. Sakai in “drone trajectory following”1 reposi-

tory, we constructed a 2D UAV simulator world as appeared in Figure 4.15. The current

UAV model supports only translation commands in both x and y dimensions, without

any orientation movements. Henceforth, as we want to develop an autonomous navi-

gation behavior for the UAV, we included map addition capabilities inside the python

simulator tool. The maps must be formed in polygon shapes, as their boundaries (walls)

are formed by their shape coordinates. Figures in 4.15, 4.16, and 4.17 show instances of

created maps.

Additionally, in order to achieve safe navigation in the generated environment map,

the UAV had to capture distance measurements from its surrounding area. For this rea-

1https://github.com/AtsushiSakai/PythonRobotics/tree/master/AerialNavigation/drone_

3d_trajectory_following

Dimitrios Chatziparaschis 43 November 2020

https://github.com/AtsushiSakai/PythonRobotics/tree/master/AerialNavigation/drone_3d_trajectory_following
https://github.com/AtsushiSakai/PythonRobotics/tree/master/AerialNavigation/drone_3d_trajectory_following

4. OUR APPROACH

(a) (b) (c)

Figure 4.16: Examples of polygon maps.

son, we developed a simulated LiDAR behavior for the UAV system, that gathers ranging

information in 6 specific directions. Particularly, by assuming that the UAV heading ori-

entation is θ = 0◦, distance measurements are captured at θ = [0◦,±45◦,±90◦, 180◦]

angles. So each time new LiDAR measurements had been obtained, the intersection

points of the laser raycasting projections with the polygon map were approximated, and

the distances of the end-points were calculated. Given that, these distance measurements

were referenced in respect to the UAV center of mass, which is the exact UAV 2D position,

and a white Gaussian noise is also included in their values, with standard deviation of

0.01m. Figures 4.15, 4.16(b), and 4.17(b) show the red dots which illustrate the LiDAR’s

distance measurements in various UAV positions. Also, each distance measurement was

bounded by an upper limit, in order to further reduce the agent’s perception abilities and

simulate real LiDAR performance. Figure 4.15 illustrates a maximum detected range in

the front direction of the simulated UAV, as there is no existing obstacle.

The reason of selecting a limited amount of distance measurements was to evaluate

the UAV autonomous navigation efficiency in narrowed perception capabilities. Also, the

plethora of the front distance measurements (as only one is made in the back) was to

focus on the ability of the UAV to perform forward movements.

Meanwhile, to enhance the agent’s learning capability, a random maze generator li-

brary was also implemented and included in the simulator tool environment. Through

this application, a new maze world can be constructed, based on the desired length size

along y-axis and the desired lengths of the narrowest and widest path along its struc-

tural skeleton. By this way, we generated new maps along the progress of the training

procedure, in order to enrich the generality of its behavior. Figures in 4.17 show some

Dimitrios Chatziparaschis 44 November 2020

4.2 Autonomous Navigation and Obstacle Avoidance

(a) (b) (c)

Figure 4.17: Autogenerated polygon maps, with various spatial properties (length, nar-

rowness, width).

examples of autogenerated maps, under various building preferences. Given the requested

spatial properties, the maps are generated randomly by choosing wall positions based on

samples taken from a normal distribution.

(a) (b)

Figure 4.18: Drawing a custom polygon map of 25 edge points.

Also, a drawing functionality has been included to support custom-maps creation.

The user selects the amount of the map edge points and can click on their positions on

an empty plot as appeared in Figure 4.18(a). Since all the points have been selected,

the map is formed (as depicted in Figure 4.18(b)), stored locally, and thus, can be fully-

utilized as an OpenAI Gym environment.

Dimitrios Chatziparaschis 45 November 2020

4. OUR APPROACH

In the meantime, since our goal is to develop an autonomous UAV behavior for the

Gazebo simulator, we had to include such map objects in the simulator world. Thus, we

expanded the functionality of this library to construct polygon maps in respect of the

Gazebo building structure format. In this way, 3D map objects can be created according

to autogenerated or custom-generated OpenAI Gym maps, and be imported into the

GazeboSim. Figure 4.19 shows a variety of polygon maps that are created and added in

the Gazebo environment, along with the simulated UAV model.

Figure 4.19: Autogenerated 3D maps for the GazeboSim under various specifications, in

terms of length (size) and narrowness levels.

4.2.3 Creating the Autonomous Navigation Behavior

As mentioned in Section 2.5, Reinforcement Learning is broadly used in the development

of autonomous agent behaviors. Due to the emerging advancement of embedded plat-

forms, there is a plethora of commercial and developer UAVs that are equipped with

onboard Graphical Processor Units (GPUs), as on the DJI Matrice series, which can

Dimitrios Chatziparaschis 46 November 2020

4.2 Autonomous Navigation and Obstacle Avoidance

facilitate online processing. Henceforth, in order to develop the autonomous flight be-

havior, we deploy the Deep Deterministic Policy Gradient (DDPG) [29] approach, which

is a model-free and off-policy algorithm based on the Deep Q-network approach, as de-

scribed in Section 2.5.1, and is used to learn policies in continuous action spaces. This

approach utilizes an actor-critic scheme and it is capable of learning policies through

low-dimensional observations as in our scenario.

Deep Deterministic Policy Gradient

DDPG algorithm combines Q-learning and Policy Gradients techniques, through an actor-

critic approach, as it forms two distinct neural networks to learn the policy (actor) and

the Q-function (critic). The goal of the actor is to extract an appropriate action for the

agent given the current state. Thus, it takes as an input a flattened vector that contains

the UAV observations, namely the 6 LiDAR measurements, and approximates the UAV

actions. The network’s output is a two-dimensional vector that holds information about

x and y dimension movement, in the value range of [−1, 1]. On the other hand, the critic

network is utilized to evaluate a certain action execution, by knowing the current UAV

state. Henceforth, as this network takes the concatenation of the current observations

and the selected action from the actor’s network, it approximates the outcome Q value

for this input.

In terms of architecture, both neural networks contain 3 same-sized dense layers with

ReLU activation functions and batch normalization modules in between them. The final

layers for both networks have linear activation function, but they result in different sizing

outcomes as mentioned before. In our tests, we utilized various architectures for further

system evaluation.

In the meantime, during the training procedure DDPG uses experience replay, simi-

larly to DQN in Section 2.5.1, to learn from accumulated experiences that have gained

from the past. Additionally, even though the observations are only distance measure-

ments, which are clipped in predefined value ranges, we use normalization techniques to

facilitate DDPG training and application procedures. Batch normalization is included

within the networks’ architecture to mitigate the covariance shift during training by en-

suring that each layer receives a normalized input. It is also noteworthy, since DDPG

Dimitrios Chatziparaschis 47 November 2020

4. OUR APPROACH

is an off-policy algorithm it can isolate the exploration problem from the learning algo-

rithm. By adding generated noise on the actor policy, sampled by a correlated normal

distribution generated by an Ornstein-Uhlenbeck process, it achieves more efficient ex-

ploration.

Reward Function and Behavior

A vital requirement for the agent’s training was the design of the reward function. In our

approach, the UAV has an onboard gimbal system that can act and rotate independently

from the main body. In particular, during the exploration, the UAV should be able to

detect possible targets and thus rotate towards them. In case of the extreme left or

right positions of the engaged targets relative to the UAV heading direction, it performs

rotation movements to center its heading direction towards the given target location.

Having that, the UAV approaches the target and localizes it during its movement towards

it. Hence, as it may be clear, we impel a forward movement for the UAV towards the

target location, since one is detected and the reward function is formed with respect to

this purpose.

Particularly, the UAV system is positively rewarded every time it performs a successful

one-meter forward movement (passes a checkpoint) in the map because it is considered

that it further approaches the target. Meanwhile, in order to ensure its safe operation,

we penalize flights close to walls, depending on the captured range distances from the

LiDAR system. Also, each time the UAV collides on a wall or even gets out-of-bounds

from the current polygon map, it gets the maximum negative reward with a terminal

state. In this way, the UAV learns to be in safe distances from surrounding walls and

thus it learns to avoid occurring obstacles while it tries to go forward.

Furthermore, each generated map has a unique area zone that is considered as the

goal terminal state. This zone is defined according to the map length, which is always

located 3 meters before its endpoint (for example in Figure 4.17(b) is for x = 45 for

map length = 48). Thus, as soon as the UAV manages to pass this point, it is awarded

the maximum reward, and the episode is terminated successfully. It is worth noting,

each time the UAV performed a backward movement it gets a reduced reward in order

to prefer forward exploration.

Dimitrios Chatziparaschis 48 November 2020

4.3 Autonomous Target Detection and Gimbal Aiming

Throughout our experiments, we will conclude to the most appropriate actor-critic

network setup, by training under various loss functions, network sizes, number of episodes,

and learning environment specifications.

4.3 Autonomous Target Detection and Gimbal Aim-

ing

In this part, the machine vision procedures will be described to perform autonomous

target detection in the viewing field. As the UAV is equipped with both optical and

thermography cameras, there will be a detailed report about their data manipulation

and also their fusion, in order to recognize effectively any observed target. Alongside

this report, the gimbal’s autonomous aiming and engaging behavior will be presented

according to the detected target’s situation.

4.3.1 Target Recognition through Optical Data

In order to perform an effective, on-board, and real-time object detection in SAR envi-

ronments, we implemented a custom neural network detector and tested it under both

real-world and GazeboSim datasets. Initially, since our future goal is to develop a real

UAV system to operate in emergency situations, the developed autonomous detector was

initially trained and tested under real imagery data. Therefore, as we conclude with

the appropriate network architecture and characteristics, the system was trained from

scratch on a custom dataset that was created within the Gazebo software and tested in

various simulation environments.

4.3.1.1 Real-World Dataset

One of the most broadly used datasets for building and training object detectors is

the Microsoft Common Objects in Context (COCO) [30], which contains over 200K

labeled images on over 80 classes. Every image have been pixel-wise labeled with the

appearing class instances and contains additional contextual information for further scene

understanding. In our case, in order to design and test the robustness of our detector, we

utilized the two major COCO dataset releases, from 2014 and 2017, which contained over

Dimitrios Chatziparaschis 49 November 2020

4. OUR APPROACH

250K labeled images with appearing people in everyday scenes. Since our primary goal

is to search for humans, it is vital for our detector to be effective in terms of localizing

every appearing person in the scene and also to be precise, by avoiding the inclusion of

false-positive or false-negative areas during the detection.

4.3.1.2 Image Normalization and Standardization

A common issue with many open imagery datasets is the variations of the photographed

scene conditions and object visualizations. Many datasets contain images taken from

different cameras and lenses, under various lighting conditions, and therefore same objects

may appear slightly or notably different among these instances. This fact worsens the

training procedure and affects the detector’s precision, which thus may delay its learning

convergence. Hence, it is essential to process appropriately every image prior to its

utilization in the training or testing procedure, in order to avoid such implications.

Primarily, in order to mitigate the divergence of the brightness and the color intensities

among the images, we standardize the images to form a Gaussian distribution with zero

mean and standard deviation equal to one. Particularly, each time before using a new

dataset, we extract the overall mean and standard deviation over all images for each

channel separately. This procedure is performed independently for each image channel,

which in our scenario indicate the three color values (RGB), and are formed by pixel

values xi = [ri, gi, bi] where i ∈ [1, number of pixels].

µ{r,g,b} =
1

N

N∑
i=1

xi and σ2
{r,g,b} =

∑N
i=1 (xi − µ{r,g,b})2

N
(4.7)

Since these values are acquired, each image pixel xi = [ri, gi, bi] is formed as,

x′i =

[
ri − µr
σr

,
bi − µg
σg

,
bi − µb
σb

]
(4.8)

Additionally, an essential procedure after the standardization is the normalization.

The normalization procedure is essential for the neural networks, in order to keep the

same scale during weight updates. Specifically, during training, if every weight update

has a different scale, the neural network would need a different learning rate to achieve

convergence. Figures in 4.20 illustrate three raw images along with their standardized

transformation, as was applied over their RGB channels.

Dimitrios Chatziparaschis 50 November 2020

4.3 Autonomous Target Detection and Gimbal Aiming

Figure 4.20: RGB images with their standardized depictions.

4.3.1.3 Neural Network Architecture

Initially, our idea in the network architecture is inspired by the VGG16 net [31] convo-

lutional architecture, due to their ImageNet [32] challenge distinctions in 2016 and 2017.

The VGG16 network utilizes 16 weight layers with 3 × 3 kernel-sized filters and three

fully-connected layers in the end, with the last having a softmax layer of 1000 channels

for the object classification task. At the same time, approaches like Hyeonwoo N. et al.

[33] add deconvolutional layers and perform unpooling techniques to retrieve bigger fea-

ture maps with smaller depths. The goal of these approaches is to obtain high-resolution

semantic maps, to determine in pixel-wise way areas that belong to specific classes. In

2015, Ronneberger O. et al. [21] presented the U-Net, a fully convolutional network for

biomedical purposes, which had the shape of an autoencoder along with forward con-

nections between the convolution and deconvolution parts. This network structure could

learn how to upscale the reduced-sized information, appropriately, by selecting features

from the convolutional part, and thus increase the resolution of the output and conclude

to the input-sized prediction map.

In our approach, we developed an autoencoder-alike convolutional deep network in-

spired by the aforementioned publications, equipped with a custom convolution and de-

convolution part along with skipping connections for feature map enhancement. Figure

4.21 illustrates the detailed configuration of the entire deep network. Specifically, we

utilize a 9 layer convolutional network without any fully-connected layer, and we use up-

sampling techniques through retrieved skipping connections from the convolutional part,

to concatenate feature maps information and deconvolute to obtain the final input-sized

Dimitrios Chatziparaschis 51 November 2020

4. OUR APPROACH

Figure 4.21: The Network Architecture. The network takes the color camera’s raw data as

an input, and through feature extraction and the deconvolution procedure retrieves a heatmap

array that contains the trained semantic map.

object semantic segmentation.

Pooling and batch normalization, as described in Section 2.4, operations are per-

formed between the convolutional layers. The latter method is applied to minimize

internal-covariate-shift effect of convolutional layers. In the deconvolution network part,

feature maps concatenations are applied with nearest window interpolation upsampling,

instead of unpooling techniques, to let the network determine the useful spatial infor-

mation to achieve the requested heatmap array activations. Since we combine spatial

information from previous normalized convolutional layers with the approximating the

semantic map activations, we allow the network itself to extract the vital data features

which are occurred from the higher resolution imagery information and the spatial infor-

mation.

4.3.1.4 Advanced Metrics and Loss Functions for Semantic Segmentation

Meanwhile, neural networks that are used in semantic segmentation approaches, focus

mainly on image segmentation which is based on detected context through pixel-wise

classification. For this reason, there is a plethora of metric functions to evaluate the

precision and accuracy of such image areas, as they are formed by the detector’s predic-

tion. Hence, we developed numerous broadly-used metrics as Keras metrics modules, to

extensively monitor the training procedure, and also as loss functions, to use them for

training the models and targeting specific detector behaviors.

As described in Section 2.4.1, there is a variety of important metrics to evaluate

the performance of a semantic segmentation detector. Given these references and the

Dimitrios Chatziparaschis 52 November 2020

4.3 Autonomous Target Detection and Gimbal Aiming

confusion matrix definition in Equation 2.11, we utilize in our approach notable and

broadly used loss functions and metrics, that can handle TN and TP amounts differently,

as they enhance the ability of the detector in either detecting positives or negatives more

accurately. In specific,

F-1 Score The F1 Score metric, also known as the Dice Loss (DL), is a broadly used

function to measure the overlap of the prediction segmented image and the groundtruth.

This metric is based on the Precision and Sensitivity(Recall) parameters of the test.

F1 =
2 · |Y ∩ Ŷ |
|Y + Ŷ |

=
2 · Precision ·Recall
Precision+Recall

=
2 · TP

2 · TP + FP + FN
(4.9)

Fβ Score Similarly to the F1 Score, the Fβ score utilizes a real factor β to adjust the

Sensitivity parameter importance compared to Precision. This metric is formulated as,

Fβ = (1 + β2) · Precision ·Recall
(β2 · Precision) +Recall

=
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP
(4.10)

As it is obvious, in case of β parameter equal to 1, the Fβ score becomes the F1 score.

Tversky Loss The Dice loss function, as appeared in 4.9, weights and penalizes evenly

the FP and FN proportions. In 2017, Seyed Sadegh Mohseni Salehi et al. [34], used

the Tversky features [35] and presented a loss function in order to weight FN more than

the FP, to achieve robust detection of small lesion areas in medical images. Hence,

by initializing the magnitude parameters α and β, he proposed the loss layer based on

Tversky index,

Tversky Loss =
Y ∩ Ŷ

Y ∩ Ŷ + α(Y c ∩ Ŷ) + β(Y ∩ Ŷ c)
=

TP

TP + α(FP) + β(FN)
(4.11)

Thus, by adjusting the parameter α and β, this formulation can adjust the trade-off

between FP and FN. It is noteworthy, if α and β values are equal to 0.5, the Tversky

metric becomes the F1 score. Also, by assuming that α+β = 1, each pair implies the Fβ

score formulation.

Dimitrios Chatziparaschis 53 November 2020

4. OUR APPROACH

Intersection over Union (IoU) The Intersection over Union [36], is also a common

metric which is used in semantic image segmentation, which is written as,

IoU(Y ,Ŷ) =
Y ∩ Ŷ
Y ∪ Ŷ

=
TP

TP + FP + FN
(4.12)

The Equation 4.12 can be expressed in respect of the Dice loss metric, as follows,

A ∩B
A ∪B

=
TP

TP + FP + FN
=

Dice

2−Dice
(4.13)

and the mean IoU (for two classes) is defined as,

Mean IoU(Y ,Ŷ) =
IoU(Y ,Ŷ) + IoU(Y c,Ŷ c)

2
(4.14)

Likewise, in case of α = β = 1, the Tversky score resembles the IoU metric.

Throughout our experiments, we will evaluate the performance of the optical detector

as described in Section 4.3.1.3, by training on various semantic loss functions and a

common imagery dataset, to perform human detection. In specific, we utilize a plethora

of the aforementioned loss and metric functions, and we create combinations of them to

furtherly check the detection efficiency. In this way, we conclude with the final models of

the trained detectors and we examine their diverse performances on TP and TN detection

and their overall behavior.

4.3.1.5 Gazebo Human Models and Dataset Creation

As the detector has been tested under the COCO dataset on real imagery data, we had

to re-train it based on data captured from the Gazebo simulator, in order to attach it

to the simulated UAV system and perform object detection in the Gazebo environment.

Thus, we had to create a dataset with the same format of the raw and annotated images

as the COCO dataset, with the new data captured from the Gazebo simulator.

First, we use human models from the Gazebo’s open-source model database, as appear

in Figure 4.22, to simulate the real SAR scenarios. As it may be clear, the training

Dimitrios Chatziparaschis 54 November 2020

4.3 Autonomous Target Detection and Gimbal Aiming

procedures on Gazebo’s data may be notably better than the real-world testing, as they

are less realistic and detailed in terms of textures and lighting conditions. However, this

is the main reason that we have previously evaluated it on a real-world dataset, in order

to ensure its efficiency.

Figure 4.22: Human models in Gazebo world.

In specific, as the UAV and the human objects are considered as rigid bodies inside

the Gazebo world, they are described by their local coordinate system. Thus, for each

used model within the Gazebo world, such as the human objects, we define their local

coordinate system in respect of the simulator’s global coordinate system and broadcast it

on the tf tree to be viewable within the ROS environment. In this way, we can spatially

correlate the existing objects, according to their current status in the simulated world.

Figure 4.23 shows coordinate system relations, as appeared in the RViZ tool, between

the UAV and a human object.

In order to capture raw images and their annotated instances which indicate the

areas of the depicted objects, we utilized the ground-truth spatial information of the

existing Gazebo objects. Since the UAV has an integrated camera which is calibrated,

we can instantly project any 3D world point on its image plane and extract its x, y

pixel position. Nonetheless, in contrast with the COCO pixel annotations, we mark a

predefined surrounding area of the human object as the positive area, by utilizing four

coordinates in certain positions with respect to the object’s local coordinate system.

Specifically, we define four points at ±1m in z and ±0.7m in y direction, with respect to

Dimitrios Chatziparaschis 55 November 2020

4. OUR APPROACH

Figure 4.23: Gazebo environment and the corresponding coordinate system relations.

the object origin point, and thus a rectangle around the object is formed. Henceforth, by

transforming the 3D points in respect of the camera’s frame, and by using undistortion

and perspective transformation, we can extract the four coordinates projections on the

image plane. Figures in 4.24 depict the projected four points and the corresponding

annotated images.

In this way, the detector will learn to localize humans and extract bigger areas, which

will be correlated with the thermal-positive regions, as captured from the thermography

camera. Consequently, we generated imagery datasets by flying above the human objects,

with the UAV system, under various Gazebo environmental and lighting conditions.

Meanwhile, we create a .json file, along with the images, which contains the ground-

truth pixel coordinates from each of the four coordinates. The .json file has the following

format,

{
“IMG XXX0.JPG” : [x0lu, y

0
lu, x

0
ru, y

0
ru, x

0
rd, y

0
rd, x

0
ld, y

0
ld],

“IMG XXX1.JPG” : [x1lu, y
1
lu, x

1
ru, y

1
ru, x

1
rd, y

1
rd, x

1
ld, y

1
ld],

· · ·

“IMG XXXX.JPG” : [xXlu, y
X
lu , x

X
ru, y

X
ru, x

X
rd, y

X
rd, x

X
ld , y

X
ld]
}

Dimitrios Chatziparaschis 56 November 2020

4.3 Autonomous Target Detection and Gimbal Aiming

Figure 4.24: Moments during the dataset creation. The images of the right column,

depict the positive areas of the current captures.

which has the picture name and its four x, y positive region coordinates, starting from

the left− up corner to the left− down corner, in clockwise direction. Also, in case that

not all corners points can be projected simultaneously on the image frame (they are out

of current field-of-view), this image is discarded from the creating dataset. Figures 4.25

and 4.26 illustrate captures of a person model, by the UAV’s camera within the Gazebo

environment, along with the generated label images.

Dimitrios Chatziparaschis 57 November 2020

4. OUR APPROACH

Thenceforth, similarly, with the case of the real-imagery COCO dataset, we created a

custom Gazebo dataset and we trained the neural network on virtual images. Through-

out these procedures, we evaluate the different behaviors of the concluded detectors by

comparing their accuracy results and underscoring important remarks about their abil-

ity in human detection in the Gazebo environment conditions. It is noteworthy, this

process can be applied in any other object of the Gazebo environment, by inserting the

corresponding object’s coordinate frame in the dedicated node, along with the four 3D

framing points. In this way, we can create multiple datasets of various objects, that exist

in the Gazebo simulator.

Figure 4.25: The captured RGB image and the auto-generated annotation image.

Figure 4.26: Distant image with its corresponding label image.

Dimitrios Chatziparaschis 58 November 2020

4.3 Autonomous Target Detection and Gimbal Aiming

4.3.2 Target Recognition through Thermography Data

First, as mentioned in Section 4.1.3.3, the thermography camera captures single-channel

imagery information that contains the temperatures of the viewing scene. Hence, we

initially filter out lower temperatures by applying a fixed binary threshold and thus

extract the hotter areas of the thermal image. Having that, the contour regions of

the thermal-positive areas are calculated by using the topological structural analysis

algorithm of S. Suzuki et al. [37] of OpenCV library. In specific, the outer border following

approach is utilized to capture the extreme outer contour coordinates of the appearing

regions, as they offer adequate information about the localization of the area. Figures in

4.27 show the raw captured footage of the thermography camera and the outcome of the

outer contour extraction algorithm.

(a) Input thermography

image.

(b) Binary thresholded

image.

(c) Extracted thermal regions

with their moment coordinates.

Figure 4.27: Thermal-Target detection.

By having the positive areas, we extract their moment coordinates which indicate their

center of mass projected on the image plane. Finally, these regions are published through

a specific ROS topic, to be furtherly processed by the rest of UAV behavior nodes. These

areas are published in respect of the PositiveAreas ROS message structure, similarly to

the optical-positive areas, as described in Section 4.3.1.

Dimitrios Chatziparaschis 59 November 2020

4. OUR APPROACH

4.3.3 Fusion of Optical and Thermal-Positive Areas

As the detection results are published independently from their corresponding nodes,

these data can be combined by correlating them with respect to their captured timestamp.

As mentioned before, both detectors produce 24 fps approximately, which are more than

sufficient to cross-validate and perform data fusion. However, in the case of having an

onboard computer that has lower specifications, the correlation procedure can be simply

modified to adapt to the new and decreased publishing rates.

First, since both detectors publish positive areas with respect to PositiveAreas ROS

message structure, we spatially compare their occupied areas to locate possible matches

and overlaps. As long as there are common references, this implies that a living individual

is depicted, and thus it can be marked as a possible target for further examination. In

the case of having a confident and stable prediction of a human from the optical detector,

despite the lack of temperature information from the thermal detector, we also include

these situations as possible targets. Therefore, as the positive areas are approximated by

the combination of both aforementioned detectors, a fused image of possible individuals

depiction is generated.

In the meantime, the resulted predictions may include outliers and deformations in

their areas’ shape generation, which will aggravate the final area approximation. Figures

4.28(a-b) show moments during the UAV’s target detection and the approximated positive

areas. To suppress such occurrences we apply convex hull methods to obtain optimal

convex areas. In specific, we utilized the J. Sklansky approach [38], in finding the convex

hull of each generated polygon shape. Thenceforth, by employing the OpenCV topological

structural analysis module [39], we obtain the contour regions of the given thresholded

binary image. As it can be seen from Figures’ column 4.28(c), the positive areas contain

discontinuities that form smaller-sized positive area, that can be considered as distinct

targets. Nonetheless, by applying the convex hull region formulation and by forming a

rectangle to cover the existing black areas with respect to the occurred convex areas, the

nearby areas are grouped and form a united area, and the majority of the outliers are

mitigated. Thence, by extracting the convex set plane points, we calculate the generated

polygon moments which will describe the center points of the depicted targets. Figures

4.28(d) illustrate the concluded detected targets.

Thus, these coordinates are posted and published as the projected target coordinates,

which will be used by the gimbal system to perform the aiming procedure. However, in

Dimitrios Chatziparaschis 60 November 2020

4.3 Autonomous Target Detection and Gimbal Aiming

Figure 4.28: The convex-hull procedure applied on target-positive areas. a) Input image.

b) The probability map of the located targets. c) Binary representation of the detection,

after adaptive thresholding. d) Convex hull post processed detections.

case of more than one viewing target, the UAV follows a prioritization behavior depending

on the scenario’s current status.

4.3.4 Gimbal Scanning Behavior and Aiming

Meanwhile, to achieve sufficient area scanning, the UAV system is enhanced by mounting

a three-dimensional gimbal underneath its body frame. In specific, this gimbal system

will be equipped with the cameras and the rangefinder sensor, in order to be utilized

for the targets’ detection and localization procedures. In this way, this system can be

independent of the total UAV movement, as it can easily rotate, scan the surrounding

environment and engage on a possible target, while the drone system will execute its

navigation trajectory. Hence, the gimbal behavior has been enhanced to support gimbal

commands and perform specific scanning and engaging movements, depending on the

Dimitrios Chatziparaschis 61 November 2020

4. OUR APPROACH

current target detection status.

Particularly, the developed gimbal unit contains inner joints and links which can re-

ceive forces, and achieve gimbal movements and pose corrections. In our implementation,

we developed a gimbal controller which awaits for the communication bridge of the ROS

environment and the Gazebo simulator and then supports simulated force and torque

commands broadcasting to the UAV’s gimbal system unit. This system captures the

image plane targets, namely coordinates, that are published by the fusion of both optical

and thermal detectors, and by integrating a software Proportional-Integral-Derivative

(PID) module, achieves smooth and fast aiming on the desired target, and engages until

the next target is acquired.

Figures in 4.29 and 4.30 depict gimbal engaging tests on an ArUco [40, 41] marker,

which resembled our target, in order to evaluate the smoothness and efficiency of the

UAV’s gimbal control. In specific, the main purpose of the gimbal aiming behavior

is to orientate and engage accordingly, and aim the rangefinder measuring ray on the

target’s projected body coordinates. However, since the cameras’ positions differ from

the rangefinder measuring point (7cm below their optical frames origin), the gimbal

system aims given a slightly translated crosshair, to make the rangefinder be on target.

The software implementation of the PID logic that satisfies following formulation,

u(t) = Kp ∗ e(t) +Ki

∫ t

0

e(t′)dt′ +Kd
de(t)

dt

This software implementation was fine-tuned until the gimbal performed sufficient and

fast aiming commands. The three control terms of the PID controller, depending on the

UAV model mass and Gazebo environment gravitational forces, were set as the Kp = 11,

Ki = 1, and Kd = 50, for the proportional, the integral, and the derivative influence,

respectively. Specifically, we used a small value for the integral parameter to reduce model

overshooting and settling time, and a bigger value for the derivative tuning parameter to

increase the latter. Also, we chose dt = 0.1 as the time sampling parameter, which was

adequate in terms of speed aiming.

Figures in 4.29 show sequential moments of marker detection and gimbal-unit aiming,

during a UAV’s flight in the Gazebo world. Figure 4.30 depict a more distant aiming

procedure of the simulated UAV system. In this way, by providing coordinates of the

viewed-detected target, the onboard gimbal unit is able to perform appropriate move-

ments, and thus engage on target without being affected by the UAV’s body movement.

Dimitrios Chatziparaschis 62 November 2020

4.4 Search-and-Rescue UAV Behavior

Figure 4.29: Gimbal-unit engage on located target, during simulated UAV’s flight.

4.4 Search-and-Rescue UAV Behavior

In this section, UAV behavior characteristics will be described which are essential for its

Search-and-Rescue robust operation in the unknown environment. In particular, notable

UAV behavior features will be reported, in terms of creating the SAR map, prioritizing

and positioning detected targets, and finally deciding about unknown areas exploration,

which completes the total autonomous behavior of the rescuing UAV robot.

Dimitrios Chatziparaschis 63 November 2020

4. OUR APPROACH

Figure 4.30: Gimbal aiming on distant target, based on optical frame center point.

4.4.1 2D Simultaneous Localisation and Mapping

Initially, to ensure sufficient area coverage and provide a local map with geo-referenced

objects and areas of interest for the first-responders, the UAV performs simultaneous

localization and mapping procedures during its flight in the unknown environment.

In crisis scenarios, rescuers, and more importantly the UAV system, can not fully rely

on available area maps as there may be significant spatial variations due to the occurred

incident in the area. Hence, the UAV needs to construct the map of its surrounding

environment and also localize itself in it, to adapt to environment changes and focus on

unexplored areas without any human intervention. At the same time, every detected

target should be positioned and pinned with respect to this map, and so the rescue team

will have details about the operating area and will be able to plan their rescuing approach,

accordingly.

For this reason, the Hector SLAM system [42] is utilized, which provides full 6DoF

robot pose estimation by solving the Online SLAM problem. The Hector system com-

bines two subsystems, a 2D SLAM system based on the integration of laser scans in

a planar map and an integrated 3D navigation system based on inertial measurement

unit, to achieve precise localization and mapping. During the navigation, the captured

Dimitrios Chatziparaschis 64 November 2020

4.4 Search-and-Rescue UAV Behavior

distance ranges are expressed in the LiDAR’s frame the {hokuyo frame}. The mea-

surements are spatially transformed through quadcopter pose estimation and the tf tree

information, into the quadcopter’s stabilized base frame coordinate system, namely the

{base stabilized} frame, to be expressed relative to the body frame.

The Hector SLAM uses an occupancy grid map [43], to store the belief about the

current environment form. Due to the occupancy grid map discrete form, sub-grid cell

approximation can not be performed, as there is a limitation to the map resolution pa-

rameter. For this reason, an occupancy value and gradient approximation are applied by

using the information from the four closest point positions, to achieve accurate estima-

tions of occupancy probabilities and derivatives. Figures in 4.31 show moments during

a SLAM procedure of the UAV in the Gazebo environment. Additionally, as mentioned

previously in Section 4.2.3, the UAV navigates autonomously by keeping a stable altitude

level, and thus the resulted 2D map and the searching procedure is done in reference to

this.

Meanwhile, each time the mapping procedure is reset, the new map is initialization

is based on the current UAV global position and orientation. Therefore, for each point

on the planar map, we instantly extract its global coordinates which are described in the

{world} frame. Figures in 4.32 show two separate {map} frame initializations relative

to the corresponding UAV global pose (described in {world} frame).

4.4.2 Target Identification and Spatial Correlation

One of the most essential key features of the UAV search behavior is its ability to de-

termine if a viewed target has been already mapped or not, to proceed with the gimbal

engagement, make distance measurements and thus localize it. For this reason, it is vital

to locally store information each time a target is positioned by referencing it on the gen-

erated map, to avoid duplicated inspections and measurements, and thus make the UAV

system to focus on unpositioned and unlogged detected targets.

Henceforth, as the UAV system has the information of previously measured targets,

it utilizes their spatial information in relation with its corresponding body and gimbal

frame pose and determines if any new targets are appearing in its current viewing field.

The structure of the information, which is stored each time a target is registered in the

UAV system, is presented in Figure 4.33. Particularly, this struct contains variables

which indicate the global position of the target in the environment field, the category of

Dimitrios Chatziparaschis 65 November 2020

4. OUR APPROACH

Figure 4.31: Moments of SLAM procedure during the UAV flight in unknown Gazebo

environment.

the target (human, object, etc), and an identification number.

Additionally, since the UAV holds information about the targets global three-dimensional

Dimitrios Chatziparaschis 66 November 2020

4.4 Search-and-Rescue UAV Behavior

Figure 4.32: Map initializations according to the corresponding UAV global pose and in

respect of the {world} frame.

position it can spatially describe them in relation to its body frame, namely the {base link}.
Moreover, since there is a transformation connection between the {base link} frame and

the onboard systems, and more importantly towards the embedded gimbal sensors, the

targets can be spatially described in respect of the cameras’ coordinate systems. The

Equation 4.15 shows the transformation of the target position Ptarget in respect of the

UAV’s color camera frame.

camera optical frameP target = camera optical frame
gnss receiverT · gnss receiverPtarget (4.15)

Also,
cof
grT = cof

cfT ·
cf
gyT ·

gy
bsT ·

bs
grT (4.16)

where, cof={camera optical frame}, cf={camera frame}, gy={gimbal yaw},
bs={base link} and the gr={gnss receiver}.

Dimitrios Chatziparaschis 67 November 2020

4. OUR APPROACH

Algorithm 2: UAV Behavior on Target Identification, Prioritization and Enganging

1 load localized target areas;

2 define max pixel margin, viewing target areas, target id = 0;

3 while new captured positive areas do

4 active areas=[];

5 for all captured positive areas P do

6 find P center point;

7 define ignore this area = False;

8 for all localized target areas T do

9 if P center point ∈ T and isin FOV
(
T
)

then

10 ignore this area = True;

11 break;

12 if ignore this area then

13 continue;

14 for all viewing target areas V do

15 find closest region/s V with index/ces idx and distance/s d;

16 if d > max pixel margin or # of matched regions != 1 then

17 define idx = target id++;;

18 initialize viewing target
(
P.x, P.y, Area, idx

)
;

19 add viewing target in V;

20 active areas.push back(idx)

21 else

22 idx = idx of matched region;

23 save old 2D position (V.x, V.y);

24 update V
(
P.x, P.y, Area, idx

)
;

25 active areas.push back(idx)

26 erase inactivated areas
(
V, active areas

)
;

27 visualize areas of interest 2DImagePlane
(
V
)

;

28 find minimum id from V, namely current target id;

29 if # of ignored areas = # of captured positive areas or current target id=-1 then

30 No new target detected.

31 publish Empty Target; publish
(

enable exploration= True);

32 else

33 publish V
(

current target id
)

; publish
(

enable exploration= False);

Dimitrios Chatziparaschis 68 November 2020

4.4 Search-and-Rescue UAV Behavior

std msgs/Header header

uint32 seq

time stamp

string frame id

geometry msgs/Point position in map

float64 x, y, z

std msgs/Int64 id

std msgs/Int64 category

std msgs/Bool isinUAVview

geometry msgs/Point[8] cube area cameraplane

float64 x, y, z

geometry msgs/Point circle center cameraplane

float64 x, y, z

geometry msgs/Point circle radius cameraplane

float64 x, y, z

Figure 4.33: The registered target description fields.

Since both cameras are calibrated and the spatial relation of their optical frames is

known relative to their body frames, every object that is described in respect of the latter

frames in three dimensions can be projected on to their image plane surfaces. Hence,

every registered target can be projected in real-time on to the cameras’ image plane, and

thus they can be correlated with the captured positive areas and determined if they are

excluded from the running detection. The two-dimensional pixel position of the given

targets can be acquired by using a perspective transformation, by utilizing the intrinsic

and distortion camera matrices.

Specifically, assuming that we have Ptarget = (X, Y, Z) described in {camera optical frame}
frame and the transformation,

cof
cfT =

[
cof
cfR

cofP cfORG

0 0 0 1

]
(4.17)

Dimitrios Chatziparaschis 69 November 2020

4. OUR APPROACH

is known, it is implied that, x

y

z

 = cof
cfR · Ptarget + cofP cfORG (4.18)

and

x′ = x/z and y′ = y/z (4.19)

Meanwhile, since the camera lenses contain distortion, it is mandatory to calculate

the undistorted coordinates,

x′′ = x′ · 1 + k1r
2 + k2r

4 + k3r
6

1 + k4r2 + k5r4 + k6r6
+ 2p1x

′y′ + p2(r
2 + 2x′2) (4.20)

and

y′′ = y′ · 1 + k1r
2 + k2r

4 + k3r
6

1 + k4r2 + k5r4 + k6r6
+ p1(r

2 + 2y′2) + 2p2x
′y′ (4.21)

where, r2 = x′2 + y′2. The parameters k1, k2, k3, k4, k5 and p1, p2 are the distortion coef-

ficients, extracted from the distortion matrix D. Thus, by using the camera’s intrinsics

parameter matrix K, the undistorted projection of the three-dimensional point Ptarget in

the image plane, is given by the coordinates,

u = fx · x′′ + cx and v = fy · y′′ + cy (4.22)

The point (u, v) is expressed in the camera’s optical frame, depending on the used cam-

era sensor ({camera optical frame} or {thermal optical cam}), and expresses the pixel

coordinates of the target on the image plane. Additionally, given the two-dimensional

projection of the target, we define a cube three-dimensional area that includes the

target, in which we also obtain their coordinate projections and store them in the

cube area cameraplane. In this way, we can project the three-dimensional area which

is occupied by the target on the image plane. In parallel to that, the variables cir-

cle center cameraplane and circle radius cameraplane hold the projection points circular

imaginary area.

Thenceforth, each time a target is positioned globally, the UAV updates its corre-

sponding viewing plane with the aforementioned areas, and thus excludes prior detected

Dimitrios Chatziparaschis 70 November 2020

4.4 Search-and-Rescue UAV Behavior

Figure 4.34: Snapshots during the UAV targets’ positioning procedure. Each time a

target is globally positioned, its sphere ROI is projected on the image plane to prohibit

the area scanning.

areas from inspection. Figures in 4.34 show the addition of an appeared thermal tar-

get and the inclusion of the ROI after its positioning, in order to be ignored in future

Dimitrios Chatziparaschis 71 November 2020

4. OUR APPROACH

measurements.

Meanwhile, as the targets are projected on the cameras’ image plane, it is crucial to

determine if their position is in or out of the cameras’ viewing field. As the perspective

transformation can project the three-dimensional target on the image plane, there is no

further information if this target is in the front or the back of the camera’s heading

orientation. For this reason, before the projection of a given target area, we check its

relative position in respect to the origin of the camera’s body frame. In case that the

target’s x coordinate value is negative, it denotes that the target is positioned behind

the camera’s field of view, and thus must not be projected and considered in the current

viewing plane. On the other hand, the perspective transformation result will indicate

the exact two-dimensional position of the corresponding target. Finally, the result of this

examination is stored in the isinUAVview variable field.

4.4.3 Target Prioritization and Gimbal Engagement

Since the UAV system has excluded the positive areas that belong to already mapped

target areas, it focuses on the remaining unlogged viewing positive regions. For this rea-

son, a prioritization behavior is implemented to achieve specific gimbal engaging behavior

to position the unregistered targets, and thus to include them in the Search-and-Rescue

map and the local database.

As the UAV captures imagery data (optical and thermal) in real-time, it has to corre-

late the corresponding unknown positive areas with the prior detected regions which were

captured from previous frames. Specifically, each time there is a new frame with available

positive contour areas for positioning, we define separate regions of interest (ROIs), based

on their contour moment point coordinates (center of mass) and their occupation size

of the image plane surface. In this way, there the image contains distinguished labeled

areas, that need to be positioned. Therefore, each time a new frame is captured, the new

unidentified regions are correlated with the existing, as long as they belong on their ROIs

areas. Figure in 4.35 and 4.36 show a plethora of detected and unpositioned targets,

along with their detection/positive ROIs. As it is clear, despite the UAV circular move-

ment the identified areas remain unchangeable, and thus, the UAV can keep its priority

and focus on the foremost acquired target.

However, in the case of abrupt UAV movements, there may be notable region trans-

lations on the image plane which may cause the new detections to be out of their corre-

Dimitrios Chatziparaschis 72 November 2020

4.4 Search-and-Rescue UAV Behavior

Figure 4.35: Unregistered targets prioritization scenario.

Figure 4.36: Target regions along with their generated ROIs.

sponding ROI sections. In this situation, the region is assigned to the closest group as

long as their relative distance is less than the max pixel margin parameter value. Hence-

Dimitrios Chatziparaschis 73 November 2020

4. OUR APPROACH

forth, in case of positive area appearance in a new image plane segment, it is considered as

a new region for examination, and thus it is registered with a new identification number.

Figure 4.37: Target areas detection during abrupt UAV movements. The green cross

markers indicate the previous center point positions of the targets’ detection ROIs.

Meanwhile, during the frames update, we keep the preceding 10 two-dimensional

positions of the region’s center points, to show their trace along with the time progression.

Figure 4.37 show the robustness of the area identification and prioritization algorithm in

sudden UAV movements. Also, Figure 4.38 illustrates a special occasion, where the UAV

performs a low flight above an area that has plenty of unpositioned targets.

As long as there are available target regions for detection, the UAV picks the smaller

identification numbered target, and publishes its (x, y) camera plane coordinates for the

gimbal aiming node. Throughout the gimbal aiming and engagement procedure on the

selected target, the rangefinder captures a predefined number of distance measurements,

while it orientates accordingly to keep the target in aiming position. Whenever the

target positioning is finished, the UAV updates its localized targets database, pins the

positioned target in the constructed map visualization, and proceeds with the successor

Dimitrios Chatziparaschis 74 November 2020

4.4 Search-and-Rescue UAV Behavior

Figure 4.38: Gimbal engagement on yellow target 97. The gimbal aiming and engaging

behavior remains unaffected even with a close UAV flight above from an area that is

crowded with available and unlocalized targets.

target region aiming and mapping procedures (if there is any unpositioned target) or

proceeds with further room exploration to search for new targets.

4.4.4 Target Global Positioning

Given our current simulated world and the UAV’s sensors setup, we had to develop

an approach for global positioning the appeared targets in the environment area. In

particular, the positioning procedure will be performed by utilizing the captured ranging

measurements of the embedded rangefinder sensor, while the gimbal unit is engaged on the

selected recognized target. However, even though we use the gimbal yaw information,

relative to the UAV heading orientation, to project the targets on the UAV’s viewing

plane, we exclude it during the target positioning approach. In specific, in this way we can

not directly spatial determine the detected target’s position relative to the UAV body, and

thus, we had to approximate its value through a different perspective. Hence, we approach

Dimitrios Chatziparaschis 75 November 2020

4. OUR APPROACH

this problem by utilizing captured distances from the located target and the corresponding

UAV’s global positions, to create an overdetermined system, that has the target’s position

as the solution. For this reason, we propose a least-squares multilateration approach1 to

solve the non-linear overdetermined system, which is formulated by the UAV’s captured

global positions and the georeferenced distance measurements from the targets, and to

conclude with the approximated target’s global 3D position.

During the flight, the UAV system can capture multiple target distance measurements

with its onboard rangefinder sensor unit. Nonetheless, those range measurements are

taken with respect to the rangefinder’s coordinate system, namely the {rangefinder frame},
and they are not directly related to the onboard GNSS receiver frame. So, the exact time

that a single measurement is captured, the UAV system has to spatially describe and

transform it to the global onboard frame, namely the {gnss frame}, and thus extract

the target distance from the GNSS receiver module, according to the corresponding inner-

frames’ transformation relations.

However, we assume that there is no at least accurate information about the relative

heading of the UAV body and the attached gimbal frame, so there is no direct trans-

formation between the {rangefinder frame} and the {gnss frame}. As described in

Section 4.1.1, the rangefinder sensor is rigidly mounted on the gimbal horizontal axis, and

so, it is statically described with respect to the gimbal’s {gimbal pitch} frame. So, each

captured distance can be re-calculated with respect to the {gimbal pitch} coordinate sys-

tem, due to their direct static spatial relation. Also, the {gimbal pitch} frame position

is known, relatively to the {gimbal yaw} frame, except their relative yaw orientation.

For this purpose, we assume that their relative angle difference is zero, as, during the

gimbal yaw movement, the onboard distance sensors are rotating around the gimbal yaw

axis, which is the z-axis of the {gimbal yaw} frame. Given that, the corresponding angle

between the UAV body and the gimbal frame does not affect the captured the distance

measurements, and so they can be spatially described to the rest of the frames that are

located on the UAV’s body.

Thus, the distance measurement is described in the UAV’s gimbal mounting point,

which is also statically placed relative to its onboard GNSS receiver frame. Hence, by

obtaining the transformation matrix
{gnss receiver}

{rangefinder frame}T , which assumes zeroed relative

1This research has been partially supported by the European Union and Greek national

funds 577 through the Operational Program Competitiveness, Entrepreneurship and Innovation,

under the call RESEARCH 578 - CREATE - INNOVATE: T1EDK-03209.

Dimitrios Chatziparaschis 76 November 2020

4.4 Search-and-Rescue UAV Behavior

x

z

y

r2

r1
C2

C3

C1

t

r3

Figure 4.39: Trilateration method on t point positioning. Given the three sphere centers ci with their

radius lengths ri, we can approximate their intersection point t, in the 3D space. The sphere centers

represent UAV system positions in 3D space and the radius lengths are the corresponding estimated

ranges from the target marker.

heading between the UAV body and the gimbal frame, the distance range of the viewing

target and the global positioning receiver module are calculated. Given that, since we

have constant access on the frames transformation matrices and status as they are up-

dated with each gimbal movement at high and fixed rate, we can spatially describe every

distance measurement to the {gnss receiver} coordinate system. So, given a measured

3D point described in the ranging sensor frame it can be globally described as a distance

from the GNSS receiver by using,

gnss receiverPtarget = gnss receiver
rangefinder frameT · rangefinder frameP target

where,

gnss receiver
rangefinder frameT =

[
gnss receiver

rangefinder frameR
gnss receiverP rangefinder frameORG

0 0 0 1

]
Hence, the target distance in respect of the GNSS receiver frame is given by the

Euclidean distance between the transformed target’s center point and the GNSS frame’s

origin point. This distance measurement is further stamped with the corresponding

measuring time and stored along with the most recent captured UAV’s global position.

Dimitrios Chatziparaschis 77 November 2020

4. OUR APPROACH

4.4.4.1 Multilateration Positioning Approach

For the target positioning approach, we propose a true range multilateration method,

applied on the UAV’s captured spatial data. Through this method, the target xyz po-

sition can be estimated by solving a spheres’ intersection system, that is formed by the

estimated ranges and UAV positioning data.

According to this approach, three (trilateration) or more (multilateration) ranges with

their corresponding positions, are required to solve the spheres’ intersection equation sys-

tem. However, in contrast with the example demonstrated in Figure 4.39 which has a

unique intersection point solution, in real-world scenarios the captured spatial measure-

ments include uncertainty due to noisy measurements and signal interference. For this

reason, the specific system can not be solved in closed-form, and thus we use a non-linear

least-squares optimization approach to estimate the target’s optimal position.

4.4.4.2 Non-linear Least Squares Approach on Position Approximation

Since our goal is to approximate the x, y, and z coordinates of the detected target,

we used the non-linear least-squares estimator on the overdetermined spheres equation

system, which is formed by the captured ranging measurements and the UAV global

positions. Firstly, the form of the measurement equations appears in (4.23), as it defines

a sphere equation with center point (x0, y0, z0) and radius r0. Specifically,

(x− x0)2 + (y − y0)2 + (z − z0)2 = r20 (4.23)

where the point (x0, y0, z0) is the corresponding UAV’s position (center of the sphere)

with the measured range r0 (radius of the sphere). Thus, we define the residuals function

as follows,

f(x, y, z,β) = (β0 − x)2 + (β1 − y)2 + (β2 − z)2 (4.24)

with β representing the vector of the adjustable parameters.

Although, since there is no closed-form solution, the parameters β are refined itera-

tively, by approximating,

βj
k+1 = βj

k + ∆βj (4.25)

Dimitrios Chatziparaschis 78 November 2020

4.4 Search-and-Rescue UAV Behavior

where the superscript k is the iteration number and the ∆βj the vector of increments.

This procedure requires also, an initial guess of the final parameter values, and thus we

use the zero vector ~v = (0, 0, 0) in all our experiments. The non-linear least-squares

problem is solved with the Gauss-Newton approach, which approximates the optimal

position values by minimizing the sum,

S =
n∑
i=1

(
r2i − fk(xi, yi, zi,β)

)2
(4.26)

where n is the number of the given measurements - sphere equations and the fk(xi, yi, zi,β)

the linearized approximation of the residuals model function (4.24), at k iteration.

4.4.4.3 Measurement Restrictions and Spatial Criteria Algorithm

The multilateration approach approximates a target positioning problem by solving the

intersection problem of a set of spheres, that are created by the UAV ranging data and

its body global positions. However, the spheres intersection approach may lead to infinite

solutions, depending on the type of the UAV flight path. For this reason, we developed a

criteria software module, that filters out any newly taken measurement that may expand

the equation system solution space or may lead to infinite solutions, and thus adversely

affect least-squares convergence.

Initially, assuming that we have taken the first two measurements, their positions

define a three-dimensional line, as they form two spheres that have a circular intersection

plane. So, as Figure 4.40 illustrates, after getting the first two measurements (spheres

A and B) the third measurement must not lie on the CACB three-dimensional line, and

also it must intersect the formed circular plane, with center M and radius rm. Otherwise,

if the sphere C is tangent or is not coinciding with the aforementioned plane, it will be

discarded from the equation system. The aforementioned figure, shows a sphere C that

satisfies the above criteria, as it defines two intersection points, the I and J respectively.

In this way, two possible areas have been initialized which contain our target position.

Thenceforth, we define the middle plane of the I and J points, which is perpendic-

ular to the vector ~IJ . Every new measurement, like the sphere D that is illustrated in

Figure 4.41, is acceptable if its measuring position does not belong on the formed middle

plane. In this way, we prevent having a new sphere that is tangent to our current inter-

section system, as we restrict our system on particular solution areas, achieving faster

Dimitrios Chatziparaschis 79 November 2020

4. OUR APPROACH

x

z

y

CA CB

CCCC

M

rM

rC

I J

Sp
he
re
s
A
-B

in
te
rs
ec
ti
on

pl
an
e

Figure 4.40: Illustration of the first three ranging measurements, in the world area.

convergence on our least-squares approach. The detailed measurement validity criteria

algorithm is presented on Algorithm Table 3.

4.4.4.4 Voxel-Based Filtering on UAV Measuring Positions

Meanwhile, to avoid close range capturing positions and thus enrich the measuring spatial

sparseness, we suggest a voxel-based spatial filter applied in realtime during the UAV

flight. In specific, we consider the flying area map as a 3D voxelized grid map, in which

a single distance measurement can be acquired in each predefined voxel area.

During the flight operation in the surveying environment, the UAV can autonomously

detect and distance measure each target object that may be observed along its trajectory.

Each time a range measurement occurs, it is correlated with the current UAV global

position and stored locally in the UAV’s system. By applying the proposed voxel-based

filter, the containing voxel areas are updated each time a distance measurement is added

within their area and they are marked as occupied. Hence, the voxel-based filter disallows

future UAV measurements within the preoccupied voxel areas, as they already contain

Dimitrios Chatziparaschis 80 November 2020

4.4 Search-and-Rescue UAV Behavior

x

z

y

CD

rD

CC

M

rM

rC

I J

I-
J

M
id

dl
e

pl
an

e

Figure 4.41: The addition of the fourth ranging measurement.

spatial information, and thus it indicates neighboring blank voxel areas for visitation.

Henceforth, the UAV captures distance measurements from the viewing ground target

as sparse as desired, according to the selected voxel-filter size, and thus spatially enhances

the spheres’ equation system. Figure 4.42 illustrates the three-dimensional world area,

as it is devised by a variety of voxel cubes in size.

Figure 4.42: Voxelized-segmented environment area.

The final voxel-grid map contains the sparse distance measurements that were cap-

Dimitrios Chatziparaschis 81 November 2020

4. OUR APPROACH

tured along the UAV’s path with their corresponding UAV’s global positions and can be

parsed to the multilateration positioning system to estimate the target’s global position.

4.4.5 Search-and-Rescue Map and Visualization of Positioned

Targets

Since the positioning procedure is completed, the positioned target is stored locally and

inserted into the 2D SLAM map. In this way, the first-responders have a belief of the cur-

rent area condition, the detected targets positions (both in local and global coordinates),

and also the current UAV’s operating status and pose. To achieve this visualization, we

utilize the features of RViZ tool, which are ideal for displaying current ROS topics infor-

mation since it requires low computational resources. Hence, even with limited network

connection, the responders will be able to obtain the current Search-and-Rescue map,

as structured by the UAV (if we consider that the UAV is the ROS master), or acquire

the new positioning data and update the local map status in the first-responders’ ground

control station. Consequently, the rescuers can proceed with their plans and decide for

their upcoming operation actions, accordingly.

Figures in 4.43 illustrate a positioning scenario, in which the UAV has successfully

positioned three targets in the unknown area and tagged them in the created map. It

should be pointed out that, the variation of the stored target identifications of the RViZ

rescuing map and the depicted on the camera plane, stems from the fact that the latter

is used only for the UAV’s mapping procedure, as they represent the amount of total

positive areas that have been counted until now. Hence, the first-responders will have

the final representation of the RViZ rescuing map in order to plan their actions and

proceed with their SAR operation.

4.4.6 Occupied Area Coverage and Unexplored Area Investiga-

tion

Since the UAV can navigate and localize targets autonomously in the unknown environ-

ment, it is essential to conserve a belief of the visited areas and to focus on unexplored

map sections when the coverage of the current area is sufficient. For this reason, we

enhanced the navigating behavior by being capable to extract and pinpoint such areas

from the generated map and thus make the UAV system pivot towards them.

Dimitrios Chatziparaschis 82 November 2020

4.4 Search-and-Rescue UAV Behavior

Figure 4.43: Targets localization by the UAV and their illustration in the rescuing map. The

green markers depict the approximated positions of mapped targets. As the targets have been

positioned, they are viewable within the image frame of the UAV’s cameras.

During the mapping procedure, the occupancy grid map is filled with values which

indicate cells’ occupation status. Moreover, as the UAV is navigating in the area, there

are regions in the map that are completely formed and others that contain unexplored grid

cells. Also, due to the continuous gimbal scanning movement, a significant environment

area is scanned along the way of the UAV system.

Hence, in cases that there are no new targets available and the UAV system assumes

that it has adequately examined the existing area, it orientates towards the unoccupied

map sections. In particular, during the map generation, there are occupied-free grid cells

that neighbors with undiscovered grid cells. These areas indicate map spaces in which

the UAV can further explore to fill the unregistered cells. To assume that an area is

completely mapped it must form a closed shape form outline, without any discontinuities

which may indicate partial area examination. Figures in 4.44 shows the status of the

map at the start of the mapping procedure, and the plethora of unexplored regions that

need to be furtherly mapped.

Dimitrios Chatziparaschis 83 November 2020

4. OUR APPROACH

Figure 4.44: Unknown areas extraction. The left image illustrates the current map boundaries (ob-

stacles) and the right image illustrates grid cells that need to be classified. The middle image show the

fusion of the current map status along with the detected maps areas that need further exploration.

To detect potential regions for investigation, we initially isolate the occupied shape of

the current map and extracted its exterior contour. Thus, we can determine which places

are open-unconnected by comparing the contour shape along with the discontinuous map

outline. Every region of them is stored separately, and they are spatially registered and

sorted depending on their map positions and sizes.

Henceforth, in cases that the UAV can not locate any new target, it orientates towards

the prioritized registered unknown area section. This behavior characteristic is sufficient

for the UAV to achieve complete search in its existing area along with the autonomous

scanning movements of its mounted gimbal system, and thus to decide to move into an

unexplored section since the current area is covered. The undiscovered grid cells are

published also in a separate nav msgs/OccupancyGrid message, for real-time inspection

purposes. Lastly, a brief algorithmic concept of the UAV total behavior, is developed in

Algorithm Table 2 and the Figure 4.46 illustrate the package node’s inner-communication

and message exchange.

Dimitrios Chatziparaschis 84 November 2020

4.4 Search-and-Rescue UAV Behavior

Figure 4.45: Snapshots during the UAV mapping procedure. The blue areas indicate

map cells that can be furtherly investigated.

Dimitrios Chatziparaschis 85 November 2020

4. OUR APPROACH

Figure 4.46: The ROS graph of the package. Every ROS node is illustrated with an oval

shape and each ROS topic with a rectangle. The arrow lines show the topic publications

and subscriptions of each node and the names of the group rectangles represent the topic

namespaces.

Dimitrios Chatziparaschis 86 November 2020

4.4 Search-and-Rescue UAV Behavior

Algorithm 3: Measurements Criteria Node

1 select Sphere A (CA, rA);

2 select Sphere B (CB, rB);

3 find Spheres A, B intersection plane, which is perpendicular on line CACB at

point M ;

4 if length(CAM) ≥ rA or length(CBM) ≥ rB then

5 return ; // the spheres are not intersecting.

/* else, we have an circular intersection plane. */

6 define Spheres A, B intersection circular plane as M (M, rM);

7 find Sphere M, constructed by plane M;

/* seeking for the third sphere ... */

8 while True do

9 select Sphere C (CC , rC);

10 if CC ∈ CACB line then

11 continue;

/* we use the sphere M and plane M to evaluate sphere C ... */

12 find Spheres M, C intersection plane, which is perpendicular to the MCC line

at point N ;

13 if length(CCN) ≥ rC or length(MN) ≥ rM then

14 continue; // the spheres are not intersecting.

15 if Sphere C does not intersect plane M then

16 continue;

17 break; // third sphere has been founded.

18 define Spheres M, C intersection circular plane as N (N, rN);

19 find Intersection points of circular M and N, that are I and J ;

20 define Middle Plane, which is perpendicular to ~IJ , as O;

/* seeking for the new spheres ... */

21 while True do

/* as long as we get new measurements ... */

22 while True do

23 select New Sphere (CS, rS);

24 if CS ∈ CACB line or CS ∈ O plane then

25 continue;

26 break; // the new sphere satisfies the criteria.

Dimitrios Chatziparaschis 87 November 2020

4. OUR APPROACH

Dimitrios Chatziparaschis 88 November 2020

Chapter 5

Results

In this chapter, we present the results of UAV’s learned behaviors. In specific, we show

the results of both navigation and human detection training procedures and underline

important remarks that have been occurred throughout the tests. Given these results, we

evaluate the overall performance of the proposed autonomous approach for reconnaissance

in Search-and-Rescue scenarios, by performing experiments in cluttered and custom-

generated Gazebo environments.

5.1 Autonomous Navigation and Experiments

5.1.1 Training and Evaluation of the Navigational Behavior

In order to acquire the most appropriate and robust navigating behavior, we trained the

aforementioned system under variations of the actor-critic neural networks and training

environments. In specific, we test the agent’s performance by training on various network

sizes, based on different loss functions, and we also use different environment narrowness

levels and map update rates during training, to evaluate the agent’s generalization be-

havior.

Actor and Critic Networks’ Modifications

At first, we employ different actor and critic networks’ formulations, under common

Gym environment parameters, to evaluate their learning ability and overall performance.

Hence, we initially built a Mean Squared Error model and we performed training pro-

Dimitrios Chatziparaschis 89 November 2020

5. RESULTS

Figure 5.1: Training procedure of the OpenAI UAV agent, with 128-sized dense-layered

critic and actor networks, Mean Squared Error loss function, and map update rate of 30.

cedures for 5000 episodes. Figures in 5.1 show the accumulated rewards of the first

1300 episodes of training, simultaneously with the minimization of the recurred steps to

successfully reach the final state.

During our experiments, we evaluated the performance of two loss functions, namely

the Mean Squared Error and the Mean Absolute Error, as defined in Equations 2.16

and 2.17, respectively. Figure 5.2 show the early episode rewards of both functions as

applied on various model sizes, under common testing environment specifications. As

it is apparent from the line plots, the two functions behave similarly across the tested

models and seem to converge more efficiently on the bigger neural network models.

Hence, a vital feature that affects the agent’s learning ability is the size of the model’s

hidden dense layers. For this matter, we performed training procedures, under common

loss function and common environment properties, to evaluate the performance of the

difference in size models. As it may be evident from Figure 5.3 and also from Figure

5.2, the increase of the model size implies early convergence and efficiency of the trained

agents.

Additionally, Figure 5.4 illustrates the MAE loss value decrease for the implemented

networks, which conveys that bigger dense-layered networks tend to accumulate more

information and achieve better accuracies as they minimize their loss value.

Dimitrios Chatziparaschis 90 November 2020

5.1 Autonomous Navigation and Experiments

Figure 5.2: Training on Mean Squared Error and Mean Absolute Error loss function

models, for 8, 16, 32, and 64 dense layer dimensions.

Figure 5.3: The episode rewards for the different in size dense layers of the actor and critic

neural networks.

Training Environment Modifications

Meanwhile, as we have mentioned in Section 4.2.2, the autogenerated Gym worlds can

be formed ideally based on specified spatial and map update parameters. In specific,

every autogenerated world is created in respect of the predefined minimum and maxi-

mum narrowness level values, the length value, and also the map switch update rate.

Henceforth, in this part, we keep the neural networks’ structure stable, as we utilize 128

Dimitrios Chatziparaschis 91 November 2020

5. RESULTS

Figure 5.4: The MAE loss value for the different in size dense layers of the actor and

critic neural networks.

dense-layered networks with MAE loss function, and we evaluate the UAV autonomous

navigation performance on different map widths and training map switching rates.

Figure 5.5: Agent training under different map maximum widths.

First, as we assume that we have a stable in length environment world (20 meters),

we train our UAV agent on a range of maximum width limitations. In this way, we will

evaluate the UAV’s learning experience on diverse world’s spatial formations, which may

restrict its navigational abilities.

In particular, Figures 5.5 illustrate the results for various widths by applying map

switches every 30 completed episodes. The line plots portray that environments that

are either too narrow or too wide, complicate the agent’s navigating behavior, whilst

worlds with moderate maximum widths present models that have learned to maneuver

successfully in the unknown area. In specific, as it is depicted by the first line plot of

Figure 5.5, UAV agents that have been trained on environments with a max width range

of 12-30 meters, spend less time to reach the desired goal which is at the end of the map

length. Hence, this occurrence indicates that the UAV agent needs neither narrow nor

Dimitrios Chatziparaschis 92 November 2020

5.1 Autonomous Navigation and Experiments

wide maps to gain experience on because these maps can be difficult or too ambiguous

to obtain an appropriate navigation technique in a certain number of episodes.

Furthermore, it is essential to evaluate the affection of the interchanging rate of the

environment world, used for the learning procedure. For example, if we assume that we

change an environment every 10 episode completions, the agent will see in 50 different

environments in 5000 training episodes. Thus, it was quite important to check if this

feature of out created OpenAI Gym, enhances the agent’s behavior on safely navigating

in new and unforeseen environments.

For this reason, we utilized the 128-sized dense-layered actor and critic networks, with

the MAE loss function, to train for 5000 episodes, on different environment switching

rates. Since we acquire the weights of these agents, we loaded and tested them on 100

new maps, to check their performance and gained rewards. From our experiments, we see

that in small map interchanging rates (less than 1:10) the agent performs poorly in the

unforeseen maps, as it has relatively low and negative scores. On the other side, in cases

with higher map-generating rates (greater than 1:200), the simulated UAV scores are

also low and cannot in some cases reach the final goal. Nonetheless, at moderate rates

(1:30 to 1:80), the UAV behavior shows notably better results, as it acquires greater

accumulated rewards and reaches the goal in most of the experiments. This occurrence

indicates that we can actively affect the agent’s learning procedure by adjusting the

refreshness-rate of the training environment, which can either imply a more monotonous

and poor navigational behavior in new environment instances or to more generalized and

“mature” behavior to face the various and newly occurred environment conditions.

Overall, we concluded that by using a moderate map-update ratio and maps that are

neither too wide nor narrow, results to the enhancement of the agent’s overall navigating

performance and environment adaptability. Also, it is noteworthy that the training

procedure of one episode in our OpenAI Gym environment takes approximately 0.027

seconds. The vast majority of the aforementioned models converged and showed desired

results roughly before the progression of the second minute and their total training time

of 5000 episodes lasted approximately 2.25 minutes. Each time there was a training

procedure, the resulted weights were store locally and named accordingly to indicate

information about the used networks’ sizes, environment parameters, and timestamps

to distinguish them from other instances. Hence, this fact enables fast training and

evaluation procedures, and thus, facilitates the acquirement of the most appropriate and

desired agent’s behavior.

Dimitrios Chatziparaschis 93 November 2020

5. RESULTS

5.1.2 Application of the Trained Models in the Gazebo and

Results

As the model has been trained in the OpenAI Gym environment, the succeeding step is

to transfer and apply the learned model into the Gazebo environment on to the simulated

Matrice 100 model. For this reason, a middle-node is developed to load the pre-trained

weights of the OpenAI Gym behavior and to communicate with the Gazebo simulator, in

order to send pose commands according to the captured Hokuyo LiDAR ranging data. In

this way, the trained models can be fully utilized and evaluated in the Gazebo world, in

various scenarios without the need of using the Gazebo simulator for training procedures.

Figure 5.6: Moments of an OpenAI Gym experiment UAV movement in a randomly

generated Gazebo world.

Initially, this middle node subscribes to the UAV’s 2D LiDAR topic, to capture real-

Dimitrios Chatziparaschis 94 November 2020

5.1 Autonomous Navigation and Experiments

Figure 5.7: Moments of autonomous UAV movement in a randomly generated Gazebo

world. The center image illustrates the current map and UAV position belief, as appeared

in RvIZ tool. The aqua line depicts the UAV trajectory within the map.

time ranging data from the onboard LiDAR. Given that, the data are filtered to obtain

the distance measurements in θ = [0◦,±45◦,±90◦, 180◦] directions, similarly to the Ope-

nAI Gym simulator. Due to the Hokuyo LiDAR model ranging resolution, we average

5 distance values for each of the aforementioned scanning directions. Thenceforth, these

measurements are parsed in the pre-trained model as observations, and thus, new move-

ment commands are acquired for the UAV system to follow. Figures in 5.6 show moments

during the autonomous navigation of the UAV in a random polygon map in the OpenAI

simulator. Figures in 5.7 illustrate the exact same map construction and autonomous

navigation of the M100 system in the Gazebo world. As it is clear, the UAV behaves

similarly in the Gazebo environment, as it utilizes successfully the obtained knowledge

from prior training procedures that occurred in the OpenAI simulator environment.

Overall, as mentioned in Section 4.2.3, the UAV has learned to translate in x, y

axis directions. As soon as a target is observed in an extreme position relative to the

UAV body, only orientation movements are applied until the target position becomes

centered with the UAV heading orientation. As the target is centered in respect of the

Dimitrios Chatziparaschis 95 November 2020

5. RESULTS

UAV heading orientation, the UAV accepts pose commands captured from the used pre-

trained model, and thus moves towards the target. Also, during the UAV path, random

orientation movements are performed (since there is not any target observed) and also

orientates towards unknown areas if it assumes that the current area has been sufficiently

covered. It is worth noting that, as soon as a target is detected and the UAV is moving

towards it, movement reduction is applied in order to be more precise during the target

positioning procedure.

5.2 Autonomous Human Detection and Experiments

Initially, since our future goal is to develop a real UAV system to operate in emergency

situations, the developed autonomous detector was initially trained and tested under real

imagery data. Therefore, as we conclude with the appropriate network architecture and

characteristics, the system was trained from scratch on a custom dataset that was created

within the Gazebo software and tested in various simulation environments.

5.2.1 Training on COCO Dataset and Detection Performance

To evaluate the neural network performance in human detection, we selected 5000 images

from the COCO training dataset of 2017 to use for training and 50 additional images for

testing purposes. In both training and testing datasets, we have included images that

either contain or no depictions of people in their frames, to further check the detector

performance in various situations. Also, since the COCO dataset contains images with

different dimensions, we rescaled their sizes to match the resolution of the UAV’s optical

camera, and also downscaled them in respect to 4:3 ratio, namely the 256 × 256 resolu-

tion, to minimize detection time and make the neural network demands appropriate for

onboard and online execution.

As we have presented notable metrics and loss functions which are made ideally

for semantic segmentation scenarios, we had to evaluate their performance in detection

accuracy under a common imagery dataset. For this reason, we initialized the neural

network model and performed the same training procedure, by altering the used loss

function at each time. During the training, we keep performance information for each

implemented metric, and also we test custom loss functions in order to furtherly check

the system’s behavior. In particular, we constructed and trained the detector system on

Dimitrios Chatziparaschis 96 November 2020

5.2 Autonomous Human Detection and Experiments

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.8: Loss function values during training and testing procedures for COCO dataset (25

epochs). In each figure, the fluctuating lines depict the loss values during the training process

and the smooth lines during the testing. Figures (a) : MSE, (b) : MSE + DL, (c) : IoU, (d) :

BCE , (e) : Fβ(β = 2), (f) : Fβ(β = 0.5), (g) Tversky(α = 0.7, β = 0.3), (h) : Tversky(α = 0.3,

β = 0.7), (i) : DL, (j) : BCE + DL, (k) : BCE + Tversky(α = 0.7, β = 0.3) and (l) : BCE +

Tversky(α = 0.3, β = 0.7).

Dimitrios Chatziparaschis 97 November 2020

5. RESULTS

the following loss functions,

- Mean Squared Error.

- Binary Cross Entropy.

- Dice Loss.

- Intersection over Union.

- Tversky Loss (α = 0.3, β = 0.7).

- Tversky Loss (α = 0.7, β = 0.3).

- Fβ Score (β = 2).

- Fβ Score (β = 0.5).

- Mean Squared Error + Dice Loss.

- Binary Cross Entropy + Tversky Loss (α = 0.3, β = 0.7).

- Binary Cross Entropy + Tversky Loss (α = 0.7, β = 0.3).

(a) Sensitivity value. (b) Specificity value.

Figure 5.9: Both Tversky Loss model performances, during training and testing proce-

dures.

The aforementioned functions will affect differently the network’s learning procedure,

and thus will result in various model behaviors which will treat FP and FN evenly or

Dimitrios Chatziparaschis 98 November 2020

5.2 Autonomous Human Detection and Experiments

learn to penalize one of the two quantities more than the other. Figures in 5.8 illustrate

the training and testing curves for each loss function, under the same imagery dataset

and network architecture. As it is clear, all loss functions aid the detector’s learning

ability, since the loss value is decreased over the epoch progression.

Meanwhile, it is quite interesting to evaluate the detector behavior which is trained

by using the Tversky Loss function, under different α and β values. Figures in 5.9 depict

the difference in Specificity and Sensitivity behavior of the two models, as they have

learned to penalize dissimilarly the mispredicted positive and negative results. As it is

obvious, the detector which had a higher value of the β parameter presents less FN , and

consequently keeps better scores in the Sensitivity metric. Similarly, the detector which

utilized the Tversky loss function with greater α, compared with the β parameter, had

better scores in the Specificity metric, which is strictly connected with the FP quantity

and the amount of correct negative predictions.

Figure 5.10: Tversky Loss models with the Dice loss trained model (middle line graph).

Figure 5.10 depicts the Precision value during training, which also depends on TP

and FP values, and pinpoints the Tversky with higher α value predominance. In this

line graph, the Dice loss model is also plotted which has a more uniform behavior towards

the FN and FP values, as is obvious from its moderate line trend.

Likewise, the behavior of Fβ score presents different results depending on the value of β

parameter. Specifically, for greater β values the model tends to penalize and mitigate the

FN values, in contrast with lower β values. Figures 5.11 show the results of Sensitivity

and Specificity parameters during training of the two Fβ versions.

It is noteworthy that, Fβ score behaves similarly with the Tversky loss, as by adjusting

the Fβ’s parameter, we tune the importance of Sensitivity over Precision. For this reason,

Dimitrios Chatziparaschis 99 November 2020

5. RESULTS

(a) Sensitivity value. (b) Specificity value.

Figure 5.11: Fβ loss models performances, during training and testing procedures.

(a) Sensitivity value. (b) Specificity value.

Figure 5.12: Tversky and Fβ loss models performance similarity.

as it is depicted in Figure 5.12, Fβ presents similar results with Tversky-trained models,

during testing.

Aptly, the Dice loss and IoU trained models present similar performances, as shown

in Figure 5.13, due to their linear dependency.

In the meantime, we implemented custom loss functions as an amalgam of the afore-

mentioned functions, in order to amalgamate their detection characteristics. First, we

created a combination of BCE and Dice loss function, to contribute equally to the final

calculated loss. The results, as depicted in Figure 5.14, show the creation of a model

that preserves characteristics from both the aforementioned metrics since it illustrates an

average score during testing, in both Sensitivity and Specificity criteria. In this way,

Dimitrios Chatziparaschis 100 November 2020

5.2 Autonomous Human Detection and Experiments

Figure 5.13: MSE loss values, for Dice Loss and IoU trained models.

(a) Sensitivity value. (b) Specificity value.

Figure 5.14: Trained model with a combination of BCE and Dice loss functions. The

pink line illustrates the testing scores of the combined model.

the fusion of both loss functions emerges to the improvement of the current model, as

the new one has a more intermediate behavior compared with both metrics separately.

This occurrence is more notable in the second combination, of the BCE and Tversky(α =

0.3, β = 0.7) loss. In specific, Figure 5.15 illustrate that the scores of the testing proce-

dure of the fused model, and the moderate behavior in both Sensitivity and Specificity

metrics.

In the third combination of the BCE and Tversky(α = 0.7, β = 0.3) loss functions,

implies a new model that presents an improved behavior in TP localization. Despite the

Specificity performance which shows slight behavior differences, Figure 5.16 depicts the

model increased Sensitivity scores during testing. As the Tversky(α = 0.7, β = 0.3) loss

Dimitrios Chatziparaschis 101 November 2020

5. RESULTS

(a) Sensitivity value. (b) Specificity value.

Figure 5.15: Trained model with a combination of BCE and Tversky(α = 0.3, β = 0.7)

loss functions. The brown line illustrates the testing scores of the fused model.

(a) Sensitivity value. (b) Specificity value.

Figure 5.16: Trained model with a combination of BCE and Tversky(α = 0.7, β = 0.3)

loss functions. The green line illustrates the testing scores of the combined model.

function deals with the reduction of FP , the combination with the BCE loss function

implies further enhancement of its detection behavior.

Last, the combination of the MSE and the Dice loss function presents minor improve-

ments, as the model inherits characteristics from the latter loss function. Figure 5.17

illustrates the model’s Sensitivity and Specificity on test data, during training.

Overall, Table 5.1 presents the scores of Sensitivity, Specificity, and Accuracy for

each trained model, evaluated on the testing dataset. As it is clear, the detectors are

improved along with the epochs progression as they indicate increasing scores. In terms

Dimitrios Chatziparaschis 102 November 2020

5.2 Autonomous Human Detection and Experiments

(a) Sensitivity value. (b) Specificity value.

Figure 5.17: Trained model with a combination of MSE and Dice loss functions. The

orange line illustrates the testing scores of the combined model.

of positives, the majority of the detectors seem to perform better during training pro-

gression, and specifically, those that focus on TP detection and FP minimization (as the

Tversky with β = 0.7 and Fβ with β = 2) have noteworthy performance. Also, every

trained system can acquire good scores on negatives recognition (Specificity) early in the

training process, since most images contain small proportions of positive areas compared

with the negatives. For this reason, many detectors tend to mark the biggest amount

of the images as negatives, and thus they yield notably good results in the Specificity

metric which may be misinformative about their overall performance.

In particular, the Accuracy score is formed by taking both positive and negatives pre-

diction into consideration, as is defined in 2.14. However, this metric may misinterpret

the detector’s performance, as it based on both Sensitivity and Specificity quantities.

For example, in a case of a detector’s assumption that the total image is negative, the

Specificity score may be significantly high because there may numerous negative ar-

eas in the viewing scene, in contrast with the Sensitivity value which will be crucially

small. The Accuracy parameter in this situation will be high (probably bigger than 0.85),

which will create the false notion that the detector is accurate. Henceforth, this is the

primary reason that we always evaluate each Sensitivity and Specificity parameters in

our models, to monitor simultaneously and independently their performances in TP and

TN detection.

Overall, according to the metric results presented in Table 5.1, we would use the

detector’s version which had better scores in Sensitivity, since the vast majority of them

Dimitrios Chatziparaschis 103 November 2020

5. RESULTS

Loss Function\Epoch # 5 15 25 5 15 25 5 15 25

MSE 0.43 0.46 0.47 0.95 0.96 0.96 0.88 0.89 0.89

BCE 0.34 0.38 0.43 0.97 0.97 0.96 0.88 0.89 0.89

DL 0.48 0.51 0.52 0.93 0.94 0.94 0.87 0.88 0.89

IoU 0.61 0.62 0.67 0.91 0.93 0.93 0.87 0.88 0.90

Tversky(α = 0.3, β = 0.7) 0.65 0.73 0.78 0.88 0.86 0.87 0.85 0.85 0.85

Tversky(α = 0.7, β = 0.3) 0.40 0.41 0.43 0.96 0.96 0.96 0.88 0.89 0.89

Fβ(β = 2) 0.63 0.72 0.76 0.88 0.86 0.87 0.85 0.84 0.85

Fβ(β = 0.5) 0.39 0.41 0.42 0.96 0.96 0.96 0.88 0.89 0.89

MSE + DL 0.59 0.51 0.51 0.89 0.93 0.94 0.85 0.87 0.88

BCE+Tversky(α = 0.3, β = 0.7) 0.51 0.57 0.63 0.94 0.96 0.92 0.88 0.88 0.88

BCE+Tversky(α = 0.7, β = 0.3) 0.38 0.47 0.51 0.97 0.93 0.96 0.89 0.89 0.90

BCE + DL 0.87 0.52 0.58 0.94 0.93 0.93 0.87 0.88 0.88

Table 5.1: Sensitivity, Specificity and Accuracy scores for certain number of epochs.

have similar scores in negatives detection. Figures 5.18, 5.19 and 5.20 illustrate human

detection tests based on a COCO image of 2014 dataset, across all trained detectors. As

it is evident, the detectors recognize sufficiently the humans in the viewing scene, even

being in groups or alone. According to the results, it is apparent that some detectors

include more areas as positives in their final prediction, while others are more cautious

about their selection. Since we use a thermal camera companied with our optical camera,

in our situation we prefer positive-confident detectors (like Tversky(β=0.7), Fβ(β = 2)

and Jaccard) as the given prediction will be postprocessed with the thermo-positive

areas. However, in case that the casualties have no high-temperature, we focus on optical

detector’s beliefs that are strong and remain through exploration and thus command the

UAV to approximate the target to furtherly examine and localize it. Figures in 5.21 show

human recognition results made on random everyday images, and showcase the Jaccard

and Tversky(β=0.7) detectors’ application and characteristics.

Dimitrios Chatziparaschis 104 November 2020

5.2 Autonomous Human Detection and Experiments

Input Image.
Segmentation Mask

(Groundtruth).
Standardized Image.

(1.a) (1.b) (2.a) (2.b) (3.a) (3.b)

(4.a) (4.b) (5.a) (5.b) (6.a) (6.b)

(7.a) (7.b) (8.a) (8.b) (9.a) (9.b)

(10.a) (10.b) (11.a) (11.b) (12.a) (12.b)

Figure 5.18: Single person detection. The predicted areas (a) and the comparison with the segmen-

tation (groundtruth) mask (b). The comparison images (b) depict with green color the TP , with black

color the TN , with red color the FN and with gray color the FP . Figures (1) : BCE , (2) : DL, (3)

: IoU , (4) : BCE + Tversky(α = 0.7, β = 0.3), (5) : BCE + Tversky(α = 0.3, β = 0.7), (6) : BCE

+ DL, (7) : Fβ(β = 0.5), (8) : Fβ(β = 2), (9) : MSE + DL, (10) Tversky(α = 0.7, β = 0.3), (11) :

Tversky(α = 0.3, β = 0.7) and (12) : MSE.

Dimitrios Chatziparaschis 105 November 2020

5. RESULTS

Input Image.
Segmentation Mask

(Groundtruth).
Standardized Image.

(1.a) (1.b) (2.a) (2.b) (3.a) (3.b)

(4.a) (4.b) (5.a) (5.b) (6.a) (6.b)

(7.a) (7.b) (8.a) (8.b) (9.a) (9.b)

(10.a) (10.b) (11.a) (11.b) (12.a) (12.b)

Figure 5.19: Human detection in group of people. The predicted areas (a) and the comparison with

the segmentation (groundtruth) mask (b). The comparison images (b) depict with green color the TP ,

with black color the TN , with red color the FN and with gray color the FP . Figures (1) : BCE , (2) :

DL, (3) : IoU , (4) : BCE + Tversky(α = 0.7, β = 0.3), (5) : BCE + Tversky(α = 0.3, β = 0.7), (6) :

BCE + DL, (7) : Fβ(β = 0.5), (8) : Fβ(β = 2), (9) : MSE + DL, (10) Tversky(α = 0.7, β = 0.3), (11) :

Tversky(α = 0.3, β = 0.7) and (12) : MSE.

Dimitrios Chatziparaschis 106 November 2020

5.2 Autonomous Human Detection and Experiments

Input Image.
Segmentation Mask

(Groundtruth).
Standardized Image.

(1.a) (1.b) (2.a) (2.b) (3.a) (3.b)

(4.a) (4.b) (5.a) (5.b) (6.a) (6.b)

(7.a) (7.b) (8.a) (8.b) (9.a) (9.b)

(10.a) (10.b) (11.a) (11.b) (12.a) (12.b)

Figure 5.20: Human detection in a tennis scene. The predicted areas (a) and the comparison with

the segmentation (groundtruth) mask (b). The comparison images (b) depict with green color the TP ,

with black color the TN , with red color the FN and with gray color the FP . Figures (1) : BCE , (2) :

DL, (3) : IoU , (4) : BCE + Tversky(α = 0.7, β = 0.3), (5) : BCE + Tversky(α = 0.3, β = 0.7), (6) :

BCE + DL, (7) : Fβ(β = 0.5), (8) : Fβ(β = 2), (9) : MSE + DL, (10) Tversky(α = 0.7, β = 0.3), (11) :

Tversky(α = 0.3, β = 0.7) and (12) : MSE.

Dimitrios Chatziparaschis 107 November 2020

5. RESULTS

Figure 5.21: Human detection experiments under various scene contexts and conditions.

Dimitrios Chatziparaschis 108 November 2020

5.2 Autonomous Human Detection and Experiments

Loss Function\Epoch # 5 12 18

MSE 0 0 0

BCE 0.32 0.59 0.58

DL 0.60 0.75 0.78

IoU 0.31 0.75 0.70

Tversky(α = 0.3, β = 0.7) 0.46 0.77 0.83

Tversky(α = 0.7, β = 0.3) 0.42 0.58 0.63

Fβ(β = 2) 0.63 0.87 0.85

Fβ(β = 0.5) 0.57 0.71 0.69

MSE + DL 0.75 0.78 0.80

BCE+Tversky(α = 0.3, β = 0.7) 0.70 0.81 0.83

BCE+Tversky(α = 0.7, β = 0.3) 0.51 0.73 0.84

BCE + DL 0.51 0.72 0.72

Table 5.2: Sensitivity scores for certain number of epochs.

5.2.2 Training on Gazebo Dataset and Results

In the same way with the COCO dataset, we train our model based on the generated

Gazebo dataset, to be able to locate virtual people within the simulator and proceed with

their rescue. In specific, we created a person dataset, as described in Section 4.3.1.5, and

performed a similar training approach with the COCO dataset, to conclude with the

most appropriate and accurate model for our scenario. A vital factor in this part is that

this detector has to perform in real-time, as it will run onboard on the simulated UAV,

to be able to correlate its results with the rest of captured data (thermography positives,

mapping procedure, etc.) and decide about the subsequent actions.

In particular, we generated a 5300 imagery dataset by flying the UAV in various

Gazebo worlds and excluded 500 images for the testing procedures. Besides, we extracted

the overall mean and variance of the current dataset and stored it for the training and

the real-time detection procedures of the detector. Similarly, as with the COCO detec-

tor, we trained over all the created loss functions and stored their training and testing

performances to evaluate their behavior efficiency.

Figures in 5.22 illustrate the loss function outcomes during training and testing pro-

cedures. First, we observe that despite the different formats of the Gazebo dataset as

Dimitrios Chatziparaschis 109 November 2020

5. RESULTS

it contains virtual depictions of humans, the loss functions affect the model’s behavior,

analogously with the COCO training. In specific, the Tversky-based models focus sepa-

rately on the details of FP and FN according to their parameter setup, and the MSE,

BCE, and Dice loss present more moderate results.

As mentioned before, the behavior of the detectors is similar in the Gazebo generated

dataset, even though the vast majority of the images are taken from farther distances and

depict only one human in their frame. Nonetheless, few detectors seem to be affected by

the form of this dataset. In specific, with the current dataset, the MSE detector indicated

zero values in the Sensitivity and one in Specificity, while the MSE loss was decreasing,

due to the limited number of positives in the training images. However, most trained

models performed sufficiently as they seize the available information of the dataset, to

perform human detection within the Gazebo environment. Figures in 5.23 and the Table

5.2 illustrate predictions and the metric scores for the different trained models, as they

were evaluated on the testing data.

Dimitrios Chatziparaschis 110 November 2020

5.2 Autonomous Human Detection and Experiments

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.22: Loss function values during training and testing procedures for Gazebo Dataset

(25 epochs). In each figure, the fluctuating lines depict the loss values during the training

process and the smooth lines during the testing. Figures (a) : MSE, (b) : MSE + DL, (c) :

IoU, (d) : BCE , (e) : Fβ(β = 2), (f) : Fβ(β = 0.5), (g) Tversky(α = 0.7, β = 0.3), (h) :

Tversky(α = 0.3, β = 0.7), (i) : DL, (j) : BCE + DL, (k) : BCE + Tversky(α = 0.7, β = 0.3)

and (l) : BCE + Tversky(α = 0.3, β = 0.7).

Dimitrios Chatziparaschis 111 November 2020

5. RESULTS

Input Image.
Segmentation Mask

(Groundtruth).
Standardized Image.

(1.a) (1.b) (2.a) (2.b) (3.a) (3.b)

(4.a) (4.b) (5.a) (5.b) (6.a) (6.b)

(7.a) (7.b) (8.a) (8.b) (9.a) (9.b)

(10.a) (10.b) (11.a) (11.b) (12.a) (12.b)

Figure 5.23: Single person detection in the Gazebo world. The predicted areas (a) and the comparison

with the segmentation (groundtruth) mask (b). The comparison images (b) depict with green color the

TP , with black color the TN , with red color the FN and with gray color the FP . Figures (1) : BCE ,

(2) : DL, (3) : IoU , (4) : BCE + Tversky(α = 0.7, β = 0.3), (5) : BCE + Tversky(α = 0.3, β = 0.7),

(6) : BCE + DL, (7) : Fβ(β = 0.5), (8) : Fβ(β = 2), (9) : MSE + DL, (10) Tversky(α = 0.7, β = 0.3),

(11) : Tversky(α = 0.3, β = 0.7) and (12) : MSE.

Dimitrios Chatziparaschis 112 November 2020

5.2 Autonomous Human Detection and Experiments

Figure 5.24: Human detection based on the simulated UAV’s optical data.

As soon as the training and evaluation procedures have been completed, we selected

the Tversky(α = 0.3, β = 0.7) Gazebo trained model and we built a CvBridge node

to process online the optical feed of the simulated camera with this detector. Due to

the downscaling of the captured image, namely from 720p to 256 × 256 resolution, the

onboard detector achieves approximately 22 processed frames per second, tested on a

1080GTX Ti. Although, since nowadays UAVs do not carry such powerful embedded

GPUs, the detector can be adjusted and minimized in size to achieve similar processing

timings. Every prediction made from the optical detector is timestamped accordingly to

the robot’s clock, and thus it can be correlated with the corresponding thermography

image which is captured by the thermal camera. Thence, as we applied the trained

detector on the UAV, we performed numerous tests in various Gazebo environments to

evaluate its behavior. Figures in 5.24 depict the onboard detectors’ ability to locate

Dimitrios Chatziparaschis 113 November 2020

5. RESULTS

casualties within the simulator world.

Figure 5.25: Multi-target detection and prioritization, in obstructed area.

Figure 5.26: Multi-target detection and prioritization, in open area.

A noteworthy fact is that the detector gained the ability to recognize multiple hu-

mans within a single frame, although it has been trained on frames that depict a single

person. Figures 5.25 and 5.26 illustrate a situation in which the UAV has detected three

individuals, in a created occurrence. The information acquired by the optical detector

is described in respect of the custom PositiveAreas message structure, which contains

the capture moment timestamp, the areas’ moment coordinates, and the occupation area

polygons on the thermal image plane.

Dimitrios Chatziparaschis 114 November 2020

5.3 Navigation and Reconnaissance Experiments in Unknown Gazebo
Worlds

5.3 Navigation and Reconnaissance Experiments in

Unknown Gazebo Worlds

First, as we have evaluated and concluded with our trained agent’s behavior, we proceed

with experiments in the Gazebo world. As mentioned in Section 5.1.2, each time a

training procedure is completed, the actor and critic neural networks weights are stored

locally, to be available for deployment on the custom simulated UAV of the Gazebo.

Henceforth, we generated Gazebo worlds from auto-created OpenAI Gym environments,

under various specifications and additions, and we proceed with the agent’s behavior

evaluation. It is noteworthy that in these tests we did not include any thermal-positive

or human-related objects, to strictly focus on the UAV’s navigation and exploration

behavior.

(a) (b) (c)

Figure 5.27: Evaluating the UAV’s navigation performance in a 25-meter-long area.

As Figures 5.27 depict, we generated a 25-meter in length world and we initialized the

UAV pose to look towards and be close to a map’s wall. As the UAV system initiated the

exploration and the SLAM approach, it got soon to a dead-end of the area, as it moved

forward. For this reason, the agent decided to perform a 180◦ rotation, to pivot towards

the unknown areas that were located on the other side of the map. As the rotation has

been completed, the UAV completed a movement sequence until it reached the other

side of the environment. Figure 5.27-(b) illustrates the panorama view of the calculated

trajectory, which shows the exact UAV movement’s decision chain. In this way, the UAV

preserved an approaching middle-line trajectory to keep a safe distance from the nearby

walls. During this time, the UAV mapped the unknown area and completed the search,

when it reached the other side of the map and covered all unexplored areas.

Dimitrios Chatziparaschis 115 November 2020

5. RESULTS

(a) (b) (c)

Figure 5.28: Evaluating the UAV’s navigation performance in a 32-meter-long area with

included obstacles.

In addition, Figure 5.28 shows an experiment made on a 32-meter-long environment,

which had various obstacles placed in its area. The UAV started from a certain position

and by utilizing the autonomous exploration node it achieved to navigate successfully

and safely towards the end of the environment. In particular, at a specific point that is

shown in Figure 5.28-(c), the UAV avoided a box object that was on its way to explore

the back part of the map. The agent pivoted ideally towards the obstacle-free area

and it managed to pass through the open space by maneuvering through the passage.

Thenceforth, the UAV investigated the hidden and unexplored area and concluded with

the complete mapping of the rescuing field.

(a) (b) (c)

Figure 5.29: Evaluating the UAV’s navigation performance in a 52-meter-long area, with

the minimum narrowness value of 2 meters, and maximum wideness value of 10 meters.

To further evaluate the performance of the autonomous exploring UAV, we created a

52-meter-long environment with narrower spots and a limited width level. As depicted

Dimitrios Chatziparaschis 116 November 2020

5.3 Navigation and Reconnaissance Experiments in Unknown Gazebo
Worlds

in Figures 5.29, despite the UAV’s limited perception ability (6 distance measurements

for each step), it managed to fulfill its primary objective to perform the mapping of the

unknown area by achieving a safe moving operation throughout the area exploration.

Search-and-Rescue Experiment in a Cluttered Gazebo World

Figure 5.30: A Gazebo environment based on a random maze object enriched with various

objects, and reconnaissance targets.

(a) (b)

Figure 5.31: The detection of the first two targets.

In this part, we test the performance of our autonomous Search-and-Rescue UAV in a

custom cluttered Gazebo environment. The basis of this environment is initiated by the

Dimitrios Chatziparaschis 117 November 2020

5. RESULTS

generated OpenAI Gym environment, which is used for example Figure 5.28, and various

objects have been added in its area along with the reconnaissance targets. The placement

of the object obstacles and the walls have been made ideally to create diversity in the

map’s accessible areas, in order to check the UAV’s navigation ability. Also, as seen in

Figures 5.30 we placed both human and thermal-positive objects in different positions

and covered them with other objects to make the detection procedure more complex. In

addition, colored environment objects have been utilized to evaluate the color camera’s

detector robustness.

Figure 5.32: Camera captures during the positioning of the first viewed target.

First, as we enable the simulated UAV, it starts directly with the autonomous map-

ping and target detection procedure. From the early moments of the exploration of the

unknown area, the UAV located the first thermal-positive object and enabled the en-

gaging behavior of the gimbal unit to perform its localization. Figure 5.31-(a) depicts

this particular moment, as appeared in the Gazebo. As the UAV has engaged in the

positive target, it approaches it by performing movements calculated by the autonomous

navigation behavior. During this approach, the UAV keeps its gimbal aiming locked on

the object’s body, as appeared in Figure 5.32, and performs distance measurements. By

correlating the captured ranges along with its global positions, and by performing the

multilateration approach with the online spatial criteria, it concludes with the object’s

global position. During this time, the UAV performs simultaneous localization and map-

ping procedures, and thus updates its pose relative to the continuously updating map of

Dimitrios Chatziparaschis 118 November 2020

5.3 Navigation and Reconnaissance Experiments in Unknown Gazebo
Worlds

the area.

As the target’s position has been approximated, which is depicted in the last snapshot

of Figure 5.32, the UAV stores the object location and pins it on the rescuing map. The

Figures 5.34-(a,b,c) illustrate the steps of the UAV system until it concludes with the

first target’s global position.

Figure 5.33: Camera captures during the positioning of the second viewed target.

Since the first target is acquired, the UAV ignores it from future detections (last Figure

of 5.32) and proceeds with the coverage of the unexplored areas. The second detected

target is placed under a car object within the generated environment. Figure 5.31-(b)

shows a moment during the UAV’s engagement on this target. The UAV performs similar

approaching movements while it is engaged on the target, to extract its relative position

and add it to the rescuing map. Figures 5.34-(d,e,f) depict the executed trajectory of the

UAV until the extraction of the target position, which is evident in its detection frame

in last Figure of 5.33. Figure 5.34-(g) shows the rescuing area map illustration after the

first two targets’ positioning procedures.

Furthermore, as the UAV reached in the end of the map, it pivoted towards its

starting point, to face towards the unmapped areas. By knowing the previously positioned

targets, the UAV excludes them from the engaging behavior, and proceeds with the

area exploration. Similarly, the UAV navigates safely through the environment, while it

searches for possible targets.

As the UAV utilizes the color and thermal camera’s input, simultaneously, to perform

Dimitrios Chatziparaschis 119 November 2020

5. RESULTS

(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.34: Rescuing map depiction in RViZ, during the exploration and positioning

procedures of the first two targets.

human detection, it locates the next target at its left side, as appeared in Figure 5.35-(a).

Even though, this object is hidden behind Gazebo objects, the UAV manages to locate

and georeference it succesfully. Figures 5.36-(a,b,c) show the UAV’s followed steps, until

it acquired the target’s global position.

Dimitrios Chatziparaschis 120 November 2020

5.3 Navigation and Reconnaissance Experiments in Unknown Gazebo
Worlds

(a) (b)

Figure 5.35: The detection of the third and fourth target.

(a) (b) (c)

(d) (e) (f)

Figure 5.36: The mapping procedure of the third and fourth targets.

Also, Figures in 5.37 indicate the human detection results during the movement of

the UAV, and show the final approximated and projected targets’ three-dimensional

positions. As the third target has been positioned, the UAV moves forward, as appeared

in Figure 5.36-(d,e,f). During its upcoming steps, it is noteworthy to underline the

successful manuevring movements of the UAV, in order to pass through these narrow

Dimitrios Chatziparaschis 121 November 2020

5. RESULTS

and obstructed points of the map safely. Eventually, the UAV recognized the fourth

target, which can be depicted in Figure 5.35-(b). Although this target was also covered

with Gazebo objects, the UAV managed to locate it and obtain its global position. Figure

5.36-(f) show the final approximated position of this target, within the map and global

coordinate system.

With the completion of the localization procedure of the fourth human, the UAV

rotated towards the unexplored regions of the map that were placed at a corner of the

environment, which has been uncovered from the start of the reconnaissance approach. In

this part of the map, we have included a human object to be found by the UAV rescuer.

Hence, as the UAV translated efficiently and safely around the existing wall obstacle,

it located the human’s head, as illustrated in Figure 5.38-(a). Thus, the UAV moved

towards the target while it performed distance measurements, which were parsed by the

multilateration algorithm. Figure 5.39 show the moments during the target detection and

show the ability of the UAV to locate the human object, even in low-lighting conditions,

and the Figure 5.38-(b) shows corresponding rescuing map status after the positioning

of the fifth target.

Overall, the autonomous UAV system performs adequately in most tested Gazebo

scenarios. The UAV achieves to navigate safely in the unknown area and performs target

search and detection procedures effectively while performing the target positioning ap-

proach. Nonetheless, in more obstructed and obstacle-rich environments, the autonomous

detection and navigation behaviors are complicated, which fact indicates that they need

further training, with more than 5000 images and more testing environment specifications,

to be more robust and adaptive in such situations. A brief video from these experiments

can be found in the corresponding ROS package repository1.

1This video can be found at my corresponding ROS package repository, at https://github.com/

jimcha21. I am truly thankful to Manos Stefanakis for editing this video for me, for my thesis presen-

tation.

Dimitrios Chatziparaschis 122 November 2020

https://github.com/jimcha21
https://github.com/jimcha21

5.3 Navigation and Reconnaissance Experiments in Unknown Gazebo
Worlds

Figure 5.37: Human detection moments during the UAV’s autonomous operation. The

detection frames, along with predicted human regions and their final segmented forms,

indicate the abitily of the UAV to locate humans within the Gazebo environment.

Dimitrios Chatziparaschis 123 November 2020

5. RESULTS

Figure 5.38: The discovery of the fifth human object.

Figure 5.39: Human detection moments during the UAV’s autonomous operation and

the localization of the fifth target.

Dimitrios Chatziparaschis 124 November 2020

Chapter 6

Conclusion

6.1 Conclusion

This thesis presents a complete approach for enhancing the autonomous behavior of

a UAV system, that acts in reconnaissance procedures of Search-and-Rescue scenarios.

Throughout this study, we showcase applications of Machine Learning algorithms for both

robotic perception and control, integrated into a more comprehensive rescuing behavior,

to achieve human detection and positioning in unknown environments. In specific, assum-

ing that the UAV has to operate alone in the emergency, we initially propose sensors that

are prerequisites for this operation. In order to develop and evaluate our approach, we

utilize a robotic simulator and build a simulated UAV with an attached three-dimensional

gimbal unit, to perform multiple and various experiments.

As the UAV has to navigate autonomously in the unknown field, we constructed a

dedicated OpenAI Gym world and performed a Deep Reinforcement Learning approach

to acquire the most suitable agent’s behavior. Afterwards, as one of the primary goals

is to locate objects of interest in the field, and especially individuals that need help, we

present a custom neural network detector to perform pixel-wise human detection. This

detector is evaluated in a real-world imagery dataset and therefore it is trained on a

custom dataset that has been created from flights within the Gazebo environment. The

outcome of this prediction is post-processed and fused with the thermography captures

of an onboard thermal camera, to further evaluate the viewed findings.

Thenceforth, by having this information the UAV utilizes its onboard gimbal system

to engage on the detected target and simultaneously performs distance measurements. In

Dimitrios Chatziparaschis 125 November 2020

6. CONCLUSION

this way, the UAV georeferences each captured distance with respect to its current global

position and approximates the target three-dimensional position by using a multilatera-

tion approach. During the UAV’s range capturing procedure, we apply real-time spatial

criteria to ensure the convergence of the non-linear multilateration approach. As the

target position has been acquired, the UAV stores and pinpoints the approximated posi-

tion on the generated rescuing map, and proceeds with the exploration of the unknown

environment.

6.2 Future Work

6.2.1 Evaluation in Real-World Scenarios

As mentioned throughout this thesis, this is a complete ROS package which is built under

the standard ROS Enhancement Proposals (REP), and especially the Informational REPs

of 144, 103, and 105, which can be installed on any simulated or real UAV system that

meets the required technical specifications. For this reason, since this package has been

tested and evaluated in a simulation environment, a vital extension could be its testing in

real-world scenarios. Specifically, across this thesis we reference situations in which this

package could perform successfully in real SAR scenarios, such as the evaluation of the

human detection under the COCO dataset, the sensors’ noise inclusions in the Gazebo

environment, and the package compatibility with ROS-enabled UAVs, which all portend

its capability of using it in real-world situations and systems.

6.2.2 Multi-Agent Collaboration

Additionally, a noteworthy expansion of this work could be the inclusion of a multi-

agent approach to solve the common SAR scenario. Admittedly, by deploying more than

one UAV system in the field, the first-responder teams can minimize the reconnaissance

timings drastically, as the rescuing robots can cooperate in the exploration of the unknown

area and can find casualties and obtain vital information quicker. Also, a combined

localization approach can be implemented in which positioning data of a single target can

be shared across the operating UAVs and approximate the victims’ coordinates jointly.

For this sight, we purposely developed this software package to run under a predefined

ROS namespace to support independent execution in the ROS environment, without the

Dimitrios Chatziparaschis 126 November 2020

6.2 Future Work

intervention of the execution of its cloned instances from the other UAV systems which

will be in the same network.

Dimitrios Chatziparaschis 127 November 2020

6. CONCLUSION

Dimitrios Chatziparaschis 128 November 2020

References

[1] Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,

Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on

Open Source Software. (2009) 7

[2] Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source

multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Volume 3. (Sep. 2004)

2149–2154 vol.3 8

[3] Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by

reducing internal covariate shift. CoRR abs/1502.03167 (2015) 16, 25

[4] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,

D., Riedmiller, M.A.: Playing atari with deep reinforcement learning. CoRR

abs/1312.5602 (2013) 19

[5] Walker, M.E., Hedayati, H., Szafir, D.: Robot teleoperation with augmented reality

virtual surrogates. In: 2019 14th ACM/IEEE International Conference on Human-

Robot Interaction (HRI), IEEE (2019) 202–210 24

[6] Roberts, E.G.: Single-Task and Dual-Task Mental Workload Analysis of Unmanned

Ground Vehicle Teleoperation in a Search and Rescue Scenario. PhD thesis, Univer-

sity of South Dakota (2020) 24

[7] Bechar, A., Vigneault, C.: Agricultural robots for field operations. part 2: Opera-

tions and systems. Biosystems Engineering 153 (2017) 110 – 128 24

Dimitrios Chatziparaschis 129 November 2020

REFERENCES

[8] Isop, W.A., Gebhardt, C., Nägeli, T., Fraundorfer, F., Hilliges, O., Schmalstieg,

D.: High-level teleoperation system for aerial exploration of indoor environments.

Frontiers in Robotics and AI 6 (2019) 24

[9] Hanna, D., Ferworn, A.: A uav-based algorithm to assist ground sar teams in

finding lost persons living with dementia. In: 2020 IEEE/ION Position, Location

and Navigation Symposium (PLANS). (2020) 27–35 24

[10] Castaño, A.R., Romero, H., Capitán, J., Andrade, J.L., Ollero, A.: Development

of a semi-autonomous aerial vehicle for sewerage inspection. In: Iberian Robotics

conference, Springer (2019) 75–86 24

[11] Li, S., Feng, C., Niu, Y., Shi, L., Wu, Z., Song, H.: A fire reconnaissance robot based

on slam position, thermal imaging technologies, and ar display. Sensors 19(22) (2019)

5036 24

[12] Franchi, M., Fanelli, F., Bianchi, M., Ridolfi, A., Allotta, B.: Underwater robotics

competitions: The european robotics league emergency robots experience with feel-

hippo auv. Frontiers in Robotics and AI 7 (2020) 3 24

[13] Kawatsuma, S., Fukushima, M., Okada, T.: Emergency response by robots to

fukushima-daiichi accident: Summary and lessons learned. Industrial Robot: An

International Journal 39 (08 2012) 24

[14] Khasawneh, A., Rogers, H., Bertrand, J., Madathil, K.C., Gramopadhye, A.: Hu-

man adaptation to latency in teleoperated multi-robot human-agent search and res-

cue teams. Automation in Construction 99 (2019) 265 – 277 24

[15] Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neu-

ral networks. In Chaudhuri, K., Salakhutdinov, R., eds.: Proceedings of the 36th

International Conference on Machine Learning. Volume 97 of Proceedings of Ma-

chine Learning Research., Long Beach, California, USA, PMLR (09–15 Jun 2019)

6105–6114 25

[16] Kowsari, K., Heidarysafa, M., Brown, D.E., Meimandi, K.J., Barnes, L.E.: RMDL:

random multimodel deep learning for classification. CoRR abs/1805.01890 (2018)

25

Dimitrios Chatziparaschis 130 November 2020

REFERENCES

[17] Huang, Y., Cheng, Y., Chen, D., Lee, H., Ngiam, J., Le, Q.V., Chen, Z.:

Gpipe: Efficient training of giant neural networks using pipeline parallelism. CoRR

abs/1811.06965 (2018) 25

[18] Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified,

real-time object detection. CoRR abs/1506.02640 (2015) 25

[19] Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for

accurate object detection and semantic segmentation. CoRR abs/1311.2524 (2013)

25

[20] Girshick, R.B.: Fast R-CNN. CoRR abs/1504.08083 (2015) 25

[21] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-

ical image segmentation (2015) 25, 51

[22] Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmen-

tation. CoRR abs/1505.04366 (2015) 25

[23] Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on

Pattern Analysis and Machine Intelligence 22(11) (Nov 2000) 1330–1334 25

[24] Sun, J., Li, B., Jiang, Y., Wen, C.y.: A camera-based target detection and posi-

tioning uav system for search and rescue (sar) purposes. Sensors 16(11) (2016) 1778

25

[25] Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., von Stryk, O.: Compre-

hensive simulation of quadrotor uavs using ros and gazebo. In: SIMPAR. (2012)

29

[26] https://hokuyo-usa.com/products/lidar-obstacle-detection/utm-30lx-ew.

31

[27] Foote, T.: tf: The transform library. In: 2013 IEEE Conference on Technologies for

Practical Robot Applications (TePRA). (April 2013) 1–6 37

[28] Hohenwarter, M.: GeoGebra: Ein Softwaresystem für dynamische Geometrie und

Algebra der Ebene. Master’s thesis, Paris Lodron University, Salzburg, Austria

(February 2002) (In German.). 42

Dimitrios Chatziparaschis 131 November 2020

https://hokuyo-usa.com/products/lidar-obstacle-detection/utm-30lx-ew

REFERENCES

[29] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,

Wierstra, D.: Continuous control with deep reinforcement learning (2015) 47

[30] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,

Zitnick, C.L.: Microsoft coco: Common objects in context. In Fleet, D., Pajdla, T.,

Schiele, B., Tuytelaars, T., eds.: Computer Vision – ECCV 2014, Cham, Springer

International Publishing (2014) 740–755 49

[31] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image

recognition. In: International Conference on Learning Representations. (2015) 51

[32] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale

Hierarchical Image Database. In: CVPR09. (2009) 51

[33] Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In:

2010 IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition. (June 2010) 2528–2535 51

[34] Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image seg-

mentation using 3d fully convolutional deep networks (2017) 53

[35] Tversky, A.: Features of similarity. Psychological Review 84(4) (1977) 327–352 53

[36] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized

intersection over union: A metric and a loss for bounding box regression (2019) 54

[37] Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by

border following. Comput. Vis. Graph. Image Process. 30 (1985) 32–46 59

[38] Sklansky, J.: Finding the convex hull of a simple polygon. Pattern Recogn. Lett.

1(2) (December 1982) 79–83 60

[39] Suzuki, S., be, K.: Topological structural analysis of digitized binary images by

border following. Computer Vision, Graphics, and Image Processing 30(1) (1985)

32 – 46 60

[40] Garrido-Jurado, S., Munoz-Salinas, R., Madrid-Cuevas, F., Medina-Carnicer, R.:

Generation of fiducial marker dictionaries using mixed integer linear programming.

Pattern Recognition 51 (10 2015) 62

Dimitrios Chatziparaschis 132 November 2020

REFERENCES

[41] Garrido-Jurado, S., Munoz-Salinas, R., Madrid-Cuevas, F., Medina-Carnicer, R.:

Generation of fiducial marker dictionaries using mixed integer linear programming.

Pattern Recognition 51 (10 2015) 62

[42] Kohlbrecher, S., von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable slam

system with full 3d motion estimation. In: 2011 IEEE International Symposium on

Safety, Security, and Rescue Robotics. (Nov 2011) 155–160 64

[43] Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and

Autonomous Agents). The MIT Press (2005) 65

Dimitrios Chatziparaschis 133 November 2020

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Outline

	2 Background
	2.1 Robot Operating System (ROS)
	2.2 Gazebo Simulator
	2.3 Sensors
	2.3.1 Camera Sensor
	2.3.2 Distance Measurement Sensor
	2.3.3 Global Navigation Satellite System Receiver

	2.4 Machine Learning
	2.4.1 Semantic Segmentation Metrics
	2.4.2 Batch Normalization

	2.5 Reinforcement Learning
	2.5.1 Deep Reinforcement Learning

	3 Problem Statement
	3.1 Autonomy in Search-and-Rescue Robots
	3.2 Related Work

	4 Our Approach
	4.1 Simulated Robot Model and Sensors
	4.1.1 Onboard Coordinate Systems and Spatial Transformations
	4.1.2 Simulated UAV Model and the Onboard Sensor Units
	4.1.3 Simulated 3D Gimbal Frame and the Embedded Sensors Units

	4.2 Autonomous Navigation and Obstacle Avoidance
	4.2.1 UAV Teleoperation and Action Server
	4.2.2 UAV Control and OpenAI Gym Environment
	4.2.3 Creating the Autonomous Navigation Behavior

	4.3 Autonomous Target Detection and Gimbal Aiming
	4.3.1 Target Recognition through Optical Data
	4.3.2 Target Recognition through Thermography Data
	4.3.3 Fusion of Optical and Thermal-Positive Areas
	4.3.4 Gimbal Scanning Behavior and Aiming

	4.4 Search-and-Rescue UAV Behavior
	4.4.1 2D Simultaneous Localisation and Mapping
	4.4.2 Target Identification and Spatial Correlation
	4.4.3 Target Prioritization and Gimbal Engagement
	4.4.4 Target Global Positioning
	4.4.5 Search-and-Rescue Map and Visualization of Positioned Targets
	4.4.6 Occupied Area Coverage and Unexplored Area Investigation

	5 Results
	5.1 Autonomous Navigation and Experiments
	5.1.1 Training and Evaluation of the Navigational Behavior
	5.1.2 Application of the Trained Models in the Gazebo and Results

	5.2 Autonomous Human Detection and Experiments
	5.2.1 Training on COCO Dataset and Detection Performance
	5.2.2 Training on Gazebo Dataset and Results

	5.3 Navigation and Reconnaissance Experiments in Unknown Gazebo Worlds

	6 Conclusion
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Evaluation in Real-World Scenarios
	6.2.2 Multi-Agent Collaboration

	References

