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Abstract: In lane-free traffic, recently proposed for connected automated vehicles (CAV), incremental 

changes of the road width lead to corresponding incremental changes of the traffic flow capacity. This 

property enables the controlled shifting of the internal road boundary separating the two opposite traffic 

directions, so as to optimize the road infrastructure utilization. Internal boundary control aims at flexible 

sharing of the total road width and capacity among the two traffic directions of a road in real-time-, in re-

sponse to the prevailing traffic conditions. A model-free adaptive control scheme is applied to efficiently 

address this problem. Simulation investigations, involving a realistic highway stretch and challenging 

demand scenario, demonstrate that the efficiency of the proposed control scheme. 
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1. INTRODUCTION 

Recurrent traffic congestion is an increasingly serious prob-

lem for big cities around the world. It is causing substantial 

delays, increased fuel consumption, excessive environmental 

pollution and reduced traffic safety. Conventional traffic 

management measures are valuable (Papageorgiou et al., 

2003; Kurzhanskiy and Varaiya, 2010) and, in some cases, 

able to delay or even avoid the onset of congestion. However, 

they are not always sufficient to tackle heavily congested 

traffic conditions. Vehicle Automation and Communication 

Systems (VACS) should be exploited to develop innovative 

solutions that can be applied within a smart road infrastruc-

ture. During the last decade, there has been an enormous ef-

fort by the industry and by many research institutions to de-

velop and deploy a variety of VACS that are revolutionizing 

the vehicle capabilities and may be exploited for improved 

traffic management (Diakaki et al., 2015). 

The TrafficFluid concept was recently launched by Pa-

pageorgiou et al. (2021). This is a novel paradigm for vehicu-

lar traffic in the era of high penetration rates of vehicles 

equipped with highly advanced VACS. The TrafficFluid con-

cept suggests: (1) lane-free traffic, whereby vehicles are not 

bound to fixed traffic lanes, as in conventional traffic; (2) 

vehicle nudging, whereby vehicles may exert a "nudging" 

effect on, i.e. influence the movement of, other vehicles in 

front of them. In this context, the internal boundary control 

concept, introduced by Malekzadeh et al. (2021), exploits the 

lane-free principle of TrafficFluid. In lane-free traffic, the 

road capacity may exhibit incremental (increasing or decreas-

ing) changes in response to corresponding incremental (wid-

ening or narrowing) changes of the road width. This is in 

contrast to lane-based traffic, where capacity changes may 

only occur if the road width is changed by one or more lanes. 

Consider a road with two opposite traffic directions serving 

connected automated vehicles (CAVs). The total available 

cross-road capacity (for both directions) may be shared 

among the two directions in a flexible way, according to the 

prevailing demand per direction. Flexible capacity sharing 

may be achieved by virtually moving the internal boundary 

that separates the two traffic directions; and communicating 

this decision to CAVs, so that they respect the changed road 

boundary. This way, the total capacity share assigned per 

direction can be changed in space and time according to an 

appropriate real-time control strategy, as illustrated in Fig. 1, 

so as to maximize the traffic efficiency of the overall system. 

The idea of sharing the total cross-road capacity among the 

two traffic directions is not new as it has been occasionally 

employed for conventional lane-based traffic, typically with 

manual interventions (Wolshon and Lambert, 2006). The 

measure is known as tidal flow (or reversible lanes) control 

and its main principle is to adapt the total available supply to 

the demand per direction. Its most basic form is the steady 

allocation of one or more lanes of one direction to the other 

direction for a period of time, so as to address abnormal traf-

fic supply or demand. More advanced reversible lane control 

systems may operate in real time, e.g. to balance delays on 

both sides of a known bottleneck (e.g. bridge, tunnel) by as-

signing a lane to one of the two directions in alternation in 

response to the prevailing traffic conditions. In order to deal 

with this problem, optimal control or feedback control algo-

 

Fig. 1: Space-time flexible internal road boundary 

 



 

 

     

 

rithms of various types were proposed by Frejo et al. (2015) 

and Ampountolas et al. (2020). Reversible lanes have also 

been considered in connection with lane-based CAV driving 

(see e.g. work by Duell et al. (2015) and Levin and Boyles 

(2016)), 

The use of tidal flow control systems in lane-based traffic is 

not widespread for a number of reasons, including the harsh 

resolution of infrastructure sharing (only by lane quanta) 

among the two traffic directions; the serious counter-

problems due to frequent merging or diverging traffic at lane-

drop or lane-gain areas; and the long safety-induced time-

delays after each lane switch. These serious difficulties entail 

very limited capacity sharing flexibility in space and time and 

hinder reversible lane control from being a major traffic man-

agement measure. Even in the future CAV traffic, some of 

the mentioned difficulties would persist in lane-based condi-

tions, notably the low capacity sharing resolution and the 

merging nuisance. In contrast, in a lane-free CAV traffic en-

vironment, the mentioned difficulties are largely mitigated. 

More specifically, the resolution of road-width sharing 

among the two directions can be high, since the smooth CAV 

driving on a lane-free road surface allows for the internal 

boundary to be a smooth space-function, as illustrated in Fig. 

1. Also, assuming moderate changes of the internal boundary 

over time and space, the aforementioned safety-induced time-

delay may be very small. 

Thanks to these characteristics, real-time internal boundary 

control for lane-free CAV traffic may be broadly applicable 

to the high number of arterial or highway infrastructures that 

feature unbalanced demands during the day in the two traffic 

directions, so as to strongly mitigate or even utterly avoid 

congestion. Malekzadeh et al. (2021) analyzed the internal 

boundary control problem and demonstrated its high im-

provement potential by formulating and solving an open-loop 

optimal control problem, in the form of a convex Quadratic 

Programming (QP) problem. That approach may be used 

within an MPC (Model Predictive Control) frame for real-

time application, but simpler real-time approaches, which 

rely on real-time measurements and do not call for external 

demand prediction, but have nevertheless similar efficiency, 

are preferable. This paper explores the application of a re-

cently proposed Model-Free Adaptive Control (MFAC) 

method for the internal boundary control problem. 

MFAC methods have been given a lot of attention in the past 

20 years and have been applied successfully in many differ-

ent fields (see Hou and Wang, 2013; Hou et al., 2017 for an 

overview). An MFAC approach, initially developed for a 

class of Single-Input Single Output (SISO) nonlinear sys-

tems, was extended for a class of Multi-Input Multi-Output 

(MIMO) systems (see Hou and Jin 2011a; 2011b and refer-

ences therein). Instead of identifying the nonlinear model of 

the process, local dynamic linearization data models are built 

while operating the closed-loop system utilizing a dynamic 

linearization method. Considering different memory require-

ments, three different dynamic linearization methods can be 

used. These are the compact form dynamic linearization, the 

partial form dynamic linearization and the full form dynamic 

linearization (Hou and Jin, 2014). It is interesting to note that, 

recently, MFAC has been used within predictive control (Li 

at al., 2019) and iterative learning control (Ren et al., 2020) 

frameworks for perimeter control of urban road traffic net-

works. 

Section 2 presents some background issues of internal 

boundary control, while Section 3 presents the appropriately 

adjusted Cell Transmission Model (CTM), initially proposed 

by Daganzo (1994), which is employed for simulation pur-

poses. Section 4 presents the MFAC method applied. Simula-

tion investigations are discussed in Section 5, where the per-

formance of the MFAC is compared to the no-control case, 

while conclusions are given in Section 6. 

2. BACKGROUND 

Lane-free traffic is not expected to give rise to structural 

changes of existing macroscopic traffic flow models. As also 

supported by findings in (Bhavathrathan and Mallikarjuna, 

2012; Asaithambi et al., 2016; Munigety et al., 2016; Pa-

pageorgiou et al., 2021), notions and concepts like the con-

servation equation, the Fundamental Diagram (FD), as well 

as moving traffic waves continue to characterize macroscopic 

traffic flow modelling in the case of lane-free CAV traffic. 

Additionally, specific physical traffic parameters, such as free 

speed, critical density, flow capacity, jam density, are also 

relevant for lane-free traffic, but may of course take different 

values than in lane-based traffic. 

Let us call the two opposite traffic directions, presented in 

Fig. 1, directions a  and ,b  respectively. We assume that, at 

specific road sections, each direction is assigned a respective 

road width aw w   and (1 ) ,bw w    where w  is the 

total road width (both directions) and 0 1   is the sharing 

factor, which is specified in real time as a control input by the 

internal boundary controller. 

Let ( ),Q   where   is the traffic density in veh/km, be the 

FD of a road section, which would apply if the whole road 

width would be assigned to only one of the two opposite traf-

fic directions (i.e. for   equal 0 or 1), with total critical den-

sity ,cr  total capacity capq  (in veh/h) and total jam density 

max .  In the case of partial road sharing, we have 

min max ,     where 
min max, (0,1)    are appropriate 

bounds aiming to suppress utter closure of either direction. 

As shown by Malekzadeh et al. (2021), the FDs for the two 

directions are functions of   given by 

( , ) ( / )

( , ) (1 ) ( / (1 ))

a a a

b b b

Q Q

Q Q

    

    

 

   
 (1) 

where a  and b  (in veh/km) are the respective densities of 

the two directions.  

For simulation purposes, a dynamic traffic flow model must 

be used. A simple, yet realistic, option is CTM (Daganzo, 

1994), a first-order dynamic traffic flow model with a trian-

gular FD, which attains a space-time discretized form by ap-

plication of the Godunov numerical scheme. The following 

paragraphs present the CTM equations, appropriately adjust-

ed to incorporate the effect of the sharing factor .   



 

 

     

 

A highway stretch with two reverse traffic directions a  

(from left to right) and b  (from right to left) is considered. 

The stretch is subdivided in n  sections, with lengths ,iL  

1,2, , .i n  As explained above, the total road width, which 

is assumed constant over all sections for simplicity, can be 

flexibly shared among the two directions in real time. As the 

sharing may be different for every section, we have corre-

sponding sharing factors ,i 1,2, , ;i n  and (1) applies to 

each section. As a consequence, the total section capacity, as 

well as the critical density and jam density, are shared among 

traffic directions a  and b  according to 

, ,

, ,

,max max ,max max

( ) , ( ) (1 )

( ) , ( ) (1 )

( ) , ( ) (1 ) .

a b

i cap i i cap i cap i i cap

a b

i cr i i cr i cr i i cr

a b

i i i i i i

q q q q   

       

       

    

    

    

 (2) 

The above derivations rely on the assumption, partially veri-

fied by Papageorgiou et al. (2021), that any incremental wid-

ening (narrowing) of the road width entails a corresponding 

incremental increase (decrease) of capacity. Indeed, the 

highway may hold vehicles of different dimensions and 

speeds. These vehicles spread, in a lane-free road structure, 

on the road surface according to their two-dimensional 

movement strategies, which lead to a variety of lateral vehi-

cle positions, including vehicles driving on the road boundary 

(without ever exceeding it). Thus, every incremental widen-

ing of the road increases the average two-dimensional inter-

vehicle spacing and offers possibilities for higher speed, and 

hence higher flow and capacity.  

The corresponding changes of the triangular FD that occur at 

each section and traffic direction are illustrated in Fig. 2. 

More specifically, when the value of the sharing factor is 0.5, 

i.e., the flow capacities of the two directions are equal, their 

FDs are "nominal" (blue line with .
N 

parameters); when the 

sharing factor is different than 0.5, we have two FDs: the 

extended one (green line with .
E
 parameters) applies to the 

direction that is assigned more width and hence more flow 

capacity, and the reduced, complementary FD (orange line 

with .
R 

parameters) applies to the other direction that is as-

signed less width and flow capacity. Based on (2), all FD 

parameters of a section change, whenever it is decided to 

change the corresponding sharing factor in real time. 

While controlling the internal road boundary, we disallow the 

utter closure of either direction; hence, the assigned road 

width in either direction should not be smaller than the widest 

vehicles driving on the road. This requirement gives rise to 

stricter constraints for the sharing factors as follows 

,min ,max0 1,i i i       (3) 

where ,mini w   and ,max(1 )i w   are the minimum admissi-

ble widths to be assigned to directions a  and ,b  respective-

ly.  

Another restriction to be applied to the sharing factors con-

cerns the time-delay needed to evacuate traffic on the direc-

tion that receives a restricted width, compared with the previ-

ous control time-step. This time-delay is small in lane-free 

CAV traffic with moderate changes of the sharing factors 

applied to short sections. This time-delay is omitted here for 

simplicity but is considered in ongoing work. More generally, 

work in progress, involving micro-simulation of the internal 

boundary control concept, indicates that vehicles have no 

difficulty to adapt to the real-time change of the internal 

boundary, and no safety-critical situations have been ob-

served. 

3. SIMULATION MODEL 

Traffic flows from section 1 to section n  in direction ;a  and 

from section n  to section 1 in direction b  (see Fig. 3 as an 

example). We denote ,a

i  1,2, , ,i n  the traffic density of 

section ,i  direction ;a  and ,b

i  1,2, , ,i n  the traffic den-

sity of section ,i  direction .b  Similarly, we denote 

,a

iq 1,2, , ,i n  and ,b

iq  1,2, , ,i n  the mainstream exit 

flows of section i  for directions a  and ,b  respectively. 

Thus, 
0

aq  is the feeding upstream mainstream inflow for di-

rection ;a  and 
1

b

nq 
 is the feeding upstream mainstream in-

flow for direction .b  Every section may have an on-ramp or 

an off-ramp at its upstream boundary. The on-ramp flows (if 

any) at section i  are denoted a

ir  for direction ,a  and b

ir  for 

direction .b  The off-ramp flow (if any) of section ,i  direc-

tion ,a  is calculated based on known exit rates a

i  multi-

plied with the upstream-section flow, i.e. 
1;

a a

i iq 
 and the off-

ramp flow (if any) of section ,i  direction ,b  is calculated 

based on known exit rates b

i  multiplied with the upstream-

section flow, i.e. 
1.

b b

i iq 
 

The conservation equation for the section i  of direction a  is: 

1( 1) ( ) ((1 ) ( ) ( ) ( )),a a a a a a

i i i i i i

i

T
k k q k q k r k

L
          (4) 

where T  is the model time-step, typically equal to 5 – 10 s 

for section lengths of some 500 m in length, and 0,1,k   is 

the discrete time index of the model. 

According to CTM, traffic flow is obtained as the minimum 

of demand and supply functions, except for the very last sec-

tions, where only the demand function is considered, assum-

ing that the downstream traffic conditions are uncongested. 

Clearly, the demand and supply functions 
DQ  and ,SQ  re-

spectively, for the case of the internal boundary control prob-

lem, include the impact of the respective sharing factors 

( )i k  on the sections' FDs. Thus we have  

1 1

1

1

( ( ), ( ))
( ) min ( ( ), ( )), ( ) ,

(1 )

1,2, , 1

a

a a aS i i

i D i i ia

i

Q k k
q k Q k k r k

i n

 
 


 





 
  

 

 

( ) ( ( ), ( )).a a

n D n nq k Q k k   (5) 

The demand and supply functions are given by the following 

respective equations 

 

 max

( , ) min , ,

( , ) min , ( ) ,

D cap f

S cap s

Q q v

Q q w

   

    



 
 (6) 

where fv  is the free speed (which is assumed equal for all 

sections for simplicity) and sw  is the back-wave speed.  



 

 

     

 

The equations for section i  of direction b  are analogous to 

those of direction ,a  with few necessary index modifica-

tions. Section numbers in direction b  are descending, hence 

we have 

1( 1) ( ) ((1 ) ( ) ( ) ( )),b b b b b b

i i i i i i

i

T
k k q k q k r k

L
          (7) 

and the flows are given by 


1 1 1

1 1

1

1

( ) ( ( ), (1 ( )))

( ) min ( ( ), (1 ( ))),

( ( ), (1 ( )))
( ) , 2,3, ,

(1 )

b b

D

b b

i D i i

b

bS i i

ib

i

q k Q k k

q k Q k k

Q k k
r k i n

 

 

 


 





 

 


 

 

 (8) 

4. MODEL-FREE ADAPTIVE CONTROLLER 

4.1 Relative Densities 

In conventional traffic management, traffic densities reflect 

the state of traffic. However, in the novel internal boundary 

control context, the variables a

i  and b

i  of the traffic densi-

ties (in veh/km) in the two opposite directions of each section 

i  are not directly indicating the traffic conditions (e.g. under-

critical or congested) encountered. This is because the critical 

density for each direction is changing according to the ap-

plied control action. Therefore, we define the relative densi-

ties a

i  and b

i  (dimensionless) that are given per section 

and per direction as the ordinary densities. The relative densi-

ty of section i  and direction a  or b  is obtained by dividing 

the corresponding traffic density with the corresponding criti-

cal density, which, on its tern, depends on the sharing factor 

prevailing during the last time-step. Considering (2), we get 

the following relations for section i  

( ) ( )
( ) , ( ) .

( 1) (1 ( 1))

a b

a bi i

i i

i cr i cr

k k
k k

k k

 
 

   
 

  
 (9) 

4.2 Dynamic Linearization 

In order to derive the MFAC scheme, we need to come up 

with a dynamic linearization model that describes our system. 

The following general form of a multi-input multi-output 

nonlinear discrete-time system is first considered 

( 1) ( ( ),....., ( ), ( ),......, ( ))c c c y c c uk k k n k k n   y f y y u u  (10) 

where ( ) p

ck y  and ( ) p

ck u  are the system outputs 

and inputs, respectively, and 
ck  is the discrete control time 

index. 
yn  and 

un are unknown orders, p  is a known integer 

and pf  is an unknown nonlinear function that describes 

the dynamics of the system.  

For the internal boundary control problem, we will consider 

as an output the difference between the relative densities per 

direction for each section; and as an input the sharing factor 

for each section. Thus, we have ( ) ( ) ( )a b

c c ck k k y ρ ρ  and 

( ) ( )c ck ku ε  with the integer p  set equal to ,n  whereby  

1( ) [ ( ), , ( )] ,a a a T

c c n ck k k ρ  
1( ) [ ( ), , ( )]b b b T

c c n ck k k ρ  

and 
1( ) [ ( ), , ( )] ,T

c c n ck k k ε  

Note that the control time-step is assume to be a multiple of 

the simulation model time-step, i.e. ,cT MT  where M  is 

an integer. As a result, the discrete control time index is 

,c c
k kT T    where  .  is the integer part notation. 

According to Hou and Jin (2011b), the compact-form dynam-

ic linearization of the nonlinear system (10) is based on the 

following assumptions. 

Assumption 1: The partial derivatives of f  with respect to the 

control inputs ( )cku  are continuous. 

Assumption 2: System (10) is generalized Lipschitz, i.e. 

( 1) ( )c ck b k   y u  for each fixed 
ck  and ( ) 0,ck u  

where b  is a positive constant,  ( 1) ( 1) ( )c c ck k k    y y y  

and ( ) ( ) ( 1).c c ck k k   u u u  

Both assumptions are reasonable from a practical point of 

view. Assumption 1 is a typical condition, while assumption 

2 limits the rate of changes of the system outputs when 

changes are applied to the control inputs. Based on the above, 

it can be shown that there must exist a non-unique p p  

matrix ( ),ckΦ  called Pseudo-Partial Derivative (PPD), such 

that (10) can be transformed into the following equivalent 

compact-form dynamic linearization data model: 

( 1) ( ) ( )c c ck k k   y Φ u  (11) 

where ( ) .ck bΦ  The matrix ( )ckΦ  is regarded to be a 

slowly time-varying parameter.  

Compared to several other linearization methods (e.g. Tay-

lor's linearization, feedback linearization, orthogonal function 

approximation), the compact-form dynamic linearization is 

based only on the input-output data of the controlled process, 

i.e. no model dynamics are needed. Model (11) is simple, and 

the dynamically changing PPD matrix can be easily estimated 

using data collected from the closed-loop system.  

4.2 Controller Design 

According to Hou and Jin (2011b), another assumption is 

necessary: 

 

Fig. 2: The triangular fundamental diagram with flexible in-

ternal boundary 

 



 

 

     

 

Assumption 3: The PPD matrix ( )ckΦ  is a diagonally domi-

nant matrix in the following sense, 1,ij b   2 2 ,iib ab   

1, , ,i p  1, , ,j p  ,i j  1,a   
2 1(2 1)( 1),b b a p    

and the sign of all the elements of ( )ckΦ  is not changing. 

We now consider the following objective function: 

2 2*( 1) ( 1) ( ) ( 1)c c c cJ k k k k      y y u u  (12) 

where *( 1)ck y  is the desired output and 0   is a 

weighting constant. The MFAC scheme, suggested by Hou 

and Jin (2011b), is as follows: 

*

2

ˆ ( )( ( 1) ( ))
( ) ( 1)

ˆ ( )

T

c c c

c c

c

k k k
k k

k





 
  



Φ y y
u u

Φ

 (13) 

where (0,1]   is a step-size constant used for stability pur-

poses. The unknown PPD matrix is estimated using the modi-

fied projection algorithm via  

2

ˆ( ( ) ( 1) ( 1)) ( 1)ˆ ˆ( ) ( 1)
( 1)

T

c c c c

c c

c

k k k k
k k

k





      
  

  

y Φ u u
Φ Φ

u

 (14) 

where (0,2]  is a step-size constant and 0   is a weigh-

ing factor. The outcome of (14) is reset, whenever Assump-

tion 3 does not hold true, using the following rules: 

2 2

1

ˆ ˆ ˆ ˆ( ) (1), if ( )  or ( )

ˆ ˆor sign( ( )) sign( (1))

ˆ ˆ ˆ ˆ( ) (1), if ( )  or sign( ( ))

ˆsign( (1)),

ii c ii ii c ii c

ii c ii

ij c ij ij c ij c

ij

k k b k ab

k

k k b k

i j

   

 

   



  



 

 

 (15) 

where ˆ (1)ij  1, , ,i p  1, , ,j p  is the initial value for 

each element of the PPD matrix, which has been selected so 

that Assumption 3 holds true. 

It can be shown (see Theorem 3 by Hou and Jin (2011b)) that 

if the nonlinear system (10), satisfying Assumptions 1, 2 and 

3, is controlled by the MFAC scheme (13)-(15) for 
* *( 1) ,ck  y y  i.e. a constant set-point, then there exists a 

min 0,   for which the selection of 
min   guarantees that: 

1. * *lim ( 1) 0
c

c
k

k


  y y  monotonically; and 

2. { ( )}cky  and { ( )}cku  are bounded sequences.  

For the internal boundary control problem, the application of 

the above scheme, with a set point * ,y 0  will tend towards 

a state where, for every section, the relative densities per di-

rection are equal to each other. Striving for the same value of 

the relative densities on the two directions at each section 

seems equitable; and is also conforming with the operational 

objective of balancing the margin to capacity across sections. 

Finally, the use of the second term in (12) penalizes possible 

oscillations of the sharing factor over time. 

For practical implementation, the values obtained for each 

control variable are truncated before application in order to 

satisfy (3). These truncated values are used as ( 1)ck u  in 

(13) in the next time step. 

5. SIMULATION INVESTIGATIONS 

5.1 Simulation Set-up 

The performance of the proposed model-free adaptive control 

scheme is investigated using the bi-directional highway 

stretch depicted in Fig. 3. The considered highway stretch has 

a length of 5 km and is subdivided in 10 sections of 0.5 km 

each. The modelling time-step, ,T  is set to 10 s, and the con-

sidered time horizon is 1 h, so 360 model time-steps are sim-

ulated. CTM is used as the emulated ground truth. The model 

parameters used are 100km/hfv   and 12km/hsw  ; while 

the total cross-road capacity to be shared among the two di-

rections is 12,000veh/h.capq   The exit rates for the four off-

ramps are all equal to 0.1.  

The mainstream and on-ramp demand flows per direction are 

presented in Fig. 4. It may be seen that the two directions 

feature respective peaks in their mainstream demands that are 

slightly overlapping. The on-ramp demands are constant and 

are all equal to 1000 veh/h. The simulation results of the no-

control case are presented first, followed by the results ob-

tained when using the MFAC scheme. 

5.2 No-control Case 

Using the demand flows presented above in the CTM equa-

tions with constant sharing factors 0.5i   for all sections 

due to no internal boundary control, we obtain the simulation 

 

Fig. 3: The considered highway stretch 

 

 

Fig. 4: Demand flows per direction and on-ramp 

 



 

 

     

 

results of the no-control case with a TTS (Total Time Spent 

by all vehicles in the highway stretch) value equal to 314.6 

veh∙h. Fig. 5 displays the corresponding spatio-temporal evo-

lution of the relative density defined in (9). According to the 

definition, relative density values lower than 1 refer to un-

congested traffic; while values higher than 1 refer to congest-

ed traffic; when the relative density equals 1, and the down-

stream section is uncongested, we have capacity flow at the 

corresponding section. 

Fig. 5 shows that congestion is created in sections 5 and 8 for 

direction a  due to the increased mainstream demand, in 

combination with the ramp inflows, at around 60.k   The 

congestion dissolves at around 160,k   due to the rapid de-

crease of the mainstream demand for this direction. In direc-

tion ,b  we have also congestion being triggered in sections 3 

and 6 for similar reasons, at around 240.k   The congestion 

dissolves at around 340.k   

5.3 Control Case 

The MFAC scheme starts with initial control input values set 

equal to the nominal values, i.e. equal to 0.5 for all sections, 

while the control time-step, ,cT  is set to 60 s. The following 

values that satisfy Assumption 3 are selected for initialization 

and bounding of the elements of the PPD matrix ( ) :ckΦ  

2,   1 0.05,b   2 2.25,b   (1) 3.375ii    and 

(1) (1) 0.05,ij ji       1, ,10,i   1, ,10,j   .i j  The 

controller parameters are selected after some tuning to be: 

0.5,   30,   1   and 0.1.   Finally, the upper and 

lower bounds for the sharing factors, used to avoid blocking 

of any of the two directions, are equal for all sections 

1,2, ,10i   and are given the values ,min 0.16i   and 

,max 0.84.i   

With these settings, the regulator is operated in a closed-loop 

mode, receiving in emulated real time all section density val-

 

Fig. 5: Relative density for the two directions in the no-

control case 

 

Fig. 6: Relative density for the two directions in the control 

case 

 

Fig. 7: Density, flow and control trajectories in the control 

case (sections 1 and 2) 

 

Fig. 8: Density, flow and control trajectories in the control 

case (sections 3 and 4) 

 

Fig. 9: Density, flow and control trajectories in the control 

case (sections 5 and 6) 

 



 

 

     

 

ues per direction from the CTM equations; and responding 

with the sharing factors calculated using (13). 

The resulting traffic conditions are under-critical everywhere 

as shown in the spatio-temporal evolution of the relative den-

sities depicted in Fig. 6. More detailed information for this 

case is presented in Figs. 7-11. Each figure has two columns 

reflecting the results of two respective sections; for each sec-

tion (column), we provide three diagrams (rows): 

- The first diagram shows the two traffic densities (in 

veh/km), for directions a  and ,b  and the corresponding 

critical densities, which are changing according to the 

sharing factor in the section. 

- The second diagram shows the two traffic flows, for di-

rections a  and ,b  and the corresponding capacities, 

which are changing according to the sharing factor in the 

section. In addition, the sum of both flows is also dis-

played (cyan curve). 

- The third diagram shows the value of the control input, 

i.e. the sharing factor applied, as well as the constant 

bounds (black curves), which may lead to possible trun-

cation of the control input. 

The displayed results confirm that densities (flows) are al-

ways lower than the respective critical densities (capacities) 

in all sections and in both directions; hence traffic conditions 

are always and everywhere under-critical. In fact, the total-

flow curve (for both directions) does not reach the total road 

capacity (of 12,000 veh/h) at any time anywhere. In short, 

congestion is utterly avoided and any occurring delays in the 

no-control case do not exist anymore. 

The sharing factor trajectories of the sections reveal that this 

outcome is enabled via a smooth swapping of assigned capac-

ity to the two directions, whereby more capacity is assigned 

to direction a  during the first half of the time horizon and 

more capacity is assigned to direction b during the second 

half, in response to the traffic density changes caused by the 

changing respective demands and their peaks. However, the 

sharing achieved is not completely balanced. This is possibly 

due to the initial values used for the elements of the PPD ma-

trix. Though this sharing is not really harmful for the specific 

scenario, as congestion on either direction is utterly avoided, 

the sharing behaviour will need to be looked upon carefully 

in other demand or infrastructure scenarios in ongoing work.  

The related TTS value is 288.9 veh∙h, indicating an im-

provement of 8.2% over the no-control case. The TTS value 

obtained using the MFAC scheme is, in fact, equal to the 

value that is achieved when applying the optimal control re-

sulting from the QP problem formulation presented by Ma-

lekzadeh et al. (2021). Thus, despite its simple feedback 

character, where no demand predictions are used, the model-

free regulator achieves the highest possible efficiency in the 

investigated scenario. 

6. CONCLUSIONS 

The concept of internal boundary control, introduced by Ma-

lekzadeh et al. (2021), has been addressed in this study by use 

of a different control approach. A model-free adaptive con-

troller was employed and preliminarily tested in a simulated 

environment involving a challenging traffic demand scenario. 

The well-known CTM, appropriately modified to introduce 

the effect of the sharing factors, has been used for simulation 

purposes.  

In internal boundary control, the total road width and capaci-

ty are shared in each section in real time among the two di-

rections of the road in response to the prevailing traffic con-

ditions. The model-free regulator was found to be easy to 

design and implement (feedback-based) and robust to dis-

turbances (no need to predict the arriving demands) for the 

tested scenario. More specifically, simulation investigations, 

using a challenging traffic demand scenario, demonstrated 

that the model-free regulator is equally efficient as an open-

loop optimal control solution (with perfect demand predic-

tion) developed for the same problem by Malekzadeh et al. 

(2021) on the basis of a convex QP problem formulation. The 

usefulness of the proposed control approach needs to be con-

solidated in future work via consideration of further challeng-

ing demand scenarios, as well as more realistic large-scale 

highway infrastructures, leading to different traffic conditions 

and decisions for the internal boundary control problem in 

lane-free traffic.  

 

Fig. 10: Density, flow and control trajectories in the control 

case (sections 7 and 8) 

 

Fig. 11: Density, flow and control trajectories in the control 

case (sections 9 and 10) 

 



 

 

     

 

Other ongoing work considers the development of model-

based control approaches (e.g. Linear Quadratic Regulators). 

Furthermore, microscopic simulation studies with vehicles 

moving in a lane-free mode, based on appropriate CAV 

movement strategies is currently under development.  
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