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Abstract

Biological simulations for simulating large cell populations have become a
necessary tool in modern science and the software that has been developed
with that goal in mind is complex, having to emulate not only how
neighboring cells interact with each other, but also how external stimuli
and environmental factors affect the population as a whole and how it
affects groups of it. It is of no surprise then, that these simulations have a
considerable execution time, which makes it time consuming to exhaustively
run those simulations for different configurations in search of an optimal
result.

The system presented in this thesis ventures to remedy that problem
by leveraging Bayesian optimization to stochastically find that optimal
configuration, for PhysiBoSS’s biological simulations, that minimizes the
number of alive cancer cells. By treating simulations as black box functions
and modeling them based on samples selected by an acquisition function, it
is possible to rapidly converge to an optimal configuration that corresponds
to the desired global optima using only a small number of simulations, for
example in a search space of a few thousand data points this process would
require less than fifty samples.
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ITepiindm

O1 BlohOYIXES TTROGOUOLWOELS PE GTOHYO TNV TEOCOUOIWGT) UEYIAWY TANJUCUGDY
A(UTTAPWY €youy xadicpwiel TAéov w¢ Eva amopalTnTo EpYUAElo TNG HOVTEQVAC
EMOTAUNG XL TO AOYLOUXO Tou €yel ovantuyVel pe ouTtév TOV OXOTO
xatd vou etvan mepimhoxo, xadde yeetdleTon Vo TEOGOUOIWOEL O)L UOVO TNV
OAATAETIBEOON TOV YELTOVIXOV XUTTHPWY, oAAd xaL To TS emneedleTon To
xodévo and e€wtepols gpetopole, xadde xou Twe emneedlovial ouddES
e autev. Bdoel twv mopandve 0ev xahotd ExmAnén To 6Tl oUTEC oL
TPOGOUOIWOELS EYOLUY UEXETA PEYSAO YpOVO EXTEAEOTC, TEAYUA TOU Yoo Td
0VoxOA xou yeovoBopa TNV EXTEAECY| TOUG Yiot xdle BUVATO GUVOUUCUO
TOROUETEWY O aval\TNOT EVOC BEATIOTOU AMOTEAEOUATOC.

To ocOotnua mou mapouctdletal o aUTH TNV OLmAWPATIXY €pyaoio €yel
¢ 0ToY0 TNV eTAUCT aLTO) TOU TEOBAAUATOS, YENOHOTOWWVTAS TNV UéV0do
¢ Mnaeolovic Bedtiotonoinong v va et oTtoyacTid évav [éATIoTO
CLVOUUCHO TUEUUETEWY, Yia T BloAoYég mpocopolnoel Tou  PhysiBoSS,
o omolog Vo elayiotomolel Tov aptdud TwV {WVTOVOY XOEXIVIXGY XUTTUPWV.
OEWPOVTIS TIC TPOCOUOWMOELS AUTEC G CUVIPTNOELS <UAURA XOUTIEY  Xol
HOVTEAOTOLOVTOG TEC [doel BeEryUdTev Tou emAEYOVTUL amd Ui GLVAETNOM
amoxTnoNg, xoioTotow BUVITO Vo GUYXAIVEL YOopYd TO cUCTNUO OE €vay
BEATIoTO OUVOLOOUO TUEUPETPWY TOU avTIoTolyel oTo emuuntd oAb
UEYIOTO 1) EAGYLOTO, EXTEAMVTUS EVOY TOAD X0 0pliUd TEOGOUOLOOEMY, Yo
TORAOELY UL, OF EVay YO0 avalNTNONG HEPXWOY YLALEOWY oNuelwy 1) Sodixacio
oty Yo yeetaoTel Arydtepa amd mevvTa Oelyuato.



Contents

1 Introduction 4
1.1 Motivation & Goal . . . . . . . .. ... ... L. 4
1.2 Outline. . . . .. . ... 5)

2 Background 6
2.1 Bayesian Optimization . . . . . .. .. .. ... ... ... .. 6

2.1.1 SciKit-Learn . . . . . . . .. .. ... .. ... ... 10
2.1.2  SciKit-Optimize . . . . . . . . ... ... 10
2.2 Biological Simulations . . . .. ... ... ... .. ... ... 11
2.2.1 PhysiCell . .. .. .o 11
222 MaBoSS . . . ... 12
2.2.3 PhysiBoSS . . . .. ... 13
2.3 Numerical Libraries . . . . . . . . . . .. ... ... ...... 16
231 NumPy ... ... o 16
2.4 Plotting Libraries . . . . . . . . .. ... L 0. 16
24.1 Matplotlib . . . . . ..o 16
2.5 Configuration Parsing . . . . . . . ... ... ... ... ... 17
251 TOML . . . . . ... 17
2.6 Computing Grid . . . . . . . .. ... 17
2.6.1 TUC Grid Computer . . . . . . . ... ... ... ... 17
2.7 Related Work . . . . .. ... ... 18

2.7.1 Bayesian optimization for sensor set selection [3] . . . . 18
2.7.2  CherryPick: Adaptively Unearthing the Best Cloud

Configurations for Big Data Analytics [1] . . . . . . . . 18
2.7.3 Application  of  Bayesian  Optimization  for

Pharmaceutical Product Development [12] . . . . . . . 19

3 System Design & Implementation 20
3.1 Overview. . . . . . .. 20
3.2 Imput . . . . .. 22
3.3 Optimization Process . . . . . . .. . ... ... ... ..... 24
3.4 Dispatching Simulations . . . . ... ... ... .. ... .. 26
3.5 Plotting . . .. .. ... 28



4 Experimental Results
4.1 Single Parameter Case . . . . . . .. ... ... ... .....
4.2 Double Parameter Cases . . . . . . . ... ... ... .....
4.2.1 TNF Concentration & Time Add TNF . . .. ... ..
4.2.2 Duration Add TNF & Time Add TNF . . . . .. ...
4.3 Quad Parameter Case . . . . . . .. ... ... ... .....

5 Conclusions & Future Work

References

30
30
32
32
34
35

38

39



List of Figures

2.1 Bayesian optimization example . . . . . . ... ... ... .. 9
2.2 SciKit-Optimize Bayesian optimization example result [14] . . 10
2.3 PhysiCell cancer immunology example [5] . . . . . . . .. ... 12
2.4 Pipeline of the use of MaBoSS 2.0 functionalities [15] . . . . . 13
2.5 PhysiBoSS representation [6] . . . . . .. ..o 14
2.6 PhysiBoSS directory organization [9] . . . . . ... ... ... 14
3.1 Graphical representation of the system . . . . . ... ... .. 21
3.2 Graphical representation of the systems workflow . . . . . .. 22
3.3 Model and acquisition function at the end of the process . . . 26
3.4 Partial PhysiBoSS simulation output . . . . . . ... ... .. 28
4.1 Case 1 true function . . . . . .. .. .. ... ... 31
4.2 Case lmodel . . .. .. ... ... 31
4.3 Case 2 true function . . . . ... ... 33
4.4 Case2model . .. ... .. ... 33
4.5 Case 3 true function . . . . . . ... ..o 34
4.6 Case3dmodel . ... .. ... ... 35
4.7 Case 4 true function . . . . ... 36
4.8 Casedmodel . . ... ... ..o 37

List of Tables

1 Cell phase mapping to labels used for results . . . . . . . . .. 27
Listings
2.1 Partial PhysiBoSS parameter file - parameter.xml [9] . . . . . 15
2.2 Partial parameter template file - parameter_template.xml . . . 16
2.3 TOML example - example.toml [16] . . . . . .. ... ... .. 17
3.1 Configuration file example - config.toml . . . . . . . . ... .. 23
3.2 Cell phases hash-map - cell_phases.json. [2] . . . . .. .. ... 27
4.1 Use case 1 configuration - config.toml . . . . . . . .. .. ... 30
4.2 Use case 2 configuration - config.toml . . . . . . .. ... ... 32
4.3 Use case 3 configuration - config.toml . . . . . . .. ... ... 34
4.4 Use case 4 configuration - config.toml . . . . . . ... ... .. 35



1 Introduction

Research communities all over the world are relying more and more on
computer simulations to provide data at a rate that would be nearly
impossible by only performing real world experiments. A major downside of
this trend is that the simulations that are required to be run often require
major computational power and time. This poses a problem especially
for smaller scale institutes that do not have the resources or for research
subjects that are heavily time constrained.

The system presented in this thesis is an attempt to combat that
issue, using a stochastic method and heurestics to drastically reduce the
amount of simulations needed to be run in order to obtain the desired result.
In its current state the scope of the system is fairly limited, focusing on
finding the optimal combination of input parameters that minimize a certain
value. That being said, the problem it tackles is in no way small, mainly
due to the gigantic search space that is generated due to the dimensionality
and multitude of the input parameters.

1.1 Motivation & Goal

A research subject that fits the above criteria is the development of cancer
cells. Due to their rapid and unpredictable growth, there is a need for
software tools to model the behavior of these cells in order to be able to
predict their growth and treat it accordingly. One such tool is the PhysiBoSS
framework that is used in this thesis which does exactly that. It can simulate
the effect different stimuli have to these cells, allowing one to choose the
appropriate method of treatment to minimize their population. As has
already been mentioned though these simulations are costly in compute and
long running, thus rendering the brute force method of computing every
possible combination and then finding the optimal one, very inefficient. In
this context, the stochastic method of Bayesian Optimization is applied to
reduce the number of required simulations immensely, in order to find an
optimal configuration. This is a method that has been used in a similar
fashion by Alipoufard, etc. in a completely different field, namely finding
optimal configurations for virtual machine acquisition. Their results were
very promising.



The goal of the system presented in this thesis is to leverage Bayesian
Optimization with the goal of finding the optimal combination of input
parameters that produce a minimal population of cancer cells, using
PhysiBoSS to simulate their growth. A key design feature is to be easily
extensible for the use of different simulator software, providing the quality
of life features present in this system to any project that requires them.

1.2 Outline

In Chapter 2, the method of Bayesian Optimization is presented in detail,
together with information on the PhysiBoSS software framework. In Chapter
3, a detailed analysis on the system design and its usage is provided,
with experimental results and commentary on them following in Chapter
4. Finally in Chapter 5, conclusions on the efficacy of the system are drawn
and some goals are set for its expansion in the near future.



2 Background

2.1 Bayesian Optimization

Bayesian Optimization (BO) is a method used for global optimization
of black box functions, that is finding minima and maxima without any
assumptions of the function’s form. It is a sequential design strategy suitable
for big data applications and expensive to evaluate functions, very much like
the biological simulations discussed in this thesis.

BO is an iterative process that relies largely on two steps being repeated
for every sample of the objective function f(Z) that is taken. Since the
objective function is unknown the first step is to model it as a stochastic
process and compute the confidence interval according to the samples taken
so far, which in essence is the area where f(Z) is more likely to pass through.
The above is in essence the belief about the function that the process has so
far. The second step is deciding which point to sample next. That is done
using an acquisition function that is updated in tandem with the confidence
interval. There are many different variations of acquisition functions, but
generally they are easy to compute functions whose maxima/minima can be
found using traditional methods like Newtons method. More details about
these two steps will be given further below in the upcoming segments.

Prior function - Stochastic Model The prior function can be any
stochastic process that is fit for a particular problem domain. For the
purposes of this thesis a Gaussian Process is chosen, that is, the objective
function’s values are assumed to follow a multivariate Gaussian process. In
this case the objective function f(Z) is described with a mean function p and
a covariance kernel k, that for any pair of sample points 27, 25 are [1]:

Where d is the distance units separating two points. The covariance function
chosen in this thesis and shown above is a Matern5/2 [11] covariance function
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as it is the preferred function to model practical applications. In essence, the
more similar two values of the objective function f(Z) are, the greater their
covariance and vice-versa.

Acquisition function As stated briefly above, using the acquisition
function, BO can determine which point to sample next. There are four main
acquisition function strategies [4], each with their own merits and demerits,
as well as their most suitable application domains. The following descriptions
assume that BO tries to determine to global minimum.

e Probability of Improvement (PI): This is arguably the first acquisition
function designed for BO. In essence, PI evaluates f(Z) at the point
most likely to produce a value that will be less than the currently
observed minimum. Its utility function gives a unit reward if that
holds true and the acquisition function is the expected utility:

| 0 if f(Z) > f', wheref' = min(f) observed so far
i@ =1 it f(@) < f

apr(Z) = O(f; u(2), k(Z, 7))
where f' = minf(Z) the current minimum observed thus far. From
this the point with the highest probability of improvement is selected.
The main drawback of this method is that it doesn’t account for the
amount of improvement, which in practice is usually not desired and
can lead to it being stuck on local minima.

e Expected Improvement (EI): This method, in contrast to PI, sets to
account for the amount of improvement. That is, it evaluates f(Z)
at the point most likely to produce the smallest value. Its utility
function gives a reward proportional to amount of improvement and
its acquisition function is its expected utility again:

upr () = max(0, f' — f(Z)), wheref’ = min(f) observed so far

apr(@) = (f — p(@)(f'; u(@), k(Z, 7)) + k(@ )N (f; p(2), k(Z, 7))
where f' = minf(Z) the current minimum observed thus far. In this
case the point with the highest expected improvement is sampled next.
EI has the added advantage of being able to automatically adjust the
trade-off between exploitation and exploration. This is the method
chosen in this thesis.




e Entropy Search (ES): This method tries to reduce the uncertainty of
the location of the true minimum. Its utility function is the reduction of
entropy with regards to the true minimum. Its expected utility cannot
be easily determined and requires several approximations.

e Gaussian Process - Upper Confidence Bound (GP-UCB): With this
acquisition function the point that has the smallest lower bound with
regards to its uncertainty region is chosen. In this case a more apt
name would be lower confidence bound, but upper confidence bound
has become the standard term. Like EI, this method contains terms
to control the trade-off between exploitation and exploration, but the
evaluation of this acquisition function is not as simple as computing
the expected utility.

Observation noise BO can accommodate observation noise when
computing the confidence interval, assuming of course that the noise can
be meaningfully modeled stochastically, as is the case with Gaussian noise
for example. Given the above and together with the value of f(Z) observed
through sampling, BO can infer the actual value of f(Z). Supposing the
below example, where f(Z) is the actual value of the objective function
and e ~ N(u,0?) is the Gaussian noise of observation, the noisy objective
function can be defined as:

f(@) = f(T)+e

from which BO can infer f(Z). Of course that isn’t useful for every
application of BO, but is nevertheless a great boon when needed.
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Figure 2.1: Bayesian optimization example [14]. On left is the model and on the right the
acquisition function. It can be seen at each step of how the next sample is
selected based on the maximum value of the acquisition function and how the
beliefs of the system about the true function change with each new sample.

In summary for the process of BO, a stochastic model is created based on
the samples that have been sampled thus far and the next point to sample
is decided through the maxima of the acquisition function. This process
repeats until the conditions have been met for it to end. These conditions
are application specific and will be discussed in their own context later, but
generally either a set number of samples must be taken, or the process has
reached a result that is within a desired margin. Lastly it must be noted
that the first model to be computed is based on randomly taken samples.



2.1.1 SciKit-Learn

SciKit-Learn [13] is an open source machine learning library for Python.
Its features include, among others, functions and classes for regression,
classification, clustering, model selection and dimensionality reduction. It
is the basis of the SciKit-Optimize package described in the following
subsection, which implements a lot of the functionality of BO.

2.1.2 SciKit-Optimize

SciKit-Optimize [14] is an open source Python library for sequential
model-based optimization. It is built on SciKit-Learn. It is a small and
simple library that provides facilities to globally optimize very expensive and
noisy black-box functions. For this thesis it is used mainly to perform BO,
for which it provides ample customization, from choosing which acquisition
function to use, to setting stop conditions and even registering custom
callbacks to be used during the process. It also has plotting functionality,
albeit limited, which allows for easy visualization of the process of BO.

x* =-0.3552, f(x*) = -1.0079
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Figure 2.2: SciKit-Optimize Bayesian optimization example result [14]
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2.2 Biological Simulations

Simulators have seen wide adoption in every field of research, from biology to
astronomy, as they can accurately model the world around us without being
constrained by the limitations of our physical world. As such results that
could take months to acquire can be extracted with the use of simulators
within a fraction of that time, as long as the required computational power
is provided. In addition to that, the advent of big data provides efficient
ways to parse the huge amount of data that can be generated from various
simulations. this thesis focuses on biological simulations using PhysiBoSS.

2.2.1 PhysiCell

PhysiCell [5] is an open source software package that has the ability to
simulate large systems of cells, even on desktop computers. To accomplish
that it does not simulate the morphology, but only approximates it where
needed, while also parallelizing the process using OpenMP where possible.
This allows it to simulate the behavior of thousands of cells over several
days in a matter of hours.

PhysiCell doesn’t only simulate the interactions between cells, but

also how certain environmental factors affect each cell leveraging BioVFM,
allowing for very robust simulation results over the a population of cells.

11



0 days 7 days 14 days + 3 min 14 days + 6 hours
18,317 cells 53,600 cells 111,479 cells 113,668 cells

15 days 16 days 18 days 21 days
91,189 cells 51,788 cells 38,122 cells 66,978 cells

Figure 2.3: PhysiCell cancer immunology example [5]

2.2.2 MaBoSS

MaBoSS [15] is an open source software package that simulates both
continuous and discrete Markov processes applied on a Boolean network.
Starting from a given set of initial conditions and applying the Monte-Carlo
kinetic algorithm to the aforementioned Boolean network, MaBoSS produces
time trajectories and estimates the time evolution of probabilities.

In essence, variables which can represent genes, proteins, etc. take on
the values 0 and 1 according to their activity. Each variable’s value is
stochastically calculated by the status of its regulating variables and those
regulating variables are connected to the initial variable using Boolean
operators.

12
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Figure 2.4: Pipeline of the use of MaBoSS 2.0 functionalities [15]

2.2.3 PhysiBoSS

PhysiBoSS [6] is an open source software package that performs multi-scale
simulations of heterogeneous multi-cellular systems. It integrates the
PhysiCell and MaBoSS software frameworks, which were described in the
previous sections, to model each cell’s behavior and its reactions to external
stimuli, as well as the effects on the whole cell population.

13
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Figure 2.5: PhysiBoSS representation [6]

For the purposes of this thesis and by extension the system that is
implemented, the usage of PhysiBoSS consists mainly of two executables,
the actual simulator PhysiBoSS and the PhysiBoSS_CreatelnitTxtFile which
generates the initial conditions of the cells.
perform a simulation, a certain directory structure must be established below

the top level project directory:

b results » Helloworld » runl

=

=

runl

=

run0

=

runz

Furthermore to successfully

B

tput

msg.txt

# properties xml
o report.txt

Figure 2.6: PhysiBoSS directory organization [9]

e The BN directory contains the Boolean network configuration file

required by the MaBoSS component.

e Numbered run directories, which are specific to each simulation run.

These contain:
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— The init.txt file which can be generated by the aforementioned
executable and contains the initial states of the cells.

— The parameter.xml which contains all the tunable properties of a
simulation.

— The files and directories generated after running a simulation, of
which the output directory is a part of.

<?xml version="1.0" encoding="UTF-8" 7>

<simulation>
<time_step> 0.2 </time_step>
<mechanics_time_step> 0.1 </mechanics_time_step>

</simulation>
<cell_properties>

<mode_motility> 1 </mode_motility>
<polarity_coefficient> 0.5 </polarity_coefficient>

3 </cell_properties>

<network>
<network_update_step> 10 </network_update_step>

</network>

<initial_configuration>
<load-cells_from_file> init.txt </load_-cells_from_file>

3 </initial_configuration>

Listing 2.1: Partial PhysiBoSS parameter file - parameter.xml [9]

The above is the typical structure required for running simulations manually,
but as will be explained in the System Design section later the numbered run
directories are generated by the system, thus the actual directory structure
that must be setup is altered to the following:

e The BN directory contains the Boolean network configuration file
required by the MaBoSS component.

e The init.txt file which can be generated by the aforementioned
executable and contains the initial states of the cells.

e The parameters_template.xml which contains all the tunable properties
of a simulation. The template is mostly an exact copy of the actual
parameters.xml, with the only difference being that for the parameters
that change between simulations, instead of an actual numerical value,
a placeholder text must be in its place. Note that the file name
parameters_template.xml can be changed to anything, as its path is
specified through the systems configuration file.

15



With just the above top level structure for each simulation a numbered run
directory is created with the init.txt copied inside it and an appropriate
parameters.xml generated from the template.

<initial_configuration>
<load-cells_from_file> init.txt </load_-cells_from_file>
<membrane_shape> sphere </membrane_shape>
<membrane_length> 470 </membrane_length>
<time_passive_cells> 1500 </time_passive_cells>
<oxygen_concentration> 40 </oxygen_concentration>

<!—— These parameters have placeholder strings ,instead of actual values,
which will be replaced with the appropriate values before a
simulations is run —>

<tnf_concentration> BAMIN X2 </tnf_concentration>
<duration_add_tnf> BAMIN X1 </duration_add_tnf>

<time_remove_tnf> 80000 </time_remove_tnf>
<time_add_-tnf> 25 </time_add_tnf>

<mode_injection> 1 </mode_injection>
</initial_configuration>

Listing 2.2: Partial parameter template file - parameter_template.xml

2.3 Numerical Libraries
2.3.1 NumPy

NumPy [8] is an open source library for Python that adds support for
n-dimensional arrays, along with efficient functions to operate on them and
an abundance of numerical computation tools, from Fourier transform to
linear algebra functions and more. It is the basis of many scientific packages,
including SciKit-Optimize used in this thesis, and is used extensively to
manipulate multi-dimensional arrays in the system described in this thesis.

2.4 Plotting Libraries
2.4.1 Matplotlib

Matplotlib [7] is an open source plotting library for Python with the ability
to support multiple graphical back-ends suck Tk (Tkinter), Qt and GTK+.
It is used in SciKit-Optimize for its plotting functionality, as well as in this
thesis for visualizing different stages and parts of the optimization process.
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2.5 Configuration Parsing
2.5.1 TOML

TOML (Tom’s Obvious Minimal Language) [16] is a file format and
specification for configuration files of any kind. One of its key features is
that it is very easy and simple to read write, as well as map unambiguously
to a hash map. TOML has libraries that help with its parsing in many
programming languages.

# This is a TOML document
title = "TOML Example”
[owner]

name = ”"Tom Preston—Werner”

dob = 1979-05—-27T07:32:00 —-08:00

[database]
enabled = true

ports = [ 8000, 8001, 8002 ]
data = [ [”delta”, ”phi”], [3.14] ]
temp_targets = { cpu = 79.5, case = 72.0 }

[servers]
[servers.alpha]
ip =710.0.0.1"
role = ”frontend”
[servers.beta]

ip =710.0.0.27
role = ”backend”

Listing 2.3: TOML example - example.toml [16]

TOML is the language chosen for the configuration file of the system in this
thesis and is parsed with the help of the open source Python package toml
[10], which is a Python library for creating and parsing TOML.

2.6 Computing Grid
2.6.1 TUC Grid Computer

The grid computing [18] system of the Technical University of Crete began
its operations in 2009 with the goal of providing a compute platform to
members of the scientific community of the university with plans to integrate
it with the national and European grids through HellasGrid-Furogrid in the
near future.

At the time of writing it is comprised of 2048 compute units, each
with four processing cores, allowing for the timely execution of massive jobs
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in parallel, like those required by this thesis. Access is provided through
SSH into a Unix shell and monitoring through an analytics reporting web
platform. Job scheduling is performed via the TORQUE [17] resource
manager, which provides the necessary command-line tools and inline script
integration with PBS directives in order to schedule jobs across the compute
cluster.

For the purposes of this thesis the grid computing platform is used to
exhaustively run every simulation in the search space, in order to test the
efficacy of the system presented, whose goal is to remove the need for so
many data points.

2.7 Related Work

The central pillar of the system presented here is the use of Bayesian
Optimizaton to efficiently find optimal configurations that produce a global
optimum for long running simulations, that are in essence black box
functions. Those requirements are in no way exclusive to this system, either
in part or as a whole, which has lead to the use of this method in multiple
scientific ventures, from fine tuning ML models to robotics and medical
applications. Below are a few choice applications that leverage this method.

2.7.1 Bayesian optimization for sensor set selection [3]

This work focuses on selecting sensor sets, such that the resulting sensor
network produces an optimal metric, for example in predictive accuracy. In
addition it explores ways to find the optimal placement of sensors. In contrast
to this thesis, where each sample is a simulation with an inherent numerical
value as a result, this work required the introduction of custom metrics by
the researchers in the real world, which made the problem domain all the
more complex.

2.7.2 CherryPick: Adaptively Unearthing the Best Cloud
Configurations for Big Data Analytics [1]

CherryPick is an application that leverages BO in order to determine optimal
cloud configurations, i.e. disk space, core count, ram size etc., that best
fit a particular big data analytics job. It runs a test job that is indicative
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of the real load on each sample configuration and converges to an optimal one.

There are many parallels to be drawn between it and the system presented
in this thesis, but the major difference is that CherryPick is "laser focused”
on unearthing optimal cloud configurations with built-in integration for a
multitude of cloud providers and a variety of domain specific functionality,
while the system presented here is more application and domain agnostic
allowing it to be adapted to any simulator with isolated code additions.

2.7.3 Application of Bayesian Optimization for Pharmaceutical
Product Development [12]

This paper introduces BO to the development cycle of pharmaceutical
products, using it to optimize manufacturing methods and cut down on
unnecessary experiments. Like with the sensor set selection work, described
above, the researchers defined their own metrics that suit this application
domain in order to treat this process as a black box function. In essence,
by using BO, they are trying to replicate the selection that an experienced
human researcher would do, with all the added benefits of the process being
computerized.
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3 System Design & Implementation

The goal of this system is to efficiently find an optimal configuration of a
simulations parameters in order to minimize the requested output parameter.
Given that these simulations are long running and the dimensionality of the
configuration parameters can require a huge number of simulations to be
run in order to obtain the desired result the conventional way, the method
of Bayesian Optimization has been chosen to reduce that number to double
digits. The system has been broken down into modular parts that allow a
user to very easily define the problem they are trying to solve and the outputs
they desire, as well as be easily extensible in the future.

3.1 Overview

Overall the system can be broken down into four main sections. Those are
the input parsing, the optimization process, the simulation dispatching and
the plotting. Plotting is present throught the system and does as its name
implies, thus wont be analyzed much here. In this stage, only the PhysiBoSS
simulation framework is implemented, thus it is what will be used as an
example throughout. The following paragraphs briefly describe the process as
a whole. Detailed explanation on each part will be given in the corresponding
sections.

Preparation The process begins by the user preparing two files. One is the
configuration file for the system and the other is the configuration template
for PhysiBoSS. On execution the configuration file is read and the stochastic
process begins immediately. From here on any mention of samples, refers to
a combination of input parameters for PhysiBoSS.

Iterative process A number of samples, dictated by the user, are taken
randomly from the search space and the result of their simulations are saved.
These initial samples are the basis of the first model and acquisition function.
Once these are present, the iterative process begins. A new sample is selected
based on the maximum value of the acquisition function and the dispatcher
is requested to run its simulation. The returned value is saved and the model
and acquisition function are updated. In the entirety of the process there are
safeguards to avoid running simulations for samples that have been already
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run, mainly in order to ease development and testing efforts. The dispatcher
uses the configuration template as a basis for each simulation.

Results The above process continues until the maximum number of
samples is taken or the delta between a number of returned values is smaller
than a given threshold. In the end the final results are printed along with
various plots that may have been requested by the user.

Configuration file:
-Define problem space
-Define Bayesian optimizer
configuration
-Define simulator

Establish the problem space
Store all information relating to the

problem space Setup simulations

Dispatch simulations

Parse and return results
Store results

Store models

Perform BO Data
N [E—— l
Simulator:
Optimizer Dispatcher -PhysiBoSS
Results:
-Numerical values
-Plots

Figure 3.1: Graphical representation of the system
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Configuration file is The Bayesian Request the result of

prepared, as well as the Optimizer is setup and the next sample point.
init files required for requests the result of a Repeat the cycle for
the simulations certain simulation the provided number

N N N

> Dispatcher

N

> Optimizer

Manual Setup Data Input Optimizer

The variable data are Dispatch a simulation
read from the config and return the desired
and prepared for the result (alive cancer
optimizer cells) to the optimizer

Figure 3.2: Graphical representation of the systems workflow

3.2 Input

The input of the system can be broken down two to parts, the configuration
file and the command-line arguments.The configuration file focuses on
parameters pertaining to the simulations, the data and the optimization
process, while the command-line arguments contain some knobs to tune the
behavior of the system as a whole.

The chosen format of the configuration file is TOML, as it provides enough
structure to define anything this system needs, while also maintaining high
readability and being easy for humans to generate. The configuration file
is broken down to segments which control the corresponding parts of the
system.

e The data segment, which contains information on each configuration
parameter for simulation. This information includes the label, the
range of the parameters values and the step with which to traverse
the given range. All of the above are used to compute all the possible
combinations that would be required in order to find the minimum, in
essence bounding the problem space.
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e The optimizer segment provides the optimizer parameters that control
things like the noise of the objective function, the number of
optimization calls to make and simulations to run before stopping, the
number of initial random points and the value of the threshold that
controls the early stopping of the optimization process.

e The dispatcher segment is a collection of paths for the simulator. These
include the executable path of the simulator, where its configuration
template can be found and where to output the results.

e Lastly the result segment contains the label of the output parameter
on which the optimization process is performed for. For example the
number of alive cancer cells is the focus of this thesis, but it could also
be the number of apoptotic cells, or in the case of a different simulator
something else entirely.

[optimizer ]

noise = 0.1

n_calls = 30
n_random_starts = 3
delta_stop = 5

[dispatcher]

simulator = "physiboss”
exec_path = ”Workspace/PhysiBoSS/bin/PhysiBoSS”
conf_template = ”Workspace/examples/exampled/parameters_template.xml”
output_-path = ”Workspace/examples/exampled”
[data]

[data.x1]

label = ”tnf_dur”

limits = [2, 10]

step = 2

[data.x2]

label = "tnf_conc?”

limits = [0.1, 0.8]

step = 0.1

[data .x3]

label = ”oxy-nec”

limits = [0.5, 0.7]

step = 0.1

[data .x4]

label = ”time_add”
limits = [5, 1400]
step = 5

[result]
label = ”alive”

Listing 3.1: Configuration file example - config.toml

The command-line arguments have options such as whether to project the
multiple dimensions into one for ease of plotting, for which iteration of the
process, if any, to plot the model and acquisition function, or whether to
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perform Bayesian Optimization at all, in which case all of the search space
is simulated, which is useful for testing and providing the systems other
features without having to script everything from scratch. Furthermore,
there are options to run one of the provided examples without the simulation
process, which is again there for testing purposes. These examples have
already been explored in full for specific output parameters. Lastly, there is
an option to compare the results of different simulator versions in order to
find discrepancies between them.

3.3 Optimization Process

Following the parsing of the input data, the process of finding a configuration
that produces the minimum required value begins. The heavy lifting of this
process, that is the Bayesian Optimization, is handled mostly by the open
source python package SciKit-Optimize [14], which is based in turn on the
SciKit-Learn [13] package. The search space is prepared according to the
limits set by user and the optimizer configuration values are plugged in to
it.

The two main parts of the Bayesian optimization process are the prior
and acquisition functions. The methods chosen for this system are briefly
outlined below. For further details and rationales refer to section 2.1.

Prior function A Gaussian process is chosen as the prior function, which
leads to the objective function being described by a mean function and a
covariance kernel for each pair of sample points 7, 73:

pa(71) = E[f(27)]
po(73) = E[f (23)]
k(1 73) = B[(f(21) — pa (1)) (f (42) — pa(72))]

The kernel chosen is a Matern5/2 covariance kernel, whose simplified half
integer form for p=2,v=p+1/2=5/2

Vbd  5d? V5d
O5/2(d) 202(1+T 322)6Xp(—7)
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Acquisition function The strategy chosen for the acquisition function is
that of Expected Improvement (EI), where the sample point that is expected
to give the maximum amount of improvement over the currently observed
minimum is selected.

upr(Z) = max (0, f’ — f(Z)), wheref’ = min(f) observed so far

apr(Z) = (f' = p(@)(f; u(2), k(Z, L)) + k(Z, Z)N(f'; u(Z), k(Z, )

In the entirety of the system, the search space is represented as discrete
values, except when used as the search space for Bayesian Optimization. For
that reason the search space values are given as continuous real values to
optimizer and are discretized again at each step inside the objective function
before any further processing happens.

The objective function’s main role is to run a simulation with the given
input parameters and save the returned result. The result of each simulation
for a given combination of parameter values are saved inside a hash-map in
order to prevent rerunning of the same combinations. This method uses the
memory of the system and as such it cannot persist between executions. For
that reason there exists another method of avoiding duplicate simulation
runs, that persists through executions, in the dispatching of the simulation,
which will be described in more detail in the following chapter.
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Ugp(X) at 28 iteration(s) Acquisition function at 28 iteration(s)

Figure 3.3: Model and acquisition function at the end of the process. In this simplistic case
it can be seen that the system has converged to the true minimum, which is 536
alive cancer cells with a combination of parameters tn f_concentration = 0.4
and time_add_tnf = 125, which has been traditionally computed beforehand.
The red dots represent the samples taken, where it is shown that after some
exploration, the process zeros-in on the parts where the minimum values lie.

Lastly there exists the option to compare different versions of a simulator. For
each simulation that would be run, another one is run using the other version
with the same parameters. The Root Mean Square Error of the results is
computed and plotted for analysis. The main reason for this functionality
is to discover errors in the previous version of PhysiBoSS, but it could be
useful for other simulators as well.

3.4 Dispatching Simulations

The dispatching part of the system, as the name implies is used to dispatch
simulations. This is the part that gets called from inside the objective
function to run a simulation with the given parameters and return the result.
This process is responsible for any setup the simulation requires, running it
with the correct inputs and lastly parse the desired result and return its value.

For the PhysiBoSS simulations the setup part consists of creating the
directory hierarchy required for the simulations and generating each
simulation’s parameter.xml and init.txt from a given template file. The
advantage of using a user provided template file is that every other parameter

26



that is of no concern to the process of Bayesian Optimization can be tuned
to anything the current user wants. The results of each simulation are
compiled and for this case the number of alive cancer cells is extracted. The
number of alive cells is extrapolated from the phase each cell is in for the
last epoch of the simulation. A phase value of 0 or 1 signifies it is alive.
Below is a table that maps each numerical phase value to their actual label.

H Label \ Phase ID \ Phase H
alive 0 Ki67 Positive Premitotic
1 Ki67 Positive Postmitotic
apoptotic 100 Apoptotic
necrotic 101 Necrotic Swelling
102 Necrotic Lysed

Table 1: Cell phase mapping to labels used for results

{
70”: "Ki67_positive_premitotic” ,
71”7: "Ki67_positive_postmitotic”,
727 : "Ki6T7_positive”,
73”: "Ki67_negative” ,
74”: ”GO0G1l-phase” ,
”5”: ”GO-phase” ,
”6”: 7Gl-phase” ,
nT” ”Gla-phase” ,
”8”: ”"Glb_phase”,
”9”: ”Glc-phase” ,
”10”: ”S_phase”,
711”7 : ”G2M_phase” ,
’12 ”G2_phase” ,
713 ”M_phase” ,
714 Plive”,
100 apoptotic”,
’101 necrotic_swelling” ,
>102’ necrotic_lysed”,
>103” necrot s
7104” : 7 debris”
¥

Listing 3.2: Cell phases hash-map - cell_phases.json. [2]

27



Time;ID;x;y;z;radius;volume total;radius_nuclear;contact ECM;freezer;polarized fraction;motility;cell_line;Cell_cell;phase;Cycle;NFkB
1448.02;0;-61.6693;-3.74935; -115.101;8. 69904 2757.42;5. 33789; ;0;0.1; ;0;7.63187;0;0;-1-1;-1
1448.02;1;-53.9343;-27.9101;-130.132;10.0091;4200.22;6.12265;0; ;0;5.37462;0;52;-1-1;-1
1440.02;2;-53.3964;-14.0752;-140.713;8.92259;2975.51;5.51069;0;0; ;0;3.2278;0;0;-1- 1 -1
1440.02;3;-33.847;-9.28372;-141.01;9.35632;3430.87;5.73558;0;0;0.1;0. H:F
1448.02;1950;73.361;-54.2159;106.023;9.45993;3546.11;5.81761;0;
1440.02;5;-21.6201;-51.8302;-126.313;9.78467;3923.98;6.00727;0;

1440.02;6;-30.1085;-18.6195; -127.781;9.33654;3409.15;5.75182;0;
1440.02;7;-24.719;8.71186;-120.698;9.27746,3344.84,;5.72634;0;0;
1440.02;8;-50.9172;15.2343;-129.249;9.4404;3524.2;5.79552;0 . 1
1440.02;9;-50.8014;53.4585;-117.069;9.58131;3684.37;5.8766;0;0; Q. 1 1;-1
1440.02;10;-17.7246;-38.938;-137.801;8.71814;2775.62;5. 34394,3,0,0.1,0.91 0;2. 54952 0;0;-1-1;-1
1440.02;11;-5.6853;-31.569;-129.539;9.76063;3895.13;5.99225;0;0;0.1;0.01;0;6.15025;0;0;-1-1;-1
1440.02;12;-22.0594;-7.71881;-116.968;9.39202;3470.28;5.79398;0;0;0.1;0.01;0;7.50247;0;0;-1-1;-1
1440.02;13;15.7907;12.024;-142.269;10.8968;5419.87;6.61188;0;0;5.7829e-05;0.01;0;3.2365;101;72;-1-1;-1

1440.02;1843;-71.7717;80.2953;668.3684;9.37664,;3453.26;5.7682;0;0;0.1;0.01;0;7.11507;0;0;-1-

1440.02;15;3.5326;22.2049;-133.57;9.95835;4136.67;6.10133;0;0;0.1;0.01;0;5.19567;0;54;-1-1;-1
1440.02;16;10.8463;-59.4369;-129.927;10.567;4942.43;6.428;0;0;0.00164035;0.01;0;2.5118;101;58;-1-1;-1

Figure 3.4: Partial PhysiBoSS simulation output. This is the CSV file that the dispatcher
parses for its cell phases in order to determine whether a cell is alive, apoptotic
or necrotic. That is it parses the phase column located 3,4 from the end and
maps each phase code to the appropriate state. Note that for each simulation
multiple of these outputs are generated, each corresponding to a certain point
in time. In this system though only the final one is of concern, as that contains
the cell information at the end of the simulation.

As was mentioned in the Optimization Process chapter, there is functionality
included to avoid rerunning simulations for the same combinations, even
between different executions. Each combination of parameters has a unique
identifier in the directory name that contains the simulations results that
can be computed both ways. Thus before running a simulation it is
always checked if the corresponding directory and files exist. If they do
the simulation is not run and the results are immediately parsed from the
already existing files.

The functionality mentioned in the above paragraphs is specific to
PhysiBoSS, but as can be inferred from the wording so far it is relatively
easy to implement similar functionality for any other simulator, as the
simulator specific parts are detached from anything else in the system. This
is a core part of the system as it makes it possible with minimal effort to
provide its features to the needs of other researchers.

3.5 Plotting

There exist 3 different plotting options depending on the options provided,
available in both 2 dimensions and 3 dimensions. The most important one
that has been already mentioned is the plotting of the model and acquisition
functions at any given iteration of the process. The main reason for that
is that the model plot allows some check of the validity of the results,
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combined with the acquisition function.

The rest of the plotting options are fairly standard, with the ability
to plot the true function, which is usually unknown, if the data points are
provided mainly for the purpose of testing. Another option is to live plot
the sample points as the Bayesian Optimization process occurs. Lastly there
is the option to plot the final result on top of the true function if possible,
instead of simply printing it out to standard output.
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4 Experimental Results

All of the experimental cases shown below serve the purpose of displaying
the capabilities of the system and the method of Bayesian optimization by
extension, while also shedding some light on possible deficiencies. Showcased
are examples of varying dimensionalities and search spaces, in order to
provide a more complete picture. The main objective in all cases is to find
the optimal combination of parameter’s values that minimize the amount
of alive cancer cells. Thus the main parameters of interest here are those
pertaining to TNF injections and oxygen.

4.1 Single Parameter Case

In this simplistic and limited case only a single parameter is explored in
order to affirm the validity of the results. As the search space is very small it
isn’t enough to showcase all the benefits of using Bayesian optimization, but
nevertheless it is enough to establish some trust in the system’s workings.

[optimizer ]

noise = 0

n_calls = 30
n_random_starts = 3
delta_stop = 5

[dispatcher]

simulator = ”"physiboss”
exec_path = ” Workspace/PhysiBoSS/bin/PhysiBoSS”
conf_template = ”Workspace/examples/examplel/parameters_template.xml”
output_path = ”Workspace/examples/examplel”
[data]
[data.x1]
label = "tnf_conc?”
limits = [0.1, 0.8]

step = 0.01

[result]
label = ”alive?”

Listing 4.1: Use case 1 configuration - config.toml
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Figure 4.1: Case 1 true function. The true function is normally unknown and only

demonstrated here, and in the other cases, in order to compare it with the
model created by the process and the resulting minimum found.
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Figure 4.2: Case 1 model. In this and the rest of the examples all models and acquisition
functions shown are taken from the final iteration.

Through this example it is shown that the system works as intended, at
the very least in this simple case, modeling the unknown function fairly
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accurately and arriving at the minimum value without having to evaluate
every data point. The acquisition function shows where the next data point
to be sampled is, but in this particular case the operation was cut short, as
the system determined early it was close enough to the optimal configuration.

4.2 Double Parameter Cases

The two cases examined below showcase a more realistic application than
the single parameter case. Here the search space is large enough to require
significant time and computational power in order to fully explore it, making
the use of BO a major need for finding the global minimum in a timely
fashion.

4.2.1 TNF Concentration & Time Add TNF

[optimizer ]

noise = 0

n_calls = 30
n_random_starts = 3
delta_stop = 5

[dispatcher]

simulator = "physiboss”
exec_path = ” Workspace/PhysiBoSS/bin/PhysiBoSS”
conf_template = ”Workspace/examples/example2/parameters_template.xml”
output_-path = ”Workspace/examples/example2”
[data]

[data.x1]

label = ”tnf_conc”

limits = [0.1, 0.4]

step = 0.1

[data.x2]

label = ”time_add”

limits = [25, 600]

step = 25
[result]

label = "alive”

Listing 4.2: Use case 2 configuration - config.toml
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Figure 4.3: Case 2 true function.

Hgp(X) at 28 iteration(s) Acquisition function at 28 iteration(s)

Figure 4.4: Case 2 model.

In this more involved case with two parameters to consider, while the size
of the problem space is comparable to the first case, it shown that the
system works again as intended. As could be expected and demonstrated
by the true function, the number of alive cells is reduced by either increasing
the concentration of the dosage or decreasing the interval between doses of
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the administered drug. The same behavior is demonstrated by the model
created by process, culminating in the minimum amount of alive cells when
the concentration is at its peak and interval between doses at its lowest.

4.2.2 Duration Add TNF & Time Add TNF

[optimizer]

noise = 0

n_calls = 30
n_random_starts = 3
delta_stop = 5

[dispatcher]

simulator = ”"physiboss”
exec_path = ” Workspace/PhysiBoSS/bin/PhysiBoSS”
conf_template = ”Workspace/examples/example3/parameters_template.xml”
output_path = ”Workspace/examples/example3”
[data]

[data.x1]

label = "tnf_dur?”

limits = [2, 10]

step = 2

[data .x2]

label = ”time_add”

limits = [5, 1400]

step = 5

[result]
label = ”alive”

Listing 4.3: Use case 3 configuration - config.toml

f: 1414.0, x: (135.0, 10.0)

2-D Dataset Visualization

= True (Unknown)
® Minimum

Figure 4.5: Case 3 true function.
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Figure 4.6: Case 3 model.

This case is the first true test of the usefulness of this system. While the
previous two cases were more indicative of the validity of the system and
its results, in truth with the use of BO on those problem spaces one could
save at best a couple of days, this case presents a much larger problem space
allowing for BO to reduce what would be weeks or even months of processing
time into a day. The results are reassuring, seeing that the model accurately
follows the true function and a near optimal configuration is found with the
expected number of samples taken. Again, the optimal configuration is as
expected, seeing that maximizing the duration of the drug and minimizing
the interval between doses produces the least amount of alive cells.

4.3 Quad Parameter Case

The final case is in essence the true stress test of system since four parameters
are changing, making the search space considerably larger and more complex
than the previous cases.

[optimizer ]

noise = 0

n_calls = 50
n_random_starts = 3
delta_stop = 5

[dispatcher]

simulator = ”physiboss?”
exec_path = ”Workspace/PhysiBoSS/bin/PhysiBoSS”
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conf_template = ”Workspace/examples/exampled/parameters_template.xml”
output_path = ”Workspace/examples/exampled”

[data]
[data.x1]
label = "tnf_dur?”
limits = [2, 10]
step = 2

[data .x2]
label = ”tnf_conc?”
limits = [0.3, 0.6]
step = 0.1

[data.x3]
label = ”oxy_-nec’
limits = [0, 0.01]
step = 0.01

)

[data.x4]
label = ”"time_add”
limits = [5, 600]
step = 25

[result]
label = ”alive?”

Listing 4.4: Use case 4 configuration - config.toml

f: 1, x: (10, 0.5, 0.01, 205)

2-D Dataset Visualization

s True (Unknown)
® Minimum

alive

fi=

Figure 4.7: Case 4 true function. For this case the above two parameters of the total
4 are chosen to showcase the true function and model as they produce the
most data points between them. In addition the other parameters either don’t
contribute as much to the final results or provide a very drastic between their
values making their depiction non instructive.
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alive

Figure 4.8: Case 4 model. The samples depicted don’t contain one or two samples taken
with the third parameter at 0 (oxygen necrotic) because the values they
produced were much higher than the rest, making the depiction of the model
non informative.

As is shown, the system has arrived in a near optimal configuration, even
taking less samples than expected to do so. Thus it has been demonstrated
that the system works correctly and efficiently even on the more complex and
realistic cases. One thing to note is that the requirement for less iterations
than expected is partly based on the luck of a particular execution and that
by increasing the problem space even further more iterations would generally
be required.
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5 Conclusions & Future Work

In conclusion, the system presented in this thesis leverages Bayesian
optimization in order to find near optimal configurations for long running
biological simulations on PhysiBoSS that minimize the number of alive
cancer cells. The results are promising, drastically cutting down the number
of simulations needed to be run, from possibly thousands to double digits.
It also provides major automations in setting up and dispatching those
simulations, although some manual setup is required still.

More work could be done in improving the flexibility and extensibility
of the system. Although it is possible to substitute PhysiBoSS with a
different simulator with relative ease, this process could be further simplified
by adding more abstraction layers on the dispatching of simulations.

Another point that could be improved is cutting down the number of
simulations needed to be run even further. While part of that is already
taken care of by saving simulation results both in volatile and non-volatile
storage, more advanced methods and heuristics could be utilized, for
example stopping a simulation early after determining that its results are
not promising.
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